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Abstract
Decoding the Real World:

Tackling Virtual Ethnographic Challenges through Data-Driven Methods

by Ninghan Chen

As the Internet has become an integral part of our daily lives, virtual world, partic-
ularly online social networks (OSNs), have evolved into crucial platforms for learn-
ing and idea exchange. These online interactions generate a considerable amount
of data, reflecting real-world human behaviours and experiences. This leads to the
question: how can this wealth of data from the virtual world be utilised to investi-
gate real-world phenomena and challenges? One solution lies in virtual ethnogra-
phy, an ethnographic approach enhanced by computational tools. In the past three
years, the COVID-19 pandemic has brought to light a unique problem emanating
from this abundance of data: the infodemic. This term, referring to an overabun-
dance of information, accurate or not, has compounded the challenges presented
by the pandemic. Misinformation and fake news have inundated OSNs, fostering
confusion, fear, and harmful behaviours among individuals in the real world.

To combat the infodemic, governments and healthcare bodies have deployed in-
terventions on OSNs. These interventions aim to amplify trustworthy information,
control the spread of misinformation and fake news, and understand public senti-
ment and policy reactions. This thesis provides an exhaustive examination of the
infodemic, employing Social Network Analysis (SNA) as the computational tool. It
underscores the significance of three SNA applications—social characteristics, infor-
mation diffusion, and sentiment analysis—in addressing the aforementioned OSN-
based interventions. Concerning social characteristics, our objective is to identify
users who genuinely contribute to information diffusion. We introduce two novel
measures to evaluate the actual performance of individual users and user sub-
groups in diffusing COVID-19 information. We also shed light on the heightened
mental distress experienced by influential users during the COVID-19 pandemic.

In terms of information diffusion, we propose two prediction models. These
models consider the content of messages, users’ susceptibility, and influence to
estimate a message’s eventual reach and identify users likely to disseminate the
message. We validate our models through experiments, and the results indicate
that our models surpass existing methods.

For sentiment analysis, we devise a Graph Neural Network-based text classifi-
cation framework to extract vaccine attitudes from text posts on social media. We
use the vaccine attitudes of users’ friends as contextual information to minimise the
interference of linguistic nuances like sarcasm. Lastly, to confirm the consistency be-
tween virtual world data and real-world phenomena, we conduct a comprehensive
cross-validation. This involves comparing virtual and real-world data concerning
COVID-19 vaccine hesitancy across different regions and time periods.
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Chapter 1

Introduction

1.1 Virtual and Real World

“In the near future, corporate networks reach out to the stars. Electrons and light flow
throughout the universe. ”

Ghost in the Shell

Since the World Wide Web’s inception and its subsequent public accessibility, the
virtual world has emerged as a revolutionary conduit for human communication.
It has empowered individuals to share their opinions, insights, experiences, and
perspectives through a plethora of Internet-based applications [WH08]. This devel-
opment incited a persistent debate regarding the virtual world’s relationship with
the real one: are they distinct social spaces, or do they overlap? This question was
humorously captured in a famed 1993 New Yorker cartoon, which posited: “On the
Internet, no one knows you’re a dog.” This quip underscores the virtual world’s
inherent anonymity, highlighting its stark contrast with the tangible world.

However, this clear-cut distinction between the virtual and physical worlds is cur-
rently under reassessment, given the intensifying incorporation of the virtual do-
main into everyone’s daily life [MS00]. The virtual world, initially viewed as a
separate social space from other facets of human action and experience, is increas-
ingly recognised as an integral part of the real world [GSBC09]. The traditional
binary between the virtual and real worlds is becoming progressively obsolete as
they interact and reciprocally influence each other [MS00]. This dynamic exchange
is evident when real-world events spur extensive discourse in the virtual world,
which in turn reverberates back into the real world. A salient example of this inter-
play is the role of social media platforms, such as Twitter and Facebook, in facili-
tating global social movements like #BlackLivesMatter and #MeToo. The discourse
generated by these online discussions has had profound implications in the real
world, leading to policy changes and heightened public awareness around vari-
ous social issues [PBR19]. Consequently, the virtual world is increasingly perceived
not as an isolated entity but as a component of the real world, further blurring the
lines between these once distinct domains. This perspective is epitomised by the US
Supreme Court’s recognition of virtual social platforms like Twitter and Facebook
as the new “public square” — primary spaces for communication, learning, and
idea exchange [BM19]. Research has also shown that the virtual world has become
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a vital platform for mobilising people, creating social change, and garnering global
support, from the Arab Spring to the war in Ukraine [SA13, PMFT22].

Since the virtual world can be used as an expression of human action and ex-
perience, How to study phenomena and problems occurring in the real world through
the virtual world? To answer this question, virtual ethnography, an ethnographic
methodology has been proposed. There are two dominant meanings of virtual
ethnography [BH17]. The first refers to the traditional ethnographic study of digital
cultures, in which researchers use participant observation and qualitative meth-
ods to study social phenomena in the virtual world [PHP+15]. The second defini-
tion of virtual ethnography refers to the use of computational methods to enhance
ethnographic research. This approach involves the collection and analysis of large
amounts of data generated by social actions in the virtual world, using compu-
tational tools [BH17]. This mixed method of research can enrich and deepen the
researcher’s understanding of virtual world data. In this thesis, we focus on the
second meaning of virtual ethnography.

1.2 COVID-19 Infodemic and Virtual Ethnography

In the past three years, the world has experienced an unprecedented COVID-19
pandemic. As a result of physical isolation and social detachment, people increas-
ingly rely on online social networks(OSNs) for information, advice, and mental
health support. However, OSNs have also become a breeding ground for misinfor-
mation and fake news, leading to risky behaviours that endanger public health.
While the pandemic is receding, it is still critical to take stock of lessons for fu-
ture large-scale infectious diseases of similar type. These experiences include both
approaches to fighting the virus itself and to combating the infodemic caused by
the virus. The term “infodemic” outlines the perils of misinformation during dis-
ease outbreaks mainly on social media [CQG+20, HHW+21]. Apart from accelerat-
ing virus transmission by distracting social reactions, the infodemic increases cases
of psychological diseases such as anxiety, phobia and depression during the pan-
demic [DBG+20].

In response to the infodemic, governments and healthcare institutions have enacted
social media-based interventions involving amplifying of reliable information, control-
ling the spread of misinformation and fake news, and understanding public sentiment and
reactions to policies. Virtual ethnography, a widely employed research methodology,
empowers researchers to probe how users form relationships on social media, ex-
amine their information diffusion behaviour, and analyse user experiences and im-
pacts during the pandemic.

Nevertheless, with the burgeoning volume of data generated by OSNs, the deploy-
ment of virtual ethnography presents two significant challenges. The primary chal-
lenge involves the collection of large, comprehensive data sets for research [LPA+09].
Given that analyses hinged on the virtual world are contingent on extensive data
sets, conventional data collection methods such as manual statistics fall short. This
necessitates the exploration of novel data collection methods for large-volume data.
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The second challenge pertains to the selection of appropriate tools to analyse the
vast quantities of data stemming from social platforms [BC12, CR10]. Unlike tra-
ditional research methods such as surveys and interviews, researchers often lack
direct access to users’ attitudes or sentiments when handling social platform data.
Instead, they must extract relevant information from these platforms, which may
appear in various formats such as text, social networks, and videos. Consequently,
researchers need to opt for more efficient and accurate tools to extract and analyse
the necessary information.

1.3 Social Network Analysis

To address the second challenge stated above, Social Network Analysis (SNA)
emerges as a compelling solution. SNA encapsulates a set of advanced compu-
tational methods crafted to study various social structures and discern associations
among participants within a community [OR02]. This analytical approach affords
crucial insights for the selection of participant samples and the comprehension of
participant interactions in virtual ethnographic studies. Fundamentally, SNA relies
on graph theory, providing a mathematical framework that aptly describes network
structures and interaction patterns between individual nodes. SNA finds diverse
applications in OSNs, spanning areas such as social characteristics, which empha-
sise the characterisation and quantification of individuals within a network, their in-
terrelationships, and the broader network structure; Information diffusion, focusing
on interaction patterns and content exchange among users; and sentiment analysis,
centring on individual user behaviour. In this thesis, we embark on a thorough ex-
ploration of the pivotal roles these three applications of SNA play in combating the
infodemic. First, the strategy for amplifying reliable information can be shaped by
a thorough analysis of social characteristics. This will involve the identification and
quantification of influencers who can facilitate the effective spread of trustworthy
information. Second, we tackle the issue of controlling the diffusion of misinfor-
mation and fake news by gaining a comprehensive understanding of information
diffusion patterns. This will involve the study and prediction of information diffu-
sion patterns among users within the social network. Third, we achieve a nuanced
understanding of public reactions and attitudes towards policy measures through
exhaustive sentiment analysis. This process requires extraction and examination of
individual user sentiment and the overall sentiment trends within the public do-
main. This investigation will provide invaluable insights into the interplay between
social networks and public health crises, as well as guide the development of strate-
gies to manage future public crises.

1.3.1 Social Characteristics

The examination of social characteristics is pivotal in understanding individual
roles and behaviours in OSNs [Cen10]. As we grapple with the infodemic, the
significance of understanding these social characteristics intensifies. The strategic
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amplification of trustworthy information can be notably improved through a com-
prehensive understanding of these characteristics. The identification and quantifi-
cation of influential nodes can facilitate the efficient diffusion of information.

Social characteristics hone in on individual nodes or subgroups within the net-
work, offering insights into key users and their respective influence within the net-
work. A basic characteristic is the node’s degree [Fre78], representing the number
of connections a node has with other nodes. This metric is instrumental in iden-
tifying well-connected nodes or key influencers. More advanced metrics like cen-
trality [Fre78, ZL17] and PageRank [PBMW99] estimate the significance of nodes
within the network. Centrality incorporates both the number of connections and
the significance of these connections. In contrast, PageRank is an iterative algo-
rithm that allocates weights to connections based on the importance of users. These
metrics assist in revealing the hidden structure of relationships within the network
and identifying the most influential users within the community. Examining so-
cial characteristics in virtual ethnographic research is critical for understanding the
complex interactions between nodes, their relationships, and the overarching struc-
ture of OSNs.

1.3.2 Information Diffusion

Information diffusion is the process by which information, influences, and other
forms of content spread from one user to another in social networks [BRMA12,
GGLT04]. By analysing information diffusion in a social network, we can gain in-
sights into how information spreads, identify key sources, and understand how this
spread affects individual behaviour. In the context of an infodemic, understanding
the patterns and mechanisms of information diffusion is essential to control the
spread of misinformation and fake news. By studying these diffusion patterns, we
can identify the primary sources and channels of misinformation, predict its poten-
tial spread, and develop effective strategies to counter it.

The diffusion model typically consists of three elements: sender, receiver, and trans-
mission medium [Cho15]. In the case of OSNs, senders and receivers are users
within the network, while the OSNs serve as the diffusion medium. Several classical
information diffusion models exist, including threshold models [Gra78], indepen-
dent cascade models [GGLNT04, KKT03], and epidemic models [KE05]. Generally,
at the beginning of the diffusion process, all nodes are inactive. When an original
node sends a message, it becomes active and influences connected neighbouring
nodes, possibly activating them based on the chosen diffusion model’s activation
mechanism. This iterative process continues until the diffusion stops due to no
more nodes being activated or a predefined stopping condition is met.

Threshold models assert that a user becomes active or adopts information when the
proportion of active neighbours reaches a certain threshold [Gra78]. The activation
threshold varies between nodes, representing the resistance to adopting informa-
tion or social pressure required to change a node’s state. Threshold models have
been widely used to study the spread of opinions, innovations, and information
in social networks. Independent cascade models represent information diffusion
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as a process analogous to the spread of diseases or infections [KKT03]. In these
models, the probability of a user becoming active depends on the number of active
neighbours. Once active, a user has a single chance to activate each neighbour. In-
dependent cascade models are useful for studying viral content or opinion spread
on social media platforms. Epidemic models, inspired by infectious disease spread,
assume that diffusion occurs through direct contact between active and inactive
nodes [Mol95]. The diffusion process follows a SIR (Susceptible, Infected, Recov-
ered) model [Bai75], with nodes transitioning from susceptible (inactive) to infected
(active) and eventually recovering (inactive again) over time.

Several factors can affect information diffusion in a social network, such as network
structure, node attributes, content features, and diffusion dynamics. Network struc-
ture, including the number of nodes, connection density, presence of communities,
and distribution of centralities, significantly impacts information spread [BLL+14].
For example, a highly connected network may facilitate faster and wider diffusion
than a sparsely connected network. Individual node characteristics, such as influ-
ence, credibility, and expertise, also affect diffusion. Influential nodes with numer-
ous connections can amplify information spread, while less influential nodes may
have limited impact. Content features, including novelty, relevance, and emotional
appeal, influence the rate and extent of information diffusion. Emotionally charged
content may spread quickly and widely within a network [BWJ+17]. Finally, dif-
fusion dynamics, such as timing, sequence, and duration of information spread,
can affect overall diffusion patterns [NLL14, CSG+20]. Rapid information spread
may create a burst of activity, while slower spread may result in a more gradual
diffusion process.

1.3.3 Sentiment Analysis

Sentiment analysis is a broad field that involves studying and analysing people’s
perspectives, attitudes, and feelings towards entities and their attributes as ex-
pressed in written texts [AXV+11]. Sentiment analysis includes not only the anal-
ysis of whether the emotions are positive or negative, anxious or happy but also
the attitude or opinion expressed about something, such as support or opposi-
tion. In the face of an infodemic, sentiment analysis becomes an indispensable tool
for understanding public reactions and attitudes towards policy measures, health
guidelines, and other pandemic-related topics. By analysing the sentiment of social
media posts, comments, and reactions, we can gauge the public’s overall sentiment
towards these issues and identify prevailing trends in public opinion.

The development of sentiment analysis can be divided into four main levels, doc-
ument level [Tur02], sentence level [HL04], aspect level [SF16], and social context
level [SRI19]. At the document level, the entire document is treated as a single en-
tity, and the analysis is applied to the document as a whole to determine an overall
sentiment [PL04].

In sentence-level sentiment analysis, each sentence within the document is treated
as an individual entity, and the sentiment analysis methods are applied to each
sentence separately to determine the sentiment expressed in that sentence. Once
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the sentiment of each sentence has been analysed, the results are then summarised
to provide an overall sentiment for the document [KB06, HZ11].

Aspect-level sentiment analysis, also known as feature-based sentiment analysis,
is a technique used to identify and analyse the sentiment expressed towards spe-
cific aspects or features of an entity. At this level, the goal is to identify all entities
and their aspects in a text and assign a polarity score to each aspect of the en-
tity [TQL16]. The main challenge in aspect-level sentiment analysis is to accurately
distinguish between the sentiment expressed towards different aspects when there
are multiple aspects in a text. For example, in the sentence “This hotel offers decent
amenities, but the service is terrible”, the sentiment towards the amenities and the
service are different aspects, and the sentiment towards the amenities is positive,
while the sentiment towards the service is negative. Aspect level can be divided into
three steps: identification, classification and aggregation. The identification step is
to extract aspect terms [JG10]; the classification step is to classify the sentiment of
each aspect [TQL16]; and the aggregation step is to combine the sentiment of each
aspect [LYL19].

At social context level, the analysis takes into account the social context in which the
text was created by a user, including the personal characteristics and preferences
of the user, his/her past behaviour and attitudes, and the social network. Social
context level sentiment analysis can be used to analyse the sentiment expressed
by individual users towards a particular topic or event, taking into account their
past posts and the posts from his/her neighbourhoods [SFG+15, GHW17]. This
approach can provide more accurate and personalised sentiment analysis results,
which can be useful for targeted analysis of attitudes towards specific topics, such
as vaccines or political issues.

1.4 Research Questions

As discussed in the previous section, to combat the infodemic, governments and
healthcare organisations start to deploy OSNs responses. However, these responses
fundamentally hinge upon a comprehensive understanding and analysis of OSNs,
which in turn, are predicated on the availability of substantial data. This reality
foregrounds the first research question we aim to address:

Research Question 1

How can we gather a large amount of data?

OSNs have become a crucial communication channel for healthcare organisations
to disseminate official guidelines and professional advice, as well as information on
effective COVID-19 prevention measures such as masking, vaccination, and social
distancing. To combat the infodemic, individual users, healthcare professionals, and
social activists with large followers were encouraged to share this information on
social media. However, the effectiveness of these users in promoting the speed and
extent of information diffusion can vary greatly, making it challenging to measure
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their performance in this regard. Here, we use the term ‘bridging performance’ as
an analogy to evaluate how quickly and widely information can diffuse on social
media because of the sharing of a user. Traditional social characteristics methods
may not accurately capture the bridging performance of individual users in spread-
ing crisis-related information. For example, medical professionals on Twitter may
not have thousands of followers like super tweeters, but their professional endorse-
ment can greatly contribute to the popularity of the tweets they share. This leads to
our second question:

Research Question 2

How to design a measurement to capture the actual bridging performance of
social media users in terms of spreading COVID-19-related information?

In addition to spreading accurate and useful information, combating the spread of
false information and disinformation is also critical for fighting against the info-
demic. To achieve this, cascade prediction has emerged as a widely accepted ap-
proach to understanding the prevalence of information based on its early adopters.
By predicting the spread of information, healthcare authorities can quickly respond
to misinformation before it causes significant harm. Studies have indicated that
when a user decides to retweet a message, three factors come into play: the mes-
sage content, the influence of active friends, and the user’s susceptibility. A user’s
influence reflects their ability to persuade others to share their message, while sus-
ceptibility refers to the likelihood of the user being influenced by others. However,
existing cascade prediction models only consider the influence of active friends
and the user’s own susceptibility, ignoring the content of the message itself. Fur-
thermore, these models fail to account for the fact that a user’s influence and sus-
ceptibility are not only specific to the user but also to the topic or content of the
message. For example, a sports journalist who prefers pop music may be more
influential when tweeting about sports than music-related topics. As a recipient
of information, the journalist may be more cautious in sharing sports news than
music-related tweets. To address these limitations, we propose our third research
question:

Research Question 3

How to accurately predict the popularity of information?

In the fight against the infodemic, understanding public attitudes and reactions
to policies is crucial. One such policy that has garnered a lot of attention is vac-
cination, which is an effective measure to prevent pandemics caused by infectious
diseases like COVID-19. Research has shown that information on social media plays
an important role in shaping people’s attitudes toward vaccination, and thus, it is
important to analyse public attitudes towards vaccines on social media platforms.
To achieve this, researchers have conducted numerous studies using virtual ethnog-
raphy to analyse pro- and anti-vaccine users on social media, to understand public
attitudes toward vaccination and to track their changes. Sentiment analysis in SNA
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is found to be a useful tool for researchers to identify the sentiments expressed in
texts about vaccination. However, existing sentiment analysis methods for vaccine
attitudes face three main challenges. First, the global nature of pandemics requires
an approach that can handle multilingual texts. Most feature-based approaches,
which classify posts by predefined text features (e.g., keywords), typically focus
on a single language, leading to the failure of such approaches when it comes to
analysing multilingual content data. Second, linguistic features, such as sarcasm
and irony, are prevalent in vaccine-related posts during the pandemic, which sig-
nificantly compromises the performance of existing sentiment analysis models. For
example, a user might express support for vaccination by ridiculing the "microchip
for vaccination" conspiracy theory, saying "I won’t do it for their vaccines, I’m wait-
ing for 6G". Such sarcasm can be difficult to detect with traditional sentiment anal-
ysis methods. Third, research has shown that users’ attitudes toward vaccination
are closely related to those of their neighbours in social networks, including friends
and friends of friends. Those with negative attitudes toward vaccination tend to be
associated with users with negative attitudes, while those with positive attitudes
tend to connect with users with positive attitudes. However, trying to detect users’
vaccine attitudes through communities fails to capture real-time vaccine dynamics,
as people’s opinions can change rapidly based on new information and events. To
address these three challenges, this leads to our fourth research question:

Research Question 4

How to accurately extract users’ attitudes from their posts?

When it comes to obtaining data on vaccine attitudes and hesitancy, researchers
have the option of using surveys or social media to gather information. However,
both methods are susceptible to potential bias and errors. Social media data, in par-
ticular, has been found to have three possible sources of error: measurements, coding
and missingness [HM17, Bak17]. Measurement errors can occur when social media
users do not express their true attitudes in their posts. Coding errors may arise from
flaws in the methods used to capture public opinion. missingness can occur due to
non-representative social media users, where not all people express their opinions
online. For example, Twitter tends to have a younger user base, while Facebook
attracts more older users. Given the potential for error in social media data, it is im-
portant to develop appropriate methods to correct the bias and accurately measure
users’ vaccine attitudes from social media. We, therefore, pose our fifth research
question:

Research Question 5

Is it possible to accurately measure individuals’ vaccine hesitancy from social
media using appropriately designed methods?
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Part I Part II Part III Part IV
RQ 1 RQ 2 RQ 3 RQ 4 RQ 5

Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9

Table 1.1: Thesis structure.

1.5 Thesis Overview

This thesis is organised into four parts. In Part I, we provide an overview of the
data collection method and datasets used in this study, followed by an exploratory
and quantitative analysis of the datasets. Chapters 3 and 4 focus on addressing re-
search question 1. The second part of the thesis focuses on social characteristics in
OSN. Chapter 5 explores the quantification of the bridging performance of users,
which is relevant to research question 2. Part III proposes two prediction models
for information diffusion in Chapters 6 and 7, respectively. In Chapter 6, we focus
on cascade prediction, examining the spillover effect of information exposure on
users’ decisions to participate in the diffusion of specific information. In Chapter
7, we introduce a novel deep learning cascade prediction model, CasSIM, which is
capable of simultaneously achieving two highly sought-after objectives: popularity
prediction and final adopter prediction. These models are developed based on so-
cial network features and aim to address research question 3. The final part of the
thesis, Part IV, focuses on sentiment analysis. In Chapter 8, we address research
question 4 by successfully implementing the extraction and continuous tracking of
users’ vaccination stances using a deep learning framework that utilises text posts
on Twitter. In Chapter 9, we explore research question 5, wherein we validate the
potential of social media data to complement social surveys in monitoring public
hesitancy regarding the COVID-19 vaccine. Table 1.1 outlines the structure of this
thesis and the contributions of each chapter are detailed below.

• In Chapter 2, we introduce the preliminary knowledge of graph and graph
neural networks (GNNs) used for information prediction and sentiment anal-
ysis. We also introduce the necessary knowledge of cascade and cascade pre-
diction, including the definition of the problem and basic methods.

• In Chapter 3, we introduce our proposed data collection method for two Twit-
ter datasets, which is specifically designed to gather detailed information on
the COVID-19 period, such as user activity in a specific geographic location,
as well as their social network. Furthermore, a segment of the dataset is an-
notated to provide additional insights into users’ attitudes towards COVID-
19 vaccines. Our primary objective is to produce high-quality datasets that
can support various virtual ethnography studies pertaining to COVID-19 on
OSNs.

• In Chapter 4, in order to assess the suitability of our dataset for virtual ethnog-
raphy studies we explore the temporal and spatial distribution of the collected
datasets and conduct a linguistic distribution analysis using a variety of fig-
ures. Alongside these data visualisation, we also undertake several analyses to
demonstrate the potential applications of these datasets in facilitating virtual
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ethnography studies. Our results indicate a correlation between the volume
of tweets and COVID-19 cases in the GR and the country of interest, although
this association is only evident during specific periods of the pandemic. Fur-
thermore, we charted topic changes in each country and region at the onset
of the pandemic and identified notable differences between the GR and the
country of interest.

• In Chapter 5, we concentrate on identifying influential users on Twitter who
have a significant impact on the spread and popularity of trustworthy infor-
mation, and who have played a crucial role in countering the adverse effects of
misinformation. Furthermore, we investigate the influence of the COVID-19
pandemic on the subjective well-being (SWB) of these users.

• In Chapter 6, we centre around casacde prediction, where we investigate the
spillover effect of information exposure on users’ decisions to participate in
the diffusion of certain information. We focus on the diffusion of information
related to COVID-19 preventive measures due to its special role in consolidat-
ing public efforts to slow down the spread of the virus. Through the Twitter
dataset we collected, we validate the existence of the spillover effects. Building
on this finding, we propose extensions to three cascade prediction methods
based on GNNs. Experiments conducted on our dataset demonstrated that
the use of the identified spillover effects significantly improves the state-of-
the-art GNNs methods in predicting the popularity of not only preventive
measure messages but also other COVID-19 messages.

• In Chapter 7, we propose a new deep learning cascade prediction model Cas-
SIM that can simultaneously achieve two most demanded objectives: popu-
larity prediction and final adopter prediction. Compared to existing methods
based on cascade representation, CasSIM simulates information diffusion pro-
cesses by exploring users’ dual roles in information propagation with three
basic factors: users’ susceptibilities, influences and message contents. With ef-
fective user profiling, we are the first to capture the topic-specific property of
susceptibilities and influences. In addition, the use of GNNs allows CasSIM
to capture the dynamics of susceptibilities and influences during information
diffusion. We evaluate the effectiveness of CasSIM on three real-life datasets
and the results show that CasSIM outperforms the state-of-the-art methods in
popularity and final adopt prediction.

• In Chapter 8, we leverage the textual posts on Twitter to extract and track
users’ vaccination stances in near real time by proposing a deep learning
framework. To address the impact of linguistic features such as sarcasm and
irony commonly used in vaccine-related discourses, we integrate into the
framework the recent posts of a user’s social network neighbours to help de-
tect the user’s genuine attitude. Based on our annotated dataset from Twitter,
the models instantiated from our framework can increase the performance of
attitude extraction by up to 23% compared to state-of-the-art text-only mod-
els. Using this framework, we successfully validate the feasibility of using
OSNs to track the evolution of vaccination attitudes in real life.
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• In Chapter 9, we validate whether social media data can be used to comple-
ment social surveys to monitor the public’s COVID-19 vaccine hesitancy. Tak-
ing advantage of recent artificial intelligence advances, we propose a frame-
work to estimate individuals’ vaccine hesitancy from their social media posts.
With the vaccine-related tweets from our Twitter dataset, we compare vaccine
hesitancy levels measured with our framework against that collected from
multiple consecutive waves of surveys. We successfully validate that Twit-
ter can be used as a data source to calculate consistent public acceptance of
COVID-19 vaccines with surveys at both country and region levels. In ad-
dition, this consistency persists over time although it varies among socio-
demographic sub-populations. Our findings establish the power of OSNs in
complementing social surveys to capture the continuously changing vaccine
hesitancy in a global health crisis similar to the COVID-19 pandemic.

• Chapter 3 is based on paper entitled “A Multilingual Dataset of
COVID-19 Vaccination Attitudes on Twitter” [CCP22a], published in
the journal of Data in Brief.

• Chapter 4 is based on paper entitled “An Exploratory Study of COVID-
19 Information on Twitter in the Greater Region” [CZP21], published
in the journal of Big Data and Cognitive Computing.

• Chapter 5 is written using the content of two papers [CCZP22a]: one
was published in the proceedings of 2022 European Conference on Ma-
chine Learning and Principles and Practice of Knowledge Discovery in
Databases (ECML/PKDD), and the other one was submitted to ACM
Transactions on the Web.

• Chapter 6 is written using the content of two papers [CCZP21,
CCZP22c]: one was published in the proceedings of 2021 International
Conference on Advances in Social Networks Analysis and Mining
(ASONAM) and the other one was published by the journal of Entropy.

• Chapter 7 is based on paper entitled “A Tale of Two Roles: Explor-
ing Topic-specific Susceptibility and Influence in Cascade Prediction“,
is accepted by the journal track of 2023 European Conference on Ma-
chine Learning and Principles and Practice of Knowledge Discovery in
Databases (ECML/PKDD).

• Chapter 8 is based on paper entitled “ ‘Double vaccinated, 5G boosted!’:
Learning Attitudes towards COVID-19 Vaccination from Social Me-
dia.”, is under major revision of ACM Transactions on the Web.

• Chapter 9 is based on paper entitled “Measuring COVID-19 Vaccine
Hesitancy: Consistency of Social Media with Surveys.” [CCP+22b],
published in the proceedings of 13th International Conference on Social
Informatics (SocInfo).
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Chapter 2

Preliminaries

In this chapter, we provide an overview of essential background information on key
concepts related to graphs and Graph Neural Networks, as well as cascades and
cascade prediction. This material is presented in a separate introductory chapter
because it forms the foundation for much of the thesis’s subsequent development.
The background knowledge required for the rest of this thesis, including topics
such as subjective well-being mining, users’ bridging performance in information
diffusion, and vaccine hesitancy extraction, is more focused within specific chap-
ters. This chapter aims to concentrate on the crucial subset of concepts required
to understand our contributions and discussions throughout the thesis, rather than
offering a comprehensive summary of the topics covered in this work.

2.1 Graph Representation

In this section, we present the fundamental concepts of graphs. A graph serves as a
versatile structure for modelling relationships among entities across numerous do-
mains, including business networks, biological systems, and social networks, which
are the primary focus of this thesis.

Definition 1 (Graph). A graph can be formally defined as G = (V , E ,X ), where V
represents the set of nodes, E ⊆ V × V denotes the set of edges, and X = {xi ∈ Rm | i ∈
{1, 2, . . . , n}} signifies the node features, with n = |V| and m indicating the dimensionality
of the node features. A graph can be summarised by an adjacency matrix A ∈ Rn×n.
∀i, j ∈ {1, 2, . . . , n}, Aij = 1 if there is an edge between nodes i and j, otherwise Aij = 0.

For simplicity, many graph learning models assume that there are no self-connections,
i.e., edges from and to the same node. For instance, in a social network graph G,
a node v ∈ V represents a social media user, while an edge (v, v′) signifies a re-
lationship between users v and v′. Node features X may encompass user-posted
text messages or demographic data about the users, and users can not follow them-
selves.

Moreover, graphs can be either directed or undirected, depending on whether the
edges have an orientation. In an undirected graph, edges have no orientation and
are represented as unordered pairs of nodes. In contrast, a directed graph (also
known as a digraph) contains edges with an orientation, denoted as ordered pairs
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of nodes. The directed nature of edges in a digraph implies an asymmetry between
nodes, whereas undirected graphs exhibit symmetric relationships.

Definition 2 (k-hop Neighbourhood). Let N k
i be the set of neighbours of node vi within

k hops, i.e., {v | dG(v, vi) ≤ k} where dG(v, vi) is the shortest distance between v and vi

in the graph G. Note that node vi is also in N k
i as dG(vi, vi) = 0.

Comprehending the definition of neighbours is vital for the subsequent section, as
it elucidates the mechanism of the graph learning model and formalises the path of
information propagation.

2.2 Graph Neural Networks

Graph neural networks (GNNs) are neural network models designed for processing
data that is structured in the form of a graph [SGT+09]. The goal of GNNs is to
learn a representation vector for a node hv or the entire graph hG, using the graph
structure and node features X . The central concept of GNNs is the message-passing
framework, where nodes aggregate information from their neighbours h(k)u , with
u ∈ N (v), to update their own representations h(k)v .

Initially, node representations h0
v are assigned the input node features h(0)v = Xv. Af-

ter k iterations of message passing or aggregation, a node’s representation captures
the information within its k-hop neighbourhood.

a(k)v = AGGREGATE(k)({h(k−1)
u : u ∈ N (v)}) (2.1)

h(k)v = COMBINE(k)(h(k−1)
v , a(k)v ) (2.2)

where h(k)v denotes the feature vector of node v during the k-th iteration, and N (v)
represents the neighbourhood of node v. AGGREGATE(k)(·) is the aggregation func-
tion (e.g., summation, average, or maximum) utilised by each node to aggregate
messages from its neighbours. COMBINE(k)(·) is the node update function, where
each node updates its representation based on the aggregated messages and its
current representation, typically using a nonlinear transformation like a neural net-
work layer.

With the representation vector of every node at the k-th layer, the representation of
the graph G can thus be calculated by a function as follows:

hG = READOUT({hk
v | v ∈ V}) (2.3)

The READOUT function can be simply implemented as the mean of nodes’ vec-
tors or other complex pooling functions depending on the specific requirements of
scenarios in practice.

In the main thesis, we will investigate the construction of AGGREGATE and READOUT
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to improve model representation and prediction capabilities for diverse down-
stream tasks. Here, we present two well-known GNNs variants: Graph Convolu-
tional Networks (GCN) [KW17] and Graph Attention Network (GAT) [VCC+18].

GCN is a semi-supervised learning algorithm for graph representation and GAT
is a variant of GCN which introduces the attention mechanism to distinguish the
significance of neighbours. In GCN, element-wise mean pooling is employed for
aggregating messages. For each node vi, aggregate messages from its neighbors
u ∈ N (vi) using the element-wise mean pooling operation:

a(k)v =
1

|N (v)| ∑
u∈N (v)

h(k−1)
u (2.4)

h(k)v = σ(W (k)a(k)v ) (2.5)

where w(k) ∈ Rn×d is a trainable weight matrix of layer k, σ is a non-linear ac-
tivation (ReLU) and ∥ is the concatenation operator. The process is repeated for a
predefined number of iterations or until convergence, allowing the nodes to capture
information from increasingly distant neighbours.

In contrast, GAT refines the message aggregation step by incorporating the atten-
tion mechanism. This enables the model to assign different weights to neighbours
based on their importance. GAT adaptively learns a normalisation coefficient, αuv,
for edge Euv, to aggregate feature vectors from node v’s neighboring nodes, N(v),
and combine them with its own feature vector. The update steps for GAT are simi-
lar to those for GCN, with the primary difference lying in the message aggregation
step:

a(k)uv = Softmax(LeakReLU(γ[Wh(k−1)
u ∥Wh(k−1)

v ])) (2.6)

h(k)v = σ( ∑
(u,v)∈E

a(k)uv W (k)h(k−1)
u ) (2.7)

where w(k) ∈ Rn×d is a trainable weight matrix of layer k, σ is a non-linear activa-
tion (ReLU) and ∥ is the concatenation operator.

2.3 Cascade and Cascade tree

A cascade records the process of the diffusion of a message. It stores all activated
users and the time when they are activated. In this thesis, a user is activated in
diffusing a message when he/she retweets the message. When a message m is
firstly posted by a user, it will be perceived by the user’s followers who will adopt
the message and relay the message. This cascading process will continue on the
social graph until no further sharing occurs.

Definition 3 (Cascade). A diffusion cascade of m at the time window T is a node set of
users who adopted m. CT

m = {u1, u2, . . . , unm
T
}. Note that nm

T is the number of adopters of
m in time window T.
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Figure 2.1: Example of a cascade.

A cascade tree is a directed, acyclic graph that represents the structure of a cas-
cade, capturing the relationships between nodes involved in the diffusion pro-
cess [WSL+17]. In a cascade tree, nodes correspond to the users participating in the
cascade, and directed edges represent the diffusion of information between nodes.
The first user who posted the message is regarded as the root of the cascade tree.
Users who retweeted the message, but received no further retweeting comprise the
leaf nodes. Note that a tweet with the quotation to another tweet is also considered
as a retweet of the quoted message. An edge from u to u′ is added to the cascade
if u′ follows u and u′ re-tweeted the message after u, indicating u activated u′. If
many of the users who u′ follows ever retweeted the message, meaning u′ may be
activated by any of them, we select the one who lastly retweeted as the parent node
of u′. Figure 2.1(b) shows a cascade of the social network in Figure 2.1(a). In this ex-
ample, user u4 can be activated by the messages retweeted by either u1 or u3. Since
u3 retweeted after u1, we add the edge from u3 to u4 indicating that the retweeting
of u3 activated u4.

We denote the root node of a cascade C by r(C). We call a path that connects the
root and a leaf node a cascade path, which is actually a sequence of nodes ordered
by their activation time. For instance, (u1, u3, u4) is a cascade path in our exam-
ple indicating that the diffusion of a message started from u1 and reached u4 in
the end through u3. In this thesis, we represent a cascade tree as a set of cascade
paths. For instance, the cascade in Figure 2.1(b) is represented by the following set
{(u1, u2, u7, u8), (u1, u3, u4), (u1, u3, u6)}.

2.4 Cascade Prediction

Cascade prediction is a method used in social network analysis to predict the spread
of information or influence within a network. Let M be a set of messages. We use
the term “message" to refer to a piece of information that can be disseminated over
social media. It can be a tweet on Twitter or an image on Instagram. In this thesis,
we focus on textual messages and our approach can be straightforwardly extended
to other message types if their representations can be effectively calculated and
adapted. For any message m ∈ M, we have the set of active users that had adopted
this message up to the time t0 after the message was first posted, denoted by Ct0

m .
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The observation time t0 depends on the requirements of downstream applications
as well as the popularity of social media platforms. It can be of hours on Twitter and
Weibo, and years for citation networks. In general, the cascade prediction methods
can be divided into two classes: popularity prediction and final adopter prediction.

Popularity prediction. The problem of popularity prediction is to predict the final
number of active users, i.e., n∞

m = |C∞
m |. In practical applications, the final time can

be determined as a given fixed time period t or by approximating the cessation of
growth or slow growth of the cascade. This is also commonly called the macroscopic
cascade prediction in the literature [YCW+15, YTS+19].

Final adopter prediction. The goal is to predict the set of users who will forward
the target message. This is different from the microscopic cascade prediction in the
literature [YCW+15, YTS+19] which aims to predict the next active user according
to the observed ones.

For both types of problems, methodologically, existing approaches to cascade pre-
diction problems can be categorised into three main groups: diffusion model-based
approaches, generative approaches, and cascade representation-based models.

Diffusion model-based methods. This line of methods iteratively run their dif-
fusion models to simulate the information propagation process as viral contam-
ination [PMV20]. Two typical diffusion models are used: Independent Cascade
(IC) [SHL17, WSLC15] or Linear Threshold (LT) [KKT03]. Earlier stochastic methods
require manual assignment of influence probabilities for each user pair, which is not
tractable in practice. To address the deficiency, embedding learning-based methods
are proposed such as TIS [WSLC15] and EMBED-IC [BLG16] and CELFIE [PMV20].
User-specific susceptibility and influences are represented as latent parameters which
are estimated according to observed cascades. The activation of a user can thus be
determined by users’ susceptibility and influence vectors. One advantage of such
methods is that they can well characterise the diffusion process and output the ac-
tivation state of each user. However, they suffer from high computation overhead
and the strong assumptions on diffusion models makes them suboptimal for cas-
cade prediction [YTS+19, SRZ+22, CZZ+19].

Generative methods. With The time stamps of users’ sharing behaviours, a cascade
of early adopters is abstracted as an event sequence and thus temporal point pro-
cesses can be applied to simulate the arrivals of events. According to the employed
point processes, we have two types of generative methods: the ones based on Re-
inforced Poisson process [SWSB14] and those based on the self-exciting Hawkes
process [CSC+17]. Due to the assumption of temporal point processes, this line
of methods over-simplify information diffusion and are thus limited in prediction
performances.

Cascade representation-based models. The idea of this class of methods extract
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features of observed cascades as representation vectors and employ machine learn-
ing models to infer cascades dynamics. Earlier works rely manually crafted fea-
tures from user profiles [CJY+13] and message contents [HDD11]. Deep learn-
ing overtakes feature-engineering methods recently due to its overwhelming per-
formance. DeepCas [LMGM17] is the first end-to-end deep learning method for
popularity prediction. It samples diffusion paths from cascade graphs and make
use of recurrent neural networks (RNN) to embed these sequential paths. Fol-
lowing DeepCas, a number of methods are proposed by extending RNNs to cal-
culate cascade representations by interpreting cascades as sequences [WZLC17,
YTS+19, WCL18]. With social relations between adopters, some studies model cas-
cades as cascade graphs and use various methods to calculate their embedding vec-
tors with more effective sampling methods [TLH+21] or graph embedding meth-
ods [CZZ+19, SRZ+22, XZZ+23]. In spite of their promising performance, deep
learning cascade prediction faces some inherent challenges as stated in [CZZ+19,
TLH+21, ZYXT21]. New methods are continuously developed to address them. For
instance, Zhou et al. [ZYXT21] studied the impact of the long-tailed distribution of
cascade sizes on cascade prediction. In addition, except FOREST [YTS+19], deep
learning based methods focus on either popularity prediction or microscopic pre-
diction, i.e., forecasting the next single adopter, and thus cannot predict popularity
and final adopters simultaneously. Cao et al. [CSG+20] proposed a different ap-
proach CoupledGNN by modelling the cascading effects with GNNs [KW17], i.e.,
users’ sharing behaviours are influenced by their neighbours in social networks.
However, this method oversimplified the diffusion process by ignoring users’ dou-
ble roles in information diffusion and thus produced suboptimal prediction perfor-
mances.
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Part I

Dataset Collection and
Multi-faceted Exploration
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Chapter 3

Data Collection

In the previous chapter, we highlight how governments and healthcare organisa-
tions can leverage these insights to implement effective responses, including diffus-
ing trustworthy information, controlling the spread of misinformation, and under-
standing public opinions and reactions to policies. However, one of the challenges
in virtual ethnographic research is obtaining data that meets the requirements of
the study, such as containing information about the user’s social networks along
with all the messages posted by the user over time.

In this chapter, we address this challenge by describing a dataset collection method
for Twitter and presenting two comprehensive datasets spanning for two years.
These datasets serve as a rich resource for researchers studying various aspects
of virtual ethnography, such as social characteristics, information diffusion, and
sentiment analysis. These aspects can be explored to gain a deeper understanding
of user behaviour and interactions on social media platforms, particularly during
critical events like pandemics.

In summary, our datasets offer a valuable resource for researchers seeking to under-
stand the use of social media during the COVID-19 pandemic. It can inform more
effective responses to future public health crises by providing insights into the role
of OSNs in shaping public opinion and the potential for social media-based inter-
ventions.

3.1 Introduction

In this chapter, we outline the method employed to collect the Twitter dataset and
present two datasets compiled using this method for various downstream research
purposes, spanning a two-year period from October 22, 2019, to December 31, 2021.
Our datasets can offer a comprehensive understanding of how individuals utilised
Twitter for communication during the COVID-19 pandemic. Alongside the posted
messages, we include users’ social networks on Twitter, enabling researchers to
examine the spread of information across these networks and assess the influence of
users’ surroundings on their perspectives. Additionally, we choose vaccine attitudes
as a case study and manually annotate 17,934 tweets to encompass perceptions
of vaccination (i.e., positive, negative, and neutral). This annotated data delivers a
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Table 3.1: Social media datasets related to COVID-19 vaccines.

Dataset Period Platform Size Annotation Region Topic
Pierri et al. [FSMS21] 2020/12/20-2021/03/13 Twitter/ Facebook 3M/10M No Italy COVID-19
CoVaxxy 2021/01/12-up to date Twitter Real-time updates No USA Misinformation
MMCoVaR 2020/02/1-2021/05/08 Twitter/News articles 24,184 Yes Worldwide Misinformation

more detailed and nuanced understanding of how individuals perceive and discuss
vaccines on social media platforms.

Distinct from existing datasets, we concentrate on Western European countries,
such as Belgium, Germany, France, and Luxembourg. These countries have experi-
enced significant impacts from the pandemic and exhibit similarities in their pan-
demic control strategies, making them ideal representatives. By focusing on these
countries, we can gain insight into the diverse uses of social media and its effects on
individuals’ attitudes and behaviors towards the pandemic. As all tweets are pub-
licly accessible via Twitter APIs and only tweet IDs are published, our collection is
exempt from IRB review and adheres to Twitter’s terms of service.

Researchers can employ our dataset to investigate various topics, including mes-
sage diffusion, the role of OSNs in shaping attitudes, and the impact of social
media-based interventions. Ultimately, our dataset serves as a valuable resource
for researchers aiming to understand social media usage during the COVID-19
pandemic and inform more effective responses to future public health crises.

3.2 Related Work

Learning attitudes towards COVID-19 vaccination. A considerable amount of lit-
erature has studied vaccination attitudes utilising social media as data source. It
has been well established that users’ narratives on social media disclose their indi-
vidual perceptions of vaccination [JVR+20, GCH19a]. Compared to self-reporting
questionnaires, social media can provide large-scale data for fine-grained analy-
sis [SA21, LL21a], and capture uninterrupted perspectives due to the passive col-
lection of social media data [HMT+17].

We identify two types of methods in the literature extracting vaccination attitudes
from social media data. The methods of the first category determine users’ atti-
tudes according to communities they belong to. Pro- and anti-vaccine users are
found to spontaneously form communities [CMK+20]. A community can be a
chat group users join themselves, or formed by users’ interactions, e.g., mutual
friendship. Shahsavari et al. [SHW+20] used community detection to identify anti-
vaccine communities. Johnson et al. [JVR+20] retrieved users’ vaccination attitudes
from the stances of Facebook fan pages and investigated the characteristics of the
vaccination-related communities formed. The second type of methods extract atti-
tudes from user-generated content, mainly with machine learning and deep learn-
ing models. Melton et al. [MOASN21] and Xue et al. [XCH+20] obtained the topics
of a set of tweets and used the sentiment of each topic as the vaccination attitudes
of the tweets in that topic. Hatmal et al. [HAHO+21] calculated users’ attitudes to-
wards the vaccine side effects with traditional machine learning methods including
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random forest and XGBoost. Hussain et al. [HTH+21] proposed a model combining
traditional dictionary based methods with the deep learning model BERT to predict
public attitudes. By comparing with existing analysis based on surveys, the authors
showed their model achieved similar results. Such consistency is also confirmed by
Yousefinaghani et al. [YDM+21].

The second type of methods allow us to conduct temporal analysis and monitor
the changes of attitudes while the community-based methods will fail due to the
relative stable community structures. To enable these methods relying on machine
learning or deep learning, we conduct the first attempt to release a large number of
tweets annotated with vaccination attitudes.

Datasets related to COVID-19 vaccines. Although social media posts have been
used to study vaccination attitudes since the outbreak of the pandemic [LL21b],
only a few datasets are publicly available. Pierri et al. [FSMS21] published a dataset
collected from Twitter and Facebook recording Italian users’ discussions about
vaccination. DeVerna et al. [DPT+21] released the CoVaxxy dataset composed of
English-language tweets about the COVID-19 vaccination generated from the US.
Chen et al. [MXKP21] published the MMCoVaR dataset which contains only 24,184
tweets related to COVID-19 vaccines, spanning less than one month. Table 3.1 sum-
marises the basic information of these three datasets.

Our dataset differs from the above datasets from three aspects. First, the released
tweets span over a period of about 14 months, which covers a sufficient amount of
time before and after the administration of the first COVID-19 vaccine. This enables
temporal studies on vaccination attitude changes along with time. Second, the col-
lected tweets are from four Western European countries which can well portray the
first group of COVID-19 vaccine receivers and other European countries hit badly
by the pandemic. Last not least, we have annotated a large number of tweets with
the vaccination attitudes. These labelled data make it possible to utilise the estab-
lished NLP methods based on deep learning to learn vaccination attitudes from
tweets, and facilitate the development of new methods.

3.3 Dataset Collection Method

To collect high-quality data for virtual ethnographic research, we design a data
collection method that ensures three key attributes: locality, topicality, and connec-
tivity. First, locality pertains to the geographic location of users from whom we
collect data. To study social media behaviour in a specific region, it is crucial to
obtain data from users in that region. Thus, our method focuses on identifying and
capturing data from users in the selected study area, ensuring geographical rele-
vance. Second, topicality relates to the specific topics of interest in the research. To
capture data from users active on a particular topic, our method emphasises iden-
tifying and collecting data from users discussing the topic of interest, ensuring a
dataset rich in content relevant to the research question. Third, connectivity refers to
the social connections between users on the platform. Understanding the structure
and dynamics of these connections is critical for studying information spread and
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the influence of users’ surroundings on their perspectives. Therefore, our method
captures data on users’ connections, including followers, followees, and interac-
tions such as retweets, quotes, and mentions. This comprehensive method ensures
a thorough dataset for researchers to analyse and draw conclusions from.

Our data collection method consists of two steps. In the first step, we compile a
collection of active users from the target area. A user is considered “active" if they
regularly participate in discussions and interact with others on a certain topic, such
as COVID-19 in this thesis. We focus on these users because active users are more
likely to express their true opinions through tweets. In the second step, we collect
the tweets of the identified active users. This ensures that the dataset is enriched
with relevant content and reflects the opinions and discussions of users engaged
with the subject matter.

Step 1. Active user identification. In accordance with Twitter policy, the only
means of obtaining Twitter users is through the meta-information associated with
tweets. Instead of searching tweets directly, we refer to a publicly available tweet
dataset [CLF20], which is continuously updated and contains tweet IDs related to
COVID-19 from users worldwide. We download tweet IDs from the dataset that
fall within the specified period and fetch the corresponding tweets using the Twit-
ter API. In total, we download 51,966,639 tweets, from which we identify 15,551,266
Twitter users. To retain active users, ensuring locality, topicality, and connectivity,
we perform two consecutive filtering operations: location-based filtering and activity-
based filtering.

Location-based filtering. We use geographic information in the tweet metadata to
determine users’ areas of origin. If a user has multiple tweets from different areas, a
rare occurrence among our collected users, we use the areas reported in the earliest
tweet. The tweet metadata has two fields for storing the originator’s location: Geo
and Place. The Geo field records the user’s device-generated location, while the Place
field stores user-provided geographic information. Geo information is accurate and
follows a unified format that can be automatically parsed. However, only about 2%
of tweets include Geo values. Consequently, we use the Place field, which is typically
ambiguous when the Geo field is unavailable.

To standardise the location format and remove ambiguity, we leverage ArcGis
Geocoding, widely used in previous research for the same purpose [HHSC11].
For instance, the user-input Place field value Moselle is converted into a machine-
readable location, including city, state, and country: Moselle, Lorraine, France. Over
70% of the selected users have at least one geographic field filled. We remove user
IDs not located in the target area, ultimately retaining the seed users from the areas
we want.

Activity-based filtering. We propose two methods for filtering active users based
on two different graphs: user interaction graph and social network graph.

The first method is based on the user interaction graph, which filters out inactive
users from the seed users. The user interaction graph is undirected and weighted.
When user u retweets or mentions a tweet generated by user u′ or vice versa, an
edge is created between the two users (e.g., u and u′) [EJR+10]. The weight of an
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edge represents the number of retweets or mentions between two users. Using our
dataset in this thesis as an example, we first eliminated edges with weights below
a certain value to exclude occasional interactions. Then, we remove vertices with
a degree lower than a certain value to ensure active users frequently interact with
multiple users.

The other method is based on the user’s social network graph. We employ an iterative
approach to collect social networks and users. For each seed user, we obtain their
followers and retain only those users who have a mutual following relationship
with the seed user, as these users are more likely to reside in the target area. Then,
we download the new users’ locations from their profiles and add only those users
from the target area to the social graph. If a user in the graph has a following
relationship with the newly added user, we also add edges accordingly. After the
first round, we continue to check the newly added users by adding their friends
who follow each other and do not already exist in the current social network graph.
This method continues until no new users can be added. In the dataset used for
this thesis, the filtering method reaches termination after five iterations. We take
the largest weakly connected part of the social graph. After this step, we obtain a
large social network graph, and since most users in the graph are relatively inactive,
we construct a subgraph by removing all users who post or retweet fewer than a
certain number of tweets. Note that we retain some of these inactive users when the
remaining graph is no longer connected after removing them. Finally, we obtain a
social graph with active users.

Both of these filtering methods have their own advantages and disadvantages. The
user interaction graph method emphasises users who actively participate in discus-
sions and interactions related to the topic of interest. This method is simple, has
a low time cost of collection, ensures that selected users contribute significantly to
ongoing conversations, and produces a larger social graph containing more user
and social information. However, it is important to note that in Twitter data, even
if user u retweets content from another user u′, it does not necessarily mean that u
follows u′. As a result, this approach might not fully capture users’ social networks
since it only considers direct interactions between users.

On the other hand, the social network graph approach captures the entirety of
users’ social networks, allowing researchers to analyse the influence of users’ envi-
ronment on their perspectives. This method provides a more comprehensive view
of the connections between users and represents their true social relationships, of-
fering a more realistic depiction of user interactions. However, social network-based
approaches are complex, time-consuming, and typically rely on a small number of
seed users, yielding a smaller network that may impact the analysis of user be-
haviour and attitudes.

In conclusion, the choice of the most suitable filtering method depends on the spe-
cific goals and objectives of the study. Researchers should carefully consider their
research goals and the desired level of network authenticity to determine the most
appropriate method for addressing their particular research questions.
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Table 3.2: Tweet examples.

Label Example (Translated to English)

Positive We have a new weapon against the virus: the vaccine. Hold together, again.

Negative
My daughter, a nurse at the AP-HP, on the vaccine "Ah ah ah! They don’t even
dream about it, they start with the old ones so that we can attribute the side effects to age".

Positive but dissatisfaction
It’s bad enough for individuals to refuse #COVID19 #vaccines for themselves.
But forcing a mass vax site to shutdown, knowing it means vaccines may go to waste, is criminal.
Call it pandemicide.

Neutral Have any diabetics been vaccinated? I need some information
Off-topic a 10% discount on pet vaccinations next week.

Step 2. Timeline tweet streaming. In this step, we gather tweets that are origi-
nally posted or retweeted by the users identified in the previous step during the
study period. These tweets will be used to analyse user behaviour and interactions
throughout the study period. We utilise the Twitter Academic Research API to
search for tweets based on the IDs of active users. The API permits up to 500 tweets
per download request. To ensure comprehensive coverage, we construct a request
for each user on a monthly basis. This approach allows us to achieve an acceptable
coverage rate since it is less probable that a user will post more than 500 tweets
within a single month. It is worth mentioning that if researchers wish to focus on
the content of tweets related to a specific topic, they can incorporate keywords in
the search that correspond to the term of interest. By adding these keywords, the
search results will be refined, enabling the collection of tweets that are more closely
related to the selected topic.

3.4 Collected Datasets

In this thesis, based on the two-step data collection method outlined earlier, we
collecte two datasets related to COVID-19, named EU-Vax and GR-ego, respec-
tively. Each of these datasets employs one of the filtering methods discussed in
the activity-based filtering section of Step 1. Specifically, the EU-Vax dataset uses a
filtering method based on the user interaction graph, while the GR-ego dataset uses
a filtering method based on the social network graph. As mentioned earlier, these
two datasets have different focuses. The EU-Vax dataset, collected using the inter-
action graph-based filtering method, is more effective in gathering users who are
active on the topic and can include a larger number of users. Conversely, the social
network-based filtering approach employed in the GR-ego dataset may not accumu-
late as extensive a network, but it can more accurately represent the real-life social
networks of users. In this thesis, we utilise different research networks depending
on the specific research objectives.

In this section, we delve into the details of these two datasets collected based on the
collection method in the previous section.

3.4.1 The EU-Vax Dataset

The EU-Vax dataset is a COVID-19 vaccine-related Twitter dataset that focuses on
users from four European countries: Luxembourg, Belgium, Germany, and France.
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These countries are selected as representatives because of their similar pandemic
control strategies and close economic and political interactions. The EU-Vax dataset
utilises a user interaction graph-based filtering method, which offers a more com-
prehensive view of discussions and interactions across the four countries. Our data
collection spans two years, from October 2019 to the end of 2021, encompassing
the three months before the COVID-19 pandemic outbreak. The dataset covers the
period from the early stages of the pandemic to the commencement of vaccination
campaigns, ranging from 22 January 2020 to 15 March 2021.

To compile the EU-Vax dataset, an initial set of seed users from the four target
countries is identified using location-based filtering. User IDs not located in these
countries are removed, retaining a total of 767,583 users. Subsequently, the user in-
teraction graph-based filtering method from Step 1 is applied. Edges with weights
less than 2 are eliminated to exclude occasional interactions, and vertices with a
degree less than 2 are removed to ensure that active users engage in frequent in-
teractions with multiple users. This method results in the retention of 54,381 active
users.

With this set of active users in the target countries, Step 2 is followed to collect
tweets related to COVID-19 vaccines or vaccinations initiated or retweeted by these
users. As in previous studies, COVID-19 vaccine-related keywords are used to fil-
ter tweets. Same as previous studies [YDM+21, DPT+21], we use keywords related
to COVID-19 vaccines to filter tweets. Two methods have been adopted to select
vaccine-related keywords in the literature [DPT+21]. One is called snowball sam-
pling which iteratively enriches the initial set of keywords according to the newly
downloaded messages. The other method directly constructs the set of keywords
based on expert knowledge and contexts. As many keyword lists are publicly avail-
able and produce rather good coverage [HTH+21, SZS+18], we decided to refer
to them and only selected the ones with the best coverage to keep the list short.
As the tweets originated from our targeted countries are written in multiple lan-
guages, which are different from those studied in the previous works, we translated
the selected keywords when necessary. After multiple rounds of manual validation,
we used all the keywords containing the following strings: ‘vax’, ‘vaccin’, ‘covidvic’,
‘impfstoff ’, ‘vacin’, ‘vacuna’, ‘impfung’. ‘sputnikv’, ‘astrazeneca’, ‘sinovac’, ‘pfizer’, ‘mod-
erna’, ‘janssen’, ‘johnson’ and ‘biontech’. In this step, we download a total of 2,198,090
tweets, and the IDs are made publicly available.

3.4.2 The GR-ego Dataset

The GR-ego dataset focuses on the Greater Region of Luxembourg (GR), a cross-
border region centred around Luxembourg and encompassing adjacent regions of
Belgium, Germany, and France. This region is selected primarily due to its intense
connections of international residents from diverse cultures, making it unique as a
global financial centre. Additionally, these countries well represent the first batch
of countries administering COVID-19 vaccines. This dataset is collected using the
social network graph-based filtering method, as mentioned earlier. The primary
aim of the GR-ego dataset is to provide a more accurate representation of users’
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real social networks within this specific geographic area, allowing for a deeper
understanding of the interactions and connections between users in this region.

To compile the GR-ego dataset, an initial set of seed users from the GR is identified.
These seed users are determined based on location-based filtering, retaining tweets
originating from the Greater Region. In total, 128,310 tweets from 8,872 users in the
region are obtained.

Next, we apply the social network graph-based approach, as mentioned in the
activity-based filtering section. In our dataset, the filtering method reaches termi-
nation after five iterations. We then select the largest weakly connected part of the
social graph. After this step, a total of 12,256,152 users and 21,203,130 subsequent
relationships are obtained. Since a majority of the users in the graph are relatively
inactive, we construct a subgraph by removing all users who posted or retweeted
fewer than 3 tweets. It is important to note that we retain some of these inactive
users because removing them would have disconnected the remaining graph. Ulti-
mately, we obtain a social graph with 14,756 users and 148,647 edges.

Finally, we collect 37,281,824 tweets spanning from October 22nd, 2019 to December
31st, 2021, according to the method outlined in Step 2. We have released the IDs of
our collected tweets via GitHub1.

3.4.3 Data Annotation

In this thesis, one of our goals is to comprehend public opinions and reactions to
COVID-19 vaccination policies. In order to facilitate the application of sentiment
analysis methods, such as machine learning and deep learning-based natural lan-
guage processing (NLP), we have created a manually annotated dataset of tweets.
In this section, we detail how we selected tweets to annotate, determined the anno-
tation labels, and conducted the manual annotation.

Tweet selection. Since the number of tweets in our EU-Vax Dataset exceeds our
capacity to annotate, we select a number of tweets that can well represent the lin-
guistic features of COVID-10 vaccination related tweets. Specifically, we first sort
the downloaded tweets in the descending order by their numbers of times being
retweeted. We then remove the most frequently retweeted tweet from the ordered
list and added it to the list of tweets to annotate iteratively until every active user
has at least one posted or retweeted message to annotate. In total, we select 17,934
tweets.

Annotation labels. We annotate each tweet with one of the following labels:

• Positive (PO): The originator expresses his/her support for the vaccines and
vaccination in the sense that vaccine or vaccination can effectively protect the
public, and will be or has been vaccinated.

1https://github.com/NinghanC/SWB4Twitter

https://github.com/NinghanC/SWB4Twitter
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• Negative (NG): The originator expresses doubts or disbelief about the effec-
tiveness of the vaccines or vaccination in combating the pandemic, or hesitates
or refuses to be vaccinated.

• Neutral (NE): No explicit attitude or and intention are expressed.

• Positive but dissatisfaction (PD): The originator expresses dissatisfaction or
complaints about the current policies or measures against COVID-19, but still
holds a positive attitude towards vaccination.

• Off-topic (OT): The content is related to neither COVID-19 vaccines.

We give some examples for each label in Table 3.2. Note that in addition to the labels
for affective attitudes, i.e., positive, negative and neutral, we add a new label PD. We
notice that there exists a large portion of tweets expressing the originators’ negative
feelings or disagreement about the way the governments handle the pandemic such
as complaints about lock-downs. However, the originators still show their belief
in vaccines as an effective and ultimate measure to beat the virus. Such tweets
use terms which are negative inherently and if not explicitly separated, they will
confuse NLP methods with the ones that should be labelled as NG. The example
tweet of PD in Table 3.2 contains negative terms such as “bad" and “criminal" but
still clearly conveys the support of the user for COVID-19 vaccination.

Annotator training and consolidation. We hire 10 bachelor students to manually
annotate the sampled tweets. All annotators are proficient in at least two of the
four official languages of the targeted countries, and, in the meantime, are active
on Twitter. The author of this thesis acts as the coordinator in charge of annotator
training and annotation consolidation. Each annotator receives a tutorial from the
coordinator explaining the semantics of all labels with examples. We also distribute
a guideline illustrating the workflow on the Doccano platform2 we build to collect
annotators’ input. To ensure that all annotators hold the correct understanding, we
conduct a pilot annotation process in which all annotators are first asked to anno-
tate 100 tweets. The coordinator verifies their annotations and provides additional
explanations if necessary. We repeat the process with another 100 tweets. After two
rounds of training, annotators succeed in understanding the labels and also become
familiar with the Doccano platform.

We first select one annotator to annotate all the tweets and this full annotation takes
approximately 60 hours. We then randomly assign to each of the remaining 9 an-
notators around 2,000 tweets and ask them to validate the labels. Meanwhile, the
coordinator goes through all annotated tweets. When disagreeing with the labels
given by the first annotator, they add new labels. This validation takes the coor-
dinator about 60 hours and each of the other annotators 4 hours. In this way, our
annotation strategy ensures each tweet is labelled three times. To solve the con-
flicts, the coordinator consolidates all annotations. The label agreed by at least two
annotators is set as the final annotation. For those with three different labels, the
coordinator communicates with the other two annotators and picks the most ap-
propriate one.

2github.com/doccano/doccano
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Table 3.3: Inter-annotator agreement (PO: Positive, NG: Negative, NE: Neutral, PD: Positive
but dissatisfaction, OT: Off-topic).

Label AOA Feliss’ kappa Krippen-dorf’s Alpha
PO 0.72 0.73 0.73
NG 0.82 0.88 0.88
NE 0.74 0.78 0.77
PD 0.61 0.63 0.62
OT 0.83 0.87 0.86
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Figure 3.1: The temporal distribution of tweets on daily basis.

Annotator agreement. To ensure the quality of our annotations, we leverage three
widely accepted metrics to quantitatively evaluate the inter-annotator reliability for
each label: Average Observed Agreement (AOA) [FLP13], Fleiss’ kappa [FLP13],
and Krippendorff’s Alpha [Kri70]. AOA is the average observed agreement be-
tween any pair of annotators. The term “observed agreement” in AOA refers to
the proportion of labels two annotators agree with. Both Fleiss’ kappa and Krip-
pendorff’s Alpha are applicable to measure the agreement between a fixed number
of annotators, with the difference that Krippendorff’s Alpha can handle missing
labels. The values of all the three measurements range from 0 to 1, where 0 indi-
cates complete disagreement and 1 indicates absolute agreement. For Fleiss’ Kappa,
0.41-0.60, 0.61-0.80, and 0.81-1.0 are considered as moderate agreement, substantial
agreement, and excellent agreement, respectively [FLP13]. Krippendorff’s Alpha is
more rigorous than normal standards [Kri70]. Values between 0.667 and 0.800 are
deemed acceptable, while values greater than or equal to 0.8 are considered highly
reliable [Kri70].

Table 3.3 summarises the inter-annotator agreement for each annotation label. We
can see that for all labels, AOA scores range from 0.61 to 0.83. This implies that
most of the annotations have at least two annotators in agreement. The values of
the other two measurements are close. The annotators achieve the highest rank of
agreement according to Fleiss’ kappa and Krippendorff’s Alpha for both the la-
bels NE and OT and the second-highest rank on labels PO and NE. The annotators’
agreement on PD falls drastically compared to other labels, but still remains moder-
ate according to the ranking criteria of the Fleiss’ Kappa measurement. This can be
explained by our difficulties during annotation in dealing with the special linguistic
features of PD tweets, i.e., frequently used negative terms or sarcastic expression.
A closer look will lead to another observation that the extent of agreement on the
label PO is slightly lower. A careful manual investigation reveals that a large pro-
portion of disagreed annotations also attribute to the sarcasm and irony made to
express their opinions about anti-vaccination. This identified challenge to handle
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sarcasm is consistent with the previous finding that people frequently are confused
by sarcasm, which makes comprehension difficult [RRV13]. We take the following
tweet as an example: I am very disappointed! 16 days after my first injection of the vaccine
against #covid19 I still don’t get the 5g. This tweet uses ironic expression joking about
anti-vaccination comments but in fact delivers a definite supporting attitude for
vaccination. Such tweets produced misunderstandings among annotators, which
are solved in our consolidation phase.

Statistics. We depict the distribution of annotated tweets over the vaccination atti-
tude labels in Figure 3.2. Adding up those labelled both PO and PD, we can see that
more than 60% of the tweets express a positive attitude toward vaccination while
about 20% are associated with negative attitudes.
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Figure 3.2: Attitude distribution of annotation tweets.

3.5 FAIR

The publication and colloction of our dataset strictly adheres to the principles of
FAIR. We achieved the principle Findable and accessible by uploading our dataset
through Zenodo3, which is publicly accessible. Our data is stored in the CSV format
which can be exported in any other format with little efforts. We strictly adhered to
the Twitter Developer Agreement and Policies4 in the collection and distribution of
data. Our release is also compliant with the EU General Data Protection Regulation
(GDPR).

3.6 Conclusion and Potential Applications

We collect two new multimodal datasets focusing on COVID-19 to facilitate re-
search on monitoring vaccine hesitancy with the recent advances of deep learning
in NLP. With four countries in Western Europe as the targeted regions, our dataset
will help understand the vaccination attitudes changes during the pandemic in Eu-
rope among the first receivers of the vaccines. Moreover, researchers of NLP models
can benefit from the multilingualism nature of our dataset to study new effective
methods to address multilingualism in opinion or sentiment extraction.

3https://doi.org/10.5281/zenodo.5851407
4https://developer.twitter.com/en/developer-terms/agreement-and-policy
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Our dataset has some limitations. First, we cannot take Twitter users’ attitudes
equally to public vaccination attitudes as Twitter users sometimes cannot well rep-
resent the general population. Social media can now only be used as a comple-
mentary source of information. One of our goals to release our dataset is not to
replace social studies, but to demonstrate one potential application to social media
in public health surveillance. Second, we only considered affective stances towards
vaccination. Although our annotation can help develop new deep learning NLP
models, the analysis results obtained from the trained model are limited. Third,
the sampling methods used in the data collection and annotation can bring extra
bias. For instance, our selection of tweets to annotate may give more significance to
the users who are more influential on Twitter as their tweets are more likely to be
retweeted. This can be solved by random sampling but it will significantly increase
the number of tweets to annotate.
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Chapter 4

Multi-faceted Exploration

In the previous chapter, we thoroughly explain the collection method of the two
datasets, outlining their characteristics and presenting basic descriptive data. In this
chapter, we explore the temporal and spatial distribution of the collected datasets
and conduct a linguistic distribution analysis using a variety of figures. Alongside
these data visualisation, we also undertake several analyses to demonstrate the
potential applications of these datasets in facilitating virtual ethnography studies.

4.1 Introduction

In this chapter, we explore the two datasets - GR-ego and EU-Vax - separately, aim-
ing to gain insights into public reactions and attitudes related to the COVID-19
pandemic and vaccination efforts. We conduct data-driven exploratory studies us-
ing machine learning and representation learning methods, enabling us to observe
differences in user behaviour across the GR and related countries.

For the GR-ego dataset, we investigate how Twitter users in the GR and related
countries react differently over time to the evolving COVID-19 situation. We find
that there is a correlation between tweet volume and the number of COVID-19
cases in these areas, although this correlation only exists during specific periods
of the pandemic. Additionally, we examine the changes in topics discussed in each
country and region from January 22, 2020, to June 5, 2020, highlighting the main
differences between the GR and its surrounding countries.

In the case of the EU-Vax dataset, we focus on the issue of vaccine hesitancy as
a major factor contributing to the stagnant uptake ratio of COVID-19 vaccines in
Europe and the US. We recognise the importance of quickly and accurately un-
derstanding public attitudes towards vaccination, and acknowledge the effective-
ness of social media platforms in capturing public opinion. This dataset comprises
2,198,090 tweet IDs collected from Western Europe, with 17,934 of them annotated
with the originators’ vaccination stances. Our annotation facilitates the use and de-
velopment of data-driven models to extract vaccination attitudes from social media
posts, further confirming the power of social media in public health surveillance.

To lay the groundwork for future virtual ethnography-related research, we demon-
strate the potential application of our data in practice, we track temporal changes
in public attitudes towards both COVID-19 itself and COVID-19 vaccination. This
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Figure 4.1: Word cloud of the tweets posted between 11/9/2020 and 11/11/2020.

exploration of the datasets not only serves as a foundation for further research but
also highlights the value of these datasets in understanding and analysing public
sentiment and behaviour in the context of pandemic and vaccination efforts.

4.2 Exploration of the EU-Vax Dataset

In this section, we focus on the EU-Vax dataset, which is collected to study public
opinion and reactions to the COVID-19 vaccination policy in Western Europe. We
perform a comprehensive statistical analysis and visualisation of this dataset to bet-
ter understand its characteristics and trends. Moreover, we evaluate and compare
the performance of established NLP benchmarks to assess the dataset’s applicabil-
ity for sentiment analysis tasks. To demonstrate the potential use of these data in
practice, we apply the dataset to track temporal changes in vaccination attitudes
and to analyse sudden surges that warrant further attention.

4.2.1 Dataset Statistics

We illustrate through diagrams the temporal and spacial distributions of the EU-
Vax Dataset as well as the language distribution. Along with the diagrams, we
conduct some analysis to showcase the potential use of our tweet dataset.

Temporal distribution. In Figure 3.1, we display the number of collected tweets on
daily basis. Sudden surges of daily posts may indicate the switch of public attention
and should be investigated to identify possible events that cause the changes. We
can see that COVID-19 vaccines or vaccination were rarely discussed before Novem-
ber 9, 2020 when a sudden surge occurred. Since then, the discussion around them
remains popular. To understand the events that promoted the increase, we extracted
the tweets that were generated in the 3 days after November 9, 2020 and created a
word cloud to identify the frequently used words (see Figure 4.1). With the high-
lighted words, we infer that the event may be related to the efficacy of the Priz-
er/Biotech vaccine. With a check on the news, we confirmed our inference. Pfizer
announced the 90% efficacy of its vaccine co-developed with Biotech.1 With the sim-
ilar approach, we checked the peak on December 27, 2021 and the sudden increase
on March 15, 2021. We discovered that the tweet increase on 12/27/2021 attributed

1https://www.pfizer.com/news/press-release/press-release-detail/pfizer-and-biontech-
announce-vaccine-candidate-against
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Figure 4.2: The geographic distribution of the total numbers of tweets (left) and average
numbers of tweets per user (right).

to the start of the EU Mass Vaccination Campaign while the other increase may be
caused by the news that France and Germany joined other European countries to
temporarily halt the use of the Oxford-AstraZeneca vaccine.

Spacial distribution. In Figure 4.2, we depict the total number of tweets posted by
users in all the states of the targeted countries (on the left) and the corresponding
average number of tweets posted by a user (on the right). We use the latitudes and
longitudes provided by the geolocation API to match users to the corresponding
states. If the returned geographical information can only map to the level of coun-
tries, we exclude them when drawing Figure 4.2. The populated regions generate
more tweets than those with less population. This is especially obvious in France.
The states where big cities such as Paris and Lyon reside have the most tweets.
However, the users in such populated regions are not always be more active on
average in participating in the vaccine-related discourses. Moreover, the states ad-
jacent to other countries tend to be more active. For instance, in France, the users
in the states adjacent to Switzerland on average posted more than 40 tweets while
users in the state with Paris just posted about 20.

Language distribution. As we mentioned previously, a character of our tweet dataset
is the multilingualism that is inherent in Europe. In Figure 4.3, we show the per-
centages of tweets in the top 5 most used languages. As the official language of
France, Belgium and Luxembourg, French is the dominant language which is used
in more than 60% of the collected tweets. The multilingualism is considered as a
challenge in NLP to extract subjective opinions from texts. Researchers will benefit
from our tweet dataset and the annotated tweets in developing and validating new
NLP methods to address this challenge.

4.2.2 Experimental Evaluation and Validation

We aim to achieve two goals through experiments in this section. First, by training
and testing adapted NLP methods for sentiment or opinion classification, we ex-
amine the validity and quality of our annotation of vaccination stances. Second, to
illustrate the usability of our datasets, we conduct some preliminary temporal stud-
ies tracking vaccine hesitancy and identifying changes requiring further analysis.
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Figure 4.3: Distribution of tweet over languages.

Vaccination attitude calculation with NLP. The application of deep learning and
machine learning has revolutionised NLP, especially in extracting opinions or sen-
timents from textual contents. Compared to machine learning models which rely
on manually constructed features, deep learning models can learn effective fea-
tures automatically with little manual intervention. Extensive empirical evidence
has proved the overwhelming performance of deep learning models in NLP stud-
ies [CJS+20].

We trained and ran several well established NLP models based on machine learning
and deep learning with our annotated tweets. A good performance of the trained
models in classifying tweets will attest the utility and trustworthiness of our anno-
tation.

Experiment setup. We select Random Forest (RF) and Support Vector Machines
(SVM) as the representative machine learning models due to their wide use. Re-
garding deep learning models, we use BERT [DCLT19], RoBERTa [LOG+19], and
DistilBERT [SDCW19]. Such deep learning models are pretrained and produce a
low-dimensional representation for any given piece of text, which can be used as
input for downstream classification methods.

We preprocess the tweets by removing mentions of other users with ‘@’, quoted
hyperlinks and ‘RT’ which stands for “retweet”. We remove tweets with the label
‘off-topic’ due to their small proportion. To test the models’ capability in dealing
with multilingualism, we construct three datasets: the original annotated tweets,
the French-language annotated tweets and the German-language annotated tweets.
We divide each of these three datasets into training, testing and validation set with
the ratio 80%, 10% and 10%, respectively. To train the selected machine learning
models, we use TfidfVectorizer [PVG+11] to convert the preprocessed tweets into
the bag of n-gram vectors. We use grid search as the optimiser for SVM and RF.
For deep learning methods, we adopt their publicly available implementation for
text embedding and keep their default settings. The text embeddings are then sent
to a fully-connected ReLU layer with dropout. A linear layer is added on the top
of the final outputs for regression with softmax as the activation function. We use
CrossEntropyLoss as the loss function and Adam as the optimiser [KB15]. All mod-
els are trained for 30 epochs for optimisation with the learning rate of 0.00001, and
batch size of 32. We set the maximum sequence length as 128, which defines the
maximum numbers of tokens in a tweet that can be processed.
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Result analysis. Table 4.1 shows the classification performance evaluated with con-
ventional measurements. First, we can see that the deep learning methods outper-
form the machine learning methods in classifying both multilingual tweets and
those in single languages, and their performances are close. This confirms the find-
ings in [HRS+20]. Second, the results show that multilingualism affects the classifi-
cation performance of deep learning models, although we use a pre-trained model
specifically for classifying tweets in multiple languages.

By comparing with the models’ performance on other classifying tasks in the lit-
erature [CJS+20, HRS+20], we observe that the models can achieve the same-level
performances. This implies that our annotation is trustworthy and useful for future
research on vaccination attitude learning. The results we showed in Table 4.1 can
thus be referred to as benchmarks for comparison.

Table 4.1: Classification results for different benchmarks.

Mulitilingual French German
Model Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy
RF 0.4317 0.3219 0.4471 0.4749 0.5676 0.4829 0.4754 0.5510 0.51481 0.4978 0.4611 0.4503
SVM 0.4001 0.3816 0.4380 0.4263 0.5004 0.4256 0.4141 0.4998 0.4954 0.4037 0.4093 0.4719
mBERT 0.6622 0.5769 0.6132 0.6466 0.7016 0.6933 0.7004 0.7184 0.6999 0.6875 0.6919 0.7038
XLM-RoBERTa 0.6801 0.5848 0.6271 0.6618 0.7023 0.7018 0.7145 0.7086 0.7102 0.6971 0.7081 0.7079
Distil-mBERT 0.6768 0.5834 0.6287 0.6601 0.6978 0.6916 0.7084 0.7065 0.7094 0.7004 0.7068 0.7071
CamemBERT - - - - 0.7147 0.7136 0.7222 0.7120 - - - -
GottBERT - - - - - - - - 0.7165 0.7046 0.7199 0.7136

Temporal analysis of vaccination attitudes. We present a description of an appli-
cation of our tweet dataset and annotation to illustrate one potential use of our
release. Specifically, we visualise the temporal evolution of the various vaccination
attitudes and analyse the possible causes to some changes that require more atten-
tion.

We apply XLM-Roberta model trained in the previous experiment to calculate the
vaccination attitudes of the tweets in the tweet dataset. Figure 4.4 shows the distri-
bution of the predicted vaccination attitudes. We can see the distribution is similar
to that shown in Figure 3.2 with slightly more tweets with negative attitudes.
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Figure 4.4: Attitude distribution of all tweets.

We draw the temporal evolution of the numbers of tweets that are classified as
NE, PO and PD in Figure 4.5. Note we ignore the tweets with label OT due to
their small amount. Recall that significant discussion on COVID-19 vaccines started
from November 8, 2020 as shown in Figure 3.1. Therefore, we focus on the attitude
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changes from that date. We can see that the number of tweets containing different
attitudes toward vaccination changes over time. Compared to the temporal dis-
tribution of daily tweets shown in Figure 4.5, we observe that the growth in the
total number of tweets is not accompanied by a proportional change of vaccina-
tion attitudes. Specifically, the number of neutral tweets varies less from day to day
and remains stable at the same level compared to tweets with other attitude labels.
Based on previous research reporting that the content of tweets is highly correlated
with real-world situations [PCHG20], we make a hypothesis that real-world events
may contribute to the fluctuating numbers of tweets with different attitudes.
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Figure 4.5: Temporal distribution of tweets with different vaccination attitude labels.

In monitoring vaccine hesitancy, more attention should be paid to the fluctuations
of the negative attitudes. In the following, we take four peaks of the curve of nega-
tive tweets as examples and discuss the potential causes. We first plot word clouds
to identify the most frequently used keywords and then search these keywords on
the Internet to understand the events that may contribute to the changes. The first
peak happened around December 9, 2020 due to negative news and misinformation
about the vaccine efficacy. For instance, on December 9, 2020, two healthcare work-
ers were reported to have experienced symptoms after receiving their first shots,
and on December 11, Sanofi and GSK delayed COVID-19 vaccine. A wide spread
piece of misinformation during this period is also identified, saying that 6 people
had died after vaccinated and another 4 developed Bells Palsy. Another two peaks
occurred around January 15, 2021 and February 10, 2021, respectively. We notice
that both of these two peaks attribute to the propagation of a large volume of mis-
information. Take two pieces of misinformation identified for the peak in January,
2021 as examples. One said that on January 14, the Norwegian Medicines Agency
reported that a total of 29 people had suffered side effects, 13 of which were fa-
tal. The other was about the death of an Indian healthcare worker after receiving
Covid-19 vaccines. The last peak in March, 2021 is due to the negative news that
multiple countries decided to suspend the use of the AstraZeneca vaccine due to
the reported negative effects.

From the above discussion, we can see that with NLP deep learning models, public
vaccination attitudes can be extracted. When social network data are available, we
can track almost in real time the changes of vaccination attitudes and understand
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the potential causes. This may finally help the governments make corresponding
effective intervention methods proactively.

4.3 Exploration of the GR-ego Dataset

In this section, we focus on the GR-ego dataset, which was collected to study public
opinion and reactions to the COVID-19 pandemic in the Greater Region of Luxem-
bourg and related countries. Our exploration aims to address two key aspects of
this dataset: the potential correlation between the volume of tweets and daily cases
of COVID-19, and the evolution of topic categories over time in each country and
region.

First, we investigate whether there is a strong correlation between the volume of
tweets and COVID-19 daily cases in the GR and related countries. If such a correla-
tion exists, we will explore whether the volume of tweets helps to predict COVID-19
daily cases. This will involve applying various time series prediction methods to as-
sess the predictive power of tweet volume on the number of daily cases. Second,
we aim to examine changes over time in the categories of topics discussed in each
country and region. In doing so, we can also compare changes in topic categories
in the GR with those in other countries to determine similarities and differences in
public concerns and responses throughout the pandemic.

Through a comprehensive analysis and visualisation of the GR-ego dataset, as well
as a comparison of topic categories and temporal changes, we provide valuable in-
sights into public sentiment and behaviour during the COVID-19 pandemic. This
analysis demonstrates the potential value of this dataset in addressing the chal-
lenges facing virtual ethnography. By understanding the intricacies of public opin-
ion and discourse from the social media data, researchers and policy makers can
have a better response to the concerns and needs of the population, ultimately im-
proving the effectiveness of public health measures and policy implementation.

4.3.1 Data Description

In this section, we briefly describe the statistical information of the dataset and how
we obtained information about the daily cases of COVID-19 in these regions and
countries. Table 4.2 shows the summary of the collected tweet data of the GR, Lux-
embourg, France, Germany, Belgium and globally. Figure 4.6 contains two heatmaps
of user locations in the GR and the related countries for a better understanding of
this study.

COVID-19 data collection. The dataset published by the European Center for Dis-
ease Prevention and Control 2 allows us to obtain COVID-19 data including daily
cases, deaths and locations for the country we selected. As there is no official
COVID-19 data published for the GR, which is composed of Luxembourg, Wal-
lonia in Belgium, Saarland and Rhineland-Palatinate in Germany and Lorraine in

2http://www.granderegion.net/en/The-Greater-Region-at-a-Glance

http://www.granderegion.net/en/The-Greater-Region-at-a-Glance
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Figure 4.6: User location heatmap of the GR and the related countries.

Region/Country tweet volume User volume
Twitter 51,966,639 15,551,266
The GR 35,329 7,894
Luxembourg 7,512 1,545
Belgium 119,467 31,446
France 1,050,312 288,009
Germany 430,688 87,796

Table 4.2: Summary of our COVID-19 Twitter dataset.

France, we add up all the data for the cities and regions mentioned above from
the datasets3 published by corresponding countries as the final the GR data when
counting daily cases and deaths in the GR. It should be noted that as the number of
daily new cases in France is not available at the regional level, and deaths, hospital-
isations, departures data have been published only since March 18, 2020, data for
Lorraine is counted as zero until March 18, 2020, and the sum of hospitalisations,
hospital departures and deaths is considered as the total number of cases on that
particular day.

4.3.2 Correlation between COVID-19 Daily Cases and Tweet Volume

To explore the correlation between tweet volume and COVID-19 daily cases in GR
and the related countries, we introduce basic reproductive rate R0 and effective
reproductive rate R(t) in epidemiology to slice the periods of the pandemic, and a
spatio-temporal analysis of the correlation between tweet volume and daily cases
in each period is conducted by Pearson Correlations (PC).

R(t)-based time division. R0 is the expected number of cases arising directly from a
single case in a population where all individuals are susceptible to infection [HD96]
and R(t) represents the average number of new infections caused by an infected

3https://bit.ly/2ErDii7,https://bit.ly/3gaGGMm,https://bit.ly/33c8CM8

https://bit.ly/2ErDii7,https://bit.ly/3gaGGMm,https://bit.ly/33c8CM8
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Figure 4.7: Daily tweet volume and COVID-19 new cases.

person at time t. If R(t) > 1, the number of cases will increase, e.g. at the begin-
ning of an epidemic. When R(t) = 1, the disease is endemic, and when R(t) < 1,
the number of cases will decrease. For the calculation of real-time R(t), we use a
Bayesian approach [BR08] with Gaussian noise to calculate the time-varying R(t)
based on daily new cases, which is also the official method for calculating R(t) in
Luxembourg 4. While the study of calculating R0 of COVID-19 have not reached a
consensus conclusion [WLL20, SPXZ20, WWW+20, RA20], we use R0 estimated by
WHO 5. with 1.4 ≤ R0 ≤ 2.5, in this study. The results of time-varying R(t) for the
GR, Luxembourg, Belgium, France, and Germany are shown in Figure 4.9.

The relationship between R0 and the R(t) indicates the spreading ability of the
virus. As the estimation of R0 values is a range, we discuss R0 here as a range as
well. When R(t) > max(R0), it indicates that the virus is spreading at a higher
rate than natural transmission, and the number of cases is about to reach a peak.
When min(R0) ≤ Rt ≤ max(R0), the virus spreads within the basic reproductive
rate R0 range, which implies that the effectiveness of the containment measures is
not yet reflected in R(t). In short, the virus is still spreading freely at its natural

4https://github.com/k-sys/covid-19
5https://www.who.int

https://github.com/k-sys/covid-19
https://www.who.int
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transmission. When 1 ≤ Rt < min(R0), it means that the virus is spreading at a
rate lower than R0, the transmission is impeded, and the containment measures are
in effect. When Rt < 1, the virus spreads slowly, and can eventually die out.
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Figure 4.9: Effective reproductive rate (R(t))

Pre-peak Free-contagious Measures period Decay period
The GR 2/14 - 3/15/2020 3/15 - 3/21/2020 3/21 - 4/17/2020 4/17 - 6/05/2020
Luxembourg 2/19 - 3/20/2020 3/20 - 3/24/2020 3/24 - 4/01/2020 4/01 - 6/05/2020
Belgium 2/04 - 3/05/2020 3/05 - 3/25/2020 3/25 - 4/18/2020 4/18 - 6/05/2020
France 2/05 - 3/06/2020 3/06 - 3/30/2020 3/30 - 4/23/2020 4/23 - 6/05/2020
Germany 1/29 - 2/28/2020 2/28 - 3/24/2020 3/24 - 4/02/2020 4/02 - 6/05/2020

Table 4.3: Time duration of the four pandemic periods for the GR, Luxembourg, Belgium,
France and Germany
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Here, we divide the pandemic into four periods based on the above analysis, which
are: Pre-peak period (if R(t) peaks for the first time on day t0 and begins to decrease,
with R(t) < 2.5 on day t1, (t1 ≥ t0), then the pre-peak period is the 30-day period
before t1). Free-contagious period (1.4 ≤ Rt ≤ 2.5); Measures period (1 ≤ R(t) < 1.4);
Decay period (R(t) < 1). It should be noted that the second wave of the pandemic
did not begin at the time when this study was conducted, so this division of in-
tervals only applies to this time period, i.e., from 2020-01-22 to 2020-06-05. The
precise time duration of these pandemic periods for each country and region is
summarised in Table 4.3.

The exact numbers of days of each pandemic period are shown in Figure 4.8 for
the region and countries. The Free-contagious period in Luxembourg and the GR
is particularly shorter (4 & 6 days) compared to other countries (24-20 days). Be-
ing a relational city characterised by high mobility, it may be relatively difficult to
control the pandemic. The reason why the GR and Luxembourg, has a shorter Free-
contagious period instead, will be discussed in Section 4.3.3 in terms of the public
concerns that reflected by tweet text.

(a) Pre-peak (b) Free-contagious (c) Measures (d) Decay

Figure 4.10: PC (Pearson’s correlation) between tweet volume and COVID-19 daily cases
with different lags.

Conclusion. To investigate whether there is a strong correlation between tweet vol-
ume and COVID-19 daily cases in the GR and related countries, and if so, whether
tweet volume can help predict COVID-19 daily cases, we test the following hy-
potheses:



44 Chapter 4. Multi-faceted Exploration

H1 There is a strong correlation between tweet volume and COVID-19 daily cases
in the GR and related countries.

H2 Tweet volume can help predict COVID-19 daily cases.

We calculate the correlation between tweet volume and COVID-19 daily cases by
PC, where a PC with a large absolute value means greater relation strength. The
results are shown in Figure 4.10. A lag refers to the tweets occurring after the cases;
a Lag = -5 days means that we match the daily cases with the tweet volume from
five days earlier, in other words, a 5-days lead.

Pre-peak period. As shown from Table 4.10, there is a clear trend of strong correlation
(PC > 0.8, p < 0.05) with lags during the Pre-peak period, reaching its’ maxi-
mum at -5 or -6 days, indicating that a correlation exists between tweet volume and
COVID-19 daily cases and tweet volume can help predict COVID-19 daily cases in
this period. This is highly consistent to the conclusions presented in the existing
studies [SBB+20, SZ12, JR20, YFR+20].

Free-contagious period. There is no clear trend of correlation with lags except the
value of Luxembourg, indicating that tweet volume cannot help predict the daily
cases in the Free-contagious period. The period only lasted for 4 days in Luxembourg,
which is too small to make PC a reflection of the correlation. However, the PC val-
ues show a highly negative correlation between tweet volume and daily cases. This
indicates that there is a short downward trend in the discussion of the pandemic
after it reached its peak, even though the number of cases continued to rise rapidly.
This result validates the conclusion of Smith et al. [SBPD16] from our dataset, who
noted that public concerns of disease decline sharply after the peak even though
the infection rates remain high. In other words, the public concerns of the pandemic
decline after the Pre-peak period.

Measures period. There is a clear trend of correlation with lags, tweet volume begins
to level off, with a 0 or 1-day-lag moderate correlation (0.8 > PC > 0.3, p < 0.05)
to the daily cases. Tweet volume cannot help predict daily cases here because it
fluctuates with the number of cases on the current or previous day. It is worth
noting that Pearson’s coefficient is sensitive to outliers and is not robust. With too
few dates included, a single outlier can change the direction of the coefficients.
This period existed for only 8 days in Luxembourg, resulting in an anomaly value
(PC = −0.903). It is assumed here that fluctuating changes in tweet volume during
this period are influenced by local news and policies, and further discussion will
take place in Section 4.3.3.

Decay period. The correlations between tweet volume and daily cases occur in two
ways. One is weakly correlated, the other reveals a correlation, but the trend of
correlation with lags is insignificant. Both ways demonstrate that it is not possible
to estimate daily cases with the help of tweet volume during this period.

In summary, with the Spatio-temporal analysis of the correlation between tweet
volume and COVID-19 daily cases during the four periods of the pandemic, we
reject the hypothesis that there is a strong correlation between tweet volume and
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COVID-19 daily cases in the GR and related countries (H1) and tweet volume can
help predict COVID-19 daily cases (H2). More accurately, H1 and H2 can only be
confirmed during the Pre-peak period. In this period, regardless of the time at which
R(t) peaks, there is a 5-6 day lead between tweet volume and COVID-19 daily cases.
Moreover, before the pandemic strikes, there is a high level of tweet volume regard-
ing the pandemic. On the particularity of the GR, we find that the Free-contagious
period in the GR and Luxembourg are exceedingly shorter (6 and 4 days, respec-
tively), during the Measures period.

4.3.3 Topic Modelling and Classification of Tweets

In the previous section, we conduct an overarching preliminary analysis of tweet
volume, but without the in-depth discussion of tweet text. In this section, we build
a workflow to analyse tweet text as shown in Figure 4.11. This workflow includes
tweet text pre-possessing, topical modelling, and classification of the generated top-
ics, each part is described in details below. We perform topical modelling on the
tweet text to extract the main topics discussed every day in each region and country.
After extracting the tweet text topics, we generally followed the pipeline of previ-
ous studies [PMC+20, KJ17]. However, the number of topics extracted in previous
studies was relatively small, so the topics were classified by manually labelling.
The number of topics we extract is relatively large. Hence, we take a supervised
learning approach and train a classifier to distinguish these topics into 7 categories
in order to observe and analyse the changes in the topics discussed in each region
and country during different periods of the pandemic. In parallel, we observe and
investigate the changes of topic categories, and focus on the differences that exist
in the GR.

Preprocessing

TF-IDF

LDA

BERT

Concatenation

Tweet text

K-Means 
Clustering

UMAP

Topics

Tokens

Sentences

Autoencoder

Latent Space Representation

Visualization

Corpus

Embedding vector

Probabilistic topic 
assignment vector

Manual 
Classification

SVM Visualization

Topic Classification

Figure 4.11: Workflow of topic modelling and classification.

Text pre-processing. Prior to topical modelling, the tweets data needs to be pre-
processed. All text are lower-cased, while URLs that mention usernames and ‘RT’
are removed as well. Besides, punctuation and numbers are filtered out, typos are
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corrected by Symspel 6 and stop words are removed. Since the tweets are collected
based on the keyword search, each tweet contains keywords such as "coronavirus",
"koronavirus", "corona", "covid-19", and "covid". As these frequent subject-specific
words are unlikely to assist for classification and topic modelling [SC03] and result
in a large number of topics in the final result containing these words, rather than a
more precise topic about COVID-19. In detail, if these general high-frequency key-
words are not removed, these words will be ranked high in the results of topic mod-
elling. As a consequence, this will make the final extracted topics not well repre-
sent the topics of the clusters of tweet text. Therefore, we considered these words as
subject-specific stop words and remove them following Älgå et al.’s work [ÄEN20].

Topic modelling. Aiming to identify the latent topics of the tweets posted by the
public in the GR and related countries, we adopt the general structure of contextual
topic embedding method (CTE) 7 to extract daily topics and get a more accurate
picture of topic trends. CTE mainly consists of two components, LDA and BERT, to
extract different information from sentences to embedding.

LDA, a bag-of-words approach which is widely used to identify latent subject in-
formation in a large-scale archives or corpus has its drawback: it needs large corpus
to train, ignores contextual information and performs mediocrely in handling short
texts [YGLC13].

BERT utilises bidirectional transformers for pre-training on a large unlabelled text
corpus, taking both left and right context into account simultaneously, which com-
pensates for the shortcoming of LDA. Also, BERT is a method available for sen-
tence embedding, thus we concatenate the generated tokens of each tweet text as
input sentences for BERT to obtain sentence embedding vectors. CTE combines
the sentence embedding vector generated by BERT with the probabilistic topic as-
signment vector generated by LDA with a hyper-parameter γ. After obtaining the
concatenated vector in high-dimensional space, CTE uses an autoencoder to learn a
low-dimensional latent space representation of the concatenated vector with more
condensed information. Then k-means [WCR+01] is implemented for clustering,
and the number of clusters k, that is, the number of topics, reserved as a hyper-
parameter. We extract the word frequency in each cluster, sort and then take the
top ten as the representative topics of that cluster. In terms of visualisation, Uni-
form Manifold Approximation and Projection (UMAP) [MHM18] is used for low-
dimensional latent space degradation, which is the state-of-the-art visualisation and
dimension reduction algorithm.

The CTE rather than a single LDA model is chosen as our topical modelling ap-
proach due to the fact that LDA is designed for monolingual contents and lacks
the structure necessary to generate effective multilingual topics [GSL+16]. The GR,
as a relational city, are multilingualism. CTE includes BERT, a sentence embedding
model that can handle multi-language, can tackle this problem. Two adjustments
are therefore made to the original CTE. For one, we adopt the BERT-based multi-
lingual model as the pre-trained model in BERT [DCLT19] In addition, some words

6https://github.com/mammothb/symspellpy
7https://github.com/Stveshawn/contextual_topic_identification

https://github.com/mammothb/symspellpy
https://github.com/Stveshawn/contextual_topic_identification


4.3. Exploration of the GR-ego Dataset 47

Figure 4.12: A sample of UMAP clustering results.

appear less frequent than in English which is predominantly spoken and are easily
overlooked in LDA. Thus, we adopt the TF-IDF model to determine word relevance
in the documents [Ram03]. We further feed the generated corpus by TF-IDF to LDA,
instead of simple bag-of-words corpus.

Country Coherence score Silhouette score
The GR 0.432 0.893
Luxembourg 0.474 0.894
France 0.351 0.590
Belgium 0.377 0.864
Germany 0.336 0.655

Table 4.4: Average coherence score and average silhouette score of CTE.

Average coherence score [OGC+15, NLGB10] and average silhouette score [AT08]
are utilised as the metrics of CTE. We calculated an average coherence score by
calculating the topic coherence for each topic individually and averaging them. The
hyper-parameters are tuned to obtain the best results. The value of k is chosen from
{1, 2, . . . , 15} and the value of γ is chosen from {0.1, 0.2, . . . , 0.9}. The model arrive
at the optimal with k = 7 and γ = 0.5.

The results are shown in Table 4.4 and a sample of clustering result from UMAP
is shown in Figure 4.12. It can be observed from Table 4.4 and Figure 4.12 that
the results generated by CTE are coherent and can be observed as well-separated
clusters.

We extract topics by day for 137 days from the text of each country’s tweets and
region and get a total of 4795 topics. Since the essence of CTE is to cluster the tweet
text’s embedding vectors and extract the top ten words with the highest frequency
in the tweet text corresponding to all vectors in each cluster as the final topic. The
clusters containing too few tweets and their corresponding topics do not convey
information well, so we remove the topics containing no more than 2 tweets from
the clusters and end up with 4,763 topics. Then we randomly selected 51% (2,435
in total) of the topics from each country and region for manual labelling following
the central idea existing work [LLLY04, LPN+11]. We used three annotators to label
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these topics and only labels that are agreed by at least two annotators can be used
as the final label.

Topic classification. We classified the 2,435 topics manually into the following 7
categories:

1. ‘Wuhan & China’: Topics about Wuhan and China.

2. ‘Measures’: Topics about basic information including symptoms, anti-contagion
and treatment measures of COVID-19.

3. ‘Local news’: Topics about local COVID-19 news, including daily new cases,
deaths, etc.

4. ‘International news’: Topics about international COVID-19 news

5. ‘Policy and daily life’: Topics about COVID-19 related policies encompass
lockdown, closure of borders, limits on public gatherings and the impact of
the policies on daily life.

6. ‘Racism’: Topics about racism.

7. ‘Other’: Other topics.

The division of these 7 categories is based on the classification of COVID-19 related
Twitter topics analysis in existing studies [AAAH+20], and is determined empiri-
cally on the basis of common knowledge and the status quo.

These manually classified topics are utilised to train a Support Vector Machine
(SVM) [CL11] for supervised classification. The reasons for training a classifier in-
stead of manually labelling all the topics are, on the one hand, the classifion of all
the topics manually is time-consuming, and, on the other hand, the classifier can
be used in further studies.

Words of each topic are converted to word frequency vectors with TfidfVector-
izer and country are encoded with Label Encoder [PVG+11]. The feature vector is
consisted by these two elements. Since our manually labelled dataset is imbalance
in classification, Synthetic Minority Oversampling Technique [CBHK02] is utilised
for oversampling imbalanced the dataset and mitigate imbalances. The dataset is
split, 80% of which is the training dataset and 20% the test dataset. Grid search
with 10-fold cross-validation is deployed on training dataset to find the optimal
hyper-parameter, and the final SVM model is obtained with the entire training set
Table 4.5 shows the precision, recall, F1 score, support and Macro-average F-Score
of the trained classifier for each topic category. Then, the obtained SVM model clas-
sifies the rest of topics. Table 4.6 shows the number of topics of each category for
each country and region.

The categories with higher percentages are topics of Wuhan & China and policy
and daily life. In general, the number of topics about policy and daily life is much
higher in Luxembourg (56.6%) than in other countries (ave = 33.0%). France, on
the other hand, shows a high level of interest in local news (30.2%), compared with
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other countries (9.4%). In terms of the overall data of the GR, however, it does not
show particular differences compared with other countries. Note that as there may
be cases where the cluster for a topic contains no more than two tweets, we treat
such topics as the invalid topic and remove them. This leads to a different total
number of topics in each country. Next, we introduce dates to plot the changes in
categories over time.

Category Precision Recall F1-score support
1 0.89 0.77 0.82 163
2 0.92 0.93 0.93 166
3 0.80 0.79 0.80 155
4 0.74 0.86 0.80 155
5 0.73 0.68 0.71 149
6 0.99 1.00 0.99 157
7 0.97 1.00 0.98 142

Macro avg 0.86 0.86 0.86 1,087

Table 4.5: Metrics of the classification results.

Figure 4.13 shows the tweet volume contained in each category demonstrated in
the form of percentage of the total tweet volume on that day (CR), with the darker
red representing higher CR. The interval colored in white represents the period
from 22 January to the start of Pre-peak period, other regions in different colours
indicate, in sequence, Pre-peak period, Free-contagious period, Measures period, and
Decay period. The black dotted line illustrates the date on which the first case ap-
peared. The figure shows an interval between the date of the first case and the date
of consecutive cases every day in the GR. The solid black line indicates the date that
new cases appear every day since that date. For ease of discussion, we name the
day as ‘outbreak day’ (OD).

Conclusion. In this part, we aim to explore the changes in the categories of topics
discussed over time in each country and region, focusing on understanding the
evolving discourse in the context of the COVID-19 pandemic.

Figure 4.13 reveals that initially, the main topic in all the countries and region is
about China, but over time the categories of topics change. In France, Germany and
Belgium, the appearance of the first case trigger only a small amount of discussions
about the protective measures, and related discussions do not start to increase until
OD. In other words, the public concerns in these region and countries do not really
heed the protective measures until OD, when the virus is already spreading. The
change in topic is at odds with the conclusion of Bento et al. [BNW+20] that the
announcements of the first case have the greatest impact on the public concerns for
searching basic information about COVID-19 and its symptoms.

Moreover, the report of first case does not stimulate discussions about policies and
daily life as well, and discussions about it do not emerge frequently until OD. This
may be explained by the existence of a large interval between the date of the first
case and OD (27.3 days on average) in France, Germany, and Belgium. During this
interval, sporadic cases may not attract enough public concerns, and the public’s
concerns is still focused on China-related news.
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Category the GR Luxembourg Belgium France Germany Total
1 245 168 287 202 315 1,217
2 64 34 48 65 41 252
3 99 44 109 285 110 647
4 134 77 114 52 167 544
5 353 525 370 250 295 1,793
6 23 7 23 31 15 99
7 41 72 15 60 23 211

Total 959 927 966 945 966 4,763

Table 4.6: Topic volume for each category/country (region)

Figure 4.13: Topic categories in the GR and related countries.
1: Wuhan& China; 2: Measures; 3: Local news; 4: International news; 5: Policy and daily life; 6:
Racism; 7: Other.

The situation is different in the GR, a relational city, and in Luxembourg, its centre.
Figure 4.13 shows that the public in Luxembourg and the GR start to have discus-
sions about measures 1 − 2 days before the first case appears. Furthermore, during
the Pre-peak period, the CR of measures is much higher in the GR (3.41%) and Lux-
embourg (7.62%) than in France (1.90%), Belgium (1.84%) and Germany (0.0%). It
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Figure 4.14: Word cloud of Luxembourg Tweets from 2020-01-22 to 2020-03-01.

should be noted that discussions of measures are not totally non-existent in Ger-
many, but the tweet volume may be too small to be recognised as separate topics
during the topic modelling process. By comparing the topics discussed in other
countries of the same time, this may be explained by the late occurrence of the
first case in Luxembourg and the GR, where the other three countries have already
passed OD, the outbreak in other countries may have attracted public concerns in
the GR and Luxembourg. Concurrently, the results indicate that the GR exhibits
a high level of interest in policy and daily life with 47.1% of total tweet volume
during the Free-contagious and the Measures period, while for Luxembourg, this rate
is 66.1%. Figure 4.15(a) shows boxplots of the distribution of the CR on policy and
daily life during the Free-contagious and the Measures period. This shows that the
public is more responsive to policies as a region that relies on foreign labour and
has high mobility than Belgium, France and Germany.

The reason why Free-contagious is a period more transient in Luxembourg and the
GR compared with other regions is still unclear, but part of the reason may stem
from the fact that the public concerns to the virus itself during Pre-peak period led
to better responsiveness to the anti-contagion policies in these region and countries.
Interestingly, in Luxembourg, the discussion about policies and daily life persisted
before the first case is announced and increased immediately after then. A word
cloud of the topics from 22 January to 1 March (date of the first case) of Luxembourg
is depicted in Figure 4.14, this shows that the topics are mainly travel-related. This
may be explained by the fact that the proportion of foreign residents in the Lux-
embourg region is 47.4% 8, and residents are more concerned about travel-related
policies in Luxembourg and other countries.

In addition, Figure 4.15(b) illustrates that the Free-contagious and Measures periods
coincided with the France municipal election, and thus the public concerns in local
news among French is higher. In the end, during the Decay period, while there is a
downward trend (p < 0.05) in the total daily tweet volume, there is a upward trend
(p < 0.05) in the CR of policy and daily life, except in Luxembourg, where the rate
is consistently high.

8https://statistiques.public.lu/stat/TableViewer/tableView.aspx?ReportId=12856

https://statistiques.public.lu/stat/TableViewer/tableView.aspx?ReportId=12856
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(a) Policy and daily life (b) Local news

Figure 4.15: Distribution of proportion of tweets on ‘policy and daily life’ and ‘local news’
during Free-contagious and Measures period.

4.3.4 Conclusion and Discussion

In this chapter, we delve deeper into the two datasets, GR-EGO and EU-Vax, which
were collected based on the data collection method described in the previous chap-
ter. Our exploration aims to provide valuable insights into public sentiment and
behavior during the COVID-19 pandemic by examining various aspects of these
datasets, such as the relationship between tweet volume and COVID-19 cases, the
evolution of topic categories, and the public’s attitudes toward vaccination.

For the GR-EGO dataset, we examine the correlation between tweet volume and
COVID-19 daily cases in the GR and related countries. Additionally, we explore the
changes in the categories of topics discussed in each country and region over time.
This helps us understand how public concerns and reactions evolved throughout
the pandemic, and how they varied between different countries.

With the EU-Vax dataset, we focus on understanding public attitudes toward COVID-
19 vaccination in Western Europe. We perform statistical analysis and visualization,
and evaluate the performance of established NLP benchmarks. This allows us to
track temporal changes in vaccination attitudes and identify sudden shifts in pub-
lic sentiment that may warrant further attention.

Through the comprehensive analysis of both datasets, we aim to shed light on
the challenges facing virtual ethnography and demonstrate the potential value of
social media data in understanding and analyzing public sentiment and behavior
during the pandemic. By providing these insights, we hope to contribute to the
development of more effective public health measures and policy implementations,
ultimately improving the response to public concerns and needs during and beyond
the pandemic.
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Part II

Social Characteristics Analysis
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Chapter 5

Bridging Performance and
Subjective Well-Being of Twitter
Users

In the previous section, we focus on addressing the first research question: how
to collect a sufficient amount of data to meet the requirements of a virtual ethno-
graphic study. We describe the collection methods for the two datasets primarily
used in the previous chapters and conducted a preliminary exploration of these
datasets, validating their feasibility for meeting virtual ethnographic research needs.

Building on these datasets, we devote a chapter to the second research question
which centers on the use of social characteristics: how to design a measurement to
capture the actual bridging performance of social media users in terms of spread-
ing COVID-19-related information? Specifically, we investigate how to identify in-
fluential Twitter users and their role in spreading credible information during the
COVID-19 pandemic. To do so, we introduce two new measurements called “bridg-
ing performance” to assess the speed and breadth of information diffusion due to
users’ sharing activities. Through the analysis of our tweet collection, we uncover
the mental anguish experienced by influential users during the pandemic. Using hi-
erarchical multiple regression analysis, we establish a strong relationship between
individual users’ subjective well-being (SWB) and their bridging performance. In
addition, we extend the concept of bridging performance from individuals to sub-
groups of users, allowing for more in-depth analysis based on users’ multilingual-
ism. We study the role of multilingual users in spreading COVID-19 messages and
investigate their SWBs during the pandemic. We find that multilingual users not
only suffered from a much lower SWB in the pandemic, but also experienced a
more significant SWB drop.

5.1 Introduction

In response to the infodemic, governments and healthcare bodies have outlined a
series of effective social media-based countermeasures to spread trustworthy infor-
mation to overcome the negative impact of misinformation. With the purpose of
promoting the speed and wideness of information spread, individual users with a
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large number of followers are invited to share messages [Zar20, BM21]. Meanwhile,
various user subgroups, including healthcare professionals and social activists, also
voluntarily take part in relaying information they consider useful with their so-
cial media accounts. All these users in fact act the role of bridges on social media
delivering information to the public, although their bridging performance varies. In
this thesis, we use the term ‘bridging performance’ as an analogy to evaluate how
quickly and widely information can diffuse on social media because of the sharing
of a user.

Subjective well-being (SWB) evaluates individuals’ cognitive (e.g., life satisfaction)
and affective (i.e., positive and negative) perceptions of everyday lives [JGS+20].
The global decrease in the public’s SWB has been unanimously recognised since
the outbreak of the COVID-19 pandemic. The SWBs of various sub-populations
such as immigrants and healthcare workers [HLKX20, ENW+21] has been studied
extensively. Such research manages to identify the vulnerable populations which
deserve special attention. Despite the contribution of the influential users on social
media in combating the infodemic, no work has been conducted to examine and
analyse their psychological status. In this chapter, we perform the first attempt to
study the negative impact of the COVID-19 pandemic on the subjective well-being
of this specific group of people.

There are two challenges that have to be overcome in advance to conduct this anal-
ysis. First, no measurements exist to accurately quantify social media users’ ac-
tual performance in promoting the spread of COVID-19 related information. The
measurements, used in crisis communications and marketing, identify influential
users based on social relations. Their effectiveness are found to deteriorate when
capturing users’ real bridging performance, especially in the currently ongoing
pandemic [Str20]. Take healthcare professionals on Twitter as an example. Their
professional endorsement significantly promotes the popularity of the tweets they
shared [Str20]. However, they usually do not belong to the super tweeters who have
thousands of followers. Our second challenge is how to obtain the SWB levels of a
sufficiently large group of social media users whose bridging performance is also
available.

In this chapter, we address the identified challenges by leveraging the information
outbreak on social media triggered by the COVID-19 pandemic and the recent ad-
vances of deep learning in text mining. To address the first challenge, we start by
proposing a new measurement based on information cascades instead of relying only
on social relations between users to comprehensively quantify individual users’
influences in diffusing COVID-19 related information. We also extend the measure-
ment to quantify and compare the bridging performance of user subgroups. To
address the second challenge, we take advantage of the success of deep learning in
Natural Language Processing (NLP) and quantitatively evaluate individual users’
SWB with the sentiments of their posts. Recent studies [JGS+20] have illustrated
the advantages of social media posts in extracting well-beings, especially with data-
driven methods. In this chapter, we follow the same data-driven methodology and
adopt the state-of-the-art text embedding based on transformers. Compared to tra-
ditional machine learning models which rely on manually pre-defined features, it



5.2. Related Work 57

allows us to automatically learn representative features of textual posts.

We make use of Twitter as a representative social media platform considering its
increasing popularity during the pandemic. It had become one major source for
the public to acquire COVID-19 related information, especially during the first few
months after the onset of the pandemic. In this Chapter, we use the GR-ego Dataset
we collect in Chapter 3, and our contributions are summarised as follows:

• We propose a new measurement to capture the actual bridging performance
of individual social media users in diffusing COVID-19 related information.
Compared to existing social connection-based measurements, it is directly de-
rived from information diffusion history. This measurement allows for iden-
tifying the accounts of influential health professionals and volunteers that are
missed by existing ones.

• Through deep learning-based text embedding methods, we implement a clas-
sification model which can accurately extract the sentiments expressed in so-
cial media messages. With the sentiments of posts, we quantitatively estimate
the SWB of individual users, and discover that influential individual users are
more affected in their SWB during pandemics.

• Through the hierarchical multiple regression model, we reveal for the first
time that users’ SWB has a strong negative relationship with their bridging
performance in COVID-19 information diffusion, but a weak relationship with
their social connections.

• We identify the insufficiency of our bridging performance measurement for
individual users in comparing the bridging performance between user sub-
groups. We thus extend it to the level of user subgroups. With the new mea-
sure, we successfully re-confirm the bridging role of multilingual users in
information diffusion during the pandemic, and reveal the more drastic ad-
verse impact of the pandemic on their SWB. This complements the previous
studies before the pandemic claiming that monolingual users have lower SWB
due to their language boundaries [Tra95, PA08].

Our research provides policy makers with an effective method to identify influ-
ential users and user subgroups in the fight against infodemic. In addition, we
highlight the need to pay particular attention to the mental health of people who
are actively involved in transmitting information such as multilingual users, in the
case of COVID-19 or other potential future large-scale infectious diseases of similar
type.

5.2 Related Work

5.2.1 Impact of the Pandemic on Subjective Well-being

The negative impact of the COVID-19 pandemic on mental health and well-being
has been acknowledged as a global health concern. Statistics have been reported
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on various subgroups of people with different demographic characteristics. More
than 4 in 10 adults in the US suffered from symptoms of anxiety and depressive
disorders in January 2021 compared to 1 in 10 before the pandemic1. Females and
young people are found to be more negatively respond to the loneliness caused by
social distancing [TO21, OCM+21]. In Japan, the monthly suicide ratio increased
by 37% for women and 49% for children and adolescents while the average ratio
increased by 16% [TO21]. The vulnerable subgroups such as migrants [QSZ+20,
YNF+20] and refugees [EJB20] have also been found deserve more attention due
to their relatively bad economic conditions. As an indispensable part of mental
health, subjective well-being has also drawn public attention. Multiple factors have
been found associated with its decline after the onset of the pandemic such as
country-specific pandemic severity [FFG22] and satisfaction with health [HGS22].

In this chapter, we concentrate on the SWB of a specific group of people who are
actively involved in information spread on social media and have not been stud-
ied in the literature. Furthermore, we will examine whether their contribution to
COVID-related information diffusion can be used as an effective predictor of their
SWB.

5.2.2 Measuring Bridging Performance

A considerable amount of literature has been published quantifying users’ bridging
performance based on social connections to identify amplifiers in social media. We
can divide the measurements into two types. The first type of measurements implic-
itly assume that influential users are likely to hold certain topology properties on
social networks such as large degrees, strong betweenness centrality or community
centrality [Fre78, ZL17, GCCH19]. Degrees only capture the number of users’ lo-
cal social connections without considering their overall position in the whole social
network. Betweenness centrality [ZL17] measures the importance of a user connect-
ing other users in the network while community centrality [GCCH19] measures a
user’s importance in connecting communities. Measurements are also proposed to
fuse multiple topology properties such as fusing degree, ego-betweenness central-
ity and eigenvector centrality into an overall evaluation [HLZ+14]. It has been no-
ticed that such measurements are usually inefficient to compute in sparse networks
where node degrees do not follow power law distributions [FG22]. The second
type of measurements assume that influential users tend to be more likely reach-
able from other users through random walks. PageRank [PBMW99] and its variant
TwitterRank [WLJH10] among the representative benchmarks of this type of mea-
surements. PageRank is calculated only with network structures while TwitterRank
additionally takes into account topic similarities between users. All the two cate-
gories of measurements have been widely applied in practice, from public health
crisis communication [MBS+20] to online marketing [LLC11]. However, recent stud-
ies have pointed out that they may not truly capture users’ actual bridging perfor-
mance in information diffusion during a specific public healthy crisis [MBS+20].

1https://www.cdc.gov/nchs/data/nhis/earlyrelease/ERmentalhealth-508.pdf
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One of our goals in this chapter is to define new measurements that can capture
social media users’ bridging performance in information diffusion during global
public health crises like COVID-19 in real-world social networks.

5.2.3 Subjective Well-being Extraction

Subjective well-being is used to measure how people subjectively rate their lives
both in the present and in the near future [DOL03]. Many methods have been used
to assess subjective well-being, from traditional self-reporting methods [DELG85]
to the recent ones exploiting social media [YS16].

Studies have cross-validated the trustworthiness of social media as a complemen-
tary data source for public opinions [NCP+20, JGS+20]. Chen et al. [CCZP22c] ex-
tracted vaccine hesitancy from Twitter during the COVID-19 pandemic and em-
pirically illustrated its consistency with social surveys across regions and along
with time. With the Gallup-Sharecare Well-Being Index survey,2 a classic reference
used to investigate public SWB, SWB extracted from social media has been shown
as a reliable indicator of SWB [JGS+20]. Twitter-based studies usually calculate
SWB as the overall scores of positive or negative emotions (i.e., sentiment or va-
lence) [JGS+20]. Sentiment analysis has developed from the original lexicon-based
approaches [BL99] to the data-driven ones which ensure better performance [JGS+20].
We adopt the recent advances of the latter approaches, and make use of the pre-
trained XLM-RoBERTa [OL20], a variant of RoBERTa [LOG+19], to automatically
learn the linguistic representation of textual posts. As a deep learning model, RoBERTa
and its variants have been shown to overwhelm traditional machine learning mod-
els in capturing the linguistic patterns of multilingual texts [BCCEAN20].

5.3 Data Processing

5.3.1 Cascade Computation

A cascade records the process of the diffusion of a message. It stores all activated
users and the time when they are activated. In our dataset, a user is activated in
diffusing a message when he/she retweets the message. In this chapter, we adopt
the widely accepted cascade tree to represent the cascade of a message [WSL+17],
the detailed definition is given in Section 2.3.

For our study, we follow the method in [KOU+12] to construct tweet cascades.
Recall that when a tweet’s status is ‘Retweeted’, the ID number of the original tweet
is also recorded. We first create a set of original tweets with all the ones labelled
in our meta data as ‘Original’. Second, for each original tweet, we collect the IDs of
users that have retweeted the message. At last, we generate the cascade for every
original tweet based on the following relations in our GR-ego social network and
their retweeting time stamps. We eliminate cascades with only two users where

2www.gallup.com/175196/gallup-healthways-index-methodology.aspx
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Figure 5.1: Sentiment distribution of users’ timeline tweets.

messages are just retweeted once. In total, 614,926 cascades are built and the average
size of these cascades is 7.13.

5.3.2 Sentiment Analysis

Previous works [ZJZ20] leverage user-provided mood (e.g., angry, excited) or status
to extract users’ sentiment (i.e., positive or negative) and use them to approximately
estimate affective subjective well-being. However, such information is not available
on Twitter. We refer to the sentiments expressed in textual posts to extract users’
SWB. In this chapter, we treat sentiment extraction as a tri-polarity sentiment anal-
ysis for short texts, and classify a tweet as negative, neutral or positive. In order to
deal with the multilingualism of our dataset, we benefit from the advantages of
deep learning in sentiment analysis [BCCEAN20], and build an end-to-end deep
learning model to conduct the classification. Our model is composed of three com-
ponents. The first component uses a pre-trained multilingual language model, i.e.,
XLM-RoBERTa [OL20], to calculate the representation of tweets. The representa-
tions are then sent to the second component, a fully-connected ReLU layer with
dropout. The last component is a linear layer added on the top of the second com-
ponent’s outputs with sigmoid as the activation function. We use cross-entropy as
the loss function and optimise it with the Adam optimiser.

Model training and testing. We train our model on the SemEval-2017 Task 4A
dataset [RFN17], which has been used for sentiment analysis on COVID-19 re-
lated messages [DLP+20]. The dataset contains 49,686 messages which are anno-
tated with one of the three labels, i.e., positive, negative and neutral. We shuffle
the dataset and take the first 80% for training and the rest 20% for testing. We as-
sign other training parameters following the common principles in existing works.
We run 10 epochs with the maximum string length as 128 and dropout ratio as
0.5. When tested with macro-average F1 score and accuracy metrics, we achieve an
accuracy of 70.09% and macro-average F1 score of 71.31%.

Despite its effectiveness in classifying SemEval-2017 Task 4A data, in order to check
whether such performance will persist on our GR-ego dataset, we construct a new
testing dataset. This dataset consists of 500 messages, 100 for each of the top 5
most popular languages. We hire two annotators to manually label the selected
tweets and the annotated labels are consistent between them with Cohen’s Kappa
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coefficient k = 0.93. When applied on this annotated dataset, our trained model
achieves a similar accuracy of about 87%.

Analysing our GR-ego dataset. Before applying our sentiment classification model
on our GR-ego dataset, we clean tweet contents by removing all URLs, and men-
tioned usernames. Figure 5.1 summarises the statistics obtained from user timeline
tweets before and during the pandemic. The numbers of users’ timeline tweets are
consistent with previous studies. For instance, users tend to become more negative
after the outbreak of the COVID-19 pandemic [ENW+21, HLKX20].

5.3.3 Measuring SWB

We extend the definition proposed in [ZJZ20] to measure the level of subjective
well-being of users based on the sentiment expressed in their past tweets. Specif-
ically, we extend it from bi-polarity labels, i.e., negative and positive affection, to
tri-polarity with neutral sentiment by multiplying a scaling factor to simulate the
trustworthiness of the bi-polarity SWB.

Definition 4 (Social media Subjective well-being value (SWB)). We use Np(u), Nneg(u)
and Nneu(u) to denote the number of positive, negative and neutral posts of a user u, re-
spectively. The subjective well-being value of u, denoted by swb(u), is calculated as:

Np(u)− Nneg(u)
Np(u) + Nneg(u)

·
(

Np(u) + Nneg(u)
Np(u) + Nneg(u) + Nneu(u)

) 1
2

.

If all messages are neutral, then swb(u) is 0.

Discussion. Note that i) consistent with [ZJZ20], we focus on affective SWB (i.e.,
positive and negative) in this chapter, while ignoring its cognitive dimension; ii)
users’ SWB is evaluated based on their original messages: originally posted tweets
and quotations; iii) for tweets with quotations to other messages, only the texts are
considered without the quoted messages. As retweets may not explicitly include
users’ subjective opinions, we exclude them from the SWB calculation.

5.4 Bridging Performance of Individual Users in Informa-
tion Diffusion and its Relation with SWB

We devote this section to measuring the bridging performance of individual users
in the diffusion of COVID-19 related information. Through experimental validation
and manual analysis, we validate the effectiveness of our proposed measurement
in identifying influential social media users.
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5.4.1 Measuring Individual User Bridging Performance

We evaluate individual users’ overall performance in the diffusion of observed
COVID-19 related messages. As a user can participate in diffusing multiple mes-
sages, we first focus on her/his importance in the diffusion of one single message
and then combine her/his importance in all messages into one single measurement.
Intuitively, we consider a user more important in diffusing a message when his/her
retweeting behaviour activates more users, or leads to a given number of activated
users with fewer subsequent relays, e.g., retweets in Twitter. In other words, a more
important user promotes the popularity of the information or accelerates its trans-
mission.

Given a cascade path S = (u1, u2, . . . , un), we use S∗(ui) (1 ≤ i < n) to denote the
subsequence composed of the nodes after ui (including ui), i.e., (ui, ui+1, . . . , un).
For any u that does not exist in S, we have S∗(u) = ε where ε represents an empty
sequence and its length |ε| = 0. In the following, we define how to quantify a user’s
contribution in the diffusion of a given message as a transmitter.

Definition 5 (Cascade bridging value). Given a cascade tree C and a user u (u ̸= r(C)),
the cascade bridging value of u in C is calculated as:

αC(u) =

(
∑

S∈C

| S∗(u) |
| S |

)
/|C|.

Note that our purpose is to evaluate the importance of users as transmitters of
messages. Therefore, the concept of cascade bridging value is not applicable to root
users, i.e., the message originators.

Example 1. In Figure 2.1(b), u3 participated in two cascade paths, i.e., S1 = (u1, u3, u4)

and S2 = (u1, u3, u6). Thus, S∗
1 = (u3, u4) and S∗

2 = (u3, u6). We then have αC(u3) =
2/3+2/3

3 ≈ 0.44.

In Definition 5, we do not simply use the proportion of users activated by a user
in a cascade to evaluate her/his bridging performance. This is because that only
allows for capturing the number of activated users. The speed of the diffusion will
be ignored. Take u2 in Figure 2.1(b) as an example. According to our definition,
αC(u2) = 0.25 which is smaller than αC(u3). This is due to the fact that u2 activated
two users through two re-transmissions while u3 only used one. However, if we
only consider the proportion of activated users, the values of these two users will
be the same.

With a user’s bridging value calculated in each cascade, we define user bridging
magnitude to evaluate her/his overall importance in the diffusion of the observed
messages. Intuitively, we first add up the cascade bridging values of a user in all
his/her participated cascades and then normalise the sum by the maximum number
of cascades participated by a user. This method captures not only the bridging value
of a user in each participated cascade, but also the number of cascades she/he
participated in. This indicates that a more active user in sharing COVID-19 related
information is considered more important in information diffusion.
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Table 5.1: Comparison of bridging performance with benchmarks.

in-degree PageRank TwitterRank
Betweenness
centrality

Community
centrality

UBM

Avg. #activated user/minute 0.042 0.057 0.064 0.043 0.056 0.104
Avg. #activated users 13.99 16.84 17.68 15.54 17.00 23.81
%impacted user 32.17 52.54 57.44 43.44 56.54 71.66

Definition 6 (User bridging magnitude (UBM)). Let C be a set of cascades on a social
network and U be the set of users that participate in at least one cascade in C. A user u’s
user bridging magnitude (UBM) is calculated as:

ωC(u) =
∑C∈C αC(u)

maxu′∈U |{C ∈ C|αC(u′) > 0}| .

With this measurement, we can compare the bridging performance of any two
users, and learn which one plays a more important role in information diffusion.

5.4.2 Validation of UBM

As discussed above, we make use of observed cascades instead of network ty-
pologies to estimate the capacity of individual users in promoting the diffusion
of COVID-19 related information. In order to illustrate its advantages against ex-
isting measurements, we evaluate our UBM measurement from two perspectives.
With our dataset, we empirically validate whether the influential users identified
by UBM can improve the speed and popularity of information diffusion. Then we
examine the profiles of the identified influential users and cross-validate whether
their composition is consistent with previous social studies in the literature.

Experimental results. We compare the effectiveness of our UBM to five widely used
topology-based measurements in the literature, i.e., in-degree, PageRank [PBMW99],
TwitterRank [WLJH10], betweenness centrality and community centrality [Fre78].
We randomly split the set of cascades into two subsets. The first subset accounts for
80% of the cascades and is used to calculate the bridging performance of all users.
Then we select the top 20% users with the highest bridging performance in every
adopted measurement and use the other subset to compare their actual influences
in information diffusion. We adopt three measurements to quantitatively assess the
effectiveness of UBM and the benchmarks. We use the average number of activated
users per minute to evaluate the efficiency of the information diffusion. The more
users activated in a minute, the faster information can be spread when it is shared
by the influential users. The average number of activated users counts the users who
received the information after the retweeting behaviour of an identified influential
user. It is meant to evaluate the expected wideness of the spread once an influen-
tial user retweets a message. The percentage of impacted users gives the proportion of
users that have ever received a message due to the sharing behaviours of identified
influential users. This measurement is to compare the overall accumulated influ-
ence of all the selected influential users. We show the results of UBM and other
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Figure 5.2: Profile distribution of the top 30 accounts with highest bridging performance

benchmark measurements in Table 5.1. We can observe that it takes less time on av-
erage for the influential users identified according to UBM to activate an additional
user, with 0.104 users activated a minute due to their retweets. With 23.81 users ac-
tivated, UBM allows for finding the users whose retweeting action can reach more
than 35% users than those identified by the benchmarks. In the end, the top 20%
influential users identified by UBM spread their shared information to 71% users
in our dataset, which overwhelms that of the best benchmark by about 15%. From
the above analysis in terms of the three measurements, we can see that our UBM
can successfully identify influential users whose sharing on social media manages
to promote the wideness and speed of the diffusion of COVID-19 information.

Manual analysis. In order to understand the profiles of the calculated influential
users by the measurements, we select the top 30 users with the highest bridging
performance of each measurement. We identify four types of user profiles: private,
media, politicians and emergency management agencies (EMA). Figure 5.2 shows the
distributions of their profiles. We can observe that the distributions vary due to
the different semantics of social connections captured by the measurements. For
instance, due to the large numbers of followers, Twitter accounts managed by tra-
ditional media are favoured by in-degree. This obviously underestimates the im-
portance of accounts such as those of EMAs in publishing pandemic updates. With
reachability and importance in connecting users and communities considered, more
accounts of politicians and EMAs stand out. The proportion of private accounts
also starts to increase. When UBM is applied, the percentage of private accounts
becomes dominant. A closer check discovers that 10 out of the 11 private accounts
belong to health professionals and celebrities. This is consistent with the litera-
ture [HHW+21] which highlights the importance of health professionals and indi-
viduals in broadcasting useful messages about preventive measures and healthcare
suggestions in the pandemic.

5.4.3 Impact of the Pandemic on SWB of Influential Users

With the proposed SWB measurement in Definition 4, we study how users’ sub-
jective well-beings change due to the outbreak of the COVID-19 pandemic. As our
target is the SWBs of natural persons, the accounts of organisations and bots should
be excluded from our analysis. We make use of existing methods/tools to iden-
tify these two types of accounts. We detected about 12.04 organisation accounts
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Figure 5.3: SWB changes after the outbreak of the pandemic.

which are about 8.16% of the selected active users with the methods proposed
in [WHaPAG+19]. We use Botometer [SVY+20] to detect bot accounts and only 131
users are classified as bots. In total, we removed 1,333 users (as 2 users are identified
as both bot and organisation) from our collected dataset.

We calculate the UBM values of the remaining users and order them in descending
order. Then, to compare the response of these two groups to the pandemic, we
select the top 20% users and the bottom 20% users. For each group, we calculate
users’ SWBs according to their posts before the pandemic and after the pandemic
to capture the changes. Note that we only consider the users with more than 5 posts
in each time period.

In Figure 5.3, we show the SWB distributions of the two user groups. On average,
the users with high UBM have positive SWB of 0.13 before the pandemic while the
users with low UBM are negative. The SWB of both user groups decreases after the
pandemic but the SWB of the top 20% users drops more significantly. Specifically,
their SWB falls by 0.38, which is two times as much as that of the bottom 20% users.
The lowest value of the top 20% users’ SWB slightly decreases after the pandemic,
while the lowest value of the bottom 20% of users does not change significantly.
Note that the minimum values here do not include outliers that lie outside the box
whiskers. This indicates that the top 20% users become even more negative than
the bottom 20% users, in terms of mean and minimum values. To sum up, the
pandemic causes more negative mental impacts on the social media users who play
a more important bridging role in transmitting COVID-19 related information.

5.4.4 Relation between SWB and Bridging Performance

We conduct the first attempt to study if a user’s bridging performance has a rela-
tionship with the SWB changes of the users actively participating the diffusion of
COVID-19 related information. In addition to UBM and the five benchmark mea-
surements used in Section 5.4.2, we consider two additional variables: out-degree
and activity. Out-degree is used to check whether the number of accounts a user
follows correlates with SWB changes. The activity variable evaluates how active a
user is engaged in the online discourse and is quantified by the number of mes-
sages he/she posted. In order to isolate the impacts of these variables, we adopt
the method of hierarchical multiple regression [TFU07]. The intuitive idea is to check
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whether the variables of interest can explain the SWB variance after accounting for
some variables.

To check the validity of applying hierarchical multiple regression, we conduct first-
line tests to ensure a sufficiently large sample size and independence between vari-
ables. We identify the variables corresponding to community centrality and Twit-
terRank fail to satisfy the multi-collinearity requirement. We thus ignore them in
our analysis. The ratio of the number of variables to the sample size is 1:1,917,
which is well below the requirement of 1:15 [TFU07]. This indicates the sample size
is adequate. We iteratively input the variables into the model with three stages.
The results are shown in Table 5.2. In the first stage, we input the variables related
to network structures, i.e., in-degree, out-degree, Pagerank and Betweenness cen-
trality. The combination of the variables can explain 4.80% of the SWB variance
(F = 4.672, p < 0.05). Note that an F-value of greater than 4 indicates the linear
equation can explain the relation between SWB and the variables. This demon-
strates that there exists a positive relationship between the topology-based variables
and SWB, but this relationship is rather weak. A closer check on the t-values show
that out-degree is irrelevant to SWB and the rest three variables are weakly related.
In the second stage, we add the variable of activity to the model. After controlling
all the variables of the first stage, we observe that user activity does not signifi-
cantly contribute to the model with t-value of 0.396. This suggests that user activity
is not a predictor of SWB. In the third stage, we introduce UBM to the model. The
addition of UBM, with the variables in the previous two stages controlled, reduces
the R value from -0.335 to -0.603. UBM contributes significantly to the overall model
with F = 167.32 (p < 0.001) and increases the predicted SWB variance by 25.1%.

Together with the t-value of -11.684 (p < 0.001), we can see there exists a strong
negative relation between UBM and SWB, and UBM is a strong predictor for SWB.

Discussion. To conclude, the results illustrate that UBM is strongly related to
SWB, while in-degree, Pagerank and betweenness centrality are weakly related.
This difference further shows that UBM can more accurately capture users’ be-
haviour changes after the outbreak of the pandemic while topology features re-
main similar to those before the pandemic. This may be explained by the recent
studies [HLKX20] that once considered as a change in life after the pandemic out-
break, this extra bridging responsibility in diffusing COVID-19 related messages is
likely to associate with lower life satisfaction.

5.5 Comparing the Bridging Performance of User Subgroups

With the above discussion, we have shown how to identify individual influen-
tial users. In practice, subgroup analysis is also an important analysis methodology
to compare how people respond differently to an intervention or event. Samples
are divided into multiple subsets, e.g., according to their demographic characteris-
tics [HGS22]. Regarding bridging performance, our purpose can be to understand
the different roles played by various user subgroups. Straightforward methods con-
sist in aggregating users’ UBM in each group into the overall bridging performance



5.5. Comparing the Bridging Performance of User Subgroups 67

Table 5.2: Hierarchical multiple regression model examining variance in SWB explained by
independent variables, ∗p < 0.05; ∗ ∗ p < 0.001

Variable B SEB b t R R2 ∆R2

Stage 1 -0.219 0.048 0.048
In-degree 0.231 0.102 0.150 2.265*
Out-degree 0.892 0.676 0.038 1.320
Pagerank 0.307 0.187 0.122 1.642*
Betweenness centrality -3.218 0.800 -0.198 -4.023**
Stage 2 -0.335 0.112 0.064
In-degree 0.222 0.107 0.181 2.075*
Out-degree 0.060 0.044 0.077 1.364
Pagerank 0.348 0.166 0.178 2.096*
Betweenness centrality -3.264 0.774 -0.176 -4.217**
Activity 0.059 0.149 0.089 0.396
Stage 3 -0.603 0.363 0.251
In-degree 0.016 0.107 0.169 0.150*
Out-degree 0.593 0.481 0.080 1.233
Pagerank 0.197 0.116 0.170 1.701*
Betweenness centrality -1.171 0.511 -0.182 -2.292**
Activity 0.039 0.169 0.064 0.231
UBM -2.255 0.193 -0.182 -11.684**

of the subgroup. In this section, we discover the deficiency of such methods and
propose a new measurement to fix it. In order to validate the effectiveness of
our measurement, we conduct a subgroup analysis based on users’ multilingual-
ism which successfully confirms previous studies about the potential bridging role
of multilingual users in social networks. In addition, we analyse the SWB drops of
multilingual and monolingual users after the onset of the pandemic and observe
the same relation between SWB and the bridging performance among subgroups.

5.5.1 Measuring User Subgroup Bridging Performance

Our UBM measurement focuses on the level of users and evaluates their overall
performance across all observed information cascades. It does not compare the rel-
ative bridging performance between different user subgroups within the cascades.
We take the following example to clarify this deficiency.

Example 2. Suppose u2 in Figure 2.1(b) is the only multilingual user. According to Defini-
tion 5, we learn that αC(u2) = 0.25, and as a multilingual user, u2 plays a more important
role in diffusing the message than all monolingual users except for u3 with αC(u3) = 0.44.
In this example, without a unified standard, we still cannot determine which group of users
play a more important role in this cascade.

We propose a new measurement to compare the bridging performance of different
user subgroups. Suppose the set of users U is divided into multiple subsets, i.e.,
S ⊂ 2U and for any S1, S2 ∈ S , we have S1 ∩ S2 = ∅. Note that 2U denotes the
power set of U .
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Given a cascade C, we calculate an integrated value through a function γ from the
bridging values of the users in each subgroup, denoted by αS

C for any S ∈ S . The
integrated value can be the mean, median or maximum. Formally,

αS
C = γ({αC(u) | u ∈ S}).

The integration function γ should be determined according to real application sce-
narios. We consider a user subgroup S playing a more important bridging role in a
particular cascade C than S′ if αS

C > αS′
C . We use the notion subgroup bridging magni-

tude (SBM) to quantify the importance of a user subgroup as a whole in information
diffusion.

Definition 7 (Subgroup bridging magnitude (SBM)). Let CS = {C ∈ C|∃u∈Su ∈ C}
be the set of cascades involving at least one user in subgroup S. The subgroup bridging
magnitude (SBM) of the user subgroup S is calculated as follows:

ρS =
∑C∈C 1(α

S
C = maxS′∈S αS′

C )

maxS′∈S |CS′ |

where 1(·) is an indicator function which returns 1 when the given proposition is true and
0, otherwise.

5.5.2 Validation of SBM

Due to the privacy policy of Twitter, we cannot obtain users’ personal identifying
information including any demographic profiles such as age and gender. In order
to divide users into subgroups, we make use of one inherent characteristic of our
tweet dataset: multilingualism. Figure 5.4 presents the distribution of tweets in the
top 15 most used languages. We can see that the collected tweets are composed in
very diverse languages. The distribution of languages is consistent with that of GR
inhabitants’ nationalities and the corresponding official languages.3 Intuitively, ac-
cording the languages used in users’ tweets, we have two user subgroups: monolin-
gual and multilingual. We will conduct the following analysis based on this division.

Defining multilingualism. No consistent definition exists for the multilingualism
of a person. We follow a conservative approach to determine multilingual users
based on language usage frequency. We only consider active users who posted
more than 5 messages to ensure sufficient evidences. If a user posted or retweeted
tweets in more than two languages, we select the language with most tweets as
his/her main language. If the messages of the main language make up less than
60%, we consider the user as multilingual. Otherwise, the user is considered as
monolingual. This conservative criteria helps exclude most monolingual users who
just infrequently or accidentally retweet or cite information in languages other than
their mother tongue. In our dataset, about 37% users are labelled as multilingual.

3Key figures on the GR available at https://www.grande-region.lu/portal/.
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Figure 5.4: Distribution of languages of GR tweets.
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Figure 5.5: Average number of monthly tweets per user.

In Figure 5.5, we show the average number of monthly tweets posted by a user
before and during the pandemic. We can see that users became more active on
Twitter after the outbreak of the pandemic and multilingual users are more will-
ing to participate in the online discourse. These observations are consistent with
existing studies [Hal14], implying the reliability of our multilingualism definition.

Experimental evaluation. We use the same measurements evaluating UBM in Sec-
tion 5.4.2 to quantify the speed and popularity of COVID-19 related information
diffusion after the retweeting of both subgroups. The results are summarised in
Table 5.3. We can see that on average, every minute the retweets of multilingual
users can activate about 2.7 times as many users as monolingual users. Moreover,
each multilingual user can activate 3.84 users, which is 50% more than monolingual
users. Although multilingual users account for only 37% of the collected users, they
can impact in total almost 92% of the users as a subgroup, which is about 10% more
than monolingual users.

From the above discussion, we can see that multilingual users actually play a more
important bridging role in diffusing COVID-19 related information during the pan-
demic. This also reconfirms the similar findings of the existing studies which high-
light the bridging role of multilingual users in network connectivity [Hal14] and
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Figure 5.6: Distribution of SWB values before and during COVID-19.

between communities speaking different languages [EG12]. With regard to infor-
mation diffusion, it has been studied that non-native English speakers have a higher
influence than native English users [KWWO14] and multilingual users play a spe-
cial role in cross-lingual diffusion[AGJ+20].

Both the experimental evaluation and the literature illustrate again the validity of
our dataset. In the following, we will check whether our SBM measurement can
capture this special role of multilingual users in our dataset.

Table 5.3: Multilingual and monolingual users bridging performance comparison.

Monolingual Multilingual
Avg. #activated user/minute 0.021 0.057
Avg. #activated users 2.66 3.84
%impacted user 83.11 91.69

In Table 5.4, we list the results about the SBM values calculated with our GR-ego
dataset. Note that the third column depicts the number of cascades in which the cor-
responding subgroup has a larger bridging value than the other subgroup. In our
analysis, we instantiate the integration function γ with maximum, median and mean.
The obvious observation from Table 5.4 is that according to SBM, multilingual users
have a cascade bridging magnitude of 0.78 on average under all the three integra-
tion functions, which is more than two times larger than that of monolingual users.
The above analysis shows that our SBM measurement can successfully capture the
specific bridging role of multilingual users.
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Table 5.4: The SBM of multilingual and monolingual users: multilingual users perform
dominantly better with respect to all the three integration functions.

Operation User group #cascade SBM ρ

multilingual 20,862 0.7843
Maximum monolingual 5,739 0.2011

multilingual 20,843 0.7835
Median monolingual 5,758 0.1994

multilingual 20,849 0.7838
Mean monolingual 5,752 0.2013

5.5.3 Analysing SWB Changes of User Subgroups

The correlation discovered in the previous section implies that multilingual users
would suffer lower SWB due to their bridging role in diffusing COVID-19 related
information. We proceed to validate this inference by comparing the SWB of multi-
lingual users before and after the pandemic outbreak.

Figure 5.6 presents the SWB values of multilingual and monolingual users before
and after the onset of the pandemic. From the box plot on the left, we can see that
multilingual users on average behaved more positively than monolingual users be-
fore the pandemic. This is consistent with previous studies conducted in different
language regions that multilingualism is generally associated with better subjective
well-being [PA08, Tra95]. Similar to recent COVID-19 related works [HLKX20], we
can observe that the outbreak of the pandemic lowers the SWBs of all users but
multilingual users’ SWB dropped more drastically and became even lower than
monolingual users’ SWB. The right part of Figure 5.6 shows the distribution of
users in each SWB category. We clearly see that 25.8% of the multilingual users are
consistently negative before the pandemic, which is about one third less than that
of monolingual users (37.7%). During the pandemic, in both the multilingual and
monolingual groups, a large number of users changed from the positive category
to the negative category due to the adverse impact of the pandemic. Positive mul-
tilingual users decrease from 20% to 5.4% while positive monolingual users drop
to 12.8%. Negative multilingual users increase by 200% and negative monolingual
users just increase by 26%.

Discussion. From the above analysis, we conclude that the outbreak of the pan-
demic imposes a more adverse impact on multilingual users and they reacted more
negatively than monolingual users. This finding complements the existing pre-
pandemic studies. It is claimed that monolingual users suffer from a lower SWB
in an international environment due to their language barriers. Our results show
that during a global pandemic like COVID-19, the influence of language barriers
does not constitute a factor for SWB with the same level of importance as that before
the pandemic.
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5.6 Conclusion and Limitation

In this chapter, our focus is on the social characteristics of users using social media,
particularly their sharing behaviour and performance in promoting the popularity
of trustworthy information. By proposing two new measurements, we quantify the
bridging performance of both individual users and subgroups of users. With Twit-
ter data collected from an international region, we successfully show the influential
users and subgroups suffer from more decrease in their subjective well-being. With
our measurement on individual users, we conduct the first research to reveal the
strong negative relationship between a user’s bridging performance in information
diffusion and his/her SWB during the pandemic. With our bridging performance
measurement on subgroups, we re-confirm the bridging role of multilingual users
in diffusing information on social media and illustrate the negative relation be-
tween multilingual users’ SWB and their bridging performance. This finding com-
plements existing studies about multilingual people’s subjective well-being before
the pandemic in the sense that the impact of language barriers on SWB becomes
less significant during a global health crisis like the COVID-19 pandemic. Our re-
search provides a cautious reference to public health bodies that some individual
users and subgroups can be mobilised to help spread health information, but spe-
cial attention should be paid to their psychological health.

Limitations and our future work. This chapter has a few limitations that deserve
further discussion. First, we only focused on the affective dimension of subjective
well-being while noticing its multi-dimensional nature. This allows us to follow
previous SWB studies to convert the calculation of SWB to sentiment analysis, but
does not comprehensively evaluate users’ cognitive well-being, such as life satis-
faction. In our following research, we will attempt to leverage more advanced AI
models to investigate cognitive aspects such as happy and angry. Second, extract-
ing SWB from users’ online disclosure inevitably incurs bias compared to social
surveys although it supports analysis of an unprecedented large number of users.
Third, socio-demographic information of users is not taken into account in this
chapter. It is known that SWB varies among different socio-demographic groups,
and such variation may have an impact on our results. Currently, deep learning
based models exist for socio-demographic inference. In our future work, we will
extract users’ socio-demographic information such as age, gender and income to
ascertain whether the regression results will change due to the variations of socio-
demographic information. Last, we notice that the region we targeted at may in-
troduce additional bias in our results. As a continuous work, we will extend our
study to a region of multiple European countries and cross-validate our findings
with other published results in social science.

Ethical considerations. This work is based completely on public data and does
not contain private information of individuals. As we explained in Chapter 3, our
dataset is built in accordance with the FAIR data principles [WDA+16] and Twitter
Developer Agreement and Policy and related policies. Meanwhile, there have been
a significant amount of studies on measuring users’ subjective well-being through
social media data. It has become a consensus that following the terms of service of
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social media networks is adequate to respect users’ privacy in research [FLŞ+20]. To
conclude, we have no ethical violation in the collection and interpretation of data
in our study.
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Part III

Information Diffusion Prediction
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Chapter 6

Exploring Spillover Effects

As emphasised in the first chapter, this thesis is focused on exploring three social
media-based responses to combat the infodemic. In the previous chapter, we fo-
cus on the role of influential users in diffusing reliable information on platforms
like Twitter. As we move into this chapter, our focus shifts to another essential ele-
ment of combating the infodemic: controlling the diffusion of misinformation and
fake news. We aim to answer the research question: How can we accurately pre-
dict the popularity of a piece of information? We investigate the spillover effects of
information exposure on users’ decisions to participate in the diffusion of specific
information, concentrating on COVID-19 preventive measures. By employing the
dataset we gathered, we confirm the presence of these spillover effects and examine
their potential influence in the context of misinformation management. Building on
this understanding, we propose enhancements to three cascade prediction meth-
ods based on GNNs to optimise the prediction of information diffusion dynamics.
Our experiments demonstrate that integrating the identified spillover effects sub-
stantially improves the performance of cutting-edge GNNs methods in predicting
the popularity of both preventive measure messages and other COVID-19-related
information.

6.1 Introduction

In the combat against the infodemic, alongside fostering the diffusion of trustwor-
thy information, another widely recognised approach is known as cascade prediction.
The goal of cascade prediction is to gauge the popularity of messages based on their
early adopters. Precise prediction can aid the public in identifying information that
merits special attention and help healthcare departments pinpoint misinformation
that necessitates swift response to mitigate its negative impact. Research on cascade
prediction has been sustained, with a large number of prediction models developed.
Earlier models rely on hand-crafted features extracted from demographic profiles of
early adopters [CAD+14, CJY+13] or social graphs composed of early adopters and
their relationships [Moo97]. The recent advances of deep learning lead to models
that can automatically learn useful features, encoded as a low-dimensional repre-
sentation of available evidences that can be intuitively interpreted as most related
features [BLG16, GPG+17]. In particular, the application of GNNs allows for captur-
ing the features of nodes’ neighbourhoods and simulating information cascading
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over social networks [CSG+20].

In spite of the various diffusion patterns exploited, previous studies have not con-
sidered the spillover effect of a user’s exposed information on his/her behaviour
of forwarding certain types of messages and becoming part of their diffusion,
which we call info-exposure spillover effect for short. Spillover effects have become
a commonly adopted theory in studying the impact of certain information on the
opinions and behaviour changes of information consumers. For example, stud-
ies of political attitudes have found that exposure to scandals about some can-
didates may have negative spillover effects on the public’s trust in other politi-
cians [vSH20, Lee18]. We say a user is exposed to a message if the user posts the
message or perceives it from his/her friends on social media. In this chapter, we
adopt the original definition of behaviour spillover effect which intuitively means
“the observable and causal effect that a change in one behaviour has on a different, subse-
quent behaviour” [GW19]. According to this definition, the info-exposure spillover
effect studied in this chapter can be interpreted as the impact of the information a
user perceived from the social media on his/her behaviour of forwarding a COVID-
19 related post received from his/her friends.

We hypothesise the existence of this info-exposure spillover effect according to the
previous studies related to the COVID-19 pandemic. Park et al. [PPC20] demon-
strated that information with medically oriented thematic framework has a wider
spillover effect on COVID-19 issues in a Twitter context. Racist information is found
to have spillover effects on the mistrust of medical system [AMH20] and thus harm
public trust in the information released by these systems.

In this chapter, we focus on the diffusion of messages related to COVID-19 pre-
ventive measures considering their importance in slowing down virus transmission
and protecting public health. After the outbreak of the pandemic, the topics of infor-
mation to which social media users are exposed have experienced subtle changes.
Some of these changes may subsequently lead to the changes of their intention to
forward messages concerning preventive measures. For example, tweets about un-
employment or loneliness may make a user who reads them perceive the severity
of the pandemic and thus becomes more likely to retweet tweets about staying at
home.

With the GR-geo dataset, we successfully validated the existence of the info-exposure
spillover effect of users’ exposed messages on their decisions to retweet messages
related to preventive measures. Specifically, we take into account all the messages
exposed to users, regardless of whether they were related to COVID-19 or not. We
observed that although all messages present certain a level of spillover effects on
retweeting preventive messages, those related to COVID-19 have stronger impacts.
This motivates us to extend existing state-of-the-art cascade prediction models by
taking into account info-exposure spillover effects. Through comprehensive experi-
mental evaluation on our dataset, we show that our extended models can increase
the cascade prediction performance up to 23.84% in COVID-19 messages related to
preventive measures. In order to attest whether info-exposure spillover effects also
exist for other messages, we also run the extended models to predict the size of
cascades of general messages concerning COVID-19 but not related to preventive
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measures. The results show an obvious increase in accuracy due to the use of the
info-exposure spillover effect.

6.2 Related Work

Cascade prediction. Cascade prediction becomes attractive after studies reveal that
some key properties of information cascades can be predicted [CAD+14, YCW+15].
In general, the cascade prediction methods can be divided into two classes: macro-
level prediction and micro-level prediction. Micro-level prediction aims to predict
users who will be activated during the information diffusion, while macro-level
cascade prediction directly calculates the final size of targeted cascades.

The idea of most micro-level methods are based on the Independent Cascade model
(IC) [KKT03], which calculates the probability of influence between every pair of
users [GLK12]. These methods rely on a number of assumptions that overly sim-
plify the real situation such as the complete observation of diffusion processes [ML10].
Although Deepinf [QTM+18] uses an end-to-end deep learning method to over-
come such assumptions, micro-level methods generally do not perform well in pre-
dicting cascade future size as they require simulating the entire diffusion process.
In this paper, as our target is popularity prediction, we opt for macro-level methods.

Macro-level prediction methods can be divided into three categories as a result of
technological evolution, i.e., statistical prediction model, machine learning-based
methods and deep learning-based methods. The development of macro-level pre-
diction started with statistical models like SEISMIC [ZEH+15] and Weibull [YCW+15].
Then, the advancements of machine learning led to methods using manually de-
signed features extracted from text content, temporal and demographic informa-
tion, and network structure [YCW+15, CAD+14, CJY+13]. Deep learning-based
methods overcome the deficiency of machine learning-based methods of construct-
ing manual features and capture effective features automatically. DeepCas [LMGM17]
and DeepHawkes [CSC+17] use Recurrent Neural Networks (RNNs) to capture
cascading sequences in place of manually designed features. However, RNNs are
limited in capturing structural information. This limitation is addressed by graph
neural networks (GNNs) [SGT+08]. Intuitively, GNNs update the representation of
each node by recursively aggregating the representations of its neighbours. In this
way, the iterated node representation summarises both structural and representa-
tion information in neighbourhoods. CasCN [CZZ+19] utilises a dynamic Graph
Convolutional Network (GCN) to learn the structural information of the cascade.
CoupledGNN [CSG+20] (CGNN) effectively addresses cascade prediction with two
GNNs, capturing the cascading effect which indicates that the activation of one user
will successively trigger its neighbours.

Although deep learning-based methods have achieved relatively good results in
cascade prediction, little research has been conducted to incorporate textual con-
tent into cascade prediction. Users’ textual posts, as an important part of social
media, may contain information that are related to users’ decision to participate in
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diffusion of certain messages. Thus, we narrow the focus in this article to macro-
level cascade prediction by extending the existing models to leverage online textual
content on social media.

Spillover effects. The spillover effect has been widely used to study the impact of
information on the information consumers’ opinion and behaviour [KK15, Sch11,
Lee18, vSH20]. Spillover effects can be interpreted and explained in various ways.
We identify two main typologies in the literature, namely behavioural spillover effects
and affective spillover effects.

The former interprets spillover effects as implicit ideas people build up that two
things are connected, regardless of whether they are in the same context or across
different contexts [Lee18]. For instance, Sikorski explained the damage of the pub-
lic’s trust in politicians following scandals of candidates as a behavioural spillover
effect [vSH20]. Other examples include the impact of religious activities on political
orientation [Pet92], and imposition of extra congestion charges on environmental
behaviour changes in situations irrelevant to traffic [KK15]. The latter studies how
affective responses (e.g., emotions such as happiness and anger) triggered by certain
information affect human behaviour, usually based on the ‘feelings-as-information’
model [Sch11], Schwarz et al. found that anger triggered by other information may
have negative effects on people’s political attitudes [SB07]. Yegiyan discovered that
the emotional feelings caused by film clips shown before commercial advertise-
ments may affect audience’s product preference [Yeg15].

Based on these previous studies, we make our hypothesis that during the COVID-
19 pandemic the information exposed to an individual may have spillover impacts
on his/her behaviour of retweeting messages. In our validation (see Section 6.4), we
consider both behavioural or affective spillover effects. To capture our info-exposure
spillover effect, we do not explicitly distinguish these two typologies and profit
from the power of deep learning to automatically learn the features of exposed
messages that have spillover effects.

6.3 Preliminaries

6.3.1 Problem Definition

In this section, we give the formal definition of the popularity prediction problem
studied in this chapter which takes into account both social relations and online
textual contents.

We use graph G = (V , E) to denote the social network where V is the set of nodes
representing users and E ⊆ V × V is the set of edges indicating the relationships
between users. For each v ∈ V , given a time period, we use Mv to denote the
messages posted by the user corresponding to v, and M to denote the set of all
messages, i.e., M = ∪v∈VMv. In the rest of the chapter, we will misuse the notions
of users and nodes whenever it is clear from the context.
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Table 6.1: Keyword lists for filtering tweets related to preventive measures and selected
topics.

Topic Abbre. Keywords
Preventive measure PM stayathome, mask, masque, maske, wash hand, social distancing,

socialdistancing, staysafe, lockdown
Unemployment U job, jobsearch, unemployment, employment, career, resume, re-

cruitment, recession, economy, economic emploi, stelle, employ,
arbeitslos, chômeurs

Panic buying PB panicbuying, panicshopping, panicbuyers, toiletpaper, handsan-
itizer, coronashopping

School closures SC schoolclos, closenypublicschool, closenycschools, suny, cuny,
homeschool, noschool, shutdownschools

Stop Asian hate SAH stopasianhate, stopaapihate, stopasianhatecrimes, asian, aapi,
asianlivesmatter, asiansareguman, antiasianhate

Black life matters BLM blacklifematters, blacklivesmatter, atlantaprotest, blm, changeth-
esystem, justiceforgeorgefloyd

Loneliness L lonely, loneliness, alone, solitaire, solitude, seul, einsam, ein-
samkeit, allein

When a message m is firstly posted by a user, it will be perceived by the user’s
followers who might adopt the message and relay the message. This cascading
process will continue on the social network until no further sharing occurs. We
denote the observed diffusion cascade of m at time t by Ct

m = {v1, v2, . . . , vnm
t
}

(vi ∈ V for 1 ≤ i ≤ nm
t ), i.e., the set of users who had adopted m before t. Note

that nm
t is the number of the adopters of m at t. Compared to the previous works,

we take into account the online textual messages posted by users in addition to the
social network. This leads to the following definition.

Definition 8 (Online textual content-aware cascade prediction). Given the cascade of
message m at time t (i.e., Ct

m), social network G = (V , E) and the messages posted by users
in V , i.e., ∀v∈VMv, the problem is to predict the final popularity of m at time ∞, i.e., nm

∞.

As mentioned previously, we focus on the diffusion of the messages related to
COVID-19 preventive measures although we will also show the effectiveness of our
extended models in predicting the popularity of other general messages.

To integrate the online textual messages, i.e., M, in solving the problem, we will
make use of the info-exposure spillover effects of messages exposed to users on
their decision to relay preventive measure-related messages.

6.4 Spillover Effects in COVID-19 Preventive Measure In-
formation Diffusion

In this section, we validate our hypothesis that the information exposed to a user
has spillover effects on his/her behaviour of retweeting a message related to COVID-
19 preventive measures. We first briefly describe the measurement used for quan-
tifying the hypothesised info-exposure spillover effect. Then we give the detailed
experimental analysis designed to validate its existence in the diffusion of COVID-
19 preventive measure-related messages.
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6.4.1 Data Pre-processing

We concentrated on the initial wave of the pandemic, choosing from the GR-geo
dataset, which amassed 18,523,099 tweets from all users in the social graph between
22nd January and 18th July 2020. We divide the tweets into COVID-19 related and
COVID-19 unrelated based on the keywords provided by Chen et al. [CLF20]. In
our collected tweets, the COVID-19 related tweets account for 26.19%.

We construct cascades from our tweet dataset and the social graph built previ-
ously based on the definition in Section 6.3.1. A total of 7,485,895 cascades are built
and we remove those cascades with fewer than 3 users, the same as the existing
works [LMGM17, CSG+20]. Eventually, 89.14% of the cascades are kept and we
end up with 6,672,926 cascades. The average size of these cascades is 4.31. We use
C to denote the set of all the selected cascades. From C, we construct the set of cas-
cades corresponding to messages related to preventive measures, denoted by CPM,
based on the keywords listed in

6.4.2 Measuring Info-exposure Spillover Effect

We design our validation based on the experimental investigation method com-
monly used for spillover effect validation [CLCR+19, vSH20]. The idea is to in-
vestigate whether users exposed to different information will behave differently in
retweeting a message related to preventive measures. In other words, we will check
whether certain exposed information will change the likelihood that users retweet
messages related to preventive measures.

Info-exposure spillover effect validation framework. We construct groups of users
according to the information they are exposed to. Each group is composed of users
who are exposed to a certain composition of information. One of these groups is set
as the control group. The selection of the control group depends on the purpose of
the experiment. The proportion of users in each group retweeting preventive mea-
sure messages is used to measure the likelihood of adopting preventive measure
messages, which we call the adoption likelihood. By comparing the measurement of a
group with that of the control group, we can then quantitatively evaluate the mag-
nitude of the info-exposure spillover effect of the information exposed to this user
group on adopting preventive measure messages, which we call the info-exposure
spillover elasticity.

Formally, Let D be a set of groups of nodes in G, i.e., D = {V1, . . . ,Vn} where
∀Vi∈DVi ⊂ V . Suppose Vc ∈ D be the selected control group. For each user group
Vi ∈ D, we identify the users who ever retweeted at least one preventive measure
message in MPM, and then construct the set of identified users VPM

i . The adoption
likelihood for users in Vi is calculated as

αVi =
| VPM

i |
| Vi |

.

With these notations, we can define the info-exposure spillover elasticity as follows:
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Table 6.2: Validation of info-exposure spillover effect of single topics.

Topic type Topic Exposed Unexposed Elasticity ε#user α #user α

COVID related
Unemployment (U) 4,238 0.67 17,101 0.25 1.69
Panic buying (PB) 6,119 0.39 15,220 0.31 0.25
School closures (SC) 6,460 0.61 14,879 0.21 1.87

COVID unrelated
Stop Asian hate (SAH) 6,740 0.72 14,599 0.28 1.53
Black life matters (BLM) 9,041 0.48 122,98 0.41 0.16
Loneliness (L) 5,343 0.79 15,996 0.30 1.63

Definition 9 (Info-exposure spillover elasticity). The elasticity of the info-exposure
spillover effect of a user group Vi in the user group set D is calculated as

εDVi
=

αVi − αVc

αVc

.

Positive elasticity indicates the information commonly exposed to the users in Vi

increases the likelihood of retweeting a preventive measure message while negative
elasticity indicates the opposite.

6.4.3 Experimental Validation of Info-exposure Spillover Effect

We verify through our collected data that being exposed to certain information may
affect users’ behaviour of retweeting messages related to preventive measures. It is
not tractable to analyse all the contents that are mentioned or discussed in tweets.
Therefore, inspired by previous research [MU20, SSR20], we classify tweets from the
level of topics and select six frequently studied ones in the literature [MU20, SSR20]
as the representatives. Among these topics, three are related to COVID-19, i.e.,
Unemployment, Panic buying and School closures, while the other three studied in
previous Twitter-based studies are general and not directly related to the pandemic,
namely, Stop Asian hate, Black life matters and Loneliness [KL20, KCT+20]. We extract
corresponding tweets in each topic with the keywords listed in Table 6.1. According
to our manual check, the keywords ensure a good coverage rate of the tweets in the
selected topics. In total, the messages covered by these topics take up 18.17% of
our collected tweets excluding those related to preventive measure.

For the purpose of being comprehensive, we conduct our experimental validation
from two perspectives. We first evaluate the spillover effect of messages of a single
topic on the behaviour of retweeting a preventive measure message. Second, we
investigate the spillover effect of messages in various compositions of topics.

Spillover effects of information of single topic. We build six sets of user groups
each of which corresponds to a selected topic, i.e., DU, DPB, DSC, DSAH, DBLM, DL.
Each set has only two groups. One consists of users that have been exposed to
messages of the corresponding topic while the other group is composed of users
who have not been exposed. We will take the one unexposed to the topic as the
control group. In Table 6.2, we show the number of users exposed and unexposed
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in each group set, the adoption likelihood and the final info-exposure spillover
effect elasticity.

We have three main observations. First, the exposure to each topic of messages will
increase the likelihood of users to retweet a preventive measure message. On aver-
age, the adoption likelihood of exposed groups equals to 0.58 while the unexposed
group only has an activation likelihood of 0.28. The average elasticity is 1.19, which
indicates that the activation likelihood doubles for the users exposed to the topics
on average. Second, the increase of adoption likelihood for exposed users differs
among the topics of exposed information. For instance, the exposure to informa-
tion related to Panic buying and Black life matters just increases the elasticity by 0.25
and 0.16, respectively, which are much smaller than the other topics. We manually
examine messages in the topic Black life matters and Stop Asian hate to understand
the difference. We notice that users exposed to the messages about racist have more
diverse attitudes towards prevention measures. This is consistent with previous
studies [EAC+20]. For example, some users argue that the protest breaks the so-
cial distancing policy and exacerbates the virus transmission, while some others
hold the view that the impact of COVID-19 is overstated and the lockdown policy
worsens racial discrimination. The above two observations apply in both COVID
related topics and COVID unrelated topics. Third, exposure to messages unrelated
to COVID imposes weaker spillover effect than those related to COVID. On aver-
age, the average elasticity of the COVID-19 unrelated topics is 14.76% smaller than
that of the COVID-19 related topics.

From the above analysis, we can conclude that i) exposure to certain topics of infor-
mation, regardless of whether they are related to COVID-19, will impose positive
spillover effects on users’ likelihood to retweet preventive measure messages; ii) the
scale of spillover effect differs according to the topics of exposed messages.

Spillover effects of information of compositions of topics. In the previous anal-
ysis, we focus on the spillover effect of single topics and ignore the changes when
multiple topics of information are exposed to users simultaneously. We construct a
user group set Dcomp of 22 groups, Of which 15 groups correspond to the users who
are only exposed to messages of every pair of the 6 topics, 6 are composed of users
only exposed to tweets of one of the selected topics. The last group contains the
users exposed to no messages in all the topics and is chosen as the control group.
Note that we do not consider the compositions of more than 2 topics in Dcomp be-
cause we observe in our analysis that exposure to messages of any three topics
leads to an adoption likelihood of at least 0.79. This indicates the improvement of
info-spillover effect will be marginal when users are exposed to messages of more
topics.

Figure 6.1 shows the adoption likelihood of user groups exposed to the topic com-
positions in Dcomp except for the control group. We can see that exposure to more
selected topics increases the likelihood of retweeting a preventive measure message.
Exposure to an additional topic significantly increases the adoption likelihood. The
most significant increase occurs to the topic of Panic buying. The addition of any
other topic except for the topic BLM increases the adoption likelihood by at least
two times. When exposed to none of the topics, the activation likelihood for the
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Figure 6.1: Activation likelihood when exposed to compositions of topics.

users drops below 5%.

Discussion From the above analysis, we empirically validated the existence of the
info-exposure spillover effects. Specifically, certain information exposed to users
indeed increases the likelihood of users to retweet preventive measure messages.
In addition, we also illustrated that the magnitudes of this spillover effect depend
on the content of tweets exposed. In the following, we will leverage deep learning
to automatically capture the contents of tweets exposed to users that impose strong
info-exposure spillover effects, and thus improve the accuracy of cascade prediction.

6.5 Predicting Popularity with Spillover Effects

We use the framework of GNNs to learn the magnitudes of the info-exposure
spillover effect of a user’s exposed information on his/her behaviour of retweeting
preventive measure messages. Recall that the information exposed to a user comes
from two sources: the messages posted by their friends and his/her own posts. We
need to combine these two sources in a specific manner and calculate an overall
representation for each user that can be used in the following cascade prediction.
This explains our selection of GNNs. When a user’s past posts are encoded as a vec-
tor and attached to the corresponding node as node attributes, the message passing
scheme of GNNs will conduct the combination. The combination may even involve
the messages from users that are not incident but within a certain number of hops.
In this section, we describe how we calculate nodes’ attributes with the encoding
of users’ past posts, and then detail how we extend various GNN-based models to
integrate the identified info-exposure spillover effect into cascade prediction.
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6.5.1 Calculating Initial Node Attributes

Given a cascade of m at time t, i.e., Ct
m, we calculate the initial attribute of a node

v ∈ V , denoted by h0
v, by concatenating the following three components:

1. the representation vector of the messages posted by the user before t, denoted
by δv;

2. the activation status of the user according to the given cascade Ct
m, denoted

by sv;

3. the node embedding of the user’s corresponding node in the network, de-
noted by ev.

Formally, we have h0
v = sv∥δv∥ev where ·∥· is the concatenation operator.

Past message encoding δv. For each user v, we collect her/his past messages
posted or retweeted before t. We have learnt in Section 6.4 that exposure to COVID
related messages may impose stronger spillover effects than those unrelated to
COVID. We distinguish these two types of information to capture the difference.
For each type, we collect the last λ textual messages before t in Mv, and thus con-
struct two lists of messages ordered by their posting time, i.e., (mrel

1 , mrel
2 , . . . , mrel

λ )

and (munrel
1 , munrel

2 , . . . , munrel
λ ) for the COVID related and unrelated, respectively.

Note that λ is a pre-defined hyper-parameter that should be tuned manually. For
embedding, RoBERTa [LOG+19] is a language pre-trained transformer to encode
short texts in multiple languages into a vector of real numbers with a pre-defined
length. In this chapter, we use a widely used multilingual pre-trained RoBERTa
variant: XLM-RoBERTa [CKG+20]. For each message, we calculate its embedding
with the default XLM-RoBERTa model and obtain the corresponding lists of mes-
sage representation vectors. The resulted lists are represented as (zrel

1 , zrel
2 , . . . , zrel

λ )

and (zunrel
1 , zunrel

2 , . . . , zunrel
λ ).

Many methods exist to combine these embeddings and obtain δv while considering
their relative temporal importance, e.g., Hawkes process and Gated Recurrent Unit
(GRU). In this chapter, according to our experimental evaluation (see Section 6.6.4)
we adopt the content-aware temporal encoding (TE) which assigns fixed impor-
tance to messages based on their temporal order. Formally,

ϕrel
v = ∑i≤λ ai · zrel

i ,
ϕunrel

v = ∑i≤λ ai · zunrel
i .

Note that the messages related to COVID and those unrelated share the same tem-
poral importance settings. According to our manually probe, using two different
importance settings does not give notable improvement, and increases the model
complexity.

In order to capture the different contributions of messages related to COVID and
those unrelated, we introduce a weight parameter ρ (0 ≤ ρ ≤ 1) and compute the
integrated past message embedding δv as follows:

δv = ϕrel
v · ρ + ϕunrel

v · (1 − ρ).



6.5. Predicting Popularity with Spillover Effects 87

Table 6.3: Brief description of selected GNN variants.

Model Aggregate(*) Combine(*)

GCN aℓ
v =

∑u∈N (v)∪{v} hℓ−1
u

|N (v)∪{v} hℓ
v = LeakyReLu

(
W ℓaℓ

v

)

GAT

aℓ
v = ∑u∈N (v)∪{v} βℓ

uvhℓ−1
u

βℓ
uv =

exp
(
LeakyRelu(γT [Whℓ−1

u ∥Whℓ−1
v ])

)
∑u′∈N (v)∪{v} exp

(
LeakyRelu(γT [Whℓ−1

u′ ∥Whℓ−1
v ])

) hℓ
v = LeakyReLu

(
W ℓaℓ

v

)

CoupledGNN
aℓ

v = ∑u∈N (v) InfluGate
(

rℓ−1
u , rℓ−1

v

)
sℓ−1

u + pv

influGate
(
rℓu, rℓv

)
= βℓ

[
Wℓrℓu∥Wℓrℓv

] sℓ+1
v =

{
1 v ∈ CT

m

σ(µℓ
ssℓv + µℓ

aaℓ
v) v ̸∈ CT

m

Activation status sv & Node embedding ev. The user activation status sv is set
to 1 if v ∈ Ct

m and 0, otherwise. The node embedding captures the structural
properties of the user’s neighbourhoods in the graph. Following existing stud-
ies [LMGM17, CSG+20], we use DeepWalk without further fine-tuning to learn
the structural embedding for each user.

6.5.2 Instantiating GNNs with the Info-exposure Spillover Effect

We implement three variants of GNNs to integrate the info-exposure spillover
effect we identified in the previous section, i.e., Graph Convolutional Networks
(GCN) [KW17], Graph Attention Network [VCC+18] and CoupledGNN [CSG+20].
GCN is a semi-supervised learning algorithm for graph representation and GAT
is a variant of GCN which introduces the attention mechanism to distinguish the
significance of neighbours. These two variants are not designed specifically for cas-
cade prediction. The calculated node representations are usually used for the down-
stream tasks such as link prediction and node classification. CoupledGNN [CSG+20]
is a model developed for cascade prediction, and can stand for the state-of-the-art.
It has overwhelming performance over existing models by simulating the cascading
effect of information diffusion on social network, the phenomenon that users are
activated due to the influence from their activated neighbours. By extending these
models, our purpose is to illustrate the effectiveness of info-exposure spillover ef-
fects in improving the accuracy of the predicted popularity of COVID-19 preventive
measure messages. In addition, our extended models can provide useful references
for future cascade prediction models to integrate info-exposure spillover effects.

The definitions of the function Aggregate(∗) and Combine(∗) of GCN, GAT and
CoupledGNN are briefly given in Table 6.3. GAT and GCN share the same combi-
nation function. For GCN, we use the mean of the representation vectors of both
the nodes and their one-hop neighbours as the aggregated value at each layer while
GAT uses the weighted average.

We describe CoupledGNN in more details due to its relatively large difference from
the conventional GNN framework and explain how to simulate the cascading ef-
fect in information diffusion. For the full description, we refer the readers to the
original paper [CSG+20]. It deploys two GNNs. One GNN captures the activation
statuses of users during the information diffusion at each layer, e.g., the activation
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status of user v at the ℓ-th layer sℓv. The other GNN aims to simulate how the in-
fluence of users changes along with the activation status and the influences of their
neighbours, i.e., rℓu. A neighbour u’s influence to activate user v in the next layer
ℓ+ 1 is calculated by the function influGate(rℓu, rℓv). Then the aggregation function
is the weighted average of all the neighbours’ activation statuses with the default
activation probability pv added. The combination function is based on the weighted
average of its status on the previous layer and the aggregated representation. With
the activation status output by the last layer (e.g., k), the popularity of the message
diffused in Cm

t is calculated as ñm
∞ = ∑v∈V sv. In the following, we will describe how

we extend each selected model to capture the info-exposure spillover effect.

SE-GCN & SE-GAT. We can interpret the output of the k-th layer of a k-layered
GCN or GAT as the summary of the information exposed to every user. Then we
use an activation function to capture the info-exposure spillover effect. Specifically,
the function takes as input the output of the GCN or GAT and the representation of
the message diffused in the given cascade, and outputs the predicted final activation
statuses of the nodes. Let m be the message being diffused and zm be the embedding
vector of m calculated by the RoBERTa model. Let s̃∞

v be the predicted activation
status of node v. Our activation function is defined as:

s̃∞
v =

{
activate

(
Whhk

v∥Wzzm
)

v ̸∈ Ct
m

1 v ∈ Ct
m

where function activate is implemented as a 3-layer neural network in this chapter
and Wh and Wz are two matrices to be learned. We add this function as a down-
stream component after the last layer of the GCN and GAT.

SE-CGNN. Recall that CoupledGNN uses the function InfluGate to simulate the
process of a user to be activated by their neighbours. The influence vector, e.g., ru

of user u, contains user u’s posted messages and the messages from u’s neighbour-
hood. Therefore, it can be considered as a summary of the information perceived
by a user v from u if v follows u in Twitter. Based on this intuition, we extend
CoupledGNN by reformulating the function InfluGate(∗) to capture the the info-
exposure spillover effect:

influGate
(

rℓu, rℓv
)
= βℓ

[
Wℓrℓu∥Wℓrℓv∥Wzzm

]
.

6.5.3 Objective Function

We use the same objective function as [CSG+20] which is the mean relative square
error (MRSE). Let MC be the set of diffused messages corresponding to the cascades
in C whose final sizes are to be predicted. Then MRSE can be defined as follows:

LMRSE = 1
|MC| ∑m∈MC

(
ñm

∞−nm
∞

nm
∞

)2
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This loss function is regularised to avoid over-fitting and accelerate the convergence
speed, i.e., L = LMRSE + LReg where LReg = θ ∑p∈P ∥p∥2 + λLuser. Note that P de-
notes the set of parameters and Luser is the cross-entropy

1
|MC | ∑m∈MC

1
|V| ∑v∈V

(
s∞

v,m log s̃∞
v,m +

(
1 − s∞

v,m
)

log
(
1 − s̃∞

v,m
))

where s∞
v,m is the final activation status of v in the cascade of message m and s̃∞

v,m is
v’s status predicted by the model under evaluation.

6.5.4 Computational Complexity

In general, all our extended models inherent the complexity of the original models.
According to a recent survey, the theoretical computation complexity of the message
passing schemes such as GCN [KW17] and GAT [VCC+18] is O(|E |) [WPC+21]
where |E | is the number of edges of the graph G. This is because, in these methods,
the computation of each node v’s representation involves messages that come from
its adjacent nodes. The models that based on GCN and GAT, proposed previously,
i.e., SE-GCN and SE-GAT, also work in the same way, and thus have the complexity
of O(|E |). Similarly, SE-CGNN, have the same computational complexity as CGNN,
i.e., O(p|V|+ q|E |) [CSG+20], where p and q are the constants determined by the
batch sizes, and |V| is the number of nodes in G.

6.6 Experimental Evaluation

6.6.1 Evaluation Measurements

We adopt the measurements in [CSG+20] to evaluate and compare the prediction
performance of our extended models and the bench-markings models in our ex-
periments. Specifically, in addition to the mean relative square error (MRSE) intro-
duced in the previous section, we also use mean absolute percentage error (MAPE)
and wrong percentage error (WroPerc). MAPE measures the average deviation be-
tween the predicted popularity and the true values, while WroPerc measures the
percentage of cascades that are incorrectly predicted with a given error tolerance ϵ.
Formally, they can be defined as follows:

MAPE = 1
|M| ∑m∈M

|ñm
∞−nm

∞|
nm

∞
,

WroPerc = 1
|M| ∑m∈M I

[
|ñm

∞−nm
∞|

nm
∞

≥ ε
]

.

Note that I(∗) is an indication function which outputs 1 when the input proposition
is true or 0 otherwise, and the threshold ε is set as 0.5 in our experiments. For all
the three measurements, smaller values indicate better performance.

6.6.2 Baseline Methods

In addition to CoupledGNN, we use the following models as baselines.
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Feature-based method. This is a linear regression model with L2 regularisation
with features. For better comparison, we adopt the same features used in the past
studies [CSG+20, LMGM17].

SEISMIC [ZEH+15]. SEISMIC uses the Hawkes self-activation point process to es-
timate or approximate the impact of cascading effect with their average number of
followers.

DeepCas [LMGM17]. DeepCas is an end-to-end deep learning method for informa-
tion cascades prediction. It utilises the structure of the cascade graphs for predic-
tion. An attention mechanism is designed to assemble a cascade graph representa-
tion from a set of random walk paths.

DeepHawkes [CSC+17]. DeepHawkes is also an end-to-end deep learning method
for information cascades prediction. It combines user embedding vectors and cas-
cades encoding by RNNs, and then uses the Hawkes process to model and predict
information cascade.

CasCN [CZZ+19]. CasCN for cascade modelling and prediction is achieved by split-
ting the cascade graph into a series of sequential sub-cascades and then employing
GCN to learn the structural information of the cascades.

GCN and GAT. We construct these two models from our SE-GCN and SE-GAT
models by removing the representation vectors of messages. In other words, these
two models only rely on network structure to predict the sizes of final cascades.

We implement several variants of our extended models, i.e., SE-GCN, SE-GAT and
SE-CGNN according to the methods used to integrate users’ past messages with
their temporal significance considered. We considers three other methods in addi-
tion to the TE methods adopted in our model, namely, Mean, Hawkes and GRU.
Note that regarding Hawkes and GRU, we use their basic versions. The method
Mean calculates the average embedding vectors of the past messages for both ϕrel

v
and ϕunrel

v . In order to distinguish these variants, we append the corresponding
methods at the end of the model names. For instance, SE-CGNN-TE corresponds to
the implementation of the model presented in Section 6.5, and SE-CGNN-Hawkes
replaces the TE method in SE-CGNN-TE with the Hawkes process.

6.6.3 Implementation Details

As the output of the RoBERTa for a sentence is a high-dimensional and sparse vec-
tor. We apply linear transformation to map its output to a relatively low-dimensional
space. The dimension of the final text embedding used is set as 128. For all mod-
els including the bench-marking models, we tune their hyper-parameters to guar-
antee their performance on validation sets. The L2-coefficients are chosen from
0.5, 0.1, 0.05, . . . , 10−8. For all neural network models, the learning rate is chosen
from 0.1, 0.05, . . . , 10−5. The coefficient in the loss function is set to be 0.5, and the
mini-batch size is chosen from 15, 10, 5. The number of GNN layers k is selected
from 5, 4, 3, 2. As for DeepCas, the number of walk sequences and the walk length
are set as 100 and 8, respectively. For SEISMIC, we follow the parameters from the
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original study. Moreover, we randomly select 80%, 10%, 10% of the set of cascade
instances for training, validation and testing, respectively.

Considering the diffusion time of the messages in our collected data, we set the
observation time window as 3 hours and construct the set of observed cascades,
i.e., C, by removing users in our cascades that were activated after the first 3 hours.
The number of past messages λ is critical in enforcing the quality of prediction.
As a result, we undertake an empirical investigation to identify the impact of λ

on the final performance. We present the MRSE with different values of λ when
the SE-CGNN-TE is used in Figure 6.2. We observe that λ does have an important
impact on prediction results. We set λ as 3 with which our model achieves the best
performance.

1 2 3 4 5 6 7 8 9
#Historical tweets ( )

0.15
0.20
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0.40

M
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E

Figure 6.2: Parameter tuning for λ.

As we repeatedly emphasised, our original goal is to predict the popularity of
messages on social media which are related to COVID preventive measures. In
order to comprehensively evaluate the effectiveness of the info-exposure spillover
effect, in addition to the cascades of preventive measure messages CPM, we also
apply all the models on another two sets of cascades. One is the set of all cascades
C. The other is the set of cascades that are not related to preventive measures, i.e.,
CPM = C/CPM, the complement of CPM in C.

6.6.4 Experimental Results

We show the performance of all the above mentioned models in Table 6.4 in the
form of the three selected measurements. In general, we can observe three obvious
differences when the info-exposure spillover effect is introduced in cascade predic-
tion.

First, compared to the original models, our extended models significantly improve
their performance not only for the preventive measure messages, but also for all the
three types of messages. The most significant improvement occurs to SE-CGNN-TE
and reaches 23% in the WroPerc measurement for the preventive measure messages
and over 10% for the messages unrelated to preventive measures. This is due to the
fact that CoupledGNN simulates the cascading effects iteratively and this allows
for applying the info-exposure spillover effect on activating individual users in a
finer granularity. From the above analysis, we can conclude that the use of the
info-exposure spillover effect can effectively improve the performance of existing
cascade prediction models. It should be integrated into future models by design.
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Table 6.4: Cascade prediction performance of our extended models and baselines.

Models C CPM CPM
MRSE MAPE WroPerc MRSE MAPE WroPerc MRSE MAPE WroPerc

Feature-based 0.3611 0.4018 41.31% 0.4403 0.4049 46.08% 0.3704 0.4151 41.56%
SEISMIC 0.5580 0.5104 56.35% 0.5899 0.5265 55.88% 0.5419 0.5083 56.14%
DeepCas 0.2837 0.3959 37.71% 0.2847 0.3724 38.67% 0.2872 0.4010 37.31%
DeepHawkes 0.3278 0.4089 37.10% 0.3297 0.4092 37.94% 0.3213 0.3948 36.78%
CasCN 0.3097 0.4300 37.12% 0.3017 0.4166 40.39% 0.3098 0.4106 37.58%
GCN 0.3144 0.4217 38.88% 0.3179 0.4238 41.76% 0.3110 0.4200 38.69%
SE-GCN-Mean 0.2826 0.4056 36.76% 0.2757 0.3990 35.86% 0.2899 0.4178 36.82%
SE-GCN-Hawkes 0.2826 0.4056 36.76% 0.2708 0.3961 35.44% 0.2887 0.4126 36.89%
SE-GCN-GRU 0.2875 0.4085 36.87% 0.2712 0.3974 35.43% 0.2871 0.4124 36.92%
SE-GCN-TE 0.2802 0.4050 36.15% 0.2702 0.3932 35.20% 0.2819 0.4109 36.15%
GAT 0.3072 0.4211 39.19% 0.3014 0.4268 40.01% 0.3101 0.438 39.85%
SE-GAT-Mean 0.2862 0.4124 37.58% 0.2721 0.4001 35.31% 0.2903 0.4175 38.64%
SE-GAT-Hawkes 0.2790 0.4078 37.45% 0.2654 0.3986 35.30% 0.29353 0.4154 37.83%
SE-GAT-GRU 0.2762 0.4055 37.05% 0.2680 0.3964 35.58% 0.2961 0.4153 37.47%
SE-GAT-TE 0.2744 0.4014 37.56% 0.2673 0.3990 35.16% 0.2896 0.4177 38.06%
CoupledGNN 0.2678 0.3861 35.19% 0.2769 0.3920 34.44% 0.2601 0.3812 34.70%
SE-CGNN-Mean 0.2414 0.3610 34.17% 0.2587 0.3801 30.13% 0.2561 0.3608 33.22%
SE-CGNN-Hawkes 0.2240 0.3432 31.10% 0.2085 0.3171 27.44% 0.2271 0.3478 31.35%
SE-CGNN-GRU 0.2283 0.3469 32.28% 0.2174 0.3164 28.65% 0.2411 0.3625 33.04%
SE-CGNN-TE 0.2131 0.3358 30.63% 0.2031 0.3073 27.78% 0.2262 0.3437 31.56%

Second, we observe that the extended models can more accurately predict the pop-
ularity of COVID-19 preventive measure messages than the other messages, which
is the opposite for the baseline models. For the baseline models, their performance
on C and CPM are almost the same but becomes worse on CPM. The feature-based
model has the worst performance which decreases by over 11% compared to that
in predicting the sizes of the other two sets of cascades. However, when the iden-
tified info-exposure effect is used in our extended models, the popularity of pre-
ventive measure messages can be predicted with better accuracy. SE-CGNN-TE can
improve the performance by about 13.8% for preventive measurement messages
compared to those unrelated to preventive measures. This observation validated
empirically that the exposure to information generated during the COVID-19 pan-
demic has strong spillover effects on retweeting messages about how to prevent the
transmission of the COVID virus.

Third, the consideration of the temporal importance of past tweets does bring about
further improvement, and our selected TE method overwhelms the other widely
used ones. The method Mean which ignores the temporal significance of past mes-
sages produces the worst predictions. Hawkes and GRU have similar performances.
Compared to them, our TE method leads to an improvement of about 0.02 in all
three types of cascades.

6.6.5 Compare SE-CGNN-TE with its Variants

Recall that we distinguish the messages related to COVID-19 and those unrelated
in integrating the embedding vectors of users’ past messages into the initial node
attributes (see Section 6.5.1). We use a parameter ρ to learn the relative impor-
tance of the message related to COVID-19. We conduct additional experiments to
justify our selection. Specifically, we implement another three variants of our SE-
CGNN-TE model. The first one, named by SE-CGNN-TE-REL, only takes the last
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Table 6.5: The performance comparison of methods of past message integration.

Models C CPM CPM
MRSE MAPE WroPerc MRSE MAPE WroPerc MRSE MAPE WroPerc

SE-CGNN-TE-REL 0.2171 0.3367 32.23% 0.2210 0.3294 28.46% 0.2312 0.3526 32.96%
SE-CGNN-TE-UNREL 0.2357 0.3572 33.83% 0.2442 0.3690 30.74% 0.2484 0.3567 33.01%
SE-CGNN-TE-ALL 0.2208 0.3406 32.53% 0.2318 0.3172 28.96% 0.2470 0.3534 32.80%
SE-CGNN-TE 0.2146 0.3351 30.45% 0.2024 0.3062 27.41% 0.2268 0.3421 31.20%

λ messages that are related to COVID-19 as a user’s past messages. Similarly, the
second variant, named by SE-CGNN-TE-UNREL, only consider those unrelated to
COVID-19. The last SE-CGNN-TE-ALL variant ignores the difference and straight-
forwardly consider the last λ messages regardless of their types. The same as our
previous experiments, we train these three variants and run them on the three sets
of testing cascades, i.e., C, CPM, and CPM. The results are shown in Table 6.5. We
also include the results of SE-CGNN-TE for comparison.

In general, we have two main observations. First, we observe that among the three
variants, the one with only messages related to COVID generates the best perfor-
mance while the one only utilising those unrelated to COVID performs the worst.
This also confirms our findings in Section 6.4.3 that COVID related messages tend
to impose stronger spillover effects on retweeting preventive measure messages.
This performance difference also indicates this finding may also apply on other
messages which are not relevant to preventive measures. Second, the integration
method used in SE-CGNN-TE can effectively improve the performance. This im-
provement may come from two sources. On one hand, our selected method actu-
ally uses 2λ past messages. This implies that more information can help increase
the prediction accuracy. On the other hand, a balance between these two types of
information can be reached during the model training.

6.7 Conclusion & Discussion

In this chapter, we concentrate on the problem of cascade prediction for COVID-19
information about preventive measures on online social media platforms. Com-
pared to previous works, we take into account the phenomenon that the exposure
to different information will influence social media users’ behaviour of partici-
pating in information diffusion during the pandemic, which we call info-exposure
spillover effect. With a dataset we collected from Twitter, we successfully validate its
existence. In particular, both COVID-19 related and unrelated messages may have
spillover effects on the spread of COVID-19 messages promoting preventive mea-
sures. Meanwhile, the COVID related messages tend to impose stronger spillover
effects. We then apply the identified spillover effects in predicting the popularity
of preventive measure messages. Specifically, we build three new models by mak-
ing use of the recent advances of graph representation techniques, i.e., graph neural
networks (GNN). In addition, we utilise a temporal encoding method to capture the
important variance caused by message posting time. With extensive experiments,
we show that our new models outperform baselines not only for preventive mea-
sure messages but for all messages. This illustrates that the use of info-exposure
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spillover effect can effectively improve the performance of cascade prediction, and
it should be recommended to be considered in designing future cascade predic-
tion models. Specifically, we through this chapter showcase a general method, that
can be referred to validate the existence of spillover effects of other types of in-
formation on the changes of information consumers’ behaviours which are not re-
stricted to retweeting. Moreover, other applications can also benefit from our work.
For instance, social media posts have been used to extract effective indicators, e.g.,
numbers of daily posts and their sentiments [MSB+18], in predicting the price of
cryptocurrencies such as Bitcoin. Our extended models can help accurately forecast
the popularity of Bitcoin influencers’ social media posts, e.g., Elon Musk [TRPP21],
which can be integrated into existing models to further improve the accuracy of
predicted prices. As our future work, we will consider other types of information
in addition to users’ textual posts and propose new methods to integrate them in
cascade prediction.

We identify three main limitations that have not been well addressed in our current
research. First, our empirical validation of the info-exposure spillover effect only fo-
cused on messages on Twitter related to preventive measures and conducted from
the level of selected topics. Although in our experiment the overwhelming perfor-
mance of our extended models on other general messages could partially validate
its existence, finer-grained and more comprehensive analysis will be desired and
we will take this as our future work. Second, our cascade prediction models are
extended from existing GNN models.

It will be interesting to design a new end-to-end GNN model which is specifically
adapted to the identified spillover effects of users’ adopted information. Last, we
only distinguish the significant difference between messages related and unrelated
to COVID while ignoring the other linguistic features of individual messages.
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Chapter 7

Exploring Topic-specific
Susceptibility and Influence

In the preceding chapter, we addressed the research question of how to accurately
predict information popularity. To this end, we developed a model that specifically
assesses the impact of message exposure on a user’s decision to participate in the
diffusion of specific information. However, this approach overlooks the fact that
when a user decides to retweet a message, it is not only influenced by the message
content and active friends, but also by the user’s susceptibility, i.e., the likelihood
that the user will be influenced by others.

To fully consider all three factors in cascade prediction, we propose a new model
in this chapter. We introduce a novel deep learning cascade prediction model, Cas-
SIM, which accomplishes two objectives of great interest simultaneously: popularity
prediction and end-user prediction. Unlike existing approaches based on cascade
representations, CasSIM models the information diffusion process by studying the
dual role of users in information dissemination, successfully capturing all three fac-
tors in cascade prediction. Moreover, the implementation of GNNs enables CasSIM
to capture the dynamics of susceptibility and influence in the information diffu-
sion process. We evaluate the effectiveness of CasSIM using three real-life datasets,
and the results show that CasSIM outperforms state-of-the-art methods in terms of
prevalence and end-user prediction.

7.1 Introduction

On social media, people are sharing billions of posts, news and videos with their
friends or followers everyday. These sharing behaviours lead to rapid diffusion
of unprecedented amounts of information [CZZ+19] in the form of cascades. The
prevalence of information cascades exposes people to information of their inter-
est faster, and meanwhile also amplifies the damage of false information such as
rumours [GPGC21]. The COVID-19 pandemic gives us a chance to rediscover the
importance of social media not only as networking platforms but also as an infor-
mation source which can actually interfere with our everyday decisions [XZZ+23].
Thus, it is crucial to understand and forecast cascade dynamics to effectively pro-
mote useful messages, e.g., for viral marketing [WSLC15], and proactively control
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the impact of misinformation [LW18, SHL17]. The problem of cascade prediction aims
to achieve two objectives along this direction: popularity prediction and adopter pre-
diction. We say that a user adopts a message and becomes an active adopter if the
user shares the message from one of his/her friends. With an observation of early
adopters, the goal of popularity prediction is to predict the number of final active
adopters while adopter prediction is to forecast who will adopt the message at a
future time point.

Cascade prediction has garnered attention from both industry and academy over
the past decade [CAD+14, YCW+15] and the solutions have evolved from the
methods based on diffusion models [PMV20] to those based on cascade representa-
tion [CZZ+19]. Diffusion model-based methods characterise the interpersonal in-
fluences between users and simulate the diffusion process through social relations.
These methods are not scalable for large networks due to the repetitive simulations
of diffusion models. Moreover, they rely on some unrealistic assumptions such as
independent cascades and uniform influence probabilities between users [PMV20].
Therefore, despite their explainability, this class of methods are suboptimal for cas-
cade prediction. By contrast, the methods based on cascade representation charac-
terise the features of observed early cascades instead of modelling diffusion pro-
cesses. Machine learning models are employed for downstream predictions. These
methods have become the state-of-the-art due to their overwhelming prediction
performance, especially with the recent success of deep learning. Compared to
earlier methods using hand-crafted predictive features, deep learning allows for
automatic extraction of cascade representations which capture the heterogeneous
types of information embedded in cascades [XZZ+23]. For instance, the application
of recurrent neural networks (RNN) and graph node embedding simultaneously
capture the temporal rankings of early adopters and the structural properties of
their neighbours in social graphs [YTS+19]. Despite their promising performance,
deep learning methods confront a few inherent challenges as repeatedly empha-
sised in the literature such as the imbalanced distribution of cascades [TLH+21]
and cascade graph dynamics [SRZ+22]. Moreover, except for FOREST [YTS+19],
they are designed either for popularity prediction or for microscopic prediction
which infers the next adopter. Without modelling diffusion processes, they are thus
suboptimal for predicting final active adopters. Our contributions. In this chapter,

we aim to combine the advantages of the two classes of previous studies and apply
deep learning to model the diffusion process of information on social media. This
approach will allow us to get rid of the inherent challenges in embedding observed
cascades, and efficiently achieve the two objectives using a single method. The key
to diffusion process modelling is to capture the interpersonal influences between a
user and his/her friends before adopting a message. Cao et al. [CSG+20] conducted
the first attempt CoupledGNN by modelling the cascading effect only with users’
influences. One shortcoming of this method is that it ignores the double roles si-
multaneously played by users in information diffusion: distributors and receivers
which have been widely accepted in the literature [PMV20, WSLC15].

In this chapter, our goal is to explore users’ profiles of these two roles in cascade
prediction. Specifically, we would like to address the following perspectives in our
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new diffusion process modelling which have not been well studied in the literature:

• A user’s decision to forward a message should result from three factors: mes-
sage content, influences of active friends and susceptibility of the user. Intuitively,
a user’s influence measures his/her ability to convince another user to share
his/her message while susceptibility measures how likely the user gets influ-
enced by other users [PMV20, WSLC15].

• Users’ influence and susceptibility are not only user-specific but also topic-
specific. This phenomenon has not been discussed before in the literature. So-
cial media users, especially on platforms featured by microblogs such as Twit-
ter and Weibo, usually have multiple topics of interests and different sharing
patterns. Suppose a sports news reporter with a hobby of pop music. He will
be more influential for sports-related tweets than those about music. As an in-
formation receiver, the reporter will be more cautious to spread sports news
compared to music-related tweets.

• Influences and susceptibilities are context-dependent [WSLC15]. In other words,
they spread through social relations during the diffusion process. A user will
become more susceptible to a message when he/she sees that message shared
by a larger number of users. Similarly, when more users have adopted the
message a user shared, then the user becomes more influential to his/her
friends due to the accumulated trust in the message.

To the best of our knowledge, we are the first to integrate users’ topic-specific and
context-dependent susceptibility and influence into cascade prediction. We start by
validating our hypothesis that users’ influence and susceptibility are topic-specific
with our collected Twitter data. Then we propose a new deep learning cascade
prediction model, which leverages the social network structure and simulates the
propagation of messages from early adopters through social relations. The model
can be effectively trained to achieve the two cascade prediction objectives at the
same time. In this model, we explicitly embed users’ susceptibility and influence
profiles as two representation vectors. With GNNs [KW17], we model the activation
of users according to topic-specific susceptibilities and influences and the dynamics
of susceptibilities and influences. Through comprehensive experiments with three
real-life datasets, we show our model outperforms state-of-the-art baselines in both
popularity and adopter prediction with almost all measurements.

7.2 Problem Definition

Let M be a set of messages. We use the term “message" to refer to a piece of in-
formation that can be disseminated over social media. It can be a tweet on Twitter
or an image on Instagram. In this chapter, we focus on textual messages and our
approach can be straightforwardly extended to other message types if their repre-
sentations can be effectively calculated and adapted. For any message m ∈ M, we
have the set of active users that had adopted this message up to the time t0 after the
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message was first posted, denoted by Ct0
m . The observation time t0 depends on the

requirements of downstream applications as well as the popularity of social media
platforms. It can be of hours on Twitter and Weibo, and years for citation networks.
We use G = (V , E) to denote be social graph recording the social relations between
users. Specifically, V is the set of nodes that represent the set of users and E ⊂ V ×V
is the set edges indicating the social relations. The network can be directed or undi-
rected depending on social media platforms. For instance, the following relation on
Twitter is directed while friendship on Facebook is undirected.

Popularity prediction. The problem of popularity prediction is to predict the final
number of active users, i.e., n∞

m = |C∞
m |. In practical applications, the final time can

be determined as a given fixed time period t or by approximating the cessation
of growth or slow growth of the cascade. This is also commonly called the macro-
scopic cascade prediction in the literature [YCW+15, YTS+19]. Formally, given a set of
messages M and their observed cascades {Ct

m|m ∈ M}, the problem of popularity
prediction can be solved by minimising the following mean relative square error
(MRSE) loss:

Lpop =
1

|M| ∑
m∈M

( ñ∞
m − n∞

m
n∞

m

)2
(7.1)

where ñ∞
m = fΘ,G(C

t0
m). Note that fΘ,G : VP → Z is the regression function cus-

tomised to graph G and parameterised by the set of trainable parameters Θ where
VP denotes the powerset of V . It takes an observed cascade as input and outputs
the predicted final size of the cascade.

Final adopter prediction. The goal is to predict the set of users who will forward
the target message. This is different from the microscopic cascade prediction in the
literature [YCW+15, YTS+19] which aims to predict the next active user according
to the observed ones. The problem of final adopter prediction can be solved by
minimising the following loss function:

Ladp = − 1
|M| ∑

m∈M

(
∑

v∈C∞
m

log qΘ,G(Cto
m, v) + ∑

v ̸∈C∞
m

(
1 − log qΘ,G(Cto

m, v)
))

(7.2)

where qΘ,G : VP × V → [0, 1] is the trainable function customised to social graph G
and parameterised by Θ that predicts the probability that a specific user will adopt
the message. In the end, we can select the users with probabilities larger than a
predefined threshold as the output set of final adopters. An alternative is to output
the top ñ∞

m users with the largest activation probabilities.

7.3 Topic-specific Susceptibility and Influence

In this section, we will validate our hypotheses that a user’s susceptibility and influ-
ence vary according to the topic of the message. This hypothesis actually contains
an implicit claim that users adopt messages of multiple topics on social media. In
other words, users have their own topic preferences. We start with validating this
claim and then examine the dependence of susceptibility and influence on topics.
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Table 7.1: The statistics of our Twitter dataset.

Social network
#node 5, 808, 938

#edge 12, 511, 698

average degree 2.15

Timeline tweets
Period 1 (1/3/2020-30/6/2020)

#tweet 7,855,186

#tweet per user 627.51

Period 2 (1/3/2021-30/6/2021)
#tweet 3,591,664

#tweet per user 303.76

7.3.1 Twitter Data Collection

In this section, we gather the datasets utilised in this chapter, drawing from the EU-
VAX dataset as a foundation. We then collect the followers and followees for each
originator of a tweet in the dataset, successfully constructing the social network.
Specifically, if user v follows user v′, an edge is created from v to v′. To elimi-
nate isolated users and ensure connectivity between users, we calculate the largest
weakly connected subgraph of the social network as the final set of users.

We conduct the timeline tweet streaming for the remaining users in two time pe-
riods, each spanning three months. One period starts from March 1st, 2020, while
the other starts from March 1st, 2021. By examining these two periods separated by
one year, we can assess the consistency of our empirical analysis over time. As our
purpose is to examine users’ sharing behaviours in information diffusion, we only
keep those tweets that each user has retweeted. We summarise the statistics of the
final social networks and tweets in Table 7.1.

In this chapter, we focus on the texts of retweeted messages and thus remove all
other contents such as ’@’, hyperlinks, and ’RT’, which stands for ’retweet’. For
quoted tweets, we only consider the quoted tweets and ignore the comments added
by users. In our analysis, we only consider the users with more than 5 retweets in
our dataset to ensure the reliability of our analysis.

7.3.2 Users’ Topic Preferences

We validate our observation that users simultaneously participate in discourses of
multiple topics on social media. We take the three months’ retweets in each period
as our observations and extract the topics expressed in them. Then we calculate the
distribution of a user’s retweets on these topics as his/her topic preferences.

Topic modelling. Topic modelling, as an important task in natural language process-
ing, has upgraded from traditional LDA method [BNJ01] to machining learning
methods [GC06]. In [ZFCN22], it has been shown that the combination of high-
quality text embeddings and clustering methods can more efficiently learn topics
of the same quality as complex neural network models. In this chapter, we adopt the
most effective combination in [ZFCN22], i.e., RoBERTa+UMAP+K-Means, to cluster
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(a) Period 1 (b) Period 2

Figure 7.1: Clustering retweets into topics.

tweets with similar topics. RoBERTA [LOG+19] is a pre-trained transformer-based
text embedding method and UMAP [MH18] is used to conduct dimension reduc-
tion of text embeddings while K-Means is one of the most widely used classic
clustering methods. Besides textual tweets, the number of topics is required as an
input parameter.

We classify the collected tweets in each period with the selected topic modelling
method. After several trials, we select 25 topics due to the relatively higher quality
of the output clusters. In the end, we have 25 clusters of retweets, the i-th of whcih is
denoted by Si. In Figure 7.1, we depict retweets as data points and layout them ac-
cording to their text embedding vectors mapped to a 2-D space with UMAP [MH18]
in the two selected periods. The colours indicate their clusters. With the widely ac-
cepted measurements: C_V and NPMI, we measure the coherence values which
are 0.649 and 0.138 for the first period, and 0.704 and 0.142 for the second period.
According to general criteria, these numbers indicate a more than good topic co-
herence. We extract the representative keywords with their TFIDF rankings, and
manually examine the topics of the clusters. We find that in general the tweets in
these clusters are about specific topics such as the death and infection number of
COVID-19, Black Life Matters movement and the COVID-19 policies.

User topic preference. We represent the topic preferences of user v by a vector v
by counting the proportions of his/her retweets in each topic. Formally, let Sv be
the set of retweets of user v, then the j-th element of v is calculated as |Sv∩Si |

|Sv| . In
Figure 7.2(a) and 7.2(b) we layout users as data points according to their preference
vectors mapped to 2 dimensions in the two periods. We can see that users’ vectors
scatter all over the space. Another observation is that users cluster naturally, which
reflects the groups of users with similar interests. We consider a user is interested
in the j-th topic if the j-th element of his representation vector is over 0.08 which
is double the value of a null model. Figure 7.2(c) shows the distributions of the
number of topics users prefer in the two periods. We observe that about 86% users
actively participate in at least 2 topics. On average, each user is interested in 3
topics. According to the above discussion, we can conclude that users are interested
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in multiple topics.

(a) Visualisation (Period 1) (b) Visualisation (Period 2)
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(c) Distribution of the number of topics of interest.

Figure 7.2: User topic preferences and distribution.

7.3.3 Topic-specific Susceptibility & Influence

Whether a user retweets a message is determined by his/her susceptibility and
the influences received from his/her followers who have shared the message. We
hypothesise that the interplay between susceptibility and influences is not only
user-specific but also topic-specific. Many methods have been proposed to learn the
latent representations for users’ susceptibility and influences according to past ob-
served cascades [PMV20, WSLC15]. However, we cannot validate our hypothesis
by directly comparing the representations extracted from past cascades of different
topics. This is because the learning processes on different topics are independent.
Therefore, the learned representations do not belong to the same space and are not
comparable. Therefore, we select an intuitive approach based on a heuristic utilised
in the literature [BLG16] that if users’ susceptibility and influence are topic-specific,
we will have two observations:

1. As an information receiver, a user will have different patterns regarding shar-
ing messages from his/her followees between topics;

2. As an information distributor, a user’s followers will have different patterns
regarding sharing messages retweeted or posted by the user.

If these two differences are present in our dataset, we can infer that the interaction
of a user’s susceptibility and influence varies between topics. After a user shares
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a message, the user will have an influence on each follower’s decision whether to
share the message. According to this intuition, we use the frequency with which
a follower forwards messages after the user’s sharing to measure the strength of
the interplay between the user’s influence and the follower’s susceptibility. In the
following, we first present our measurements for a user’s susceptibility pattern as a
receiver and his/her influence pattern as a distributor, and then discuss our analysis
on our dataset.
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Figure 7.3: Distributions of susceptibility pattern SP@K.

Measuring susceptibility pattern. Intuitively, given a topic, we use the relative
frequencies with which a user forwards messages from his/her followees to quan-
titatively capture the user’s sharing pattern as an information receiver. Suppose a
user v with the set of his/her followees U+

v = {v′ ∈ V|(v, v′) ∈ E}. We assume
a pre-defined order between the followees of user v and use vi to denote the i-th
followee. Let Sv,j be the set of tweets that u retweeted about the j-th topic, and
time(m, v) to denote the time when m is posted or retweeted by user v. The suscep-
tibility vector of v is denoted by sv,j ∈ Z|U+

v | whose i-th element is the number of
messages retweeted by the i-th followee in U+

v before v retweets the same message,
i.e, |{m ∈ Sv,j ∩ Svi |t(m, u) > t(m, vi)}|.

As we discussed previously, a user is only interested in a certain number of topics.
As a result, we consider the K most preferred topics of user u to measure his/her
susceptibility pattern (denoted by SP@K) by averaging their mutual similarities. Let
T v

K is the set of the indices of users’ top K favourite topics. Formally, we calculate
SP@K with the average similarity of all the pairs of top topics:

SP@K(v) = 2
K·(K−1) ∑j,k∈T v

K ∧j<k
sv,j·sv,k

∥sv,j∥·∥sv,k∥
.

Measuring influence pattern. We use the frequencies which a user’s followers
share his/her retweeted messages to quantify the influence patterns of the user
as an information distributor. Suppose a user v with the set of followers U−

v =

{v′ ∈ V|(v′, v) ∈ E} ranked according to a pre-defined order. Let hv,j denote the
influence vector of user v of the j-th topic. Then the i-th element is the number of
retweets conducted by the follower vi in U−

v after seeing the same message posted
or retweeted by user v, i.e., |{m ∈ Sv,j ∩ Sui |t(m, v) < t(m, vi)}|. Similar to the defi-
nition of topic-dependent susceptibility, we also consider the top K favourite topics
of user v, i.e., T v

K . Then the influence pattern of user v is defined as follows:

IP@K(v) = 2
K·(K−1) ∑j,k∈T v

K ∧j<k
hv,j·hv,k

∥hv,j∥·∥hv,k∥
.
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The domains of SP@K and IP@K are between 0 and 1. A lower value indicates the
interplay between users susceptibilities and influences varies more between topics.
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Figure 7.4: Distributions of influence pattern IP@K.

Experimental analysis. We re-use the topics extracted in Section 7.3.2 to analyse
the topic dependence of susceptibility and influence. In Figure 7.3 and 7.4, we show
the distributions of SP@K and IP@K values over the users when K is set to 2 and
3, respectively. For either measurement, we construct a null model as a reference
to capture the distributions when the topic-specific phenomenon is absent. Take
susceptibility patterns as an example. For any user v and each topic (e.g., the j-
th topic), we construct a null vector s′v,j. Its k-th element is a uniformly sampled
random number between 0 and |Svk ,j| representing the number of messages of user
vk ∈ U+

u that have been retweeted by user v.

A general observation is that users’ susceptibility and influence patterns roughly
follow normal distributions. The curves of the distributions become narrower and
shift right when larger K values are set. This is natural that more topics considered
will lead to smaller average mutual similarity. We can see with all the selected
K values, users have smaller values for both susceptibility pattern and influence
pattern than the null models. On average, users’ IP@K and SP@K fall into the range
between 0.3 and 0.4 which is only half of those when susceptibility and influence
are not topic-specific. The difference indicates that users’ sharing behaviours and
their influences on friends differ between the topics of their interest.

7.4 Our CasSIM model

The propagation of a message can be interpreted as a process of multiple sequential
generations. In any generation, each user first updates his/her influence and sus-
ceptibility according to the current activation states of users. Then the user decides
whether to forward the targeted message according to his/her updated susceptibil-
ity and the influences of his/her friends who have forwarded the message. Inspired
by CoupledGNN [CSG+20], we use multi-layered GNNs to model this iterative pro-
cess. We depict our framework in Figure 7.5. At each layer, three sequential tasks
are accomplished. The first task is to update susceptibility and influence by aggre-
gating the profiles of social network neighbours. This task actually simulates the
spread of influence and susceptibility and thus captures their context-dependence
property. The second task is to calculate the topic-specific influences and suscep-
tibility according to the user’s topic preferences and the target message’s content.
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The last task is to update each user’s activation state by aggregating the interplay
between his/her susceptibility and the influences of all the active friends.

For each user v ∈ V , we use Statev ∈ [0, 1] to store his/her activation state indicating
the probability that user v is activated. Furthermore, for each generation ℓ, user
v is associated with three embedding vectors r(ℓ)v , h(ℓ)

v and pv indicating his/her
susceptibility, influence and topic preferences, respectively.
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Figure 7.5: Framework of the CasSIM model.

7.4.1 Influence and Susceptibility Update

As users’ influence and susceptibility propagate through social relations, we make
use of a GNN to first aggregate the profiles from their friends and then combine
the aggregation with their own profiles. We start by describing the update of sus-
ceptibility vectors.

We use the idea of graph attention networks [VCC+18] to take into account the
various contributions of friends to the update. Let N (v) be the neighbours of user
v, i.e., {v′ ∈ V|(v, v′) ∈ E}. Formally, the aggregated susceptibility of user v can be
calculated as follows:

a(ℓ)v,s = W(ℓ) ∑
v′∈N (v)

h(ℓ)
v′ · StateGate(State(ℓ)v′ ) · ϕ

(ℓ)
v,v′ (7.3)

where W(ℓ) ∈ Rd(ℓ)r ×d(ℓ+1)
r is the weight matrix and d(ℓ)r defines the dimension of a

user’s susceptibility vector at the ℓ-th layer, i.e., r(ℓ)v . The function StateGate() is the
state-gating mechanism [CSG+20] to reflect the non-linearity of activation states.
In our implementation, we use a 2-layered MLP. The attention ϕ

(ℓ)
v,v′ calculates the

contribution of the influence of user v’s neighbour v′. This attention is determined
not only by v′’s susceptibility but also by v’s influence vector. Formally, the attention
is calculated as follows:

ϕ
(ℓ)
v,v′ =

exp(e(ℓ)v,v′)

∑v′′∈N (v) exp(e(ℓ)v,v′′)
(7.4)

where e(ℓ)u,u′ = ψ
(ℓ)
s
(
W(ℓ)

r r(ℓ)v′ ∥ W(ℓ)
h h(ℓ)

v
)
. Note that ∥ is the concatenation function of

two vectors, and ψs ∈ Rd(ℓ)h +d(ℓ)r where d(ℓ)h is the dimension of influence vectors at

layer ℓ. Moreover, W(ℓ)
h ∈ Rd(ℓ)h ×d(ℓ)h and W(ℓ)

r ∈ Rd(ℓ)r ×d(ℓ)r are two weight matrices.
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In the end, we combine the aggregated susceptibility of neighbours with the user’s
own susceptibility:

r(ℓ+1)
v = relu

(
W(ℓ)h(ℓ)

v + a(ℓ)
v,s

)
(7.5)

where W(ℓ) ∈ Rd(ℓ+1)
r ×d(ℓ+1)

s and relu is the non-linear activation function.

The update of user v’s influence is similar to that of his/her susceptibility. We first
aggregate the influence of his/her friends according to their activation states with
attention networks. Formally, the aggregated influence a(ℓ)u,h is calculated as follows:

a(ℓ)v,h = W(ℓ) ∑
v′∈N (v)

h(ℓ)
v′ · StateGate(State(ℓ)v ) · λ

(ℓ)
v,v′ (7.6)

where W(ℓ) ∈ Rd(ℓ)h ×d(ℓ+1)
h is the weight matrix. We calculate the attention λ

(ℓ)
v,v′ as:

λ
(ℓ)
v,v′ =

exp(o(ℓ)
v,v′)

∑v′′∈N (v) exp(o(ℓ)
v,v′′)

, (7.7)

where o(ℓ)
v,v′ = ψ

(ℓ)
h (W(ℓ)

h h(ℓ)
v′ ∥ W(ℓ)

r r(ℓ)v ). Note that ψh ∈ Rd(ℓ)h +d(ℓ)r and W(ℓ)
h ∈

Rd(ℓ)h ×d(ℓ)h and W(ℓ)
r ∈ Rd(ℓ)r ×d(ℓ)r are two weight matrices which are different from

those used in updating susceptibility. User’s influence vector at the layer ℓ + 1 is
calculated as follows:

h(ℓ+1)
u = relu(W(ℓ)h(ℓ)

v + a(ℓ)
v,h) (7.8)

7.4.2 Calculating Topic-specific Influence & Susceptibility

We show how to customise a user’s susceptibility and influence according to the
topic of the message under diffusion in order to capture their topic-specific prop-
erty. Suppose m ∈ M is the message being propagated. We take user v ̸∈ Ct0

m at
ℓ-th generation as an example and illustrate how to convert the vectors r(ℓ)v and h(ℓ)

v

into r(ℓ)v,m and h(ℓ)
v,m. We use xm ∈ Rdx to denote the embedding vector of message

m. As emphasised previously, in this chapter, we concentrate on messages in the
form of texts and the model can be extended to integrate other formats, such as
images if their representations can be effectively calculated. In our model, we use
the pre-trained RoBERTa model [LOG+19] to calculate the embedding vectors of
textual messages.

As empirically validated in the previous section, most users have multiple topics
of interest on social media and their preferences vary between topics. Although the
focus of the topics may shift over time as pointed out in [YLZ+20], users’ inter-
ests remain relatively stable. For instance, a sports news reporter may switch from
reporting a local football team to national teams due to the opening of the FIFA
world cup, but the topic still remains around football. Users’ topic preferences are
extracted from their past sharing behaviours. We use pv ∈ Rdp to denote the em-
bedding vector for his/her topic preferences. Intuitively, given a targeted message
m, we capture its related topic by referring to users’ past topic preferences and
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utilise an MLP module to calculate the adjustments that should be exposed to the
user’s susceptibility and influence vectors. Starting with susceptibility, we calculate
the corresponding topic-specific susceptibility vector as follows:

r(ℓ)v,m = W(ℓ)
(
MLP(pv ∥ xm) ◦ r(ℓ)v

)
(7.9)

where ◦ represents the dot product of two vectors. In addition, MLP is a multi-
layer perceptron with an input vector of dimension dp + dx and outputs a vector

of dimension d(ℓ)r . The weight matrix W(ℓ) ∈ Rd(ℓ)r,m×d(ℓ)r conducts the linear transfor-
mation of the susceptibility vector to dimension d(ℓ)r,m. Similarly we have the user’s
topic-specific influence calculated as follows:

h(ℓ)
v,m = W(ℓ)

(
MLP(pv ∥ xm) ◦ h(ℓ)

v
)
. (7.10)

Note that W(ℓ) ∈ R
d(ℓ)h,m×d(ℓ)h and the output of the MLP has the dimension of d(ℓ)h .

7.4.3 User State Update

With users’ topic-specific susceptibility and influence, we can model their interplay
which changes their activation states. The influences of each user’s active neigh-
bours are first aggregated as the total amount of topic-specific influences exposed
to the user. Then we use an MLP module to capture the likelihood of the user
adopting the message only according to the exposed influences, denoted by γ

(ℓ)
v .

WE user

γ
(ℓ)
v = sigmoid

(
MLP

((
∑

v′∈N (v)
h(ℓ)

u,x · State(ℓ)v′

)
∥ r(ℓ)v,m

)
+ βv

)
. (7.11)

where βu ∈ R is a self activation parameter. Intuitively, the probability is dependent
on the user’s topic preferences. In our model, we use a one-layer MLP followed by
a sigmoid function to capture this dependence. In the end, we combine the above
activation probability with the user’s current activation status into the user’s new
activation state:

State(ℓ+1)
v =

{
1, if v ∈ Ct0

m

sigmoid
(
µ
(ℓ)
1 State(ℓ)v + µ

(ℓ)
2 γ

(ℓ)
v
)
, if v /∈ Ct0

m .
(7.12)

Note that µ
(ℓ)
1 , µ

(ℓ)
2 ∈ R are two weight parameters which are to be trained. The

initial state, i.e., State(0)v , is set to 1 if v ∈ Ct0
m or 0, otherwise. In the end, we calculate

the final size of the cascade ñ∞
m as ∑v∈V Statev.

7.4.4 User Profiling

From the above discussion, we can see that our model uses three input vectors for
each user v at the 0-th layer: p(0)

v , r(0)v and h(0)
v . A few methods have been pro-

posed in the literature to learn users’ susceptibility and influence embedding from
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users’ sharing history [WSLC15, PMV20]. In this chapter, we pre-train a simple but
effective model to prepare the three types of initial vectors. Suppose we have the
cascades for the past messages in Mhist. We interpret them as the ultimate states
of users in the corresponding information diffusion processes. In other words, for
each m ∈ Mhist, we have the final cascade C∞

m . We set State∞
v = 1 if v ∈ C∞

m and 0
otherwise. We calculate the activation state for each user v ∈ C∞

m based on his/her
topic-specific susceptibility and his/her active friends’ influence, which is denoted
by S̃tatev,m. Formally, it is calculated as follows:

S̃tatev,m = sigmoid
(

ff · ∑
v′∈N (v)∩C∞

m

(
MLP(p(0)

v ∥ xm) ◦ (h(0)
v′ ∥ r(0)v )

))
(7.13)

where ff ∈ Rd(0)r +d(0)h and MLP outputs a vector of dimension d(0)r + d(0)h . In the end,

p(0)
v , r(0)v and h(0)

v are trained by minimising the following objective function:

Linitial = − 1
|Mhist| ∑

m∈Mhist

∑
v′∈C∞

m

log(S̃tatev,m). (7.14)

There may exist users who do not participate in any cascades. For these users, we
set the neutral vectors 0 to these users as their three profile vectors.

7.4.5 Model Training

In order to achieve the two objectives of cascade prediction: popularity and final
adopter prediction, we aggregate the two corresponding objective functions into
our final loss function to guide the parameter optimisation: L = θ1Ladp + θ2Lpop +

θ3Lreg where θ1, θ2 and θ3 are hyper-parameters. The Lreg is added for the purpose
of regularisation as a L2 norm of all the model parameters.

7.5 Experimental Evaluation

7.5.1 Datasets

Table 7.2: Statistics of Sina, AMINER, and Twitter datasets.

Social network Ave. # user per cascade
#cascades

#node #egdes Observation 1 Observation 2 Observation 3

Sina 1,776,950 308,489,739 28.36 34.79 38.22 34,897

AMINER 131,415 842,542 14.71 15.71 18.80 30,106

Twitter 5,808,938 12,511,698 27.64 30.99 33.76 81,331

We leverage three real-life datasets in our experiments: Sina Weibo, AMINER and
Twitter. Sina Weibo and AMINER are publicly available and widely exploited in
the validation of previous works related to cascade prediction [LMGM17, CSG+20].
The Twitter dataset is an extension of our collection described in Section 7.3. Each
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dataset consists of two components: a social graph and a text dataset consisting of
diffused messages.

We select these datasets to ensure a comprehensive evaluation that covers as many
practical scenarios as possible. Weibo and Twitter represent the social media plat-
forms characterised by microblogs. The users of the Weibo dataset are more densely
connected. This dense social graph will benefit cascade prediction models with a
more complete view of the sources of influences. AMINER is a citation network
instead of social media storing the citation relations between academic authors. We
use AMINER to test whether our CasSIM model can also predict the cascades in
more general settings. Moreover, in order to check the performance of our model
for different lengths of observation periods, i.e., t0, for each dataset, we construct
three sets of cascades by cutting the cascades according to three given time periods.
For Twitter and Weibo, due to their fast propagation speed, the observation peri-
ods are set to 1 hour, 2 hours and 3 hours. For AMINER, we set them to 1 year, 2
years and 3 years. We briefly describe these three datasets as follows. The detailed
statistics are summarised in Table 7.2.

Sina Weibo. The dataset is collected by Zhang et al. [ZLT+13] from Sina Weibo,
a popular Chinese social media platform and spans from September 28th, 2012
to October 29th, 2012. The social graph contains 1,776,950 users and 308,489,739
following relations between users. For each user, the dataset includes 1,000 ad-
ditional most recent microblogs. The text data include 23,755,810 retweeted mi-
croblogs based on which we constructed 300,000 cascades. We only keep the cas-
cades with more than 15 users. These cascades have an average size of 31.16.

AMINER. AMINER are constructed based on data collected from the DBLP com-
puter science bibliography1 which contain research papers’ abstracts, titles and au-
thors [TZY+08]. The social graph describes authors and their citation relations be-
tween 1992 and 2002. If an author v publishes a paper citing one paper authored by
v′, then an edge from v to v′ is added to the social graph. The social graph is com-
posed of 131,425 authors and 8,466,859 citation relations. A cascade corresponds
to a paper and tracks the researchers who ever co-authored the paper or cited the
paper.

Twitter. We collected this dataset with the same social graphs used in Section 7.3.
Specifically, in addition to the six months’ tweets, this dataset contains the retweets
spanning from March 1st, 2020 to October 30th, 2021 for almost two years. Our
experiments use the cascades with a size larger than 15 users. In total, we have
81,331 cascades with an average size of 36.45.

7.5.2 Baselines

Considering the number of methods for macroscopic and microscopic prediction,
we only select the representative methods for comparison. A method is representa-
tive if it is typical for a class of methods or it claims strong performances. Due to the
overwhelming performance, we focus on deep learning methods in our evaluation.

1https://dblp.org/



7.5. Experimental Evaluation 109

DeepCas [LMGM17]. DeepCas is the first end-to-end representation learning-based
method for popularity prediction. With the social graph, it represents cascades as
cascade graphs and uses Bi-GRU to embed a cascade graph with random walk
paths.

DeepHawkes [CSC+17]. DeepHawkes integrates deep learning into Hawkes pro-
cess for popularity prediction. It treats cascades as a temporal series of events. It
combines user embedding vectors and cascades encoding by RNNs, and utilises the
Hawkes process to model and predict cascade popularity.

CasCN [CZZ+19]. Compared to models like DeepCas sampling random diffusion
paths, CasCN samples sub-graphs from cascade graphs into a series of sequential
sub-cascades. Then it propose a dynamic GCN model [BZSL14] to learn the repre-
sentation of cascades for popularity prediction.

CoupledGNN [CSG+20]. CoupledGNN leverages two GNNs to simulate the cas-
cading effects of information diffusion. One is to update users’ activation states
and the other captures the spread of users’ influence. Difference from our CasSIM
model, it ignores the dual-role properties of users and the topic-specific properties
of users’ influences. In spite of being designed for popularity prediction, the explicit
simulation of cascading effect allows it to predict the final adopters as well.

FOREST [YTS+19]. FOREST makes use of an enforcement learning framework to
endow a microscopic prediction model the ability of popularity prediction. As a
result, it can predict both popularity and final adopters. The proposed microscopic
model uses GRU neural networks to embed the representation of the last early
adopter and predict the next adopter with this vector as well as the structural em-
bedding.

CasFlow [XZZ+23]. CasFlow uses graph signal processing, graph representation
techniques and variational auto-encoder to capture node-level and cascade-level
diffusion uncertainty. It is designed for popularity prediction.

TempCas [TLH+21]. TempCas is designed for popularity prediction and claims to
perform better than previous methods. It takes the temporal changes of cascade
graphs into account and calculates the representation of a cascade graph based on
a series of temporal snapshots of the cascade graphs. Variants of RNN, i.e., LSTM
and GRU, are used to embed the time-series snapshots.

DyHGCN [YLZ+20]. DyHGCN is designed for microscopic prediction, where it
extracts structural information from both social graphs and cascade graphs to gen-
erate dynamic user embeddings through a heterogeneous GCN.
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7.5.3 Experimental Settings

Evaluation Measurements. We use three widely adopted measurements to eval-
uate the prediction performances regarding popularity. MSLE (Mean square log-
transformed error) is a standard evaluation metric [CZZ+19] and defined as:

MSLE = 1
|M| ∑m∈M(log n∞

m − log ñ∞
m )

2.

We use mean absolute percentage error (MAPE) and wrong percentage error (WroP-
erc) to evaluate prediction performance in terms of relative errors. MAPE measures
the average relative errors and is defined as:

MAPE = 1
|M| ∑m∈M

|ñm
∞−nm

∞|
nm

∞
.

WroPerc measures the average percentage of cascades that are poorly predicted and
is defined as:

WroPerc = 1
|M| ∑m∈M 1

(
|ñm

∞−nm
∞|

nm
∞

≥ ε
)

.

We set the threshold to 0.5 in our experiments. Note that 1(∗) is an indication
function which outputs 1 when the input proposition is true or 0 otherwise. For
each measurement, a lower value indicates better prediction performance.

With regard to evaluating the prediction performance of final adopters, we use the
standard metrics: precision, recall and F1 score.

Hyperparameter settings. For each of the three datasets, we randomly split it into
training, validation and testing sets according to the ratio 8:1:1. For the text em-
bedding model RoBERTa, we utilise the implementation XLM-RoBERTa [CKG+20].
We set the maximum size of input strings to 128, and the length of text embed-
ding is 768. For all models including the bench-marking models, we tune their
hyper-parameters to obtain the best performance on validation sets. Early stopping
is employed for tuning when validation errors do not decline for 20 consecutive
epochs. The learning rate and L2 coefficient are chosen from 10−1, 10−2, . . . , 10−8.
The hidden units for MLPs are chosen from {32, 64}. The batch size is 32. We train
our model for 500 epochs and utilise Adam [KB15] for optimisation. We use the first
three months’ cascades in the Sina Weibo and Twitter dataset to pre-train users’ ini-
tial profiles: their topic preference, susceptibilities and influences. For the AMINER
dataset, the first two years’ cascades are used. As for DeepCas and TempCas, the
sequence lengths and the number of sampled sequences are set to 100 and 8, re-
spectively. The size of node embedding vectors of CasCN and DeepHawkes is fixed
at 50. All other hyperparameters remain the same as they are recommended in the
original papers or the published source codes.

7.5.4 Overall Prediction Performance

We compare the performance of our CasSIM model to the baselines for both the two
cascade objectives: popularity prediction and final adopter prediction. As we dis-
cussed previously, only FOREST [YTS+19] and CoupledGNN [CSG+20] can achieve
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these two objectives simultaneously. As a result, for each objective, we conduct the
comparison with the baselines that can achieve the objective. We independently
train each model 5 times and report the average results on testing sets.

Popularity prediction. We outline the performance of all the benchmarks and our
CasSIM model on Sina Weibo, AMINER and Twitter in Table 7.3, 7.4 and 7.5, re-
spectively. We do not consider DyHGCN in this comparison since it can only con-
duct microscopic prediction, i.e., predicting the next single adopter. Our objective
is to examine whether our CasSIM model can outperform the baselines in different
scenarios. If not, we analyse the possible causes so as to understand the scenar-
ios when our model can work the best. In general, we can observe that FOREST,
CasFlow and TempCas are the best baselines in terms of popularity prediction.
In addition, the prediction becomes more accurate when observation periods are
longer. These two observations are consistent with the experimental evaluation in
the literature [TLH+21, CZZ+19]. This consistency indicates the correctness of our
implementation and our comparison is reliable and trustworthy. We highlight the
best performance of each measurement in bold numbers and underline the second
best.

We have three main observations. First, we observe that our CasSIM model out-
performs almost all the baselines according to the three measurements in the three
datasets. Tempcas only marginally outperforms CasSIM when the observation pe-
riods are set to 1 hour and 2 hours. This may be caused by the relatively large
variances of cascade lengths in the Weibo dataset. The performance improvements
show that our model can accurately predict the final size of cascades on both so-
cial media and citation networks where the cascading phenomenon exists. Second,
compared to CoupleGNN, our CasSIM model can produce overwhelmingly more
accurate predictions, especially when measured by WroPerc. For instance, on the
Sina Weibo dataset, the increase is larger than 17%. The improvement can even
reach 35% in our Twitter dataset. This means the performance of CasSIM is more
stable than CoupledGNN. We can also infer that the consideration of users’ dual
roles in information diffusion is necessary and our CasSIM model effectively cap-
tures the interactions between users’ susceptibilities and influences. Last, the im-
provement of our CasSIM model is more significant when observation periods are
shorter. For instance, for the Sina Weibo dataset, CasSIM increases the performance
measured by MLSE by 6% compared to Tempcas when observation periods are set
to one hour. The increase drops to 3% for two-hour observation periods and further
decreases to 2% when observation periods are three hours. We infer that this should
result from our consideration of users’ topic preferences and message contents in
CasSIM. When shorter observation periods are set, the baselines which only rely
on early adopters’ co-occurrences in cascades do not have sufficient information for
prediction.

Final adopter prediction. In the literature, only FOREST can predict the final adopters
while predicting the popularity. It uses a microscopic prediction module to calcu-
late the probability distribution over users to be the next activated user. FOREST
iteratively samples the next adopters until a special virtual user named by ‘STOP’
is sampled. Compared to FOREST, CoupledGNN and our CasSIM model assign an
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Table 7.3: Popularity prediction performance on Sina Weibo dataset.

Model
1 Hour 2 Hours 3 Hours

MSLE MAPE WroPerc MSLE MAPE WroPerc MSLE MAPE WroPerc
DeepCas 3.578 0.291 32.26% 3.421 0.288 28.74% 3.139 0.270 18.58%
DeepHawkes 2.894 0.289 26.21% 2.551 0.280 25.89% 2.240 0.268 17.57%
CasCN 2.749 0.285 27.36% 2.442 0.283 25.56% 2.181 0.279 17.23%
CoupledGNN 2.289 0.242 23.60% 2.254 0.236 17.96% 2.037 0.223 14.27%
FOREST 2.156 0.238 20.05% 2.136 0.235 18.14% 1.995 0.230 13.49%
CasFlow 2.248 0.239 20.68% 2.195 0.221 16.79% 1.982 0.215 12.10%
TempCas 2.290 0.226 18.23% 2.208 0.229 14.73% 1.960 0.209 11.26%
CasSIM 2.148 0.221 19.46% 2.126 0.217 14.94% 1.919 0.202 11.04%

Table 7.4: Popularity prediction performance on AMINER dataset.

Model
1 Year 2 Years 3 Years

MSLE MAPE WroPerc MSLE MAPE WroPerc MSLE MAPE WroPerc
DeepCas 2.031 0.293 28.33% 1.916 0.260 22.69% 1.908 0.227 21.39%
DeepHawkes 2.400 0.294 27.42% 1.148 0.252 22.47% 1.735 0.191 20.73%
CasCN 2.007 0.285 27.49% 1.959 0.283 20.28% 1.876 0.183 20.99%
CoupledGNN 1.970 0.288 25.90% 1.798 0.282 20.16% 1.430 0.165 19.63%
FOREST 1.359 0.293 25.11% 1.175 0.298 19.40% 1.495 0.154 18.88%
CasFlow 1.822 0.256 26.44% 1.086 0.233 17.01% 1.416 0.136 14.83%
TempCas 1.308 0.242 24.66% 1.073 0.236 16.87% 1.384 0.130 14.84%
CasSIM 1.272 0.231 24.51% 1.063 0.225 16.26% 1.376 0.126 14.09%

activation probability for each user. As both the models can predict the number of
final adopters, i.e., ñ∞

m , we can use the ñ∞
m users with the largest activation proba-

bilities as the set of final adopters. Considering the inevitable prediction errors, we
use a tolerant parameter η to add a certain percentage of extra adopters. It may
be argued that microscopic models can also be applied to predict final adopters
by iteratively predicting the next adopters which is similar to FOREST. However,
different from FOREST, such models do not have the mechanisms to terminate the
sampling. In order to ensure the comprehensiveness of our validation, we manu-
ally add an unfair terminating condition, that is, the true number of final adopters
are sampled. We use the state-of-the-art microscopic model DyHGCN as a repre-
sentative. In Table 7.6, we list the performance regarding final adopter prediction
when observation periods are 3 hours for Twitter and Sina Weibo, and 3 years for
AMINER. For the tolerant parameter η, we use 10%, 20%, 30%, 40% and 50% in our
experiments.

We can see that CasSIM already perform better than FOREST and CoupledGNN
with the original predicted popularity with η set to 0. DyHCGN only performs
slightly better than CasSIM when applied on the Sina Weibo dataset. Although the
improvement is a bit marginal compared to FOREST, CasSIM has a much better
performance than CoupledGNN. With the relatively high-quality cascades in Sina
Weibo, CasSIM increases the three measurements by about 18%. The improvement
can reach more than 30% on the other two datasets. With positive η values set, we
can observe an obvious performance increase for both CoupledGNN and CasSIM.
It can be expected that a too large η will eventually compromise the performance. In
our experiments, on all the three datasets, we can achieve best performance when
η equals 40% and the performance started to fall when η is 50%.
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Table 7.5: Popularity prediction performance on Twitter dataset.

Model
1 Hour 2 Hours 3 Hours

MSLE MAPE WroPerc MSLE MAPE WroPerc MSLE MAPE WroPerc

DeepCas 12.897 0.614 39.73% 11.145 0.579 36.02% 11.677 0.547 30.13%
DeepHawkes 10.705 0.623 36.25% 10.499 0.617 35.83% 9.188 0.553 25.28%
CasCN 10.640 0.592 35.81% 9.207 0.552 34.63% 9.048 0.550 25.62%
CoupledGNN 9.400 0.497 34.49% 9.122 0.477 32.86% 9.045 0.452 22.55%
FOREST 8.799 0.489 33.01% 8.469 0.463 30.25% 8.147 0.454 21.46%
CasFlow 8.916 0.478 31.59% 8.114 0.458 28.94% 8.081 0.446 16.33%
TempCas 8.756 0.461 28.25% 8.251 0.442 26.67% 8.070 0.426 15.38%
CasSIM 8.569 0.443 27.53% 8.046 0.437 25.43% 8.032 0.422 14.76%

Table 7.6: Final adopter prediction performance.

Model
Sina Weibo AMINER Twitter

Recall Precision F1 Recall Precision F1 Recall Precision F1
FOREST 0.436 0.379 0.383 0.398 0.344 0.392 0.404 0.416 0.413
DyHGCN 0.449 0.393 0.394 0.413 0.388 0.410 0.441 0.448 0.442
CoupledGNN 0.371 0.323 0.332 0.318 0.297 0.262 0.315 0.300 0.302
CoupledGNN+10% 0.392 0.348 0.352 0.325 0.307 0.319 0.335 0.324 0.329
CoupledGNN+20% 0.418 0.361 0.365 0.334 0.311 0.327 0.356 0.335 0.342
CoupledGNN+30% 0.431 0.372 0.378 0.370 0.359 0.364 0.371 0.387 0.385
CoupledGNN+40% 0.437 0.379 0.381 0.376 0.364 0.370 0.380 0.391 0.387
CoupledGNN+50% 0.422 0.364 0.370 0.366 0.341 0.351 0.350 0.332 0.341
CasSIM 0.443 0.390 0.394 0.409 0.397 0.412 0.417 0.436 0.425
CasSIM+10% 0.447 0.404 0.405 0.412 0.408 0.406 0.421 0.437 0.423
CasSIM+20% 0.452 0.411 0.414 0.422 0.416 0.420 0.432 0.439 0.433
CasSIM+30% 0.474 0.423 0.428 0.437 0.433 0.435 0.440 0.442 0.441
CasSIM+40% 0.477 0.441 0.451 0.439 0.435 0.436 0.443 0.446 0.444
CasSIM+50% 0.449 0.431 0.440 0.423 0.420 0.421 0.429 0.432 0.431

Discussion. From the above analysis, we can see our CasSIM model produce promis-
ing performance for both popularity prediction and final adopter prediction. More-
over, it effectively models the two roles of users in information diffusion. The in-
tegration of message contents into our model also helps improve the prediction of
popularity when observation periods are short.

7.5.5 Ablation Study

We examine the contributions of the components which are implemented in our
CasSIM model and missing in previous works. As we emphasised previously, the
novelty of CasSIM is the diffusion process modelling which considers users’ profiles
as two roles, message contents and topic-specific susceptibilities and influences. We
design three variants of CasSIM to study the components related to these factors:

• CasSIM-h/r. We do not distinguish users’ dual roles in diffusion and use the
same vectors for users’ susceptibilities and influences.

• CasSIM-up. We remove the pre-training process for the initial user profiles
and use random assignments.

• CasSIM-x. We remove users’ topic preference vectors, e.g., pv and do not
consider the content of messages under diffusion, e.g., xm.
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Table 7.7: Ablation study of popularity prediction performance on all datasets

Dataset Model
1 Hour 2 Hours 3 Hours

MSLE MAPE WroPerc MSLE MAPE WroPerc MSLE MAPE WroPerc

Sina Weibo

CasSIM 2.148 0.221 19.46% 2.126 0.217 14.94% 1.919 0.202 11.04%
CasSIM-h/r 2.323 0.241 23.09% 2.243 0.228 16.73% 1.992 0.216 13.73%
CasSIM-up 2.253 0.234 21.81% 2.223 0.224 15.04% 1.939 0.210 12.97%
CasSIM-x 2.214 0.224 21.74% 2.230 0.229 16.43% 1.973 0.213 13.36%

AMINER

CasSIM 1.272 0.231 24.51% 1.063 0.225 26.26% 1.376 0.126 14.09%
CasSIM-h/r 1.736 0.284 24.61% 1.403 0.278 29.63% 1.466 0.139 15.82%
CasSIM-up 1.337 0.247 22.46% 1.370 0.231 27.17% 1.409 0.139 16.18%
CasSIM-x 1.585 0.259 24.95% 1.355 0.246 28.12% 1.527 0.140 15.74%

Twitter

CasSIM 8.569 0.443 27.53% 8.046 0.437 25.43% 8.032 0.422 14.76%
CasSIM-h/r 9.283 0.488 33.64% 9.040 0.473 30.80% 8.577 0.448 21.07%
CasSIM-up 8.891 0.473 28.80% 8.490 0.451 27.85% 8.267 0.436 18.54%
CasSIM-x 8.907 0.478 29.46% 9.160 0.464 28.85% 8.352 0.452 19.79%

Table 7.7 outlines the performance comparison between CasSIM and its variants
in terms of popularity prediction. We have three major observations: i) CasSIM
performs considerably better than its variants; ii) ignoring users’ two roles in infor-
mation diffusion consistently leads to the largest damage to the prediction perfor-
mance; iii) except for Weibo, message content consistently ranks the second most
influential component.

7.5.6 Hyperparameter Test

We examine the influence of three important hyperparameters of CasSIM. The first
parameter is the number of GNN layers which can intuitively be interpreted as the
number of diffusion generations. The other two parameters relate to the pre-trained
user profiles. In CasSIM, we assume that users’ profiles are stable over a sufficiently
long time, especially for users’ topic profiles, e.g., pv. In the previous experiments,
we use the first three months’ retweets in our Twitter dataset to pre-train users’
susceptibility and influence vectors, and stick to them to conduct following cascade
predictions. We would like to test whether this is reasonable in practice and when
user profiles should be retrained. We take our Twitter dataset as an example in our
investigation. We start with examining how many months in advance are needed in
this pre-training process and then track the performance changes when predicting
cascades in different periods after the user profile training.

Figure 7.6 shows the results. We vary the number GNN layers z from {2,3,4,5}. We
can see that MSLE curve drops to the bottom when z = 3, then slowly climbs up
when larger numbers of layers are implemented. We vary the number of months
whose retweets are used for user profiles from {1, 2, 3, 4, 5} and the result shows
that the periods for user profiling can be neither too short nor too long. On our
Twitter dataset, three months work the best for popularity prediction. To test the
effectiveness of pre-trained user profiles, we train and test our CasSIM model on
tweets in the 1, 3, 6, 9 and 12 months after the tweets used for user profile training.
We can see the popularity prediction performance decreases when the trained user
profiles are used to predict cascades later than 3 months. However, a closer look
will reveal that the range of the change is rather small. This is consistent with our
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expectation that users’ preferences and interests are relatively stable on social media
in spite of the vast changes in social news trending.
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Figure 7.6: The influence of hyperparameters.

7.6 Conclusion

In this chapter, we propose a new deep learning model CasSIM which can simulta-
neously achieve the two most demanded cascade prediction objectives: popularity
prediction and final adopter prediction. Compared to previous models, CasSIM
explores the dual roles of users in diffusion processes as both receivers and distrib-
utors, and models the three basic factors in users’ decision to become active: sus-
ceptibilities, influences and message contents. With effective user profiling, CasSIM
successfully models the topic-specific property of susceptibilities and influences.
In addition, the introduction of GNN allows CasSIM to capture the dynamics of
susceptibilities and influences during information diffusion. With extensive exper-
iments on three real-life datasets, we validate the effectiveness of CasSIM in pre-
dicting popularity and final adopters. The results show that CasSIM outperforms
the state-of-the-art methods, especially when shorter cascades are observed, in both
social media and other scenarios where cascades also present.

We identify a few limits of our CasSIM model which can be addressed in the fu-
ture. First, we focused on messages in the form of texts. Second, CasSIM does not
consider the temporal ranks between the early adopters. It is interesting to extend
and test CasSIM in cascade prediction by combining other types of information in
messages such as images and quotations, and further improve the performance by
integrating the time stamps of early adopters.
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Part IV

Public Opinion Extraction
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Chapter 8

Learning Attitudes towards
COVID-19 Vaccination

In the previous chapter, we focus on controlling the spread of misinformation and
fake news by introducing CasSIM, a deep-learning cascade prediction model that
successfully captures the dynamics of susceptibility and influence during infor-
mation diffusion. As we progress to this chapter, our attention shifts to another
approach to dealing with the infodemic, which is to understand public opinion and
reactions to policies, particularly in relation to vaccination.

In this chapter, we present a deep learning framework that utilises text posts on
Twitter to extract and constantly track users’ vaccination stances. To address the
impact of linguistic features such as sarcasm and irony, which are frequently used
in vaccine-related discourse, we integrate recent posts from users’ social network
neighbours into the framework to help detect users’ genuine attitudes. Based on
our annotated dataset, the model instantiated from our framework achieves a 23%
performance improvement in attitude extraction compared to state-of-the-art text-
only models. By using this framework, we successfully validate the feasibility of
employing online social networks to monitor the evolution of real-life attitudes in
response to public events, such as vaccination campaigns and health policies.

8.1 Introduction

Vaccination is now unanimously accepted as an effective approach to combat the
ongoing global COVID-19 pandemic, caused by the contagious coronavirus SARS-
CoV-2 [MKC+21]. Despite the decreased efficacy against the infection of the recent
variants, a high-level uptake of the currently available vaccines is still believed as
key to restrain the numbers of severe diseases, deaths, and particularly hospitalisa-
tion, which is crucial for medical systems to remain operating as normal [ASK+22].
Regrettably, similar to the vaccines of other infectious diseases, not everyone is
willing to be vaccinated [DLG+13]. The impact of vaccine hesitancy has been widely
recognised and extensively studied in a number of countries [CPAA+21] for vari-
ous groups of people, e.g., healthcare workers [SSU+21] and immigrants [AMS21].
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Many related factors and their influences are evaluated and compared, e.g., educa-
tion, income and gender [CPAA+21]. These scientific findings have provided poli-
cymakers with valuable references to design strategies to reduce vaccine hesitancy
and fix the stagnant uptake ratios.

The success of these studies relies on the collection and accurate understanding of
the public’s attitudes towards vaccination. Social surveys with well-defined ques-
tions, due to their reliability and trustworthiness, have been adopted as the dom-
inant source of public opinions in the literature. However, as conducting surveys
is expensive and time-consuming, they tend to fall behind the fast development
of the COVID-19 pandemic [BMM+20], and thus fail in capturing the evolution
of vaccine hesitancy. Continuous tracking of public vaccination attitudes can help
healthcare bodies to identify the significant fluctuations to make a timely inter-
vention or fast capture the public’s response to implemented policies. Moreover, it
allows for analysing dynamic factors such as occasional social protests and mis-
information propagation, in addition to the static ones like demographic profiles
which rarely change in short periods.

In recent years, social media has attracted the attention of data analysts as an auxil-
iary data source to complement public health surveillance (PHS) [PSDN20, RRR20]
and understand social events such as natural disasters [RGGG18, MZBC20, AKZ20],
in spite of its inherent bias, e.g., regarding population sampling [BMM+20, ARZ20].
Due to social distancing and fear of the unknown, people spend more time than
ever on social media. As social media posts have proved to encode posters’ subjec-
tive opinions [JVR+20, GCH19b, RGGG18], in this chapter, we aim to leverage the
enormous daily posts during the COVID-19 pandemic to extract users’ vaccination
attitudes and track their temporal changes.

It is widely accepted to exploit social media posts to examine public opinions in-
cluding vaccine hesitancy before the pandemic with promising performance [PSDN20,
RRR20]. However, we still face challenges in analysing and continuously tracking vac-
cination attitudes during the COVID-19 pandemic. First, the globalism of the pan-
demic requires a method that can deal with multilingual posts. This fails most of
feature-based methods which classify posts with pre-defined textual features, e.g.,
through keywords, and usually focus on one single language. Second, the linguistic
features such as sarcasm and irony, which are quite common in vaccination-related
discourse during the pandemic, significantly impair the performance of existing
models. Consider the following example: “I wouldn’t do it for their vaccine, I’m wait-
ing for the 6G”. The user expresses his/her support for vaccination by making fun of
the conspiracy theory that chips are implanted with vaccine injection. After experi-
menting with the state-of-the-art text feature-based classification methods, we only
get an accuracy of 0.65, which is apparently not reliable enough for trustworthy
analysis. Last but not least, the aim of continuous tracking prevents from exploit-
ing community-based methods [CMK+20, JVR+20] due to the relatively stability of
community affiliations.

To address the above challenges, we take advantage of the recent advances of deep
learning in natural language processing (NLP), and propose a framework that can
accurately classify a textual post according to the vaccination stance expressed by its
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originator. Recent studies revealed that a user’s vaccination attitudes correlate with
those of their neighbours in social networks, e.g., friends and friends of friends.
For example, online social network users with negative attitudes often have so-
cial relations with users of positive attitudes [JVR+20, MMS21]. Inspired by such
studies, we integrate the recent posts of a user’s social network neighbours in our
framework to help detect the user’s genuine attitude and reduce the impact of
sarcasm. To train and test models instantiated from our framework, we use the
EU-vax dataset we collected. In addition to the experimental evaluation, we draw
the temporal evolution of vaccination attitudes extracted from our collected tweets.
We cross-validate with published social studies and manually analyse the popular
social events occurring around significant changes of vaccine hesitancy levels. Our
model has also been leveraged to measure individual users’ vaccine hesitancy in a
recent study [CCP+22b] which successfully cross-validates the consistency between
Twitter and social surveys. All the validation results successfully illustrate the ef-
fectiveness of our framework, as well as the power of social media as a data source
to grasp public vaccine hesitancy in practice in near real time.

Newsagents, governments, healthcare professionals and even anti-vaccine activists
use social media to spread news, knowledge and suggestions to persuade or dis-
suade people from getting vaccinated [VBBB+20]. To showcase the practical use of
our post-based attitude learning framework, to the best of our knowledge, we are
the first to demonstrate that the information users perceive from social media can
be used as predictors of their vaccine hesitancy changes.

Our contributions are as follows:

• We propose a framework to extract vaccination stances from textual social
media posts. Our framework integrates recent posts of a user’s social network
neighbours to help reduce the interference of linguistic features, e.g., sarcasm
and irony.

• We design models instantiating our framework. Based on our annotated dataset
from Twitter, the best model can increase the performance of attitude extrac-
tion by up to 23% compared to state-of-the-art text-only models.

• Using the model with the best performance, we track the evolution of vac-
cination attitudes. The utility of the extracted vaccination attitudes is further
validated by the consistency with published statistics and explainable signif-
icant fluctuations of vaccine hesitancy in terms of social events such as wide
propagation of misinformation and negative news.

• We show a practical use of our framework by validating the possibility to
predict a user’s vaccination hesitancy changes with the information he/she
perceives from social media.

Through this chapter, we (re-)establish the power of social media as a comple-
mentary data source in public health surveillance in spite of its inherent biases.
Specifically, when exploited properly, it can provide healthcare bodies with useful
information to guide or support their decision-making processes. Note that in spite
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of our target at COVID-19 vaccination attitudes, our framework is actually general
to be used or extended to extract other pubic opinions from social media posts.

8.2 Related Work

Vaccine hesitancy is believed to be a major cause of stagnant vaccine coverage and
contributor to vaccine program failure [DLG+13]. In spite of the lack of a uni-
fied definition, one widely accepted representation of vaccine hesitancy is a con-
tinuum, ranging from complete rejection of vaccines to varying degrees of scep-
ticism [WAD14]. In this section, we concentrate on the vaccine hesitancy studies
after the onset of the COVID-19 pandemic. A considerable amount of literature
has been published investigating the state of vaccine hesitancy and the influential
factors in different regions [KSP+21, SSS+21] for specific groups of people such
as healthcare employees [BMKP21, GGA20], immigrants [ARAK+21] and college
students [BND+20]. Although surveys are still the most adopted method to collect
sampled populations’ attitudes or stances toward vaccination [AAME+21], some
recent works leverage social media as a new dimension [JVR+20, GCH19b]. Com-
pared to self-reporting questionnaires, social media data are cost-effective to access,
and more importantly, allow analysis over large populations which was not previ-
ously feasible [BMM+20, ARZ20, JVR+20].

The methods extracting vaccination attitudes from social media fall into two cat-
egories: community-based and post-based. Cossard et al. [CMK+20] found pro-
and anti-vaccine users naturally cluster into communities and calculated commu-
nity partitions of various communication graphs to infer users’ vaccination stances.
Johnson et al. [JVR+20] made use of the topics of fan pages (similar to discussion
groups) on Facebook to approximate users’ attitudes, and analysed the communi-
ties formed by 100 million users across the world in terms of their vaccination atti-
tudes. Post-based methods benefit from the various types of information encoded
in social media posts such as texts, labels and pictures. Gunaratne et al. [GCH19b]
relied on the hashtags in tweets to approximate the vaccination attitudes in tweets.
Sentiment analysis [WNY20], as part of natural language processing (NLP), aims
to derive multiple types of subjective opinions expressed in texts such as political
stances [EDL16, CCET16]. The introduction of deep learning leads to more pow-
erful models that can process posts at the sentence or paragraph levels such as
word2vec [MCCD13] and BERT [DCLT19, OSB22]. The sentiments extracted from
texts have been used as references to study vaccine hesitancy [GADN21]. For in-
stance, Gbashi et al. [GADN21] detected the opinions of media towards vaccines in
Africa through Twitter and Google news.

Discussion. The community-based methods cannot capture the fast development of
public vaccination attitudes due to the relatively stable connections between users.
Moreover, community memberships are effective for analysis on the level of pop-
ulations but fail to accurately derive individual users’ attitudes. The post-based
methods in previous studies are not specifically designed and trained for COVID-
19 vaccines. As a result, they cannot capture the special linguistic characteristics of
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the online discourses during the COVID-19 pandemic. This is partially because of
the lack of social media posts which are related to COVID-19 vaccines and anno-
tated with vaccination stances. In this chapter, we propose a framework that can
not only benefit from state-of-the-art post-based methods, but also deal with the
interference of linguistic features such as sarcasm and irony in discourses related
to COVID-19 vaccination. We also create the first annotated dataset of tweets which
can facilitate developing future models on subjective opinion extraction. Intuitively,
our framework fuses the recent online discourses of the originating user’s friends
(including his/her own past posts) as part of the input to help mitigate the impact
of sarcasm and irony.

The previous works that are closest to our work includes [EDL16, CCET16, WNY20]
which leverage auxiliary information on social media in addition to texts to classify
social media posts, e.g., structure of social connections [CCET16, EDL16] and sen-
timent diffusion patterns [WNY20]. However, they still rely on manually selected
features either for texts under analysis or the auxiliary information. For instance,
Wang et al. [WNY20] used features of information diffusion trees and diffusion
networks to predict the likelihood of sentiment changes when social media posts
propagate among users. This likelihood is then used to adjust the classification
results of text-only classifiers. Cotelo et al. [CCET16] represented social structural
information with calculated community partitions and combined it with the struc-
ture embedding with word frequencies in targeted text to infer political stances.
One problem is that the features effective for one type of opinions may not results
in the same level of performance for other opinions. Moreover, the existing works
still use word-level representations for texts and are only tested effective on a sin-
gle language. Although they can be re-trained with new training data in other lan-
guages, it is not clear whether they can result in similar performance when dealing
with multiple languages simultaneously. This prevents them from being applied in
regions/countries with populations of various origins.

Different from the literature, we propose an end-to-end deep learning framework
specifically for inferring vaccination attitudes which can automatically extract use-
ful representation of the inputs without manual intervention. This allows our frame-
work to be easily adopted to infer other subjective opinions when properly re-
trained with new data. Considering the global requirement of monitoring vaccine
hesitancy, we ensure that our framework can deal with multilingual texts.

8.3 Extracting Vaccination Attitudes from Social Media Posts

8.3.1 Problem Definition

Extracting the vaccination stance of a social media post can be technically formu-
lated as a natural language processing (NLP) task [LPL+22], i.e., classifying texts
according to given class labels. In this chapter, we focus on the affective stance to-
wards COVID-19 vaccination. Thus the set of labels is L = {NE, PO, NG} where
NE, PO and NG correspond to neutral, positive and negative, respectively. The ba-
sic idea of text classification in NLP is first to calculate a representation of the given
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text which summarises its linguistic features and then output the most likely class
label. Classification methods differ from each other in terms of the formats of text
representation and the mapping from representations to class labels. Text classifi-
cation confronts the challenge that the attitude or emotion expressed by the same
words varies according to the context. For instance, the figurative usage of symptom
words can fool the keyword-based classification methods and significantly deterio-
rate the precision of health mention classification [BJL+20]. Sentiments of the short
texts with symptom words are thus introduced as auxiliary information to deal
with this figurative interference.

As discussed previously, we notice that during the COVID-19 pandemic, Twitter
users tend to use sarcastic or ironic expressions to describe their disagreements
with those with different vaccination stances. Inspired by previous works such
as [BJL+20], given a post, we aim to benefit from the originator’s social relations as
well as their past posts to help reduce or eliminate the interference of sarcasm and
irony.

We use G = (V , E) to represent the social graph recording the social relations
between users where V is the set of nodes and E ⊂ V × V is the set of edges
between nodes. A node v ∈ V corresponds to a social media user and an edge
(v, v′) indicates the existence of a relationship between two users v and v′. Note that
we ignore the direction of relationships in this chapter to take into account all the
neighbours of a user, e.g., both followers and followees on Twitter. Thus, (v, v′) ∈ E
implies (v′, v) ∈ E . We abuse the terms user and node in the following discussion
when it is clear from the context. Let N k

i be the set of neighbours of node vi within
k hops, i.e., {v | dG(v, vi) ≤ k} where dG(v, vi) is the shortest distance between v
and vi in the graph G. Note that node vi is also in N k

i as dG(vi, vi) = 0. We use xt
i

to denote the textual message posted by user vi at time t. We use M<t
i to denote

the list of posts originated by user vi before time t chronologically ordered by their
post time, and M<t

N k
i

to represent the set of post lists of the neighbours of user vi

within k hops.

Our COVID-19 vaccination attitude classification problem can be defined as calcu-
lating the probability distribution of all labels in L. The final vaccination stance of
xt

i , i.e., f (xt
i ), is determined by the label with the largest probability. Formally, we

have
f (xt

i ) = argmax
stance∈L

Pr(stance | xt
i ,G,M<t

N k
i
).

8.3.2 A Vaccination Attitude Learning Framework

To solve the classification problem formulated previously, we propose a framework
which takes advantage of the recent success of adopting deep learning in NLP and
graph analysis such as text embedding and GNNs.

Figure 8.1 depicts an overview of our framework by labelling its three main compo-
nents in different background colours: i) a text-level information embedding mod-
ule, ii) a GNN-enhanced module, and iii) a classification module. The first module
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Figure 8.1: An illustration of our attitude classification framework and model.

is used to learn the linguistic representation of the targeted post while the second
module summarises the linguistic features of the recent messages posted by the
user’s neighbours. We concatenate the outputs of these two modules as the input
of the classification module. GNN [KW17] has shown its advantage in transform-
ing graph information, including structures and attributes of nodes and edges in
both academia and industry. Intuitively, it employs a message passing scheme to
integrate the information of a node’s neighbourhood as the representation of the
node. The calculated embedding is then used for various downstream applications
such as node classification and link prediction. Variants of GNN differ from each
other in terms of the implementation of their message passing schemes.

Our framework can be instantiated by assembling various methods that can achieve
the corresponding tasks of the modules. In the following, we present how we im-
plement every module of the framework and justify our choices.

8.3.3 Our Model

Text-level information embedding. In order to mine meaningful information from
a limited number of annotated posts, recent solutions leverage pre-trained NLP
transformers to calculate the embedding for short texts [LFX+20, OSB22]. NLP
transformers have been empirically evaluated in [ZLZZ21] where RoBERTa [LOG+19]
is shown to outperform the competing models. Due to its high effectiveness, we
adopt RoBERTa to learn text representations in our model. The model takes a tex-
tual post, e.g., xt

i , as input, and outputs a sentiment-oriented representation vector
ztext

i,t ∈ Rd where d is the pre-defined dimension of the vector. RoBERTa will be
fine-tuned with the posts in the training set.

GNN-enhanced module. Given the target post xt
i , we utilise this module to capture
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the linguistic features of the recent messages posted by vi’s friends within k hops
before t. The definition of “recent” is flexible and depends on application scenarios.
In this chapter, we select the last λ tweets before t as a user’s recent tweets. Its out-
put will be subsequently used as complementary contextual information to further
ameliorate classification performance. Therefore, the input of this module consists
of the social network G and the historical messages of user vi’s k-hop neighbours,
i.e., M<t

N k
i
. Note that the post originator’s recent messages are also considered as

vi is included in N k
i . The output will be a text-level embedding vector that can be

intuitively interpreted as a summary of useful features of friends’ recent discourse.

We take two successive steps to calculate the output text-level representation vector
zi,t. We first integrate the recent posts of each user in vi’s k-hop neighbourhood
as a summary of his/her vaccination discourse. In the second step, we propose a
new GNN-based model named by H2GAT to aggregate the discourse of all vi’s
neighbours into the social text encoding vector.

STEP 1: Text-level encoding. For each user vj ∈ N k
i , we use his/her last λ posts in

M<t
j , denoted by the list (xtλ

j , xtλ−1
j , . . . , xt1

j ) where tm (1 ≤ m ≤ λ) is the time stamp
of vj’s last m-th post. We apply the pre-trained RoBERTa model and then obtain
the corresponding list of text-level representations, i.e., (ztext

j,tλ
, ztext

j,tλ−1
, . . . , ztext

j,t1
). There

are many ways to integrate vj’s past text-level representations while distinguishing
their various temporal importance, e.g., Hawkes [Haw71] and GRU [CvMBB14]. In
our implementation, we adopt the dynamic-aware position encoding by assigning a
fixed importance factor to each past post according to its position in the list. This
method is simple but more effective than other competing ones in our experiments
(as shown in Section 8.4). Formally, the integrated text-level representations of user
vj is calculated as follows:

zhist
j,t = ∑

m≤λ

αm · ztext
j,tm

where αm (1 ≤ m ≤ λ) is trainable and describes the positional relation between
the past posts. Note that k and λ are predefined hyper-parameters that should be
tuned manually.

STEP 2: H2GAT. It is pointed out that the heterophily phenomenon widely exists
among online social network users [PCWF07]. This phenomenon also exists in
vaccination-related discourses as the attitudes and linguistic features can be signif-
icantly different between users. Considering the heterophily of vaccination discus-
sion in a user’s neighbourhood, we adopt and extend a recent GNN-based method
called H2GCN [ZYZ+20]. The same as other GNNs, it also has multiple layers, the
ℓ-th of which can be formulated as follows:

Hℓ
i = Combine({Aggregate{Hℓ−1

j : j ∈ N̂ k′
i } : k′ ∈ {1, . . . , k}})

where N̂ k′
i represents node vi’s k′-order neighbours, i.e., nodes that have an exact

distance of k′ from vi in G. Formally, N̂ k′
i = {vj | dG(vj, vi) = k′}. Note the difference

of N̂ k′
i from N k′

i . As G is connected, when k′ > 0, we have N̂ k′
i ⊂ N k′

i . The initial
H0

j for each vj ∈ V is set to zhist
j,t .
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Note that different from [ZYZ+20] which adopts the Aggregate function of GCN [KW17],
we use GAT [VCC+18] for better performance. The output representation of vi, de-
noted by zsocial

i,t , is calculated by combining node representations of all layers:

zsocial
i,t = Combine({H0

i , H1
i , . . . , Hk

i }).

Many ways exist to implement the function Combine. We adopt the one in H2GCN [ZYZ+20]
in our model which outputs the concatenation of all inputs.

By concatenating zsocial
i,t and ztext

i,t , we obtain the text-level representation vector for
classification. Formally,

zi,t = zsocial
i,t ∥ ztext

i,t .

Attitude classification. We implement a simple two-layer structure to conduct the
classification. Note the output vector has a length of |L|. Recall L is the set of class
labels. The first layer applies the ReLU function to each element in zi,t and at the
second layer, we use a linear regression where W ∈ R2d×|L| and b ∈ R|L| is the bias
vector. The softmax function is applied to calculate the probability distribution over
the class labels. Formally, the distribution p is calculated as follows:

p = softmax (ReLU(zi,t) · W + b) .

The class label with the largest probability will be chosen as the output. We use
CrossEntropyLoss as the objective function to train the entire model.

8.4 Experimental Evaluation

Evaluation setup. We set up an evaluation pipeline following the approach for
traditional supervised classification [MKC+21]. In this chapter, we utilise our EU-
Vax dataset. Specifically, we split labelled tweets into training (80%), validation
(10%) and testing (10%) sets. The models are optimised with the training set, and
the validation set is used to tune hyper-parameters. The model performance is
evaluated on the testing set.

Hyperparameter settings. We pre-process the tweets by removing mentions of
other users with ‘@’, quoted hyperlinks and ‘RT’ which stands for “retweet”. To
re-confirm the overwhelming performance of transformer-based models, we also
implement two traditional machine learning models that are widely used in the
literature for similar tasks such as sentiment analysis: SVM and random forests. We
use TfidfVectorizer [PVG+11] to convert tweets into the bag of n-gram vectors and
use them as the input textual features for these two models. Grid search is utilised
as the optimiser to train the parameters.

We train our model for 400 epochs and use Adam [KB15] for optimisation with
the learning rate of 10−5 and weight decay of 5 × 10−4. For the text encoder, i.e.,
RoBERTa, we adopt the implementation XLM-RoBERTa [OL20] and follow their
default settings where the maximum string length, i.e., parameter d, is 128. For
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our GNN-enhanced module, we set the embedding dimension as 64. The neigh-
bourhood order k which is also the number of layers and the number of historical
tweets λ are important to ensure representation quality. Therefore, we conduct an
empirical study to analyse the influence of these two key hyper-parameters to en-
sure the final performance. In Figure 8.2, we present the classification accuracy with
different values of k (on the left) and λ (on the right). We observe that these two
hyper-parameters indeed significantly influence classification accuracy. Our model
arrives at the best performance with k = 2 and λ = 3.
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Figure 8.2: Parameter tuning for k and λ.

Experimental results. We have two objectives. One is to validate the overwhelming
performance of our model over traditional machine learning models that are widely
used in the literature, i.e., Random Forests and SVM. The other is to compare other
possible implementations of our proposed vaccination attitude learning framework.
In order to distinguish these models, we name them with two parts concatenated
with ‘+’. The first part tells the adopted GNN model while the second part gives
the method handling the temporal importance of past tweets. As all models use
RoBERTa for text encoding, we do not explicitly put it in the model names. We
present their performances in Table 8.1.

We reconfirmed the existing studies that transformer-based methods outperform
traditional machine learning models. They can only guarantee an accuracy of around
0.4 which is at least 0.22 less than all other models. Moreover, we have four major
observations that justify the effectiveness of our implementation. First, the consid-
eration of friends’ vaccination discourse increases the performance. The text-only
classification model with RoBERTa only has an average accuracy of 0.65 while the
other models, which are implemented with the GNN-enhanced module, achieve
at least an accuracy above 0.70. Second, the vaccination discourse between friends
on Twitter is actually heterophily and the choice of heterophily-aware GNN mod-
els, i.e., H2GCN and our H2GAT, can further significantly improve the perfor-
mance. The next four models below RoBERTa in Table 8.1 have the same settings
except for the GNN methods. Both the application of H2GCN and our H2GAT
achieve an increase of about 0.04 compared to the models with GCN [KW17] and
GAT [VCC+18]. Third, the consideration of the temporal importance of past tweets
leads to another up to 0.06 improvement. We consider four methods to combine a
user’s last λ tweets: MEAN, GRU, Hawkes and PE (short for positioning encoding).
The method denoted by MEAN simply averages the text-level encodings. The po-
sitioning encoding method adopted in our model generates the best performance.
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Table 8.1: Model performance.

Model Precision Recall F1 Accuracy

Random Forests 0.4334±0.0775 0.3766±0.0716 0.4491±0.0955 0.4187±0.0606

SVM 0.4033±0.0460 0.3944±0.0196 0.4382±0.0403 0.4168±0.0110

mBERT 0.6622±0.0101 0.5769±0.0153 0.6132±0.0113 0.6466±0.0087

RoBERTa 0.6758±0.0218 0.5848±0.0232 0.6249±0.0210 0.6517±0.0348

GCN+MEAN 0.6936±0.0101 0.6932±0.0153 0.6890±0.0113 0.7033±0.0087

GAT+MEAN 0.7001±0.0091 0.7002±0.0102 0.6983±0.0078 0.7096±0.0099

H2GCN+MEAN 0.7387±0.0021 0.7144±0.0081 0.7286±0.0027 0.7412±0.0015

H2GAT+MEAN 0.7361±0.0038 0.7371±0.0007 0.7331±0.0019 0.7461±0.0008

H2GCN+GRU 0.7813±0.0025 0.7794±0.0048 0.7712±0.0027 0.7829±0.0010

H2GAT+GRU 0.7937±0.0036 0.7968±0.0021 0.7927±0.0011 0.8009±0.0008

H2GCN+Hawkes 0.7843±0.0016 0.7760±0.0038 0.7699±0.0047 0.7831±0.0025

H2GAT+Hawkes 0.7946±0.0036 0.7922±0.0010 0.7903±0.0019 0.7988±0.0023

H2GCN+PE 0.7859±0.0031 0.7813±0.0045 0.7792±0.0022 0.7889±0.0028

H2GAT+PE 0.7948±0.0051 0.7954±0.0029 0.7936±0.0020 0.8030±0.0017

Last, our extended H2GAT model outperforms the original H2GCN. Our imple-
mentation, i.e., H2GAT+PE, finally improves the text-only RoBERTa model by 23%
in terms of accuracy.

Empirical complexity analysis. As the RoBERTa model is pre-trained, the models
instantiated from our framework have the same complexity as the adopted GNN
models. In our experiments, we conduct the training on a server with Xeon E5
CPU and Tesla V100 GPU. On average, the training time for RoBERTA is about
115 seconds for an epoch while 52.5 seconds are needed for an epoch in training
the GNN-enhanced module and the classification module. What is more important
is the running time of the models when processing a tweet. This will determine
the practical utility of our framework in tracking public vaccination attitude in real
time. We run four parallel instances of our model H2GAT+PE on the server. On
average, it takes 24.68 seconds for every 1,000 tweets, which means more than 3.5
million can be processed a day. For the regions we target at, we collect in total 9 mil-
lion vaccination-related tweets over two years. This implies our model is sufficiently
efficient for processing posts on a daily basis.

Cross-validation. In addition to experimental evaluation, we also make use of pub-
lished social studies to cross-validate our model’s effectiveness. Lazarus et al. con-
ducted a survey in June 2020, and estimated that the vaccine acceptance rates in
France and Germany are 58.9% and 64.5%, respectively [LRP+21]. After applying
our model to classify the tweets in the same period, we find the percentages of
tweets with positive vaccination attitudes of these two countries are 42.27% and
53.12%, which are similar and retain the relative difference between the two coun-
tries. This implies that posts on Twitter can be used as a reference to fast grasp
vaccine hesitancy when surveys are not available.

Vaccine hesitancy tracking and manual analysis. We draw the temporal evolution
of the percentage of tweets for each selected label in Figure 8.3 on a daily basis
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Figure 8.3: Temporal distribution of tweets with different vaccination attitude labels.

starting from November 8, 2020. Based on previous research reporting that the con-
tent of tweets is highly correlated with real-world situations [PCHG20], we make
a hypothesis that real-world events may contribute to the fluctuating proportion of
tweets with different vaccination stances. In vaccine hesitancy monitoring, special
attention should be paid to the fluctuations of negative attitudes. We take three time
points that correspond to turning points of the curve of label NE as examples and
discuss the potential causes. Among them, two correspond to apex points where
negative tweets reach local maximum percentages and one corresponds to a base
point with local minimum negative tweets. We first plot word clouds in Figure 8.4
to identify the most frequently used keywords in the week around the selected
points. Then we search these keywords on the Internet to identify the events that
may contribute to the changes.

The first apex occurred around January 16, 2021. We notice that this surge of nega-
tive tweets attributes to the propagation of a large volume of misinformation. Take
the two most dominant pieces of misinformation as examples. One said that on
January 14, the Norwegian Medicines Agency reported that a total of 29 people
had suffered side effects, 13 of which were fatal. The other was about the death of
an Indian healthcare worker after receiving COVID-19 vaccines. The second peak
happened around February 15, 2021. One piece of negative news was reported that
AstraZeneca vaccines were stopped from administration after many health work-
ers of Morlaix hospital in France suffered from side effects. This news subsequently
led to anti-vaccination discussions. The base point occurred between the two peaks
around February 3, 2021. From Figure 8.4(c), we find the dominant positive news
that Russia started to offer other countries such as Pakistan with its vaccines.

In addition, we conducted a recent study in [CCP+22b] with the proposed model
to measure individual users’ vaccine hesitancy levels and successfully confirmed
the consistency of Twitter with social surveys in terms of vaccine hesitancy surveil-
lance. The consistency persists across regions and along with time. From the above
discussion, we can see our model can enable the use of social media data to track on
a daily basis the changes of vaccination attitudes, and capture the impact of social
events on public vaccine hesitancy. This may finally help the governments identify
the right time to take intervention actions.
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(a) Apex 1 (01/14–01/21) (b) Apex 2 (02/10–02/17) (c) The base (01/30–02/06)

Figure 8.4: Word clouds of tweets around selected points.

8.5 Use Case: Predicting Vaccination Hesitancy Changes

In this section, we illustrate a use of our vaccination attitude learning framework.
Specifically, we analyse the role of the vaccination information widely spread across
Twitter in affecting users’ attitudes towards vaccination. Considering the compre-
hensiveness of vaccination discourses, we classify the most popular vaccination-
related tweets into themes that may correlate with vaccine hesitancy. Based on
users’ perceived information in these themes, we forecast their vaccination attitude
changes with classic machine learning models.

8.5.1 Period Selection and Theme Labelling

The participation of vaccination discourses fluctuates over time along with the oc-
currence of social events related to COVID-19 vaccines. We select two time periods
after the start of COVID-19 vaccination campaign, in which the volume of tweets
experiences significant surges compared to adjacent periods. The first period lasts
for 25 days spanning from December 27, 2020 to January 20, 2021 while the second
period lasts for 15 days between January 25 and February 8, 2021. These two periods
involve 161,611 original tweets posted in total among which 25,449 are retweeted
at least once. The total number of times of being retweeted adds up to 242,129. We
encounter two challenges to continue our analysis of the impact made by diffused
information: the comprehensiveness and large volume of propagated tweets. Due to
the huge volume of tweets propagated over Twitter, it is not plausible to consider
all of them. Previous studies show that tweets’ influence follows the power-law
distribution and 80% of the impacts come from 20% of the most widely spread
tweets [EJR+10]. Inspired by this result, we leverage the top 25% most widely prop-
agated tweets in every period to approximately represent the themes expressed in
the diffused information. In total, we select 501 original tweets that are retweeted
78,891 times from 72.16% of the users. To deal with the comprehensiveness, with
a careful examination of the selected tweets, we categorise them into themes that
are considered to be responsible for the changes of vaccination attitudes. We re-
fer to previous studies [BMZP19, DPLA+21], especially the Parent Attitudes about
Childhood Vaccines (PACV) survey [OTMS+11] and the WHO Vaccine Hesitancy
Matrix [Org14], and identify 11 themes that are relevant and can cover the propa-
gated tweets (see Table 8.2 for explanation and examples).
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Table 8.2: Diffused information themes and examples.

Theme Description Example (Translated to English)
Positive news Positive news about vaccines &

vaccination
Pfizer/BioNTech’s vaccine would be effective
against the new British variant of COVID19.

Negative news Negative news about vaccines &
vaccination

Portugal : She dies 2 days after the vaccine (at
41 years old). Her family asks for explanations

Distrust in govern-
ment management

Doubt about the trustworthi-
ness of governments or medical
institutions, e.g., regarding the
daily update of statistics

They have lied to us so much about masks,
chloroquine, contagion in children, that it will
be difficult to trust them the day they will tell
us about a harmless vaccine.

Dissatisfaction with
politics/policies

Unsatisfactory views of politic-
s/policies, such as ineffective
vaccination programs.

I am opposed to mandatory vaccination be-
cause all of the world’s health organizations
say that it is not the right way for a vaccine
to spread.

Perception of the
pharmaceutical in-
dustry

Perception that pharmaceutical
manufacturers pursue only eco-
nomic interests rather than pub-
lic health interests

Pfizer’s CEO sold 60 percent of his shares
when the Covid vaccine was announced. When
the CEO sells, it stinks

Conspiracy Content that describes the event
as the secret acts of a powerful,
malevolent force.

18 months they’ve been on the vaccine ????
When did they know there would be a Covid
19 "pandemic" ????

Beliefs, attitudes
about health and
prevention

Personal views on vaccines and
the immune system, e.g. home-
opathy, natural immunity, alter-
native therapies.

There is no point in a generalized vaccine for a
disease whose mortality is close to 0.05%.

Positive personal ex-
pression

Personal expression of positive
attitude towards vaccines

We have a new weapon against the virus: the
vaccine. Hold together, again.

Negative personal ex-
pression

Personal expression of negative
attitude towards vaccines

Why could actually 1.5 billion Chinese get
healthy without vaccination, and with us it
only works with vaccination...?

Positive information Positive expressions about vac-
cines from healthcare profes-
sionals

#COVID19 #vaccinationHow does an mRNA
vaccine work?

Negative information Negative expressions about vac-
cines from healthcare profes-
sionals

My daughter, a nurse at the AP-HP, on the vac-
cine "Ah ah ah! They don’t even dream about
it, they start with the old ones so that we can
attribute the side effects to age".

We ask two of the 10 hired annotators to manually annotate the selected tweets
with their corresponding themes. The Cohen’s Kappa coefficient k = 0.82 implies a
high rate of agreement between them.

8.5.2 Predictability of Vaccine Hesitancy Changes

Handling retweets and quotations. In addition to original posts, retweets and quo-
tations also take up a large proportion of a user’s historical posts. For quotations,
a user added some comments which may express opposite opinions to that of the
quoted one. Therefore, we only use the texts users upload as valid posts encoding
users’ vaccination stances. Although retweets cannot fully represent a user’s own
opinion, the behaviour of retweeting itself indicates some sort of agreement with
the ideas expressed in the message retweeted [DLZ+15]. Based on this idea, we take
retweets into account when calculating an individual user’s vaccine hesitancy. The
same approach is also adopted in the vaccination attitude tracking discussed in the
previous section.

Quantifying individual vaccine hesitancy. We measure the vaccine hesitancy of an
individual user according to the tweets posted or retweeted by the user in a time
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Table 8.3: Model performances for attitude change prediction.

Model Precision Recall F1 Accuracy

SVM 0.7374 0.7382 0.7345 0.7477
Naive Bayes 0.6468 0.6559 0.6427 0.6658
Random Forest 0.6811 0.6838 0.6795 0.6958
XGBoost 0.7232 0.7229 0.7198 0.7342
GBDT 0.7533 0.7516 0.7498 0.7603

interval. Formally, it is calculated as: Np(v)−Nn(v)
Np(v)+Nn(v)

where Np(v) denotes the number of
posts with positive vaccination attitudes of user v during the selected interval, and
Nn(v) is the corresponding number of tweets with negative attitudes. Considering
our purpose being idea validation, we do not distinguish the various significance
of original posts and retweets.

For each selected period, we use the tweets posted 14 days before and after the
period to evaluate individual users’ hesitancy levels and see how they change. In
order to ensure the reliability, we only consider the users who posted or retweeted
at least 3 tweets. If a user’s vaccine hesitancy experiences a change smaller than
0.05, we consider the user’s attitude unchanged, otherwise, increased or decreased
depending on the change direction.

Modelling perceived information. A Twitter user perceives information from the
tweets retweeted or originally posted by his/her direct friends. As our focus is
the information widely diffused on Twitter, we use a vector Iu = (c1, c2, . . . , cm) to
approximately represent a user u’s perceived information where ci is the number of
popular tweets a user receives from followers in i-th theme. As we have 11 themes,
m = 11 in our analysis.

Model evaluation. We make use of various standard machine learning methods
to predict the change of a user u’s vaccination attitudes with the input of Iu. The
methods consist of SVM with rbf kernel (C = 1, γ = 0.1), Naive Bayes (α = 1),
Random Forest (100 trees with maximum tree depth of 5), XGBoost (100 trees with
maximum tree depth of 4) and GBDT (100 trees with maximum tree depth of 5).
Table 8.3 shows the performance of these methods. All numbers are averaged over
5 training sessions. We can see all the methods can achieve reasonably good predic-
tion performance and GBDT outperforms the rest models with an accuracy of 0.76.
When we consider additional factors such as users’ vaccine hesitancy levels before
the periods, the accuracy can be improved to 0.86.

Discussion. These results show that we can make accurate predictions with users’
perceived popular information. Since we have empirically illustrated the plausibil-
ity to use social media posts to track public vaccination attitudes, the results imply
that the diffused information on social media like Twitter could be used as indi-
cators to forecast the changes of vaccine hesitancy levels. As repeated many times,
although such predictions cannot achieve the same level of trust as social surveys,
they provide decision-makers with a method to quickly understand and get pre-
pared for the potential damage of misinformation or compare different vaccine
hesitancy intervention strategies over social media.
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8.6 Conclusion and Discussion

In this chapter, we propose a deep learning framework to learn vaccination attitudes
from social media textual posts. Although vaccination attitudes extracted from so-
cial media cannot be as accurate and reliable as conventional social surveys, our
framework allows for continuously tracking the fast development of public vaccina-
tion attitudes and capturing the changes that deserve specific attention in time. By
leveraging friends’ vaccination discourse as contextual information, our model suc-
cessfully reduces the interference of linguistic features such as sarcasm and irony.
Our model instantiate from the framework improves the state-of-the-art text-only
method by up to 23% in terms of accuracy according to our manually annotated
dataset. With cross-validation with published statistics and manually analysis, we
further validate the effectiveness of the model to capture public vaccine hesitancy in
real life. After identifying 11 themes from widely diffused information on Twitter,
with the help of our model, we validate the predictability of users’ vaccine hesi-
tancy changes by the information they perceived from social media. This show a
potential use of our model in practice. Through this chapter, we establish again the
power of social media data in supplementing public health surveillance, especially
in combating infectious virus like COVID-19.

Limitations and future work. We have three main limitations to address in fu-
ture. First, we primarily focus on Twitter which potentially induces bias in our data
and analysis. Thus, it is important to extend our work to other social media plat-
forms such as Facebook and Instagram, and cross-validate our results. Second, we
only analyse users’ affective vaccination stances (i.e., positive, negative and neutral),
which can only be used as an indicator of users’ intention of getting vaccinated. It
will be interesting to look deeper into users’ tweets for a longer time and identify
underlying determinants that lead to vaccination acceptance. Third, we use only
the top 25% most widely spread tweets as representatives to extract the themes of
diffused information partly limited by manual annotation. Some information in cer-
tain themes may be missed. As an interesting future work, we will develop effective
NLP models to learn different tweet themes automatically.

Ethical considerations. This work is based completely on public data and does not
contain private information of individuals. Our dataset is built in accordance with
the FAIR data principles [WDA+16] and Twitter Developer Agreement and Policy
and related policies. Our release of the dataset is also compliant with General Data
Protection Regulation (GDPR). To conclude, we have no ethical violation in the
collection and interpretation of data in our study.
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Chapter 9

Consistency of Social Media with
Surveys

In the previous chapter, we present a deep learning framework to track users’ vacci-
nation stances using text posts on Twitter, successfully demonstrating the potential
of online social networks to monitor real-life attitudes in combating the infodemic.
However, we recognise that social media data, including data on vaccine attitudes
and indecision, may be subject to potential biases and errors stemming from mea-
surement, coding, and missingness. In this chapter, our focus shifts to validating
whether social media data can complement social surveys for monitoring the ex-
tent of public hesitancy about the COVID-19 vaccine and exploring methods to cor-
rect potential biases. We utilise recent advances in artificial intelligence to present a
framework for estimating individuals’ vaccine hesitancy based on their social media
posts. Using vaccine-related tweets from our Twitter dataset, we compare vaccine
hesitancy levels measured with our framework against those collected from mul-
tiple consecutive waves of surveys. We successfully validate that Twitter can be
used as a data source to calculate public acceptance of COVID-19 vaccines consis-
tent with national and regional level surveys. Furthermore, this consistency persists
over time, although it varies across socio-demographic subgroups.

9.1 Introduction

The last three have seen the impacts of the unprecedented global COVID-19 pan-
demic and the infodemic on public health and the economy. Thanks to the suc-
cessful vaccination program, our societies are gradually reopening and going back
to the pre-pandemic states. As of August 2022, 68.1% of worldwide populations
have been fully vaccinated. This milestone cannot be achieved without fast and
accurate understanding of the opinions and responses of general populations to-
wards COVID-19 vaccines and their changes over time. For instance, it allows for
identifying the right intervention time and evaluating the effectiveness of deployed
measures.

Social media has shown its strengths in complementing conventional surveys to
study vaccine hesitancy [NCP+20]. Social media overcomes the decreasing response
rates of surveys and provides a cost-effective way to reach a significantly larger
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population [CCZP22c]. In addition, it allows for capturing the evolution of pub-
lic opinions over time, especially, in case of emergent incidents such as a sudden
outburst of misinformation when there is no sufficient time for conducting sur-
veys. In spite of these advantages, the results derived from social media are often
questioned mainly because of three inherent sources of errors: measurements, cod-
ing and missingness [HM17, Bak17]. Measurement errors are incurred by the fact
that social media users may not express their real attitudes in their posts while
coding errors come from the deficiency of methods in capturing public opinions.
Missingness is caused by non-representative social media users, namely, not all
people express their opinions online. For instance, Twitter is more favourable to
young users while Facebook attracts the elders [RBZ20]. Our contributions. We

aim to address these challenges confronted in measuring the levels of public vac-
cine hesitancy with Twitter, one of the most widely used sources of social media
data [Sca18, NCP+20, CPAA+22]. Unlike existing works examining correlated fac-
tors [NCP+20], our purpose is to exemplify that with properly designed methods,
individuals’ vaccine hesitancy can be accurately measured from social media and the
estimation is consistent with surveys continuously over time and across countries and
regions. To the best of our knowledge, this is the first attempt to study the temporal
consistency of social media with surveys regarding vaccine hesitancy.

We perform a cross-validation by making use of the social survey of multiple waves
we conducted and the collected 745,661 tweets related to COVID-19 vaccines from
three Western European countries. We take advantage of recent advances in natural
language processing techniques, and quantify individuals’ vaccine hesitancy based
on their attitudes expressed in textual posts. In order to overcome the missingness
errors caused by non-representative Twitter users, we show that with three socio-
demographic attributes, i.e., gender, age and political ideology, the demographic
selection bias can be effectively corrected. When designing our framework, we con-
sider its applicability in a global pandemic like COVID-19 and ensure it can be used
in multilingual environments.

With comprehensive analysis, we successfully validate that Twitter is able to give
close estimation of vaccine hesitancy to surveys. This closeness persists at a sim-
ilar level across geographical regions and over time. The large Pearson correla-
tion coefficients indicate at least a strong correlation between the results from sur-
veys and Twitter. We also show that the consistency varies among different socio-
demographic groups. Our research re-established the power of Twitter to act as a
complementary source to continuously monitor public vaccine hesitancy in COVID-
19 and future health crises of similar types.

9.2 Related Work

Since the outbreak of the COVID-19 pandemic, great efforts have been devoted
to studying the potential of social media in understanding the public’s hesitancy
in the fast developed vaccines [CPAA+22, WW20, AAOA21, SGE+22], based on
the pre-pandemic success in studying public opinions [Sca18, JGS+20, NCP+20,
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PVPCBH+21]. For instance, Cascini et al. [CPAA+22] reviewed the literature during
the COVID-19 pandemic about how diffused information on social media impacts
vaccination attitudes. In general, previous works aim to study the correlation of
social media users’ online activities, e.g., information perception, to vaccine hesi-
tancy. According to sources of online digital traces, the related work falls into two
categories. The first category makes use of questionnaires or public polls to col-
lect participants’ usage habits of various social media platforms as well as their
vaccination attitudes. For instance, with a survey of 504 participants, Alfatease et
al. [AAOA21] observed the dependence between social media usage and willing-
ness to accept vaccination in Saudi Arabia. Wilson et al. [WW20] revealed the corre-
lation between online disinformation campaign and activity organisation on social
media to vaccine hesitancy. The second category leverages tools such as stance de-
tection to infer various features of online activities from social media data of various
formats including hashtags, hyperlinks and textual posts. For instance, Shaaban et
al. [SGE+22] studied vaccine acceptance with positions and tones of comments on
various social media platforms. Lyu et al. [LWW+22] inferred user demographics
as well as vaccine attitudes through a text-based machine learning approach, and
analysed vaccine acceptance among people with different demographic character-
istics.

Three characteristics have been well accepted as the advantages of social media over
surveys, i.e., volume, velocity and variety [RSM22] and promoted social media data
as a complementary or alternative source of public opinions. However, the inherent
limits such as the bias of population coverage and accuracy of extracted opinions,
inevitably cause doubts about claims drawn from social media [SPG+16]. Several
attempts have been conducted to study the reliability of social media data in study-
ing public opinions by comparison to surveys [DZLL17, Sca18, NCP+20, ABKK20].
Davis et al. [DZLL17] compared the sentiments of tweets to the polls about pub-
lic opinions of the Obamacare act and showed the comparability of Twitter pub-
lic opinions with survey results. Scarborough [Sca18] illustrated the correlation of
tweet sentiments to gender attitudes. Amaya et al. [ABKK20] evaluated three types
of errors that generate the difference between social media and public polls.

Identified challenges. Few existing works study how and whether individuals’
vaccine hesitancy can be directly estimated with digital traces on social media, and
whether the estimation is consistent with surveys, especially over time. Although a
number of factors have been revealed to be correlated, they can only be interpreted
as indicators but not a precise estimation. Without a proper cross-validation, it is
unclear whether social media can be used for real-time vaccine hesitancy monitor-
ing as suggested [PCHG20]. The work most related to this chapter is [GLG+22],
which compares existing selection bias correction methods with demographic at-
tributes extracted with machining learning models. Different from this chapter, it
aims at public health status and does not study the consistency of the predictability
of online discourses over time.
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Table 9.1: Statistics of survey participants and Twitter users.

#Survey participants #Twitter users #Tweets
Luxembourg 474 1,764 28,148
Germany 501 13,390 270,695
France 711 26,562 446,818

9.3 Survey and Twitter Data

Survey. We conducted a panel survey with Qualtrics to cover representative sam-
ples of adults aged 18 and above from France, Germany, Italy, Spain, Luxembourg,
and Sweden. In the first wave, stratification was used to ensure each national sam-
ple accurately represented the distribution of gender, region, and age, while other
socio-economic factors such as race were not considered. The study received ethical
approval from the University of Luxembourg’s Ethics Review Panel, and all re-
search was conducted according to the applicable guidelines. All participants pro-
vided their informed consent. The survey, which takes roughly 25 minutes to com-
plete, is conducted online. Respondents were invited to fill in online questionnaires
including questions about their living conditions, mental health and opinions about
vaccination. More information can be found in this paper [BCDL22]. The purpose
of the survey is to collect respondents’ status in the pandemic to study the impact
of the Covid-19 pandemic. We select three adjacent countries, i.e., Germany, France
and Luxembourg, as our research objects because of their synchronised vaccination
policies and close economic connections. Moreover, the diverse origins of the peo-
ple are also representative for the worldwide populations. Our survey is conducted
in multiple waves at intervals of approximately 4 months. During the waves in June
and October of 2021, and March 2022, we consecutively asked about individuals’
vaccination attitudes through the following question:

Have you been vaccinated against COVID-19?
1 Yes
2 No, but I plan to
3 No and I do not plan to

More than 8,000 individuals participated in the first wave. However, only part of
them participated consistently in the following waves. As one of our purposes is to
test whether Twitter can capture the changes in individuals’ vaccination attitudes
over time, we only keep the participants that responded in all the three waves.
Table. 9.1 shows the statistics of our survey data.

Vaccine hesitancy evaluation. The vaccine hesitancy is calculated as the proportion
of the participants marking the third option. Let Nℓ,t

i (i ∈ {1, 2, 3}) be the number of
respondents from a given region/country ℓ ticking the i-th option, in a given survey
wave t. As the first two options indicate acceptance of COVID-19 vaccines, the
vaccine hesitancy of a region ℓ in the survey wave t, denoted by VHt

ℓ, is calculated

as: VHt
ℓ =

Nℓ,t
3

Nℓ,t
1 +Nℓ,t

2 +Nℓ,t
3

.
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Twitter Data. We construct a dataset of Twitter users located in the target coun-
tries—Luxembourg, Germany, and France—who are actively involved in vaccine-
related discussions during the periods corresponding to the three selected survey
waves based on the EU-Vax dataset. We retain only 49,791 users located in Luxem-
bourg, Germany, and France. We further download the following relationships for
each user to construct a social network represented as a directed graph. A vertex
represents a Twitter user, while an edge from vertex v to vertex v′ indicates that the
user corresponding to v follows the user represented by v′. We only keep users who
post at least 5 tweets in each target month to ensure the reliability of the vaccination
attitude calculation. Note that we do not consider retweets because they are more
likely to carry the intent of the originating user than quotes and original tweets. Be-
cause Twitter contains accounts of organisations such as newspapers and medical
departments, we remove the accounts of these organisations to ensure that vaccina-
tion attitudes belong to the general population. We apply the pre-trained model in
citeWangHAGHFJ19 to identify such accounts. In total, we remove 5,070 organisa-
tional accounts. Finally, we have 1,764 Twitter users from Luxembourg, 13,390 from
Germany, and 26,562 from France, which is almost 30 times the number of survey
respondents.

9.4 Measuring Vaccine Hesitancy with Twitter

We select Twitter as the source of vaccination attitudes by assuming Twitter users
tend to express their real opinions about COVID-19 vaccines. In other words, we
hypothesise the measurement error is acceptable when Twitter data is used. In this
section, we describe how we handle the other two inherent errors with three se-
quential steps. The first step targets at reducing the coding error by proposing a
measurement of vaccine hesitancy while the other two steps are to correct the miss-
ingness error. Note that our aim is not to eliminate the errors but to mitigate the
impact of these errors. We adopt widely accepted methodologies to avoid statistic
manipulation and thus ensure the generality of our framework.

9.4.1 Measuring Individual Vaccine Hesitancy

A significant amount of research has been devoted in understanding public opin-
ions from social media posts, varying from word-level [GDM+21, BKZY21] to data-
driven approaches [NTFW22, ZXL+22]. We use one recent deep learning model
which is specifically designed to infer COVID-19 vaccination attitudes expressed in
tweets and overwhelms existing models in classification accuracy [CCZP22b]. An-
other reason for our selection is its power of dealing with multilingualism which
is essential for the global demands of vaccination attitude monitoring. Intuitively,
the model uses RoBERTa [OL20], the most popular pre-trained embedding method,
to calculate the representation of tweets, and leverages social connections to inte-
grate the recent tweets of each user’s friends with a variant of H2GCN [ZYZ+20].
The model takes the text representation of a tweet under analysis and the inte-
grated embedding of the recent discourse of the originating user’s friends as input
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and output the possibility that the tweet is classified into attitudes corresponding
to vaccine support, anti-vaccine, and neutral. We retrain this model with the release
annotations [CCP22a], our constructed social network and collected tweets. The
resulted model achieves an accuracy of 0.80 and Marco F1-score of 0.79.

Vaccine hesitancy calculation. To estimate an individual user’s vaccine hesitancy,
we leverage the vaccination attitudes expressed in his/her tweets. Inspired by the
measurements in [BGRM11, CCZP22a] which are originally proposed to evaluate
subjective well-being, we construct the measurement of vaccine hesitancy. Intu-
itively, users who post more tweets supporting vaccination are considered more
acceptable of COVID-19 vaccines and thus more likely to get vaccinated. Formally,
let Ns(u), Na(u) and Nneu(u) be the numbers of tweets of user u posted in a given
period t (i.e., June and October 2020, and March 2022 in our analysis), indicat-
ing his supportive, anti-vaccine and neutral stance about COVID-19 vaccination,
respectively. The vaccine hesitancy of u, denoted by VHt(u), is calculated as:

VHt(u) = 1 − VAt(u)+1
2 , where VAt(u) = Ns(u)−Na(u)

Ns(u)+Na(u)
·
(

Ns(u)+Na(u)
Ns(u)+Na(u)+Nneu(u)

) 1
2

.
(9.1)

Note that VAt(u) is extended by Chen et al. [CCZP22a] from [BGRM11] with neutral
messages considered by adding a scaling factor. It actually measures the vaccina-
tion acceptance of user u and is between −1 and 1. We first normalise it to the
domain between 0 to 1 and then compute the complement as the level of vaccine
hesitancy. As a result, a user’s vaccine hesitancy of 1 indicates total opposition
against vaccination and 0 means complete belief in COVID-19 vaccines.

9.4.2 Inferring Socio-demographic Profiles

The missingness error is related to the socio-demographic selection bias which is
a well-recognised inherent limit of social media [RBZ20]. One way to correct such
bias is to adjust each individual’s vaccine hesitancy level by multiplying a factor
that is calculated according to the difference between the distributions of social
media users and the general population. Despite the large number of out-of-box
methods inferring various demographic attributes such as education [GLG+22]
and income [MMSS19], few can be used in our analysis due to their limitation
in dealing with multilingual texts. Existing methods, especially the ones based on
machine/deep learning, can be extended to multilingual data with well-annotated
multilingual data for training and testing. However, due to the privacy protection
regulations such as GDPR, it is challenging to collect people’s social media accounts
and their corresponding socio-demographic information.

In order to ensure our framework applicable globally, we need to select the de-
mographic attributes that can be inferred with multilingual data and effectively
mitigate socio-demographic selection bias. Considering these two requirements, we
select three socio-demographic attributes, i.e., age, gender and political ideology.
We detail the models adopted or extended to infer these three attributes.



9.4. Measuring Vaccine Hesitancy with Twitter 141

Age and gender. We use the multi-modal deep neural model M3 [WHaPAG+19] to
infer the age and gender of Twitter users. These two attributes are simultaneously
inferred by M3 with users’ account name, screen name, self-descriptive description
and profile image. A user’s age falls into one of the three ranges: 19 − 29, 30 − 39
and ≥ 40. Multilingual textual inputs are first translated into English word by word,
and the 3, 000 most frequent characters are selected to calculate users’ embedding.
Although the performance of the M3 model has been confirmed by previous stud-
ies [ZXL+22, DLP+20], we still construct a sample dataset to test its performance
on our collected Twitter data. This sample dataset consists of 100 randomly selected
users, whose ages and genders are manually annotated by two annotators. The an-
notated labels are highly agreed between the two annotators with large Cohen’s
Kappa coefficients (k = 0.95 for gender and k = 0.81 for age). When tested on our
sample dataset, the M3 model achieves a Macro F1 score of 0.92 and an accuracy of
0.91 for age classification. For gender classification the Macro F1 score is 0.78 and
the accuracy is 0.75.

Political ideology. We infer Twitter users’ political ideology by the Multi-task Multi-
relational Embedding model (TIMME) [XSX+20]. TIMME utilises the heteroge-
neous types of relationships between Twitter users including ‘following’, ‘retweet’,
‘mention’ and ‘like’ in conjunction with tweets to infer users’ bipolar political ide-
ologies, i.e., left and right. As TIMME is designed for English-only data, we have
to re-train it on a multilingual dataset. One distinguishing feature of TIMME is
that it can be trained only with a sparsely annotated training set. This allows us to
prepare a new training set of a relatively small size from our collected Twitter data
with the public Twitter parliamentarians dataset [vVTU20]. The dataset [vVTU20]
contains manually verified parliamentarians from 26 countries, including France,
Germany, and Luxembourg, with their names, political ideology, and Twitter IDs.
The political ideology is evaluated in a scale from 0 to 10. We manually update
the list of parliamentarians of the three countries by i) adding new politicians who
joined after the data release, and ii) updating the obsolete Twitter IDs. In total, we
constructed a training dataset of 1,021 parliamentarians. We encode the political
ideology scores into left, centre and right. Specifically, a score smaller than 4 is en-
coded as left while a score larger than 6 is encoded as right. A score between 4 and
6 belongs to centre.

We conduct two extensions to TIMME. First, we extend TIMME to a triple classifica-
tion model (with ‘centre’ added) by replacing the binary cross-entropy loss function
with a categorical cross-entropy loss function. Second, to enable TIMME to handle
multilingual texts, we replace the word-level embedding with RoBERTa [OL20]. We
train the extended TIMME model with the parliamentarian dataset and achieve an
accuracy of 0.77 and Marco F1-score of 0.78.

Socio-demographic selection bias in our Twitter data. Figure 9.1 presents the
socio-demographic distributions of the survey participants and our collected Twit-
ter users in the three targeted countries. A significant difference between the two
distributions in every country is observed. Moreover, the difference varies from
one country to another. When measured by KL-Divergence, we have the distances
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Figure 9.1: Population distribution according to age, gender (F: female, M: male) and polit-
ical ideology (L: left, C: centre, R: right).

of 0.52, 0.29 and 0.38 in France, Germany and Luxembourg. This shows the non-
representation of Twitter users and the necessity of correction.

9.4.3 Correcting Socio-demographic Selection Bias

The general idea of socio-demographic correction is to re-weigh non-representative
samples’ vaccine hesitancy with scalars calculated according to their percentage
differences from the representative population. Let ϕu be the socio-demographic
attributes of user u in the form of age, gender and political ideology. Suppose
PrS

ℓ (ϕu) (PrT
ℓ (ϕu)) be the percentage of survey participants (Twitter users) with the

same demographic attribute as u in region ℓ. We use U ℓ to denote the set of users
located in the given region ℓ. Thus, the corrected average vaccine hesitancy of region
ℓ in time period t is

V̂H
t
ℓ =

1
|U ℓ| ∑

u∈U ℓ

VHt(u) · PrS
ℓ (ϕu)

PrT
ℓ (ϕu)

. (9.2)

According to the availability of the joint distributions (i.e., PrS
ℓ and PrT

ℓ ), we can use
different implementations. When the joint distributions are available, the correction
is called post-stratification. When the two joint distributions are not both available,
naive post-stratification [LW17] and Raking [DSS93] are applicable. The former as-
sumes independent socio-demographic variables while Raking adopts an iterative
approach to adjust each sample’s marginal to match the representative population
distribution.
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Figure 9.2: Vaccine hesitancy across countries.

9.5 Cross-validation

Our objective of the cross-validation is to test whether the vaccine hesitancy inferred
from Twitter with our framework is similar to that collected from the survey and
whether the similarity, if validated, persists over time and across regions/countries.
As vaccine hesitancy varies among countries and regions [HTD+21], we study both
the country- and region-level vaccine hesitancy. Note that we use post-stratification
as the correction method because of the availability of the joint distributions of the
three selected socio-demographic attributes.

9.5.1 Vaccine Hesitancy Across Countries

In Figure 9.2, we show the average vaccine hesitancy in Germany, France and Lux-
embourg in the three survey waves calculated with Twitter data and surveys. In
general, Twitter users are more negative about vaccination. In addition, we have
three other observations. First, we observe similar changes of vaccine hesitancy over
time. This complies with the latest updates derived from surveys/polls around the
world which indicate a decreasing trend of vaccine hesitancy [BKG+22, BBCC22].
This trend presents in all the three countries even without the socio-demographic
selection bias correction. Special attention should be paid to the survey of Luxem-
bourg in the last wave. The vaccine hesitancy increased by about 0.015 compared to
the second wave. With a manual check, we notice that about 8 participants changed
their choice from ‘No but I plan to’ to the third option ‘No and I do not plan to’. This
increase is actually not consistent with the continuous increase of vaccinated pop-
ulation since October 2021 and may be caused by the relatively smaller number of
respondents in Luxembourg. Second, when ordered by their vaccine hesitancy, the
countries have similar rankings. Residents in France are relatively more reluctant
to get vaccinated compared to the other two countries and people in Germany are
more favourable to vaccination. Our third observation is that without bias correc-
tion, the vaccine hesitancy calculated with Twitter data is rather different from the
survey while correcting selection bias can significantly reduce the difference and
ensure a similar estimation. Without the bias correction, the average vaccine hesi-
tancy differences of the three countries are 0.083, 0.089 and 0.077 in the three waves,
respectively. The differences drop by more than 70% to 0.019, 0.027 and 0.024 after
correction.
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Figure 9.3: Vaccine hesitancy across regions from Twitter and survey.

9.5.2 Vaccine Hesitancy Across Regions

We obtain the regions according to the administrative divisions of the three coun-
tries. As the distribution of our survey respondents is not uniform across regions,
to ensure the reliability of the vaccination reluctance calculated from our survey, we
remove those regions with fewer than 11 participants. In total, we obtain 24 regions
including 8 administrative regions of France and 13 states of Germany. Due to the
small size of Luxembourg communities, we divide Luxembourg into three regions:
north, south and central.

Figure 9.3 illustrates the region-level vaccine hesitancy in the three survey waves.
We can clearly see that after bias correction, Twitter data can reflect similar levels
of vaccine hesitancy to the surveys despite the relatively big differences in certain
regions. This similarity persists in all the three waves. In Figure 9.4, we further
show the Pearson correlation coefficient r between the hesitancy levels calculated
from Twitter and surveys before and after the socio-demographic bias correction.
Each point corresponds to a region with a coordinate (x, y) where x is the vaccine
hesitancy derived from Twitter and y is that from the surveys. The orange line
is composed by the points where x = y. After correction, the Pearson correlation
coefficients reach over 0.80 in the first two waves, which indicates a very strong
correlation according to the well-accepted standard [Ako18]. In the third wave, the
correlation strength decreases to 0.57 which is still interpreted as strong. After a
closer look, we observe that the points that are relatively far from the orange line
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Figure 9.4: Region-level correlations of vaccine hesitancy between Twitter and Survey.

mainly belong to France and Twitter users acted more negatively about COVID-19
vaccines. We check the news in March 2022 and find that this is the period when the
Omicron variants were transmitted fast in eastern France regions. This also implies
that Twitter can capture the changes of vaccination attitudes faster than survey in
emergent incidents.

We further check whether the above identified correlation persists in various socio-
demographic sub-populations. We divide the survey respondents and Twitter users
into 18 groups according to their age, gender and political ideology. Then we calcu-
late the region-level vaccination reluctance rates for each group, and compute the
Pearson correlation between the reluctance rates of each Twitter group and the cor-
responding survey group. Figure 9.5 depicts the results. The general observation is
that the correlation indeed varies among different demographic groups. The corre-
lation increases for groups with larger ages but remains almost the same regardless
of gender and political ideology. This implies that younger people may actively par-
ticipate in discussion about vaccines, but they are less willing to express their real
intention of vaccination on Twitter. In addition, the correlation decreases with time,
which implies when a high-level vaccination rate is reached, the topics on Twitter
about COVID-19 vaccines become less relevant to users’ intention of vaccination.
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Figure 9.5: Pearson correlations (r) between Twitter and survey across 24 regions by Age,
gender (F: female, M: male) and political ideology (L: left, C: centre, R: right).

9.6 Discussion and Conclusion

We have propose a framework to directly estimate public vaccine hesitancy from
Twitter. Our framework addresses the widely recognised inherent errors when
analysing social media data with a quantitative measurement of vaccine hesitancy
and an adapted method correcting socio-demographic selection bias. With our
multi-wave surveys and collection of tweets, we conduct the first attempt to val-
idate the consistency between Twitter and surveys regarding monitoring COVID-
19 vaccine hesitancy both across regions and over time. Through comprehensive
cross-validation, we show that Twitter can capture the public vaccine hesitancy
and generate at least strongly correlated estimation with that inferred by surveys.
Moreover, this correlation is consistent over time on levels of both countries and re-
gions although it varies among different socio-demographic sub-populations. Last
but not least, we consider the global demands of vaccination attitude monitoring
and empower our framework to deal with multilingual texts. With this chapter, we
re-establish the power of social media in complementing social surveys to contin-
uously capture the fast evolution of vaccine hesitancy in public health crises like
COVID-19. Moreover, our work can encourage social scientists to use social media
in studies, especially for the topics which are hard to formulate in questionnaires
e.g., influences of social interactions on vaccine hesitancy.

We have a few limitations that will be addressed in future. First, our cross-validation
is conducted in Western Europe. Similar studies in other areas can further validate
the generality of our framework and our findings. Second, with vaccine hesitancy
consistency validated, it will be helpful to examine whether existing social findings
such as correlated factors can also be confirmed on social media data. Third, we
only test three socio-demographic attributes. In spite of their effectiveness in bias
correction, other socio-demographic attributes can also be tested and added to the
bias correction if they can lead to better performance, especially with new progress
in artificial intelligence.

Ethical consideration. This chapter is grounded in public data and does not involve
any private information from individuals. The research process was established in
full compliance with FAIR data principles, Twitter Developer Agreement & Policy
and relevant policies. The survey is also approved by the Ethics Review Panel of
our institution.
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Chapter 10

Conclusion and Future Work

This thesis focuses on two key challenges in virtual ethnography research: data ac-
quisition and the application of computational tools. We exemplify virtual ethnog-
raphy research during the COVID-19 pandemic by concentrating on combating
infodemics. In terms of data acquisition, two datasets are collected for different
downstream research purposes, covering a two-year period from October 22, 2019,
to December 31, 2021. Concerning the application of computational tools, partic-
ularly focusing on SNA, we investigate three research questions: social character-
istics, information diffusion, and sentiment analysis. In social characteristics, our
objective is to identify users and subgroups who genuinely facilitate information
diffusion. For information diffusion, we propose prediction models based on users’
susceptibility, influence, and message content to estimate the ultimate popularity
of a message and pinpoint users who would eventually retweet the message. In
sentiment analysis, we develop a GNN-based text classification model for the clas-
sification and monitoring of vaccine hesitancy content. Through cross-validation,
we demonstrate that social media data can serve as a significant complement to
surveys when tracking vaccine hesitancy.

10.1 Conclusion

We restate the five research questions proposed in Chapter 1.

Research Question 1

How can we gather an adequate amount of data to fulfil the demands of
virtual ethnography studies?

To address this question, we introduced a data collection method tailored for ac-
quiring comprehensive COVID-19-related Twitter datas, which includes tweets,
users’ geographic locations, social networks, and annotations on users’ attitudes
towards COVID-19 vaccines. The resulting datasets supports various virtual ethno-
graphic studies related to COVID-19 and online social networks.
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Research Question 2

How to design a measurement to capture the actual bridging performance of
social media users in terms of spreading COVID-19-related information?

To tackle this question, we proposed two novel measurements to assess the true
bridging performance of individual users and user subgroups in spreading COVID-
19 information. Unlike existing metrics based on social connections, our metric is
derived directly from information diffusion history. By manually analysing the col-
lected dataset, we were able to identify previously overlooked influential health
professionals and volunteers, in addition to super tweeters. Furthermore, we dis-
covered a significant negative correlation between a user’s bridging performance
and their subjective well-being during the pandemic, validating the applicability of
our measurements for virtual ethnographic studies.

Research Question 3

How to accurately predict the popularity of information?

To achieve this goal, we conducted a two-part study. In the first part of the study, we
investigated the influence of message content on users’ retweeting behaviour. We
analysed collected data and confirmed the existence of the "info-exposure spillover
effect" which demonstrates that exposure to different information affects social me-
dia users’ behaviour in diffusing information during a pandemic. We then devel-
oped three new models using GNNs and a temporal coding method, which out-
performed the baseline for all types of information.

In the second part of our study, we incorporated topic-specific and context-dependent
susceptibility and influence into our model. We introduced a new deep learning
model, CasSIM, that achieves both popularity prediction and final adopter predic-
tion by exploring the dual role of users as receivers and distributors in the diffusion
process. CasSIM models the topic-specific property of susceptibilities and influ-
ences. through effective user analysis and captures the dynamics of susceptibilities
and influence during information dissemination using GNN. Through extensive
experiments on three real-life datasets, we validated the effectiveness of CasSIM in
predicting popularity and final adopters, and the results showed that CasSIM out-
performs state-of-the-art methods, especially when shorter cascades are observed
in social media and other scenarios where cascades also exist.

Research Question 4

How to accurately extract users’ attitudes from their posts?

In response, we designed a framework for learning vaccination attitudes from so-
cial media text posts. Although vaccination attitudes extracted from social media
may not be as reliable as conventional social surveys, our framework allows for
faster tracking of public vaccination attitudes and capturing changes that require
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specific attention. We leveraged friends’ vaccination discourse as contextual infor-
mation to reduce interference from linguistic features such as sarcasm and irony.
Our model instantiated from the framework improved the state-of-the-art text-only
method by up to 23% in accuracy according to our manually annotated dataset.
We validated the effectiveness of the model in capturing public vaccine hesitancy
in real-life through cross-validation with published statistics and manual analysis.
Using our model, we identified 11 themes from widely diffused information on
Twitter and validated the predictability of users’ vaccine hesitancy changes based
on the information they perceived from social media. This demonstrates the poten-
tial use of our model in practice.

Research Question 5

Is it possible to accurately measure individuals’ vaccine hesitancy from social
media using appropriately designed methods?

To address this research question, we proposed a framework for directly estimat-
ing public vaccine hesitancy from Twitter. Our framework included a quantita-
tive measurement of vaccine hesitancy and an adapted method to correct socio-
demographic selection bias. To validate the consistency between Twitter and sur-
veys regarding monitoring COVID-19 vaccine hesitancy across regions and over
time, we conducted multi-wave surveys and collected tweets. Through compre-
hensive cross-validation, we demonstrated that Twitter can capture public vaccine
hesitancy and generate strongly correlated estimations with those inferred by sur-
veys. We also found that this correlation is consistent over time on both country
and regional levels, although it varies among different socio-demographic sub-
populations.

10.2 Limitation

While numerous SNA tools have been created to support virtual ethnographic re-
search, various potential avenues remain to be investigated more thoroughly.

10.2.1 The Lack of Multiple Data Sources

A notable limitation of this dissertation is its exclusive focus on Twitter data as
the primary source of virtual ethnographic research concerning COVID-19. While
the proposed data collection method are extensive for the Twitter, and the results
offer valuable insights into social characteristics, information diffusion, and senti-
ment analysis, these findings may not be generalise to other social media platforms
or diverse types of online communities. This restricted scope risks neglecting the
wider context of online communication and the potential influence of various vir-
tual spaces on the diffusion of information during a public crisis.

First, different social media platforms exhibit unique user demographics, interac-
tion modalities, and content-sharing mechanisms. These distinguishing features can
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considerably affect the applicability and effectiveness of the computational meth-
ods and models proposed in this study. For instance, social media platforms like
Instagram and TikTok display distinctive user behaviours and content formats com-
pared to Twitter. The absence of intra-platform reposts on these platforms presents
a different landscape for user engagement. Additionally, their focus leans more
heavily towards visual content such as images and videos, contrasting with Twit-
ter’s text-focused format. These unique attributes might lead to variations in the
mechanisms of information diffusion and sentiment dynamics, which might not be
fully captured by models that are trained solely on Twitter data.

Second, relying solely on Twitter data may introduce bias into the analysis, as it may
not represent the full spectrum of public opinion or information diffusion processes.
Moreover, other platforms, such as online forums or chat groups like Reddit or
Telegram, foster different types of interactions and host distinct communities with
diverse perspectives on the COVID-19 pandemic. Focusing only on Twitter users,
who may exhibit specific characteristics or behaviours that do not accurately reflect
the broader population, could limit the ecological validity and generalisability of
the study results. Expanding the scope of analysis to include additional platforms
and online communities would enhance the robustness of the findings and provide
a more comprehensive understanding of virtual ethnographic research during a
pandemic.

10.2.2 The Impact of Multimedia Content

A second limitation of this thesis is its heavy reliance on text-based information for
developing and evaluating computational models, overlooking the potential impact
of other forms of content on information dissemination. Various forms of multime-
dia content, such as images, videos, or links to external websites, are frequently
shared by users on social media platforms and can significantly influence users’
decisions to engage with and disseminate information.

Not accounting for these additional content types may cause the proposed model
to overlook the full range of factors that contribute to the communication process,
potentially leading to an incomplete or biased understanding of the underlying dy-
namics. Furthermore, multimedia content may convey subtle or complex meanings
that are difficult to interpret through textual analysis alone. For instance, a tweet
featuring visual content like an image or video may express sentiment or opinion
that isn’t directly translatable into a text-based message, yet it can significantly im-
pact user behaviour and the spread of the message. Similarly, links to external sites
may provide contextually relevant information that can influence users’ decisions
about sharing information. Excluding these content types from the analysis could
result in oversimplifying the virtual ethnographic landscape and limit the model’s
ability to accurately predict and comprehend the complexity of information diffu-
sion in the context of public crises. Incorporating multimedia content and external
links into the analysis would provide a more holistic understanding of information
dissemination and improve the robustness of the computational models.
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10.3 Future Work

Based on the limitations identified in our thesis, there are several promising di-
rections for future research to enhance the applicability and generalisability of the
proposed computational methods and models in virtual ethnographic studies re-
lated to public crises and other contexts.

10.3.1 Generalising to Other Online Platforms

One direction for our future research is to extend the data collection methodologies
and computational models to other social media platforms and online communities,
such as Facebook, Instagram, TikTok, Reddit, and Telegram, among others. This
would allow for a broader understanding of the social characteristics, information
diffusion, and sentiment analysis related to COVID-19 and other topics of interest.

To achieve this, we could first develop platform-specific data collection methodolo-
gies that account for the unique features, user demographics, and content-sharing
mechanisms of each platform. Next, we will adapt and evaluate the proposed com-
putational methods and models in the context of these platforms, taking into con-
sideration the distinct interaction patterns and network structures. Comparative
studies could then be conducted to investigate the similarities and differences in
information diffusion and sentiment dynamics across various online environments.
By expanding the scope of virtual ethnographic studies to include multiple plat-
forms and communities, we would be better equipped to understand the complexi-
ties of information diffusion and public sentiment during the COVID-19 pandemic
or other public crises.

This comprehensive approach could provide valuable insights for policymakers,
public health professionals, and other stakeholders, as they work to design more
effective communication strategies and interventions to address public concerns
and combat the spread of misinformation.

10.3.2 Incorporating Multimodal Content

Since our current model primarily focuses on text-based information, future work
should investigate incorporating other content types, such as images, videos, and
links to external websites, into the computational methods and models. This will
enable us to gain a more comprehensive understanding of the factors influencing
information dissemination and user behaviour, as users often base their decisions
on a combination of text, visual, and other multimedia content.

To tackle this challenge, we plan to develop multimodal deep learning models in
the future that efficiently process and analyse various forms of content while syn-
chronising them with textual data. This may involve employing computer vision
techniques for image and video analysis, natural language processing for textual
information, and GNNs for social network analysis.
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By integrating multimodal content, the proposed model can offer a more inclusive
perspective on information diffusion and sentiment dynamics in online communi-
ties, thus enhancing its effectiveness and applicability across diverse contexts and
platforms.

Overall, the future work outlined above aims to build on the contributions of this
thesis by enhancing the applicability and generalisability of the proposed compu-
tational methods and models for virtual ethnographic studies. By addressing these
limitations, we can continue to advance the field and provide valuable insights into
the virtual world.
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