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Abstract

Despite state-of-the-art performance on natural data, Deep Neural Networks
(DNNs) are highly vulnerable to adversarial examples, i.e., imperceptible, carefully
crafted perturbations of inputs applied at test time. Adversarial examples can
transfer: an adversarial example against one model is likely to be adversarial5

against another independently trained model. This dissertation investigates the
characteristics of the surrogate weight space that lead to the transferability of
adversarial examples. Our research covers three complementary aspects of the
weight space exploration: the multimodal exploration to obtain multiple models
from different vicinities, the local exploration to obtain multiple models in the10

same vicinity, and the point selection to obtain a single transferable representation.
First, from a probabilistic perspective, we argue that transferability is funda-

mentally related to uncertainty. The unknown weights of the target DNN can
be treated as random variables. Under a specified threat model, deep ensemble
can produce a surrogate by sampling from the distribution of the target model.15

Unfortunately, deep ensembles are computationally expensive. We propose an
efficient alternative by approximately sampling surrogate models from the posterior
distribution using cSGLD, a state-of-the-art Bayesian deep learning technique.
Our extensive experiments show that our approach improves and complements
four attacks, three transferability techniques, and five more training methods sig-20

nificantly on ImageNet, CIFAR-10, and MNIST (up to 83.2 percentage points),
while reducing training computations from 11.6 to 2.4 exaflops compared to deep
ensemble on ImageNet.

Second, we propose transferability from Large Geometric Vicinity (LGV), a
new technique based on the local exploration of the weight space. LGV starts from25

a pretrained model and collects multiple weights in a few additional training epochs
with a constant and high learning rate. LGV exploits two geometric properties that
we relate to transferability. First, we show that LGV explores a flatter region of
the weight space and generates flatter adversarial examples in the input space. We
present the surrogate-target misalignment hypothesis to explain why flatness could30

increase transferability. Second, we show that the LGV weights span a dense weight
subspace whose geometry is intrinsically connected to transferability. Through



extensive experiments, we show that LGV alone outperforms all (combinations of)
four established transferability techniques by 1.8 to 59.9 percentage points.

Third, we investigate how to train a transferable representation, that is, a single
model for transferability. First, we refute a common hypothesis from previous
research to explain why early stopping improves transferability. We then establish5

links between transferability and the exploration dynamics of the weight space,
in which early stopping has an inherent effect. More precisely, we observe that
transferability peaks when the learning rate decays, which is also the time at which
the sharpness of the loss significantly drops. This leads us to propose RFN, a new
approach to transferability that minimises the sharpness of the loss during training.10

We show that by searching for large flat neighbourhoods, RFN always improves
over early stopping (by up to 47 points of success rate) and is competitive to (if
not better than) strong state-of-the-art baselines.

Overall, our three complementary techniques provide an extensive and practical
method to obtain highly transferable adversarial examples from the multimodal15

and local exploration of flatter vicinities in the weight space. Our probabilistic
and geometric approaches demonstrate that the way to train the surrogate model
has been overlooked, although both the training noise and the flatness of the loss
landscape are important elements of transfer-based attacks.
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1
Introduction

This chapter presents the context and challenges of this dissertation. First, we
introduce the field of adversarial machine learning and the topic of the
transferability of adversarial examples. Second, we present the challenges and open5

directions arising from the state of knowledge on the transferability of adversarial
examples. Finally, we outline the contributions of this dissertation.

Contents
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

1.1.1 Deep Learning: Achievements and Critical Failures . . . 2
1.1.2 The Transferability of Adversarial Examples . . . . . . . 3

1.2 Challenges of Adversarial Examples Transferability . . 5
1.2.1 C1. Knowledge Gap on Surrogate Model Training . . . 6
1.2.2 C2. Low Success Rates of Small Perturbations . . . . . 615

1.2.3 C3. High Training Cost of the Surrogate . . . . . . . . . 7
1.2.4 C4. Lack of Insights About Transferability . . . . . . . 8
1.2.5 C5. Over-Specialized Transferability Techniques . . . . 8

1.3 Overview of the Contributions . . . . . . . . . . . . . . 8
1.3.1 Scope and Goal . . . . . . . . . . . . . . . . . . . . . . . 920

1.3.2 General Outline: What Matters When Exploring the
Weight Space . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.3 Detailed Contributions per Chapter . . . . . . . . . . . 11
1.3.4 Addressing the Challenges . . . . . . . . . . . . . . . . . 14

1.4 Organization of the Dissertation . . . . . . . . . . . . . 1525

1.5 Quick Read Guide: Highlighted Sections for Busy
Readers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

30

1



1.1 Context
This dissertation focuses on the transferability of adversarial examples. Ad-

versarial examples, also known as evasion attacks, are the subfield of adversarial
machine learning dedicated to the worst-case distributional shift. This security
threat aims to find small perturbations in inputs that lead to the largest changes5

in the output of a machine learning model, at inference time.

1.1.1 Deep Learning: Achievements and Critical Failures
Deep learning has made tremendous progress on natural data over the last

decade. However, the state-of-the-art Deep Neural Network (DNN)s fail critically
against white-box adversarial examples. Simple projected gradient ascent in the10

input space is generally enough to decrease performance below random baseline
accuracy.
The prolific field of deep learning. Deep learning is a fast pace research field
which made tremendous progress in a variety of tasks from numerous fields, including
computer vision, natural language processing, bioinformatics, recommender systems,15

software engineering, among others. The availability of large-scale computing and
data had allowed to train larger and more powerful DNNs. Researchers have
made large progress on benchmark datasets over the last decade at a fast rate.
In particular, DNN is the default solution for many complex computer vision
tasks [DKA+19], since explicitly programming rule-based systems would be too20

cumbersome. Research on deep learning has a vast impact, as numerous services
rely on DNNs to analyse and edit images, detect spam and frauds, implement
surveillance systems, and recommand content. The recent popularity among the
public of large language models is the most striking example of how broad the
impacted public is.25

Trustworthiness issues. At the same time, DNN can output biased or unin-
tended predictions. Performing a complete audit of trained DNNs is impossible, as
interpreting weight values is meaningless to humans. Manual testing and auditing is
tedious at best, and often impossible. Often, these blind spots cause trustworthiness
issues that damage people or institutions. The prevalence of these unexpected30

behaviours may be reinforced by the shortness of development cycles. Service
providers might rush to deploy models without enough time to properly audit and
test them, due to fierce competition between service providers.
Adversarial examples. Despite their success on natural data, state-of-the-
art models critically fail on worst-case distributional shift. A common pitfall35

of these models is that they are highly vulnerable to adversarial examples, i.e.,
misclassified examples that result from adding tiny and imperceptible carefully
crafted perturbations to a well-classified example at test time [BCM+13; SZS+13].

2



The previously stated success of DNN clashes with the ease of finding adversarial
examples. Under a white-box threat model where the model is fully known, an
attack generally consists of a simple gradient ascent in the input space projected
in a p-norm ball [KGB17; MMS+18]. The small radius of these balls ensure the
imperceptibility of the perturbations. Despite the imperceptibility of perturbations5

added to test examples and the simplicity of the attack algorithm, the accuracy of
state-of-the-art models often drops to zero percent [BCM+13; SZS+13; KGB17].
Here lies a key difference with classical distribution shift, such as random noise.
Under classical distribution shift, the model accuracy generally remains above the
random baseline. However, DNNs critically fails under worst-case distributional10

shift.
The existence of adversarial examples can be interpreted positively or negatively,

depending on the application context. Adversarial examples may constitute a
critical security threat if malicious actors exploit this property to enforce some
desired outcome. Individuals or organised groups could use these vulnerabilities to15

bypass undesirable content filters, control the behaviours of autonomous cars, or
artificially spread information with recommender systems. Nevertheless, adversarial
examples are also a practical opportunity to defend against excessive, illegitimate,
or non-consensual uses of deep learning. For example, these vulnerabilities might be
a practical way to bypass massive surveillance systems that put civil and political20

rights at risk.

1.1.2 The Transferability of Adversarial Examples
An adversarial example against one model is likely to be adversarial against

another one. This phenomenon is called transferability and has two influential
outcomes. First, it provides insights about the representations learnt by DNNs,25

since these errors are not random learning artefacts. Second, it allows transfer-based
black-box attacks to fool unknown models without querying them.

Adversarial examples can generalize. Adversarial examples can transfer:
an example adversarial against one model is likely to also be adversarial against
another independently trained model (of the same or different class of hypothesis).30

This phenomenon has some implications about the nature and the causes of
adversarial examples. Concomitantly with the discovery of adversarial examples,
Szegedy et al. [SZS+13] observe their transferability. In particular, a perturbation
computed against one DNN can fool another DNN trained on a disjoint subset
of training examples. Then, adversarial examples are not random artefacts of35

learning, since the same perturbation can fool two independently trained models.
Transferability was also observed across neural network architectures. Therefore,
adversarial examples are not specific to one family of architectures. Likewise, cross-
technique transferability was observed between classical machine learning models.

3



For example, despite very different hypotheses about data distribution, adversarial
examples against logistic regression transfer well to a decision tree [PMG16].
Therefore, adversarial examples can generalize at multiple levels of the machine
learning pipeline: across independent training, across datasets, across neural
network architectures, and across modelling assumptions. Studying transferability5

in deep learning helps us better understand how DNNs learn their representation.

From white-box to black-box attacks. The second influential implication of
the transferability of adversarial examples is the possibility of attacking unknown
models without any queries. Adversarial attacks have been designed primarily in
white-box settings, where the attacker is assumed to have complete knowledge of10

the target DNN (including its weights). While studying such worst-case scenarios is
essential for proper security assessment, in practice the attacker should have limited
knowledge of the target model. In such a case, the adversarial attack is applied to
a surrogate model, with the hope that the crafted adversarial examples transfer to
(i.e., are also misclassified by) the target DNN. Transferability demonstrates that15

security by obscurity is not a robust defence. Indeed, keeping information secret
and severely restricting the number of queries cannot prevent an attacker from
training his or her own model to be used as a substitute. Transfer-based black-box
attacks have some benefits and drawbacks. Transfer-based attacks are applicable
where query-based attacks are not. For some applications, getting feedback from a20

model is costly. API accesses might be heavily restricted. And if the target model
is not accessible through a software interface, one may have to go by a physical
support. Physical attacks require printing the current adversarial example, manual
on-site setup, and digitalisation, to get a single feedback. This process is too
tedious and costly for query-based attacks that generally need several thousands of25

feedbacks, or numerous hundreds at best. Therefore, transferability permits attacks
that would not be possible otherwise. However, transfer-based attacks need to train
at least one surrogate model, which requires both computation capabilities and
training data. Given the scale of modern DNNs, the computation cost of training
a surrogate model exceeds by several orders of magnitude the computation cost of30

applying the attack once this model is trained.

A popular topic. The transferability of adversarial examples is a popular
research topic. Figure 1.1 shows the number of newly published articles on transfer-
ability listed in the Scopus database and the number of new articles submitted on
the arXiv platform, on a given year. The first papers containing the now established35

lexicon appeared in 2016 on arXiv and in 2017 on Scopus. The number of published
articles grew rapidly with an annual growth rate of 33.85%. The year 2022 was
particularly prolific: 184 articles were published in total and 8.33 preprints were
submitted to arXiv per month on average. The topic of transferable adversarial
examples is still a young field, since the published articles are only 1.95 years old40
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Figure 1.1: Number of published (Scopus) and submitted (arXiv) articles on the
transferability of adversarial examples per year. Each bar represents the number of
new papers on a given year, i.e., this figure is not a cumulative histogram. Papers
containing the word “transferability” or “transferable” and either “adversarial
example” or “evasion attack” in the title, abstract or keywords, until the 15th of
April 2023. The dashed bars are the linear projection for the year 2023.

on average (on the 15th of April 2023). Nevertheless, numerous contributions exist.
The Scopus database draws up a list of 491 papers on the topic, written by 1,141
authors. Therefore, the subject of the transferability of adversarial examples has
gained a lot of attention in the field, and is now a young established topic.

Overall, the transferability of adversarial examples is of importance for both5

understanding better DNNs and leveraging black-box attacks. The community
recognized this role, as demonstrated by the large amount of published papers on
the topic over the last half decade.

1.2 Challenges of Adversarial Examples Transfer-
ability10

Despite, numerous contributions about the transferability of adversarial exam-
ples, several challenges and blind-spots persist in this specialized literature. We
identify five main challenges to address:

C1. The knowledge gap in the scientific literature about training the surrogate

5



DNNs of transfer-based black-box attacks.

C2. The low success rate of existing techniques with small perturbations.

C3. The high training computational cost of transfer-based attacks and of the few
existing training techniques for transferability.

C4. The lack of insights about the transferability of adversarial examples.5

C5. The excessive specificity of some transferability techniques.

1.2.1 C1. Knowledge Gap on Surrogate Model Training
Despite numerous publications about transferability, only a handful of articles

studies how to train DNNs to improve the transferability of their adversarial
examples. Most related work boosts the transferability of gradient-based attacks10

with data augmentation [WZT+18; XZZ+19; DPS+19; LSH+20; WH21; WHW+21],
model augmentation [LBZ+18; WWX+20; WWX+20; GLC20], improved attack loss
[ZHC+18; HKG+19; WRL+21], or improved attack optimizer [DLP+18; LSH+20;
WH21; QFL+22]. To the best of our knowledge, a single article before our first
work tackles how to improve transferability during the training phase: Liu et al.15

[LCL+17] show that an ensemble of architectures is a better surrogate model
than a single architecture. They retrieve one standardly trained model for several
architectures. We believe that there were no prior contributions about how to
train each architecture for transferability. Prior work simply uses standard training
methods to obtain a surrogate model. The exploration of the weight space of one20

architecture was in the state of the simplest baseline. We discuss, in Chapter 3,
some parallel and posterior work of ours that studies the relation between training
and transferability [SMK21; BZK21; YZJ+21; LGZ+23]. Overall, despite numerous
publications, very little (to none) has tackled how to train a surrogate model for
transferability, and study how the training dynamics, characteristics, and objective25

of the surrogate model impact transferability.

1.2.2 C2. Low Success Rates of Small Perturbations
Numerous papers about transferability use large perturbations that may be

visible. Kurakin et al. [KGB17], Dong et al. [DLP+18], Zhou et al. [ZHC+18],
Huang et al. [HKG+19], Dong et al. [DPS+19], Lin et al. [LSH+20], Wu et al.30

[WWX+20], Guo et al. [GLC20], Wang and He [WH21], Wang et al. [WRL+21],
Naseer et al. [NKH+21], and Qin et al. [QFL+22] set the maximum L∞ norm of
the adversarial perturbations to 16/255, and Wu et al. [WZT+18] and Xie et al.
[XZZ+19] to 15/255, on ImageNet. These sizes of perturbation are large for the
adversarial machine learning literature. Zhao et al. [ZZL+22] find that using a L∞35

norm value of 16/255 on ImageNet sacrifices imperceptibility. Figure 1.2 shows an
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Frog Deer

Clean Image 8/255 16/255 24/255 32/255

Figure 1.2: Large perturbations may be visible and can even change the label.
Illustration from Addepalli et al. [AJS+22] of an original image of a frog altered
to the deer class with increasing ε, the L∞ norm of the perturbation. The frog
looks partially like a deer at ε = 16/255, which is the norm widely used to evaluate
transferability.

example of an adversarial perturbation on CIFAR-10 with a L∞ norm of 16/255
that is not only visible to the human eye, but that partially changes the correct
class of the image1. Reducing the perturbation norm would not only make the
perturbation imperceptible, but would also reduce the success rate to a large extent.
The success rate of an attack is an increasing function of the maximum size of the5

perturbations [CAP+19]. In our preliminary experiments, we found that existing
transferability techniques achieve a low success rate with perturbations smaller
than 16/255. Therefore, imperceptible black-box attacks are challenging.

1.2.3 C3. High Training Cost of the Surrogate
A major challenge of transfer-based black-box attacks is the cost of training the10

surrogate model. Query-based black-box attacks generally require little computation
(at the expense of heavy access to the target model). Transfer-based black-box
attacks need first to train a surrogate model and then attack it. To be competitive
in cases where both types of attacks can be applied, transfer-based black-box
attacks have to be efficient. We argue that transfer-based attack is expensive15

due to its first requirement, i.e., training one or several models. For example, a
standard model, trained on ImageNet for 130 epochs, would need 166,551,710 full
forward and backward passes. Whereas, applying a typical gradient-based attack
on one image needs only between 5 and 50 full forward and backward passes, which
would total to 250,000–2,500,000 passes to attack the entire test set. Training20

the surrogate model is at least two orders of magnitude more costly than attacking
it. Despite this highly unbalanced cost, no previous work tackles how to train
efficiently the surrogate model. Then, cheap transfer-based black-box attacks are
an open challenge.

1The values of maximum Lp norm of the adversarial perturbations are not directly comparable
between datasets. Figure 1.2 serves here as an illustration of large perturbations.

7



1.2.4 C4. Lack of Insights About Transferability

Numerous work in the field simply propose a new technique that improves the
attack success rate, without providing more in-depth knowledge about adversarial
examples or their transferability. The impact of this type of contribution is therefore
significantly limited, since the reader is left with speculations, or hypotheses at5

best, about why the proposed method can fool a diverse set of architectures or
DNNs. The lack of evidence-based insights tends to reduce the field to a collection
of scattered techniques, with limited scientific value. We think that there is a
substantial discrepancy between the potential insights that could be gained from
the study of transferability and the current state of the field. This represents a10

missed opportunity for researchers to better understand the representations learnt
by DNNs, and in particular why adversarial examples are not simple isolated
mistakes of specific representations.

1.2.5 C5. Over-Specialized Transferability Techniques

Numerous techniques designed to increase transferability are specific to particu-15

lar technical settings, and cannot be applied generally. Many model augmentation
techniques are based on a specific component of DNN architectures. In particular,
techniques that rely on skip connections [LBZ+18; WWX+20; GLC20] cannot
be applied on non-ResNet Convolutional Neural Network (CNN)s or on Vision
Transformer (ViT) architectures. The same point holds for techniques designed20

for ViT [NRK+22]. The techniques based on data augmentation are limited to
image datasets. For example, Input Diversity (DI) [XZZ+19] performs random
resize and padding. Similarly, Zhou et al. [ZHC+18], Dong et al. [DPS+19], Lin
et al. [LSH+20], Wang et al. [WHW+21], and Wang and He [WH21] propose
transformations designed for images. New distinct techniques would need to be25

defined to improve the transferability in, for example, natural language processing
tasks. In general, the current literature tends to be overspecific and lacks a way
to exploit generic principles in deep learning that can be applied to diverse DNN
architectures and datasets.

1.3 Overview of the Contributions30

This section presents the contributions of this dissertation to address the
aforementioned challenges on the transferability of adversarial examples. Figure 1.3
provides an overall view of these contributions. It outlines and relates all together
the training techniques, the concepts and the characteristics of the weight space
used in this dissertation. The rest of this section provides a step-by-step description35

of the elements of Figure 1.3.
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1.3.1 Scope and Goal
To tackle the five objectives described in the previous section, this dissertation

focuses on how to train effective surrogate models for black-box evasion
attacks against DNNs, and investigates extensively the characteristics of the
weight space that lead to the transferability of adversarial examples. The weight5

space is formally defined as the Euclidean space, where each dimension corresponds
to one weight of a specified architecture. As deep neural networks have numerous
weights, the weight space of any modern architecture is high-dimensional. The core
of this dissertation relies on obtaining transferability from the weight space of the
surrogate DNNs (thick arrow, large red and golden boxes in Figure 1.3).10

1.3.2 General Outline: What Matters When Exploring the
Weight Space

This dissertation provides strong evidence that training techniques are key to
obtaining highly transferable adversarial examples. Our three main complementary
techniques provide an extensive and practical method to obtain highly transfer-15

able adversarial examples from the multimodal and local exploration of
flatter vicinities in the weight space. Our probabilistic and geometric analyses
demonstrate that the way to train the surrogate model has been overlooked, al-
though both the training noise and the flatness of the loss landscape are important
elements of transfer-based attacks.20

Using the view of the loss landscape developed by Choromanska et al. [CHM+14]
and Goodfellow and Vinyals [GV14], the weight space admits numerous regions
of low loss. We call a vicinity each of these regions. The training of a DNN
is said to stay in the same vicinity if the loss during the training process stays
relatively low. The probability distribution of obtaining a specific weight from a25

stochastic training process, such as Stochastic Gradient Descent (SGD), is highly
multimodal. Similarly, the Bayesian posterior over weights is also highly multimodal.
In the entire dissertation, we will use interchangeably the mode of the probability
distribution of obtaining a weight, and the vicinity in the weight space, i.e., a
region of the weight space with low loss.30

Weight space exploration. To achieve the goal of improving the transferability
of adversarial examples from the weight space of the surrogate models, this dis-
sertation extensively covers the ways of exploring the weight space (red boxes in
Figure 1.3):

• The multimodal exploration, where the surrogate is an ensemble of multiple35

models from different vicinities of the weight space, corresponding to diverse
representations of the data. We would like to emphasize that the multimodal
exploration refers here to the exploration of multiple vicinities, or equivalently
multiple modes of a probability distribution, and not to models that process
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multiple modalities, such as images and texts, for example.
• The local exploration, where the surrogate is an ensemble of multiple models

from the same vicinity of the weight space, corresponding to more similar
variations of the representation.

• The point selection, where the surrogate is a single model, i.e., one point of the5

weight space, that corresponds to the search for a transferable representation.
These three types of exploration are complementary. Several DNNs can be

obtained from different vicinities by independently training models from different
random initializations (deep ensemble). Exploring different vicinities is important,
since each local minima of the loss typically characterises a meaningfully different10

representation of the data [GIP+18; FHL19; ZLZ+20]. Each independent training
can use point selection techniques to collect improved models from different vicinities.
Local exploration techniques can be applied multiple times in parallel, starting
from each of these models, to explore each vicinity. In the end, these three
types of exploration permit to obtain a surrogate composed of better individual15

representations from different vicinities which are well characterised locally.

Insights from the training noise and the loss flatness. The primary goal of
this dissertation is to provide novel insights, which represents a significant portion
of our research endeavour. This dissertation extensively analyses the proposed
technique to provide in-depth knowledge of why these techniques are able to train20

better surrogate models. Through probabilistic and geometrical analysis, we show
the key role of training noise and loss flatness to obtain transferability from the
weight space (green boxes in Figure 1.3). The probabilistic approach of Chapter 4
considers the unknown weights of the target model as random variables. Under a
specific threat model, the training noise of the target model defines a probability25

distribution of this model (arrow from “Training Noise” to “Distribution of Target
Model” in Figure 1.3). One can sample from the distribution of the target model to
obtain a surrogate. Sampling may be local, that is, in the same mode, or in different
modes (arrows from “Distribution of Target Model” to red boxes in Figure 1.3).

Additionally, the training of one DNN happens in a small subspace of the30

weight space [GRD18]. Thus, the training noise of the surrogate model defines a
weight subspace (arrows from “Training Noise” to “Subspace Geometry”, and from
“Subspace Geometry” to “Weight Space” in Figure 1.3). Our geometric analysis
empirically shows that the geometry of this weight subspace is specific, i.e., unlike
a random subspace, and that our local exploration of the weight space improves35

transferability thanks to the specificity of this geometry (arrow from “Subspace
Geometry” to “Local Exploration” in Figure 1.3).

In addition, the local exploration and point selection techniques that improve
transferability flatten the loss landscape (arrows to “Loss Flatness” in Figure 1.3).
The natural loss changes slowly along one direction of the weight space, when40
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moving away from one of these good surrogates. To explain the relation between
the flatness of the surrogate loss and transferability, we propose the surrogate-target
misalignment hypothesis: if the surrogate loss is shifted with respect to the target
loss in the input space, wide adversarial examples are desirable to keep the difference
between the surrogate and the target losses small (arrow from “Loss Flatness” to5

“Weight Space” in Figure 1.3).
Overall, our probabilistic and geometrical insights show the key role of both

training noise and loss flatness to explain why our surrogate models generate highly
transferable adversarial examples.

1.3.3 Detailed Contributions per Chapter10

This dissertation extensively studies how to leverage training techniques to
obtain effective surrogate models for black-box attacks. We propose and analyse in-
depth new techniques to better understand the relationship between the surrogate
weight space and the transferability of the crafted adversarial examples. First, we
identify five challenges in the scientific literature about transferability, including15

the blind spot on how to train the surrogate model. To address these challenges,
we explore three complementary ways to explore the surrogate weight space: the
multimodal exploration to obtain multiple models from different vicinities, the local
exploration to obtain multiple models in the same vicinity, and the point selection
to obtain a single transferable representation. Our combined techniques show how20

to obtain a surrogate composed of better individual representations from different
vicinities, which are well characterised locally.

Transferability from deep ensemble and Bayesian neural networks (Chap-
ter 4). Chapter 4 relates uncertainty to transferability. We develop a probabilistic
analysis of transferability that shows that what matters is to sample from the25

distribution of the unknown target model arising from the training noise. As the
weights of the target DNN are unknown, they can be treated as random variables.
Under a specified threat model, the randomness of the target DNN comes from
the training noise of SGD. Deep ensemble, i.e., the ensemble of independently
trained DNNs, samples from weights from the distribution of the target model30

(arrow from “Deep Ensemble” to “Distribution of Target Model” in Figure 1.3).
We experimentally and extensively show that deep ensemble generates effective
surrogate models. Unfortunately, deep ensemble is computationally expensive since
an additional sample requires a full independent training. Based on recent work
showing that deep ensemble approximates well the Bayesian posterior [MVS+20], we35

propose an efficient alternative by sampling the surrogate weights from the posterior
distribution using Cyclical Stochastic Gradient Langevin Dynamics (cSGLD), a
state-of-the-art Bayesian deep learning technique (arrow from “cSGLD” to “Distri-
bution of Target Model” in Figure 1.3). Our extensive experiments on ImageNet,
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CIFAR-10 and MNIST show that our approach improves the success rates of four
state-of-the-art attacks significantly (up to 83.2 percentage points), in both intra-
architecture and inter-architecture transferability. On ImageNet, our approach can
reach 94% of success rate while reducing training computations from 11.6 to 2.4
exaflops, compared to deep ensemble. Our vanilla surrogate achieves 87.5% of the5

time higher transferability than three transferability techniques designed for this
purpose. We evaluate seven training methods in total to train a surrogate model.
This contribution was the first to investigate how to generate a surrogate from
the weight space of a single architecture. Finally, we notice a shortfall of both
cSGLD and deep ensemble in sampling inside the same mode (dotted arrow from10

“Distribution of Target Model” to “Local Exploration”): Section 4.4.5 reveals that
cSGLD poorly characterise the local variations in the same mode of the weight
space, and deep ensemble obtains a single sample from the mode sampled in each
independent training. Section 4.4.6 identifies a promising direction to address this
shortfall using a training technique that builds an ensemble from fine-tuning a15

trained DNN. Our next contribution follows this direction.

Transferability from large geometric vicinity (Chapter 5). Chapter 5
develops a geometric analysis to study the transferability from the local exploration
of the vicinity around a trained surrogate DNN. First, Chapter 5 establishes
the relevance of the local exploration of the weight space for transferability by20

showing that random directions in the weight space improve transferability, whereas
random directions in the input space do not. Both noises differ in the structure
of the covariance matrix of the induced Gaussian distribution of input gradients.
Second, to improve over the random directions in the weight space, we propose
transferability from Large Geometric Vicinity (LGV) to augment a trained surrogate25

DNN with training noise. LGV starts from a pretrained model and collects multiple
weights in a few additional training epochs with a constant and high learning
rate. Through extensive experiments, we show that LGV alone outperforms
all (combinations of) four established transferability techniques by 1.8 to 59.9
percentage points. We carefully study the hyperparameters of LGV to describe30

the appropriate type of high learning rate and propose easy solutions to improve
the memory and computational efficiencies if needed. We show that the local
weight space exploration of LGV complements nicely the multimodal exploration
of deep ensemble proposed in Chapter 4. We develop a geometric analysis to
explain why LGV increases transferability. We establish that what matters to35

LGV is the flatness of the loss and the weight subspace obtained from the training
noise (both arrows from “LGV”). First, we show that LGV explores a flatter
region of the weight space using four complementary experiments. As a result,
we observe that LGV produces flatter adversarial examples in the input space.
We present the surrogate-target misalignment hypothesis to explain why flatness40
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could increase transferability: if the surrogate loss is shifted with respect to the
target loss in the input space, wide adversarial examples are desirable to keep the
difference between the surrogate and the target losses small. Then, we observe
that the LGV weights do not succeed on their own, indicating a missing piece to
understand LGV. The second key element is the weight subspace spanned by LGV5

weights. Our experiments on this topic have three folds. First, we establish that
this weight subspace is specific to transferability, i.e., it produces better surrogates
than random subspaces, and that it is densely composed of good surrogates, i.e.,
random sampling inside this subspace produces good surrogates. Second, we show
that this subspace is composed of directions whose relative importance depends on10

the functional similarity between surrogate and target, i.e., the geometry of the
subspace is relevant to transferability. Third, we show that this subspace captures
generic geometrical properties, in the sense that the subspace shifted to solution
from other vicinities still produces good surrogates. While LGV addresses how
to augment a base model, our base model is regularly trained. And, our best15

single flat model “LGV-SWA” is not as competitive as LGV (dotted arrow from
“LGV-SWA” to “Point Selection”). Therefore, training a single base model for
transferability, i.e, a transferable representation, is an open challenge that requires
further investigation.

Transferability from representation in flat neighbourhood (Chapter 6).20

Chapter 6 develops a geometric analysis of the weight space, and shows that the
flatness of the loss landscape matters to obtain a single surrogate model, i.e., a
transferable representation. First, we refute a common hypothesis from previous
research to explain why early stopping improves transferability. Previous work
proposes the hypothesis that DNN first learns robust features and then non-robust25

features, explaining why early stopped models are better surrogates, since non-
robust features are brittle. However, we provide evidence that tends to refute
this hypothesis, showing that early stopping improves transferability from and
to non-robust features. We hypothesize that robust and non-robust features are
learnt conjointly during training, since the transferability of adversarial examples30

can provide insights on the closeness of two learnt representations. We propose
an alternative explanation to the success of early stopping by establishing links
between transferability and the exploration dynamics of the weight space, in which
early stopping has an inherent effect. More precisely, we observe that transferability
peaks when the learning rate decays, which is also the time at which the sharpness35

of the loss significantly drops (arrow from “Early Stopping” to “Loss Flatness” in
Figure 1.3). This leads us to propose Representation from Flat Neighbourhood
(RFN), a new transferability approach that minimises the sharpness of the loss
during training (arrow from “RFN” to “Loss Flatness” in Figure 1.3). We show that,
by searching for large flat neighbourhoods, RFN always improves over early stopping40
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(by up to 47 points of success rate) and is competitive with (if not better than)
strong state-of-the-art baselines. RFN also complements nicely complementary
transferability techniques of other categories, established by our taxonomy of
transferability techniques.

Overall, our three complementary techniques provide an extensive and practical5

method to avoid overly specific adversarial examples from the multimodal and
local exploration of flatter vicinities in the weight space. Our probabilistic and
geometric approaches demonstrate that the way to train the surrogate model has
been overlooked, although both the training noise and the flatness of the loss
landscape are important elements of transfer-based attacks.10

1.3.4 Addressing the Challenges
This section develops how our contributions address the challenges detailed in

Section 1.2.

C1. To address the knowledge gap in the scientific literature on the training of
the surrogate DNNs of transfer-based black-box attacks, we empirically evaluate15

the transferability of numerous training techniques. Chapters 4 to 6 provide
a comprehensive overview on how to explore the weight space to obtain good
surrogates: we cover the three ways to explore the weight space, either by selecting
a single model, multiple models from the same vicinity, or multiple models from
different vicinities.20

C2. To address the low success rate of small perturbations, we show in Chapters 4
to 6 that our new training-based techniques have higher success rates with smaller
Lp norms. In particular, all the Chapters 4 to 6 include the evaluation of the
L∞ norm sets to 4/255, instead of the larger and more popular 16/255. This
dissertation contributes to less perceptible transferable adversarial examples.25

C3. To reduce the high computational cost of transfer-based attacks, we propose
lighter alternatives to existing training techniques. Chapter 4 shows that cSGLD is a
significantly cheaper alternative to deep ensemble, thanks to the super convergence.
On ImageNet, cSGLD can reach 94% of success rate while reducing the training
computations from 11.6 to 2.4 exaflops, compared to deep ensemble. Chapter 530

reveals that LGV beats all combinations of four transferability techniques in
only ten additional epochs. The extra computations can be reduced to only
five epochs without significantly impacting the success rate. Chapter 6 proposes
RFN, a cheaper way to train a surrogate model than slight adversarial training, a
competitive technique. Since the transferability of the surrogate trained with RFN35

does not decrease along epochs, RFN can be seen as a technique that does not
waste computing resources compared to standard training.
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C4. To tackle the lack of insight on the transferability of adversarial examples,
the majority of the experiments in this dissertation are dedicated to the analysis
of transferability. We hope that our efforts to develop insight-full contributions
will yield scientific value, and that our contributions do not reduce to adding other
transferability techniques to a collection of scattered techniques. The insights of5

this dissertation are summarised in Section 1.3.2. In short, our probabilistic and
geometrical analyses exhibit the key role of the training noise and the flatness of
the loss to explain why our techniques train better surrogate models.
C5. To face the excessive specificity of some transferability techniques, we pro-
pose techniques based on generic training methods for DNN. The transferability10

techniques proposed and evaluated in Chapters 4 to 6 can be applied on top of
any DNN architecture, on other tasks than image classification, and on other
applications than computer vision. Their main requirement is the possibility to
apply stochastic gradient descent on a loss function, which is how almost all DNNs
are trained. Therefore, our generic contributions may impact various fields.15

1.4 Organization of the Dissertation
The organization of the dissertation is presented in details in Figure 1.4. In the

remaining of this dissertation, Chapter 2 presents the technical background of DNNs
and adversarial machine learning, used in this dissertation. Chapter 3 presents
the previous work related to the contributions of this dissertation. Chapter 420

presents a probabilistic perspective on transferability and an empirical study
that evaluates the improvements of transferability from Bayesian and ensemble
training techniques. Chapter 5 presents LGV, an efficient training-based model
augmentation transferability technique, and analyses it in depth using a geometrical
perspective. Chapter 6 presents an empirical analysis of the relation between25

transferability and the training dynamics of the surrogate model, and proposes
RFN, a new approach to transferability that searches for large flat neighbourhoods.
Finally, Chapter 7 concludes this dissertation and presents the limitations and
future work.

1.5 Quick Read Guide: Highlighted Sections for30

Busy Readers
We provide below a list of recommended sections to navigate the dissertation

effectively. By highlighting its most important parts, this guide aims to provide
a concise roadmap for understanding the outline of this dissertation without the
need to read the entire thesis.35

• The entire Chapter 1.
• Among Chapter 2:
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– Section 2.4.2,
– Sections 2.4.4 and 2.4.5.

• Among Chapter 3:
– Section 3.1.4,
– Section 3.2.2,5

– Section 3.2.4.
• Among Chapter 4:

– Section 4.1,
– Section 4.2,
– Sections 4.4.5 and 4.4.6,10

– Section 4.6.
• Among Chapter 5:

– Section 5.1,
– Section 5.3,
– Sections 5.4.1, 5.4.2 and 5.4.4,15

– Section 5.5,
– Section 5.6,
– Section 5.7.

• Among Chapter 6:
– Section 6.1,20

– Section 6.3,
– Section 6.4,
– Section 6.5,
– Section 6.7.

• The entire Chapter 7.25

16



Figure 1.3: Diagram of the outlines of this dissertation. See Section 1.3 for a
step-by-step detailed description.
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2
Background

This chapter discusses the technical background about machine learning, deep
neural networks, adversarial machine learning and the transferability of adversarial
examples.5
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2.1 Machine Learning
This section gives a brief overview of the field of machine learning, including gen-

eral definitions, applications, the typical project life cycle, and some mathematical
definitions.

General definitions. Machine Learning (ML) is a subfield of Artificial Intelli-5

gence (AI) that focuses on automating decision-making based on data. ML aims
at performing a specific task without being explicitly programmed for, unlike
traditional software programming, and using data instead. Data is first fed to a
model to train it, i.e, iteratively optimizing the internal parameters of the model
to decrease the number of errors. Then, the trained model is used on new unseen10

data to make predictions. The field has evolved rapidly over the last few decades,
resulting in a wide range of applications in diverse domains, including natural
language processing, computer vision, robotics, and bioinformatics, among others.

Applications. Numerous real-world tasks have been solved thanks to machine
learning. One of these applications is image and speech recognition, where machine15

learning models can accurately classify or detect objects or spoken words. Another
use for ML models is natural language processing, which enables conversational
AI, sentiment analysis, and machine translation by analysing or producing text.
Recommender systems use ML to predict user interests and suggest content, such as
news articles, movies, music, or products. Fraud detection, intrusion detection, and20

fault identification are examples of anomaly detection, another type of application
of ML. Finally, machine learning has been used in bioinformatics to improve protein
structure prediction, drug discovery and gene expression analysis.

Task types. Broadly, machine learning can be supervised or unsupervised. In
supervised learning, the model is trained on labelled data. The output of the25

task we aim to solve is known for all the training data. The objective is to learn
an input-to-output mapping to be applied on new unlabelled data to predict its
unknown output. A classification problem is when the output is a discrete label,
and a regression problem is when the output is a continuous variable. Unsupervised
learning involves learning from unlabelled data when no output labels are given.30

The objective is to find hidden patterns, structures, or correlations in the data.
The most typical types of tasks are clustering to find similar groups of data, and
dimensionality reduction to find a lower-dimensional representation of data that
minimizes the loss of information. The rest of this dissertation is dedicated to
supervised learning, the most prominent application of machine learning.35

Project life cycle. A typical machine learning project consists of several steps,
organized in cycle. Data collection is the first step, during which unprocessed data
is obtained from a variety of sources, including databases, sensors, scraping, surveys,
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human data labelling. The next step is data preparation, which entails cleaning,
i.e, removing missing values, outliers and invalid values, and transforming data into
an appropriate format. Then, feature engineering transforms raw data intro tidy
data with numerical or categorial features, that are directly usable by a classical
machine learning model. Model building follows, tuning the parameters of the5

model using a training dataset to reduce the discrepancy between the expected and
predicted outputs. The last step to build a first model is to evaluate it, assessing
its performances on unseen data to measure its capacity to generalize. Finally,
in the model deployment process, the trained model is integrated into a bigger
systems or applications to predict the outputs of new fresh data. The development10

does not stop after the end of this cycle, since the model needs to be monitored
once deployed, and feedback loops are there to improve the previous steps if the
performances are inadequate.

Categorisation. ML is divided into two subfields, classical machine learning
and representation learning. Classical machine learning uses manually created15

features as inputs for a variety of learning methods, including logistic regression,
support vector machines, and decision trees. Typically, machine learning engineers
and domain exports jointly define transformations of raw data that they think
would be useful to solve the tasks at stake. This approach is well known and
has been demonstrated to be efficient in numerous applications. However, feature20

engineering can be tedious for complex applications, for example in computer vision.
On the other hand, representation learning, automates the feature engineering step,
previously described. The model training step jointly learns both the features and
the mapping from inputs to outputs, from raw data. This subfield of machine
learning is particularly appropriate to complex data, where the structures and25

patterns are hard to define for a human. The learned features are called the
representation, since they aim at giving a high-level abstraction of the data. Deep
Learning (DL) is the main branch of representation learning. DL uses artificial
neural network with many layers to model the data. DNN are hierarchical, since
lower-level layers are generally combined to form higher-level representations of30

the data.

Mathematical definitions and notations. In its most general mathematical
sense, a machine learning model is a function f that maps an input vector x ∈ X
to a predicted output y ∈ Y, using a set of learnt parameters θ ∈ Θ. The input
space X is generally a subset of Rd, i.e., the input is a vector of d dimensions. In35

classification, the output space Y is a set of unordered and mutually exclusive
labels {1, 2, ..., C}, where C is the number of classes. The parameter space Θ
depends on the underlying model of the prediction function f . The goal of
learning is to find a set of parameters θ that minimizes the average classification
error on unseen data, θ∗ = arg minΘ Ex,y∼p(x,y) 1(f(x; θ) 6= y), where p(x, y) is the40
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probability distribution of the data generating process. In practice, this distribution
is unknown, and cannot be used explicitly to train the model, i.e., to find θ. But, it
can be sampled to form a training dataset D = {(xi, yi) ∼ p(x, y)}N

i=1. This dataset
D is used to find the set of parameters θ̂ that minimizes the average error on the
training set, θ̂ = arg minΘ

1
N

∑N
i=1 1(f(xi; θ) 6= yi). This process is called Empirical5

Risk Minimization (ERM). This optimization problem is generally solved with
gradient descent. However, we need to replace the indicator function with a smooth
approximation. Indeed, the indicator function is step-wise function, so the gradients
of the quantity to minimize would be a vector of zeros. This smooth approximation
is called the loss function L1, and takes in inputs the predicted probabilities10

ŷi = f(xi, θ) and the true label yi: L(ŷi, yi). A typical loss function in classification
is the cross-entropy loss, defined as Lce(ŷi, yi) = −∑C

c=1 1(yi = c) log ŷi,c.

2.2 Deep Learning
This section provides a brief overview of the field of deep learning, including

the presentations of deterministic and Bayesian neural networks, the architectures15

of neural networks, stochastic gradient descent, and some benchmark datasets used
in this dissertation.

2.2.1 Deterministic Neural Networks
Neural networks are a type of machine learning model loosely inspired by

the structure and functions of the human brain. In practice, these models are20

compositions of deterministic functions. Once trained, a neural network always
gives the same output with given input and a set of parameters. Artificial neurons
are the first building blocks of neural networks. A neuron is a computational
unit that first performs a weighted sum of its inputs from other neurons, then
outputs the results of the sum passed through a nonlinear activation function. The25

activation function is a nonlinear transformation. It introduces nonlinearity into
the neural network to learn complex patterns from the data. The two most common
activation functions are sigmoid, and rectified linear unit (ReLU). Feed-forward
neural networks are composed of multiple layers organized sequentially. Every layer
contains several neurons. In its basic form, a neural network is a composition of30

functions, where the input of one layer is the output of the previous layer.
The first layer is called the input layer because it receives the raw input data.

The final layer, named the output layer, produces the predicted output. In between,
intermediate layers, or hidden layers, embed increasing complexity representations
of the data, from low-level to high-level abstractions. In a fully connected neural35

network, or multilayer perceptrons, every neuron in a layer is connected to all the
1We voluntarily skip the definition of the loss function as used in statistical learning theory

for clarity and simplicity to have consistent notations in the remaining of the dissertation.
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neurons in the previous layer. Mathematically, a fully connected neural network is
composed of numerous matrix multiplications and activation functions. Given an
input vector x ∈ X , the output of the first hidden layer is:

h(1) = g(1)(W (1)>x + b(1)) ,

where W (1) is the weight matrix connecting the input layer to the first hidden layer,
b1 is the bias vector, and g(1) is the activation function of the first hidden layer.5

The output of following hidden layers are defined similarly:

h(l) = g(l)(W (l)>h(l−1) + b(l)) ,

for l ∈ {2, 3, ..., L}, where L is the number of hidden layers. Lastly, the output
of the neural network is:

ŷ = g(L+1)(W (L+1)>h(L) + b(L)) ,

where g(L+1) is the activation function of the output layer, generally the softmax
function for classification. Numerous variants of fully connected neural networks10

exist, creating many architectures of DNNs. Section 2.2.3 presents some families of
DNN architectures.

2.2.2 Bayesian Neural Networks
Contrary to deterministic neural networks, Bayesian Neural Network (BNN)s

do not consider the weights as fixed values. BNN is the combination of neural15

networks with the principles of Bayesian inference. The probabilistic framework
quantifies the uncertainty related to the weights, and subsequently the uncertainty
of the predictions. BNNs have a long history, since the influential book of Neal
[Nea96] dates back to 1996. The use of Bayesian methods addresses the overfitting
issue, among others.20

The weights of BNNs are treated as random variables with prior distributions.
Instead of learning point estimates for the weights, as deterministic neural networks,
BNNs aim to learn the posterior distribution over the weights given the observed
data. We note θ ∈ Θ the vector of all the weights of the neural network concatenated.
The prior distribution over the weights is denoted by p(θ), and the likelihood of25

observing the training data given the weights is denoted by p(D|θ). According to
Bayes’ theorem, the posterior distribution p(θ|D) over the weights can be computed
as follows:

p(θ|D) = p(D|θ)p(θ)
p(D) ,

where p(D) is the marginal likelihood, also called evidence. The objective of
training is to maximize the posterior with respect to the weights, i.e., find θ∗ ∈30
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arg maxθ∈Θ p(θ|D). Since the marginal likelihood does not depend on w in our
optimization problem, it is considered as a normalization constant, and training a
BNN consists of solving the following optimization problem:

max
θ∈Θ

p(D|θ)p(θ) ,

Generally, deterministic neural networks are trained to maximize the likelihood
p(D|θ). It becomes apparent that the source of difference between training BNNs5

and deterministic neural networks is the introduction of the prior over the weights.
In practice, the exact computation of the posterior distribution is often in-

tractable, necessitating the use of Bayesian deep learning methods to approximate
the posterior. There are two families of approximate inference techniques to do so:

1. Simulation-based inference, that generates a random sample from the posterior10

distribution, and uses the subsequent empirical distribution as the posterior
approximation. Chapter 4 relies heavily on methods based on Markov Chain
Monte Carlo (MCMC). Hamiltonian Monte Carlo (HMC) is considered a
golden standard, but is also too expensive to scale to bigger datasets than
small datasets, like MNIST. A more modern family of approximate Bayesian15

inference techniques is Stochastic Gradient-Markov Chain Monte Carlo (SG-
MCMC), or Stochastic Gradient Langevin Dynamics (SGLD), which was
inaugurated by SGLD [WT11]. SG-MCMC combine SGD with MCMC
to sample from the posterior during the training with SGD. The original
technique [WT11] adds a specific noise to the weight at each SGD iteration.20

Therefore, the computational overhead of these methods is minimal, and
SG-MCMC scales well to large datasets like ImageNet.

2. Distributional approximation, that estimates an explicit distribution to ap-
proximate the posterior. The approximation is generally a simpler parametric
distribution. The most popular methods are Variational Inference (VI). Typ-25

ically, the goal is to minimize the KL-divergence between the approximate
posterior and the true posterior using the evidence lower bound (ELBO) op-
timization. VI can scale to large datasets, such as ImageNet, using simplistic
distribution, like the popular mean-field approximation that is composed of
independent Gaussian variables.30

Once the approximate posterior distribution over the weights is estimated, the
output of a new input x0 can be predicted by the posterior predictive distribution:

p(y0|x0,D) =
∫

Θ
p(y0|x0, θ)p(θ|D)dθ .

Approximation techniques, such as MCMC, estimate this predictive distribution,
since this integral is generally intractable.
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In summary, BNNs offer a principled approach to reasoning about uncertainty
by considering the weights as random variables.

2.2.3 Architectures of Neural Networks
Researchers have proposed numerous variants of fully connected DNN, presented

in Section 2.2.1. This section gives a brief overview of the most common ones,5

which we use in this dissertation both as the surrogate and target models.
By utilizing the spatial structure of the input, CNNs are specifically created to

process grid-like data, such as images. CNNs are composed of both convolutional
and pooling layers. Convolutional layers, which apply filters to specific areas of the
input to find patterns, are followed by pooling layers, which shrink the feature maps’10

spatial dimensions. Convolutional layers scale better than fully connected ones
because the weight matrices are much sparser thanks to parameter sharing. They
also have the benefit of being (almost) translation invariant, which is considered
desirable for computer vision.

Residual neural network (ResNet) is a popular family of architectures. ResNet15

adds skip connections, or shortcuts, that add the output of one layer to the output
of a later layer. ResNets are often CNNs. Skip connections allowed to train deeper
DNN which were previously impossible to train due to vanishing gradients. They
allow the flow of gradient passing by DNN during backpropagation. ResNets
are composed of residual blocks, which consist of a series of convolutional layers20

followed by the addition of the input to the block, forming a skip connection. Skip
connections allowed to train deeper DNNs, which significantly improved various
computer vision tasks.

Transformers are another type of architecture that gains a lot of traction lately
to modelling long dependances in sequential data, like text. Transformers use25

self-attention to weigh the importance of different input elements based on the
context. ViT is the adaptation of transformers to computer vision data. Unlike
CNNs, ViTs divide an image into fixed-size, non-overlapping patches and linearly
embed them as sequences. Then, the transformer layers process these sequences to
capture both local and global patterns.30

2.2.4 Training Deep Neural Networks
In order to train DNNs, gradient-based optimizers minimize the loss function

with respect to the model’s parameters. Due to the size of modern datasets and the
computational limitations, full gradient descent, which computes the gradient using
the entire dataset, is computationally impossible for deep neural networks. To solve35

this issue, SGD uses a mini-batch, i.e., a small randomly selected subset of the
data, to approximate the true gradient. This type of optimizer reduces the training
computational cost, allowing to train DNNs with many layers on large datasets, by
adding training noise. Every update of the parameters is performed using a noisy
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gradient, where the uncertainty comes from sampling the mini-batches.
Gradient-based optimization for neural networks is built on the backpropagation

algorithm. By using the chain rule of differentiation and propagating the gradients
backward from the output layer to the input layer, it calculates the gradient of the
loss function with respect to each weight. The model’s parameters are then updated5

using the estimated gradients during each SGD iteration, eventually lowering the
loss function.

Regularization methods are essential for avoiding overfitting, which happens
when a model is excessively complex and performs well on training data but badly
on unseen data. Dropout, weight decay, and early stopping are three common10

regularization techniques. Dropout is a training method that forces a layer to rely
on multiple information-flow paths by randomly setting a portion of its neurons to
zero. Weight decay, also known as L2 regularization, discourages the model from
learning large weights that could result in overfitting, by adding a penalty term to
the loss function proportional to the sum of squared weights. Early stopping is a15

technique that stops training as soon as the model’s performance on a validation
set begins to deteriorate, preventing the model from fitting the noise in the training
data.

Numerous methods, such as learning rate schedules, batch normalization, and
variants of SGD, have been developed to enhance convergence and training stability.20

Learning rate schedules modify the learning rate throughout training, frequently
beginning with a higher value to promote exploration and lowering it over time
to permit fine-tuning. Using a technique called batch normalization, each layer’s
activations are normalized to have a mean value of zero and a variance of one.
Initially, batch normalization was proposed to lessen the internal covariate shift25

and encourage quicker convergence. For a more reliable and effective training,
sophisticated optimizers or SGD variants, such as momentum, Adam, RMSProp,
and AdaGrad, adapt the gradient-based updates.

To sum up, there are several important building blocks to train DNNs. SGD is
an efficient optimizer that adds noise to the gradients. Regularization techniques,30

batch normalization, learning rate schedules and variants of SGD help to train
DNNs. The foundation of contemporary deep learning optimization is made up of
these techniques.

2.2.5 Classical Datasets
This section describes three computer vision datasets used in this dissertation,35

and more generally, used classically in deep learning.

MNIST. The MNIST dataset is a classical benchmark dataset for handwritten
digit recognition that consists of 60,000 training images and 10,000 test images.
Representing a digit, from 0 to 9, each image is a 28x28 greyscale picture of a single
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handwritten digit. MNIST has been a well-liked choice for researchers to test and
develop various machine learning algorithms because of its small size and simplicity,
especially as a first step in investigating deep learning techniques. Nowadays,
MNIST is considered too simple and skewed for a benchmark dataset. In this
dissertation, we used it only in Chapter 4 to evaluate expensive BNN techniques5

that cannot scale to larger datasets and DNN. No experiment is restricted to
MNIST, since we additionally perform the same evaluations on the two following
datasets.

CIFAR-10. Another standard dataset is the CIFAR-10 dataset, which has 60,000
32x32 colour images representing ten different object classes. Each class has 6,00010

images. 50,000 images are used for training, and 10,000 for the test dataset. The
ten categories are the following: airplane, automobile, bird, cat, deer, dog, frog,
horse, ship, and truck. Compared to MNIST, CIFAR-10 is a more complex task
due to its larger images, the presence of colours, and the wider range of objects.

ImageNet. ImageNet is a large-scale dataset with over 14 million high-resolution15

images encompassing more than 20,000 object categories. The dataset is arranged
in accordance with the WordNet hierarchy, with each synset (a collection of related
words or phrases) representing a certain category of objects. The ImageNet Large
Scale Visual Recognition Challenge (ILSVRC-12), a popular subset of ImageNet,
contains over 1.2 million training images, 50,000 validation images, and 100,00020

test images, spanning 1,000 object categories. We use this popular dataset in all
the chapters of this dissertation. The number and diversity of classes, the amount
of training examples, and the input size of images, make ImageNet less of a toy
dataset, but greatly increase the computational complexity to train even a single
DNN.25

In this section, we described briefly key elements in deep learning to understand
the rest of this dissertation. Despite, the important success of the techniques
described above on natural data, these same techniques can fail critically when
facing an adversary. the field of adversarial machine learning studies these cases.

2.3 Adversarial Machine Learning30

This section gives an overview of adversarial machine learning, i.e., the study
of machine learning models facing an adversary. The field of adversarial machine
learning is the application of computer security to machine learning. It should not
be confused with Generative Adversarial Networks (GAN), which are a completely
separate research topic.35
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2.3.1 Threat Model
This section defines the notion of threat model, from computer security, when

applied to machine learning. Threat modelling aims at clearly defining an attack
that a system may face, using a security perspective. It should not be confused with
a machine learning model that models some data. We present here the definition of5

a threat model developed by Biggio et al. [BCM+13] and Biggio and Roli [BR18],
where an adversary is defined by his/her goal, knowledge, and capability. In the
remaining of this dissertation, the machine learning under attack is called the target
model.

Adversary’s goal The first element to define an attack against a machine learning10

model is the adversary’s goal, which defines what would constitute a successful
attack. For example, an attacker may aim at misclassification or retrieval of data.
This objective is generally solved as an optimization problem expressed in terms of
a loss function to minimize or maximize. The goal may impose some constraints on
this optimization problem. For instance, when searching for adversarial examples,15

the adversarial perturbation should be imperceptible. The standard problem
formulations are defined in the next section, for each types of attacks.

Adversary’s knowledge An attack against a machine learning model is also
defined by the attacker’s knowledge about the model and the system at stake.
Biggio et al. [BCM+13] state that the adversary’s knowledge includes the following20

elements:
• the trained model, which is composed of the functional form of the model,

i.e., the type of model and its architecture for DNNs, and all the values of its
parameters (the weights for DNNs),

• the training dataset, or a subset of it,25

• the data preprocessing, i.e., the transformations of raw data before feeding it
into the classifier,

• the learning algorithm used, including the type of optimizer and its hyperpa-
rameters,

• the feedbacks from the model, e.g., the prediction of arbitrary inputs chosen30

by the adversary.
If the adversary has complete knowledge of the target model, the attack is white-box.
The robustness evaluation of new defences should be performed with white-box
attacks because a truly robust defence against the most capable adversary would
also be robust against less capable ones. Black-box attacks correspond to threat35

models where the adversary has no knowledge of the target models. Empirically, it
is a good practice to also use black-box attacks when evaluating new defences to
make sure that new defences not only make current white-box attacks fail [CAP+19],
as shown by the discovery of defences relying on obfuscated gradients [ACW18].
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Figure 2.1: Illustration of the typology of attacks developed in adversarial machine
learning. Figure from [NST+18].

Grey-box attacks are intermediate cases, where the adversary has partial knowledge
of the target model. For example, the architecture and the training data may be
known, but not its weights.
Adversary’s capability Finally, the adversary comes with a capability. The
capability describes which elements of the machine learning pipeline that the5

adversary can alter. The attacker may be able to modify the test inputs, keeping
the target model unchanged. Or the adversary may alter a fraction of training
data to achieve his/her goal.

Overall, a threat model defines an attack against a machine learning model,
where an adversary aims at achieving a goal using his/her capability based on10

specific knowledge of the model under attack. The research on adversarial machine
learning recognized several standard threat models, leading to a typology of attacks.

2.3.2 Typology of Attacks
In this section, we present a commonly accepted typology of attacks against

machine learning models [BR18; NST+18]. The research on adversarial machine15

learning developed an extensive number of attacks to tackle distinct objectives in
a variety of scenarios. These attacks can be grouped into four categories, each
defined by a specific threat model. Figure 2.1 illustrates their differences. The
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following list summarizes the typology.
• Evasion attacks. Evasion attacks produce adversarial examples, i.e., carefully

crafted perturbations added to test data designed to fool the model at
inference time. This dissertation studies this type of attack.

• Poisoning attacks. Poisoning attacks produce poisonous data that are added5

to the training set at training time.
• Extraction attacks. Extraction attacks produce sequences of queries designed

to infer information about the model at inference time.
• Inference attacks. Inference attacks produce sequences of queries designed to

infer information about the training data at inference time.10

Evasion attacks (adversarial examples). Adversarial examples are carefully
crafted, imperceptible perturbations applied to the inputs of a machine
learning model to create large changes in output. Figure 2.2 illustrates this
definition: starting from a natural and correctly classified test image x (left), one
can add a tiny perturbations (middle, here multiplied by several orders of magnitude15

to visualize colours instead of a plain grey image), to obtain a visually similar image
that is classified incorrectly with very high confidence (right). In this dissertation,
we use the terms evasion attack and adversarial example interchangeably. Evasion
attack is the most studied type of attack against machine learning models.

These perturbations can be seen as a worst-case distributional shift, which20

causes the model to output incorrect predictions despite the seemingly negligible
changes in the input. Distributional shifts are changes in the data distribution
between the training and testing phases. While standard distributional shift can
happen naturally due to variations in the real-world changes or in the data collection,
worst-case distributional shift is intentionally introduced by an adversary to fool25

the model. This difference is key, since evasion attacks do not introduce random
noise, but a carefully crafted perturbation. Despite the random-looking pattern of
the perturbations showed in Figure 2.2, the adversarial perturbation is not random
noise, but a much more effective perturbations that can easily drop the accuracy of
a state-of-the-art model to zero percent. Another key aspect of evasion attacks is30

that the model under attack remains unaltered, since the capability of the adversary
is limited to modifying input at test time.

Adversarial examples can be either targeted or non-targeted. In a targeted
adversarial attack, the attacker’s objective is to change the input data in such a
way that the model outputs the attacker-specified, incorrect output label. This35

attack corresponds to cases where an adversary attempts to enforce a particular,
desired outcome. Non-targeted adversarial attacks, on the other hand, don’t specify
a specific target label; instead, they try to make the model produce any incorrect
prediction. The attacker’s primary goal in non-targeted attacks is to cause the
model to fail.40
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Figure 2.2: Illustration of a correctly classified test input (left), an imperceptible
adversarial perturbation crafted with the FGSM attack, here multiplied for visual-
ization (middle), that end produce an adversarial example which is visually similar
to the original image, but incorrectly classified with a very high confidence (right).
Figure from [GSS14].

Poisoning attacks. In addition to evasion attacks, poisoning attacks represent
another threat to machine learning models. In a poisoning attack, an adversary
deliberately alters a subset of the training data by introducing precisely constructed,
malicious samples, with the aim of harming the model’s performance in the learning
process. Attacks that poison data, the basic core of machine learning models, can5

be particularly harmful because they are challenging to recognize and fight against.
Poisoning attacks leverage the foundation of machine learning, as shown by the
seminal contributions of Barreno et al. [BNS+06; BNJ+10] that dates back as early
as 2006 and 2010. The corrupted training data may introduce poor generalization
[BNL12; XBB+15; MZ15], skewed decision boundaries [MBD+17], or backdoors10

[GDG17; CLL+17].

Extraction attacks. Extraction attacks, which focus on the unauthorized ac-
quisition of model information, are another category of threats against machine
learning models [BCN+14; FJR15; TZJ+16]. An extraction attack entails the ad-
versary querying the target model with carefully selected inputs and then observing15

the corresponding outputs in order to copy or approximate the target model. The
attacker then trains a surrogate model to try to replicate the behaviour of the target
model using the input-output data they’ve gathered. Extraction attacks provide a
serious risk because they can result in the theft of intellectual property, the exposure
of private data hidden inside the model, or even the development of surrogate20

models that enable additional adversarial attacks like evasion or poisoning.
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Inference attacks. Inference attacks are the last category of threats against
machine learning models [RBH+09; BCN+14; SSS+16]. They aim at inferring
information about training data. By observing the model’s outputs on a carefully
selected set of inputs, the adversary seeks to infer private information about the
training data, such as the presence of particular samples or the values of particular5

attributes. These attacks make use of the unintentional information leakage caused
by learned model parameters, which unintentionally encode patterns or features
unique to training data. Even though the model itself isn’t made to reveal such
details, inference attacks might result in privacy violations, since they can divulge
private or sensitive information about the people or entities represented in the10

training data.
All four types of attacks – evasion, poisoning, extraction, and inference – may

be turned into physical attacks, posing a potential risk to the systems deployed
without exposed API. In the context of a physical attack, an adversary manipulates
the physical environment or input devices to produce adversarial manipulations15

that trick the model into producing inaccurate predictions or reveal sensitive data.
For example, a poisoning attack could include tampering with sensor data needed
to train a predictive maintenance model for industrial applications, while an evasion
attack can take the form of adversarial perturbations on a traffic sign to trick an
autonomous vehicle’s vision system.20

The following of this dissertation is dedicated to evasion attacks. We will
consider a threat model where the adversary aims at misclassification (untargeted
attacks), under limited knowledge (gray-box attack), and can only modify inputs
at test time in an imperceptible way. We use both terms evasion attacks and
adversarial examples interchangeably.25

2.4 Transferability of Adversarial Examples
This section provides a technical background about the transferability of adver-

sarial examples. First, we present the seminal papers on the topic, followed by a
formal definition of the adversarial examples and of their transferability. Then we
present the main metric used in this dissertation to measure transferability. We30

expose the current hypotheses for the existence of transferability, and finally the
standard gradient-based attacks.

2.4.1 Seminal Papers
The transferability of adversarial examples was observed early on, in the field of

adversarial machine learning. Szegedy et al. [SZS+13], one of the two main seminar35

papers of adversarial machine learning with Biggio et al. [BCM+13], concurrently
finds adversarial examples and observes their transferability. Szegedy et al. [SZS+13]

32



is the first to use the expression of “adversarial examples” to designate test examples
that are altered imperceptibly to fool a model. They show that adversarial examples
against one DNN can also fool other DNNs of different architectures or trained
on disjoint subsets of data. This article paved the way for understanding the
transferability of adversarial cases and activated more research on the subject.5

Later, Goodfellow et al. [GSS14] further analyse the transferability of adversarial
examples. They show that a simple linear model can have adversarial examples if
its input has sufficient dimensionality. Then, they propose the linear hypothesis
to explain why adversarial examples transfer: transferability across architectures
and training sets would come from the local linearity of DNNs. Goodfellow et al.10

[GSS14] provide evidence in favour of this hypothesis by proposing the Fast Gradient
Sign Method (FGSM) attack, that computes a single gradient, and showing its
transferability. This groundwork motivated other competitive or complementary
hypotheses to explain the source of transferability and techniques to improve
transferability (Section 2.4.5).15

Finally, Papernot et al. [PMG16] provide in-depth analysis of the transferability
phenomenon. They propose attacks against DNNs, logistic regression, support
vector machines, decision trees, nearest neighbours, and ensembles. Then, Papernot
et al. [PMG16] show that adversarial examples transfer between models of the
same type (intra-technique transferability) and between models of different types20

(cross-technique transferability). Last, but not least, Papernot et al. [PMG16]
are the first to show the feasibility of transfer-based black-box attacks against
commercial APIs. They train a surrogate model to apply white-box attacks against
it, and finally feed these adversarial examples to an unknown target model.

2.4.2 Formal Definitions25

First, this section gives a formal definition of an adversarial example, and then
a formal definition of a transferable adversarial example.
Adversarial examples. Given an input x ∈ X associated with the label y ∈ Y
and a classification model f parametrized by θ ∈ Θ, an adversarial example
xadv ∈ X can be defined as follows:30

f(xadv; θ) 6= y ,

The adversarial example is defined from its corresponding adversarial pertur-
bation δ ∈ ∆ that is constrained to be in the feasible set ∆ of imperceptible
perturbations:

xadv = x + δ .

This feasible set ∆ would ideally include any input that a human would associate
with the same true label. These inputs would be produced by all label-preserving35
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data transformations such as rotation, scaling, background change, change in
the pose of the underlying 3D object considered. This set is hard to define
mathematically. So, researchers generally consider the subset of perturbations that
are imperceptible by bounding them with a small p-norm ε. Using this Lp norm
definition, the feasible set of adversarial perturbations ∆, is:5

∆ = {δ ∈ Rd | ‖δ‖p ≤ ε, x + δ ∈ X} .

In practice, finding an adversarial example is transformed into an optimization
problem. Instead of minimizing the loss with respect to the model’s parameters, as
done during training, an adversarial example aims at maximizing the loss L with
respect to the input:

δ ∈ arg max
δ∈∆

L(f(x + δ; θ), y).

Transferability. To define a transferable adversarial example, we consider two10

classifiers: the target model ft parametrized by θt ∈ Θt which is unknown to the
adversary, and the surrogate model fs parametrized by θs ∈ Θs which is known
to the adversary and used as a replacement to the target model. An adversarial
example xadv = x + δ ∈ X is said to be transferable if it is crafted against the
surrogate model only, and if it is misclassified by the unseen target model:15

δ ∈ arg max
δ∈∆

L(fs(x + δ; θs), y) ,

ft(x + δ; θt) 6= y .

The remaining of this dissertation focuses on transfer-based attacks, specifically
in the context of the “NoBox” threat model. Under the “NoBox” threat model,
the adversary has no feedback from the target model. Therefore, the optimization
problem to find the perturbation δ cannot be solved using information on the target
model, nor the outputs of this target model corresponding to chosen inputs.20

2.4.3 Metric
We measure the transferability of adversarial examples using the success rate,

defined as the misclassification rate by the target model, of adversarial examples
crafted on the distinct surrogate model. All adversarial examples originate from
correctly classified examples by all target models under study.25

Given a set of N ′ adversarial examples and their corresponding original true
label {(x′

adv,i, y′
i)}N ′

i=1, the top-1 success rate is defined as:

1
N ′

N ′∑
i=1

1
(
ft(x′

adv,i; θt) 6= y′
i

)
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Figure 2.3: Relationships between gradient-based attacks.

There are other definitions and metrics for measuring the transferability of
adversarial examples. However, in this study, we aim to compare diverse surrogate
models, each consisting of a different number of models with varying accuracies.
To ensure fairness in our comparison, we use a common set of original examples
that are correctly classified by all target models.5

2.4.4 Standard Gradient-based Attacks
This section presents the standard gradient-based attacks used to generate

transferable adversarial examples in the adversarial machine learning literature
in general and in this dissertation in particular. We present here the attacks in
their general form for any Lp norm. The attack has to depend exclusively on the10

surrogate model, leaving the target model unseen. As a reminder, the optimization
objective here is the following:

δ ∈ arg max
δ∈∆

L(fs(x + δ; θs), y) .

We present here the four most popular gradient-based attacks. Figure 2.3
illustrates the relationships between them.

First, FGSM was proposed early on by Goodfellow et al. [GSS14]. FGSM is a15

single-step, white-box attack that computes the gradient of the loss with respect
to the input using standard backpropagation, and uses the normalized gradient to
create adversarial perturbations. Algorithm 1 contains the pseudocode of the attack.
We want to emphasize that FGSM should not be used to evaluate the robustness
of a defence, since it is a fragile attack [CAP+19]. This attack was indeed created20

to explore the linearity hypothesis regarding why adversarial examples exist and
transfer, as presented in Section 2.4.1.
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Algorithm 1 FGSM Attack.
Input: (x, y) natural example and its corresponding label, θs weights of the surro-

gate DNN fs, ε p-norm perturbation, L loss function
Output: xadv adversarial example

1: g ← ∇xL(fs(x; θs), y) . Compute the input gradient of the surrogate loss
2: xadv ← x + project(g, Sε[0]) . Add the normalized gradient, projected in the

p-norm sphere of ε radius
3: xadv ← clip(xadv, 0, 1) . Clip to pixel range values

Second, the most popular attack to produce transferable adversarial examples is
Iterative Fast Gradient Sign Method (I-FGSM), also called Basic Iterative Method
(BIM). This attack was proposed by Kurakin et al. [KGB17] and is now the
workhorse of transferability. I-FGSM is the iterative algorithm based on FGSM.
Algorithm 2 presents the generic pseudocode of I-FGSM for any Lp norm. In5

essence, I-FGSM is normalized projected gradient ascent in the input space. This
attack is the backbone of this dissertation. Our preliminary experiments show that
I-FGSM has better success rate than FGSM.

Third, Projected Gradient Descent (PGD) [MMS+18], a variant of I-FGSM,
is the most popular gradient-based attack to evaluate the robustness of DNNs.10

Contrary to I-FGSM, PGD starts from a random point in the Lp ball (line 1
of Algorithm 2), and performs several of those random restarts until to find a
successful adversarial example against the surrogate model. In Chapter 4, we found
that PGD has lower transferability than I-FGSM.

Lastly, I-FGSM has become the standard gradient-based attack to generate15

transferable adversarial examples in the scientific literature, and numerous I-FGSM
variants have been proposed to enhance transferability. The most popular is
Momentum Iterative attack (MI), or MI-FGSM, that adds momentum to the
gradient g in Algorithm 2 (line 3): gi = µ gi−1 + ∇xL(fs(x;θs),y)

‖∇xL(fs(x;θs),y)‖1
with µ the decay

factor. We present numerous other techniques for transferability in the next section.20

2.4.5 Typology of Transferability Techniques
This section proposes a typology of existing techniques designed to boost the

transferability of adversarial examples. In the remaining of this dissertation, we
call them transferability techniques. A large portion are variants of the I-FGSM
attack. We propose to classify them in seven categories, presented below. The25

typology developed here is partially based on the work of Zhao et al. [ZZL+22].

Input augmentation for transferability. The first type of transferability
technique relies on augmenting inputs during the attack. Typically, at each I-
FGSM iteration, a data transformation function is applied to the current adversarial
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Algorithm 2 I-FGSM Attack.
Input: (x, y) natural example and its corresponding label, θs weights of the surro-

gate DNN fs, niter number of iterations, ε p-norm perturbation, α step-size, L
loss function

Output: xadv adversarial example
1: xadv ← x
2: for i← 1 to niter do
3: g ← ∇xL(fs(xadv; θs), y) . Compute the input gradient of the surrogate

loss
4: xadv ← xadv + project(g, Sα[0]) . Add the normalized gradient, projected in

the p-norm sphere of α radius
5: xadv ← project(xadv, Bε[x]) . Project in the p-norm ball centred on x of ε

radius
6: xadv ← clip(xadv, 0, 1) . Clip to pixel range values
7: end for

perturbation before computing the gradient. The objective is to obtain gradients
that are less specific to the surrogate model, and therefore generalize better to
another model. The most popular of such technique is Input Diversity (DI)
[XZZ+19], which applies random transformations (random resize followed by random
padding) to the input images at each attack iteration. Zhou et al. [ZHC+18] add5

Gaussian noise to ensemble gradients at each iteration. To target defended models,
Dong et al. [DPS+19] propose Translation Invariance (TI) that convolves the
gradient with a pre-defined kernel to approximate the gradient of the ensemble
of translated images. Lin et al. [LSH+20] develop scale invariance that computes
several gradients per iteration over pixels values scaled with a factor of 1

2i where10

i ∈ N. Wang et al. [WHW+21] improve transferability with Admix by computing
the gradient at the input image composed with a small portion of a random
image of another label. VT (Variance Tuning) [WH21] uses samples from the
uniform distribution over a small neighbourhood around the adversarial example
at the current iteration. These techniques can also be applied several times per15

iteration to compute an average gradient that leads to more transferable adversarial
examples [ZZL+22]. Averaging gradients over random noise in the input space has
a smoothing effect on the loss function [ZHC+18] (see Section 3.2.3 for a more
detailed discussion). Techniques should be compared with the same number of
gradient per iteration for fairness [ZZL+22]. The input augmentation transferability20

techniques are specific to the type of data considered (images, here) and to the
domain of application. New separated techniques need to be defined to improve
the transferability in, for example, natural language processing tasks.
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Model augmentation for transferability. Another popular type of trans-
ferability technique augments the surrogate model during the attack, either by
applying transformations to the weights or to the architecture. Model augmentation
techniques transform the model at test time, i.e., after training the base model,
when performing the attack, and do not modify the training of the base surrogate5

model, contrary to training techniques presented below. Ghost Networks (GN)
[LBZ+18] use dropout or skip connection erosion to generate on-the-fly diverse
sets of surrogate models from one or more base models. Skip Gradient Method
(SGM) [WWX+20] favours the gradients from skip connections rather than residual
modules through a decay factor applied to the latter during the backward pass.10

LinBP [GLC20] also modifies the backward pass to increase linearity, but differently
by skipping some non-linear activation functions while rescaling the activations.
Naseer et al. [NRK+22] develop a model augmentation transferability technique
designed specifically for vision transformers. Zhang et al. [ZCB+21] find a slight
increase in transferability by filtering the surrogate weight with the smallest L115

norm. These techniques are cheap to apply, since they generally do not require
additional computations. However, they are most of the time specific to a family
of architecture: GN either applies skip connection erosion or dropout depending
on the architecture, and SGM can only be applied on architectures of the ResNet
family. Furthermore, the reasons why some techniques improve transferability20

are not well understood. It remains unclear why SGM and LinBP apply their
transformations in the backward pass only, keeping the forward pass unchanged.
As pointed by Zhang et al. [ZBC+21], backpropagating smoothly may be more
important than backpropagating linearly.

Training technique for transferability. Another direction to improve the25

transferability of adversarial example is to improve the training of the surrogate
model. To the best of our knowledge, a single article before our first work proposed
such a technique: Liu et al. [LCL+17] show that an ensemble of architectures is a
better surrogate model than a single architecture. Later, Springer et al. [SMK21]
train the surrogate model with adversarial training on adversarial examples of small30

norm bound ε, called slight adversarial training. They generally train the surrogate
using another Lp norm than the one used for the attack. Benz et al. [BZK21]
and Zhang et al. [ZCB+21] show the benefit of early stopping the surrogate model
(see Chapter 3 for more details). Benz et al. [BZK21] also show that removing
batch-normalization layers improves transferability. Yuan et al. [YZJ+21] propose35

a way to exploit a large number of pretrained models as the surrogate when such a
model zoo is available. Such techniques are easily applied in complement to other
types of transferability techniques: for example, one can apply model augmentation
on a better base model, or on every model of multiple architectures. This category
of techniques is broad, since they can rely on all the training elements of a DNN:40
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the variants of SGD, the training hyperparameters, the choice of architectures or
pre-trained models, the regularization scheme, etc. This dissertation focuses on
this type of technique.

Optimization for transferability. Some works improve upon the optimization
of I-FGSM to perform gradient ascent in the input space without finding adversarial5

examples overly specific to the surrogate model. Dong et al. [DLP+18] propose MI,
also called MI-FGSM, that adds momentum to the attack gradients to stabilize
them and escape from local maxima with poor transferability (see Section 2.4.4
for more details). Lin et al. [LSH+20] ameliorate upon MI with Nesterov Iterative
attack (NI). VT [WH21] smooths the update using the average gradients over the10

data augmentation described above. Zhao et al. [ZLL] show that a significant
increase in success rate can be obtained from the unmodified I-FGSM simply by
performing more iterations, especially for targeted attacks. Qin et al. [QFL+22]
propose Reverse Adversarial Perturbation (RAP) to find flat adversarial examples
by solving a min-max bi-level optimization problem, similar to Sharpness-aware15

Minimizer (SAM) but in the input space (see Chapter 3 for more details on SAM).
Wang et al. [WWY] develop a variant of MI by adding momentum over the spatial
component of the image to stabilize further the updates. Wang et al. [WLH+21]
offer another variant of MI. These optimizers prove successful on their own or in
combinations of data or model augmentation to smooth the updates during the20

attack.

Loss function for transferability. Another type of transferability technique
focuses on the loss function used to perform gradient ascent with I-FGSM. Zhou et al.
[ZHC+18] develop a new loss called TAP that includes an additional regularization
component to penalize high-frequency perturbations. Wang et al. [WRL+21]25

improve transferability with the addition of a penalization to the interactions
between pixels in the adversarial perturbation.

Intermediate representation for transferability. Another line of research to
improve the transferability of adversarial example was to target the intermediate
features of DNNs, i.e., computing the gradients from an intermediate layer instead of30

the last one. This type of attack may require to adapt the attack loss, similarly to the
previous category, but here the objective is to attack directly the intermediate layers.
The intermediate representations are known to be more generic. TAP [ZHC+18]
also adds a component to the loss to maximize the distance of intermediate feature
maps. Inkawhich et al. [IWL+19] compute the adversarial perturbation by matching35

the internal representation of the perturbed image with the internal representation
of another image of the targeted class. Huang et al. [HKG+19] fine-tune an initial
perturbation computed on the last layer, using an intermediate layer. Wang et al.
[WGZ+21] and Zhang et al. [ZWH+22] perturb only important features that are
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selected based on, respectively, gradients information, and a neuron attribution
method.
Generative modelling for transferability. Finally, a more distinct line of
research on transferability is to use generative modelling to produce transferable
adversarial examples. Poursaeed et al. [PKG+17] propose to use generative adver-5

sarial network (GAN) to output image-agnostic and image-dependent perturbations
for targeted and non-targeted attacks. In particular, a surrogate model is used
as a discriminator and a generator is trained using the cross-entropy loss. Naseer
et al. [NKK+19] improve the training of the generator with another loss function.
Naseer et al. [NKH+21] propose another generative approach that improves over10

the first two generative techniques presented here, for targeted adversarial examples.
Zhang et al. [ZLC+22] and Fang et al. [FLL+22] propose other GAN variants to
output more transferable adversarial examples. Generative modelling techniques
are generally considered separately to the other categories, since they are not
variants of I-FGSM, and therefore are hard to combine with techniques of other15

categories.
Overall, we provide a comprehensive typology of transferability techniques.

These categories are of particular importance to design suitable benchmarks of
transferability techniques. A good practice pointed by Zhao et al. [ZZL+22] is
to only compare competitively transferability techniques of the same category,20

since they aim at the same objective. Two transferability techniques belonging to
different categories should be evaluated complementarily.

2.5 Summary
This chapter presented the technical background that serves as a foundation

for the contributions of this dissertation. Overall, this chapter briefly reminds25

fundamental concepts of machine learning, neural networks, and adversarial machine
learning. Finally, we introduce the building blocks of this dissertation regarding
the transferability of adversarial examples: the seminal papers, a definition, the
metrics, the current hypothesis about the causes of transferability, standard attacks,
and a typology of transferability techniques.30
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3
Related Work

This chapter discusses the existing work related to the contributions of the
dissertation.
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This chapter presents the work related to this dissertation. In particular, we
give an overview of the existing transferability techniques, and their relation to
ours. We summarize the previous geometrical approaches of transferable adversarial
examples, and of DNNs in general. In particular, we describe research about the
flatness of the natural loss, which receives recently an important attention by5

the scientific community. Next, we present Bayesian and ensemble approaches to
adversarial examples and to natural accuracy. Finally, we present the studies of
SGD with constant learning rate.

3.1 Transferability Techniques (Chapters 4 to 6)
We discuss the relation of this dissertation to the transferability techniques10

based on the typology developed in Section 2.4.5: our work is either complementary
or in competition with other transferability techniques. Chapters 4 and 6 propose
new techniques that all belong to the surrogate training category. Chapter 5
proposes a model augmentation technique based on training.

3.1.1 Complementary Techniques to Training (Chapters 415

to 6).
Among the categories presented in Section 2.4.5, input augmentation, opti-

mization, loss function, intermediate representation, tackle different objectives to
ours. They transform the model or the input at test time, i.e., after training, when
performing the attack. These variants of I-FGSM alter distinct elements of the20

attack than ours, and are therefore straightforward to implement concurrently
[ZZL+22]. Input augmentation transforms the inputs to find invariant adversarial
perturbations, or to smooth the loss landscape. As such, input augmentation
techniques can be directly applied on an improved single surrogate model, as in
Chapter 6, or on multiple models, such as the ones outputted by our techniques in25

Chapters 4 and 5. Both approaches are complementary. Similarly, transferability
techniques based on optimization can be directly applied on ours. These attack
optimizers prove successful to smooth the updates during the attack on their own, in
combinations of data augmentation, or when applied on multiple surrogate DNNs
[XZZ+19; LBZ+18]. Loss functions for transferability add some regularization30

terms to the loss to find more generic adversarial perturbations. Replacing the
loss functions in I-FGSM is complementary to our approaches, which do not alter
the standard cross-entropy loss. Attacking the intermediate representations of the
transferable representations evaluated in Chapter 6 is a promising extension to our
work. Chapter 6 propose ways to train more transferable representations. Therefore,35

attacking the intermediate layers of these better surrogate representations should
further improve our line of research, since intermediate representations are known to
be more generic and less specialized in a task. Attacking the intermediate layers of
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the multiple DNNs outputted by our techniques in Chapters 4 and 5 complements
them.

If it is straightforward to complement our work with the variants of I-FGSM
presented above, the relation of this dissertation to generative modelling is less
direct. Since this category does not rely on I-FGSM, such techniques have a5

more separated lineage in the scientific literature compared to the other categories.
To the best of our knowledge, the complementarity of generative modelling with
the other categories of transferability techniques has not been studied previously.
However, numerous generative approaches of transferability use a surrogate model
as the discriminator in the GAN framework (cf. Section 2.4.5). We think that our10

techniques to train better surrogate models might be used for the discriminator,
and in turn train a better generator model. We left for future research the
comprehensive evaluation of the complementarity of our work with generative
approaches to transferability.

Despite the complementarity of our work with the previously listed categories of15

transferability techniques, comparing them competitively indicates which objective
gives the highest boost of transferability. As such, our Chapters 4 and 5 find a
more effective way to do so, than other categories of transferability techniques.

3.1.2 Model Augmentation Techniques (Chapters 4 to 6)
Transferability techniques based on model augmentation are complementary to20

our work in Chapters 4 and 6, and competitive to our LGV technique proposed in
Chapter 5.

Chapters 4 and 6 propose training techniques to train respectively several
and one surrogate models. As such, transferability techniques based on model
augmentation are complementary to ours, since they can be directly applied on25

top of each of our surrogate models. These techniques transform the model at test
time, i.e., after training, when performing the attack, using cheap transformation
of the weights or of the architecture. Following the approach of Fort et al. [FHL19],
described below in Section 3.2.2 and summarized in Figure 3.1, the training
techniques evaluated in Chapter 4 samples different modes of the loss landscape.30

Whereas, model augmentation techniques explore locally each mode of the loss
landscape. For example, Fort et al. [FHL19] show that dropout at test time, such
as used by Li et al. [LBZ+18] for transferability, captures only the local uncertainty
of a mode. As illustrated by Figure 3.1, the techniques that train models from
different modes are complementary to the techniques that sample locally in the35

weight space. Moreover, these techniques can naturally be combined to ours in
Chapters 4 and 6: (i) cSGLD can provide at a low computation cost a diverse set
of base models to build GN [LBZ+18]; SGM modifies backward passes during the
attack, independently of the training method. As our evaluation in Chapters 4
and 6 will reveal, our train-time methods further improve the transferability of the40

43



above techniques.
Our LGV technique proposed in Chapter 5 is of the model augmentation

category, and shows the key role of the local exploration of the weight space.
LGV augments the base surrogate model by fine-tuning with a high learning rate.
As revealed by Section 5.4, our LGV approach alone consistently beats SGM5

[WWX+20] and GN [LBZ+18] by a large margin. SGM favours the gradients from
skip connections rather than residual modules, and Wu et al. [WWX+20] claims
that the formers are of first importance to generate highly transferable adversarial
examples. We find the local loss geometry to have such relevance. In line with our
results in Chapter 5, residual connections flatten the natural loss [YGK+19] and10

increase transferability. GN [LBZ+18] uses dropout or skip connection erosion to
augment the base model, and identifies the diversity of surrogate models as key.
Our results strongly suggest that exploring locally the loss landscape in the weight
space is at most importance to avoid adversarial examples overfitting to their
surrogate model. Neither SGM nor GN improve LGV when combined, suggesting15

that they may be poor local loss geometry proxies. This is also suggested by Fort
et al. [FHL19], as explained in the previous paragraph.

3.1.3 Training Surrogate Models (Chapters 4 to 6)
Despite the important amount of work on transferability as established in

Chapter 1, the way to train an effective single surrogate base model has received20

little attention in the literature [ZZL+22]. To the best of our knowledge, a single
article before our first work tackles how to improve transferability during the
training phase: Liu et al. [LCL+17] show that an ensemble of architectures is a
better surrogate model than a single architecture. They retrieve one standardly
trained model for several architectures. Our work leans on theirs and complements25

it by demonstrating that exploring the weight space of one architecture improves
transferability. The techniques evaluated in Chapters 4 to 6 operate on a single
weight space (one architecture), so one can apply them to collect models of multiple
architectures as Liu et al. [LCL+17]. For example, Section 4.4.3 shows that
our weight space exploration approaches complement nicely the ensembling of30

several architectures. The work before our first contribution simply uses standard
training methods to obtain a surrogate model. We believe that there were no prior
contributions about how to train each architecture for transferability.

Benz et al. [BZK21], Nitin [Nit21], and Zhang et al. [ZCB+21] point that early
stopping SGD improves transferability. Springer et al. [SMK21] propose SAT,35

slight adversarial training that uses tiny perturbations to filter out some non-robust
features. Our work in Chapter 4 that analyse transferability with a probabilistic
perspective of the weight space, happens before or in parallel to the above-mentioned
papers [SMK21; BZK21; Nit21; ZCB+21], since we published the first version of
Chapter 4 on the arXiv platform on November 2020. The exploration of the weight40
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space of one architecture for transferability was at the state of the simplest baseline
before our first contribution. Chapter 5 proposes a model augmentation technique
that is complementary to these training techniques. Chapter 6 evaluates in-depth
early stopping for transferability, by studying extensively the dynamics of training,
and the hypothesis developed by Benz et al. [BZK21], Nitin [Nit21], and Zhang et al.5

[ZCB+21] to explain why early stopping improves transferability. and SAT (see
the next section for a more detailed discussion). Section 6.5 evaluate competitively
early stopping, SAT, and LGV-SWA (Chapter 5) the weight average (Stochastic
Weight Averaging (SWA)) of the models collected by LGV, that all produce a single
model, i.e., a transferable representation.10

Our Chapters 5 and 6 shed new light on the relation between flatness and
transferability. Springer et al. [SMK21] implicitly flatten the surrogate model, since
adversarial trained models are flatter than their naturally trained counterparts
Stutz et al. [SHS21]. We observe a similar implicit link with early stopping in
Section 6.4. Our Chapter 5 proposes the surrogate-target misalignment hypothesis15

to explain why flat minima in the parameter space are better surrogate models. In
Chapter 6, we improve on the single-model baseline (LGV-SWA) of Chapter 5 by
explicitly minimizing sharpness with RFN, and we show that LGV, the full model
augmentation technique of Chapter 5, is complementary to RFN.

Recently, posterior to our contributions in Chapters 4 and 5, Li et al. [LGZ+23]20

developed another Bayesian formulation of transferability, and proposed to use
Stochastic Weight Averaging-Gaussian (SWAG) to fine-tune a regularly trained
model. Their Bayesian approach is different but overlaps ours, developed in
Chapter 4. Their proposed approach boils down to LGV with SWAG applied
on top. We already evaluated the use of SWAG for transferability in Chapter 4.25

They report improved success rates compared to LGV. However, their comparison
appears to be unfair, since it seems that their technique relies on a much higher
number of gradients per attack iteration. Zhao et al. [ZZL+22] show that a
fair comparison must compare transferability techniques with the same number
of gradients per iteration. In our preliminary experiments, we reported some30

significant improvements when averaging gradients over an increasing number
of LGV models. Furthermore, we are sceptical that their technique improved
upon LGV because we actually discovered LGV in our preliminary experiments
by observing that SWAG slightly decades the transferability compared to its base
models. We found that the transferability of the base models collected by SWAG,35

i.e. LGV with a standard learning rate, was higher than the transferability of the
samples from the SWAG posterior built on these same models. We made the same
observation for Subspace Inference (SI).
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3.1.4 Early Stopping for Transferability (Chapter 6).
Several works [BZK21; ZCB+21; Nit21] point out that fully trained surrogate

models are not optimal for transferability. To explain this observation, they propose
a hypothesis based on the perspective of robust and non-robust features (RFs/NRFs)
from Ilyas et al. [IST+19]. Ilyas et al. [IST+19] disentangle features that are highly5

predictive and robust to adversarial perturbations (RFs), and features that are also
highly predictive but non-robust to adversarial perturbations (NRFs). According to
Benz et al. [BZK21] and Nitin [Nit21], the training of DNNs mainly learns RFs first
and then learns NRFs. NRFs are transferable [IST+19], but also brittle. RFs in a
tiny input neighbourhood, called slightly RFs, improve the transferability of larger10

adversarial examples [ZCB+21; SMK21]: the input neighbourhood is sufficiently
small for an attack to find adversarial examples in a larger radius, and slightly
RFs are less brittle than NRFs. Models at earlier epochs would be composed of
more slightly RFs, thus being better surrogate models. Section 6.3 provides some
observations that tend to refute this hypothesis. Instead, Sections 6.4 and 6.515

suggest that the success of early stopping is correlated with the dynamics of the
training and the flatness of the surrogate.

3.2 Geometrical Analysis of Adversarial Exam-
ples and DNNs (Chapters 5 and 6)

3.2.1 Geometry of Transferable Adversarial Examples20

Previous studies [TPG+17; CRP20] analyse the geometry of transferable ad-
versarial examples to gain insights on the input space. Whereas, our Chapters 5
and 6 study them from the perspective of the weight space and provide both
insights to improve surrogates and actionable methods. On MNIST, [TPG+17]
shows that among the 44 dimensions adversarial input space, a dense 25 dimensions25

subspace is shared between models, thus enabling transferability. [CRP20] proves
with a geometric perspective that transferable adversarial directions exist with high
probability for linear classifiers trained on independent sets drawn from the same
distribution.

3.2.2 Geometry of the Weight Space of DNNs30

Numerous work study the generalization of DNNs and SGD with a geometric
perspective. [LFL+18] establishes that the intrinsic dimension of the objective
landscapes is smaller than expected by applying SGD in a randomly oriented
parameter subspace. Despite the high dimensionality of the weight space, [GRD18]
observes that SGD happens in a tiny parameter subspace, which is mostly preserved35

during training. Our analysis in Section 5.6 relates to the work of Gur-Ari et al.
[GRD18] but ours is focus on transferability not natural generalization. We analyse
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Figure 3.1: Illustration of the hypothesis of Fort et al. [FHL19]. Deep ensemble
produces a set of diverse representations from different modes. Some training tech-
niques, such as VI, capture the local uncertainty inside each mode. This hypothesis
supports our explanation in Chapter 1 regarding the three complementary ways to
explore the weight space proposed in Chapters 4 to 6. The x-axis represents the
weight space and the y-axis plots the loss.

in-depth the transferability from the subspace spanned by SGD with high learning
rate.

Fort et al. [FHL19] provide insight on deep ensemble from the perspective of
the weight space. Figure 3.1 illustrates their hypothesis. Deep ensemble contains
independently trained DNNs that land in different modes. The model from one mode5

disagrees with the model from other mode, showing that deep ensemble average a
diverse set of predictions. Despite the roughly similar individual accuracies of each
DNN, the authors exhibit an important variety in the learnt representations between
modes of the loss landscape. This view supports our explanation regarding the
complementary ways to explore the weight space, described in Chapter 1. Chapter 410

evaluates deep ensemble to obtain several base surrogate models, each from a
different mode, containing a variety of representations. Chapter 5 proposes LGV
to locally explore the mode of a base surrogate model, capturing the uncertainty
around a mode, as illustrated by Figure 3.1. Finally, Chapter 6 evaluate which
mode to choose, showing that some modes are more desirable than other, to obtain15

a transferable representation.

3.2.3 Flatness and Transferable Adversarial Examples
A few papers relate flatness and smoothness to the transferability of adversarial

examples. As concomitant work to ours, Qin et al. [QFL+22] propose Reverse
Adversarial Perturbation (RAP). They formulate a min-max bi-level optimization20

problem, similar to SAM but in the input space and to craft transferable adversarial
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examples. This variant of I-FGSM adds an extra gradient at each attack iteration to
compute the worst-case perturbation, i.e., the reverse adversarial perturbation. Qin
et al. [QFL+22] propose an analysis similar to our surrogate-target misalignment
hypothesis (Chapter 5). These ideas emerged in parallel, as both works were under
review during the same period (NeurIPS 2022 for [QFL+22], ECCV 2022 for our5

work in Chapter 5). This independent development of related hypotheses highlights
the significance and relevance of the research topic. Nevertheless, both work differ
in the methods to leverage flatness. Qin et al. [QFL+22] propose a new optimizer
in the input space, a variant of I-FGSM for transferability. Our Chapter 5 proposes
LGV, a model augmentation technique that collects models by exploring the weight10

space. We develop the surrogate-target misalignment hypothesis to explain LGV,
but LGV does not explicitly minimize sharpness. Our Chapter 6 analyses the
dynamics of training and proposes RFN, based on SAM which predates RAP
[QFL+22], to explicitly minimize sharpness in the weight space during training.
RAP [QFL+22] is to be applied on a regularly trained surrogate model. RFN and15

RAP are therefore complementary techniques: the former is a surrogate training
technique for the weight space, and the latter is an attack optimizer for the input
space.

Prior to our work, Wu et al. [WZT+18] propose the transferability technique
called Variance Reduced (VR) that smooths the loss of the surrogate model by20

averaging gradients under Gaussian noise in the input space, at each attack iteration.
They analyse the success of VR by showing that VR smooths the surrogate loss in the
input space, which reduces the effect of shattered gradients illustrated in Figure 3.2.
Gradients from the surrogate model are noisy, and therefore not well aligned with
the gradients of the target model. Their VR method is complementary to ours,25

since averaging gradients of LGV weights also improves transferability. VR is an
input augmentation technique, complementary to LGV, our model augmentation,
and RFN, our surrogate training technique. In Section 5.3, we show that Gaussian
noise in the input space does not improve transferability on its own, i.e., without
averaging them, contrary to Gaussian noise, LGV and RFN in the weight space.30

Their analysis of smoothness complements ours of sharpness (Chapters 5 and 6),
and the intersection of both might lead to new direction for future work.

3.2.4 Flatness and Natural Generalization
The relationship between natural generalization and the flatness of the solution

in the weigh space of DNNs has been studied extensively. Nevertheless, this topic is35

currently subject to a scientific controversy. Some papers show that flatter solutions
in the weight space have lower natural generalization gap. A sharp minimum (the
opposite of a flat minimum) is one where the variations of the objective function
in a neighbourhood are important, whereas a flat minimum shows low variations
[HS97]. Sharpness, the opposite of flatness, can be defined as the highest increase40
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Figure 3.2: Illustration of the concept of shattered gradients from Wu et al.
[WZT+18]. The gradient gA from the surrogate model A is noisy and hurts
transferability to the target model B, since their gradients are not well aligned. Wu
et al. [WZT+18] smooth the loss of the surrogate model A by averaging gradients
under Gaussian noise in the input space, at each attack iteration. After smoothing,
the gradients of the surrogate model have a higher cosine similarity with the
gradients from the target model. Their approach is complementary to ours, since
averaging gradients of LGV weights also improves transferability.

in the training loss LD in a small neighbourhood in the weight space [FKM+20]:

max
‖γ‖2≤ρ

LD(w + γ)− LD(w) .

Keskar et al. [KNT+16] correlate large-batch SGD to both sharp solutions and a
generalization gap compared to small-batch SGD. Flat solutions would be desirable
because under a shift between training and test losses, the generalization gap would
remain small for flat minima, whereas it would be high for sharp ones. Keskar5

et al. [KNT+16] give another interpretations of why flatness would be desirable:
under an information theory perspective and using the minimum description length
theory, flat minima can be described with fewer bits of information, i.e., are of
lower complexity [Ris83]. Less complex statistical models would generalize better.
Chaudhari et al. [CCS+16] propose Entropy-SGD to find wide valleys and develop10

another explanation through the lens of free Gibbs energy. Izmailov et al. [IPG+18]
show that averaging weights along the trajectory of SGD iterates leads to wider
optima and better natural generalization than SGD. Xing et al. [XAT+18] show
that high learning rates and small batch sizes drive SGD towards flatter minima
with better generalization. Some techniques explicitly minimize the sharpness of the15

loss for natural [FKM+20; KKP+21; ZGY+22] or robust generalization [WXW20].
Kaddour et al. [KLS+22] benchmark such techniques in a variety of application
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domains and derive insights from the loss landscape. Recently, Möllenhoff and
Khan [MK22] develop a Bayesian interpretation of SAM proposed by Foret et al.
[FKM+20].

Our work in Chapters 5 and 6 differs in that we study flatness under the scope
of transferability. We adapt the explanation of Keskar et al. [KNT+16] about the5

shift between training and test losses for natural accuracy, to transferability by
proposing our surrogate-target misalignment hypothesis in Section 5.5. Figure 5.10
illustrates this adaptation. We use the Hessian-based sharpness metrics developed
by Yao et al. [YGK+19] in Chapter 5. We iterate on some work listed above
by evaluating SWA [IPG+18], SAM [FKM+20] and two SAM variants [KKP+21;10

ZGY+22], in the context of transferability respectively in Chapter 5 and Chapter 6.
On the other side of the controversy, some works point to the limitations of

sharpness either as a metric or as a cause for the reduced generalization gap. Dinh
et al. [DPB+17] show that some scaling-based reparametrizations can make any
minimum arbitrary sharp, while representing the same function. Therefore, there15

are some cases where sharpness is a meaningless metric. Zhang et al. [ZRP+21]
show that the correlation between flatness and generalization might be spurious,
due to the confounding factor of the volume of a function consistent with the
training data. This volume can be defined as a Bayesian prior, which is inversely
correlated to the complexity of the function [PLC18; MSV+19]. Andriushchenko20

and Flammarion [AF22] analyse the implicit bias of SAM. Recently, Andriushchenko
et al. [ACM+23] propose a new reparametrization-invariant measure of sharpness,
and show that the correlation between flatness and generalization does not hold in
modern experimental settings. Similarly, Kaur et al. [KCL22] exhibit experimentally
cases where a smaller sharpness increases the generalization gap. Andriushchenko25

et al. [AVP+22] study SGD with a high learning (such as the one used by LGV
developed in Chapter 5) and show an implicit regularization effect that leads
to sparse features. Li et al. [LWM19] also show a regularization effect of large
learning rates. Overall, an increasing number of work show correlate flatness with
regularization.30

During our extensive preliminary work of Chapter 6, after our work of Chap-
ter 5, we did our best to analyse transferability from the other perspective of the
controversy. We extensively experimented with various types of regularization to
balance the explanation of LGV in terms of flatness developed in Section 5.5. But
we found no evidence of a particular link between regularization and transferability.35

In relation to Andriushchenko et al. [AVP+22] who show that large learning rates
have an implicit sparse regularization effect (instead of the flattening effect shown
by Xing et al. [XAT+18]), we trained several surrogate models with L1 regulariza-
tion, which favours sparse weights [GBC16]. Despite our best attempt at tuning
the hyperparameter controlling the strength of the L1 regularization, we found40
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systematically a significative lower transferability from these surrogates compared
to a standard surrogate trained with L2 regularization. Moreover, we explored
in-depth if the strength of the L2 regularization (i.e. weight decay) has an effect
on transferability. This is particularly interesting, since the weight decay is related
to the covariance matrix of the Bayesian prior (see Chapter 4). If the weight decay5

optimal for transferability is smaller than the optimal weight decay for natural
generalization, then a broader prior is beneficial to the surrogate. However, we
found that the best weight decay for the transferability of the surrogate is the same
as the best one for natural accuracy on CIFAR-10, even when ensembled. Then we
rejected our preliminary hypothesis that an ensemble of simpler representations is10

a better surrogate, which was suggested by the transferability gained from dropout
[LBZ+18], from the linearity in the backward pass [WWX+20; GLC20], from the
large learning rate used by LGV (Chapter 5, [LWM19; AVP+22]). Additionally, and
contrary to Wu et al. [WZT+18], we found no evidence that smaller architectures,
i.e., less complex functions, are better surrogates. We studied the transferability15

from and to different sizes of architecture (for five families of architectures). We
found that the closer the size of the surrogate to the size of the target, the higher
transferability is, i.e., smaller architectures are not better surrogates. We also
compared the transferability of each pair of sizes. If simpler functions transfer
better, then the transferability from small to big architectures should be higher20

than the transferability from big to small architectures. We found evidence that
contradicts this hypothesis most of the time. Instead, during our preliminary
experiments for Chapter 6, we quickly found strong and reliable transferability
improvements from SAM that explicitly minimize sharpness. This finding echoes
the transferability from slight adversarial training [SMK21], which has an implicit25

flattening effect [MFU+19]. Nevertheless, we think that many directions remain to
be explored, and that the community studying transferability should follow the
evolution of this controversy.

3.3 Bayesian and Ensemble Approaches (Chap-
ter 4)30

3.3.1 Ensemble and Transferable Adversarial Examples

As stated previously, Liu et al. [LCL+17] show the benefit of ensembling
architectures for inter-architecture transferability. Our Chapter 4 complements
their by exploring how to build an ensemble of a single surrogate architecture. We
show in Section 4.4.3 that transferability is higher by applying our ensembling and35

Bayesian techniques on several surrogate architectures. Therefore, both techniques
complement each other nicely.
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3.3.2 Bayesian Neural Network and Adversarial Examples
Though not our goal, past research aimed at generating adversarial examples

for BNNs (we rather use Bayesian Deep Learning as a way to attack deterministic
DNNs). Grosse et al. [GPS+18] show that BNN uncertainty measures are vulnera-
ble to high-confidence-low-uncertainty adversarial examples crafted on Gaussian5

Processes. Palacci and Hess [PH18] show that several SG-MCMC sampling schemes
are not secure against white-box attacks. Wang et al. [WVL+18] use SGLD and
Generative Adversarial Network to detect adversarial examples instead of crafting
them.

Carbone et al. [CWL+20] claim that BNNs are robust against gradient-based10

attacks because gradients vanish in expectation under the true posterior distribution.
Their conclusions hold theoretically under the restrictive assumption of the large-
data overparametrized limit, and experimentally for HMC and VI on MNIST and
Fashion MNIST. In Section 4.4.2, our experiments reveal opposite conclusions
about cSGLD: our surrogates DNNs suffer more often from vanished gradients15

than our cSGLD surrogates. On MNIST, we observe that 60.6-86.6% of individual
gradients of HMC or VI vanish before averaging them. Therefore, the theoretical
development of Carbone et al. [CWL+20] does not seem to explain most gradient
vanishing. Furthermore, VI on larger datasets (ImageNet and CIFAR-10) do not
suffer from vanishing gradients.20

3.3.3 Bayesian and Ensemble Training Techniques
Following the work of Ashukha et al. [ALM+20], we consider the following

training techniques in Chapter 4: Deep Ensemble [LPB16], cSGLD [ZLZ+20],
SWAG [MGI+19a], VI, Snapshot Ensembles (SSE) [HLP+17], and Fast Geometric
Ensembling (FGE) [GIP+18]. These training techniques were developed for natural25

accuracy. Chapter 4 in general, and Section 4.4.6 in particular, evaluate the
transferability and the computational cost of these training techniques. These
training techniques are the building blocks that we apply to a new problem they
were not designed to solve initially.

Deep Ensemble. Deep ensemble [LPB16] simply trains several DNNs indepen-30

dently with random initialization and random subsampling (mini-batch on shuffled
data in practice). All DNNs have the same standard hyperparameters for training.
For classification, the predictions of individual DNNs are averaged. In Chapter 4,
we train 15 PreResNet110, 4 PreResNet164, 4 VGG16bn, 4 VGG19bn, and 4
WideResNet28x10 DNNs on CIFAR-10. We retrieve 15 ResNet50 DNNs trained by35

Ashukha et al. [ALM+20] on ImageNet, and trained on our own 1 DNN for each of
the remaining studied architectures (ResNeXt50 32x4d, DenseNet121, MNASNet
1.0, and EfficientNet-B0).
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cSGLD. We refer the reader to Section 4.2 for a detailed description of cyclical
Stochastic Gradient Langevin Dynamics (cSGLD). Figure 4.2 illustrates both the
cyclical cosine annealing learning rate schedule and the separation of each cycle
into an exploration phase (called the burn-in period of MCMC algorithm) and a
sampling phase.5

SWAG. Stochastic Weight Averaging-Gaussian (SWAG) [MGI+19a] is a Bayesian
deep learning method that fits a Gaussian onto SGD iterates to approximate the
posterior distribution over weights. Its first moment is the SWA solution, and its
second moment a diagonal plus low-rank covariance matrix. Both are estimated
from SGD iterates with constant learning rate (0.001 on ImageNet and 0.01 on10

CIFAR-10). On ImageNet, SWAG performs 10 additional epochs to collect SGD
iterates from one of the Deep Ensemble DNNs. On CIFAR-10, a regular pre-training
phase of 160 epochs precedes 140 epochs to collect checkpoints. Once fitted, models
are sampled from the Gaussian distribution. For every sample, batch normalization
statistics are updated in a forward pass over the entire CIFAR-10 train set and15

over a random subset of 10% on ImageNet. Apart from the fixed initial cost, the
marginal computational cost to obtain a sample is very low. In Chapter 4, we
sample a maximum of 50 models because iterative attacks perform 50 iterations of
one model per iteration, and further samples would be discarded. Thus, the lines
corresponding to SWAG in Figures 4.8 and 4.9 are shorter than the ones of other20

methods. The rank of the estimated covariance matrix is 20. Batch-size is 128 on
CIFAR-10, and 256 on ImageNet.

VI. Variational Inference (VI) approximates the true posterior distribution with
a variational approximation, here a fully-factorized Gaussian distribution, and
maximizes a corresponding lower bound. A Gaussian prior is chosen. Once trained,25

the variational approximation is used as the posterior. There is no additional
sampling phase to perform Bayesian model averaging. Therefore, we cannot
tune the number of samples and a single VI point is plotted in Figures 4.8 and
4.9 (Chapter 4). We follow the solutions of Ashukha et al. [ALM+20] to avoid
underfitting: pre-training and annealing of β. The first moment of the Gaussian30

variational approximation is initially set to a DNN pre-trained similarly to Deep
Ensemble (300 epochs on CIFAR-10 with initial learning rate of 10−4, and 130
epochs on ImageNet starting at 10−3). The log of its second moment is initially set
to −5 on CIFAR-10 and −6 on ImageNet, and further optimized for 100 epochs
(45 on ImageNet) with Adam and a learning rate of 10−4. β is set to 10−5 on35

CIFAR-10 and 10−4 on ImageNet. Batch-size is 128 on CIFAR-10, and 256 on
ImageNet. On MNIST, we train VI using the code and the hyperparameters of
Carbone et al. [CWL+20].
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SSE. Snapshot ensembles technique (SSE) [HLP+17] is the foundation of cSGLD.
The learning rate is cyclical with a cosine annealing schedule. Contrary to cSGLD,
SSE saves a single snapshot per cycle and does not add gradient noise. In Chapter 4,
the cycles are 40 epochs long on CIFAR-10, 45 on ImageNet. The maximum learning
rate is 0.2, batch size is 64 on CIFAR-10, respectively 0.1 and 256 on ImageNet.5

FGE. Fast Geometric Ensembling (FGE) [GIP+18] is a method developed after
the empirical observation of Mode Connectivity on CIFAR-10 and CIFAR-100: it’s
possible to find a path in the parameters space that connects two independently
trained DNNs such that the models along the path have low loss and high test
accuracy. In practice, it uses a cyclical triangular learning rate and collects one10

model during each cycle. It is quite similar to SSE, except for the learning rate
schedule, the much shorter cycles (4 epochs on CIFAR-10, 2 epochs on ImageNet),
and a pre-training phase. Pre-training lasts for 160 epochs on CIFAR-10. On
ImageNet, FGE is initialized from one Deep Ensemble checkpoint. The learning
rate varies between 5 × 10−5 and 5 × 10−3 on CIFAR-10 and 10−6 and 10−4 on15

ImageNet. Batch-size is 128 on CIFAR-10, and 256 on ImageNet.

HMC. Hamiltonian Monte Carlo (HMC) is considered a golden standard to train
BNN. In Chapter 4, we trained the small Fully Connected (FC) architecture on
MNIST, using the code and the hyperparameters of Carbone et al. [CWL+20].
Unfortunately, HMC does not scale to larger DNNs, even on MNIST.20

3.4 SGD With Constant Learning Rate (Chap-
ter 5)

Chapter 5 proposes LGV which rests upon sampling weights along the trajectory
of SGD with constant learning rate. This idea has been explored to improve natural
accuracy or calibration in deep learning [MHB17; IPG+18; MGI+19a]. [MHB17]25

proves that under some assumptions, SGD with constant learning rate simulates a
Markov chain with a stationary distribution, which can be tuned to approximate the
Bayesian posterior. Our results in Chapter 5 corroborate the relationship between
the posterior predictive distribution and transferability established in Chapter 4,
with a new plug-in technique. LGV is inspired by the SGD trajectories used in SWA30

[IPG+18], SWAG [MGI+19a], and SI [IMK+19]. A key difference is that LGV uses
a higher learning rate to improve attack transferability that degrades the natural
accuracy of the surrogate ensemble (Figure 5.5). We analyse extensively SWA
on top of our LGV surrogate in Chapter 5. We observed during our preliminary
experiments that applying SWAG or SI on top of our LGV surrogate degrades35

transferability.
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3.5 Summary
The work in the literature that is related to the contributions of this dissertation

was presented in this chapter. Overall, this chapter shows that the work regarding
how to train a surrogate model is scarce. In particular, prior to our first contribution
in Chapter 4, no previous research studied how to explore a surrogate weight space5

to improve the transferability of adversarial examples.
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4
Transferability From Deep Ensemble and
Bayesian Neural Networks, a Probabilistic
Perspective

This chapter develops a probabilistic perspective on the transferability of5

adversarial examples. Since the target is unknown, we can treat its weights as
random variable. Under a specified threat model, deep ensemble can obtain a
surrogate with samples from the distribution of the target model that arises from
the training noise. Since deep ensemble is costly, we propose an efficient
approximation using cSGLD, a state-of-the-art Bayesian deep learning technique10

that samples from the posterior distribution. We evaluate the transferability of
seven training techniques in total. Our extensive experimental evaluation shows the
key role of training the surrogate model in transfer-based black-box attacks.
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Figure 4.1: Illustration of the proposed approach.

This chapter is based on the following paper:
• Martin Gubri et al. Efficient and Transferable Adversarial Examples from

Bayesian Neural Networks. In UAI 2022, 2022. url: https://gubri.eu/
publication/transferable_adv_ex_from_bnn/
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4.1 Introduction
Adversarial attacks have been first designed in white-box settings, where the

attacker is assumed to have complete knowledge of the target DNN (including its
weights). While studying such worst-case scenarios is essential for proper security
assessment, in practice the attacker should have limited knowledge of the target5

model. In such a case, the adversarial attack is applied to a surrogate model, with
the hope that the crafted adversarial examples transfer to (i.e., are also misclassified
by) the target DNN.

Achieving transferability remains challenging, though. This is because adversar-
ial attacks were designed to optimize the loss function of a specific model [GSS14;10

KGB17], different from that of the target model. As a result, Liu et al. [LCL+17]
improved transferability by attacking an ensemble of architectures, composed of
one standardly trained model per architecture. The key intuition is that adversarial
examples that fool a diverse set of models are more likely to generalize. However,
the way to train each surrogate architecture to obtain a diverse set of surrogate15

representations is left unexplored.
In this chapter, we analyse the unknown target model with a probabilistic eye,

and relate transfer-based attacks to uncertainty. We propose a new method to
improve the transferability of adversarial examples using deep ensemble to train
each surrogate architecture, complementarily to Liu et al. [LCL+17]. Then, we20

evaluate an approximate Bayesian inference to build a surrogate – and do so with
less computation overhead compared to deep ensemble. Our approach, shown in
Figure 4.1, leans upon recent results in Bayesian Deep Learning. More precisely,
we train our surrogate with a cyclical variant of Stochastic Gradient Markov Chain
Monte Carlo (i.e., cSGLD [ZLZ+20]) to sample from the posterior distribution of25

neural network weights. We then perform efficient approximate Bayesian model
averaging during the attack with minimal modifications of the attack algorithms.

We evaluate our approach on the ImageNet, the CIFAR-10 and the MNIST
datasets with a variety of DNN architectures, four adversarial attacks, and three
test-time transformations. Overall, our results indicate that applying cSGLD30

significantly improves the success rate compared to training single DNNs and
outperforms classical ensemble-based attacks in terms of computation cost. Deep
Ensemble requires at least 2.51 times more flops to achieve the same success
rates as cSGLD when the targeted architecture is known. This can represent, on
ImageNet, a saving of 3.56 exaflops (2.36 vs 5.92). At constant computation costs,35

our method increases the intra-architecture transfer success rates between 1.6 and
82.0 percentage points and the inter-architecture transfer success rates between -2.3
and 83.2. cSGLD always raises the effectiveness of test-time techniques designed
for transferability between 3.8 and 56.2 percentage points. Applied alone, it is
more effective than these techniques applied to a single DNN in 105/120 cases.40

59



To summarize, our contributions are:
• We relate uncertainty and transferability of adversarial examples with a

Bayesian perspective. The posterior distribution represents a belief about
the unknown target model.

• We are the first to propose and evaluate ways to explore a single surrogate5

weight space, i.e, to evaluate training methods to be applied on a surrogate
architecture. We propose the first method based on a Bayesian deep learning
technique to generate transferable adversarial examples. Existing iterative
attacks can be easily modified to perform approximate Bayesian model
averaging at no additional computational cost.10

• We pave the way for improving surrogates at train-time by evaluating six
Bayesian and ensemble techniques. cSGLD is a strong competitor, though
other techniques open promising avenues.

• We advocate the use of a new metric, T-DEE, to compare the effectiveness
of transferability techniques with the strong baseline of deep ensemble.15

• Our evaluation on ImageNet, CIFAR-10 and MNIST reveals significant
improvements over the single-DNN per architecture baseline in diverse ex-
perimental settings. Our train-time method improves existing test-time
techniques, and is better in most cases on a competitive basis. We open new
ways to understand transferability from the surrogate weight space.20

4.2 Approach
A probabilistic perspective on transferability. Under a specified threat
model, we relate uncertainty and posterior predictive distributions to transferability.
We consider a classification problem with a training dataset D = {(xi, yi) ∼
p(x, y)}N

i=1 and C class labels. A probabilistic classifier parametrized by θ maps xi

into a predictive distribution p̂(y|xi, θ). A white-box adversarial perturbation of a
test example (x, y) ∼ p(x, y) against such classifier is defined as:

δθ ∈ arg min
‖δ‖p≤ε

p̂(y|x + δ, θ).

In practice, this optimization problem is solved by replacing the predictive distri-
bution with a loss function (see Chapter 2). The transferability phenomenon is
the empirical observation that an adversarial example for one model is likely to be
adversarial for another one [GSS14]. Black-box attacks can leverage this property25

by crafting adversarial examples using white-box attacks against a surrogate model
to target an unseen model [PMG16].

Assumption 1 (Threat model). We define our threat model with the following
assumptions on the targeted classifier:
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1. Its architecture is known and so is its prediction function p̂(y|x, •) 1.

2. Its training set D is known.

3. Its parameters θt, estimated by maximum likelihood, are unknown.

4. A reasonable prior on its parameters p(θt) is known2.

5. No oracle access (test-time feedback) is possible.5

Assuming the threat model described in Assumption 1, uncertainty on target
parameters arises from the stochastic nature of training, and more specifically from
two sources of randomness: (i) every SGD update depends on a random batch
of training examples3, (ii) weights are randomly initialized at the beginning of
training4. From the attacker subjective view, the target parameters obtained at10

the end of training are random variables.
Under this threat model, deep ensemble [LPB16] samples from the distribution

of the parameters of the target model. Deep ensemble builds an ensemble from
independently trained DNNs, where each model starts with an independent random
initialization and is trained with independent training noise (random batch). Since15

the target architecture is known and the target weights θt were obtained from
training on the same dataset with independent random initialization and random
batch, deep ensemble samples from the distribution of the target parameters θt.
Therefore, deep ensemble is a natural way to build a surrogate ensemble of a single
DNN architecture.20

We argue that θt is also approximately distributed according to the posterior
distribution p(θ|D). Mingard et al. [MVS+20] observe a strong correlation between
the probability to obtain with SGD or its variants a function consistent with a
training set and the Bayesian posterior probability of this function. Mandt et al.
[MHB17] show that SGD with constant learning rate has a stationary distribution25

centred on an optimum, which approximates a posterior. Marginalizing over local
optima, we obtain a posterior that is the distribution of SGD endpoints with a
step decay learning rate schedule (as widely used).

Then, the best transferable adversarial example approximately minimizes the
Bayesian posterior predictive distribution p(y|x,D) = Ep(θ|D) p̂(y|x, θ) and our30

black-box attack objective is:
1We discuss the unknown architecture case further on.
2In practice, it corresponds to knowing the weight decay hyperparameter, see discussion below.
3The same argument holds for SGD variants.
4Despite being independent and identically distributed random variables, weights initialization

values play an important role in guiding the SGD trajectory [FC19].
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δ∗ ∈ arg min
‖δ‖p≤ε

E
θt∼p(θ|D)

p̂(y|x + δ, θt). (4.1)

Usually in adversarial machine learning, transferable adversarial examples are
optimized against one surrogate model. This is similar to solving problem (4.1)
deterministically by approximating the expectation of the posterior predictive
with a “plug-in” estimation of the parameters, θ̂MAP the maximum a posteriori
probability (MAP) estimate: δ∗ ≈ δθ̂MAP

. To avoid overfitting to the surrogate5

model, random transformations of inputs or prediction functions were developed in
the literature (see Chapter 3).

A fundamental issue is that the closed form of the posterior predictive distribu-
tion is intractable for DNNs. Our contribution lies in sampling from the posterior
distribution to build a surrogate in black-box adversarial attacks. We replace the10

crude MAP approximation of the posterior predictive distribution with a more
accurate one to generate transferable adversarial examples. Therefore, we focus
on the training phase by considering the methods and the computational costs of
obtaining the surrogate model, whereas most previous work searches to optimize
adversarial examples crafting at the time of the attack (“test-time”).15

SG-MCMC & cSGLD. In practice, we perform Bayesian model averaging
using samples obtained from Stochastic Gradient-Markov Chain Monte Carlo (SG-
MCMC). SG-MCMC is a family of approximate Bayesian inference techniques,
inaugurated by SGLD [WT11], that combines SGD with MCMC. Adding noise
during training allows to sample from the posterior distribution of parameters.20

The empirical distribution of the samples approximates the posterior. Then, our
method aims to solve the following optimization problem:

δ{θs} ∈ arg min
‖δ‖p≤ε

1
S

S∑
s=1

p̂(y|x + δ, θs) , (4.2)

where {θs ∼ p(θ|D)}S
s=1 are samples of the posterior.

We choose to apply the recently proposed cyclical Stochastic Gradient Langevin
Dynamics (cSGLD) [ZLZ+20], a state-of-the-art SG-MCMC technique. cSGLD25

performs warm restarts by dividing the training into cycles that all start from the
initial learning rate value (cf. Figure 4.2). Each cycle consists of (1) an exploration
stage with larger learning rates which corresponds to the burn-in period of MCMC
algorithms; (2) a sampling stage that samples parameters at regular intervals and
operates with smaller learning rates and added noise. Starting a new cycle with a30

large learning rate allows the exploration of another vicinity of the loss landscape.
Contrary to most SG-MCMC methods, cSGLD has the compelling benefit of
sampling from both several modes of the posterior distributions and locally inside
each mode, avoiding mode collapse. Another major advantage of cSGLD is that its
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Figure 4.2: Illustration of the cSGLD cyclical learning rate schedule (red) and the
traditional decreasing learning rate schedule (blue). Each cSGLD cycle is composed
of an exploration phase (burn-in period of MCMC algorithms — red doted) and of
a sampling phase (red plain). Figure taken from [ZLZ+20].

computation overhead compared to SGD/Adam is negligible (0.019% flops for one
epoch on PreResNet110 on CIFAR-10 and 0.015% for ResNet50 on ImageNet).
Difference with ensembling. Our work differs from previous research [LCL+17;
LBZ+18; XZZ+19] that relates diversity with transferability in the same way that
Ensembling and Bayesian Model Averaging do [Min02]. The latter “assumes that5

the true model lies within the hypothesis class of the prior, and performs soft model
selection [...]. In contrast, ensembles [...] combine the models to obtain a more
powerful model; ensembles can be expected to be better when the true model does
not lie within the hypothesis class” [LPB16]. Under Assumptions 1, the unknown
target model, our true model here, lies within the hypothesis class of its prior by10

definition. Therefore, we argue that under these conditions, a Bayesian approach
is a more natural way to select a surrogate model.
Target prior. We express the prior of a standard target DNN. Deterministic
DNNs are classically trained using the cross-entropy loss regularized by weight
decay:15

min
θt

− 1
N

N∑
i=1

log p̂(yi|xi, θt) + λ

2‖θt‖2,

with λ its weight decay hyperparameter. This maximum likelihood estimation
(MLE) procedure corresponds to the maximum a posteriori inference (MAP) of
this implied probabilistic model:

p(y, θt|x) = p(y|x, θt)p(θt),
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where p(y|x, θt) is the likelihood function and p(θt) = N (θt|0, 1
Nλ

I) a Gaussian
prior. Therefore, in this standard setting, the hypothesis 4 reduces to knowing the
weight decay hyperparameter λ.
Extension to unknown architecture. Let A = {ai}i be a countable set of
candidate architectures, p(a) a prior on A, θa the parameters of the architecture a5

and p̂a(y|x, θa) its predictive distribution. Discarding hypothesis 1 of Assumption 1
on the knowledge of the architecture, the architecture of the target a becomes
a random variable. We perform Bayesian Model Comparison to compute the
posterior over models:

p(a|D) ∝ p(D|a)p(a). (4.3)

We marginalize over architectures to express the complete posterior predic-10

tive distribution as the average across architectures weighted by their posterior
probabilities:

p(y|x,D) =
∑
a∈A

p(a|D)p(y|x,D, a)

∝ E
p(a)

p(D|a) E
p(θa|D)

p̂a(y|x, θa)
(4.4)

If A is finite and small, we can approximate this quantity with a weighted
average of one cSGLD empirical posterior predictive distribution per architecture.
Otherwise, we estimate it with MCMC by sampling according to p(a) a finite subset15

A = {ai ∼ p(a)}SA
i=1 ⊂ A of architectures, where the number of architectures SA is

fixed by the computational budget. We sample S parameters {θa
s}S

s=1 for all a ∈ A.
Then, our inter-architecture attack that minimizes our approximation of p(y|x,D)
becomes:

δA ∈ arg min
‖δ‖p≤ε

1
SAS

∑
a∈A

p(D|a)
S∑

s=1
p̂a(y|x + δ, θa

s ) (4.5)

Various methods exist to approximate model evidence [FW12]. To simplify em-20

pirical conclusions, we assume that all architectures in A have approximately equal
evidence. This strong assumption is reasonable here, since we select widely used ar-
chitectures which are well-specified on the standard benchmark datasets evaluated.
For fairness to ensemble baselines, our experiments on unknown architectures do
not include the target architecture in the set A.25

Attack algorithm. One can approximate the solution of Equations 4.2 and
4.5 with minor modifications of existing adversarial attack algorithms, i.e. simply
cycling surrogate models throughout iterations. To efficiently approximate Bayesian
model averaging during iterative attacks, we compute the gradient of every iteration
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Algorithm 3 Variant of I-FGSM attack to perform approximate Bayesian Model
Averaging efficiently on numerous models from several architectures.
Input: (x, y) natural example and its corresponding label, SA ordered sets of

model parameters (θ1
s)S

s=1, . . . , (θSA
s )S

s=1 each sampled from the corresponding
posterior distribution θi

s ∼ p(θs|D) of the surrogate DNN fs, niter number of
iterations, ε p-norm perturbation, α step-size, L loss function

Output: xadv adversarial example
1: Shuffle each ordered set of model samples (θ1

s)S
s=1, . . . , (θSA

s )S
s=1

2: xadv ← x
3: for i = 1 to niter do
4: g ← α

SA

∑SA
a=1∇xL(fa(xadv; θa

i mod S), y) . Compute the average input
gradient of the loss of a posterior sample for each surrogate architecture

5: xadv ← xadv + project(g, Sα[0]) . Add the normalized gradient, projected in
the p-norm sphere of α radius

6: xadv ← project(xadv, Bε[x]) . Project in the p-norm ball centred on x of ε
radius

7: xadv ← clip(xadv, 0, 1) . Clip to pixel range values
8: end for

on a single model sample per architecture. If multiple architectures are attacked, we
average their gradients (see Algorithm 3). The cost of iterative attacks, measured
as the number of backward passes, does not increase with the number of samples
S.

Clarifications. In the following, the intra-architecture transferability represents5

the case of known target architecture. The mass of the prior concentrates on a
single architecture, thus the posterior too. Respectively, the inter-architecture
transferability corresponds to an unknown target architecture not sampled in
the surrogate set. The prior of the target architecture may not be zero, given
the extension to unknown architecture described above. But we hold-out this10

architecture from the surrogate set during empirical evaluation for fairness to
baseline and to simplify result interpretations.

4.3 Experimental Settings
Setup summary. The target models are deterministic DNNs and are never used
as a surrogate. For a fair comparison between DNNs and cSGLD, we train the15

surrogate DNNs on CIFAR-10 and MNIST using the same process as the target
models. ImageNet targets are third-party pretrained models. Each cSGLD cycle
lasts 50 epochs and samples 5 models on CIFAR-10, 10 epochs/4 models on MNIST,
45 epochs/3 models on ImageNet. We report the success rate (misclassification
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rate of untargeted adversarial examples) averaged over three attack runs. We
craft adversarial examples from correctly predicted test examples (all examples for
CIFAR-10 and MNIST, and a random subset of 5000 examples for ImageNet). The
iterative attacks (I-FGSM, MI-FGSM, and PGD) perform 50 iterations such that
the transferability rates plateaus (see Figures 4.3 and 4.4). Each attack computes5

the gradient of one model per architecture. Therefore, their computation cost and
volatile memory are not multiplied by the size of the surrogate, except for FGSM
which computes its unique gradient against all available models. The source code is
publicly available5. The remaining of this section presents the experimental setup
in details.10

Datasets. We consider ImageNet (ILSVRC2012; [RDS+15]), CIFAR-10 [Kri09]
and MNIST. In all cases, we train the surrogate and target models on the entire
training set. For each CIFAR-10 and MNIST target model, we select all the
examples from the test set that are correctly predicted by it. In the case of
ImageNet, we use a random subset of 5000 correctly predicted test images.15

Architectures. We cover a diverse set of architectures in terms of heterogeneity
(similar and different families of architecture), computation cost, and release date.
For ImageNet, we select five architectures with 3 × 224 × 244 input size. Three
classical architectures: ResNet-50 [HZR+16a]6, ResNeXt-50 32x4d [XGD+17] and
Densenet-121 [XGD+17]; and two mobile architectures: MNASNet 1.0 [TCP+18]20

and EfficientNet-B0 [TL19]. Following the work of Ashukha et al. [ALM+20], we
consider the following five architectures for CIFAR-10: PreResNet110, PreRes-
Net164 [HZR+16b], VGG16BN, VGG19BN [SZ15], and WideResNet28x10 [ZK16].
We study three architectures on MNIST: “FC” a fully connected neural network
with two hidden layers 1200-1200, “Small FC” with a single fully connected hidden25

layer of size 512, and “CNN” a convolutional neural network composed of two
convolutional layers with 32 filters each followed by two fully connected hidden
layers 200-200.

Target models. The target models are deterministic DNNs. For ImageNet, we
use the pre-trained models provided by PyTorch [PGM+19] and the pre-trained30

EfficientNet-B0 provided by PyTorch Image Models (timm). In the case of CIFAR-
10, they are trained using Adam optimizer for 300 epochs with step-wise learning
rate decay that divides it by 10 every 75 epochs (MNIST: 50 epochs in total,
learning rate divided by 10 every 20 epochs). The benign accuracy of all target
models exceeds 73% (ImageNet), 83% (CIFAR-10) and 98% (MNIST); see Table 4.135

for exact values.
5https://github.com/Framartin/transferable-bnn-adv-ex
6Ashukha et al. [ALM+20] study ResNet-50 only on ImageNet. We used their shared trained

models as surrogate DNNs.
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Table 4.1: Top-1 natural test accuracy of target DNNs.

Dataset Target DNN Accuracy

CIFAR-10

PreResNet110 93.26 %
PreResNet164 93.03 %
VGG16bn 83.68 %
VGG19bn 83.62 %
WideResNet28x10 92.13 %

ImageNet

ResNet50 76.15 %
ResNeXt50 32x4d 77.62 %
Densenet121 74.65 %
MNASNet 1.0 73.51 %
EfficientNet-B0 77.70 %

MNIST
CNN 99.33 %
FC 98.65 %
Small FC 98.41 %

Surrogate models (deep ensemble). For CIFAR-10 and MNIST, the DNNs
used to form surrogate ensembles are trained using the same process as the target
models. Therefore, the comparison between deterministic DNNs and cSGLD is
fair, since one can expect the deterministic DNNs surrogate to be “close” to the
target. As for ImageNet, we retrieve an ensemble of 15 ResNet-50 models trained5

independently by Ashukha et al. [ALM+20] using SGD with momentum during
130 epochs. For the experiments in Section 4.4.3, we train similarly one model for
every 4 other ImageNet architectures.
Surrogate models (cSGLD). Following the work of Ashukha et al. [ALM+20]
and Zhang et al. [ZLZ+20], we train models with cSGLD on CIFAR-10 for 610

learning rate cycles (which, as our RQ4 experiments reveal, is where the transfer
rate starts plateauing). cSGLD performs 5 cycles on ImageNet, and 10 on MNIST.
The learning rate is set with cosine annealing schedule for fast convergence. Each
cycle lasts 45 on ImageNet, 50 epochs on CIFAR-10 and 10 on MNIST. The last
epochs of every cycle form the sampling phase: noise is added and one sample is15

drawn at the end of each epoch. On CIFAR-10, we obtain 5 samples per cycle
(resp. 3 on ImageNet and 4 MNIST), so 30 samples in total (resp. 15 and 20).
Figure 5.3 is an illustration of a cSGLD cyclical learning rate schedule. To train
ResNet-50 models on ImageNet, we re-use the original cSGLD hyperparameters.
Surrogate models (other training methods). Additionally, to Deep Ensemble20

cSGLD and following Ashukha et al. [ALM+20], we consider 2 Bayesian Deep
Learning techniques (SWAG and VI) and 2 Ensemble ones (SSE and FGE). We
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train every technique on CIFAR-10 and cSGLD and SWAG on ImageNet. We
retrieve trained Deep Ensemble, SSE, FGE and VIImageNet models from Ashukha
et al. [ALM+20]. Technique descriptions and experimental setup of surrogates
trained with SWAG, VI, FGE, or SSE are detailed below in the Bayesian and
Ensemble Training Techniques section.5

Adversarial attacks. We applied our variant of 4 gradient-based attacks as de-
scribed in the approach section. The attacker’s goal is misclassification (untargeted
adversarial examples). We perform both 2-norm and ∞-norm bounded adversarial
attacks, and report means and standard deviations computed on 3 random seeds.
In accordance to values commonly used in the literature [CH20], the maximum10

perturbation norm ε is set respectively to 0.5 and 4
255 on CIFAR-10, and respectively

to 3 and 4
255 on ImageNet. MNIST ones are respectively 3 and 0.1. The step-size α

is set to ε
10 . We choose to perform 50 iterations such that the transferability rates

plateaus for all iterative attacks (I-FGSM, MI-FGSM and PGD) on both norms,
both datasets, for both several DNNs and cSGLD (see Figures 4.3 and 4.4). PGD15

runs with 5 random restarts. FGSM aside, every iteration computes the gradient
of 1 model per architecture. Therefore, the attack computation cost and volatile
memory are not multiplied by the size of the surrogate, except for FGSM which
computes its unique gradient against all available models. cSGLD samples are
attacked in random order. The MI-FGSM decay factor is set to 0.9.20

Test-time transformations. In the dedicated section, we consider three test-
time transformations applied during attack designed for transferability (see related
work section): Ghost Networks (GN) [LBZ+18], Input Diversity (DI) [XZZ+19]
and Skip Gradient Method (SGM) [WWX+20]. We implemented the first two in
PyTorch with their original hyperparameters. To extend Input Diversity to the25

smaller input sizes of CIFAR-10, we keep the same maximum resize ratio of 0.9.
We reuse the original implementation of the third one on ResNet50, and extend it
to PreResNet110 (we set its hyperparameter to 0.7 via grid-search).

Implementation. The source code of the experiments are publicly available
on GitHub7. Our attack is built on top of the Python ART library [NST+18].30

cSGLD, VI, SSE, and FGE models were trained thanks to the implementation
of Ashukha et al. [ALM+20] available on GitHub8. All models were trained with
PyTorch [PGM+19]. We use EfficientNet-B0 from timm9. We train SWAG on
ImageNet with the original implementation [MGI+19a]. We use the following
software versions: Python 3.8.8, Pytorch 1.7.1 (1.9.0 for Flops measurement),35

torchvision 0.8.2, Adversarial Robustness Toolbox 1.6.0, and timm 0.3.2.

7https://github.com/Framartin/transferable-bnn-adv-ex
8https://github.com/bayesgroup/pytorch-ensembles
9https://github.com/rwightman/pytorch-image-models
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Table 4.2: Hyperparameters used to train cSGLD or Deep Ensemble. The ? symbols
refer to the inter-architecture and test-time techniques sections, and ?? to the
Bayesian and Ensemble training methods section. We do not include target DNNs
on ImageNet, since they are pretrained models from PyTorch and timm.

CIFAR-10 ImageNet

Method Hyperpa-
rameter cSGLD

DNN
Surrogate
& Target

cSGLD DNN
Surrogate

All

Number
epochs

50 per
cycle 300 45 per

cycle
130
(135 for ?)

Initial
learning rate 0.5 0.01 0.1 0.1

Learning
rate
schedule

Cosine
Annealing

Step size
decay
(×0.1 each
75 epochs)

Cosine
Annealing

Step size
decay
(×0.1 each
30 epochs)

Optimizer cSGLD Adam cSGLD SGD
Momentum 0 0.9 0.9 0.9

Weight
decay

5e-4
(3e-4 for
PreResNet)

1e-4 1e-4 1e-4

Batch-size 64 128

256 for
ResNet50,
64 for
others

256 for
ResNet50,
64 for
others

cSGLD

Sampling
interval

1 sample
per epoch - 1 sample

per epoch -

Nb cycles 6
(18 for ??) -

5
(3 for ?, 6
for ??)

-

Nb samples
per cycle 5 - 3 -

Nb epochs
with noise 5 - 3 -
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Figure 4.3: Transfer success rates on ImageNet of three iterative gradient-based
attacks on the same architecture (ResNet-50) with respect to the number of
iterations.
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Figure 4.4: Transfer success rates on CIFAR-10 of three iterative gradient-based
attacks on the same architecture (PreResNet110) with respect to the number of
iterations.
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Table 4.3: Hyperparameters of attacks and test-time transferability techniques.

Attack /
Technique Hyperparameter ImageNet CIFAR-10 MNIST

All attacks Perturbation 2-norm ε 3 0.5 3
Perturbation ∞-norm ε 4

255
4

255 0.1

Iterative Attacks
Step-size α ε

10
ε

10
ε

10

Number iterations 50 50 50
MI-FGSM Momentum term 0.9 0.9 0.9

PGD Number random
restarts 5 5 5

GN Skip connection erosion
random range

[1-0.22,
1+0.22]

[1-0.22,
1+0.22] -

DI Minimum resize ratio 90% 90% -
Probability
transformation 50% 50% -

SGM Residual Gradient
Decay γ

0.2
(ResNet50)

0.7 (PreRes-
Net110) -

Flops. We measure the training computational complexity in Flops using the
PyTorch profiler. The computation overhead of one epoch with cSGLD compared
to one with SGD/Adam is negligible. The main difference is the addition of noise
to the weights during the sampling phase. On CIFAR-10, the overhead of 1 cSGLD
epoch of PreResNet110 with added noise compared to one of a DNN trained with5

Adam (SGD) is 0.0187% Flops (respectively 0.0146% for ResNet50 on ImageNet).

Infrastructure. Experiments were run on Tesla V100-DGXS-32GB GPUs. The
server has the following specifications: 256GB RDIMM DDR4, CUDA version 10.1,
Linux (Ubuntu) operating system.

4.4 Experimental Results10

The goal of our approach is to increase the transferability of adversarial examples
by using a surrogate sampled from the distribution of the target model or from the
posterior distribution to attack a deterministic DNN.

4.4.1 Transferability From Deep Ensemble
First, we show that deep ensemble can generate highly transferable adversarial15

examples. That is to say, we assess the possibility of independently training several
surrogate DNNs of the same architecture from independent random initializations
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and independent batch sampling during training. Deep ensemble samples from the
distribution of the target model under the threat model presented in Assumption 1.

At each attack iteration, we sample one independently trained model to compute
its input gradient. Therefore, the cost of the attack is kept constant. This section
exceptionally borrows the experimental settings of Chapter 5 on ImageNet, detailed5

in Section 5.2.
The upper left sub-figure in Figure 4.5 shows the intra-architecture transfer-

ability, i.e., the surrogate and target models have the same architecture. We
observe that transferability increases with the number of independently trained
DNNs. Therefore, sampling from the distribution of the unknown target does10

indeed increase transferability. This is the most favourable setting for the threat
model in Assumption 1.

Next, we investigate the inter-architecture case, where the surrogate and target
models have distinct architectures. This case is not favourable to deep ensemble
since we know that the surrogate is not sampled from the target distribution,15

contrary to the intra-architecture case. As observed in Figure 4.5, and despite this
unfavourable setting, deep ensemble is effective in increasing transferability by a
large margin. As we train more surrogate models of the same architecture, the
transferability to other architectures increases. This observation stays true even for
the transferability between families of architecture, as shown in Figure 4.5 for the20

success rate from a ResNet-50 surrogate to DenseNet, VGG and Inception targets.
Therefore, deep ensemble is an effective surrogate for black-box attacks based

on transferability. However, since it requires training numerous DNNs from scratch,
deep ensemble surrogates are costly. This cost is an issue, as training the surrogate
model is the main computational cost of transfer-based attacks, as established25

in Chapter 1. Deep ensemble is effective, but not efficient. In the following, we
explore ways to address this shortfall.

4.4.2 Intra-architecture Transferability
Since SG-MCMC methods sample the weights of a given architecture, we expect

our approach to work particularly well in settings where the architecture of the30

target model is known, but not its weights. To demonstrate this, we compare the
intra-architecture transfer success rates of cSGLD with the ones of deep ensemble
surrogates (using 1 up to 15 independently trained DNNs). Architectures are
ResNet-50 (ImageNet), PreResNet110 (CIFAR-10) and fully connected 1200-1200
(MNIST).35

Tables 4.4 and 4.5 provide the detailed results for four classical gradient-based
attacks on the three datasets. In summary, for a similar computation cost on
ImageNet and CIFAR-10, cSGLD systematically increases the success rate of
iterative attacks by 13.8 (ImageNet, MI-FGSM, L∞) to 49.2 (CIFAR-10, I-FGSM,
L2) percentage points, and of FGSM by 12.18 to 22.2. On MNIST, it ranges from40
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Figure 4.5: Transfer success rate with respect to the size of the deep ensemble
surrogate (number of independently trained models) on ImageNet. The sub-figure
title is the target architecture. The deep ensemble surrogate has a ResNet-50
architecture. The upper-left sub-figure is intra-architecture transferability, the
other subplots are inter-architectures.

6.8 to 80.5. One explanation for the highest improvements is that DNN-based L2
norm attacks suffer from vanishing gradients on CIFAR-10 and MNIST, whereas
cSGLD avoids it thanks to fast convergence and warm restarts (Table 4.6 for
proportions of vanished gradients).

Inspired by DEE [ALM+20], we propose the Transferability-Deep Ensemble5

Equivalent (T-DEE) metric as the number of independently trained DNNs needed
to achieve the same success rate as the technique considered (computed with linear
interpolation). Under some assumptions10, deep ensemble samples exactly from
the distribution of target parameters, and is thus optimal for intra-architecture
transferability with infinite computing power.10

Table 4.7 reports the T-DEE and the computing ratio, i.e., the total number
of flops to train such DNNs ensemble divided by the number of flops used to
trained cSGLD. This ratio represents the computational gain factor achieved by
our approach11. In the worst case across the three datasets, an ensemble of 3
surrogate DNNs is required to beat the cSGLD surrogate, while requiring at least15

2.51 times more flops during the training phase. On CIFAR-10 and MNIST and
considering L2 attack specifically (MI-FGSM CIFAR-10 aside), it even outperforms

10Besides Assumptions 1, we suppose that deep ensemble uses the target optimizer, and that
the minimum in Eq. 4.2 is reached, i.e., that the attack doesn’t fail due to vanished or obfuscated
gradients [ACW18].

11The ImageNet computing ratios don’t equal to T-DEE since 1 DNN is trained for 130 epochs
and cSGLD for 225.
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Table 4.4: Intra-architecture transfer success rates of four attacks on PreResNet110
(CIFAR-10) and ResNet50 (ImageNet), in %. Bold is best. Higher is better. The
last two columns are respectively the number of epochs and attack backward passes.

Dataset Attack Surrogate L2 Norm L∞ Norm Epochs Backwards

Im
ag

eN
et

I-FGSM

cSGLD 94.41 ±0.46 90.77 ±0.09 225 50
1 DNN 64.95 ±0.54 57.79 ±0.17 130 50
2 DNNs 80.39 ±0.83 74.25 ±0.71 260 50
5 DNNs 94.53 ±0.43 92.81 ±0.45 650 50
15 DNNs 98.51 ±0.11 98.28 ±0.16 1950 50

MI-FGSM

cSGLD 93.42 ±0.73 93.61 ±0.41 225 50
1 DNN 61.11 ±0.35 63.70 ±0.21 130 50
2 DNNs 77.93 ±0.44 79.27 ±0.76 260 50
5 DNNs 94.41 ±0.47 95.32 ±0.25 650 50
15 DNNs 98.89 ±0.13 99.19 ±0.13 1950 50

PGD

cSGLD 91.81 ±0.38 88.76 ±0.24 225 250
1 DNN 57.47 ±0.52 53.79 ±0.45 130 250
2 DNNs 74.04 ±0.47 70.90 ±0.41 260 250
5 DNNs 91.99 ±0.41 91.27 ±0.59 650 250
15 DNNs 97.83 ±0.20 97.65 ±0.21 1950 250

FGSM

cSGLD 58.91 ±0.11 67.17 ±0.26 225 15
1 DNN 37.37 ±0.19 44.55 ±0.72 130 1
2 DNNs 46.73 ±0.34 53.91 ±0.60 260 2
5 DNNs 58.17 ±0.18 65.53 ±0.10 650 5
15 DNNs 68.48 ±0.52 76.57 ±0.62 1950 15

C
IF

A
R

-1
0

I-FGSM

cSGLD 92.38 ±0.23 92.74 ±0.33 300 50
1 DNN 43.17 ±0.97 77.59 ±0.01 300 50
2 DNNs 52.08 ±1.03 84.75 ±0.20 600 50
5 DNNs 58.74 ±0.98 94.81 ±0.17 1500 50
15 DNNs 62.08 ±0.92 97.83 ±0.03 4500 50

MI-FGSM

cSGLD 92.29 ±0.25 94.20 ±0.14 300 50
1 DNN 72.34 ±0.23 80.43 ±0.04 300 50
2 DNNs 84.10 ±0.33 90.70 ±0.07 600 50
5 DNNs 91.66 ±0.26 97.04 ±0.07 1500 50
15 DNNs 93.87 ±0.30 98.30 ±0.11 4500 50

PGD

cSGLD 91.65 ±0.33 92.10 ±0.25 300 250
1 DNN 51.08 ±0.10 77.58 ±0.38 300 250
2 DNNs 60.60 ±0.06 83.67 ±0.27 600 250
5 DNNs 67.55 ±0.21 94.19 ±0.07 1500 250
15 DNNs 70.42 ±0.23 97.37 ±0.06 4500 250

FGSM

cSGLD 43.13 ±0.00 58.85 ±0.01 300 30
1 DNN 20.92 ±0.00 38.89 ±0.01 300 1
2 DNNs 23.75 ±0.00 45.83 ±0.01 600 2
5 DNNs 25.60 ±0.00 54.62 ±0.01 1500 5
15 DNNs 26.71 ±0.00 61.81 ±0.00 4500 15
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Table 4.5: Intra-architecture transfer success rates of four attacks on the FC
architecture (MNIST), in %. Bold is best. Higher is better. The last two columns
are respectively the number of epochs and attack backward passes.

Dataset Attack Surrogate L2 Norm L∞ Norm Epochs Backwards

M
N

IS
T

I-FGSM

cSGLD 97.65% ±0.02 41.49% ±0.02 50 50
1 DNN 17.17% ±0.00 34.53% ±0.00 50 50
2 DNNs 18.52% ±0.01 36.44% ±0.01 100 50
5 DNNs 26.21% ±0.10 43.12% ±0.16 250 50
15 DNNs 26.46% ±0.19 45.22% ±0.27 750 50

MI-FGSM

cSGLD 97.62% ±0.05 42.07% ±0.09 50 50
1 DNN 80.72% ±0.00 34.52% ±0.00 50 50
2 DNNs 82.63% ±0.05 39.83% ±0.06 100 50
5 DNNs 91.83% ±0.12 44.74% ±0.23 250 50
15 DNNs 92.08% ±0.09 46.99% ±0.37 750 50

PGD

cSGLD 97.78% ±0.04 41.64% ±0.18 50 250
1 DNN 31.99% ±0.08 34.80% ±0.07 50 250
2 DNNs 33.61% ±0.07 37.26% ±0.17 100 250
5 DNNs 43.27% ±0.37 43.61% ±0.29 250 250
15 DNNs 44.56% ±0.29 45.50% ±0.29 750 250

FGSM

cSGLD 75.09% ±0.00 34.90% ±0.00 50 20
1 DNN 8.62% ±0.00 22.52% ±0.00 50 1
2 DNNs 7.42% ±0.00 25.76% ±0.00 100 2
5 DNNs 7.95% ±0.00 29.52% ±0.00 250 5
15 DNNs 7.52% ±0.00 31.08% ±0.00 750 15

the ensemble of 15 DNNs by a significant factor (up to 71.2 percentage points).
On ImageNet, cSGLD achieves the same success rate as 4.38–5.98 DNNs, which
corresponds to dividing the number of flops by 2.51–3.46.

Then, the uncertainty on parameter estimation captured by cSGLD is useful to
discover generic adversarial directions.5

4.4.3 Inter-architecture Transferability
We now focus on black-box settings where the architecture of the target model is

unknown (and not used to build the surrogate model). We consider ten architectures
(five for both ImageNet and CIFAR-10). Following Liu et al. [LCL+17], Xie et
al. [XZZ+19], Li et al. [LBZ+18], and Dong et al. [DLP+18], we hold-out one10

architecture to act as the target model and use the four remaining ones as surrogates.
We apply I-FGSM with 1 model per surrogate architecture per iteration to keep
attack cost constant. Due to computational limitations, we limit the training to
135 epochs on ImageNet (3 cycles of 45 epochs for cSGLD). For every architecture,
cSGLD and 1 DNN are trained for the same number of epochs.15
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Table 4.6: Proportion of vanished gradients of each 15 individual models and of
the ensemble of 15 models (in %). Gradients disappear before and after averaging
in similar proportion (except in one case for VI where there is more gradient
vanishing after averaging). A gradient vanishes if its L2 norm is lower than 10−8,
the numerical tolerance of the Adversarial Robustness Toolbox library. Gradients
are on 10 000 original test examples. Means and standard deviations of 15 models
are reported when not ensembled.

Dataset Arch Surrogate

Vanished
individual

model
gradients

Vanished
ensemble
gradients

(averaging)

ImageNet RN50
cSGLD (ours) 0.06 ±0.06 0.00
VI 0.15 ±0.02 0.05
DNN 0.11 ±0.03 0.00

CIFAR-10 PRN110
cSGLD (ours) 3.04 ±0.72 2.52
VI 2.79 ±0.11 2.08
DNN 59.15 ±0.73 63.96

MNIST

CNN cSGLD (ours) 30.94 ±2.00 31.67
DNN 91.53 ±2.36 94.20

FC
cSGLD (ours) 11.16 ±0.51 11.31
VI 84.73 ±1.95 91.72
DNN 90.60 ±1.71 92.14

Small FC

cSGLD (ours) 4.63 ±0.48 4.71
VI 60.61 ±4.61 82.00
HMC 85.61 ±0.02 85.62
DNN 77.56 ±2.84 79.88

As shown in Tables 4.8 (ImageNet) and 4.9 (CIFAR-10), our method significantly
improved transferability on all five hold-out architectures for both datasets, except
for the L∞ VGG19 target (with a difference of 0.4 percentage point). On CIFAR-10,
the differences range from 15.0 to 35.2 percentage points (2-norm), and from -0.4 to
9.9 (∞-norm). Our method outperforms 4 DNNs per architecture on the L2 attack,5

despite been trained for 4 times fewer epochs. On ImageNet, cSGLD improves over
the one DNN counterpart by 11.8 and 29.9 percentage points of success rate at
constant computational train and attack budget.
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Table 4.7: Number of DNNs (T-DEE) and training computation budget (in flops)
to achieve the intra-architecture transferability of cSGLD with deep ensemble.
Higher is better. “>15” means that 15 DNNs always transfer less than cSGLD.

Dataset Attack Norm T-DEE Flops Ratio

ImageNet

I-FGSM L2 4.91 ±0.11 2.84 ±0.06

L∞ 4.34 ±0.13 2.51 ±0.08

MI-FGSM L2 4.69 ±0.18 2.71 ±0.10

L∞ 4.38 ±0.03 2.53 ±0.02

PGD L2 5.00 ±0.11 2.89 ±0.06

L∞ 4.42 ±0.16 2.56 ±0.09

FGSM L2 5.81 ±0.34 3.35 ±0.19

L∞ 5.98 ±0.03 3.46 ±0.02

CIFAR10

I-FGSM L2 >15 ±nan >15 ±nan

L∞ 3.76 ±0.08 3.76 ±0.08

MI-FGSM L2 5.56 ±0.80 5.56 ±0.80

L∞ 2.88 ±0.03 2.87 ±0.03

PGD L2 >15 ±nan >15 ±nan

L∞ 3.74 ±0.12 3.74 ±0.12

FGSM L2 >15 ±nan >15 ±nan

L∞ 8.72 ±0.01 8.72 ±0.01

MNIST

I-FGSM L2 >15 ±nan >15 ±nan

L∞ 3.42 ±0.17 3.42 ±0.17

MI-FGSM L2 >15 ±nan >15 ±nan

L∞ 2.79 ±0.07 2.79 ±0.07

PGD L2 >15 ±nan >15 ±nan

L∞ 3.26 ±0.28 3.26 ±0.28

FGSM L2 >15 ±nan >15 ±nan

L∞ >15 ±nan >15 ±nan
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Table 4.8: Transfer success rates of I-FGSM attack on ImageNet hold-out architectures. Higher is better.

Target Architecture

Norm Surrogate −RN50 −RNX50 −DN121 −MNASN −EffNetB0 Epochs

L2 1 cSGLD per arch. 93.28 ±0.12 90.61 ±0.24 92.25 ±0.26 95.98 ±0.19 81.88 ±0.38 4× 135
1 DNN per arch. 72.99 ±0.52 72.31 ±0.44 64.72 ±0.59 84.21 ±0.18 53.99 ±0.76 4× 135

L∞ 1 cSGLD per arch. 92.21 ±0.23 89.83 ±0.22 90.86 ±0.19 95.85 ±0.46 79.40 ±0.42 4× 135
1 DNN per arch. 69.65 ±0.47 69.01 ±0.70 61.00 ±0.66 82.25 ±0.03 49.71 ±1.37 4× 135

Table 4.9: Transfer success rates of I-FGSM attack on CIFAR-10 hold-out architectures. The ? symbol indicates that
1 DNN per architecture is better than 1 cSGLD per architecture. Higher is better.

Target Architecture

Norm Surrogate −PRN110 −PRN164 −VGG16 −VGG19 −WRN28 Epochs

L2
1 cSGLD per arch. 95.56 ±0.04 95.72 ±0.06 45.96 ±0.07 42.60 ±0.08 84.04 ±0.05 4× 300
1 DNN per arch. 60.38 ±1.09 60.93 ±1.06 29.97 ±0.48 27.57 ±0.66 57.86 ±0.74 4× 300
4 DNNs per arch. 77.12 ±1.32 77.21 ±1.14 40.89 ±0.63 40.18 ±0.76 77.54 ±0.93 4× 1200

L∞
1 cSGLD per arch. 96.38 ±0.06 96.51 ±0.08 49.19 ±0.06 45.17 ±0.03 84.75 ±0.01 4× 300
1 DNN per arch. 87.02 ±0.04 88.86 ±0.04 44.99 ±0.10 ?45.55 ±0.02 74.84 ±0.03 4× 300
4 DNNs per arch. 96.50 ±0.01 97.01 ±0.02 59.80 ±0.01 59.08 ±0.01 89.23 ±0.04 4× 1200
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Table 4.10: Inter-architecture transfer success rates of I-FGSM of single architecture surrogate on ImageNet (in %).
All combinations of surrogate and targeted architectures are evaluated. Diagonals are intra-architecture. 1 DNN and
cSGLD have similar computation budget (135 epochs). Bold is best. Higher is better.

Surrogate Target Architecture

Norm Arch Training RN50 RNX50 DN121 MNASN EffNetB0

L2

RN50 cSGLD 84.93 ±0.59 74.70 ±0.91 71.32 ±0.63 60.09 ±0.60 39.70 ±0.29

1 DNN 56.98 ±0.62 41.13 ±0.97 29.81 ±0.33 27.90 ±0.43 16.39 ±0.46

RNX50 cSGLD 79.25 ±0.24 77.34 ±0.39 68.53 ±0.19 62.16 ±0.19 43.51 ±0.62

1 DNN 37.48 ±0.52 36.35 ±0.22 23.77 ±0.41 23.69 ±0.21 14.32 ±0.24

DN121 cSGLD 63.23 ±1.16 59.89 ±1.12 73.28 ±0.45 60.84 ±0.33 40.27 ±0.44

1 DNN 32.61 ±0.29 32.06 ±0.61 39.18 ±0.47 32.01 ±0.44 17.72 ±0.49

MNASN cSGLD 7.81 ±0.19 5.97 ±0.37 9.81 ±0.31 30.41 ±1.45 15.46 ±0.44

1 DNN 7.04 ±0.51 5.29 ±0.36 8.41 ±0.20 32.65 ±0.22 13.13 ±0.06

EffNetB0 cSGLD 18.93 ±2.17 14.16 ±1.69 19.89 ±1.21 65.97 ±3.60 49.41 ±3.64

1 DNN 15.15 ±0.30 13.33 ±0.33 16.12 ±0.71 58.73 ±0.25 48.85 ±0.56

L∞

RN50 cSGLD 78.67 ±1.19 65.21 ±1.48 61.54 ±0.83 51.75 ±1.39 31.11 ±1.13

1 DNN 48.03 ±0.94 32.17 ±0.43 23.37 ±0.34 22.60 ±0.40 12.59 ±0.21

RNX50 cSGLD 71.67 ±1.00 69.33 ±0.85 59.18 ±1.14 54.75 ±1.33 35.13 ±0.71

1 DNN 31.19 ±0.42 28.68 ±0.76 19.12 ±0.07 19.53 ±0.51 11.20 ±0.33

DN121 cSGLD 54.13 ±1.70 50.66 ±1.62 65.80 ±0.66 53.43 ±1.30 32.49 ±0.36

1 DNN 25.49 ±0.81 23.73 ±0.59 30.78 ±0.21 26.05 ±0.66 13.41 ±0.20

MNASN cSGLD 6.77 ±0.29 4.72 ±0.27 8.26 ±0.36 25.27 ±1.83 12.21 ±0.84

1 DNN 6.52 ±0.23 5.06 ±0.12 7.83 ±0.13 29.19 ±0.05 11.13 ±0.16

EffNetB0 cSGLD 17.81 ±1.58 13.91 ±1.45 19.71 ±1.29 63.67 ±3.16 46.91 ±3.44

1 DNN 15.83 ±0.32 13.51 ±0.52 16.78 ±0.38 60.14 ±0.37 50.16 ±0.64
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We also present the results for an alternative protocol where we use a single
architecture as surrogate (Tables 4.10, 4.11 and 4.12). In summary, in this setup
cSGLD achieves a higher inter-architecture success rate in 39/40 cases on ImageNet
(Table 4.10), 38/40 cases on CIFAR-10 (Table 4.11), and in 18/18 cases on MNIST
(Table 4.12), compared to a single DNN trained for the same number of epochs.5

Differences range between -0.3 and 44.8 percentage points on ImageNet, -2.3 and
62.1 on CIFAR-10 and 0.2 and 83.2 on MNIST.

We conclude that our method improves transferability even when the target
architecture is unknown. This tends to indicate that the adversarial directions
against posterior predictive distribution are partially aligned across different ar-10

chitectures. In other words, given a common classification task, the variability
of an architecture parameters might be informative of the variability of another
architecture parameters.

4.4.4 Test-time Transferability Techniques
Given that our approach works at train time, we evaluate its combination with15

test-time techniques. We apply three test-time transformations to cSGLD samples
and one DNN obtained with the same number of epochs (300 for CIFAR-10, 135
for ImageNet). The ImageNet surrogates are ResNet50 (respect. PreResNet110
on CIFAR-10). The targets are the same as in Section 4.4.3. Following Li et al.
[LBZ+18], Xie et al. [XZZ+19], and Wu et al. [WWX+20], we also combine every20

test-time technique with momentum12.
Table 4.13 shows the results on ImageNet (Table 4.14 for CIFAR-10). We

observe that our approach and the test-time techniques complement well to each
other. Indeed, the best success rates are always achieved by a technique applied
on cSGLD (in bold). All three techniques combined with momentum applied25

on cSGLD achieve a systematically higher success rate than the same technique
applied on 1 DNN, with differences ranging from 10.7 to 41.7 percentages points on
ImageNet and from 3.8 to 56.2 on CIFAR-10. Overall, the addition of a technique
(excluding momentum alone) to our vanilla cSGLD surrogate never decrease the
success rate on CIFAR-10 and only in 10% of the averaged cases considered on30

ImageNet, as indicated by the † symbols.
Besides, our vanilla cSGLD surrogate achieves better transferability than any

of the test-time techniques applied to 1 DNN in 90% of the cases on CIFAR-10 and
93.3% on ImageNet, using the I-FGSM attack. Similarly, for MI-FGSM, we observe
76.7% for the former and 90% for the latter. This demonstrates that despite previous35

efforts in providing effective test-time techniques for transferability (see Chapter 3),
improving the training of the surrogate – in our case, through efficient sampling

12All rows with “MI” correspond to MI-FGSM, an attack variant designed to improve transfer-
ability using momentum [DLP+18].
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Table 4.11: Inter-architecture transfer success rates of I-FGSM of single architec-
ture surrogate on CIFAR-10 (in %). All combinations of surrogate and targeted
architectures are evaluated. Diagonals are intra-architecture. Symbols ? indicate 1
DNN having higher transferability than cSGLD. 1 DNN and cSGLD have similar
computation budget (300 epochs). Bold is best. Higher is better.

Surrogate Target Architecture

Norm Arch Training PRN110 PRN164 VGG16 VGG19 WRN28

L2

PRN110
cSGLD 88.96 ±0.02 88.57 ±0.00 26.18 ±0.02 24.38 ±0.00 63.35 ±0.01

1 DNN 34.42 ±0.00 34.39 ±0.01 12.66 ±0.01 12.54 ±0.00 26.29 ±0.00

4 DNNs 50.50 ±0.00 50.49 ±0.00 27.45 ±0.01 27.30 ±0.00 46.10 ±0.00

PRN164
cSGLD 88.28 ±0.01 87.52 ±0.01 25.83 ±0.01 23.64 ±0.01 62.79 ±0.01

1 DNN 33.89 ±0.00 34.36 ±0.01 11.93 ±0.00 12.07 ±0.01 25.95 ±0.01

4 DNNs 50.36 ±0.01 50.45 ±0.00 26.79 ±0.01 27.13 ±0.00 45.94 ±0.00

VGG16
cSGLD 69.22 ±0.06 69.03 ±0.03 43.70 ±0.04 38.54 ±0.02 55.62 ±0.07

1 DNN 27.22 ±0.04 27.23 ±0.05 29.28 ±0.08 28.73 ±0.02 22.22 ±0.00

4 DNNs 55.14 ±0.06 54.96 ±0.04 73.65 ±0.00 71.24 ±0.04 44.89 ±0.09

VGG19
cSGLD 69.82 ±0.05 68.27 ±0.07 44.59 ±0.10 39.76 ±0.13 54.40 ±0.08

1 DNN 18.09 ±0.10 18.09 ±0.06 ?44.63 ±0.03 ?46.76 ±0.03 14.38 ±0.03

4 DNNs 34.30 ±0.06 33.77 ±0.01 66.20 ±0.03 68.87 ±0.05 27.44 ±0.02

WRN28
cSGLD 82.25 ±0.03 85.06 ±0.02 26.34 ±0.08 23.81 ±0.03 69.31 ±0.07

1 DNN 22.14 ±0.01 23.00 ±0.00 9.43 ±0.00 9.54 ±0.00 26.85 ±0.00

4 DNNs 41.07 ±0.00 41.75 ±0.04 22.91 ±0.04 22.65 ±0.03 43.00 ±0.01

L∞

PRN110
cSGLD 88.70 ±0.00 88.48 ±0.01 26.32 ±0.00 24.27 ±0.01 62.95 ±0.01

1 DNN 72.73 ±0.00 74.57 ±0.00 22.26 ±0.00 20.98 ±0.00 47.59 ±0.01

4 DNNs 91.98 ±0.00 92.25 ±0.00 38.24 ±0.00 35.56 ±0.00 72.64 ±0.01

PRN164
cSGLD 87.99 ±0.01 87.74 ±0.00 26.33 ±0.00 23.67 ±0.01 61.83 ±0.02

1 DNN 68.97 ±0.01 71.76 ±0.00 20.29 ±0.00 18.86 ±0.00 45.07 ±0.00

4 DNNs 90.67 ±0.00 92.22 ±0.00 37.62 ±0.00 35.23 ±0.00 73.18 ±0.00

VGG16
cSGLD 66.97 ±0.13 67.48 ±0.11 42.91 ±0.05 37.91 ±0.02 50.52 ±0.01

1 DNN 35.57 ±0.02 35.89 ±0.03 38.35 ±0.00 35.82 ±0.00 26.77 ±0.02

4 DNNs 52.59 ±0.00 53.12 ±0.00 70.89 ±0.00 68.53 ±0.00 41.34 ±0.00

VGG19
cSGLD 67.11 ±0.00 66.55 ±0.02 43.50 ±0.01 38.72 ±0.02 49.69 ±0.02

1 DNN 20.50 ±0.02 20.97 ±0.00 ?45.90 ±0.02 ?48.60 ±0.02 16.37 ±0.01

4 DNNs 32.43 ±0.06 32.25 ±0.04 63.11 ±0.07 65.64 ±0.06 25.34 ±0.02

WRN28
cSGLD 81.99 ±0.01 85.63 ±0.01 27.04 ±0.02 23.46 ±0.01 68.43 ±0.01

1 DNN 49.24 ±0.16 52.84 ±0.03 20.23 ±0.04 18.53 ±0.02 60.84 ±0.09

4 DNNs 77.45 ±0.01 79.55 ±0.13 36.33 ±0.13 33.60 ±0.22 83.24 ±0.00
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Table 4.12: Inter-architecture transfer success rates of I-FGSM of single archi-
tecture surrogate on MNIST (in %). All combinations of surrogate and targeted
architectures are evaluated. Diagonals are intra-architecture. cSGLD has always
higher transferability than 1 DNN. Symbols ? indicate Bayesian methods (SVI or
HMC) having lower transferability than 1 DNN. 1 DNN and cSGLD have similar
computation budget (50 epochs). Bold is best. Higher is better.

Surrogate Target Architecture

Norm Arch Training Small FC FC CNN

L2

Small FC

cSGLD 99.17 ±0.01 97.15 ±0.05 46.04 ±0.15

HMC ?2.66 ±0.01 ?2.04 ±0.01 ?0.37 ±0.01

SVI ?5.67 ±0.09 ?4.04 ±0.09 ?0.62 ±0.02

1 DNN 44.19 ±0.00 43.98 ±0.00 19.35 ±0.00

5 DNNs 48.01 ±0.01 47.78 ±0.04 24.76 ±0.02

10 DNNs 52.36 ±0.09 51.97 ±0.11 26.52 ±0.05

15 DNNs 53.13 ±0.09 52.84 ±0.08 27.05 ±0.12

FC

cSGLD 98.61 ±0.00 97.36 ±0.03 49.27 ±0.17

SVI 17.16 ±0.17 15.47 ±0.17 ?4.85 ±0.06

1 DNN 15.37 ±0.00 15.32 ±0.00 10.40 ±0.00

5 DNNs 23.13 ±0.06 23.07 ±0.08 16.03 ±0.06

10 DNNs 24.55 ±0.14 24.46 ±0.13 16.96 ±0.21

15 DNNs 23.46 ±0.13 23.44 ±0.12 16.44 ±0.21

CNN

cSGLD 46.86 ±0.27 47.06 ±0.32 92.57 ±0.14

1 DNN 10.73 ±0.00 10.43 ±0.00 14.80 ±0.00

5 DNNs 22.20 ±0.09 22.22 ±0.05 28.69 ±0.03

10 DNNs 19.18 ±0.23 19.27 ±0.34 23.84 ±0.40

15 DNNs 19.71 ±0.22 19.83 ±0.22 24.33 ±0.26

L∞

Small FC

cSGLD 61.75 ±0.25 37.66 ±0.25 1.25 ±0.01

HMC ?1.24 ±0.01 ?0.91 ±0.03 ?0.10 ±0.01

SVI ?1.76 ±0.02 ?1.25 ±0.01 ?0.16 ±0.03

1 DNN 58.77 ±0.00 32.15 ±0.00 0.95 ±0.00

5 DNNs 66.81 ±0.02 37.40 ±0.04 1.04 ±0.01

10 DNNs 67.88 ±0.18 38.22 ±0.02 1.02 ±0.02

15 DNNs 68.07 ±0.13 38.35 ±0.08 1.04 ±0.03

FC

cSGLD 60.06 ±0.01 41.04 ±0.02 1.33 ±0.01

SVI ?4.29 ±0.02 ?3.18 ±0.05 ?0.30 ±0.01

1 DNN 40.15 ±0.00 34.01 ±0.00 1.11 ±0.00

5 DNNs 51.62 ±0.05 42.66 ±0.17 1.25 ±0.02

10 DNNs 54.05 ±0.52 44.44 ±0.15 1.26 ±0.02

15 DNNs 55.03 ±0.45 44.78 ±0.27 1.27 ±0.01

CNN

cSGLD 3.07 ±0.08 2.89 ±0.04 5.42 ±0.03

1 DNN 2.40 ±0.00 2.30 ±0.00 3.83 ±0.00

5 DNNs 3.50 ±0.03 3.09 ±0.06 6.05 ±0.04

10 DNNs 3.79 ±0.04 3.39 ±0.01 6.37 ±0.03

15 DNNs 3.81 ±0.09 3.37 ±0.04 6.55 ±0.05

82



Table 4.13: cSGLD improves all techniques compared to 1 DNN. Transfer success
rates of (M)I-FGSM improved by our approach combined with test-time techniques
on ImageNet (in %). Target in column. “RN50” column is intra-architecture
transferability, other columns are inter-architecture. Bold is best. Symbols ? are
DNN-based techniques better than our vanilla cSGLD surrogate, † are techniques
that degrade their vanilla surrogate.

Target Architecture

Norm Surrogate RN50 RNX50 DN121 MNASN EffNetB0

L2

1 DNN 56.60 ±0.71 41.09 ±0.61 29.73 ±0.30 28.13 ±0.17 16.64 ±0.33

+ DI 83.15 ±0.30 73.17 ±0.80 61.24 ±0.58 58.16 ±0.36 ?42.10 ±0.36

+ SGM 65.64 ±0.88 52.75 ±0.42 38.58 ±0.55 43.40 ±0.61 29.11 ±0.30

+ GN 78.84 ±0.46 62.46 ±0.38 45.76 ±0.02 41.44 ±0.58 25.77 ±0.11

+ MI †52.53 ±0.80 †37.15 ±0.76 †26.33 ±0.48 †25.21 ±0.42 †14.74 ±0.31

+ DI 80.81 ±0.72 69.55 ±0.83 56.73 ±0.39 54.16 ±0.05 37.07 ±0.03

+ SGM 65.65 ±0.95 53.25 ±0.18 38.79 ±0.62 44.33 ±0.63 29.45 ±0.28

+ GN 71.50 ±0.12 53.45 ±0.65 37.39 ±0.47 34.53 ±0.69 20.29 ±0.36

cSGLD 84.83 ±0.55 74.73 ±0.82 71.45 ±0.56 60.14 ±0.44 39.71 ±0.20

+ DI 93.87 ±0.19 89.12 ±0.24 88.52 ±0.16 82.78 ±0.28 66.13 ±0.35

+ SGM †83.17 ±0.85 †72.79 ±1.06 †66.19 ±0.89 71.71 ±0.41 52.66 ±0.31

+ GN 92.99 ±0.13 85.69 ±0.24 82.81 ±0.42 72.88 ±0.30 50.30 ±0.29

+ MI †82.44 ±0.19 †70.93 ±1.04 †66.19 ±0.56 †55.51 ±0.59 †34.49 ±0.59

+ DI 93.48 ±0.23 87.87 ±0.15 86.81 ±0.33 80.37 ±0.20 60.26 ±0.02

+ SGM †82.35 ±0.10 †71.54 ±0.58 †64.50 ±0.18 70.47 ±0.22 50.80 ±0.23

+ GN 90.11 ±0.18 80.35 ±0.61 75.10 ±0.67 64.08 ±0.12 39.85 ±0.52

L∞

1 DNN 47.81 ±1.09 32.29 ±0.64 23.43 ±0.32 22.52 ±0.45 12.77 ±0.32

+ DI 76.55 ±1.01 62.57 ±0.56 50.17 ±0.33 49.31 ±0.18 ?32.64 ±0.09

+ SGM 66.36 ±0.50 51.60 ±0.36 39.05 ±0.24 45.60 ±0.72 30.69 ±0.03

+ GN 67.02 ±0.17 46.74 ±0.63 32.57 ±0.17 31.12 ±0.77 17.68 ±0.05

+ MI 55.12 ±0.82 38.47 ±0.82 28.19 ±0.14 27.55 ±0.67 16.34 ±0.37

+ DI ?82.47 ±0.41 ?69.69 ±0.81 57.79 ±0.57 ?55.99 ±0.37 ?38.63 ±0.29

+ SGM 68.39 ±0.53 54.57 ±0.60 41.48 ±0.37 47.97 ±0.41 ?33.16 ±0.37

+ GN 71.27 ±0.54 51.46 ±0.84 36.91 ±0.48 34.54 ±0.32 20.51 ±0.30

cSGLD 78.71 ±1.19 65.11 ±1.45 61.49 ±0.59 51.81 ±1.45 31.11 ±0.99

+ DI 90.03 ±0.10 82.13 ±0.45 81.19 ±0.34 74.48 ±0.39 53.51 ±0.39

+ SGM 81.37 ±0.72 69.88 ±1.31 65.20 ±0.75 71.68 ±0.53 52.15 ±0.32

+ GN 87.33 ±0.73 76.00 ±1.33 71.67 ±0.97 61.45 ±0.25 37.19 ±0.68

+ MI 82.89 ±0.70 70.42 ±1.26 66.39 ±0.74 56.68 ±0.97 36.00 ±1.15

+ DI 93.97 ±0.26 87.69 ±0.44 86.78 ±0.16 81.08 ±0.14 60.87 ±0.48

+ SGM 84.19 ±0.21 73.14 ±0.99 67.35 ±0.26 74.36 ±0.47 55.30 ±0.16

+ GN 89.53 ±0.05 78.69 ±0.19 73.33 ±0.58 63.56 ±0.35 39.79 ±0.52
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Table 4.14: Transfer success rates of (M)I-FGSM attack improved by our approach
combined with test-time transformations on CIFAR-10 (in %). Columns are
targets. PreResNet110 columns are intra-architecture transferability, others are
inter-architecture. Bold is best. Symbols ? are DNN-based techniques better
than our vanilla cSGLD surrogate, and † are techniques that do not improve the
corresponding vanilla surrogate. The success rate of every cSGLD-based technique
is better than its 1 DNN-based counterpart.

Target Architecture

Norm Surrogate PRN110 PRN164 VGG16 VGG19 WRN28

L2

1 DNN 34.42 ±0.00 34.39 ±0.01 12.67 ±0.00 12.54 ±0.00 26.29 ±0.01

+ DI 59.63 ±0.80 59.79 ±0.75 24.37 ±0.16 23.25 ±0.12 46.09 ±0.47

+ SGM 57.00 ±0.00 57.66 ±0.04 20.87 ±0.03 20.10 ±0.09 41.80 ±0.04

+ GN 79.22 ±0.30 80.38 ±0.16 ?32.03 ±0.25 ?28.63 ±0.17 56.65 ±0.24

+ MI 67.12 ±0.07 67.80 ±0.00 20.49 ±0.02 19.15 ±0.01 44.11 ±0.04

+ DI 81.44 ±0.32 82.69 ±0.29 27.64 ±0.03 25.82 ±0.42 57.29 ±0.12

+ SGM 73.52 ±0.00 75.23 ±0.01 24.52 ±0.00 22.76 ±0.00 49.73 ±0.00

+ GN 77.44 ±0.28 79.13 ±0.12 ?28.98 ±0.57 25.74 ±0.18 54.06 ±0.04

cSGLD 90.67 ±0.39 89.74 ±0.31 28.05 ±0.33 26.12 ±0.14 67.27 ±0.89

+ DI 92.45 ±0.14 91.80 ±0.14 33.69 ±0.28 31.35 ±0.28 72.41 ±0.76

+ SGM 92.46 ±0.17 92.10 ±0.28 31.96 ±0.53 29.84 ±0.34 71.04 ±1.23

+ GN 92.73 ±0.21 92.20 ±0.07 36.17 ±0.39 33.08 ±0.32 74.77 ±0.10

+ MI †90.35 ±0.37 89.77 ±0.28 †26.89 ±0.37 †25.02 ±0.29 †65.98 ±0.52

+ DI 92.31 ±0.33 91.58 ±0.23 31.92 ±0.49 29.72 ±0.46 70.94 ±0.31

+ SGM 92.33 ±0.34 91.94 ±0.41 31.95 ±0.29 29.85 ±0.28 70.96 ±0.65

+ GN 92.42 ±0.16 91.93 ±0.25 33.02 ±0.60 29.77 ±0.14 72.28 ±0.53

L∞

1 DNN 72.73 ±0.00 74.58 ±0.01 22.26 ±0.00 20.98 ±0.00 47.59 ±0.01

+ DI 81.29 ±0.18 82.77 ±0.12 28.10 ±0.22 26.17 ±0.25 57.04 ±0.10

+ SGM 77.92 ±0.00 79.50 ±0.01 27.43 ±0.00 25.31 ±0.01 53.39 ±0.00

+ GN 74.92 ±0.08 77.23 ±0.26 ?29.61 ±0.19 26.31 ±0.30 52.93 ±0.05

+ MI 76.12 ±0.01 78.05 ±0.00 23.77 ±0.02 22.33 ±0.01 50.49 ±0.01

+ DI 84.66 ±0.19 86.38 ±0.12 ?31.47 ±0.05 ?28.89 ±0.31 61.60 ±0.16

+ SGM 79.72 ±0.02 80.80 ±0.02 28.75 ±0.01 26.12 ±0.00 55.74 ±0.00

+ GN 80.34 ±0.34 82.59 ±0.42 ?34.17 ±0.48 ?29.37 ±0.18 60.62 ±0.40

cSGLD 90.98 ±0.40 90.26 ±0.35 29.26 ±0.53 26.97 ±0.43 67.18 ±1.03

+ DI 92.46 ±0.14 91.62 ±0.16 33.81 ±0.25 30.84 ±0.34 71.15 ±0.92

+ SGM 93.38 ±0.50 92.84 ±0.25 35.68 ±0.61 32.43 ±0.52 73.55 ±1.08

+ GN 91.66 ±0.40 91.32 ±0.19 34.77 ±0.09 31.01 ±0.27 71.60 ±0.40

+ MI 92.84 ±0.18 92.18 ±0.28 32.03 ±0.49 28.53 ±0.38 71.56 ±0.25

+ DI 94.05 ±0.31 93.53 ±0.21 37.31 ±0.38 33.23 ±0.23 75.40 ±0.25

+ SGM 94.64 ±0.26 94.29 ±0.31 38.08 ±0.27 34.28 ±0.17 76.62 ±0.50

+ GN 93.76 ±0.14 93.75 ±0.13 38.01 ±0.44 33.15 ±0.36 76.23 ±0.29
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from the posterior distribution – yields significantly higher improvements. Hence,
while training approaches have been overlooked, canonical elements that have
been related to transferability, i.e., skip connections [WWX+20], input [XZZ+19]
and model diversity [LBZ+18], should be put into perspective compared to the
importance that the posterior distribution appears to have.5

4.4.5 Multimodal vs. Local Exploration
While studying the effect of the hyperparameters of cSGLD, we show that the

most important cSGLD capability is its multimodal exploration. The local mode
exploration of cSGLD has limited ability to increase transferability.

First, we evaluate the importance of the number of cSGLD cycles for transfer-10

ability. The number of cycles is a strong proxy for the number of explored modes.
cSGLD is the only SG-MCMC method we know that avoids mode collapse and,
therefore, can effectively explore complex multimodal distributions [ZLZ+20]. We
train cSGLD on CIFAR-10 for 18 cycles. Figure 4.6 shows that transferability
of both L2 and L∞ attacks increases significantly for the first new five modes15

explored. After eight cycles, the transferability plateaus. Therefore, the multimodal
exploration of cSGLD is key to its success.

Secondly, we access the limited impact of the number of samples per cycle on
transferability. We train cSGLD on CIFAR-10 ten times, from one to ten samples per
cycle, each using 5 cycles. Each additional sample per cycle increases the training20

cost by one epoch per cycle (starting at 48 epochs per cycle). Figure 4.7 shows
that the number of cycles per epoch has a relatively low impact on transferability.
The variations are contained within 91.0% and 93.0% for the L2 attack, and within
91.75% and 93.5% for the L∞ attack. We conclude that a more fine-grained
exploration of a single mode by cSGLD only marginally increases transferability.25

Overall, cSGLD increases transferability mainly thanks to warm restarts and
only marginally thanks to local mode exploration. Improving upon the local mode
exploration is a promising research direction.

4.4.6 Bayesian and Ensemble Techniques
In addition to cSGLD and deep ensemble, we explore the use of other training30

techniques to improve transferability: two other Bayesian techniques – VI and
SWAG – and two other ensembling techniques – SSE and FGE. We train each for an
equivalent computational cost of 3 DNNs on CIFAR-10 and 2 DNNs on ImageNet
(except for VI and SWAG, see discussion in Section 3.3.3). Figure 4.8 presents the
success rate of L∞ I-FS(S)M attack with the corresponding training computational35

cost (in flops), as we increase the number of models in each surrogate. Section 3.3.3
contains details on the methods and the results for L2 I-FS(S)M.

On CIFAR-10, the success rate of the first 4 cycles of cSGLD increases substan-
tially from one cycle to the next (from 76.58% to 81.56% for the first to the second

85



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Number of cSGLD cycles

75.0

77.5

80.0

82.5

85.0

87.5

90.0

92.5

95.0

Tr
an

sf
er

 s
uc

ce
ss

 ra
te

 (%
)

Attack Norm
L2
Linf

Figure 4.6: Intra-architecture transfer success rate of I-FGSM with respect to the
number of cSGLD cycles on CIFAR-10 (PreResNet110).

cycle) and within a single cycle (from 81.56% to 87.20% between the start and the
end of the second cycle). This reveals that exploring modes of the posterior plays
an important role to generate transferable adversarial examples, and that there is
some local geometric discrepancy of the loss landscape among local maxima. On
ImageNet, transferability improves mainly by sampling from several local optima.5

Interestingly, even though FGE and SWAG build an ensemble around a single
local optimum, their flexibility allows capturing general adversarial directions.
The FGE surrogates trained for more than 0.30 petaflops have systematically
higher success rates than cSGLD and SSE on CIFAR-10. However, the opposite is
observed on ImageNet: FGE is not competitive with methods exploring several10

local optima (cSGLD, SSE, and deep ensemble). We hypothesize that modes are
not as well-connected on larger datasets.

The efficiency of SWAG on both datasets opens new directions to create hy-
brid attacks based on a few additional iterations over the training set. SWAG
approximates the posterior with a Gaussian fitted on some additional SGD epochs15

from a pretrained DNN. It captures well the shape of the true posterior [MGI+19a],
reinforcing our views on the strong relationship between the posterior and trans-
ferability. The success rate gap between cSGLD/SSE and SWAG on ImageNet
suggests higher geometrical discrepancies between local loss maxima on larger
datasets.20
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Figure 4.7: Intra-architecture transfer success rate of I-FGSM with respect to
the number of cSGLD samples per cycle. We train one PreResNet110 cSGLD
on CIFAR-10 for every number of cycles, from 1 to 10 samples per cycle. Each
additional sample per cycle increases the training cost by one epoch per cycle
(starting at 48 epochs per cycle). A fixed number of 5 cSGLD cycles is used.

VI fails to compete with deep ensemble on both success rate and computational
efficiency for the L∞ attack on CIFAR-10, but beats it on L2 bound and on
ImageNet.

On CIFAR-10, the marginal impact beyond 6 cSGLD cycles, 17 SWAG samples,
7 SSE models, and 35 FGE models becomes noisy. We hypothesize that correlated5

samples produce these limitations. Hence, the use of multiple runs is a promising
direction for greater transferability.

Finally, we train one surrogate model with SWA [IPG+18] on CIFAR-10. SWA
keeps a running average of the weights being trained with SGD. We reuse the
original hyperparameter of SWA to train one PreResNet110 model on CIFAR-10,10

extended to 300 epochs for a fair comparison. The final SWA model is the average
of weights obtained at the end of every epoch from epoch 161 to epoch 300. This
surrogate model obtains a success rate of 70.52% for the L∞ attack, and of 67.42%
for the L2 attack. SWA improves over a regularly trained DNN, for the L2 attack
(67.42% vs. 46.20%), but not for the L∞ attack (70.52% vs. 78.14%). More15

importantly, SWAG improves consistently over SWA, with a respective success
rate of 92.38% and 70.52% for the L∞ attack, and of 92.28% and 67.42% for the
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L2 attack. Estimating the covariance matrix of the Gaussian distribution used by
SWAG to sample deviations from its SWA expected value, improves transferability.
This observation confirms our observation about SWAG that the local diversity of
models is a promising direction to improve diversity at low cost.

4.5 Threats to Validity5

External validity threats arise from the generalization outside the context of the
study. First, our results may not generalize to non p-norm constrained adversarial
examples. However, this way of ensuring imperceptibility is common to all the
related work we know on transferability. We also systematically evaluate L2 and
L∞ attacks, while most previous studies do not. Second, similar to all competitive10

approaches, we consider benchmark datasets of classification in computer vision.
The generalization of our conclusions to other domains and tasks could require a
dedicated study. Finally, we fed adversarial examples directly to the target model.
Evaluating adversarial examples through the physical domain may degrade success
rates significantly.15

Internal validity threats come from the design of the study. Our approach relies
on the empirical fact that SGD is approximately a Bayesian sampler [MVS+20].
A definitive proof would strengthen the premise of our contributions. Moreover,
despite our best effort to control confounding factors, some may exist, such as
training hyperparameters.20

Threat to construct validity is a consequence of metrics not suitable for eval-
uation. Our T-DEE metric might not be reliable when the success rate is not
increasing with the number of independently trained DNNs. None of our experiences
exhibit this (except L2 FSGM on MNIST).

4.6 Conclusion25

The contribution presented in this chapter was the first to investigate how
to explore a surrogate weight space to enhance transfer-based black-box attacks.
Through extensive empirical experiments, we show the key role of the training of
the surrogate model in boosting the transferability of adversarial examples.

We connect uncertainty and transferability by considering a threat model, where30

we can characterize the probabilistic distribution of the unknown weight of the target
model. Deep ensemble can sample a surrogate from this distribution. We exhibit
experimentally the effectiveness of the deep ensemble surrogate. Unfortunately,
deep ensemble requires training numerous DNNs from scratch, and is therefore
extensive. We use a cheaper approximation based on cSGLD, a state-of-the-art35

Bayesian training techniques. This training technique samples from the Bayesian
posterior over weights, which approximates the distribution of the target model.
We establish empirically that our Bayesian surrogate is efficient and effective to
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Figure 4.8: Intra-architecture L∞ I-FGSM success rate with respect to the training
computational complexity, measured by the number of Flops, of an increasing
number of samples from six training techniques. Every curve starts with one model,
and each successive point is obtained by forming an ensemble with one more model.
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Figure 4.9: Intra-architecture L2 I-FGSM success rate with respect to the training
computational complexity, measured by the number of Flops, of six Bayesian and
Ensemble methods. Every curve starts with one model, and each successive point
is obtained by forming an ensemble with one more model.
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craft adversarial examples transferable to deterministic DNNs.
Our approach further improves existing adversarial attacks and transferability

techniques, as one can use it on top of them to perform approximate Bayesian
model averaging efficiently and with minimal modifications. We show that our
simple training-time approach improves transferability more than previous test-time5

techniques. Overall, we provide new evidence that the training of the surrogate
model is an overlooked direction for research on transferability.

The evaluated approaches increase transferability from the multimodal explo-
ration of the weight space, i.e., the exploration of several separated vicinities.
Deep ensemble independently trains a set of models, where each model belongs10

to a separate vicinity [FHL19]. In Section 4.4.5, we establish that cSGLD boosts
transferability mainly due to its multimodal exploration of the loss landscape, and
that its local exploration of each vicinity is poor for transferability. Therefore, an
effective and efficient local exploration of the loss landscape is an open challenge.
The following chapter tackles this research direction.15

We also pave the way for new hybrid transferability techniques in-between
training time and testing time, i.e., at the moment of the attack. In particular,
Section 4.4.6 identifies that SWAG can increase transferability in just a few addi-
tional epochs from a fully trained surrogate DNN. SWAG reaches a similar success
rate than cSGLD on CIFAR-10 for the same computational cost. However, SWAG20

is not competitive on ImageNet. The next chapter addresses this limitation by
proposing a technique, inspired by SWAG, that collects models in a few additional
epochs.
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5
Transferability From Large Geometric Vicinity

The local exploration of the weight space is key to improve a surrogate, since
random directions in the weight space improve transferability, whereas random
directions in the input space do not. This chapter proposes LGV (Large Geometric5

Vicinity), a new technique to increase transferability from a regularly trained DNN.
We analyse extensively the success of LGV through the lens of the geometry of the
weight space. We point two key elements: the flatness of the loss landscape that we
relate to transferability with the surrogate-target misalignment hypothesis, and the
geometry of the subspace spanned by LGV weights.10
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This chapter is based on the following paper:
• Martin Gubri et al. LGV: Boosting Adversarial Example Transferability from

Large Geometric Vicinity. In ECCV 2022, 2022. url: https://gubri.eu/
publication/lgv_eccv22/

5.1 Introduction5

Chapter 4 delved into the underexplored topic of training the surrogate model
of a transfer-based black-box attacks. While our findings highlight the critical
role surrogate model training plays in boosting the transferability of adversarial
examples, the journey is far from over. One key revelation from our analysis was
the need for a more effective and efficient strategy for local exploration of the loss10

landscape, i.e, collecting surrogate models from the same mode. This chapter is
dedicated to addressing this open challenge, building on the groundwork laid in
the preceding chapter.

In Chapter 4, we demonstrated the benefits of a multimodal exploration of
the weight space, using deep ensemble or cSGLD, which involves sampling models15

from several separate vicinities. However, the local exploration of each vicinity
via cSGLD was less fruitful for transferability, and deep ensemble outputs a single
model per vicinity (see Figure 3.1 for an illustration of the phenomenon). To
overcome this, this chapter will introduce and evaluate new techniques to explore
efficiently a vicinity of the loss landscape to build strong surrogate models.20

Moreover, Chapter 4 revealed an interesting potential for hybrid transferability
techniques, that apply training techniques at the time of the attack. Specifically,
SWAG emerged as a promising candidate, capable of enhancing transferability
with only a few additional epochs of training from a fully trained surrogate DNN.
Inspired by SWAG, we will propose the LGV technique that collects models in a25

few additional epochs. Our preliminary experiments reveal that SWAG applied on
top of our LGV technique degrades its success rate.

Transferability is challenging to achieve consistently, and the factors behind
transferability (or lack thereof) remain an active field of study (see Section 1.2).
A type of transferability technique relies on augmenting the surrogate model to30

build diversity in the surrogate representation [LBZ+18; WWX+20; GLC20] (see
Section 2.4.5 for a detailed discussion). While these approaches typically report sig-
nificantly higher success rates than a classical surrogate, the relationships between
the properties of the surrogate and transferability remain obscure. Understanding
these relationships would enable the efficient construction of attacks (which would35

directly target the properties of interest) that effectively improve transferability.
By focusing on the local exploration of the loss landscape, this chapter attempts to
advance our understanding of surrogate model training, surrogate model augmenta-
tion and their impacts on the transferability of adversarial examples. The majority

94

https://gubri.eu/publication/lgv_eccv22/
https://gubri.eu/publication/lgv_eccv22/
https://gubri.eu/publication/lgv_eccv22/


of this chapter is dedicated to building strong empirical evidence to explain why
our proposed technique LGV increases transferability.

As a first step to motivate our approach, we exhibit the importance of exploring
locally the geometry of the surrogate loss in improving transferability. We show that
random directions in the weight space from a regularly trained DNN increases its5

transferability, whereas random directions in the input space applied on gradients
do not.

Then, we propose Transferability from Geometric Vicinity (LGV), an efficient
technique to increase the transferability of black-box adversarial attacks. LGV
starts from a pretrained surrogate model and collects multiple weight samples from10

a few additional training epochs with a constant and high learning rate. Through
extensive experiments, we show that LGV outperforms competing techniques by
3.1 to 59.9 percentage points of transfer rate. LGV also complements nicely the
deep ensemble surrogate proposed in Chapter 4, combining local and multimodal
exploration of the weight space.15

We relate this improved transferability to two properties of the weights that
LGV samples. First, LGV samples weights on a flatter surface of the loss landscape
in the weight space, leading to flatter adversarial examples in the feature space.
Our observations support our hypothesis that misalignment between surrogate and
target alters transferability, which LGV avoids by sampling from flatter optima.20

Second, the span of LGV weights forms a dense subspace whose geometry is
intrinsically connected to transferability, even when the subspace is shifted to other
local optima.

DNN geometry has been intensively studied from the lens of natural gener-
alization [LFL+18; GRD18; KNT+16; IPG+18; FKM+20; WXW20]. However,25

the literature on the importance of geometry to improve transferability is scarcer
[TPG+17; CRP20] and has not yielded actionable insights that can drive the design
of new transferability methods (more in Chapter 3).

Our main contribution is, therefore, to shed new light on the importance of
the surrogate loss geometry to explain the transferability of adversarial examples,30

and the development of the LGV method that improves over state-of-the-art
transferability techniques.

5.2 Experimental Settings
Setup summary. Our study uses standard experimental settings to evaluate
transfer-based black-box attacks. The surrogates are trained ResNet-50 models35

from [ALM+20]. The targets are eight trained models from PyTorch [PGM+19]
with a variety of architectures – including ResNet-50. Therefore, we cover both the
intra-architecture and inter-architecture cases. We craft adversarial examples from a
random subset of 2000 ImageNet test images that all eight targets classify correctly.
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Table 5.1: Natural accuracy and loss of target models computed on the test set.

Name Architecture Test Accuracy Loss (NLL)
RN50 ResNet-50 76.01% 0.963
RN152 ResNet-152 78.25% 0.876
RNX50 ResNext-50 77.63% 0.941
WRN50 WideResNet-50 78.46% 0.883
DN201 DenseNet-201 76.93% 0.926
VGG19 VGG19 72.36% 1.115
IncV1 Inception v1 (GoogLeNet) 69.74% 1.283
IncV3 Inception v3 76.25% 1.041

We compare LGV with four test-time transformations and their combinations,
all applied on top of I-FGSM. We do not consider query-based black-box attacks
because the threat model of transfer attacks does not grant oracle access to the
target. To select the hyperparameters of the attacks, we do cross-validation on
an independent subset of well-classified training examples. We provide results for5

L∞ and L2 norm bounded perturbations. We report the average and standard
deviation of the attack success rate, i.e., the misclassification rate of untargeted
adversarial examples, over 3 independent runs. Each run involves independent sets
of examples, different surrogate models, and different random seeds. All code and
models are available on GitHub1.10

Notation. In the following, we denote (x, y) an example in X × Y with X ⊂ Rd,
w a vector of p DNN weights in Rp, and L(x; y, w) the loss function at input x
of a DNN parametrised by w. The weights of a regularly trained DNN are noted
w0. Our LGV approach samples K weights w1, · · · , wK . We name LGV-SWA
the model parametrised by the empirical average of weights collected by LGV, i.e.15

wSWA = 1
K

∑K
k=1 wk. The dot product between two vectors u, v is noted 〈u, v〉.

Target models. We select 8 pretrained models distributed by the torchvision
library [PGM+19]. The architectures are diverse and belong to different families.
We choose ResNet-50 to study the intra-architecture transferability, ResNet-152 for
the effect of increasing the number of layers, ResNeXt-50 32Œ4d and WideResNet-20

50-2 for other variants in the ResNet family, DenseNet-201, VGG19, Inception v1
(GoogLeNet) and Inception v3 to represent other families. Table 5.1 contains their
natural accuracy and negative log likelihood (NLL).
Surrogate models. We retrieve the independently trained ResNet-50 DNNs
from [ALM+20]. All DNNs share the same hyperparameters, and have different25

1https://github.com/Framartin/lgv-geometric-transferability
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Table 5.2: Natural accuracy and loss of surrogate models computed on the test set.

Method Test Accuracy Loss (NLL) Number of models
1 DNN 76.14% ±0.14 0.945 ±0.003 1
1 DNN + RD 76.17% ±0.10 0.948 ±0.003 50
LGV-SWA 72.17% ±0.10 1.128 ±0.002 1
LGV (ours) 70.83% ±0.10 1.310 ±0.011 40

random initializations. For each experiment run, we select without replacement a
random DNN, and call it interchangeably “1 DNN”, the initial DNN, or the DNN
with weights w0. LGV starts from the weights w0 of this DNN. . “1 DNN + RD”
is defined in Section 5.3 and “LGV-SWA” in Section 5.2. Table 5.2 contains their
natural accuracy and negative log likelihood.5

Threat model. We study untargeted adversarial examples, the attack objective
is misclassification. We consider the less restrictive threat model for transfer-based
attack, where no query access to the target model is granted. Therefore, we do not
compare with query-based black-box attacks. This experimental setup is standard
for transfer-based attack evaluation.10

Attack. The I-FGSM attack performs 50 iterations with a step size equal to one
tenth of the maximum perturbation norm ε. For the L∞ attack ε equals 4

255 , and
for the L2 one it equals 3. The number of iterations is selected on a validation set
for both the initial DNN surrogate and its resulting LGV surrogate (Figure 5.9).
Each iteration compute a single gradient on a randomly selected model if several15

are available for the method considered. If the number of iterations is higher than
the number of models, we cycle on models in the same order. Therefore, the attack
cost, measured as the number of backward passes, is kept constant regardless of
the number of the size of the surrogate. We do not consider the ensemble of models
for fairness with the single model surrogate baselines.20

Batch normalisation. Each time our experiments change weights (e.g. when
we apply random directions), we perform an additional forward pass over 10% of
the training data to update the batch-normalization statistics, following previous
studies [IMK+19; MGI+19a]. Translations in the weight space cause internal
covariate shift, which may cause our surrogate to fail, regardless of the quality of25

the corresponding point in the weight space. We control this undesired experimental
artefact by updating batch-normalization statistics. LGV does not need such extra
computational cost, since regular training updates batch-normalization statistics
on the fly.
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Table 5.3: Hyperparameters used to train LGV and the initial DNN.

Hyperparameter 1 DNN LGV

Learning rate schedule Step size decay
×0.1 each 30 epochs Constant

Initial learning rate 0.1 0.05
Number of epochs 130 10
Optimizer SGD SGD
Momentum 0.9 0.9
Batch-size 256 256
Weight decay 1× 10−4 1× 10−4

Figures. Figures containing multiple subplots report the success rate on the
target indicated in subplot title of adversarial examples crafted against the surrogate
indicated in legend or in caption. In all figures containing lines surrounded with a
lighter coloured area, the lines are smoothed means2 over 3 independent runs, and
the coloured areas correspond to one standard deviation around the mean.5

Implementation. All experiments source code and models are available on
GitHub3. We adapt the I-FGSM attack from the Python ART library to support
the four state-of-the-art transferability techniques. The training of LGV and
some experiments are adapted from the code of [IMK+19] on PyTorch. We use
the following software versions: Python 3.8.8, PyTorch 1.7.1, Torchvision 0.8.2,10

Adversarial Robustness Toolbox 1.6.0, and Scikit-learn 0.23.2.
Infrastructure. The GPU used for the experiments is Tesla V100-DGXS-32GB,
on a server with the following specifications: 256GB RDIMM DDR4, CUDA version
10.1, Linux (Ubuntu) operating system.
Hyperparameters We use the hyperparameters for training indicated in Ta-15

ble 5.3, and for the attack in Table 5.4.

5.3 Preliminaries: Transferability From the Weight
Space

We aim to show the importance of the geometry of the surrogate loss in im-
proving transferability. As a first step to motivate our approach, we experimentally20

demonstrate that adding random directions in the weight space to a regularly
trained DNN increases its transferability, whereas random directions in the input

2The smooth means are local polynomial regressions computed by the “loess()” function of
the R stats package.

3https://github.com/Framartin/lgv-geometric-transferability
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Table 5.4: Hyperparameters of the I-FGSM attack and transferability techniques.

Attack Hyperparameter Values

I-FGSM Perturbation norm ε
3 for L2,

4
255 for L∞

I-FGSM Step-size α ε
10

I-FGSM Number iterations 50
Momentum (MI) Momentum term 0.9

Ghost Network (GN) Skip connection erosion ran-
dom range [1− 0.22, 1 + 0.22]

Input Diversity (DI) Minimum resize ratio 90%
Input Diversity (DI) Probability transformation 0.5
Skip Gradient Method
(SGM) Residual gradient decay γ 0.2

Table 5.5: Success rates of random directions (RD) in the weight and input spaces
under the L∞ attack. In %.

Target
Surrogate RN50 RN152 RNX50 WRN50 DN201 VGG19 IncV1 IncV3
1 DNN (baseline) 45.3±2.4 29.6±0.9 28.8±0.2 31.5±1.6 17.5±0.6 16.6±0.9 10.4±0.5 5.3±1.0

+ RD Weights 60.6±1.5 40.5±3.0 39.9±0.2 44.4±3.2 22.9±0.8 22.7±0.5 13.9±0.2 6.6±0.7

+ RD Inputs 46.4±1.8 29.0±2.2 28.7±1.2 32.7±1.5 17.5±0.6 17.5±0.6 10.3±0.7 5.6±0.7

space applied on gradients do not. Then, we develop a theoretical connection
between both noises. We show that the difference boils down to structuring the co-
variance matrix of the Gaussian noise added to input gradients from local variations
in the weight space (at the first order approximation).

5.3.1 Gaussian Noise on Inputs5

We first establish that random directions in input space do not increase trans-
ferability (when not ensembled). [TKP+18] observe that adding a random step to
the single-step FGSM attack hinders transferability. We extend this conclusion to
the I-FGSM attack. We add Gaussian white noise to the input gradients of the
loss function during the attack, ∇xL(x′

k; y, w0) + e′
k with e′

k ∼ N (0, σ′2Id) where10

x′
k is the adversarial example at the kth attack iteration. Gradient noise does

not improve the success rate (over all considered architectures), regardless of the
standard deviation value σ′ used (from 1× 10−7 to 1× 10−2 ; Figure 5.1). Table 5.5
contains the final success rate of random directions in the input space, with the
standard deviation selected by cross-validation.15
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Our results may appear contradictory to the previous findings of [WZT+18].
However, technical distinctions and the objective of the analysis account for the
differences. Wu et al. [WZT+18] improves transferability by averaging several
gradients computed from the current inputs perturbed by Gaussian noise in the
input space. We do not average over input noise to study the fundamental relations5

of noises independently of the ensemble effect. Without averaging noises, we
observe the pure effect of exploring the space considered, controlling the gradient
smoothness from averaging.

5.3.2 Gaussian Noise on Weights
Next, we demonstrate that sampling random directions in the surrogate weight10

space increases transferability. We build a surrogate called RD (see Table 5.6) by
adding Gaussian white noise to a DNN with weight w0:

{
w0 + ek | ek ∼ N (0, σIp), k ∈ [[1, K]]

}
. (5.1)

At each I-FGSM iteration k, we add Gaussian white noise to every weight w0 to
compute the input gradient, ∇xL(x′

k; y, w0 + ek) with ek ∼ N (0, σ2Ip). As weights
belong to high dimensions4, the resulting surrogate is approximately uniformly15

distributed on the sphere centred on w0 with radius σ
√

p.
The noise standard deviation is selected by cross-validation on a validation set

(Figure 5.2). Due to computational limitations to update the batch normalisation
statistics, we sample only 10 random directions for cross-validation and cycle
between samples during the 50 attack iterations.20

We found a consistent and significant improvement of transferability – from 1.1
to 20.8 percentage points of success rate – for all eight target architectures and
both L2 and L∞ attacks, compared to the initial weights w0. Table 5.5 reports the
success rates of both random directions in the input and weight spaces under the
L∞ attack. We call the attack RD for random directions in Table 5.6 (L∞) and25

Table 5.7 (L2). RD is reported with standard deviation σ equal to 5× 10−3 and
one random direction per attack iteration.

As a side note and in line with our hypothesis about flatness and transferability
developed in Section 5.5, we observe in Section 5.5.2 that “RD” produces flatter
adversarial examples than its vanilla DNN counterpart.30

Therefore, we showed experimentally that the addition of random directions in
the weight space increases transferability, whereas random directions in the input
space do not. In the next section, we will study how both induced distributions of
gradients differ.

4The number of ResNet-50 weights p is 25 557 032.
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Figure 5.1: Transfer success rate of I-FGSM with respect to the standard deviation
of the Gaussian white noise added to the inputs gradients (pseudo-log scale).
The null standard deviation is vanilla I-FGSM. The subplot title is the target
architecture. The first subplot is intra-architecture transferability.
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Figure 5.2: Transfer success rate of I-FGSM with respect to the standard deviation
of the Gaussian white noise added to the weight of the initial DNN. Ten random
directions are sampled in weight space. The subplot title is the target architecture.
The first subplot is intra-architecture transferability.
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5.3.3 Theoretical Connection Between Both Noises
We develop the theoretical relation between the addition of Gaussian white noise

to the gradients in input space, and the addition of Gaussian white noise in the
weight space. We show that the distinction boils down to structuring the covariance
matrix of the Gaussian noise added to input gradients from local variations in the5

weight space (at the first order approximation).
According to the Section 5.3.1, after the addition of Gaussian noise to the input

gradients, the attack gradients are distributed according to this distribution:

N
(
∇xL(x′

k; y, w0), σ′2 Id

)
(5.2)

We suppose that the loss function L(x; y, w) is twice continuously differentiable
both with respect to x in the Lp ball Bε[x], and to w at w0. To understand the failure10

of noise in input space and the success of noise in the weight space, we consider the
linear approximation of the input loss gradient function ∇xL(x′

k; y, ·) : Rp −→ X ,
around w0,

∇xL(x′
k; y, w0 + ek) = ∇xL(x′

k; y, w0) + J∇xL(x′
k

; y,·)(w0) ek + o(‖ek‖), (5.3)

with J∇xL(x′
k

; y,·)(w) the Jacobian matrix of the input loss gradient function at
w, x′

k the adversarial example at iteration k, and ek ∼ N (0, σ2Ip). Empirically15

σ is set to 5 × 10−3, justifying the local approximation. So, at the first order
approximation, the attack gradient is approximately sampled from:

N
(
∇xL(x′

k; y, w0), σ2 J∇xL(x′
k

; y,·)(w0) J∇xL(x′
k

; y,·)(w0)T
)

(5.4)

Comparing the distributions of gradients in Equation (5.2) and Equation (5.4),
only the noise covariance matrix changes. Therefore, the structured input noise
induced by local variations of input gradients in the weight space improves trans-20

ferability.

Overall, we show that sampling random directions in the weight space increases
transferability due to the structured input noise induced by the surrogate architec-
ture. We develop the connection between input space noise and weight space noise,
and show that the latter boils down to adding a structured Gaussian noise in input25

space with a covariance matrix based on local variations in weight space (to the
first order approximation).

These findings reveal that exploiting local variations in the weight space is a
promising avenue to increase transferability. However, this success is sensitive to
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Figure 5.3: Representation of the proposed approach.

the length of the applied random vectors, and only a narrow range of σ values
increase the success rate.

5.4 LGV: Transferability From Large Geometric
Vicinity

Based on the insights of Section 5.3, we develop LGV (Transferability from5

Geometric Vicinity), our approach to efficiently build a surrogate from the vicinity
of a regularly trained DNN. Despite its simplicity, it beats the combinations of four
state of the art competitive techniques. The effectiveness of LGV confirms that
the weight space of the surrogate is of first importance to increase transferability.

5.4.1 Algorithm10

Our LGV approach performs in two steps: weight collection (Algorithm 4) and
iterative attack (Algorithm 5).

First, LGV performs a few additional training epochs from a regularly trained
model with weights w0. LGV collects weights in a single run along the SGD
trajectory at regular interval (4 per epoch). The high constant learning rate is key15

for LGV to sample in a sufficiently large vicinity. On the ResNet-50 surrogate we
use in our experiments, we run SGD with half the learning rate at the start of the
regular training (Figure 5.3). It allows SGD to escape the basin of attraction of
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Algorithm 4 LGV Weights Collection.
Input: nepochs number of epochs, K number of weights, η learning rate, γ momen-

tum, w0 pretrained weights, D training dataset
Output: (w1, . . . , wK) LGV weights

1: w ← w0 . Start from a regularly trained DNN
2: for i← 1 to K do
3: w ← SGD(w, η, γ,D,

nepochs
K

) . Perform nepochs
K

of an epoch of SGD with η
learning rate and γ momentum on D

4: wi ← w
5: end for

the initial local minimum. Section 5.4.4 includes an in-depth discussion on the
type of high learning rates used by LGV. Compared to adding white noise to the
weights, running SGD with a high constant learning rate changes the shape of the
Gaussian covariance matrix to a non-trivial one [MHB17]. As Table 5.6 shows,
LGV improves over random directions (RD).5

Second, LGV iteratively attacks the collected models (Algorithm 5). At each
iteration k, the attack computes the gradient of one collected model with weights
wk randomly sampled without replacement. If the number of iterations is greater
than the number of collected models, we cycle on the models. Because the attack
computes the gradient of a single model at each iteration, this step has a negligible10

computational overhead compared to attacking a single model.
LGV offers multiple benefits. It is efficient (requires 5 to 10 additional training

epochs from a pretrained model – see Section 5.4.4), and it requires only minor
modifications to training algorithms and adversarial attacks. If memory is limited,
we can approximate the collected set of LGV weights by their empirical average15

(see Section 5.4.5). The most important hyperparameter is the learning rate. In
Section 5.4.4, we show that LGV provides reliable transferability improvements for
a wide range of learning rate.

5.4.2 Comparison With Other Transferability Techniques
We evaluate the transferability of LGV and compare it with four state-of-the-art20

techniques.
MI [DLP+18] adds momentum to the attack gradients to stabilize them and

escape from local maxima with poor transferability. Ghost Networks (GN) [LBZ+18]
use dropout or skip connection erosion to efficiently generate diverse surrogate
ensembles. DI [XZZ+19] applies transformations to inputs to increase input diversity25

at each attack iteration. Skip Gradient Method (SGM) [WWX+20] favors the
gradients from skip connections rather than residual modules, and claims that the
formers are of first importance to generate highly transferable adversarial examples.
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Algorithm 5 I-FGSM Attack on LGV.
Input: (x, y) natural example and its corresponding label, (w1, . . . , wK) LGV

weights of the surrogate DNN fs, niter number of iterations, ε p-norm perturba-
tion, α step-size, L loss function

Output: xadv adversarial example
1: Shuffle (w1, . . . , wK) . Shuffle weights
2: xadv ← x
3: for i← 1 to niter do
4: g ← ∇xL(fs(xadv; wi mod K), y) . Compute the input gradient of the loss of

a randomly picked LGV model
5: xadv ← xadv + project(g, Sα[0]) . Add the normalized gradient, projected in

the p-norm sphere of α radius
6: xadv ← project(xadv, Bε[x]) . Project in the p-norm ball centred on x of ε

radius
7: xadv ← clip(xadv, 0, 1) . Clip to pixel range values
8: end for

We discuss these techniques more deeply in Chapter 3.
Table 5.6 reports the success rates of the ∞-norm attack. We see that LGV

alone improves over all (combinations of) other techniques (simple underline).
Compared to individual techniques, LGV raises the success rate by 10.1 to 59.9
percentage points, with an average of 35.6. When the techniques are combined,5

LGV still outperforms them by 1.8 to 55.4 percentage points, and 26.6 on average.
Table 5.7 reports the results of the 2-norm attack. As for the L∞ attack,

LGV alone improves over all (combinations of) other techniques (simple underline).
LGV is even more effective on the L2 attack than the L∞ one. The vanilla LGV
intra-architecture L2 attack outperforms all techniques applied on LGV, with a10

margin larger than the sum of the respective standard deviations. In six out of
seven inter-architecture targets, input diversity (DI) on top of LGV is best, and in
one case, vanilla LGV is.

We also see that combining LGV with test-time techniques does not always
improve the results and can even drastically decrease success rate. Still, LGV15

combined with input diversity (DI) and momentum (MI) generally outperforms
LGV alone (by up to 20.5%) and ranks the best or close to the best. Indeed, both
techniques tackle properties of transferability not covered by LGV: DI captures
some input invariances learned by different architectures, and MI smooths the
attack optimization updates in a moving average way.20

The incompatibility of GN and SGM with LGV leads us to believe that their
input perturbations are cheap and bad proxies for local weight geometry. Eroding
randomly skip connection, applying dropout on all layers, or backpropagating more

105



linearly, may (poorly) approximate sampling in the weight space vicinity. LGV
does this sampling explicitly.

Overall, our observations lessen both the importance of skip connections to
explain transferability claimed by Wu et al. [WWX+20], and what was believed to
hurt most transferability, i.e., the optimization algorithm [DLP+18] and lack of input5

diversity [XZZ+19]. Our results demonstrate that the diversity of surrogate models
(one model per iteration) is at most importance to avoid adversarial examples
overfitting to their surrogate model. LGV does so more effectively than [LBZ+18].

5.4.3 Comparison With Deep Ensemble and SWAG
This section evaluates the complementarity between LGV and the surrogate10

based on deep ensemble proposed in Chapter 4, and compares LGV with the SWAG
surrogate proposed in Chapter 4.
Complementarity of deep ensemble and LGV. We are interested in investi-
gating the complementarity between the local exploration of the weight space of
LGV with the multimodal exploration of deep ensemble. Deep ensemble trains15

multiple DNNs with independent random initializations and independent SGD
training noise. To complement both approaches of Chapter 4 and Chapter 5, we
use several independently trained DNNs as the base models for LGV, and collect
one set of LGV models per base model. At each iteration of the attack, we average
the input gradients across the LGV sets, using one LGV model per set. Since a fair20

comparison of transferability techniques requires the same number of gradients per
iteration [ZZL+22], the deep ensemble baseline also averages the input gradients of
all base models.

Figure 5.4 shows the success rates of an increasing number of base models, i.e.,
the size of deep ensemble, for both norms. We observe that applying LGV on top of25

deep ensemble is beneficial for all ensembles (from one to five DNNs here) and for
both norms. We also note that LGV benefits from deep ensemble: collecting models
from different vicinities and ensembling them improves transferability compared to
LGV on a single vicinity.

Overall, the local exploration of the weight space by LGV is complementary30

to the multimodal exploration by deep ensemble. Both are straightforward to
complement, since we can simply collect LGV models from several independently
trained DNNs.
Comparison of SWAG and LGV. We evaluate competitively LGV with
the SWAG surrogate, evaluated in Chapter 4, since the limitations of SWAG35

was the motivation to propose LGV. SWAG samples weights from a Gaussian
distribution with an expected value and covariance matrix estimated from collected
models [MGI+19b]. For fairness, we sample 40 models using SWAG and compare
their transferability to the original 40 collected models, and the 40 models of
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Table 5.6: Success rates of baselines, state-of-the-art and LGV under the L∞
attack. Simple underline is best without LGV combinations, double is best overall.
Gray is LGV-based techniques worse than vanilla LGV. “RD” stands for random
directions in the weight space. In %.

Target
Surrogate RN50 RN152 RNX50 WRN50 DN201 VGG19 IncV1 IncV3
Baselines (1 DNN)

1 DNN 45.3±2.4 29.6±0.9 28.8±0.2 31.5±1.6 17.5±0.6 16.6±0.9 10.4±0.5 5.3±1.0

MI 53.0±2.2 36.3±1.5 34.7±0.4 38.1±2.0 22.0±0.1 21.1±0.3 13.9±0.4 7.3±0.8

GN 63.9±2.4 43.8±2.4 43.3±1.3 47.4±0.9 24.8±0.3 24.1±1.0 14.6±0.3 6.8±1.2

GN+MI 68.4±2.3 49.3±2.5 47.9±1.2 52.1±1.7 28.4±0.8 28.0±0.7 17.5±0.5 8.7±0.5

DI 75.0±0.2 56.4±1.9 59.6±1.5 61.6±2.4 41.6±1.1 39.7±0.9 27.7±1.0 15.2±1.0

DI+MI 81.2±0.3 63.8±1.9 67.6±0.9 68.9±1.5 49.3±0.7 46.7±0.4 33.0±1.0 19.4±0.9

SGM 64.4±0.8 49.1±3.1 48.9±0.6 51.7±2.8 30.7±0.9 33.6±1.3 22.5±1.5 10.7±0.9

SGM+MI 66.0±0.6 51.3±3.5 50.9±0.9 54.3±2.3 32.5±1.3 35.8±0.7 24.1±1.0 12.1±1.2

SGM+DI 76.8±0.5 62.3±2.7 63.6±1.7 65.3±1.4 45.5±0.9 49.9±0.8 36.0±0.7 19.2±1.7

SGM+DI+MI 80.9±0.7 66.9±2.5 68.7±1.2 70.0±1.7 50.9±0.6 56.0±1.4 42.1±1.4 23.6±1.6

Our techniques
RD 60.6±1.5 40.5±3.0 39.9±0.2 44.4±3.2 22.9±0.8 22.7±0.5 13.9±0.2 6.6±0.7

LGV-SWA 84.9±1.2 63.9±3.7 62.1±0.4 61.1±2.9 44.2±0.4 42.4±1.3 31.5±0.8 12.2±0.8

LGV-SWA+RD 90.2±0.5 71.7±3.4 69.9±1.2 69.1±3.3 49.9±1.0 47.4±2.0 34.9±0.3 13.5±0.9

LGV (ours) 95.4±0.1 85.5±2.3 83.7±1.2 82.1±2.4 69.3±1.0 67.8±1.2 58.1±0.8 25.3±1.9

LGV combined with other techniques
MI 97.1±0.3 88.7±2.3 87.0±1.0 86.6±2.1 73.2±1.4 71.6±1.4 60.7±0.6 27.4±0.8

GN 94.2±0.2 83.0±2.2 80.8±0.7 79.5±2.4 66.9±0.7 66.6±0.7 56.2±0.5 24.4±1.4

GN+MI 96.4±0.1 87.2±2.0 85.3±0.8 84.4±2.3 70.4±1.0 71.2±0.8 59.2±0.5 26.5±0.4

DI 93.8±0.1 84.4±1.6 84.1±0.6 81.8±1.6 74.9±0.2 76.2±0.7 71.5±1.3 38.9±1.1

DI+MI 96.9±0.0 89.6±1.7 89.6±0.4 88.4±1.1 82.3±0.9 82.2±0.9 78.6±0.8 45.4±0.5

SGM 86.9±0.7 74.8±2.6 73.5±1.2 72.8±2.4 60.6±0.9 69.0±1.8 61.5±1.7 31.7±1.8

SGM+MI 89.1±0.5 77.1±2.8 76.7±1.1 75.6±2.1 62.7±1.1 72.3±1.0 64.7±2.2 34.2±1.7

SGM+DI 84.3±0.6 72.5±2.4 72.8±0.7 70.7±1.8 62.1±0.9 71.8±1.4 67.0±1.8 37.7±1.8

SGM+DI+MI 87.7±0.6 76.4±2.5 77.2±0.8 75.6±1.1 66.4±1.0 76.6±0.7 72.1±1.4 42.9±1.7
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Table 5.7: Success rates of baselines, state-of-the-art and LGV under the L2 attack.
Simple underline is best without LGV combinations, double is best overall. Gray is
LGV-based techniques worse than vanilla LGV. “RD” stands for random directions
in the weight space. In %.

Target
Surrogate RN50 RN152 RNX50 WRN50 DN201 VGG19 IncV1 IncV3
Baselines (1 DNN)

1 DNN 53.9±2.0 37.9±2.0 37.9±0.1 40.5±2.0 22.7±0.5 21.1±0.6 13.6±0.2 7.9±0.7

MI 48.7±1.2 33.5±1.3 33.7±0.7 36.5±1.8 19.9±0.3 19.3±0.8 12.0±0.5 6.6±0.5

GN 77.2±0.9 60.1±1.3 59.6±2.0 63.4±2.0 37.3±1.4 33.6±0.5 21.1±0.8 12.1±1.0

GN+MI 68.4±2.0 50.4±1.9 49.8±1.4 53.3±1.2 29.0±1.2 27.3±0.2 16.5±0.5 9.0±1.0

DI 82.2±0.6 68.0±1.6 71.8±0.6 72.5±1.9 53.8±0.4 49.8±1.1 37.5±0.9 25.4±1.3

DI+MI 79.2±0.4 63.7±1.1 66.8±0.6 68.2±1.4 47.3±0.9 45.8±1.0 32.0±0.7 20.6±0.9

SGM 63.3±0.5 49.7±3.1 50.1±0.7 51.6±1.7 30.2±0.7 33.3±1.3 20.6±0.9 11.1±0.7

SGM+MI 63.3±0.4 49.2±3.7 50.1±0.6 51.9±1.5 29.6±0.3 33.9±1.4 21.4±0.5 11.6±0.8

SGM+DI 79.5±0.7 67.5±2.3 69.0±0.9 69.6±1.1 50.1±0.2 54.6±1.3 40.5±0.8 25.8±1.0

SGM+DI+MI 78.5±0.8 66.4±2.4 68.5±1.7 69.1±1.2 49.1±1.4 54.5±0.9 39.7±0.8 25.6±0.3

Our techniques
RD 74.4±0.6 55.6±3.1 55.9±0.7 59.7±3.3 34.5±0.3 31.5±1.4 19.6±0.8 11.2±1.0

LGV-SWA 85.8±0.7 68.0±3.4 67.0±0.4 65.1±1.8 48.4±0.7 47.0±1.6 34.8±0.5 15.8±1.1

LGV-SWA+RD 92.0±0.5 77.9±3.0 76.2±1.4 75.2±2.8 58.1±0.3 55.6±1.9 42.7±0.6 20.2±0.5

LGV (ours) 96.3±0.2 90.1±0.9 88.7±0.5 87.2±1.8 79.6±1.2 78.0±1.6 71.8±0.5 42.8±0.4

LGV combined with other techniques
MI 96.0±0.1 88.3±1.7 85.8±0.7 84.3±2.6 72.6±0.8 71.8±1.9 62.7±0.7 31.1±0.3

GN 95.8±0.5 89.3±1.6 87.6±0.6 85.8±1.8 77.7±1.0 77.5±0.6 71.0±0.6 41.5±1.5

GN+MI 95.3±0.4 86.1±2.2 84.1±0.6 82.6±2.4 71.0±1.2 71.1±1.1 62.0±0.8 30.2±0.5

DI 95.3±0.3 89.5±0.9 89.5±0.5 87.3±0.9 83.9±0.9 83.7±0.2 82.2±0.9 59.0±0.8

DI+MI 95.2±0.4 88.6±0.7 88.0±0.7 85.7±1.5 81.2±0.7 81.6±0.7 79.3±1.6 50.8±0.7

SGM 85.8±0.5 74.1±2.5 73.4±0.7 71.6±2.1 59.5±0.8 68.5±1.4 62.2±2.1 34.4±1.9

SGM+MI 85.0±0.7 73.3±2.3 72.5±0.9 70.1±1.9 57.5±0.3 67.6±1.2 60.7±1.9 33.0±1.5

SGM+DI 85.0±1.1 75.2±1.4 75.5±0.7 72.5±1.7 65.2±0.8 74.2±1.6 71.6±1.6 46.0±1.7

SGM+DI+MI 84.4±0.6 74.0±1.4 74.9±0.8 71.7±1.2 63.8±0.7 73.3±1.4 70.3±1.4 44.6±1.4
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Figure 5.4: Transfer success rate with respect to the number of independently
trained base models (deep ensemble size).

Table 5.8: Success rates of SWAG, the collected models used to sample SWAG
models, and LGV, on ImageNet. Bold is best. In %.

Surrogate RN50 RN152 RNX50 WRN50 VGG19 DN201 IncV1 IncV3
L∞ Attack

Collected models 63.8 41.6 39.9 45.6 21.4 24.4 12.7 6.5
+ SWAG 63.0 42.1 38.1 46.7 20.7 24.8 13.9 6.6
+ high LR (LGV) 94.7 82.5 82.5 79.5 65.0 67.6 58.3 26.2

L2 Attack
Collected models 71.8 53.5 51.3 57.8 27.9 35.3 20.1 11.1

+ SWAG 73.0 54.9 53.8 60.0 28.0 36.0 19.3 11.8
+ high LR (LGV) 95.7 88.3 88.8 85.5 75.8 77.8 72.8 44.9

LGV. Table 5.8 shows that SWAG does not consistently and significantly improve
transferability, compared to its collected models. We would like to mention that
SWAG may benefit from sampling a higher number of surrogate weights, but a fair
comparison of training techniques should compute the same number of gradient
per iteration [ZZL+22].5

LGV boils down to the models collected for SWAG (without applying SWAG)
using a high learning rate. Table 5.8 shows that the high learning rate of LGV
is crucial to its success: thanks to its high learning rate, LGV significantly and
consistently beats SWAG on both norm and eight targets. Overall, sampling
surrogate weights using SWAG on top of collected models with SGD only provides10

minor improvements in transferability, whereas collecting models with a high
learning rate provides important gains in transferability.
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5.4.4 Hyperparameters Analysis

This section reports the success rates of the I-FGSM transfer attack for the
LGV and I-FGSM attack hyperparameters: the LGV learning rate, the number of
LGV epochs, the number of LGV weights collected per epoch, and the number of
I-FGSM attack iterations. The most important points are summarised below.5

• Learning rate sensibility. We show that LGV provides reliable transfer-
ability improvements for a wide range of learning rate.

• Typologies of high learning rates. We precisely describe the type of high
learning rates suitable for LGV.

• Computational efficiency. If computational resources are limited, we can10

decrease the number of additional epochs of LGV to five instead of ten with
limited degradation of transferability.

• Memory efficiency. If persistent memory is limited, we can decrease the
number of epochs as previously, and the number of models collected per
epoch to two instead of four. In the most severe case, a single model can be15

saved, since LGV-SWA improves over the initial DNN baseline.

Hyperparameters selection. We select all hyperparameters by cross-validation.
A random subset of 2000 examples from the ImageNet train set is used as validation
set to craft adversarial examples. The selected hyperparameter value is unique and
does not depend on the target to respect the black-box threat model where the20

architecture is unknown. Each figure includes the eight studied targets (subfigure
title), both L∞ (red) and L2 (blue) attacks, and the adversarial examples from the
validation set (dashed) for hyperparameter selection and from the test set (plain)
for independent evaluation.

Sensibility to the learning rate. We study the sensitivity of LGV on the25

constant learning rate value. LGV provides reliable transferability improvements for
a wide range of learning rate, between 0.01 and 0.1 (Figure 5.5). The effectiveness
of LGV degrades quickly as the learning rate goes larger than 1× 10−1 or smaller
than 5 × 10−3. We suppose that small learning rates produce surrogates with
gradients that overfit the initial model.30

We select a learning rate equal to 0.05, half of the learning rate at the beginning
of training, based on a validation set, both attack norms, and the eight target
models. These observations are valid for the three other target architectures of the
ResNet family (Figure 5.6). However, the best learning rate against the Inception
v1 and v3 targets is 0.1 for both norms. This tolerance to a higher learning rate is35

consistent with our observation in Section 5.6 that transferability to these targets
is less sensitive to the locally meaningful directions in the subspace spanned by
LGV weights.
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Typologies of high learning rates. We describe the type of high learning
rates suitable for LGV5. We can identify several kinds of high learning: (a) the
highest possible learning rate that does not make the model leave the current
local minimum; (b) the highest possible learning rate that makes the model jump
between different local minima but does not cause deterministic chaos; (c) the5

highest possible learning rate that causes deterministic chaos but does not lead
to numerical divergence. “High” in our case refers to the definition (b). With a
learning rate of 0.05, LGV exits the initial local minimum, as indicated by the
spike of the training loss during the first LGV epochs from 0.95 of the initial DNN
to 3.1. This creates a drop of 5.31 percentage points in natural test accuracy10

between the initial DNN and the ensemble of 40 LGV models (Figure 5.5). Our
learning rate allows SGD to explore a larger vicinity in the weight space. This
leaves (mostly) definition (a) out. Numerical divergence appears for a learning rate
of 50, which is three orders of magnitude above the optimal one. Transferability
drops suddenly when deterministic chaos appears (from 95% to 9% along with15

the natural test accuracy from 67% to 33% when changing the learning rate from
0.1 to 1). Deterministic chaos is more dangerous to LGV than exploring without
leaving the local minimum. Very low LGV success rates might be an indication of
convergence to local a maximum due to an excessively high learning rate. These
observations exclude definition (c), leaving definition (b) coherent with our results.20

Number of LGV epochs. Figure 5.7 reports the transferability of LGV with
respect to the number of additional epochs. Ten additional epochs on the training
set is enough to reach convergence. The computational cost of LGV is low, as it
represents less than 7.7% of the training of the initial DNN. If the attacker has
limited computational capability, five epochs are enough to obtain close results for25

most targets.
Number of LGV weights per epoch. Figure 5.8 reports the transferability
of LGV with respect to the number of weights collected at each epoch. A threat
model with intermediary limitation memory-wise could sample two LGV weights
per epoch with minor success rate loss. In the case of an even more restricted threat30

model, the attacker can save a single model, LGV-SWA, to improve transferability
over the baseline of the initial DNN (Section 5.4.5). In the rest of the paper, LGV
saves four weights per epoch.
Number of attack iterations. To ensure the fairness of our analysis regarding
the 1 DNN baseline, we report in Figure 5.9 the transferability with respect to the35

number of iterations of the I-FGSM attack. The number of I-FGSM iterations is
set to 50 based on the validation success rate of both the initial DNN (“1 DNN”)
and the LGV surrogate. The attack on the initial DNN converges to its maximum

5We would like to thank the reviewers for raising this interesting discussion.
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Figure 5.5: Transfer success rate against the ResNet-50 target (red, blue) and
natural test accuracy (orange) of the LGV surrogate trained with a wide range
of constant learning rate, in pseudo-log scale. The null learning rate refers to the
initial DNN.

around 50 iterations for all targets. The same is true for the LGV surrogate against
the ResNet family targets, but not against the Inception v1 and v3 architectures,
where the success rate is already decreasing. For fairness, we choose 50 iterations
in favour of the 1 DNN surrogate.

5.4.5 Connection Between LGV-SWA and LGV Ensemble5

We demonstrate that the gradient of LGV-SWA approximates the gradient of
the ensemble of LGV models. We show empirically in Section 5.4 that LGV-SWA
is a good single model surrogate. We develop here its relation to the LGV weights.
We extend the analysis from the original SWA paper [IPG+18] on the connection
between the natural generalization of SWA and the one of local ensemble methods.10

Here, we suppose the loss function L(x; y, w) to be twice continuously differentiable
both with respect to x in the Lp ball Bε[x], and to w at every wk, for k in [[1, K]].

We perform a local analysis, since by construction, the weights collected by LGV
wk are close in the weight space and concentrated around their mean wSWA. We
consider the linear approximation of the input loss gradient function ∇xL(x; y, ·) :15

Rp −→ X around wk,
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Figure 5.6: Transfer success rate with respect to the LGV learning rate, for the
eight targets.
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Figure 5.7: Transfer success rate with respect to the number of LGV epochs.
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per epoch.
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∇xL(x; y, wk) = ∇xL(x; y, wSWA) + J∇xL(x; y,·)(wSWA)(wk − wSWA)
+o(‖wk − wSWA‖) ,

with J∇xL(x; y,·)(w) the Jacobian matrix of ∇xL(x; y, w) at w. The gradient of
the ensemble of LGV models is the ensemble of individual gradients, ∇x :=
∇x

1
K

∑K
k=1 L(x; y, wk) = 1

K

∑K
k=1∇xL(x; y, wk). Then, the difference between the

average of gradients and the gradient of the weights average is

∇x −∇xL(x; y, wSWA)

= 1
K

K∑
k=1

[
J∇xL(x; y,·)(wSWA)(wk − wSWA) + o(‖wk − wSWA‖)

]

= J∇xL(x; y,·)(wSWA)
 1

K

K∑
k=1

wk − wSWA

+ o(‖∆w‖)

= o(‖∆w‖),

with ∆w = maxK
k=1(‖wk − wSWA‖). It follows that LGV-SWA is a good single-5

model approximation of the ensemble of LGV models for gradient-based attacks.
It captures some diversity of gradients in the vicinity of the weight space.

Overall, we show that LGV consistently increases transfer-based attacks success.
However, it is not trivial why sampling surrogate weights in the vicinity of a local
minimum helps adversarial examples to be successful against a model from another10

local minimum. In the following, we analyse the LGV success with a geometrical
perspective.

5.5 Loss Flatness: the Surrogate-Target Misalign-
ment Hypothesis

In this section and the following one, we relate the increased transferability15

of LGV to two geometrical properties of the weight space. First in this section,
we show that LGV collects weights on flatter regions of the loss landscape than
where it started (the initial, pretrained surrogate). These flatter surrogates produce
wider adversarial examples in input space, and improve transferability in case of
misalignment between the surrogate loss (optimized function) and the target loss20

(objective function). Second, we show in Section 5.6 that the span of LGV weights
forms a dense subspace whose geometry is intrinsically connected to transferability,
even when the subspace is shifted to other independent solutions. The geometry
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Figure 5.10: Conceptual sketch of flat and sharp adversarial examples. Adapted
from [KNT+16].

plays a different role depending on the functional similarity between the target and
the surrogate architectures.

We first explain why LGV is a good surrogate through the surrogate-target
misalignment hypothesis. We show that LGV samples from flatter regions in the
weight space and, as a result, produces adversarial examples flatter in the input5

space. This leads to surrogates that are more robust to misalignment between the
surrogate and target prediction functions.

Sharp and flat minima have been discussed extensively in machine learning (see
Chapter 3). A sharp minimum is one where the variations of the objective function
in a neighbourhood are important, whereas a flat minimum shows low variations10

[HS97]. Multiple studies [IPG+18; KNT+16] correlate (natural) generalization with
the width of the solution in the weight space: if the train loss is shifted w.r.t.
the test loss in the weight space, wide optima are desirable to keep the difference
between train and test losses small.

We conjecture that a similar misalignment occurs between the surrogate model15

and the target model in the input space. See Figure 5.10 for an illustration of
the phenomenon. Under this hypothesis, adversarial examples at wider maxima
of the surrogate loss would transfer better than sharp ones. The assumption
that surrogate and target models are shifted with respect to each other seems
particularly reasonable when both are the same function parametrised differently20

(intra-architecture transferability), or are functionally similar (same architecture
family). We do not expect all types of loss flatness to increase transferability, since
entirely vanished gradients would be the flatter loss surface possible and annihilate
gradient-based attacks.

We provide two empirical evidences for this hypothesis. First, LGV flattens25
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Table 5.9: Sharpness metrics in the weight space, i.e., the largest eigenvalue and
the rank of the Hessian, computed on three types of surrogate and 10,000 training
examples.

Hessian
Model Max EV Trace
1 DNN 558 ś57 16258 ś725

LGV indiv. 168 ś127 4295 ś517

LGV-SWA 30 ś1 1837 ś70

weights compared to the initial DNN. Second, LGV similarly flattens adversarial
examples in the input space.

5.5.1 Flatness in the Weight Space
We establish that LGV weights and their mean (LGV-SWA) are in a flatter

region of the loss than the initial DNN. The reason we consider LGV-SWA is that5

this model lies at the center of the loss surface explored by LGV and attacking this
model yields a good first-order approximation of attacking the ensemble of LGV
weights (cf. Section 5.4.5). First, we compute Hessian-based sharpness metrics.
Second, we study the variations of the loss in the weight space along random
directions from the solutions. Third, we confirm our observations by interpolating10

LGV-SWA and the initial DNN in the weight space. Finally, we report the same
findings regarding the lengths of random and LGV deviations vectors that are
optimal for transferability.
Hessian-based metrics. First, Table 5.9 reports two sharpness metrics in the
weight space: the largest eigenvalue of the Hessian which estimates the sharpness of15

the sharpest direction, and the trace of the Hessian which estimates the sharpness
of all directions. Both metrics conclude that the initial DNN is significantly sharper
than the LGV and LGV-SWA weights.
Variations along random directions. Second, like [IPG+18], we study the
variations of the loss in the weight space along random directions. We sample a20

random direction vector d on the unit sphere, d = e
‖e‖2

with e ∼ N (0, Ip) and we
study the following rays,

w0(α, d) = w0 + αd, (5.5)
wk(α, d) = wk + αd, (5.6)

wSWA(α, d) = wSWA + αd, (5.7)
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Figure 5.11: L∞ attack crafted on surrogate with natural loss (up), evaluated on
target (down) with respect to the 2-norm distance along 10 random directions
in the weight space from the LGV-SWA solution (orange), random LGV weights
(purple), and the initial DNN (green).

with α ∈ R+. That is, we follow the same direction d for the three studied solutions.
Figure 5.11 reports the intra-architecture results for 10 random directions (see
Figure 5.12 for other settings). The natural loss in the weight space is wider
at the individual LGV weights and at LGV-SWA than it is at the initial model
weights (upper plot). When adding the random vector αd, the natural loss of5

LGV-SWA barely increases, while that of the initial model w0 reaches high values:
0.40 vs. 6.67 for ‖α ·d‖2 from 0 to 100. The individual LGV models are in between,
with an 1.12 increase on average. Additionally, Figure 5.12 reports the loss of
adversarial examples crafted along 10 random directions in the weight space, for
both norms and evaluated on the eight targets. We confirm on the L2 attack and10

on the inter-architecture case that the increased flatness of LGV-SWA in the weight
space comes with an increased transferability of LGV-SWA adversarial examples,
compared to the initial DNN.

Interpolation between LGV-SWA and the initial DNN. Third, we confirm
the previous observations in about flatness in weight space along another specific15

direction. None of the 10 studied random directions increases transferability on
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Figure 5.12: Surrogate natural loss (first subplot) and adversarial target loss (other
subplots) with respect to the 2-norm distance along 10 random directions in the
weight space from the initial model (green), LGV-SWA (orange) and randomly
drawn individual LGV weights (purple). For adversarial target losses, plain lines
are L∞ and dashed ones are L2. Ordinate scale not shared.

their own6. However, we know that at least one direction behaves differently, since
transferability increases from the initial DNN to LGV-SWA (Section 5.4). As
[IPG+18], we study the path in the weight space connecting both with α ∈ R:

w(α) = αw0 + (1− α)wSWA

We observe the same correlation between the flatness of the natural surrogate
loss (orange) and the target adversarial loss (blue and red) in Figure 5.13. Around5

the LGV-SWA solution, the natural loss is flatter than around the initial DNN
where it explodes at α close to 1.2. The same conclusions hold for all target
architectures. Interestingly, LGV-SWA is not always the best single surrogate. The
best surrogate in the studied segment is achieved for values of α between 0.154
and 0.538 for target architectures that belong to the ResNet family. The natural10

loss looks also flat in this region, so this does not contradict our observation. In
6This monotonic decrease in random directions does not contradict our findings in Section 5.3.

Here, all the I-FGSM attack iterations are applied on a single surrogate, whereas previously each
iteration was performed on a new iid sample.
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Figure 5.13: Adversarial target loss (plain) and surrogate natural loss (orange
dashed) with respect to the interpolation coefficient α between the LGV-SWA
solution and the initial model. The subplot title is the target architecture. The
first subplot is intra-architecture transferability.

conclusion, LGV produces weights on a flatter region of the loss landscape than
where it starts from.

Optimal lengths of random and LGV deviations vectors. Finally, Sec-
tion 5.6.3 confirm our observations about flatness in a fourth experiment: the
optimal lengths of random and LGV deviations vectors to generate a set of sur-5

rogate weights are larger for LGV-SWA than for the initial DNN. The length σ′

(1× 10−2) to generate the surrogate “LGV-SWA + RD” described in Section 5.6.1
is the double of the length σ to generate the surrogate “RD” from the initial DNN
in Section 5.3.2 (5× 10−3). Therefore, one can randomly sample further away from
LGV-SWA in the weight space than from the initial DNN. The same conclusion10

holds for the γ scalar of the “1 DNN + γ (LGV’ - LGV-SWA’)” surrogate used
to rescale the LGV deviations to apply them to the initial DNN (Section 5.6.3).
This γ factor is set by cross-validation to 0.5. Therefore, one also needs to divide
by two the length of the LGV deviations vectors to apply them to the initial
model. Overall, LGV-SWA is flatter in the weight space than the initial model15

regarding the lengths of random and LGV deviation vectors that are optimal for
transferability.

Overall, we show empirically that the LGV weights are flatter in the weight
space than in the initial DNN using four techniques: the Hessian-based sharpness
metrics, and the variations of the loss in random directions and along the path in20

weight space connecting LGV-SWA and the initial DNN, and the optimal length
to generate multiple surrogate weights.
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As Figures 5.11 to 5.13 also reveal, the increased flatness of LGV-SWA in
the weight space comes with an increased transferability. We investigate this
phenomenon deeper in what follows.

5.5.2 Flatness in the Input Space
Knowing that LGV yields loss flatness in the weight space, we now connect this5

observation to the width of basins of attractions in the input space when we craft
adversarial examples. That is, we aim to show that flat surrogates in the weight
space produce flatter adversarial examples in the input space.

To study flatness of adversarial examples in the input space, we consider the
plane containing 3 points: the original example x, a LGV adversarial example xadv

LGV,10

and an adversarial example crafted against the initial DNN xadv
DNN. We build an

orthonormal basis (u′, v′) := ( u
‖u‖ , v

‖v‖) using the first two steps of the GramSchmidt
process,

(u, v) =
(

xadv
LGV − x, (xadv

DNN − x)− 〈x
adv
DNN − x, u〉
〈u, u〉

u

)
. (5.8)

We focus our analysis on the 2-norm attack. It constrains adversarial perturba-
tions inside the L2-ball centered on x of radius ε. This has the convenient property15

that the intersection of this ball with our previously defined plane (containing x) is
a disk of radius ε.

Figure 5.14 shows the loss of the ensemble of LGV weights and the loss of the
initial DNN in the (u′, v′) coordinate system. We report the average losses over 500
disks, each one centered on a randomly picked test example. It appears that LGV20

has a much smoother loss surface than its initial model. LGV adversarial examples
are in a wide region of the LGV ensemble’s loss. The maxima of the initial DNN
loss is highly sharp and much more attractive for gradient ascent than the ones
found by LGV – the reason why adversarial examples crafted from the initial DNN
overfit.25

Additionally, we report in Figures 5.15 to 5.21 the visualizations of the plane in
input space for all eight targets and with several combinations of surrogates.

As shown in Section 5.5.1, the initial DNN is sharper than individual LGV
models in the weight space, and LGV-SWA is flatter than both. We show here that
the order of flatness is the same in the weight space and in input space. Figure 5.1630

shows that LGV-SWA produces flatter adversarial examples. A randomly sampled
individual LGV weights surrogate leads to flatter adversarial examples than the
initial DNN (Figure 5.18), but sharper than the LGV-SWA (Figure 5.19) and the
LGV (Figure 5.20) surrogates.

Section 5.4.5 shows that LGV-SWA is a good approximation to the ensemble35

of LGV weights. LGV transfers better than LGV-SWA (Tables 5.6 and 5.7). We
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Figure 5.14: Surrogate (upper) and target (bottom) losses in the plane containing
the original example (circle), an adversarial example against LGV (square) and one
against the initial DNN (triangle), in the (u′, v′) coordinate system. Colours are in
log-scale, contours in natural scale. The white circle represents the intersection of
the 2-norm ball with the plane.

observe in Figure 5.17 that the adversarial examples of the former are flatter on
average than the ones of the latter. The optimization of the I-FGSM attack overfits
the single set of weights approximation, leading to sharper minima. We also observe
that the form of the contours around the LGV-SWA surrogate can be explained by
a shift between target and surrogate.5

Section 5.3 exhibits that noise applied to the weights of a DNN increases
transferability. Figure 5.21 establishes that this noise also slightly flattens the
adversarial examples in input space.

5.5.3 Flatness and Transferability
Figure 5.14 also shows the losses of two target models in the (u′, v′) coordinate10

system. The LGV loss appears particularly well aligned with the one of the ResNet-
50 target (intra-architecture transferability). We observe a shift between the contour
of both models, with the same functional form. These observations are valid for
other targets and on planes defined by adversarial examples of other surrogates (see
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Target WideResNet-50 Target DenseNet-201 Target VGG19 Target Inception v1 Target Inception v3

Surrogate LGV Surrogate Initial DNN Target ResNet-50 Target ResNet-152 Target ResNext-50
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Figure 5.15: LGV surrogate (first up), the initial DNN surrogate (second up)
and targets (others) losses in the plane containing the original example (circle),
an adversarial example against LGV (square) and one against the initial DNN
(triangle), in the (u′, v′) coordinate system. Colours are in log-scale, contours in
natural scale. The white circle represents the intersection of the 2-norm ball with
the plane.
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Figure 5.16: LGV-SWA surrogate (first up), the initial DNN surrogate (second
up) and targets (others) losses in the plane containing the original example (circle),
an adversarial example against LGV-SWA (square) and one against the initial
DNN (triangle), in the (u′, v′) coordinate system. Colours are in log-scale, contours
in natural scale. The white circle represents the intersection of the 2-norm ball
with the plane.
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Target WideResNet-50 Target DenseNet-201 Target VGG19 Target Inception v1 Target Inception v3

Surrogate LGV Surrogate LGV-SWA Target ResNet-50 Target ResNet-152 Target ResNext-50
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Figure 5.17: LGV surrogate (first up), the LGV-SWA surrogate (second up) and
targets (others) losses in the plane containing the original example (circle), an
adversarial example against LGV (square) and one against LGV-SWA (triangle),
in the (u′, v′) coordinate system. Colors are in log-scale, contours in natural scale.
The white circle represents the intersection of the 2-norm ball with the plane.
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Figure 5.18: A randomly sampled individual LGV weights surrogate (first
up), the initial DNN surrogate (second up) and targets (others) losses in the
plane containing the original example (circle), an adversarial example against the
individual LGV weights (square) and one against the initial DNN (triangle), in the
(u′, v′) coordinate system. Colors are in log-scale, contours in natural scale. The
white circle represents the intersection of the 2-norm ball with the plane.
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Target WideResNet-50 Target DenseNet-201 Target VGG19 Target Inception v1 Target Inception v3
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Figure 5.19: A randomly sampled individual LGV weights surrogate (first up),
LGV-SWA surrogate (second up) and targets (others) losses in the plane containing
the original example (circle), an adversarial example against the individual LGV
weights (square) and one against LGV-SWA (triangle), in the (u′, v′) coordinate
system. Colours are in log-scale, contours in natural scale. The white circle
represents the intersection of the 2-norm ball with the plane.
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Figure 5.20: LGV surrogate (first up), a randomly sampled individual LGV
weights surrogate (second up) and targets (others) losses in the plane containing
the original example (circle), an adversarial example against LGV (square) and
one against the individual LGV weights (triangle), in the (u′, v′) coordinate system.
Colours are in log-scale, contours in natural scale. The white circle represents the
intersection of the 2-norm ball with the plane.
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Target WideResNet-50 Target DenseNet-201 Target VGG19 Target Inception v1 Target Inception v3
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Figure 5.21: The initial DNN surrogate (first up), the initial DNN + random
directions surrogate (second up) and targets (others) losses in the plane containing
the original example (circle), an adversarial example against the initial DNN (square)
and one against the initial DNN + random directions (triangle), in the (u′, v′)
coordinate system. Colours are in log-scale, contours in natural scale. The white
circle represents the intersection of the 2-norm ball with the plane.

Section 5.5.2). All these observations corroborate our surrogate-target misalignment
hypothesis.

In Section 5.5.1, the experiment interpolating between LGV-SWA and the initial
DNN corroborates our findings. By interpolating the weights between LGV-SWA
and the initial model, i.e. moving along a non-random direction, we confirm that5

(i) the surrogate loss is flatter at LGV-SWA than at the initial model weights,
(ii) that the adversarial loss of target models gets higher as we move from the initial
model to LGV-SWA.

Section 5.5 – Conclusion. LGV weights lie in flatter regions of the loss
landscape than the initial DNN weights. Flatness in the weight space corre-
lates with flatness in the input space: LGV adversarial examples are wider
maxima than sharp adversarial examples crafted against the initial DNN.
These conclusions support our surrogate-target misalignment hypothesis: if
surrogate and target losses are shifted with respect to each other, a wide
optimum is more robust to this shift than a sharp optimum.
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Figure 5.22: Transfer success rate of each individual LGV weights indexed by the
sampling order (plain) and the initial DNN baseline (dashed). The subplot title
is the target architecture. The first subplot is intra-architecture transferability.
Ordinate scale not shared.

5.6 Importance of the LGV Weight Subspace
Geometry

Although we have demonstrated the link between the better transferability
that LGV-SWA (and in extenso, the LGV ensemble) achieves and the flatness of
this surrogate’s loss, additional experiments have revealed that the LGV models –5

taken individually – achieve lower transferability, although they also have a flatter
loss than the initial model. This indicates that other factors are in play to explain
LGV transferability.

Individual LGV weights do not succeed on their own. The success of LGV
cannot be explained by the intrinsic properties of each of its models taken on their10

own. Figure 5.22 shows that no single model sampled by LGV improves consistently
upon the baseline of the initial model it originates from. On the contrary, the
initial DNN is generally a better surrogate. Therefore, flatness alone is not enough
to explain the transferability of LGV.

In what follows, we show the importance of the geometry of the subspace formed15

by LGV models in increasing transferability. More precisely, deviations of LGV
weights from their average spans a weight subspace which is (i) densely related
to transferability (i.e., it is useful), (ii) composed of directions whose relative
importance depends on the functional similarity between surrogate and target (i.e.,
its geometry is relevant), (iii) remains useful when shifted to other solutions (i.e., its20

127



geometry captures generic properties). Similarly to [IMK+19], the K-dimensional
subspace of interest is defined as,

S =
{
w |w = wSWA + Pz

}
, (5.9)

where wSWA is called the shift vector, P = (w1 − wSWA, . . . , wK − wSWA)ᵀ is the
projection matrix of LGV weights deviations from their mean, and z ∈ RK .

5.6.1 A Subspace Useful for Transferability5

In this section, we show that the subspace S of LGV weights has importance for
transferability. First, we show that the subspace S is specific to transferability in
the sense that S improves transferability significantly more than a random subspace.
Second, we provide evidence that the subspace S densely relate to transferability,
in the sense that randomly sampling S generates good surrogate models.10

Our findings relate to the work of Gur-Ari et al. [GRD18], who analyse the
weight subspace spanned by SGD updates during training. They show that despite
the high dimensionality of the weight space, SGD updates are concentrated in a
tiny subspace. Our hypothesis is that LGV generates a subspace where SGD is
likely to explore. With the probabilistic perspective developed in Chapter 4, the15

probability distribution of the unknown target trained with SGD spreads more
mass in this subspace than in a random subspace.
LGV subspace vs. random subspace. This paragraph shows that the subspace
S of LGV weights is significantly better for transferability than a random subspace,
i.e., the subspace S is specific to transferability. Similarly to our previous RD20

surrogate, we build a new surrogate “LGV-SWA + RD” by sampling random
directions in the full weight space around LGV-SWA. It is defined as:

{
wSWA + e′

k | e′
k ∼ N (0, σ′Ip), k ∈ [[1, K]]

}
, (5.10)

where the standard deviation σ′ is selected by cross-validation. Figure 5.23 reports
the success rate for various values of σ′. Similarly to “RD” in Section 5.3, we tune
this hyperparameter on 10 random directions, and generate the final “LGV-SWA +25

RD” surrogate on 50 directions.
In accordance with our findings about the respective flatness of the DNNs and

LGV-SWA, the optimal standard deviation for “LGV-SWA + RD” (1× 10−2) is
larger than the one for “RD” (5 × 10−3). A flatter solution implies that we can
sample further along random directions before exiting the vicinity of low loss.30

Table 5.6 reports the transferability of this surrogate for the L∞ attack (see Ta-
ble 5.7 for L2). We observe that random deviations drawn in the entire weight space
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Figure 5.23: Transfer success rate of I-FGSM with respect to the standard de-
viation σ′ of the Gaussian white noise added to the weight of LGV-SWA. Ten
random directions are sampled in the weight space. The subplot title is the target
architecture. The first subplot is intra-architecture transferability.

do improve the transferability of LGV-SWA (increase of 1.32 to 10.18 percentage
points, with an average of 6.90). However, the LGV surrogate systematically out-
performs “LGV-SWA + RD”. The differences range from 4.33 to 29.15 percentage
points, and average to 16.10. Therefore, the subspace S has specific geometric prop-
erties related to transferability that make this ensemble outperforms the ensemble5

formed by random directions around LGV-SWA.

Random directions in the LGV subspace. We show that the LGV deviation
subspace is densely related to transferability, in the sense that it is a dense subspace
of good surrogates. We form a new surrogate called “LGV-SWA + RD in S” by
sampling random directions in the LGV deviations subspace S,10

{
wSWA + Pzk | zk ∼ N (0, IK), k ∈ [[1, K]]

}
⊂ S, (5.11)

where P = (w1 − wSWA, . . . , wK − wSWA)ᵀ is the projection matrix of LGV weights
deviations from their mean. Table 5.10 reports the success rates of this surro-
gate along with other techniques. We observe that the transferability of random
directions in the subspace is close to the original LGV surrogate (average differ-
ence of 1.45 percentage point, with values between -0.6 and 5.65), especially for15

ResNet-like targets. The negative difference corresponds to the intra-architecture
transferability, where “LGV-SWA + RD in S” outperforms LGV (significantly for
L∞ and non-significantly for L2). Sampling random directions in the full weigh
space (“LGV-SWA + RD”) instead of the subspace hinders transferability of 14.7
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Table 5.10: Transfer success rate of random directions sampled in LGV deviations
subspace.

Target
Norm Surrogate RN50 RN152 RNX50 WRN50 DN201 VGG19 IncV1 IncV3
L∞ LGV 95.5±0.1 85.5±2.1 83.6±1.1 82.2±2.4 69.6±1.0 67.8±0.9 58.4±0.6 25.6±1.7

L∞ LGV-SWA
+ RD in S

96.0±0.2 85.6±2.5 83.6±0.6 82.1±2.8 68.6±1.1 65.7±1.5 54.5±0.9 23.5±0.4

L∞ LGV-SWA
+ RD

90.4±0.3 71.9±3.4 70.0±1.2 69.2±3.4 50.0±1.0 47.4±1.9 34.9±0.4 13.4±0.7

L2 LGV 96.3±0.1 90.1±1.0 88.8±0.4 87.5±1.6 79.8±1.1 78.1±1.6 71.9±0.6 43.1±0.6

L2 LGV-SWA
+ RD in S

96.6±0.3 90.1±1.4 88.7±0.5 87.3±2.0 77.6±1.0 75.6±1.5 67.4±1.9 37.4±0.4

L2 LGV-SWA
+ RD

91.9±0.6 78.2±2.9 76.2±1.3 75.4±2.5 58.1±0.3 55.8±1.6 42.7±0.6 20.0±0.6

percentage points on average (4.7—24.73). Therefore, the subspace S is densely
and intrinsically related to transferability.

5.6.2 Decomposition of the LGV Projection Matrix
In this section, we analyse the contribution of subspace basis vectors to trans-

ferability through a decomposition of their projection matrix. Doing so, we build5

alternative LGV surrogates with an increasingly reduced dimensionality, and we
assess the impact of this reduction on transferability.

We decompose the matrix of LGV weights deviations P into orthogonal di-
rections, using principal component analysis (PCA) since the PCA coordinate
transformation diagonalises this matrix. Following [IMK+19], we apply PCA based10

on exact full SVD7 to obtain a new orthonormal basis of the LGV weight subspace.
We exploit the orthogonality of the components to change the basis of each wk with
the PCA linear transformation and project onto the first C principal components.
We then apply the inverse map, with wSWA as shift vector, to obtain a new weight
vector wproj

k,C . We repeat the process with different value of C, which enables us15

to control the amount of explained weights variance and to build LGV ensembles
with a reduced dimensionality.

The eigenvalues of the LGV weights deviation matrix equal the variance of
the weights along the corresponding eigenvectors. We use the ratio of explained
weights variance to measure the relative loss of information that would result from20

removing a given direction. From an information theory perspective, if a direction
in the weight space is informative of transferability, we expect the success rate to

7As [IMK+19] we use the PCA implementation of sklearn[PVG+11], but here we select the
full SVD solver instead of randomized SVD to keep all the singular vectors.
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Figure 5.24: Success rate of the LGV surrogate projected on an increasing number
of dimensions with the corresponding ratio of explained variance in the weight
space. Hypothetical average cases of proportionality to variance (solid) and equal
contributions of all subspace dimensions (dashed). Scales not shared.

decrease with the loss of information due to dimensionality reduction. Note that
the surrogate projected on the PCA zero space (i.e. C = 0) is LGV-SWA, whereas
C = K means we consider the full surrogate ensemble.

Figure 5.24 shows, for each dimensionality reduced LGV surrogates, the ex-
plained variance ratio of its lower dimensional weight subspace and the success rate5

that this ensemble achieves on the ResNet-50 and Inception v3 targets. To observe
the trends, we add the hypothetical cases of proportionality to the variance (solid
line) and equal contributions of all dimensions (dashed line).

For both targets in Figure 5.24, explained variance correlates positively with
transferability. This means that our approach improves transferability more, as it10

samples along directions (from SWA) with higher variance. Especially in the intra-
architecture case (Figure 5.24a), there is an almost-linear correlation between the
importance of a direction in the weight space and its contribution to transferability.
This conclusion can be loosely extended to the targets that belong to the same
architecture family as the surrogate, i.e. ResNet-like models (Figure 5.25).15

In some inter-architecture cases, we do not observe this linear trend, although
the correlation remains positive. In Figure 5.24b, we see that the real variance
ratio/transfer rate curve is close to the hypothetical case where each direction
would equally improve transferability on the Inception v3 target. This means
that, in this inter-architecture case, each direction contributes almost-equally20

to transferability regardless of their contribution to the subspace variance. In
supplementary materials, we show other inter-architecture cases (e.g., DenseNet-
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Figure 5.25: Transfer success rate of the LGV surrogate projected on an increasing
number of dimensions with the corresponding ratio of explained variance in the
weight space. The plain line is the smooth mean, and the area corresponds to
one standard deviation. The dashed line is the hypothetical average case of equal
contributions of all subspace dimensions. Ordinate scale not shared.

201 and VGG19) that are intermediate between linear correlation and almost-equal
dimensional contributions (Figure 5.25).

In addition to Figure 5.24, we report in Figure 5.25 the success rate of surrogates
projected into an increasing number of eigenvectors of the LGV weights deviations
matrix P, evaluated on all eight targets. The plain lines are smoothed means (local5

polynomial regression). We observe that the relationship between the weight space
variance ratio and the transferability gets progressively less linear as the target
architecture is different from the surrogate one (ResNet-50 here). Inception family
targets are pretty close to the case of equal contribution of each dimension to
transferability (dashed), independently of its variance. From an information theory10

perspective view of PCA, this would mean that the information contained in the
weight space is directly relevant for intra-architecture transferability, and is not
discriminant for dissimilar targets8. DenseNet-201 and VGG19 are intermediary
cases. We show that the increase in transferability from the subspace S depends
fundamentally on the functional similarity between the target and the surrogate15

architectures.
Taking together the above results, we explain the better transferability of LGV

with the variance of the subspace it forms. However, this correlation is stronger as
the surrogate and target architectures are more functionally similar.

8However, we recall that these directions remain more relevant than random directions in the
full weight space, even for these target architectures.
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Table 5.11: Transfer success rate of LGV deviations shifted to other independent
solutions, for target architectures in the ResNet family.

Target
Norm Surrogate RN50 RN152 RNX50 WRN50
L∞ LGV-SWA + (LGV’ - LGV-SWA’) 94.3±0.5 81.5±2.3 79.1±1.4 78.1±2.4

L∞ LGV-SWA + RD 90.4±0.3 71.9±3.4 70.0±1.2 69.2±3.4

L∞ LGV (ours) 95.4±0.1 85.3±2.1 83.7±1.1 82.1±2.5

L∞ 1 DNN + γ (LGV’ - LGV-SWA’) 73.3±2.0 52.8±2.9 52.6±1.6 56.6±2.8

L∞ 1 DNN + RD 60.8±1.6 40.8±2.7 40.2±0.3 44.8±2.7

L2 LGV-SWA + (LGV’ - LGV-SWA’) 95.2±0.5 86.1±1.9 84.2±1.0 82.7±1.6

L2 LGV-SWA + RD 92.0±0.5 77.9±3.0 76.2±1.4 75.2±2.8

L2 LGV (ours) 96.3±0.1 90.2±1.1 88.6±0.6 87.6±1.7

L2 1 DNN + γ (LGV’ - LGV-SWA’) 84.2±0.8 68.7±2.6 70.0±1.3 72.4±1.5

L2 1 DNN + RD 74.6±0.5 55.8±3.1 56.1±0.6 59.9±3.2

5.6.3 Shift of LGV Subspace to Other Local Minima
This section demonstrates that the benefits of the LGV subspace geometry

are shared across solutions in the weight space. We show that the LGV subspace
significantly increases transferability when shifted both to another LGV-SWA
solution and another regularly trained DNN. This indicates that the LGV subspace5

S embeds generic geometry properties that relate to transferability.
Shift to other LGV-SWA solution. We apply LGV to another independently
trained DNN w′

0. We collect K new weights w′
k, which we average to obtain w′

SWA.
We construct a new surrogate by adding the new deviations to wSWA,

{
wSWA + (w′

k − w′
SWA) | k ∈ [[1, K]]

}
, (5.12)

and we call this new shifted surrogate “LGV-SWA + (LGV’ - LGV-SWA’)”.10

Shifting a LGV subspace to another flat solution (i.e., another LGV-SWA) yields
a significantly better surrogate than sampling random directions from this solution.
Tables 5.11 and 5.12 report the success rate of the surrogate described above. The
difference between “LGV-SWA + (LGV’ - LGV-SWA’)” and “LGV-SWA + RD”
varies from 3.27 to 12.32 percentage points, with a mean of 8.61. The fact that15

the subspace still improves transferability (compared to a random subspace) when
applied to another vicinity reveals that subspace geometry has generic properties
related to transferability.

Yet, we also find a degradation of success rate between this translated surrogate
and our original LGV surrogate (-7.49 percentage points on average, with values20
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Table 5.12: Transfer success rate of LGV deviations shifted to other independent
solutions, for non-ResNet targets.

Target
Norm Surrogate DN201 VGG19 IncV1 IncV3
L∞ LGV-SWA + (LGV’ - LGV-SWA’) 62.2±0.4 57.4±1.5 45.4±0.6 18.7±0.5

L∞ LGV-SWA + RD 50.0±1.0 47.5±1.9 34.9±0.4 13.4±0.7

L∞ LGV (ours) 69.7±1.0 67.5±1.1 58.6±0.8 25.4±1.5

L∞ 1 DNN + γ (LGV’ - LGV-SWA’) 32.6±0.2 30.0±0.9 18.4±0.1 9.6±0.3

L∞ 1 DNN + RD 23.1±0.8 22.8±0.4 14.1±0.1 6.8±0.6

L2 LGV-SWA + (LGV’ - LGV-SWA’) 69.8±0.6 65.7±0.7 55.0±1.0 27.4±0.5

L2 LGV-SWA + RD 58.1±0.3 55.6±1.9 42.7±0.6 20.2±0.5

L2 LGV (ours) 79.6±1.1 78.0±1.5 71.8±0.6 42.9±0.9

L2 1 DNN + γ (LGV’ - LGV-SWA’) 47.4±0.9 42.2±0.2 29.2±0.3 17.2±0.2

L2 1 DNN + RD 34.7±0.3 31.5±1.3 19.8±0.7 11.4±1.1

between -1.02 and -16.80). It indicates that, though the geometric properties
are shared across vicinities, the subspace is optimal (w.r.t. transferability) when
applied onto its original solution.

Shift to another initial DNN. The subspace is not solely relevant for solutions
found by LGV: LGV deviations are also relevant when applied to regularly trained5

DNNs. For that, we build a new surrogate “1 DNN + γ (LGV’ - LGV-SWA’)”
centered on the DNN w0,

{
w0 + γ(w′

k − w′
SWA) | k ∈ [[1, K]]

}
, (5.13)

where the LGV deviations are scaled by a factor γ ∈ R. Scaling is essential here
because this new shift vector (another pretrained DNN) is sharper than LGV-SWA.
A sharper shift vector means that deviations around it needs to be smaller to stay10

in the desirable vicinity.
We choose the γ hyperparameter by cross-validation (Figure 5.26). For com-

putational efficiency, we randomly draw without replacement a subset of 10 LGV’
deviations for each random seed. The original scale of LGV deviations is clearly not
appropriate for a DNN. The optimal γ value is 0.5 for all eight targets. Unscaled15

LGV deviations exit the vicinity of low loss, which drops the success rate by 32.8
percentage points on average (6.52–59.47) compared to the optimal γ value of 0.5.
When properly scaled and applied to an independently and regularly trained DNN,
LGV deviations improve upon random directions by 10.0 percentage points in
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average (2.87—13.88). Therefore, considering the flatness around the shift vector
is of first importance to construct a good surrogate from weight deviations.

The optimal scale γ is consistent with the previously found optimal length along
random directions in Section 5.6.1. The optimal Gaussian standard deviation for a
DNN is also half of the one optimal for LGV-SWA. Flatness is consistent in that5

aspect between LGV and random subspaces. These observations also corroborate
our observations that LGV-SWA is flatter than the initial DNN.

With all these results, we exhibit generic properties of the LGV subspace. It
benefits solutions independently obtained. Applying LGV deviations on a solution
of a different nature may require to scale them according to the new local flatness.10
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Figure 5.26: Transfer success rate with respect to the γ hyperparameter, the scale
of the LGV’ deviations applied to an independent DNN (“1 DNN + γ (LGV’ -
LGV-SWA’)”).

Section 5.6 – Conclusion. Taking together all our results, we conclude
that the improved transferability of LGV comes from the geometry of the
subspace formed by LGV weights in a flatter region of the loss. The LGV
deviations spans a weight subspace whose geometry is densely and generically
relevant for transferability. This subspace is key, as a single flat LGV model
is not enough to succeed. This entire subspace enables to benefit from the
flatness of this region, overcoming potential misalignment between the loss
functions of the surrogate and that of the target model. That is, it increases
the probability that adversarial examples maximizing the surrogate loss will
also (near-)maximize the target loss – and thus successfully transfer.
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5.7 Conclusion
We show that random directions in the weight space sampled at each attack

iteration increase transferability, unlike random directions in the feature space.
Based on this insight, we propose LGV, our approach to build a surrogate by
collecting weights along the SGD trajectory with a high constant learning rate,5

starting from a regularly trained DNN. LGV alone beats all combinations of
four state-of-the-art techniques. We analyse LGV extensively to conclude that
(i) flatness in the weight space produces flatter adversarial examples which are more
robust to surrogate-target misalignment; (ii) LGV weights spans a dense subspace
whose geometry is intrinsically connected to transferability.10

Overall, we open new directions to understand and improve transferability
from the geometry of the loss in the weight space. We show that what matters to
LGV is both the flatness of the loss and the weight subspace spanned by iterates.
Additionally, LGV is a complementary technique to deep ensemble evaluated in
Chapter 4: deep ensemble explores a new vicinity at every new DNN, and LGV15

can explore locally each of these vicinities starting from each independently trained
DNN by deep ensemble. The established success of the local exploration of LGV
closes the research question left open by the poor local exploration of cSGLD shown
in Chapter 4. LGV also show the possibility of hybrid transferability techniques
in-between training and attack times: LGV is a model augmentation transferability20

technique based on a few additional training epochs.
Furthermore, Mandt et al. [MHB17] give directions to connect the probabilistic

perspective of Chapter 4 and the geometric perspective of this chapter. Mandt
et al. [MHB17] show that SGD with constant learning rate can be used as an
approximate Bayesian posterior inference algorithm. LGV may sample weights25

from the posterior distribution conditioned by the vicinity of the fully trained
DNN where LGV starts. We left as future work the explicit development of this
connection.

Two important directions are left open by this chapter. First, LGV starts from
a regularly and fully trained DNN. The question of how to train a better base30

model follows naturally. Second, we want to ask if explicitly minimizing sharpness
during training could improve transferability, since the flattening of the loss by
LGV is a by-product of SGD. The next chapter tackles both directions by exploring
ways to better train a single surrogate model, starting from early stopping, and
then evaluating ways to minimize sharpness. Chapter 6 provides additional and35

complementary evidence in favour of our surrogate-target misalignment hypothesis.
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6
Transferability From Representation in Flat
Neighbourhood

This chapter confirms the key role of the flatness of the loss, by studying the
training of a single surrogate model, i.e., a transferable representation. We provide5

evidence against a previous hypothesis regarding transferability from early stopping.
Instead, we explain the success of early stopping in relation to the dynamics of the
exploration of the loss landscape. SGD drives down the valley and progressively
falls into deep, sharp holes, where the representations are too specific. Based on
these insights, we propose RFN (Representation in Flat Neighboorhood) that10

searches for large flat neighbourhoods in the weight space to find transferable
representations.
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Figure 6.1: Illustration of the relation between the training dynamics of the
surrogate model, sharpness, and transferability. Before the learning rate decays,
training is in a “crossing the valley” phase for both SGD and RFN (gray) with
plateauing transferability. A few iterations after the decay of the learning rate, early
stopped SGD achieves its best transferability. In the following epochs, SGD falls
progressively into deep, sharp holes in the parameter space with poor transferability
(red). RFN (blue) avoids these holes by minimizing the maximum loss around an
unusually large neighbourhood (thick blue arrow).

This chapter is based on the following paper:
• Martin Gubri et al. Going Further: Flatness at the Rescue of Early Stopping

for Adversarial Example Transferability, April 2023. url: https://gubri.
eu/publication/rfn_flatness_transferability/

6.1 Introduction5

In Chapter 5, we shed light on the importance of the local exploration of a
vicinity around a base surrogate model, to improve the success rate of transfer-
based black-box attacks. LGV, our proposed transferability technique, has proven
superior to all combinations of four transferability techniques. The comprehensive
analysis of LGV suggested that the flatness in the weight space contributes to the10

generation of flatter adversarial examples, which are more robust to surrogate-target
misalignment. Additionally, we established that the weights of LGV span a dense
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subspace, intrinsically tied to transferability. The success of the local exploration
exhibited by LGV resolved the research gap left open by Chapter 4.

Nevertheless, this exploration has left us with two open directions that call for
further investigation. Firstly, LGV operates from a regularly and fully trained DNN.
This brings us to the question of how we can train a better base model. Secondly,5

we are intrigued by whether explicitly minimizing sharpness during training could
enhance transferability, given that the flattening of the loss by LGV is a by-product
of SGD with large learning rates. Establishing that explicitly minimizing sharpness
improves transferability would offer additional and complementary evidence in
favour of our surrogate-target misalignment hypothesis.10

This chapter is dedicated to evaluating and analysing the transferability of
single surrogate models. This topic is of particular importance, since understanding
the underlining characteristics that drive transferability of a single DNN provides
insights into how DNNs learn generic representations. This chapter strives to
further our understanding of the training procedure of base surrogate models and15

the impact of sharpness minimization on transferability.
Early stopping is a common practice to improve natural generalization of DNNs

by avoiding overfitting. Benz et al. [BZK21], Zhang et al. [ZCB+21], and Nitin
[Nit21] propose to use early stopping to train better surrogate models. Despite
an important amount of work on transferability, little attention was given to the20

selection of the surrogate model training procedure. Early stopping is probably
the most discussed. The commonly accepted hypothesis is that an early stopped
DNN is composed of more robust features than its fully trained counterpart, which
has more brittle non-robust features [BZK21; ZCB+21; Nit21]. We provide in
Section 6.3 some observations that contradict this hypothesis: early stopping25

improves transferability from and to models composed of non-robust features.
Instead, our hypothesis is that the success of early stopping is closely related to
the dynamics of the exploration of the loss surface. In Section 6.4, we describe this
dynamic in relation to transferability. In particular, transferability peaks a few
iterations of SGD after the decay of the learning rate. At the same time, sharpness30

in the parameter space drops. Later, the transferability slowly decreases and the
sharpness slowly increases. On the basis of these insights, we propose RFN, a
new approach to train surrogate models. By explicitly minimizing sharpness on
unusually large neighbourhoods, we significantly improve transferability over SGD.
Section 6.5 shows that this improvement is specific to transferability, since RFN35

and SGD have a similar natural generalization. We conclude that RFN alters the
exploration of the loss landscape by avoiding deep, sharp holes where the learned
representation is too specific. Finally, Section 6.6 evaluates RFN competitively
against other training procedures and complementarily to other categories of
transferability techniques.40
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Figure 6.1 summarizes the contributions of this chapter:
• The learning rate decay allows the exploration of the loss landscape to go

down the valley. After a few iterations, SGD reaches its best transferability
(“early stopped SGD”, gray star). The sharpness is temporarily contained.

• As training with SGD continues, sharpness increases and transferability5

decreases. The fully trained model (red star) is a suboptimal surrogate. SGD
falls into deep, sharp holes where the representation is too specific.

• RFN explicitly minimizes sharpness over a large neighbourhood (thick blue
arrow) and avoids undesirable holes. Transferability is maximum after a full
training (blue star), and early stopping is not needed.10

6.2 Experimental Settings
This section describes the experimental settings used in this article. The

experimental setup is standard for transfer-based attacks.
• Our source code used to train and evaluate models is publicly available

on GitHub at this URL: https://github.com/Framartin/rfn-flatness-15

transferability.
• Our trained models on both CIFAR-10 and ImageNet are publicly distributed

through HuggingFace at this URL: https://huggingface.co/mgubri/rfn-
flatness-transferability.

Target models. All our target models on CIFAR-10 are fully trained for 15020

epochs with SGD using the hyperparameters reported in Table 6.1. For a fair
comparison, the baseline surrogate is trained with SGD using the same hyperpa-
rameters as the targets. On ImageNet, the target models are the pretrained models
distributed by PyTorch. On CIFAR-10, we target the following nine architectures:
ResNet-50 (the surrogate with the same architecture is an independently trained25

model), ResNet-18, ResNet-101, DenseNet-161, DenseNet-201, WideResNet-28-10,
VGG13, VGG19, and Inception v3. The ten target architectures on ImageNet
are the following: ResNet-50, ResNet-152, ResNeXt-50 32X4D, WideResNet-50-2,
DenseNet-201, VGG19, GoogLeNet (Inception v1), Inception v3, ViT B 16 and
Swin S. Additionally, we train a “validation” set of architectures on CIFAR-10 to30

select hyperparameters independently of reported results. This set is composed
of: ResNet-50 (another independently trained model), ResNet-34, ResNet-152,
DenseNet-121, DenseNet-169, WideResNet-16-8, VGG11, VGG16, and GoogLeNet
(Inception v1). This validation set of target models on ImageNet is composed
of the following architectures: ResNet-50 (another independently trained model),35

ResNet-101, ResNeXt-101 64X4D, WideResNet101-2, VGG16, DenseNet121, ViT
B 32 and Swin B.
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Table 6.1: Hyperparameters used to train surrogate models.

Training Hyperparameter Dataset Value

All

Number of epochs CIFAR-10 150
ImageNet 90

Initial learning rate All 0.1

Learning rate decay CIFAR-10 Step-wise /10 each 50 epochs
ImageNet Step-wise /10 each 30 epochs

Momentum All 0.9

Batch-size CIFAR-10 256
ImageNet 128

Weight decay CIFAR-10 0.0005
ImageNet 0.0001

SAM ρ All 0.05 for SAM, 0.4 for RFN

Surrogate models trained with SGD. We train the surrogate models on
CIFAR-10 and ImageNet using SGD with the standard hyperparameters of the
robustness library [EIS+19] (Table 6.1). Due to computational limitations on
ImageNet, we limit the number of epochs to 90, reusing the same hyperparameters
as [ALM+20].5

Surrogate models trained with SAM/RFN. We train surrogate models with
SAM using the same hyperparameters as the models trained with SGD for both
datasets. We integrate the SAM optimizer into the robustness library [EIS+19].
The unique hyperparameter of SAM is ρ which is set to 0.05 as the original paper
for both datasets for the original SAM surrogate. The RFN surrogate is trained10

with SAM and ρ equal to 0.4.
Surrogate models of competitive techniques (Section 6.6). To compare
with competitive training techniques on ImageNet, we reuse the original models of
LGV-SWA (Chapter 5), weights averaged over 10 additional epochs with a high
learning rate of 0.1, and SAT [SMK21], an adversarially trained model with a15

small maximum L2 norm perturbation ε of 0.1 and with the PGD attack applied
with 3 steps and a step size equals to 2ε/3. On CIFAR-10, we reuse the best
hyperparameters of [SMK21] to adversarially train the SAT surrogate model with a
maximum L2 norm ε of 0.025 and PGD with 7 steps and a step size of 0.3ε. For a
fair comparison, we choose the best checkpoint of the early stopped SGD surrogate20
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Table 6.2: Hyperparameters of transferability techniques.

Dataset Technique Hyperparameter Value

Early Stopping ImageNet Epoch 66
CIFAR-10 Epoch 54

GN ImageNet Random range [1− 0.3, 1 + 0.3]
SGM ImageNet γ 0.2

LGV ImageNet Epochs 5
Learning rate 0.05

DI ImageNet Minimum resize ratio 85%
Probability transformation 80%

SI ImageNet Number of copies m 4

VT ImageNet β 1.8
Number of copies N 20

MI ImageNet Decay 1.2
NI ImageNet Decay 0.6

by evaluating the transferability of every training epoch. For each epoch, we craft
1,000 adversarial examples from a distinct validation set of original examples and
compute their success rate over a distinct set of validation target architectures.
On CIFAR-10, the selected epoch is 54, and 66 on ImageNet. All the other
hyperparameters not mentioned in this paragraph are the same as those used to5

train the surrogates with SGD.

Transferability Techniques. For a fair comparison with existing transferability
techniques, we select their hyperparameter by cross-validation: we compute the
success rate on a validation set of targets from a distinct set of natural examples.
Table 6.2 reports the hyperparameters of the eight transferability techniques10

considered, i.e., early stopping, GN, SGM, LGV, DI, SI, VT, MI, and NI.

Attack. Unless specified otherwise, we use the BIM (Basic Iterative Method)
[KGB17] which is the standard attack for transferability [BZK21; DLP+18; LBZ+18;
LSH+20; SMK21; WWX+20; XZZ+19; ZZL+22]. By default, the maximum L∞
perturbation norm ε is set to 4/255. We use the BIM hyperparameters tuned in15

Chapters 4 and 5 on a distinct set of validation target models: BIM performs
50 iterations with a step size equal to ε/10. Unless specified otherwise, we craft
adversarial examples from a subset of 1,000 natural test examples that are correctly
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predicted by all the target models. The success rate is the misclassification rate of
these adversarial examples evaluated on one target model.
Threat model. We study the threat model of untargeted adversarial examples:
the goal of the adversary is misclassification. We consider the standard adversary
capability for transfer-based black-box attacks, where the adversary does not have5

query access to the target model. Query-based attacks are another distinct family
of attacks.
Implementation. The source code of every experiment is available on GitHub.
Our models are distributed through HuggingFace. We use the torchattacks library
[Kim20] to craft adversarial examples with the BIM attacks and four transfer-10

ability techniques, namely LGV, DI, SI, VT, MI and NI. We reuse the original
implementations of GN and SGM to “patch” the surrogate architecture, and use
the TorchAttacks implementation of BIM on top. The software versions are the
following: Python 3.10.8, PyTorch 1.12.1, Torchvision 0.13.1, and TorchAttacks
3.3.0.15

Infrastructure. For all experiments, we use Tesla V100-DGXS-32GB GPUs on
a server with 256GB of RAM, CUDA 11.4, and the Ubuntu operating system.

6.3 Preliminaries: Another Look at the Non-
Robust Features Hypothesis About Early
Stopping20

In this section, we point the flaws of the robust and non-robust features (RF-
s/NRFs) hypothesis [BZK21; ZCB+21; Nit21] to explain the success of early
stopping for transferability. According to this hypothesis, earlier representations
are more transferable than their fully trained counterparts because they contain
more slightly RFs than NRFs. Slightly RFs are features that are robust to tiny25

worst-case perturbations, and NRFs are features that are not. See Section 3.1.4 for
more details.
Early stopping indeed increases transferability. First, we check that a fully
trained surrogate model is not optimal for transferability. We train two ResNet-50
surrogate models on the CIFAR-10 and ImageNet datasets using standard settings.30

Figures 6.2 and Figure 6.3 report the success rates respectively on CIFAR-10 and
ImageNet, of the I-FGSM attack applied at every epoch and evaluated on a total
of 19 fully trained target models. For both datasets and a variety of targeted
architectures, the optimal epoch for transferability occurs around one or two thirds
of training. Transferability decreases along epochs, except for the two vision35

transformers targets on ImageNet where the transferability plateaus at the end of
training. Therefore, we confirm that early stopping increases transferability.

143



0%

25%

50%

75%

0 50 100 150
Epoch

S
uc

ce
ss

 R
at

e
Target

ResNet−18

ResNet−50

ResNet−101

WideResNet−28−10

DenseNet−161

DenseNet−201

VGG13

VGG19

Inception v3

Figure 6.2: Early stopping improves transferability consistently across target models
on CIFAR-10. Success rate evaluated on nine target models (colour) from a ResNet-
50 surrogate model trained for a number of epochs (x-axis) on the CIFAR-10
dataset. Vertical bars indicate the step decays of the learning rate. Triangles
indicate the epochs corresponding to the highest success rate per target.

Early stopping improves transferability from both surrogates trained
on robust and non-robust datasets. We show that early stopping works
similarly well on surrogate models trained on robust and non-robust datasets. We
retrieve the robust and non-robust datasets from [IST+19], that are altered from
CIFAR-10 to contain mostly RFs and, respectively, NRFs. We train two ResNet-505

models on both datasets with SGD and the same hyperparameters (reported in
Section 6.2). Figure 6.4 shows the transferability across training epochs, averaged
over the nine targets. The success rates of both robust and non-robust surrogate
models evolve similarly (scaled by factor) to the model trained on the original
dataset: transferability peaks around the epochs 50 and 100 and decreases during10

the following epochs. This observation is valid for all nine targets (Figure 6.5).
According to the RFs/NRFs hypothesis, we expected “X-shaped” transferability
curves: increasing transferability from NRFs and strictly decreasing transferability
from RFs (after initial convergence). The RFs/NRFs hypothesis does not describe
why early learned NRFs are better for transferability than fully learned NRFs.15

Early stopping improves transferability to both targets trained on robust
and non-robust datasets. We observe that an early stopped surrogate model
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Figure 6.3: Early stopping improves transferability to various target models on
ImageNet, except to vision transformers (ViT-B-16 and Swin-S) against which the
success rate plateaus at the end of training. Success rate evaluated on ten target
models (colour) from a ResNet-50 surrogate model trained for a number of epochs
(x-axis) on the ImageNet dataset. Vertical bars indicate the step decays of the
learning rate. Triangles indicate the epochs corresponding to the highest success
rate per target.

trained on the original dataset is best to target both targets composed of RFs
and NRFs. Here, we keep the original CIFAR-10 dataset to train the surrogate
model. We target four ResNet-50 models trained on the robust and non-robust
datasets of [IST+19]1. Figure 6.6 shows the same early stopped surrogate model is
optimal for targeting both models composed of RFs and NRFs. Since the higher5

the transferability, the more similar the representations are, we conclude that the
early trained representations are more similar to both RFs and NRFs than their
fully trained counterparts.

Overall, we provide new evidence that early stopping for transferability acts
similarly on robust and non-robust features. We do not observe an inherent trade-10

off between RFs and NRFs. Therefore, the hypothesis that early stopping favours
RFs over NRFs does not hold. We conjecture that a phenomenon orthogonal to

1In this experiment, we include two other non-robust datasets Drand and Ddet from [IST+19].
By construction, the only useful features for classification are NRFs. We did not include them in
the previous experiment because training on them is too unstable.
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Figure 6.4: Early stopping improves transferability of surrogate models trained
on both robust and non-robust datasets. Average success rate evaluated over nine
target models from a ResNet-50 surrogate model trained for a number of epochs
(x-axis) on the datasets DR (blue) and DNR (green) of [IST+19] modified from
CIFAR-10 (red). We craft all adversarial examples from the same subset of the
original CIFAR-10 test set.

RFs/NRFs explains why fully trained surrogates are not optimal.

6.4 Transferability and Training Dynamics
This section explores the relationship between the training dynamics of the

surrogate model and its transferability. In particular, we observe several phenomena
following the learning rate step decays: transferability peaks, sharpness drops, and5

the exploration of the loss surface transitions phases.

6.4.1 Transferability Peaks When the Learning Rate De-
cays

We point out the key role of the learning rate decay in the success of early
stopping for transferability. The optimal number of surrogate training epochs for10

transferability occurs a couple of epochs after the decay of the learning rate. We
train a ResNet-50 surrogate model for 150 epochs on CIFAR-10, using the standard
learning rate schedule of [EIS+19] which divides the learning rate by 10 at epochs
50 and 100. For all nine targets considered individually, the highest transferability

146



VGG13 VGG19 Inception v3

WideResNet−28−10 DenseNet−161 DenseNet−201

ResNet−18 ResNet−50 ResNet−101

0 50 100 150 0 50 100 150 0 50 100 150

0%

25%

50%

75%

0%

25%

50%

75%

0%

25%

50%

75%

Epoch

S
uc

ce
ss

 R
at

e

Surrogate
Dataset

Original
(CIFAR10)

Non−robust

Robust

Figure 6.5: Early stopping improves transferability of surrogate models trained
on both robust and non-robust datasets. Success rate evaluated over nine target
models (title subfigure) from a ResNet-50 surrogate model trained for a number of
epochs (x-axis) on the datasets DR (blue) and DNR (green) of [IST+19] modified
from CIFAR-10 (red).

is between epochs 51 and 55 (Figure 6.3). Figure 6.7 shows that transferability
suddenly peaks after the learning rate decay (red line). We train on ImageNet a
ResNet-50 surrogate model for 90 epochs with learning rate decay at epochs 30
and 60. The highest transferability per target occurs either after the first decay
(epochs 31 or 35) or after the second one (epochs 62 or 67), except for both vision5

transformer targets, where transferability plateaus at a low success rate after the
second decay. Overall, the success of early stopping appears to be related to the
exploration of the loss landscape, which is governed by the learning rate.

Consistency of the peak of transferability across training. The peak of
transferability described above can be consistently observed at any point of training10

(after initial convergence). Here, we modify the standard double decay learning
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Figure 6.6: Early stopping improves transferability to target models trained on
both robust and non-robust datasets. Success rate from a ResNet-50 surrogate
model trained for a number of epochs (x-axis) on the original CIFAR-10 dataset,
to ResNet-50 target models trained on the robust dataset DR (red), and the three
non-robust datasets DNR (green), Drand (green) and Ddet (purple) of [IST+19]
modified from CIFAR-10. The size of perturbation ε is 16/255 for the DR target,
2/255 for the DNR target and 1/255 for the Drand and Ddet targets to adapt to the
vulnerability of target models (the order of curves cannot be compared). We craft
all adversarial examples from the same subset of the original CIFAR-10 test set.

rate schedule to perform a single decay at a specified epoch. The learning rate is
constant (0.1) until the specified epoch, where it will be 10 times lower (0.01) for the
rest of the training. We evaluate the transferability of five surrogates with a decay
at, respectively, epoch 25, 50, 75, 100 and 125. In Figure 6.7, we observe a similar
transferability peak for all these surrogates, except for the decay at epoch 25 where5

the decay occurs before the end of the initial convergence. Figure 6.8 contains the
transferability per target of the surrogate models trained with a single learning
rate decay at a varying epoch. The consistency of the peak of transferability
across training epochs is valid for all nine targets. We add as baseline the constant
learning rate (at 0.1). Without learning rate decay, the transferability plateaus10

after initial convergence. Therefore, we conclude that the step decay of the learning
rate enables early stopping to improve transferability.
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Figure 6.7: Step learning rate decay benefits transferability at any epochs after
initial convergence. Average success rate evaluated over nine target models from a
ResNet-50 surrogate model trained for a number of epochs (x-axis) on the CIFAR-
10. The learning rate is divided by 10 a single time during training at an epoch
indicated by the colour. Figure 6.8 contains the details per target.

6.4.2 Sharpness Drops When the Learning Rate Decays
When the learning rate decays, the sharpness in the parameter space drops.

We observe a drop of both worst-case sharpness and average sharpness, measures
respectively by the largest eigenvalue and the trace of the Hessian. We compute
both sharpness metrics at every epoch using the PyHessian library [YGK+19]5

on a random subset of a thousand examples from the CIFAR-10 train dataset.
Figure 6.9 reproduces the largest Hessian eigenvalue and the Hessian trace per
epoch of our standard CIFAR-10 surrogate. For both metrics, we observe that
sharpness decreases abruptly and significantly immediately after both learning rate
decays at epochs 50 and 100.10

6.4.3 Crossing the Valley Before Exploring the Valley
Before the learning rate decays, the exploration tends to behave more like

“crossing the valley” than after decay, when it is more likely to “crawl down to
the valley”, as described in [SDH21]. [SDH21] proposes the α-quantity, a metric
computed at the level of SGD iterations to disentangle whether the iteration15

understeps or overshoots the minimum along the current step direction. Based
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Figure 6.8: Step learning rate decay benefits transferability at any epochs after
initial convergence. Success rate evaluated over nine target models from a ResNet-
50 surrogate model trained for a number of epochs (x-axis) on the CIFAR-10. The
learning rate is divided by 10 a single time during training at an epoch indicated
by the colour.

on a noise-informed quadratic fit, α ≈ 0 indicates an appropriate learning rate
that minimizes the loss in the direction of the gradient at this iteration (“going
down to the valley”). α > 0 indicates that the current learning rate overshoots
this minimum (“crossing the valley”). We compute the α-quantity every four
SGD iterations during the best five epochs for transferability on CIFAR-10 (“after5

learning rate decay”, epochs 50–54) and during the five preceding epochs (“before
learning rate decay”, epochs 45–49). The one-sided Welch Two Sample t-test has a
p-value inferior to 2.2e−16. We reject the null hypothesis in favour of the alternative
hypothesis that the true difference of α-quantity in means between the group
“before learning rate decay” and the group “after learning rate decay” is strictly10

greater than 0. We also perform a one-sided Welch Two Sample t-test on the 5
epochs before and after the second learning rate decay (epochs 95–99 vs. epochs
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Figure 6.9: Sharpness drops when the learning rate decays. Largest eigenvalue of
the Hessian (red) and trace of the Hessian (blue) for all training epochs (x-axis)
on CIFAR-10. The largest eigenvalue of the Hessian represents the worst-case
sharpness, i.e., the sharpness of the sharpest direction in the weight space. The
trace of the Hessian represents the average sharpness in weight space. Average
success rate on nine targets for all training epochs (orange, right axis). Vertical
bars indicate the learning rate step decays.

100-105). Its p-value is equal to 0.004387. Using the Bonferroni correction, we
compare the p-values of both individual tests with a significance threshold of 0.5%.
We reject the null hypothesis for both learning rate decays with a significance level
of 1%.

Figure 6.10 is the density plot of the α-quantities for both groups. Our results5

suggest that before the learning rate decay, training is slow due to a “crossing the
valley” pattern. The best early stopped surrogate occurs a few training epochs
after the learning rate decay when the SGD starts exploring the bottom of the
valley.

We conclude that the effect of early stopping on transferability is tightly related10

to the dynamics of the exploration of the loss surface, governed by the learning rate.
Overall, Figure 6.1 illustrates our observations:

1. Before the learning rate decays, the training bounces back and forth crossing
the valley from above (top gray arrows).
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Figure 6.10: When the learning rate decays, the exploration tends to cross the valley
less, and to crawl down to the valley more. Density plot of the α-quantity values
computed each four SGD iterations during the best five epochs for transferability
on CIFAR-10 (epochs 50–54, “After” group, blue) and the five preceding epochs
(epochs 45–49, “Before” group, red).

2. After the learning rate decays, training goes down the valley. Soon after,
SGD has its best transferability (“early stopped SGD” gray star). Sharpness
is reduced.

3. When learning continues, the training loss decreases and sharpness slowly
increases. SGD finds a “deep hole” of the loss landscape, corresponding to a5

specific representation that has poor transferability (“fully trained SGD” red
star).

6.5 Going Further: Flatness at the Rescue of
SGD

Since transferability peaks to its higher value when sharpness drops, we explore10

in this section how to improve transferability by explicitly minimizing the sharpness
of the surrogate model. First, we show that SAM, sharpness-aware minimizer, finds
surrogate models with high transferability at every epoch. Second, we propose a new
transferability technique called RFN (Representation from Flat Neighbourhood),
based on unusually large flat neighbourhoods that avoid large holes on the surface15

of the loss landscape. In practice, RFN is simply SAM with an unusually high
hyperparameter ρ that benefits transferability specifically, since its value degrades
natural accuracy compared to the original SAM.
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Sharpness-Aware Minimizer (SAM, [FKM+20]) minimizes the maximum loss
around a neighbourhood by performing a gradient ascent step followed by a gradient
descent step. At the cost of one additional forward-backward pass per iteration,
SAM avoids deep, sharp holes on the surface of the loss landscape [KLS+22]. We
explore the use of SAM to train a surrogate model and show that:5

1. Explicitly minimizing sharpness improves transferability over SGD.

2. The large flat neighbourhoods used by RFN benefit specifically transferability
(not natural generalization).

3. Contrary to SGD, SAM and RFN benefit from a full-training. Thus, RFN
does not need early stopping to train generic representations.10

6.5.1 Minimizing Sharpness Improves Transferability
By explicitly minimizing sharpness in the parameter space, SAM trains better

surrogate models than SGD. On CIFAR-10, we train a ResNet-50 model without
any hyperparameter tuning, using the original SAM hyperparameter (ρ = 0.05).
The success rate averages over the nine targets at 79.71%, compared to 56.66%15

for full training with SGD, and 70.54% for SGD at its best (epoch 53)2. Similarly,
on ImageNet, we train a ResNet-18 with SAM (ρ = 0.05) and obtain an average
success rate on ten targets of 18.81%. A full training with SGD averages to 13.23%,
and an early stopped one reaches 14.48% at its best (epoch 68). For both datasets,
SAM consistently improves over fully trained and early stopped SGD for all our 1920

targets (Figures 6.11, 6.14 and 6.15).

6.5.2 Large Flat Neighbourhoods Are Specific To Transfer-
ability

RFN significantly increases the transferability over the original SAM by min-
imizing sharpness over uncommonly large neighbourhoods (defined by the ρ hy-25

perparameter). The unique hyperparameter of SAM, ρ, controls the size of the
neighbourhood where SAM minimizes sharpness. We evaluate the sensibility of
transferability regarding this hyperparameter on CIFAR-10. We show that large
flat neighbourhoods are optimal for transferability, but degrade slightly the natural
accuracy, indicating a specificity of transferability. Without any additional tuning,30

we show that similarly large neighbourhood benefits transferability on ImageNet.
Finally, we show that such large neighbourhoods are also beneficial to three SAM
variants, but none of the variants strictly dominate RFN.

2Note that this original SAM surrogate is trained without tuning hyperparameter for transfer-
ability. We show below that larger ρ significantly improves it.
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Figure 6.11: RFN improves transferability over SGD and the original SAM: RFN
and SAM have higher transferability than both fully trained and early stopped SGD,
RFN and SAM do not need early stopping, RFN is better for transferability than
the original SAM. Transferability from three surrogate models trained respectively
with SGD (baseline, red), SAM with its original ρ hyperparameter (ρ = 0.05,
green) and RFN, i.e., SAM with large neighbourhood optimal for transferability
(ρ = 0.4, blue). Average success rate evaluated over nine target models from a
ResNet-50 surrogate model trained for a number of epochs (x-axis) on CIFAR-
10. Transferability from ResNet-18 and ResNet-50 trained on ImageNet evolves
similarly (Figures 6.14 and 6.15).

The size of flat neighbourhoods: the choice of the ρ hyperparameter.
SAM has similar transferability for a wide range of its unique ρ hyperparameter.
Table 6.3 shows that the success rates on our test targets vary less than a percentage
point for ρ between 0.3 and 0.5. Figure 6.12 shows that the improvements from SAM
holds for all targets in this same range. Moreover, SAM with any ρ value clearly5

dominates the SGD baseline. SAM is robust to a badly selected hyperparameter.
Therefore, the risk of worsening transferability by switching from SGD to SAM to
train the surrogate model is tiny.

For RFN, we select ρ = 0.4 based on a separate set of architectures for the
target models and a disjoint subset of original examples (Table 6.3, see Section10

6.2 for more details about the experimental setting). We use the same ρ = 0.4 for
RFN on ImageNet without an additional hyperparameter selection.

154



Table 6.3: SAM improves transferability for a wide range of its unique ρ hyper-
parameter. Average success rate on nine targets of surrogates trained using SAM
with various values of its ρ hyperparameter on CIFAR-10. The “Validation” and
“Test” columns use distinct sets of targeted architectures and distinct subsets of
original examples. All surrogate models are trained for 150 epochs on CIFAR-10.
ρ = 0 corresponds to the baseline of the fully trained standard SGD surrogate. In
%.

Value of ρ Validation Success Rate Test Success Rate

0.00 (SGD baseline) 55.59 56.61
0.05 (original SAM) 78.06 79.70
0.10 80.08 83.10
0.20 78.62 81.11
0.30 81.65 85.36
0.40 (RFN, best for
transferability) 81.68 85.88

0.50 81.64 85.14
0.60 77.36 80.38
0.70 76.56 80.90
0.80 59.47 64.23
1.00 58.63 64.39

Table 6.3 and Figure 6.12 show that the unusually large flat neighbourhood
(ρ = 0.4) used by RFN benefits all targets compared to the original SAM (ρ = 0.05).
Large flat neighbourhoods are specific to transferability. Figure 6.13
shows the natural accuracy of SGD, SAM and RFN. As reported by Foret et al.
[FKM+20], SAM improves over SGD. Nevertheless, we observe that the large5

neighbourhoods used by RFN degrade natural accuracy compared to SAM and to
the SGD baseline, suggesting that such large flat neighbourhoods are specifically
related to transferability. This observation echoes the finding in Chapter 5 that the
large learning rate used by LGV is best for transferability and degrades natural
accuracy.10

Kaddour et al. [KLS+22] show that SAM with different ρ values ends up in
different basins. Therefore, RFN, i.e., SAM with high ρ, finds neighbourhoods that
are specifically beneficial for transferability. It avoids large sharp holes on top of
the loss surface.
Generalization of large flat neighbourhoods: extension to ImageNet.15

The ρ value selected on CIFAR-10 is also significantly beneficial on ImageNet. The
conclusions about RFN, SAM and SGD made on CIFAR-10 hold on ImageNet:
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Figure 6.12: All targeted architectures benefits from SAM with a large flat neigh-
bourhood. Success rate evaluated on nine target models (colour) from a ResNet-50
surrogate model trained using SAM with various ρ hyperparameters (x-axis) on
the CIFAR-10 dataset. The vertical yellow bar indicates the ρ selected for RFN.
Adversarial examples are crafted from a subset of one thousand original examples
from the test set. ρ = 0 is the SGD fully trained baseline.

RFN is better for transferability than both the original SAM and SGD, and
RFN degrades natural accuracy compared to SAM. Figures 6.15 and 6.14 report
the success rates along epochs on ImageNet, respectively, from a ResNet-50 and
ResNet-18 surrogate. Due to computational limitations, we only train the original
SAM with the ResNet-18 architecture. We apply RFN on ImageNet without any5

hyperparameter selection: we reuse directly the γ value selected on CIFAR-10.
Despite this disadvantage, the same size of flat neighbourhood extends to ImageNet
for both architectures. Figures 6.16 and 6.17 report the natural accuracy along
epochs of the above-mentioned surrogate models respectively for the ResNet-18 and
ResNet-50 architectures. The same conclusion on CIFAR-10 extends to ResNet-1810

on ImageNet: the large flat neighbourhoods used in RFN degrade are specific to
transferability, i.e., they degrade natural accuracy compared to SAM3.

The transferability of SAM variants. On a side note, we also train three
variants of SAM (ASAM, GSAM, AGSAM) proposed by Kwon et al. [KKP+21] and
Zhuang et al. [ZGY+22]. We show that the large neighbourhoods identified above15

are also beneficial to these variants, but none of the variants provide a significant

3Due to computational limitations, we did not train a ResNet-50 with the regular SAM on
ImageNet, and therefore cannot compare SAM and RFN with ResNet-50 on ImageNet.
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Figure 6.13: The original SAM is best for natural accuracy, and RFN worsens
natural accuracy compared to SGD and the original SAM. Natural test accuracy
of the ResNet-50 surrogate model trained for a number of epochs (x-axis) on the
CIFAR-10 dataset. Evaluated on the test subset used to craft adversarial examples
in Figure 6.12.

improvement over RFN.
We try GSAM for various values of the ρ hyperparameter. Figure 6.18 shows

that GSAM does not significantly improve transferability over SAM. GSAM is
more sensitive to very large neighbourhoods (ρ = 1.0) where the SGD surrogate
baseline is significantly better for all targets. Therefore, we do not consider GSAM5

for RFN.
Additionally, we train two additional variants ASAM, an adaptive variant of

SAM, and AGSAM, an adaptive variant of GSAM. We follow the original paper
[KKP+21] to select the ρ hyperparameter: the authors recommend multiplying
ρ by 10 when switching to an adaptive variant. We use ρ = 4 for ASAM and10

AGSAM. Table 6.4 shows that ASAM has a slightly higher average success rate
than RFN (0.29 percentage point). But ASAM improves over RFN only for four
of our nine target models. The AGSAM surrogate is better than RFN only for
two of our nine targets, and decreases the average success rate by more than one
percentage point compared to RFN. We decided to base RFN on top of SAM, but15

ASAM might be a promising direction for future work.

Overall, we found that unusually large flat neighbourhoods are best for trans-
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Table 6.4: None of the three SAM variants strictly dominates RFN. Average success
rate on the nine targets of a ResNet-50 surrogate model trained using SAM variants
on CIFAR-10. The “better than RFN” column reports the number of targets where
the SAM variant in the corresponding row has higher transferability than RFN.
Adversarial examples are crafted from a subset of 1,000 original examples from the
test set. We train all surrogates for 150 epochs.

Training Success Rate (%) Better than RFN

SGD (baseline) 56.66 0 / 9
SAM (original) 79.71 0 / 9
RFN (ours) 85.88
GSAM (rho=0.4) 83.52 0 / 9
ASAM (rho=4) 86.17 4 / 9
AGSAM (rho=4) 84.57 2 / 9

ferability. The original SAM [FKM+20] uses a ρ = 0.05, Kaddour et al. [KLS+22]
tunes it with a maximum of 0.2. On both CIFAR-10 and ImageNet, ρ = 0.4 is best
for transferability, i.e., a value twice larger than the maximum generally considered
for natural generalization. Indeed, we observe that such large neighbourhoods
degrade natural accuracy. [KLS+22] shows that changing ρ ends up in different5

basins. Therefore, RFN, i.e., SAM with high ρ, finds neighbourhoods that are
specifically beneficial for transferability. It avoids large sharp holes on top of the
loss surface.

6.5.3 RFN Does Not Need Early Stopping

Training longer with RFN or SAM is both more stable than SGD and beneficial10

for transferability. In Figure 6.11, we report the success rate per training epoch
for both SAM (green), RFN (blue), and SGD (red) on CIFAR-10. Contrary to
SGD which needs to be carefully stopped to not train a suboptimal surrogate, the
transferability of RFN and SAM increases or plateaus. These observations are also
valid for ResNet-18 and ResNet-50 surrogates trained on ImageNet (Figures 6.1415

and 6.15). RFN and SAM trainings are more stable, benefit from a full training,
and do not require an error-prone stopping criterion.

Overall, RFN can avoid deep sharp minima in favour of unusually large flat
neighbourhoods containing more generic representations.

158



6.6 Evaluation of RFN
In this section, we show that RFN is an alternative to competitive techniques

and complements other techniques well. To compare our technique to related work,
we follow the good practices recommended by [ZZL+22]: we evaluate each technique
on its own with other comparable techniques that belong to the same category.5

First, we show that RFN is a competitive alternative to existing training techniques.
Second, we show that RFN complements nicely transferability techniques. All our
code and models are available on GitHub4.

6.6.1 RFN Improves Over Competitive Techniques
We compare our RFN technique to competitive techniques that train a single10

representation. We aim to find training methods that lead to generic representations
for transferability. We evaluate the model-augmentation transferability techniques
in the next paragraph because avoiding the attack to overfit to a single model is
an orthogonal objective. For a fair comparison, we choose the epoch of the early
stopped SGD surrogate by evaluating a validation transferability at every training15

epoch. We craft one thousand adversarial examples from images of a validation set
and evaluate them against a distinct set of target models. We retrieve the SAT
(Slight Adversarial Training) ImageNet pretrained model used in [SMK21], and
we train it on CIFAR-10 using the same hyperparameters of adversarial training.
LGV-SWA (Chapter 1) is a single model defined by the weight average of the20

models collected by LGV. RFN uses ρ = 0.4 for both datasets.
Tables 6.5 and 6.8 report the success rates of various techniques. On CIFAR-

10, RFN strictly dominates the other methods for every target. RFN requires
twice as many computations as SGD, but four times less than SAT5. Tables 6.6
and 6.7 evaluate competitive techniques of RFN on CIFAR-10 with, respectively,25

maximum perturbations L∞ norm ε of 2/255 and 8/255. The same conclusions
made with perturbations of size 4/255 hold for these two norms: RFN clearly
improves transferability. RFN beats other competitive techniques for all nine
targets and both norms. On ImageNet, RFN beats the other techniques for 5
of the 10 targets. For the other targets, RFN is second after SAT. The same30

observations extend to other maximum perturbations L∞ norms. Tables 6.9 and
6.10 show respectively that RFN beats the other techniques in 6 out of 10 targets
for ε equal to 2/255, and in 5 out of 10 targets for ε equal to 8/255. Still, RFN is
an interesting alternative since SAT doubles the training computational budget
compared to RFN. We leave as future work the combination of SAT and RFN by35

replacing SGD by SAM to update parameters during adversarial training.
4https://github.com/Framartin/rfn-flatness-transferability
5SAT [SMK21] uses adversarial training with seven PGD steps on CIFAR-10. It needs a total

of 8 backward-forward passes per training iteration. RFN always requires two.
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6.6.2 RFN Is a Better Base Model for Complementary
Techniques

We show that RFN is a good base model to combine with existing model aug-
mentation, data augmentation, and attack optimization transferability techniques.
These categories tackle complementary objectives: model and data augmentations5

aim at reducing the tendency of the attack to overfit the base model by adding
randomness to gradients. Attack optimizers intend to smooth the gradient updates.
Table 6.11 presents the success rates of eight transferability techniques combined
with our RFN base model on ImageNet. For every target, RFN provides a base
model that improves every eight techniques, compared to the standard fully trained10

SGD surrogate. The only exception (underlined) is the combination with LGV
for three of the ten targets. Since LGV collects models with SGD and a high
learning rate, a conflict might occur when LGV continues training with SGD from
a checkpoint trained with SAM. We leave for future work the evaluation of an LGV
variant where models are collected with SAM and a high constant learning rate.15

These conclusions extend to other maximum perturbation norms ε. Tables 6.12
and 6.13 evaluate the complementary transferability techniques on ImageNet with,
respectively, 2/255 and 8/255 norms. RFN increases the transferability of every
eight techniques against every ten targets when combined, except for LGV on 4
targets using ε equals 2/255, and LGV on 3 targets with ε equals 2/255. Again,20

since LGV collects models with SGD and a high learning rate, a conflict might
occur when LGV continues training with SGD from a checkpoint trained with SAM.
Future work may explore the adaptation of the LGV model collection to SAM.
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Figure 6.14: RFN improves transferability over SGD and the original SAM on
ImageNet: RFN and SAM have higher transferability than both fully trained and
early stopped SGD, RFN and SAM do not need early stopping, RFN is better
for transferability than the original SAM. Transferability from three surrogate
models trained respectively with SGD (baseline, red), SAM with its original ρ
hyperparameter (ρ = 0.05, green) and RFN, i.e., SAM with large neighbourhood
optimal for transferability (ρ = 0.4, blue). Success rate evaluated over ten target
models from a ResNet-18 surrogate model trained for a number of epochs (x-axis)
on CIFAR-10.
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Figure 6.15: RFN improves transferability over SGD on ImageNet: RFN has higher
transferability than both fully trained and early stopped SGD, RFN does not need
early stopping. Transferability from two surrogate models trained respectively
with SGD (baseline, red), RFN, i.e., SAM with large neighbourhood optimal for
transferability (ρ = 0.4, blue). Success rate evaluated over ten target models
(subfigure title) from a ResNet-50 surrogate model trained for a number of epochs
(x-axis) on ImageNet.
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Figure 6.16: The original SAM is best for natural accuracy, and RFN worsens
natural accuracy compared to SGD and the original SAM. Natural test accuracy
of the ResNet-18 surrogate model trained for a number of epochs (x-axis) on the
ImageNet dataset. Evaluated on the test subset used to craft adversarial examples
in Figure 6.14.

60 70 80 90

0.988

0.992

0.996

0 25 50 75

0.00

0.25

0.50

0.75

1.00

Epoch

N
at

ur
al

 A
cc

ur
ac

y

Training
SGD
(baseline)
RFN
(ours)

Figure 6.17: Natural test accuracy of the ResNet-50 surrogate model trained for a
number of epochs (x-axis) on the ImageNet dataset. Evaluated on the test subset
used to craft adversarial examples in Figure 6.15.
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Figure 6.18: GSAM does not improve transferability compated to SAM. Success
rate evaluated on nine target models (colour) from a ResNet-50 surrogate model
trained using SAM (red) or GSAM (blue) with various ρ hyperparameters (x-axis)
on the CIFAR-10 dataset. Adversarial examples are crafted from a subset of one
thousand original examples from the test set. ρ = 0 is the SGD fully trained
baseline.
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Table 6.5: Success rate on CIFAR-10 of competitive techniques to train a single surrogate model. Adversarial
examples evaluated on nine targets with a maximum perturbation L∞ norm ε of 4/255. Bold is best. In %.

Target
Surrogate RN18 RN50 RN101 DN161 DN201 VGG13 VGG19 IncV3 WRN28
Fully Trained SGD 57.9 81.2 70.6 70.8 66.1 27.8 26.3 49.4 66.5
Early Stopped SGD 73.3 87.8 82.1 81.4 78.3 45.5 44.3 66.8 79.5
SAT 66.3 76.2 73.6 66.9 66.1 49.8 48.5 57.9 67.8
RFN (ours) 89.7 97.3 95.5 95.7 94.0 63.6 60.6 87.3 93.0

Table 6.6: Success rate on CIFAR-10 of competitive techniques to train a single surrogate model. Adversarial
examples evaluated on nine targets with a maximum perturbation L∞ norm ε of 2/255. Bold is best. In %.

Target
Surrogate RN18 RN50 RN101 DN161 DN201 VGG13 VGG19 IncV3 WRN28
Fully Trained SGD 24.2 44.7 35.6 33.3 31.4 9.6 9.2 22.6 30.8
Early Stopped SGD 28.6 46.1 38.6 36.3 34.6 12.7 13.0 27.1 34.9
SAT 19.7 27.3 25.4 20.1 20.3 13.4 13.5 17.6 20.5
RFN (ours) 45.4 67.1 60.6 58.9 55.8 20.5 19.8 45.0 54.1
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Table 6.7: Success rate on CIFAR-10 of competitive techniques to train a single surrogate model. Adversarial
examples evaluated on nine targets with a maximum perturbation L∞ norm ε of 8/255. Bold is best. In %.

Target
Surrogate RN18 RN50 RN101 DN161 DN201 VGG13 VGG19 IncV3 WRN28
Fully Trained SGD 88.3 97.4 92.4 93.9 91.4 64.2 60.5 79.3 91.9
Early Stopped SGD 97.8 99.6 98.8 98.9 98.4 89.1 87.5 95.6 98.8
SAT 97.0 98.7 98.0 97.1 96.4 90.2 89.2 93.2 97.1
RFN (ours) 99.7 100.0 100.0 100.0 99.9 96.6 95.6 99.6 99.9

Table 6.8: Success rate on ImageNet of competitive techniques to train a single surrogate model. Adversarial examples
evaluated on ten targets with a maximum perturbation L∞ norm ε of 4/255. Bold is best. In %.

Target
Surrogate RN50 RN152 RNX50 WRN50 VGG19 DN201 IncV1 IncV3 ViT B SwinS
Fully Trained SGD 44.5 25.2 24.8 27.1 16.2 16.4 9.8 8.0 1.8 3.3
Early Stopped SGD 51.5 27.4 27.7 28.0 18.4 18.7 10.8 10.4 2.2 2.7
LGV-SWA 82.5 56.8 58.5 54.0 40.9 42.4 28.3 15.1 3.1 5.7
SAT 76.3 62.5 66.8 63.4 48.1 59.0 47.9 40.8 17.4 16.8
RFN (ours) 85.7 70.3 73.3 73.2 58.2 55.6 37.9 20.5 4.0 8.2
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Table 6.9: Success rate on ImageNet of competitive techniques to train a single surrogate model. Adversarial examples
evaluated on ten targets with a maximum perturbation L∞ norm ε of 2/255. Bold is best. In %.

Target
Surrogate RN50 RN152 RNX50 WRN50 VGG19 DN201 IncV1 IncV3 ViT B SwinS
Fully Trained SGD 18.7 9.4 10.0 9.3 7.6 5.8 4.8 5.2 1.1 1.4
Early Stopped SGD 23.8 10.7 10.6 10.6 8.7 6.8 5.6 6.1 1.1 1.5
LGV-SWA 49.3 24.8 25.0 21.7 18.5 16.8 11.6 7.9 1.4 1.5
SAT 30.0 19.2 24.4 20.6 18.4 20.2 20.0 16.6 4.9 4.4
RFN (ours) 53.3 34.3 37.5 38.3 30.7 25.0 16.6 10.8 1.7 3.8

Table 6.10: Success rate on ImageNet of competitive techniques to train a single surrogate model. Adversarial
examples evaluated on ten targets with a maximum perturbation L∞ norm ε of 8/255. Bold is best. In %.

Target
Surrogate RN50 RN152 RNX50 WRN50 VGG19 DN201 IncV1 IncV3 ViT B SwinS
Fully Trained SGD 77.5 52.9 51.1 55.0 33.4 36.9 21.1 15.2 3.7 6.7
Early Stopped SGD 82.0 56.8 54.6 59.2 35.9 41.1 24.8 18.3 3.6 5.9
LGV-SWA 96.9 87.7 87.1 84.9 65.4 72.8 56.8 31.2 7.0 12.3
SAT 95.4 92.6 93.0 92.8 79.0 90.1 79.1 66.3 38.5 39.1
RFN (ours) 97.6 92.8 93.8 95.3 83.2 85.5 71.2 42.3 9.1 19.0
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Table 6.11: Success rate on ImageNet of three complementary categories of transferability techniques evaluated on
ten targets with a maximum perturbation L∞ norm ε of 4/255. Dagger (†) is worse when combined with RFN. In %.

Target
Attack RN50 RN152 RNX50 WRN50 VGG19 DN201 IncV1 IncV3 ViT B SwinS
Model Augmentation Techniques

GN 68.0 43.1 41.3 44.1 24.8 27.2 14.3 9.9 1.9 3.8
GN+RFN 89.6 76.6 79.4 79.9 65.7 60.3 42.2 22.4 3.8 7.8
SGM 62.8 40.6 41.5 43.5 31.9 28.0 19.3 13.2 4.1 7.9
SGM+RFN 83.2 68.7 71.5 73.0 67.0 56.2 48.9 26.6 6.2 13.6
LGV 93.3 78.1 75.3 73.1 64.4 61.6 49.3 28.8 5.0 6.5
LGV+RFN †88.7 †74.3 75.7 75.7 70.3 61.9 56.8 31.5 †4.5 7.3

Data Augmentation Techniques
DI 83.1 60.5 68.1 67.3 45.4 57.9 41.4 30.7 5.7 9.9
DI+RFN 95.0 89.7 90.7 91.6 85.3 87.8 87.5 64.2 14.2 19.0
SI 60.0 37.9 37.3 40.0 23.9 30.0 19.6 13.5 2.6 3.8
SI+RFN 89.2 76.6 80.1 79.1 65.2 69.8 58.0 35.8 5.0 8.5
VT 58.6 35.0 35.2 38.5 23.9 24.7 14.9 11.0 2.3 4.9
VT+RFN 92.0 81.2 82.4 82.9 72.3 72.3 56.7 33.6 7.0 13.5

Attack Optimizers
MI 56.8 37.4 37.5 38.9 27.0 29.3 18.4 14.6 3.5 4.8
MI+RFN 89.4 79.3 80.4 80.8 71.5 71.1 60.1 39.3 8.5 15.2
NI 53.7 33.1 32.9 35.1 20.5 20.8 12.2 9.4 1.8 3.9
NI+RFN 83.9 67.3 69.8 71.4 56.1 52.5 35.6 17.6 3.8 7.0
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Table 6.12: Success rate on ImageNet of three complementary categories of transferability techniques evaluated on
ten targets with a maximum perturbation L∞ norm ε of 2/255. Dagger (†) is worse when combined with RFN. In %.

Target
Attack RN50 RN152 RNX50 WRN50 VGG19 DN201 IncV1 IncV3 ViT B SwinS
Model Augmentation Techniques

GN 34.6 17.9 17.4 18.0 12.7 10.4 8.1 6.3 1.3 2.0
GN+RFN 59.7 42.2 42.8 45.4 35.4 29.1 18.3 11.0 1.8 2.4
SGM 26.9 14.9 15.2 15.8 15.5 9.7 7.4 6.6 1.6 3.6
SGM+RFN 46.3 32.0 33.8 35.5 33.4 21.8 20.3 11.9 2.7 5.6
LGV 59.8 33.0 32.9 28.4 31.1 24.2 21.3 12.5 2.4 2.6
RFN+LGV †50.7 †31.3 32.9 31.4 33.5 27.9 25.0 14.3 †2.1 †2.5

Data Augmentation Techniques
DI 46.1 27.2 30.9 30.3 22.4 24.8 17.8 15.0 2.5 4.1
DI+RFN 66.6 49.5 57.1 52.3 54.1 49.3 47.5 31.8 4.4 6.9
SI 26.2 14.2 14.3 13.3 10.4 11.3 8.4 7.3 0.9 1.4
SI+RFN 56.5 37.9 42.9 41.2 33.0 31.4 25.0 14.7 2.1 2.9
VT 26.5 14.4 14.1 13.6 10.8 10.1 6.1 6.3 1.3 2.2
VT+RFN 61.5 43.0 47.0 47.4 39.4 35.9 24.3 13.3 2.1 4.9

Attack Optimizers
MI 29.8 15.9 16.4 16.2 12.6 11.5 7.7 8.0 1.9 2.7
MI+RFN 58.2 41.5 45.4 44.6 39.8 35.8 28.9 17.4 2.8 5.4
NI 21.1 11.0 10.9 11.2 8.4 6.9 5.0 5.2 1.3 1.7
NI+RFN 44.1 28.5 30.7 32.0 25.9 19.6 11.9 9.1 1.3 2.4
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Table 6.13: Success rate on ImageNet of three complementary categories of transferability techniques evaluated on
ten targets with a maximum perturbation L∞ norm ε of 8/255. Dagger (†) is worse when combined with RFN. In %.

Target
Attack RN50 RN152 RNX50 WRN50 VGG19 DN201 IncV1 IncV3 ViT B SwinS
Model Augmentation Techniques

GN 92.0 73.3 69.7 74.5 45.8 50.4 29.8 19.2 3.2 7.1
GN+RFN 98.2 96.5 96.5 97.4 87.3 88.3 74.4 42.9 9.0 19.4
SGM 91.2 78.4 76.2 79.2 65.1 59.7 48.2 29.1 8.9 19.6
SGM+RFN 97.3 95.1 96.4 96.5 91.5 88.7 84.8 59.8 18.9 32.8
LGV 99.6 97.4 95.9 95.7 87.7 91.7 79.9 47.9 8.9 16.4
LGV+RFN †99.0 †96.5 96.2 96.7 90.7 †91.0 85.7 53.8 9.5 17.7

Data Augmentation Techniques
DI 96.1 90.7 91.8 91.4 74.1 88.1 72.4 55.0 14.2 20.4
DI+RFN 99.8 99.6 99.5 99.7 98.6 99.3 98.4 90.4 34.7 48.7
SI 90.4 70.0 69.9 71.9 47.8 60.2 42.6 29.3 6.5 10.3
SI+RFN 98.9 97.3 97.3 98.0 89.9 94.8 90.1 67.2 15.0 23.6
VT 79.6 62.8 61.1 63.5 41.9 48.4 32.2 23.3 6.3 10.5
VT+RFN 98.0 96.7 96.1 97.3 92.9 93.1 87.1 64.2 20.0 39.2

Attack Optimizers
MI 83.3 60.9 63.3 64.3 48.7 53.8 39.2 30.4 7.4 11.7
MI+RFN 98.5 96.3 96.7 97.1 91.9 92.7 88.1 68.6 21.3 31.5
NI 86.2 65.3 65.1 70.3 43.6 47.1 28.7 19.6 4.7 8.3
NI+RFN 97.9 94.0 95.0 96.0 87.3 86.2 74.2 42.6 10.7 21.0
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6.7 Conclusion
Overall, our insights into the behaviour of SGD through the lens of transferability

drive us to a new successful approach to train better surrogate representations with
limited computational overhead. Our observations lead us to reject the hypothesis
that early stopping benefits transferability due to an inherent trade-off between5

robust and non-robust features. Instead, we explain the success of early stopping
in relation to the dynamics of the exploration of the loss landscape. After the
learning rate decays, SGD drives down the valley and progressively falls into
deep, sharp holes. These fully trained representations are too specific to generate
highly transferable adversarial examples. We remediate this issue by explicitly10

minimizing sharpness in an unusually large neighbourhood. Avoiding those large
sharp holes proves to be useful in improving transferability. Finally, we propose
RFN, a competitive technique to train a surrogate model that nicely complements
other existing transferability techniques.

This chapter provides new evidence in favour of the surrogate-target misalign-15

ment hypothesis developed in Chapter 5. LGV explores flatter regions of the loss
than where it starts. This flattening is not explicit in LGV, since it is a by-product
of SGD. In Chapter 5, we apply LGV from a regularly trained model. Therefore,
this chapter closes the question left open by Chapter 5 about finding a better base
model by explicitly minimizing sharpness. This chapter shows that we can indeed20

find a good surrogate representation, i.e, a single model, by minimizing sharpness
over large neighbourhoods.
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7
Conclusion

This chapter presents the overall conclusion of the dissertation, its limitations
and proposes potential research directions.

Contents
5
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Table 7.1: Summary of the contributions of this dissertation.

Chapter Transferability
from...

Weight Space
Exploration What Matters Analysis

4

Deep Ensemble
& Bayesian
Neural
Networks

Multimodal:
multiple models
from different
vicinities

Distribution of
the target model
from the training
noise

Probabilis-
tic

5
Large
Geometric
Vicinity (LGV)

Local:
multiple models
from the same
vicinity

Weight subspace
from the training
noise & loss
flatness

Geometric

6

Representation
in Flat
Neighbourhood
(RFN)

Point:
single model Loss flatness Geometric

7.1 Summary of Contributions
This dissertation extensively studies how to leverage training techniques to

obtain effective surrogate models for black-box attacks. We propose and analyse in-
depth new techniques to better understand the relationship between the surrogate
weight space and the transferability of the crafted adversarial examples. First, we5

identify five challenges in the scientific literature about transferability, including
the blind spot on how to train surrogate models. To address these challenges,
we explore three complementary ways to explore the surrogate weight space: the
multimodal exploration to obtain multiple models from different vicinities, the local
exploration to obtain multiple models in the same vicinity, and the point selection10

to obtain a single transferable representation. Our combined techniques show how
to obtain a surrogate composed of better individual representations from different
vicinities, which are well characterised locally.

The primary goal of this dissertation is to provide novel insights, which repre-
sents a significant portion of our research effort. Our probabilistic and geometric15

perspectives exhibit the importance of the training noise and of the flatness of the
loss, to improve the transferability of adversarial examples from the weight space.
Table 7.1 summarises the contributions of this dissertation.

Our first contribution develops a probabilistic perspective of transferability and
shows that transferability fundamentally relates to uncertainty. As the weights of20

the target DNN are unknown, they can be treated as random variables. Under a
specified threat model, the randomness of the target DNN comes from the training
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noise. Deep ensemble can generate an effective surrogate model, since this technique
samples weights from the distribution of the target model. Unfortunately, deep
ensemble is computationally expensive. We propose an efficient alternative by
sampling surrogate models from the posterior distribution using cSGLD, a state-of-
the-art Bayesian deep learning technique. Our extensive experiments on ImageNet,5

CIFAR-10 and MNIST show that our approach improves the success rates of four
state-of-the-art attacks significantly (up to 83.2 percentage points), in both intra-
architecture and inter-architecture transferability. On ImageNet, our approach
can reach 94% of success rate while reducing training computations from 11.6 to
2.4 exaflops, compared to deep ensemble. Our vanilla surrogate achieves 87.5%10

of the time higher transferability than three transferability techniques designed
for this purpose. We evaluate seven training methods in total to train a surrogate
model. This contribution was the first to investigate how to generate a surrogate
from the weight space of a single architecture. Our experiments also reveal that
deep ensemble and cSGLD poorly characterise the local variations in the weight15

space. We identify a promising direction to address this shortfall using a training
technique that builds an ensemble from fine-tuning a trained DNN. Our work
suggests new hybrid transferability techniques in-between training time and attack
time by augmenting a surrogate model using on training. Our next contribution
follows this direction.20

Second, we start by establishing the relevance of the local exploration of the
weight space for transferability by showing that Gaussian noise in the input space
does not improve transferability, while Gaussian noise in the weight space does.
Both noises differ in the structure of the covariance matrix of the induced Gaussian
distribution of input gradients. To improve over random noise in the weight space,25

we propose transferability from Large Geometric Vicinity (LGV), a new model
augmentation technique based on the local exploration of the weight space with SGD.
LGV starts from a pretrained model and collects multiple weights in a few additional
training epochs with a constant and high learning rate. LGV exploits two geometric
properties that we relate to transferability. First, we show that LGV explores30

a flatter region of the weight space and generates flatter adversarial examples
in the input space. We present the surrogate-target misalignment hypothesis to
explain why flatness could increase transferability: if the surrogate loss is shifted
with respect to the target loss in the input space, wide adversarial examples
are desirable to keep the difference between the surrogate and the target losses35

small. Second, we show that the LGV weights span a dense weight subspace
whose geometry is intrinsically connected to transferability. This small subspace is
particularly effective because the training noise of SGD concentrates in a tiny weight
subspace. Through extensive experiments, we show that LGV alone outperforms
all (combinations of) four established transferability techniques by 1.8 to 59.940
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percentage points. Although LGV addresses how to augment a regularly trained
DNN, training a single base model for transferability is an open challenge that
requires further investigation. As suggested by our analysis of the flatness of the
loss, explicitly minimizing sharpness during the training of the surrogate model
might solve both this issue and give further additional evidence in favour of our5

surrogate-target misalignment hypothesis. Our next contribution explores this
direction in-depth.

Third, we investigate how to train a transferable representation, that is, a single
model for transferability. First, we refute a common hypothesis from previous
research to explain why early stopping improves transferability. Previous work10

proposes the hypothesis that DNN first learns robust features and then non-robust
features, explaining why early stopped models are better surrogates, since non-
robust features are brittle. However, we provide evidence against this hypothesis,
showing that early stopping improves transferability from and to non-robust features.
We hypothesize that robust and non-robust features are learnt conjointly during15

training, since the transferability of adversarial examples can provide insights on
the closeness of two learnt representations. We propose an alternative explanation
to the transferability of early stopping by establishing links between transferability
and the exploration dynamics of the weight space, in which early stopping has
an inherent effect. More precisely, we observe that transferability peaks when the20

learning rate decays, which is also the time at which the sharpness of the loss
significantly drops. SGD drives down the valley and progressively falls into deep
and sharp holes, where the representations are too specific. This leads us to propose
RFN, a new approach to transferability that minimises the sharpness of the loss
during training. We show that, by searching for large flat neighbourhoods, RFN25

always improves over early stopping (by up to 47 points of success rate) and is
competitive with (if not better than) strong state-of-the-art baselines. RFN also
complements nicely complementary transferability techniques of other categories,
established by our taxonomy of transferability techniques.

Overall, our three complementary techniques provide an extensive and practical30

method to obtain highly transferable adversarial examples from the multimodal
and local exploration of flatter vicinities in the weight space. Our probabilistic
and geometric approaches demonstrate that the way to train the surrogate model
has been overlooked, although both the training noise and the flatness of the loss
landscape are important elements of transfer-based attacks. We hope that these35

new insights would help to better understand the phenomenon of the transferability
of adversarial examples.
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7.2 Limitations and Perspectives
Resulting from our contributions, we identify the following limitations and

directions for future work.
Transferability and epistemic or aleatoric uncertainties. A promising
venue is to explore how different threat models affect the type of uncertainty. The5

threat model studied in Chapter 4 is mainly related to uncertainty in parameter
estimation, originating from the randomness of SGD. Numerous variations in the
experimental settings can impact the uncertainty. The ignorance of the training
dataset would increase the aleatoric uncertainty. In the case of an unknown dataset,
distribution shift may appear when the attacker collects a surrogate training dataset.10

Some categories of distributional shifts may increase the epistemic uncertainty,
while other categories may increase the aleatoric uncertainty. Adding a defence such
as random input transformation [XZY+18] would increase the epistemic uncertainty
if its presence is unknown, and the aleatoric uncertainty through its randomness.
Bayesian perspectives on our geometrical approaches. We believe that our15

geometrical approaches developed in Chapters 5 and 6 could be extended to connect
to our probabilistic approach developed in Chapter 4. Mandt et al. [MHB17] show
that SGD with a constant learning rate can be used as an approximate Bayesian
posterior inference algorithm. Therefore, LGV may sample weights from the
posterior distribution conditioned by the vicinity of the fully trained DNN where20

LGV starts. A particularly interesting application would be to automatically choose
or adapt the hyperparameters of LGV. Mandt et al. [MHB17] derive analytically
the stationary distribution of the Markov chain of SGD with constant learning rate.
The analytical expression of the stationary distribution is parameterized by the
learning rate, the batch size, the momentum decay factor, and a preconditioning25

matrix. Therefore, dependences between LGV hyperparameters could be derived
from this stationary distribution and used, for example, to adapt the learning
rate or the momentum decay factor when the batch size has to be lowered due to
memory limitations. Similarly, for Chapter 6, a Bayesian interpretation of RFN
could be developed, based on the recent work of Möllenhoff and Khan [MK22] who30

show that SAM is an optimal relaxation of the Bayes objective. We left for future
work the explicit development of these two connections.
Controversy about the loss flatness. As presented in detail in Section 3.2.4,
the link between the flatness of the loss and natural generalisation is subject
to a scientific controversy. Our Chapters 5 and 6 show strong evidence that35

better surrogate models can be obtained from flatter regions of the loss landscape.
Despite our best attempt at finding alternative hypotheses from the other side of the
controversy, we found no consistent experimental evidence in favour of an alternative
hypothesis to our surrogate-target misalignment hypothesis. Section 3.2.4 describes
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in detail our preliminary experiments that followed the contributions of Chapter 5 to
prepare for Chapter 6, exploring an alternative hypothesis about transferability and
the surrogate function complexity. Future research may consider further studying
the relationship between regularization and transferability to better understand
why some explicit or implicit regularization schemes improve transferability while5

others do not. Given the speed of deep learning research, we strongly believe that
important new insights about transferability from the weight space will emerge
from the evolution of this controversy. Therefore, we recommend follow-up research
to consider new developments of hypotheses related to flatness, and to not take
our surrogate-target misalignment hypothesis for granted.10

Extensions to unusual experimental settings. Numerous new directions
might emerge from reconsidering the elements of the experimental settings that
are usually considered to study transferability. Future research may evaluate
transferability in the physical domain to find to what extent the improvement of
success rate from our exploration of the weight space survives more destructive15

threat models. Evaluation in the physical domain may consist, for example, of
printing adversarial examples and then capturing with a camera [KGB17]. Moreover,
we evaluate transferability to some ViT targets (from CNN surrogates), and observe
that the success rates of our techniques are higher than baselines, but still quite low.
We think that the gap of transferability between CNNs and ViT targets are related20

to the important differences between the surrogate and the target architectures in
that case. The evaluation of ViT surrogates would be interesting to study, in order
to confirm that our conclusions about the surrogate weight space of CNNs hold
for the surrogate weight space of ViT architectures, which may behave differently.
Another element of the experimental settings that is worth revisiting is the domain25

of application: for example, the transferability of adversarial examples against a
natural language processing classifiers is mostly unexplored. A major advantage
of the approach developed in this dissertation, i.e., improving transferability from
the weight space, is its domain invariance, unlike other types of transferability
techniques such as input augmentations. Finally, interesting new insights might30

arise from studying the transferability of non-Lp attacks. A growing number of
attacks have been developed where the adversarial perturbation is not bounded
by a Lp norm. Studying the transferability of these attacks might lead to more
realistic threat models and broader applications.
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Abbreviations

AI Artificial Intelligence.

BNN Bayesian Neural Network.

CNN Convolutional Neural Network.
cSGLD Cyclical Stochastic Gradient Langevin Dynamics.5

DI Input Diversity.
DL Deep Learning.
DNN Deep Neural Network.

ERM Empirical Risk Minimization.

FC Fully Connected.10

FGE Fast Geometric Ensembling.
FGSM Fast Gradient Sign Method.

GN Ghost Networks.

HMC Hamiltonian Monte Carlo.

I-FGSM Iterative Fast Gradient Sign Method.15

LGV Large Geometric Vicinity.

MCMC Markov Chain Monte Carlo.
MI Momentum Iterative attack.
ML Machine Learning.

NI Nesterov Iterative attack.20

PGD Projected Gradient Descent.

RFN Representation from Flat Neighbourhood.

SAM Sharpness-aware Minimizer.
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SG-MCMC Stochastic Gradient-Markov Chain Monte Carlo.
SGD Stochastic Gradient Descent.
SGLD Stochastic Gradient Langevin Dynamics.
SGM Skip Gradient Method.
SI Subspace Inference.5

SSE Snapshot Ensembles.
SWA Stochastic Weight Averaging.
SWAG Stochastic Weight Averaging-Gaussian.

TI Translation Invariance.

VI Variational Inference.10

ViT Vision Transformer.
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