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Abstract

In this work we develop new finite element discretisations of the shear-deformable Reissner–Mindlin plate
problem based on the Hellinger-Reissner principle of symmetric stresses. Specifically, we use conforming Hu-
Zhang elements to discretise the bending moments in the space of symmetric square integrable fields with a
square integrable divergence M ∈ HZ ⊂ H sym(Div). The latter results in highly accurate approximations of
the bending moments M and in the rotation field being in the discontinuous Lebesgue space ϕ ∈ [L2]2, such
that the Kirchhoff-Love constraint can be satisfied for t → 0. In order to preserve optimal convergence rates
across all variables for the case t → 0, we present an extension of the formulation using Raviart-Thomas
elements for the shear stress q ∈ RT ⊂ H (div).

We prove existence and uniqueness in the continuous setting and rely on exact complexes for inheritance
of well-posedness in the discrete setting.

This work introduces an efficient construction of the Hu-Zhang base functions on the reference element
via the polytopal template methodology and Legendre polynomials, making it applicable to hp-FEM. The
base functions on the reference element are then mapped to the physical element using novel polytopal
transformations, which are suitable also for curved geometries.

The robustness of the formulations and the construction of the Hu-Zhang element are tested for shear-
locking, curved geometries and an L-shaped domain with a singularity in the bending moments M . Further,
we compare the performance of the novel formulations with the primal-, MITC- and recently introduced
TDNNS methods.

Key words: Reissner-Mindlin plate, shear locking, Hu-Zhang elements, polytopal templates, polytopal
transformations.

1 Introduction

The subject of this paper is a new finite element discretisation of the shear-deformable Reissner–Mindlin plate
problem. The Reissner-Mindlin plate problem describes the elastic behaviour of a body with thickness t far
smaller than in its planar dimensions. It is well known that a naive discretisation of the Reissner–Mindlin
problem will ‘lock’ as the thickness of the plate approaches zero, which enforces the Kirchhoff-Love constraint.
This loss of robustness in the thickness means that the numerical method may converge sub-optimally, or even
produce a completely incorrect solution.
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Over the past decades the problem of shear-locking in the finite element discretisation of the Reissner–
Mindlin plate problem has received a significant amount of attention in the literature. We can point to the
Mixed Interpolation of Tensorial Components (MITC) approaches [10,27], Partial Selective Reduced Integration
(PSRI) approaches [16], the Falk-Tu element [22], the Discrete Shear Gap (DSG) method [22], and the smoothed
finite element approach [41, 42] as examples. We refer the reader to the review [21] for a full treatment. A
common thread in both the implementation and numerical analysis of these methods is the use of a mixed
formulation where a dual quantity, such as the shear stress, is approximated in addition to the usual primal
rotation and displacement variables. For example, in the MITC approach the rotations are interpolated from
the discrete [H 1]2-conforming space into the larger discrete H (curl)-conforming space [27], which is compatible
with the Kirchhoff–Love condition, compare Section 2.3. Typically, the H (curl)-conforming Nédélec spaces are
employed [38,39].

As it is the underlying approach we take in this paper, we turn our focus to the smaller number of numerical
methods for the Reissner-Mindlin problem that use a mixed formulation involving the bending moments [18,
26, 48]. The bending moments lie naturally in the Hilbert space of symmetric tensors with row-wise square-
integrable divergence M ∈ H sym(Div). Conforming finite element discretisations of this space have been studied
in the context of the two and three-dimensional Hellinger–Reissner elasticity problem [37] where the Cauchy
stress must be discretised. Notable examples of conforming elements include the Arnold–Winther (AW) [2, 7]
and Hu–Zhang (HZ) finite elements [31–33]. The computer implementation of conforming discretisations of
H sym(Div) also remains an impediment to their widespread use. Their implementation is complicated because
the reference cell basis functions do not map ‘straightforwardly’ to the physical cell. Recent advancements
in transformation theory [8, 34] and open source finite element technology [35] have bought the AW elements
closer to practical use for users of the open source Firedrake finite element solver [50]. However, the question
of how to map this element onto curved geometries remains open. We also remark that the lowest-order
conforming three-dimensional analogues of the AW and HZ spaces [8] have large local dimensions, 162 and 210
respectively, and consequently are not used widely in practical computations. As the Reissner-Mindlin problem
is two-dimensional we avoid this practical issue in our work.

To avoid having to deal with the difficulties of discretising H sym(Div) it is also possible to employ methods
where each row of the stress tensor is discretised in H (div) and the necessary symmetry of stress tensor is
subsequently enforced using, e.g., a Lagrange multiplier. Again, this technique was first used in the context
of the Hellinger–Reissner formulation of elasticity [3, 4], and was then used in the Reissner–Mindlin problem
in [18].

Most recently, the Tangential Displacement Normal-Normal Stress (TDNNS) method, which was also con-
ceived in the context of the standard elasticity problem [47, 49], has been employed to alleviate locking in the
Reissner-Mindlin problem [48]. This method can be seen as a natural extension of the ideas of Hellan, Herrmann
and Johnson for the Kirchoff–Love plate problem to the Reissner–Mindlin setting. The TDNNS formulation
discretises the rotations directly in the H (curl)-space ensuring their exact compatibility with the gradient of the
transverse displacement w ∈ H 1 which is given by ∇w ∈ H (curl), as per the exact de Rham sequence [5, 44].
This is made possible by defining the bending moments M ∈ H (divDiv) the Hilbert space of tensor-valued
functions with square-integrable normal-normal components. The use of this space is justified by relying on the
duality of H (curl) with H−1(div) and the relation DivH (divDiv) ⊆ H−1(div). In the discrete construction
the authors of [48] employ conforming Nédélec elements for the rotations ϕ ∈ NI ⊂ H (curl) and the ‘slightly’
non-conforming Hellan–Herrmann–Johnson elements [6,40] for the bending moments M ∈ HHJ ⊈ H (divDiv).
The convergence of the formulation is proven in both discrete [48] and natural norms [49].

In this paper we propose formulations where the shear-strains [59] are elevated to q ∈ [L2]2 respectively
q ∈ H (div), by defining the rotations in ϕ ∈ [L2]2, thus circumventing shear-locking due to incompatibility of
the spaces. We note that this level of regularity on the rotation is lower than both the standard displacement
approach ϕ ∈ [H 1]2, and the TDNNS approach where ϕ ∈ H (curl). The advantage of this approach lies in the
employment of the bending moments in M ∈ H sym(Div). This allows us to handle all existence and uniqueness
proofs in the context of exact Hilbert complexes [2, 5, 31, 43], which automatically assert their validity in the
conforming discrete setting [12]. For the conforming discretisation of the bending moments we rely on Hu-Zhang
elements [31] of arbitrary order, such that the bending moments read M ∈ HZ ⊂ H sym(Div).

For the computer implementation of our method we extend the polytopal template methodology for basis
function construction, introduced in [55, 56], to the HZ ⊂ H sym(Div) setting. Further, we present novel
polytopal transformations of the base functions from the reference to the physical element based on fourth-order
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tensors. We stress that this novel transformation approach allows for curved finite elements on the physical
domain. In addition, our construction employs orthogonal Legendre polynomials, thus making it appropriate
to the hp-finite element method [36, 58]. The implementation is carried out in the open source finite element
software NGSolve1 [52, 53] and is available as supplementary material to this paper2.

This paper is structured as follows. First we recap the derivation of the Reissner-Mindlin plate model and
its corresponding variational problem in the primal setting. Next we discuss the phenomena of shear-locking
and possible solutions. In the subsequent part we introduce two mixed variational approaches to the Reissner-
Mindlin plate and prove their well-posedness. Section three is devoted to the introduction of the finite element
formulations focusing on the Hu-Zhang element, along with its polytopal template and the novel transformation
technique. In section four we test the formulations and the element construction for shear-locking, a curved
boundary, and an L-shaped domain. Finally, we present our conclusions and outlook.

1.1 Notation

The following notation is used throughout this work. Exception to these rules are made clear in the precise
context.

• Vectors are defined as bold lower-case letters v, ξ

• Matrices are bold capital letters M

• Fourth-order tensors are designated by the blackboard-bold format A

• We designate the Cartesian basis as {e1, e2, e3}

• Summation over indices follows the standard rule of repeating indices. Latin indices represent summation
over dimension 3, whereas Greek indices define summation over dimension 2

• The angle-brackets are used to define scalar products of arbitrary dimensions ⟨a, b⟩ = aibi, ⟨A, B⟩ =
AijBij

• The matrix product is used to indicate all partial-contractions between a higher-order and a lower-order
tensor Av = Aijvjei, AB = AijklBklei ⊗ ej

• Subsequently, we define various differential operators based on the Nabla-operator ∇ = ∂iei, which is
defined with respect to the dimension of the domain

• Volumes, surfaces and curves of the physical domain are identified via V , A and s, respectively. Their
counterparts on the reference domain are Ω, Γ and γ

• Tangent and normal vectors on the physical domain are designated by t and n, respectively. On the
reference domain we use τ and ν

We define the constant space of symmetric matrices as

Sym(d) = {M ∈ Rd×d | M = MT } . (1.1)

Further, for our variational formulations we introduce the following Hilbert spaces and their respective norms

H 1(V ) = {u ∈ L2(V ) | ∇u ∈ [L2(V )]d} , ∥u∥2H 1 = ∥u∥2L2 + ∥∇u∥2L2 , (1.2a)

H 2(A) = {u ∈ H 1(A) | D∇u ∈ [L2(A)]2×2} , ∥u∥2H 2 = ∥u∥2H 1 + ∥D∇u∥2L2 , (1.2b)

H (curl, A) = {v ∈ [L2(A)]2 | curlv ∈ L2(A)} , ∥v∥2H (curl) = ∥v∥2L2 + ∥curlv∥2L2 , (1.2c)

H (div, A) = {v ∈ [L2(A)]2 | divv ∈ L2(A)} , ∥v∥2H (div) = ∥v∥2L2 + ∥divv∥2L2 , (1.2d)

1www.ngsolve.org
2https://github.com/Askys/NGSolve HuZhang Element
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where Dv = v ⊗∇. The spaces are based on the Lebesgue space

L2(V ) = {u : V → R | ∥u∥L2 < ∞} , ∥u∥2L2 =

∫
V

u2 dV . (1.3)

Hilbert spaces with vanishing traces are marked with a zero-subscript, for example H 1
0 (A). Scalar products

pertaining to the Hilbert spaces are indicated by a subscript on the angle-brackets

⟨u, v⟩L2(V ) =

∫
V

⟨u, v⟩dV . (1.4)

When the domain is clear from context, we omit it from the subscript. Finally, we define the space of symmetric
square integrable matrices with a square integrable divergence as

H sym(Div, A) = {M ∈ [H (div, A)]2 | M = MT } , (1.5)

where DivM = M∇ = (M ,i)ei.

2 The linear Reissner-Mindlin plate

2.1 Energy functional

The energy functional of linear elasticity is given by the quadratic form

I(u) =

∫
V

1

2
⟨ε, Cε⟩dV − ⟨u, f⟩dV , ε = symDu , Du = u⊗∇ , (2.1)

where u : V ⊂ R3 → R3 is the displacement field, C ∈ R3×3×3×3 is the tensor of material constants and
f : V ⊂ R3 → R3 represents the body forces. For a linear isotropic Saint Venant-Kirchhoff material

C = λ1⊗ 1+ 2µJ , (2.2)

where {λ, µ} are the Lamé constants, 1 : R3 → R3 is the second order identity tensor, and J : R3×3 → R3×3 is
the fourth order identity tensor, one can split the quadratic form of the internal energy between membrane and
shear strains

1

2

∫
V

⟨symDu, C symDu⟩dV =
1

2

∫
V

⟨ϵ, (λ1⊗ 1+ 2µJ)ϵ⟩+ 2⟨γ, µJγ⟩dV . (2.3)

Under the plane stress assumption σ33 = 0, one can neglect out-of-plane component ε33 in the energy functional
as it does not produce energy, such that the strain tensors read

ϵ = εαβeα ⊗ eβ , γ = εα3(eα ⊗ e3 + e3 ⊗ eα) . (2.4)

Further, the in-plane relation between strains and stresses reduces to

σ = Dϵ , D =
E

1− ν2
[ν1⊗ 1+ (1− ν)J] , (2.5)

where the tensors are now with respect to the two-dimensional Euclidean space R2. The Reissner-Mindlin plate
formulation arises under the following kinematical assumption for the displacement field

u(x, y, z) = we3 − zϕαeα , w = w(x, y) , ϕα = ϕα(x, y) , (2.6)

such that the deflection w and the small rotations ϕα are functions of the x− y plane. Consequently, the strain
tensors take the form

ϵ = −z

2
(ϕα,β + ϕβ,α)eα ⊗ eβ = −z symDϕ , ϕ = ϕαeα , (2.7a)

γ =
1

2
(w,α − ϕα)(eα ⊗ e3 + e3 ⊗ eα) , (2.7b)

4



where the gradient operator D is now with respect to the in-plane variables {x, y}. The quadratic form of the
out-of-plane shear strains can be further simplified to

2⟨γ, µJγ⟩ = 2µ⟨γ, γ⟩ = 2µ
1

4
[2(w,x − ϕ1)

2 + 2(w,y − ϕ2)
2] = µ∥∇w − ϕ∥2 , (2.8)

where ∇ = eα∂α. The internal energy takes the form

1

2

∫
V

z2⟨symDϕ, D symDϕ⟩+ µ∥∇w − ϕ∥2 dV =
1

2

∫
A

∫ t/2

−t/2

z2⟨symDϕ, D symDϕ⟩+ µ∥∇w − ϕ∥2 dz dA

=
1

2

∫
A

t3

12
⟨symDϕ, D symDϕ⟩+ µt∥∇w − ϕ∥2 dA , (2.9)

by splitting the volume integral between the surface and out-of-plane variable z. By defining the volume forces
accordingly, f = fe3, and integrating the external work over the out-of-plane variable one finds the minimisation
problem of the linear Reissner-Mindlin plate

I(w,ϕ) =
1

2

∫
A

t3

12
⟨symDϕ, D symDϕ⟩+ µt∥∇w − ϕ∥2 dA−

∫
A

twf dA → min w.r.t. {w,ϕ} . (2.10)

Remark 2.1
The kinematical assumption of the Reissner-Mindlin plate results in constant shear strains and stresses across
the cross-section of the plate. However, the latter violates the assumption of vanishing shear stresses on the
lower and upper parts of the plate and further, results in a higher stiffness. As such, we add the shear correction
factor ks [23,24], which is usually ks = 5/6, to rectify the shear stiffness of the formulation∫

A

µt∥∇w − ϕ∥2 dA →
∫
A

ksµt∥∇w − ϕ∥2 dA . (2.11)

2.2 Variational formulation

The variational form of the Reissner-Mindlin plate is derived by taking variations of the energy functional with
respect to the deflection w and the rotations ϕ. The former yields

δwI =

∫
A

ksµt⟨∇δw, ∇w − ϕ⟩ − t δwf dA = 0 , (2.12)

whereas the latter results in

δϕI =

∫
A

t3

12
⟨symDδϕ, D symDϕ⟩ − ksµt⟨δϕ, ∇w − ϕ⟩dA = 0 . (2.13)

We apply Green’s formula to the variation with respect to w (Eq. (2.12)) to find

δwI =

∫
swN

ksµt δw⟨n, ∇w − ϕ⟩ds−
∫
A

ksµt⟨δw, div(∇w − ϕ)⟩dA−
∫
A

t δwf dA = 0 , (2.14)

where we split the boundary of the domain into Dirichlet and Neumann boundaries with respect to the deflection
∂A = swD ∪ swN such that swD ∩ swN = ∅. Analogously, applying partial integration to Eq. (2.13) yields

δϕI =

∫
sϕN

t3

12
⟨δϕ, (D symDϕ)n⟩ds−

∫
A

t3

12
⟨δϕ, Div(D symDϕ)⟩dA−

∫
A

ksµt⟨δϕ, ∇w − ϕ⟩dA = 0 , (2.15)
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where we again split the boundary of the domain into Dirichlet and Neunmann boundaries such that ∂A =
sϕD ∪ sϕN and sϕD ∩ sϕN = ∅. From Eq. (2.14) and Eq. (2.15) we extract the boundary value problem

−ksµtdiv(∇w − ϕ) = tf in A , (2.16a)

− t3

12
Div(D symDϕ)− ksµt(∇w − ϕ) = 0 in A , (2.16b)

w = w̃ on swD , (2.16c)

ϕ = ϕ̃ on sϕD , (2.16d)

⟨n, ∇w − ϕ⟩ = 0 on swN , (2.16e)

t3

12
(D symDϕ)n = m̃ on sϕN . (2.16f)

The Neumann boundary condition for the gradient of the rotation is given by the bending moments m̃. By
summing the variations with respect to the deflection w and the rotations ϕ we find the variational problem∫

A

t3

12
⟨symDδϕ, D symDϕ⟩+ ksµt⟨∇δw − δϕ, ∇w − ϕ⟩dA =

∫
A

t δw f dA . (2.17)

The problem is well-posed for {w,ϕ} ∈ H 1
0 (A)× [H 1

0 (A)]2, but is susceptible to shear locking [10].

2.3 Shear locking

In order to observe the problem of shear locking we reformulate the variational problem Eq. (2.17) into∫
A

⟨symDδϕ, D∗ symDϕ⟩+ ksµ

t2
⟨∇δw − δϕ, ∇w − ϕ⟩dA =

∫
A

δw g dA , (2.18)

where we defined D∗ = (1/12)D, divided the entire equation by t3 and set the volume forces f = t2g. Now, let
the thickness of the plate approach zero t → 0, then the term ksµ/t

2 → +∞ may become infinitely large. In
order for the energy to remain finite, the equation must now satisfy the Kirchhoff-Love constraint in the limit
t → 0

∇w − ϕ = 0 ⇐⇒ ∇w = ϕ . (2.19)

However, the variables live in incompatible spaces

∇w ∈ ∇H 1(A) = H (curl, A) ∩ ker(curl) ⊈ [H 1(A)]2 ∋ ϕ . (2.20)

In other words, the rotations ϕ are defined on a space with a higher regularity than the gradient of the deflection
∇w. For example, if the deflection is C 0(A)-continuous, than its gradient is only tangential-continuous. At
the same time, discretizations of the rotation ϕ are at least [C 0(A)]2-continuous for [H 1(A)]2-conformity, such
that at the limit t → 0, the continuous rotations approximate the discontinuous gradient of the deflection.
Depending on the fineness of the mesh and its polynomial power, that approximation is either sub-optimal [57]
or impossible, such that locking occurs [10,27,48].

The strong form of the reformulated variational problem Eq. (2.17) reads

−ksµ

t2
div(∇w − ϕ) = g in A , (2.21a)

−Div(D∗ symDϕ)− ksµ

t2
(∇w − ϕ) = 0 in A , (2.21b)

where we ignored boundary conditions. Now one can introduce a mixed formulation that circumvents the large
constant limt→0 ksµ/t

2 → +∞ that arises for very thin plates by introducing a new unknown for the shear
stresses

q = −ksµ/t
2(∇w − ϕ) , (2.22)
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H 2(A)
airy

H sym(Div, A)
Div

[L2(A)]2

Figure 2.1: An exact sub-sequence of the elasticity sequence. The range of the Airy-operator is exactly the
kernel of the divergence operator, and the divergence operator applied to the H sym(Div, A)-space is a surjection
onto [L2(A)]2.

such that the constraint imposed on the variational problem reads∫
A

⟨δq, ∇w − ϕ⟩+ t2

ksµ
⟨δq, q⟩dA = 0 . (2.23)

Clearly, at the limit t → 0, the difference ∇w − ϕ is to vanish in the L2-sense. Alternatively, locking could be
avoided by defining the rotations in the compatible space H (curl, A), which is accomplished in the context of
the TDNNS method [47–49], where a new unknown for the bending moments is introduced in H (divDiv, A)

M = D∗ symDϕ , M ∈ H (divDiv, A) = {M ∈ [L2(A)]2×2 | M = MT , divDivM ∈ H−1(A)} . (2.24)

The complexity of constructing H (divDiv, A)-conforming subspaces is circumvented in [48] by instead relying
on Hellan-Herrmann-Johnson finite elements and proving stability in the discrete setting.

Remark 2.2
The definition of the H (divDiv, A)-space in the context of the TDNNS method is such that DivH (divDiv, A) ⊆
H−1(div, A) = H (curl, A)′. In other words, the divergence of elements of H (divDiv, A) are in the dual space of
H (curl, A). Alternatively, in the context of the divDiv-complex [11, 15, 29, 45] used for biharmonic equations,
the H (divDiv, A) space is defined with a higher regularity as H (divDiv, A) = {M ∈ [L2(A)]2×2 | divDivM ∈
L2(A)}.

2.4 A mixed problem

Interestingly, the problem of shear-locking can be partially mitigated by the Hellinger-Reissner principle, where
the bending moments are defined as a new variable

M = D∗ symDϕ . (2.25)

This approach is analogous to the TDNNS-method in [48]. However, we employ different spaces with the exact
sequence property [2]

airyH 2(A) = H sym(Div, A) ∩ ker(Div) , airy(·) = [R∇(·)]⊗∇RT , R =

[
0 1
−1 0

]
, (2.26a)

DivH sym(Div, A) = [L2(A)]2 , (2.26b)

which is depicted in Fig. 2.1. The latter is a sub-sequence of the elasticity sequence [14, 44, 46]. We adapt the
strong form to

−ksµ

t2
div(∇w − ϕ) = g in A , (2.27a)

−DivM − ksµ

t2
(∇w − ϕ) = 0 in A , (2.27b)

symDϕ− AM = 0 in A , (2.27c)

where we employ the compliance tensor

A = D−1
∗ = 12D−1 =

12

E
[(1 + ν)J− ν1⊗ 1] . (2.28)

7



Applying test functions to the equilibrium equations and the constraint equation yields∫
A

−ksµ

t2
⟨δw, div(∇w − ϕ)⟩dA =

∫
A

δw g dA , (2.29a)∫
A

−⟨δϕ, DivM⟩ − ksµ

t2
⟨δϕ, ∇w − ϕ⟩dA = 0 , (2.29b)∫

A

⟨δM , symDϕ⟩ − ⟨δM , AM⟩dA = 0 . (2.29c)

Partial integration of Eq. (2.29a) and Eq. (2.29c) results in∫
A

ksµ

t2
⟨∇δw, ∇w − ϕ⟩dA−

∫
swN

ksµ

t2
δw⟨n, ∇w − ϕ⟩ds =

∫
A

δw g dA , (2.30a)∫
sMN

⟨δMn, ϕ⟩ds−
∫
A

⟨Div δM , ϕ⟩+ ⟨δM , AM⟩dA = 0 . (2.30b)

As such, we define the following boundary conditions

w = w̃ on swD , (2.31a)

Mn = M̃n on sMD , (2.31b)

ϕ = ϕ̃ on sMN . (2.31c)

Remark 2.3 (Kinematical boundary conditions)
The kinematical boundary conditions of the deflection are obvious. The rotations ϕ however, are controlled
implicitly through the boundary of the bending moments M . Namely, if the normal projection of the bending

moments is set to zero on the Dirichlet boundary M̃n|sMD = 0, this implies a kinematical hinge for the rotations

ϕ on sMD . Conversely, on the Neumann boundary of the bending moments sMN , the rotations are prescribed
weakly via

∫
sMN

⟨δMn, ϕ⟩ds, such that omitting the term implies ϕ|sMN = 0.

The complete variational problem can now be written as∫
A

⟨δM , AM⟩+ ⟨Div δM , ϕ⟩dA =

∫
sMN

⟨δM n, ϕ̃⟩ds ∀ δM ∈ H sym(Div, A) , (2.32a)∫
A

⟨δϕ, DivM⟩ − ksµ

t2
⟨∇δw − δϕ, ∇w − ϕ⟩dA = −

∫
A

δw g dA ∀ {δw, δϕ} ∈ H 1
0 (A)× [L2(A)]2 .

(2.32b)

With the definition of ϕ ∈ [L2(A)]2 there holds ∇w ∈ H (curl, A) ⊂ [L2(A)]2 such that for the limit t → 0 there
exists ϕ = ∇w in the L2-sense and shear-locking can be avoided by ∇w − ϕ = 0 as per the Kirchhoff-Love
condition.

Theorem 2.1 (Well-posedness for t > 0)
The variational problem in Eq. (2.32) is well-posed in the space X (A) = Y (A) × H sym(Div, A) with Y (A) =
H 1

0 (A) × [L2(A)]2 such that {δw, δϕ, δM} ∈ X (A) and {w,ϕ,M} ∈ X (A), assuming a contractible domain.
The spaces are equipped with the norms

∥{w,ϕ}∥2Y = ∥w∥2H 1 + ∥ϕ∥2L2 , (2.33a)

∥{w,ϕ,M}∥2X = ∥{w,ϕ}∥2Y + ∥M∥2H sym(Div) , (2.33b)

and there holds the stability estimate

∥{w,ϕ}∥Y + ∥{M ,∇w − ϕ}∥H sym(Div)×L2 ≤ c∥g∥Y ′ , (2.34)

where c = c(A, ksµ, t), and Y ′ is the dual space of Y .
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Proof. For the proof we introduce the shear stresses q = (−ksµ/t
2)(∇w−ϕ) ∈ [L2(A)]2 as additional unknown

and Z (A) = H sym(Div, A)× [L2(A)]2. Then the variational problem reads∫
A

⟨δM , AM⟩+ t2

ksµ
⟨δq, q⟩+ ⟨Div δM , ϕ⟩+ ⟨δq, ∇w − ϕ⟩dA = 0 ∀ {δM , δq} ∈ Z (A) ,

(2.35a)∫
A

⟨δϕ, DivM⟩+ ⟨∇δw − δϕ, q⟩dA = −
∫
A

δw g dA ∀ {δw, δϕ} ∈ Y (A) ,

(2.35b)

where we neglected Neumann boundary terms for simplicity. The space Z is equipped with the norm ∥{M ,q}∥2Z =
∥M∥2H sym(Div) + ∥q∥2L2 . The variational problem gives rise to the following bilinear and linear forms

a({δM , δq}, {M ,q}) =
∫
A

⟨δM , AM⟩+ t2

ksµ
⟨δq, q⟩dA , (2.36a)

b({δw, δϕ}, {M ,q}) =
∫
A

⟨δϕ, DivM⟩+ ⟨∇δw − δϕ, q⟩dA , (2.36b)

l(δw) = −
∫
A

δw g dA , (2.36c)

such that it can be written as the saddle point problem

a({δM , δq}, {M ,q}) + b({δM , δq}, {w,ϕ}) = 0 ∀ {δM , δq} ∈ Z (A) , (2.37a)

b({δw, δϕ}, {M ,q}) = l(δw) ∀ {δw, δϕ} ∈ Y (A) . (2.37b)

Existence and uniqueness follows by the Brezzi theorem [12]. The continuity of the linear form l(·) is obvious.
The continuity of a(·, ·) can be shown via

a({δM , δq}, {M ,q}) = ⟨δM , AM⟩L2 +
t2

ksµ
⟨δq, q⟩L2

CS
≤ cA∥δM∥L2∥M∥L2 +

t2

ksµ
∥δq∥L2∥q∥L2

≤ 2c1∥{δM , δq}∥Z∥{M ,q}∥Z , (2.38)

where we used the positive definiteness of A on symmetric matrices

∃ {kA, cA} > 0 : kA∥S∥2 ≤ ⟨S, AS⟩ ≤ cA∥S∥2 ∀S ∈ Sym(2) , (2.39)

and the Cauchy-Schwarz inequality. As such, the continuity constant reads α1 = 2c1 with c1 = max{cA, t2/(ksµ)}.
The continuity of b(·, ·) is given by

b({δw, δϕ}, {M ,q}) = ⟨δϕ, DivM⟩L2 + ⟨∇δw − δϕ, q⟩L2

CS
≤ ∥δϕ∥L2∥DivM∥L2 + ∥∇δw − δϕ∥L2∥q∥L2

T
≤ ∥δϕ∥L2∥DivM∥L2 + (∥∇δw∥L2 + ∥δϕ∥L2)∥q∥L2

≤ 3∥{δw, δϕ}∥Y ∥{M ,q}∥Z , (2.40)

using again the Cauchy-Schwarz and triangle inequalities such that the continuity constant reads α2 = 3. Next
we need to show coercivity of a(·, ·) on the kernel of b({δw, δϕ}, ·). The kernel is characterised by

ker(B) = {{M ,q} ∈ Z (A) | b({δw, δϕ}, {M ,q}) = 0 ∀ {δw, δϕ} ∈ Y (A)} , (2.41)

and implies

⟨δϕ, DivM − q⟩L2 = 0 ∀ δϕ ∈ [L2(A)]2 , (2.42)
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holds on the kernel. The result follows by setting δw to zero. The kernel-coercivity of a(·, ·) can now be shown
via

a({M ,q}, {M ,q}) = ⟨M , AM⟩L2 +
t2

ksµ
⟨q, q⟩L2

≥ kA∥M∥2L2 +
t2

ksµ
∥q∥2L2

= kA∥M∥2L2 +
t2

2ksµ
(∥DivM∥2L2 + ∥q∥2L2)

≥ β1∥{M ,q}∥2Z , (2.43)

since on the kernel of B there holds DivM = q in the L2-sense. The coercivity constant reads β1 =
min{kA, t2/(2ksµ)}. Lastly, b(·, ·) must satisfy the Ladyzhenskaya–Babuška–Brezzi (LBB) condition: ∃β2 > 0
such that for all {w,ϕ} ∈ Y (A)

sup
{M ,q}∈Z

b({w,ϕ}, {M ,q})
∥{M ,q}∥Z

≥ β2 ∥{w,ϕ}∥Y .

Let {w,ϕ} ∈ Y (A) be given. We define q := ∇w − ϕ ∈ [L2(A)]2 and by the exact sequence property Fig. 2.1
M ∈ H sym(Div, A) such that DivM = ϕ and [2, 37]

∥M∥H sym(Div) ≤ cH∥ϕ∥L2 . (2.44)

Then, there holds

sup
{M ,q}∈Z

b({w,ϕ}, {M ,q})
∥{M ,q}∥Z

≥
∥ϕ∥2L2 + ∥∇w − ϕ∥2L2√

∥M∥2L2 + ∥DivM∥2L2 + ∥q∥2L2

=
2∥ϕ∥2L2 + ∥∇w∥2L2 − 2⟨∇w, ϕ⟩L2√
∥M∥2L2 + ∥ϕ∥2L2 + ∥∇w − ϕ∥2L2

Y, T

≥
(2− ε−1)∥ϕ∥2L2 + (1− ε)∥∇w∥2L2√
c2H∥ϕ∥2L2 + 3∥ϕ∥2L2 + 2∥∇w∥2L2

ε=3/4

≥

2

3
∥ϕ∥2L2 +

1

4
∥∇w∥2L2√

c2H + 3 ∥{ϕ, w}∥Y

≥
min

{
2

3
,

1

1 + c2F

}
∥{ϕ, w}∥2Y√

c2H + 3 ∥{ϕ, w}∥Y
= β2∥{ϕ, w}∥Y , (2.45)

where we applied the Young3 and Poincaré-Friedrich4 inequalities. Consequently, the constant β2 reads

β2 =

min

{
2

3
,

1

1 + c2F

}
√
c2H + 3

. (2.46)

3Young’s inequality: ∃ ε > 0 : −⟨x, y⟩ ≥ −
∥x∥2

2ε
−

ε∥y∥2

2
4Poincaré-Friedrich’s inequality: ∃ cF > 0 : ∥x∥L2 ≤ cF ∥∇x∥L2 ∀x ∈ H 1

0
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Thus, there holds by the Brezzi theorem the stability estimate

c∥g∥Y ′ ≥ ∥{w,ϕ}∥Y + ∥{M ,q}∥Z

= ∥{w,ϕ}∥Y +
√
∥M∥2H sym(Div) + ∥q∥2L2

≥ ∥{w,ϕ}∥Y +

√
∥M∥2H sym(Div) +

(
ksµ

t2

)2

∥∇w − ϕ∥2L2

≥ min

{
1,

ksµ

t2

}
(∥{w,ϕ}∥Y + ∥{M ,q}∥Z ) , (2.47)

where we inserted the definition of q. This concludes the proof.

Unfortunately, while the formulation is well-posed, its stability constant is not independent of the thickness
t such that for t → 0 instability may occur, even though locking in the sense of shear-locking is circumvented by
the compatibility of the spaces. In order to derive a robust formulation also for t → 0 we reformulate Eq. (2.37)
via integration by parts of the shear stress, yielding the following variational problem∫

A

⟨δM , AM⟩+ t2

ksµ
⟨δq, q⟩+ ⟨Div δM , ϕ⟩ − (div δq)w − ⟨δq, ϕ⟩dA = 0 ∀ {δM , δq} ∈ Z (A) ,

(2.48a)∫
A

⟨δϕ, DivM⟩ − δw (divq)− ⟨δϕ, q⟩dA = −
∫
A

δw g dA ∀ {δw, δϕ} ∈ Y (A) ,

(2.48b)

with Z (A) = H sym(Div, A)×H (div, A) and Y (A) = L2(A)× [L2(A)]2. In addition, there arises the Neumann
term for the right-hand side

∫
sqN

⟨δq, n⟩ w̃ ds, which controls the prescribed deflection w̃ on the boundary of the

domain, since w ∈ L2(A) does not incorporate Dirichlet boundary conditions.

Theorem 2.2 (Robustness in t)
Under the assertion of a contractible domain, the variational problem in Eq. (2.48) is well-posed in the space

{w,ϕ,M ,q} ∈ X (A) = Y (A)× Z (A) = L2(A)× [L2(A)]2 ×H sym(Div, A)×H (div, A) , (2.49)

and there holds the stability estimate

∥{w,ϕ}∥Y + ∥{M ,q}∥Zt
≤ c∥g∥Y ′ , (2.50)

where the constant c is independent of the thickness t such that c = c(A, ksµ), and ∥·∥Zt
is the t-dependent norm

∥{M ,q}∥2Zt
= ∥M∥2L2 + ∥DivM − q∥2L2 + t2∥q∥2L2 + ∥divq∥2L2 . (2.51)

The space Y is equipped with the natural norm

∥{w,ϕ}∥Y = ∥w∥2L2 + ∥ϕ∥2L2 . (2.52)

Proof. The proof follows the ideas of [18]. We define the bi- and linear forms

a({δM , δq}, {M ,q}) =
∫
A

⟨δM , AM⟩+ t2

ksµ
⟨δq, q⟩dA , (2.53a)

b({δw, δϕ}, {M ,q}) =
∫
A

⟨δϕ, DivM⟩ − δw (divq)− ⟨δϕ, q⟩dA , (2.53b)

l(δw) = −
∫
A

δw g dA , (2.53c)
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such that the problem has the same form as Eq. (2.37), but on different spaces. The continuity of a(·, ·) is
given analogously to Eq. (2.38), where the continuity constant is modified to α1 = 2max{cA, 1/(ksµ)}. The
continuity of b(·, ·) follows via

b({δw, δϕ}, {M ,q}) = ⟨δϕ, DivM − q⟩L2 − ⟨δw, divq⟩L2

CS
≤ ∥δϕ∥L2∥DivM − q∥L2 + ∥δw∥L2∥divq∥L2

≤ 2∥{δw, δϕ}∥Y ∥{M ,q}∥Zt
, (2.54)

such that α2 = 2. The kernel of b({δw, δϕ}, ·) is of similar form to Eq. (2.41) and implies

⟨δϕ, DivM − q⟩L2 = 0 ∀ δϕ ∈ [L2(A)]2 , (2.55a)

−⟨δw, divq⟩L2 = 0 ∀ δw ∈ L2(A) , (2.55b)

such that on the kernel there holds

∥{M ,q}∥2Zt
= ∥M∥2L2 + t2∥q∥2L2 ∀{M ,q} ∈ ker(B). (2.56)

Consequently, a(·, ·) is uniformly kernel-coercive in t

a({M ,q}, {M ,q}) = ⟨M , AM⟩L2 +
t2

ksµ
⟨q, q⟩L2 ≥ kA∥M∥2L2 +

t2

ksµ
∥q∥2L2 ≥ β1∥{M ,q}∥2Zt

, (2.57)

such that the coercivity constant reads β1 = min{kA, 1/(ksµ)}.
For the LBB-condition let {w,ϕ} ∈ Y (A) be given. We define q := ∇z ∈ H (div, A), where z ∈ H 1

0 (A)
solves the Poisson equation −∆z = w such that

divq = −w, ∥q∥L2 + ∥divq∥L2 ≤ c1∥w∥L2 . (2.58)

Further, by the exact sequence property we choose M ∈ H sym(Div, A) such that DivM = c21 ϕ and ∥M∥L2 +
∥DivM∥L2 ≤ cH∥ϕ∥L2 . As such, we obtain

sup
{M ,q}∈Z

b({w,ϕ}, {M ,q})
∥{M ,q}∥Zt

≥ ⟨ϕ, DivM⟩L2 − ⟨w, divq⟩L2 − ⟨ϕ, q⟩L2√
∥M∥2L2 + ∥DivM − q∥2L2 + t2∥q∥2L2 + ∥divq∥2L2

Y
≥

c21∥ϕ∥2L2 + ∥w∥2L2 −
ε∥ϕ∥2L2

2
−

∥q∥2L2

2ε√
∥M∥2L2 + ∥DivM − q∥2L2 + t2∥q∥2L2 + ∥divq∥2L2

≥

(
c21 −

ε

2

)
∥ϕ∥2L2 +

(
1− c21

2ε

)
∥w∥2L2√

2c2H∥ϕ∥2L2 + 2c21(2 + t2)∥w∥2L2

ε=c21
≥

c21
2
∥ϕ∥2L2 +

1

2
∥w∥2L2√

max{2c2H , 6c21}
√

∥ϕ∥2L2 + ∥w∥2L2

≥ β2∥{w,ϕ}∥Y , (2.59)

where we applied Young’s inequality and the stability estimates of the constructed q and M . The constant

reads β2 =
min{c21, 1}

2
√
max{2c2H , 6c21}

. Finally, the stability estimate follows by Brezzi’s theorem [12].

The proof follows analogously for the case t > 1 using natural, t-independent norms. Further, we note that
the resulting variational problem is in fact comparable to the formulation introduced in [18]. However, due
to our reliance on the symmetric H sym(Div)-space, we do not need to impose the symmetry of the bending
moments M weakly, and thus, we do not introduce an auxiliary variable for symmetry.
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H 2(A)
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(a)
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HZ3(A)
Div

[D2(A)]2

(b)

Figure 3.1: An exact sub-complex of the elasticity sub-sequence, such that the interpolation operators commute.
Here, A5(A) represents the quintic Argyris space of C 1(A)-continuous polynomials, and Dp(A) are element-wise
discontinuous linear polynomials. In (a) we present the complex using the quadratic Arnold-Winther element,
whereas (b) depicts the alternative exact complex using the cubic Hu-Zhang space, such that the discontinuous
polynomial space is improved to quadratic power.

3 Finite element formulation

The first conforming subspace for H sym(Div, A) was given by the Arnold-Winther element [2]. The element
relied on an enriched polynomial space on symmetric tensors for the purpose of stability such that its dimension
in the lowest order reads dimAW2(A) = 24. Further, the element allows for an elasticity sub-complex with a
commuting property for sufficiently smooth functions

airyΠaw = Πs airyw , w ∈ H 2(A) , (3.1a)

DivΠsM = Πo DivM , M ∈ H sym(Div, A) , (3.1b)

which is depicted in Fig. 3.1a. Alternatively, the Hu-Zhang element defines an H sym(Div, A)-conforming sub-
space using the full polynomial space for symmetric tensors in the polynomial order p ≥ 3 [31] such that
its dimension reads dimHZp(A) = dim[Pp(A) ⊗ Sym(2)] = [dimPp(A)][dimSym(2)] = 3[dimPp(A)] =
3(p + 2)(p + 1)/2. As such, it can be used to improve the elasticity sub-complex, as shown in Fig. 3.1b.
We mention that a lowest order construction with dim[P(A)2 ⊗ Sym(2)] + 3 = 21 degrees of freedom is also
mentioned in [2] and [33]. However, that element formulation is stable for the sequence-pairing with the space
of rigid body motions, which is a subspace of P1(A).

The finite element formulation of the three-field problem reads∫
A

⟨δM , AM⟩+ ⟨Div δM , ϕ⟩dA = 0 ∀ δM ∈ HZp(A) , (3.2)∫
A

⟨δϕ, DivM⟩ − ksµ

t2
⟨∇δw − δϕ, ∇w − ϕ⟩dA = −

∫
A

δw g dA ∀ {δw, δϕ} ∈ U p(A)× [Dp−1(A)]2 ,

where HZp(A) is the Hu-Zhang element of order p, U p(A) represent the polynomial C 0(A)-continuous space
of order p, and Dp−1(A) is the space of discontinuous, piece-wise polynomials of order p− 1.

The discrete quad-field finite element formulation reads∫
A

⟨δM , AM⟩+ t2

ksµ
⟨δq, q⟩+ ⟨Div δM , ϕ⟩ − (div δq)w − ⟨δq, ϕ⟩dA = 0 ∀ {δM , δq} ∈ HZp(A)×RT p−1(A) ,∫

A

⟨δϕ, DivM⟩ − δw (divq)− ⟨δϕ, q⟩dA = −
∫
A

δw g dA ∀ {δw, δϕ} ∈ Dp−1(A)× [Dp−1(A)]2 , (3.3)

where RT p−1(A) is the H (div, A)-conforming Raviart-Thomas finite element space [51] of order p − 1. The
latter is equipped with a commuting interpolant [19,20] in the exact de-Rham complex [5, 43] such that

R∇Πgw = ΠdR∇w , w ∈ H 1(A) , (3.4a)

div Πdq = Πo divq , q ∈ H (div, A) , (3.4b)
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H 1(A)
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H (div, A)
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L2(A)
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d Πp−1
o
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RT p−1(A)
div

Dp−1(A)

Figure 3.2: A two-dimensional exact de Rham complex with commuting interpolants with respect to the Raviart-
Thomas space.

holds for sufficiently smooth functions. The complex is depicted in Fig. 3.2. For the definition of base functions
of the Raviart-Thomas element we refer to [1, 54,55,60].

Theorem 3.1 (Discrete well-posedness)
Given the discrete sub-spaces of the product-spaces

X p
h (A) = U p

h (A)× [Dp−1
h (A)]2 ⊂ H 1(A)× [L2(A)]2 = X (A) , (3.5a)

Y p−1
h (A) = Dp−1

h (A)× [Dp−1
h (A)]2 ⊂ L2(A)× [L2(A)]2 = Y (A) , (3.5b)

Z p
h (A) = HZp

h(A)×RT p−1
h (A) ⊂ H sym(Div, A)×H (div, A) = Z (A) , (3.5c)

then the discrete formulations Eq. (3.2) and Eq. (3.3) are well-posed in

{wh,ϕh,Mh} ∈ X p
h (A)×HZp

h(A) , (3.6)

{wh,ϕh,Mh,qh} ∈ Y p−1
h (A)× Z p

h (A) , (3.7)

respectively.

Proof. For both problems the discrete well-posedness is directly inherited from the continuous one due to the
existence of commuting interpolants as per Fortin’s criterion [12, Thm. 4.8].

Remark 3.1
We note that in Eq. (3.3), one could also employ the Brezzi-Douglas-Marini [13] element BDMp−1(A) of order
p− 1 instead of the Raviart-Thomas element. However, that would require to discretise the deflection w in the
lower order space Dp−2(A).

Due to the well-posedness of the continuous and discrete problems we directly obtain the quasi best-
approximation result [12].

Theorem 3.2 (Quasi best approximation)
Let {w,ϕ,M} ∈ X (A)×H sym(Div, A) be the exact solution of Eq. (2.32), and {wh,ϕh,Mh} ∈ X p

h (A)×HZp
h(A)

the discrete solution, then there holds

∥{w,ϕ} − {wh,ϕh}∥X + ∥M −Mh∥H sym(Div) ≤ C1 inf
{δw,δϕ,δM}∈Xp

h×HZp
h

(∥{w,ϕ} − {δw, δϕ}∥X
+ ∥M − δM∥H sym(Div)) ,

(3.8)

where C1 = C1(t). Analogously, let {w,ϕ,M ,q} ∈ Y (A) × Z (A) be the exact solution of Eq. (2.48), and
{wh,ϕh,Mh,qh} ∈ Y p−1

h (A)× Z p
h (A) the discrete solution, then the approximation satisfies

∥{w,ϕ} − {wh,ϕh}∥Y + ∥{M ,q} − {Mh,qh}∥Zt
≤ C2 inf

{δw,δϕ,δM ,δq}∈Y p−1
h ×Zp

h

(∥{w,ϕ} − {δw, δϕ}∥Y
+ ∥{M ,q} − {δM , δq}∥Zt) ,

(3.9)

where C2 is independent of the thickness t.

We are now in a position to compute a priori error estimates.
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Theorem 3.3 (Convergence of the three-field formulation)
Assume the exact solution has the regularity w ∈ Hp+1(A), ϕ ∈ [Hp(A)]2, and M ∈ [Hp(A)]2×2, DivM ∈
[Hp(A)]2. Then the discrete formulation Eq. (3.2) exhibits the following convergence rate for a uniform trian-
gulation

∥{w,ϕ} − {wh,ϕh}∥X + ∥M −Mh∥H sym(Div) ≤ Chp (|w|Hp+1 + |ϕ|Hp + |M |Hp + |DivM |Hp), (3.10)

with C = C(t).

Proof. Using the approximation error in Theorem 3.2 one finds via the interpolants from [20, 31] with their
approximation and commutative properties

(∥{w,ϕ} − {wh,ϕh}∥X + ∥M −Mh∥H sym(Div))
2 ≤ C inf

{δw,δϕ,δM}∈Xp
h×HZp

h

(∥{w,ϕ} − {δw, δϕ}∥X
+ ∥M − δM∥H sym(Div))

2

≤ C(∥{w,ϕ} − {Πp
gw,Π

p−1
o ϕ}∥X + ∥M −Πp

sM∥H sym(Div))
2

Y
≤ C(∥{w,ϕ} − {Πp

gw,Π
p−1
o ϕ}∥2X + ∥M −Πp

sM∥2H sym(Div))

= C(∥w −Πp
gw∥2H 1 + ∥ϕ−Πp−1

o ϕ∥2L2

+ ∥M −Πp
sM∥2L2 + ∥DivM −DivΠp

sM∥2L2)

= C(∥w −Πp
gw∥2H 1 + ∥ϕ−Πp−1

o ϕ∥2L2

+ ∥M −Πp
sM∥2L2 + ∥(id−Πp−1

o )DivM∥2L2)

≤ C(h2p|w|2Hp+1 + h2p|ϕ|2Hp + h2p|M |2Hp + h2p|DivM |2Hp)

≤ Ch2p(|w|2Hp+1 + |ϕ|2Hp + |M |2Hp + |DivM |2Hp) , (3.11)

where we used Young’s inequality.

Theorem 3.4 (Convergence of the quad-field formulation)
Assume the exact solution has the regularity w ∈ Hp+1(A), ϕ ∈ [Hp(A)]2, M ∈ [Hp(A)]2×2, DivM ∈ [Hp(A)]2,
q ∈ [Hp(A)]2, and divq ∈ Hp(A). Then the discrete formulation Eq. (3.3) satisfies the following convergence
rate

∥{w,ϕ} − {wh,ϕh}∥Y + ∥{M ,q} − {Mh,qh}∥Zt ≤ Chp (|w|Hp + |ϕ|Hp + |M |Hp + |DivM |Hp

+ (1 + t)|q|Hp + |divq|Hp),
(3.12)

under a uniform triangulation with C independent of the thickness C ̸= C(t).

Proof. We employ Theorem 3.2 to derive

(∥{w,ϕ} − {wh,ϕh}∥Y+ ∥{M ,q} − {Mh,qh}∥Zt
)2 ≤ C inf

{δw,δϕ,δM ,δq}∈Y p−1
h ×Zp

h

(∥{w,ϕ} − {δw, δϕ}∥Y
+ ∥{M ,q} − {δM , δq}∥Zt

)2

≤ C(∥{w,ϕ} − {Πp−1
o w,Πp−1

o ϕ}∥Y + ∥{M ,q} − {Πp
sM ,Πp−1

d q}∥Zt
)2

Y
≤ C(∥{w,ϕ} − {Πp−1

o w,Πp−1
o ϕ}∥2Y + ∥{M ,q} − {Πp

sM ,Πp−1
d q}∥2Zt

)

= C(∥w −Πp−1
o w∥2L2 + ∥ϕ−Πp−1

o ϕ∥2L2 + ∥M −Πp
sM∥2L2

+ ∥(DivM −DivΠp
sM)− (q−Πp−1

d q)∥2L2 + t2∥q−Πp−1
d q∥2L2

+ ∥divq− divΠp−1
d q∥2L2)

CS
≤ C(h2p|w|2Hp + h2p|ϕ|2Hp + ∥M −Πp

sM∥2L2 + ∥(id−Πp−1
o )DivM∥2L2

+ ∥q−Πp−1
d q∥2L2 + t2∥q−Πp−1

d q∥2L2 + ∥(id−Πp−1
o ) divq∥2L2)

≤ C(h2p|w|2Hp + h2p|ϕ|2Hp + h2p|M |2Hp + h2p|DivM |2Hp

+ h2p|q|2Hp + t2h2p|q|2Hp + h2p|divq|2Hp)

≤ Ch2p(|w|2Hp + |ϕ|2Hp + |M |2Hp + |DivM |2Hp + (1 + t2)|q|2Hp + |divq|2Hp), (3.13)
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Figure 3.3: Barycentric mapping of the reference triangle to an element in the physical domain.

where we again used Young’s inequality and the interpolants from [20] and [31], and applied the Cauchy-Schwarz
inequality.

Remark 3.2
We note that for certain smoothness of the data, the convergence estimates can be further improved using the
Aubin-Nitsche technique, as our numerical example demonstrates, see Section 4.1.

Remark 3.3
In the three-field formulation one can eliminate the rotations ϕ ∈ [Dp−1(A)]2 element-wise with static conden-
sation, since the basis is discontinuous. Although the quad-field formulation introduces another variable for the
shear stress q ∈ RT p−1(A), it elevates the deflections to the discontinuous space w ∈ Dp−1(A), such both the
rotations ϕ and the deflections w can now be statically condensated element-wise. Applying the latter implies
that for both formulations the global system is solved only in two-variables, {w,M} or {M ,q}, respectively.

3.1 Polytopal template for HZp

In this work, we introduce an efficient approach of constructing HZp(Γ) base functions on the reference element
(see Fig. 3.3)

Γ = {(ξ, η) ∈ [0, 1] | ξ + η ≤ 1} , (3.14)

via the polytopal template methodology [55, 56], and mapping them to the physical element by a polytope-
specific transformation, which allows for curved element geometries. We mention that an alternative mapping
approach for the Arnold-Winther element can be found in [8, 34], although it does not treat the question of
curved geometries. We restrict ourselves to p ≥ 3, which allows for a straight-forward construction of the basis.

In order to introduce the construction, we first decompose an arbitrary subspace for H 1-discretisations U p

into its parts associated with the polytopes of the triangle.

Definition 3.1 (Triangle U p(A)-polytopal spaces)
Each polytope is associated with a space of base functions as follows:

• Each vertex is associated with the space of its respective base function Vp
i . As such, there are three spaces

in total i ∈ {1, 2, 3} and each one is of dimension one, dimVp
i = 1 ∀ i ∈ {1, 2, 3}.

• For each edge there exists a space of edge functions Ep
j with the multi-index j ∈ J = {(1, 2), (1, 3), (2, 3)}.

The dimension of each edge space is given by dim Ep
j = p− 1.

• Lastly, the cell is equipped with the space of cell base functions Cp
123 with dim Cp

123 = (p− 2)(p− 1)/2.

The association with a respective polytope reflects the support of the trace operator for H 1-spaces.

The polynomial space for the HZp(A) element reads

Sp(A) = Pp(A)⊗ Sym(2) , p ≥ 3 . (3.15)
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Figure 3.4: Template tensors for the reference Hu-Zhang triangle element on their corresponding polytope.

The Hu-Zhang element is defined in [31] with a polytopal framework on each physical element using Lagrangian
base functions Lp(A) = span{ni} such that on vertices the base functions are given by

ρp
ij = np

iSj , np
i ∈ Lp(A) ∩ Vp

i (A) , Sj ∈ {S ∈ Sym(2) | ∥S∥ = 1} . (3.16)

The same method is used to construct the internal cell functions with np
i ∈ Lp(A) ∩ Cp(A) = Lp

0(A). On each
edge, the Hu-Zhang element defines two types of base functions with connectivity

ρp
ij = np

iSj , np
i ∈ Lp(A) ∩ Ep

i (A) , Sj ∈ {sym(t⊗ n), n⊗ n} , (3.17)

which preserve the symmetric normal continuity of the space, and one edge-cell function type

ρp
i = np

i t⊗ t , np
i ∈ Lp(A) ∩ Ep

i (A) , (3.18)

for the tangential-tangential component, which may jump between elements. Clearly, the construction is linearly
independent, since each base function is multiplied with a set of linearly independent tensors, such that the
linear independence of the Lagrangian space is inherited on the tensorial level.

Following a similar approach, we define a polytopal template [55, 56] for the Hu-Zhang element on the
reference triangle

T1 = T2 = T3 = T123 = {e1 ⊗ e1, sym(e1 ⊗ e2), e2 ⊗ e2} ,
T12 = {e2 ⊗ e2, sym(e1 ⊗ e2), e1 ⊗ e1} ,
T13 = {e1 ⊗ e1,− sym(e1 ⊗ e2), e2 ⊗ e2} ,
T23 = {(e1 − e2)⊗ (e1 − e2), sym[(e2 − e1)⊗ (e1 + e2)], (e1 + e2)⊗ (e1 + e2)} . (3.19)

On the vertices and in the cell the template tensors are simply a normalised basis for the space of two-dimensional
symmetric tensors Sym(2) = span[e1⊗e1, sym(e1⊗e2), e2⊗e2]. On edges, the template is given by the dyadic
products of the non-normalised normal ν and tangent τ vectors belonging to each edge, respectively. The total
template is given by

T = {T1, T2, T3, T12, T13, T23, T123} . (3.20)

The association of the template tensors with the polytopes of the reference element is depicted in Fig. 3.4. The
Hu-Zhang space on the reference element is now given by

HZp(Γ) =

{
3⊕

i=1

Vp
i (Γ)⊗ Ti

}
⊕

⊕
j∈J

Ep
j (Γ)⊗ Tj

⊕ Cp
123(Γ)⊗ T123 , J = {(1, 2), (1, 3), (2, 3)} , p ≥ 3 ,

(3.21)
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where Vp(Γ)i are spaces of vertex-, Ep(Γ)j are spaces of edge-, and Cp(Γ)123 is the space of cell base functions
on the reference element of power p ≥ 3. The summation over j is understood in the sense of multi-indices.

We can now define the base functions of the Hu-Zhang element on the reference domain using some H 1-
conforming subspace equipped with the scalar base functions span{ni} such that ni = ni(ξ, η).

Definition 3.2 (Triangle HZp(Γ) base functions)
The base functions of the Hu-Zhang element with p ≥ 3 are defined on their respective polytopes as follows.

• On each vertex vi the base functions read

ϱ(ξ, η) = nT , n ∈ Vp
i (Γ) , T ∈ Ti . (3.22)

• On each edge eij with vertices vi and vj the base functions are given by

ϱ(ξ, η) = nT , n ∈ Ep
ij(Γ) , T ∈ {T ∈ Tij | Tν ̸= 0} , (3.23)

where ν is the normal vector on the respective edge. As such, each scalar base function n defines one
symmetric tangent-normal base function ϱτν and one normal-normal base function ϱνν on each edge.

• The cell base functions read

ϱ(ξ, η) = nT , n ∈ Ep
j (Γ) , T ∈ {T ∈ Tj | Tν = 0} , j ∈ {(1, 2), (1, 3), (2, 3)} , (3.24a)

ϱ(ξ, η) = nT , n ∈ Cp
123(Γ) , T ∈ T123 , (3.24b)

where the first three definitions are edge-cell base functions ϱττ .

The polytopal construction allows for an arbitrary choice of an H 1-conforming subspace in the construction
of the Hu-Zhang element. However, in this work, we rely on the Barycentric-, Legendre- and scaled integrated
Legendre polynomials [54,60]

λ1(x, y) = 1− x− y , λ2(x, y) = y , λ3(x, y) = x , (3.25)

l0(x) = 1 , l1(x) = x , lp(x) = (2p− 1)x lp−1(x)− (p− 1)lp−2(x) , (3.26)

L1
s(x, t) = x , L2

s(x, t) =
1

2
(x2 − t2) , Lp

s(x, t) = (2p− 3)xLp−1
s (x, t)− (p− 3)t2Lp−2

s (x, t) , (3.27)

where the scaled integrated Legendre polynomials are related to integrated Legendre polynomials via

Lp
s(x, t) = (t)pLp

(x
t

)
, Lp(x) =

∫ x

−1

lp−1(x) dx , p ≥ 2 . (3.28)

Consequently, our construction is applicable to the hp-finite element method [36,58,60].

Definition 3.3 (Hu-Zhang-Legendre base functions)
In the following we define the Hu-Zhang-Legendre base functions on their respective polytopes.

• On each vertex vi the base functions are constructed using the corresponding barycentric coordinate

ϱij = λiT j , T j ∈ Ti , (3.29)

such that there are three base functions on each vertex.

• On every edge eij with (i, j) ∈ J and a corresponding normal vector ν we apply the scaled integrated
Legendre polynomials in the construction

ϱp
ijk = Lp

s(λi, λj)T k , T k ∈ {T ∈ Tij | Tν ̸= 0} , (i, j) ∈ {(1, 2), (1, 3), (2, 3)} , (3.30)

with p ≥ 2. There are two base functions for each polynomial power on each edge.

• Finally, cell base functions are given by

ϱp
ijk = Lp

s(λi, λj)T k , T k ∈ {T ∈ Tij | Tν = 0} , (i, j) ∈ {(1, 2), (1, 3), (2, 3)} , (3.31a)

ϱp
ik = η Lp

s(λ1, λ3) l
k(2ξ − 1)T i , T i ∈ T123 , (3.31b)

where the first term represents edge-cell base functions, such that ν is the respective normal vector of said
edge. The second row defines pure-cell base functions.
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3.2 Polytopal transformations

Observe that on each edge, the base functions are simply given by the multiplication of a scalar base functions
with dyadic products of the tangent and normal vectors of the edge. As such, we can define one-to-one maps
to these tensors using double contractions with fourth order tensors. On each edge of a physical element with
tangent and normal vectors t and n we define the tensors

Ttt : τ ⊗ τ → t⊗ t , Ttt =
1

∥τ∥4
t⊗ t⊗ τ ⊗ τ , (3.32a)

Ttn : sym(τ ⊗ ν) → sym(t⊗ n) , Ttn =
1

∥τ∥4
sym(t⊗ n)⊗ sym(τ ⊗ ν) , (3.32b)

Tnn : ν ⊗ ν → n⊗ n , Tnn =
1

∥τ∥4
n⊗ n⊗ ν ⊗ ν , (3.32c)

where τ and ν are the tangent and normal vectors on the corresponding reference edge of the element. Due to
the orthogonality of the tensorial basis

⟨τ ⊗ τ , sym(τ ⊗ ν)⟩ = ⟨τ ⊗ τ , ν ⊗ ν⟩ = ⟨sym(τ ⊗ ν), ν ⊗ ν⟩ = 0 , (3.33)

we can combine the three fourth-order transformation tensors into one transformation tensor for each edge

T = Ttt + Ttn + Tnn . (3.34)

The vertex base functions do not require any transformation since full symmetric-continuity is imposed at
vertices and the Cartesian basis is global. As for the cell base functions, these do not affect the continuity of
the construction since their underlying scalar base functions vanish on all edges of each element, such that no
transformation is needed in order to maintain conformity. We summarise the transformation in the following
definition.

Definition 3.4 (Transformations from the reference to the physical element)
Only the base functions on edges require a transformation. All other base functions are mapped by the identity
operator ρ = id(ϱ) = Jϱ = ϱ.

• On each edge eij with (i, j) = {(1, 2), (1, 3), (2, 3)} equipped with the tangent and normal vectors τ and ν,
such that t = Jτ and n = (cof J)ν the transformation tensor is given by

Tij : ϱ
p
ijk → ρp

ijk , Tij =
1

∥τ∥4
(t⊗ t⊗ τ ⊗ τ + sym(t⊗ n)⊗ sym(τ ⊗ ν) + n⊗ n⊗ ν ⊗ ν) . (3.35)

Therefore, edge base functions on the physical edge of the element are generated by the double contraction
of the corresponding transformation tensor with the base functions of the reference edge ρp

ijk = Tijϱ
p
ijk.

The divergence of the base functions follows via the chain-rule

Divx ρ = (Tϱ),i(J−Tei) . (3.36)

In the simpler case of affine transformations, such that the Jacobian is a constant matrix J = const, the
divergence can be expressed as

Divx ρ = (Tϱ)∇x = [T(nT )](J−T∇ξ) = (TTJ−T )∇ξn . (3.37)

3.3 Boundary conditions

In the following we assume the boundary data is smooth enough, such that point evaluation is possible. Con-
sequently, we can impose the Dirichlet data at vertices via the functionals

⟨e1 ⊗ e1, M⟩
∣∣∣∣
vi

, ⟨sym(e1 ⊗ e2), M⟩
∣∣∣∣
vi

, ⟨e2 ⊗ e2, M⟩
∣∣∣∣
vi

, (3.38)

for each vertex vi.
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Figure 3.5: Mapping of the Cartesian basis belonging to vertex v to a rotated orthonormal basis on the boundary
of the domain, such that the tangent-tangent base function can be clearly defined as ρ111 = n1d1 ⊗ d1 and its
corresponding degree of freedom left unprescribed.

Remark 3.4
The H (div)-space is characterised by the trace operator tr

∥
n(·) = ⟨n, ·⟩ which considers the normal projection

of fields on the boundary of the domain. Therefore, in the case of matrix-valued H sym(Div)-fields, data does
not have to be prescribed with respect to the tangent-tangent component. In order to leave the tangent-tangent
component of the Hu-Zhang basis free even at vertices, it is required to identify its corresponding base function.
This motivates the construction of the Hu-Zhang vertex base functions as

ρijk = sym(nidj ⊗ dk) , ni ∈ Vi(A) , dj = Qej , span{sym(dj ⊗ dk)} = Sym(2) , (3.39)

for each vertex vi where {dj ,dk} represent an orthonormal basis such that d1 ∥ t and Q =
[
d1 d2

]
∈ SO(2)

is a rotation matrix, see Fig. 3.5. Thus, the evaluation of Dirichlet data at the vertex is carried out via the
functionals

⟨sym(d1 ⊗ d2), M⟩
∣∣∣∣
vi

, ⟨d2 ⊗ d2, M⟩
∣∣∣∣
vi

, (3.40)

for some tensor field M . Clearly, its tangent-tangent component d1 ⊗ d1 is left free. If the Dirichlet boundary
is C 1(sD)-continuous, then the tangent vector d1 is unique at all points. If the boundary is approximated
by a C 0(sD)-continuous discretisation, then one can employ the average of two normal vectors belonging to
neighbouring elements on the boundary to construct the di-basis

n∗ = ∥n1∥−1n1 + ∥n2∥−1n2 , d2 = ∥n∗∥−1n∗ , d1 = RTd2 , (3.41)

where R is the ninety-degree rotation matrix.

If the data is fully known at every edge eij corresponding with a curve sij ⊂ sD, then one can simply apply
a localised H 1-projection of all non-tangent-tangent components

⟨ρk, M⟩H 1 = ⟨ρk, M̃⟩H 1 ∀ρk ∈ HZ(sij) \

{
ρ ∈ HZ(sij) | ⟨t⊗ t, ρ⟩

∣∣∣∣
sij

̸= 0

}
. (3.42)

Note that vertex-values are prescribed a priori and as such, are considered Dirichlet-data for the above variational

problem. Consequently, the semi-norm | · |H 1 is norm-equivalent to ∥ · ∥L2 on the edge due to {Mn,M̃n} ∈
[H 1

0 (sij)]
2, such that no directional-derivatives of the base functions are required. Thus, one can define the

equivalent linear problem as

kkl =

∫
sij

⟨ρk, ρl⟩ds , fk =

∫
sij

⟨ρk, M̃⟩ds , (3.43)

where kkl are the components of the stiffness matrix and fk is the corresponding right-hand-side. Note that
unless the vertex-data is split between tangential-tangential and non-tangential-tangential, the tangential-
tangential component at the vertices is also incorporated into the right-hand-side.
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4 Numerical examples

In the following we compute examples and compare between the primal (PRM), the MITC, the TDNNS, and
our newly introduced mixed formulations with symmetric finite elements for the bending moments, designated
here triple-field-symmetric-Reissner-Mindlin (TFSRM) for Eq. (3.2) and the quad-field-symmetric-Reissner-
Mindlin (QFSRM) for Eq. (3.3). The computations were performed in the open source finite element software
NGSolve5 [52, 53], and the implementation is available as additional material to this work6.

We briefly introduce the discretisations of the aforementioned variational formulations

PRM:

∫
A

t3

12
⟨symDδϕ, D symDϕ⟩+ ksµ t⟨∇δw − δϕ, ∇w − ϕ⟩dA

=

∫
A

t δw f dA , ∀ {δw, δϕ} ∈ U p(A)× [U p(A)]2 ,

(4.1a)

MITC:

∫
A

t3

12
⟨symDδϕ, D symDϕ⟩+ ksµ t⟨Πp−1

c (∇δw − δϕ), Πp−1
c (∇w − ϕ)⟩dA

=

∫
A

t δw f dA , ∀ {δw, δϕ} ∈ U p(A)× [Sp(A)]2 ,

(4.1b)

TDNNS:

∫
A

⟨δM , AM⟩dA+ ⟨Div δM , ϕ⟩T = 0 ∀ δM ∈ HHJ p−1(A) ,

⟨δϕ, DivM⟩T −
∫
A

ksµ

t2
⟨∇δw − δϕ, ∇w − ϕ⟩dA = −

∫
A

δw g dA ∀ {δw, δϕ} ∈ U p(A)×N p−1
I (A) ,

(4.1c)

where Sp(A) is given by U p(A) enriched with bubble functions on each element Sp(A) = U p(A)⊕
∑

e Cp+1(Ae).

The operator Πp−1
c defines the interpolant into the Nédélec element N p−1

I (A) of the first type [38]. We note
that the present definition of the MITC element is equivalent to the one presented in [9, 10].

Remark 4.1
The interpolation operator into the Nédélec space Πp−1

c in the MITC formulation does not need to be applied to
∇w but rather only to ϕ, if commuting interpolants [19] are employed for the finite element spaces, such that
∇Πp

gw = Πp−1
c ∇w, where Πp

g is the interpolant into the discrete C 0(A)-continuous space spanned by polynomials
of order p.

Remark 4.2
The scalar product ⟨Div δM , ϕ⟩T is to be understood in the distributional sense [48] and includes boundary
terms on each element ⟨Div δM , ϕ⟩T =

∑
T∈T ⟨Div δM , ϕ⟩L2(T ) − ⟨δMn, (t⊗ t)ϕ⟩L2(∂T ).

In the following examples, relative errors are measured in the L2-norm

∥w̃ − wh∥L2/∥w̃∥L2 , ∥ϕ̃− ϕh∥L2/∥ϕ̃∥L2 , ∥M̃ −Mh∥L2/∥M̃∥L2 , ∥q̃− qh∥L2/∥q̃∥L2 , (4.2)

where ·̃ represent analytical solutions and ·h are the obtained discrete solutions.

4.1 Shear-locking on a rectangular plate

In the following we compare the behaviour of the five plate formulations. We define the domain A = [0, 1]2

and set the boundary conditions such that the deflections w and rotations ϕ vanish on the boundary. The
embedding of the clamped boundary condition for the rotations in the different formulations is summarised in
the following table.

5www.ngsolve.org
6https://github.com/Askys/NGSolve HuZhang Element
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ϕ M

TFSRM/QFSRM −
∫
sMN

⟨δM n, ϕ⟩ds = 0 , sMN = ∂A

TDNNS ⟨t, ϕ⟩
∣∣∣∣
sϕD

= 0 , sϕD = ∂A
∫
sMN

⟨δM n, (n⊗ n)ϕ⟩ds = 0 , sMN = ∂A

PRM/MITC ϕ

∣∣∣∣
sϕD

= 0 , sϕD = ∂A −

In order to compare the formulations we employ the analytical solution from [26]. The deflection and rotation
fields can be introduced in a concise manner using the following auxiliary functions

f0(α) = (α− 1)α , f1(α) = 5α2 − 5α+ 1 , f2(α) = 2α− 1 , (4.3)

such that the analytical solution reads

w̃(x, y) =
100

3
[f0(x)

3f0(y)
3]− 2t2

5(1− ν)
[f0(y)

3f0(x)f1(x) + f0(x)
3f0(y)f1(y)] , (4.4a)

ϕ̃(x, y) = 100

[
f0(y)

3f0(x)
2f2(x)

f0(x)
3f0(y)

2f2(y)

]
, (4.4b)

M̃(x, y) = D∗ symDϕ̃ , (4.4c)

q̃(x, y) = −ksµ

t2
(∇w̃ − ϕ̃) . (4.4d)

The corresponding forces are given by

g(x, y) =
200E

1− ν2
[f0(y)f1(x)[2f0(y)

2 + f0(x)f1(y)] + f0(x)f1(y)[2f0(x)
2 + f0(y)f1(x)]] . (4.5)

We set the material parameters to

E = 1 , ν = 0.3 , ks =
5

6
, (4.6)

and vary the thickness t ∈ {10−1, 10−5} across six regular meshes with 2k-elements such that k ∈ {1, 3, . . . , 11}.
The resulting convergence rates of the deflection w, the rotations ϕ, the bending moments M and the shear
stress q under h-refinement for the case t = 10−1 are depicted in Fig. 4.1. For t = 10−1 all formulations
perform well. The primal and MITC forms achieve faster convergence in the rotations ϕ due to their increased
polynomial orders. In contrast, the TFSRM and QFSRM formulations achieve only cubic convergence in the
rotations ϕ, but quartic convergence in the bending moments M . Considering the case t = 10−5 depicted in
Fig. 4.2, we can clearly observe shear-locking in the primal formulation for meshes with 21 and 23 elements
although we are using cubic polynomials. In fact, its convergence rates deteriorate for all variables and the
shear stress q does not converge at all. The TFSRM formulation maintains optimal convergence rates for the
deflection w and the rotations ϕ. However, it is reduced to quadratic convergence in the bending moments
M and linear convergence in the shear stress q. Both the QFSRM and TDNNS formulations circumvent
this problem and converge optimally in all variables. Interestingly, the MITC formulation is optimal in all
variables aside from the shear stress q, for which sub-optimal convergence whatsoever is achieved. In fact,
testing the MITC formulation also for t = 10−3 results in a sub-optimal convergence rate of O(h2). We note
that similar results are observed in [9]. Further, for both the MITC and TDNNS formulations we observe a
loss of convergence on the finest mesh with 211-elements. This is due to the correlation of the extremely small
element size h ≪ 1 with the extremely small thickness t ≪ 1, such that a loss in floating-point precision causes
the solution diverge. Observe that the latter is not related to the robustness of the formulations, but rather the
capacity of the solver.

The result for the Frobenius norm of the bending moment field ∥M∥ with 25-elements for the case t = 10−5

is depicted in Fig. 4.3. Clearly, even when the primal formulation with cubic polynomials converges, it can
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Figure 4.1: Relative error of the cubic formulations for t = 10−1 in the deflection w (a), the rotations ϕ (b) ,the
bending moments M (c) and the shear stress q (d).
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Figure 4.2: Relative error of the cubic formulations for t = 10−5 in the deflection w (a), the rotations ϕ (b),
the bending moments M (c), and the shear-stress (d).
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(a) (b) (c) (d)

Figure 4.3: Solution of the bending moments M analytically (a), via PRM, TFSRM and QFSRM, respectively.
The approximations are depicted on a 32-element-mesh with t = 10−5.

produce rather poor approximations of the bending moments for a very small thickness t ≪ 1. This is essential,
since the bending moments are often used to determine the bearing capacity of plates in design processes. From
Fig. 4.3 it becomes clear that the primal formulation underestimates the maximal bending moments by a factor
of ≈ 1.5, whereas both the TFSRM and QFSRM formulations find the correct maximum.

4.2 A curved circular plate

The transformation introduced in Definition 3.4 allows to map the Hu-Zhang element from the reference triangle
to a curved triangle on the physical domain. In order to demonstrate the effectiveness of said feature, in this
example we consider the unit circle domain A = {(x, y) ∈ [−1, 1]2 | x2 + y2 ≤ 1} with vanishing deflections and

rotations on the boundary w̃|∂A = ϕ̃|∂A = 0 set analogously as in the previous example. The constant forces
are given by f(x, y) = −1, for which the analytical solution reads [17]

w̃ =
12(ν2 − 1)

64Et3
(1− x2 − y2)2 − 1

4ksµt
(1− x2 − y2) , (4.7a)

ϕ̃ =
12(ν2 − 1)

16Et3
(1− x2 − y2)

[
x
y

]
. (4.7b)

We set the material parameters to

E = 240 , ν = 0.3 , ks =
5

6
, t = 10−1 , (4.8)

and compute the formulations on a domain with a piece-wise linear and a piece-wise cubic boundary using 24
cubic elements. The errors are listed in the following table and the deflection field for the TFSRM-formulation
is depicted in Fig. 4.4.
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(a) (b) (c)

Figure 4.4: Analytical solution of the bending moments M in the (a), TFSRM-formulation with a piece-wise
linear (b) and piece-wise cubic (c) boundary using 24 elements.

Piece-wise linear ∂Ah Piece-wise cubic ∂Ah

∥w̃ − wh∥L2/∥w̃∥L2 ∥ϕ̃− ϕh∥L2/∥ϕ̃∥L2 ∥w̃ − wh∥L2/∥w̃∥L2 ∥ϕ̃− ϕh∥L2/∥ϕ̃∥L2

TFSRM 11.6% 11.1% 0.2% 1.1%

QFSRM 11.6% 11.1% 1.2% 1.1%

TDNNS 11.3% 10.8% 0.2% 1.7%

MITC 11.9% 11.3% 0.2% 0.02%

PRM 12.1% 11.6% 0.3% 0.8%

We note that for all formulations aside from QFSRM the difference in the exactness of the geometry yields a
factor of approximately ≈ 100 in the relative error of the deflection w. The polynomial order for the deflection
w in QFSRM is lower, such that a factor of ≈ 10 is retrieved. Excluding the MITC formulation, all the
other formulation exhibit an improvement factor of ≈ 10 in the relative error of the rotations ϕ. The MITC
formulation is unique in its enrichment of the rotations ϕ ∈ [Sp(A)]2, such that an improvement factor of ≈ 100
is achieved. The vast improvement in the results due to the use of curved elements illustrates the importance
and necessity of corresponding mappings.

4.3 Singularity on an L-shaped domain

In this last example we demonstrate exponential convergence using h- and p-refinements in the presence of a
singularity. We consider a fully clamped L-shaped domain A = [−1, 1]2 \(0, 1]2. The boundary conditions of the
TFSRM formulation are therefore complete Dirichlet for the deflection swD = ∂A and complete Neumann for the
bending moments sMN = ∂A. At the re-entrant corner (0, 0), the bending moments produce a singularity, such
that pure p-refinement no longer produces exponential convergence. This problem is alleviated by using adaptive
h-refinement at the area of the singularity, therefore localising it. Since no analytical solution is available for
this specific problem, we rely on a recovery-based error estimator [25]. Under the assumption that the bending
moments produce a smooth field we can define the recovery error estimator

∥Πp
gM

h −Mh∥L2/∥Πp
gM

h∥L2 , (4.9)
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Figure 4.5: Relative error of the TFSRM formulation for p ∈ {3, 5, 7} in the bending moments M (a). Depiction
of the norm of the bending moments for p = 5 with 6 (b), 114 (c) and 1246 (d) elements.

where Πg
g interpolates Mh into the C 0(A)-continuous polynomial space [U p(A)]2×2. We set the material

parameters to

E = 240 , ν = 0.3 , t = 10−1 , (4.10)

and the constant force to g(x, y) = −1000. The convergence rates over h-refinement with p ∈ {3, 5, 7}, along
with three solutions of the norm of the bending moment with 6, 114 and 1246 elements, are depicted in Fig. 4.5.
In Fig. 4.5a we observe that the optimal convergence rates O(hp) are retrieved under adaptive h-refinement.
As expected, unlike for problems with smooth analytical solutions, we cannot expect convergence of the order
O(hp+1). In contrast, the quintic formulation achieves sub-optimal convergence under uniform h-refinement.
From the depictions of the bending moment in Fig. 4.5 it is apparent that the adaptive h-refinement scheme
concentrates on the re-entrant corner, therefore reducing the distortion of the solution by the singularity.
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5 Conclusions and outlook

This paper proposes new mixed formulations for the Reissner-Mindlin plate based on the Hellinger-Reissner
principle of symmetric stresses. The proposed formulations define the bending moments in the M ∈ H sym(Div)-
space and rely on conforming Hu-Zhang finite elements for their discretisation HZ ⊂ H sym(Div). Consequently,
the rotations are intrinsic to the vector-valued discontinuous Lebesgue space ϕ ∈ [L2]2, such that the Kirchhoff-
Love constraint can be satisfied for t → 0 and locking in the sense of shear-locking is alleviated. The performance
of the formulation was demonstrated in the first example, where for a non-too small thickness t, the TFSRM-
formulation yields optimal convergence rates with higher accuracy in the bending moments M . However, for
t → 0, the TFSRM formulation retrieves sub-optimal convergence rates in both the bending moments M and
the shear stress q. The QFSRM-formulation allows to alleviate this problem and exhibits optimal convergence
rates across all variables also for t → 0. We observe that in TFSRM, optimal convergence is maintained for t → 0
in the deflection w and the rotations ϕ also without the additional field for the shear stress q. Interestingly, our
investigation also demonstrates the sensitivity of the MITC formulation in the thickness t for approximations
of the shear stress q, such that for t → 0 sub-optimal convergence in q is found (see also [9]).

Our second example accentuated the necessity of transformations from reference elements to curved elements
on the physical domain by comparing the relative error induced via a piece-wise linear- and piece-wise cubic
boundary. Clearly, the novel transformation proposed in this work allows to map the Hu-Zhang element to
curved triangles.

Finally, the construction of the Hu-Zhang element using Legendre polynomials allows to employ the element
in the context of hp-FEM. The usefulness of said approach is demonstrated in the last example on an L-shaped
domain with a singularity in the bending moments.

The mixed formulations proposed in this work were implemented using triangular elements. However, well-
posedness of the discrete formulations is automatically inherited in the presence of commuting interpolants. As
such, the formulation can be easily implemented for quadrilateral elements as well. For the Raviart-Thomas and
Brezzi-Douglas-Marini elements we refer to [60]. For symmetric H sym(Div)-conforming elements we cite [28,30].
This work did not consider the lowest order Arnold-Winther element, which could be used to further reduce the
necessary amount of degrees of freedom.
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[18] Da Veiga, L.B., Mora, D., Rodŕıguez, R.: Numerical analysis of a locking-free mixed finite element method for a bending
moment formulation of Reissner-Mindlin plate model. Numerical Methods for Partial Differential Equations 29(1), 40–63
(2013)

[19] Demkowicz, L., Buffa, A.: H 1, H (curl) and H (div)-conforming projection-based interpolation in three dimensions: Quasi-
optimal p-interpolation estimates. Computer Methods in Applied Mechanics and Engineering 194(2), 267–296 (2005). Selected
papers from the 11th Conference on The Mathematics of Finite Elements and Applications

[20] Demkowicz, L., Monk, P., Vardapetyan, L., Rachowicz, W.: De Rham diagram for hp-finite element spaces. Computers and
Mathematics with Applications 39(7), 29–38 (2000)

[21] Falk, R.S.: Finite Elements for the Reissner–Mindlin Plate. In: D. Boffi, F. Brezzi, L.F. Demkowicz, R.G. Durán, R.S. Falk,
M. Fortin, D. Boffi, L. Gastaldi (eds.) Mixed Finite Elements, Compatibility Conditions, and Applications: Lectures given
at the C.I.M.E. Summer School held in Cetraro, Italy June 26–July 1, 2006, Lecture Notes in Mathematics, pp. 195–232.
Springer, Berlin, Heidelberg (2008)

[22] Falk, R.S., Tu, T.: Locking-Free Finite Elements for the Reissner-Mindlin Plate. Mathematics of Computation 69(231),
911–928 (2000). Publisher: American Mathematical Society

[23] Gruttmann, F., Wagner, W.: Shear correction factors in Timoshenko’s beam theory for arbitrary shaped cross-sections.
Computational Mechanics 27(3), 199–207 (2001)

[24] Gruttmann, F., Wagner, W.: Shear correction factors for layered plates and shells. Computational Mechanics 59(1), 129–146
(2017)
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[52] Schöberl, J.: NETGEN an advancing front 2D/3D-mesh generator based on abstract rules. Computing and Visualization in
Science 1(1), 41–52 (1997)
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