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Abstract

Vital signs are a group of biological indicators that show the status of the body’s life-

sustaining functions. They provide an objective measurement of the essential physiological

functions of a living organism, and their assessment is the critical first step for any clinical

evaluation. Monitoring vital sign information provides valuable insight into the patient’s

condition, including how they are responding to medical treatment and, more importantly,

whether the patient is deteriorating. However, conventional contact-based devices are

inappropriate for long-term continuous monitoring. Besides mobility restrictions and

stress, they can cause discomfort, and epidermal damage, and even lead to pressure

necrosis. On the other hand, the contactless monitoring of vital signs using radar devices

has several advantages. Radar signals can penetrate through different materials and are

not affected by skin pigmentation or external light conditions. Additionally, these devices

preserve privacy, can be low-cost, and transmit no more power than a mobile phone.

Despite recent advances, accurate contactless vital sign monitoring is still challenging in

practical scenarios. The challenge stems from the fact that when we breathe, or when the

heart beats, the tiny induced motion of the chest wall surface can be smaller than one

millimeter. This means that the vital sign information can be easily lost in the background

noise, or even masked by additional body movements from the monitored subject. This

thesis aims to propose innovative signal processing solutions to enable the contactless

monitoring of vital signs in practical scenarios. Its main contributions are threefold:

a new algorithm for recovering the chest wall movements from radar signals; a novel

random body movement and interference mitigation technique; and a simple, yet robust

and accurate, adaptive estimation framework. These contributions were tested under

different operational conditions and scenarios, spanning ideal simulation settings, real

data collected while imitating common working conditions in an office environment, and

a complete validation with premature babies in a critical care environment. The proposed

algorithms were able to precisely recover the chest wall motion, effectively reducing the

interfering effects of random body movements, and allowing clear identification of different

breathing patterns. This capability is the first step toward frequency estimation and

early non-invasive diagnosis of cardiorespiratory problems. In addition, most of the time,

the adaptive estimation framework provided breathing and heart rate estimates within

the predefined error intervals, being capable of tracking the reference values in different

scenarios. Our findings shed light on the strengths and limitations of this technology

and lay the foundation for future studies toward a complete contactless solution for vital

signs monitoring.
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Chapter 1

Introduction

People are living longer. Between 2015 and 2050, the proportion of the world’s population

over 60 years will nearly double, and outnumber children under the age of 5 [1]. Due

to the rapid aging of the population worldwide, a lot of effort is being dedicated to

providing more efficient and accessible healthcare solutions.

In this context, monitoring vital signs is of paramount importance. These critical

physiological parameters play a crucial role in the early detection of conditions that

affect the well-being of a patient. By continuously monitoring vital signs, it is possible

to detect drowsiness [2], sleep apnea [3], and even depression [4].

However, conventional contact-based devices are inappropriate for long-term continuous

monitoring. Besides mobility restrictions and stress, they can cause discomfort, and

epidermal damage, and even lead to pressure necrosis [5–10].

On the other hand, the contactless monitoring of vital signs using radar devices has

several advantages. Radar signals can penetrate through different materials and are not

affected by skin pigmentation or external light conditions. Additionally, these devices

preserve privacy, they can be low-cost, and they transmit no more power than a mobile

phone [11–13].

Despite recent advances, accurate contactless vital sign monitoring is still challenging in

practical scenarios. The challenge stems from the fact that when we breathe, or when

the heart beats, the tiny induced motion of the chest wall surface can be smaller than

one millimeter. This means that the vital sign information can be easily lost in the

background noise, or even masked by additional body movements from the monitored

subject [14–16].

The goal of this thesis is to propose innovative radar digital signal processing (DSP)

solutions to enable the contactless monitoring of vital signs in practical scenarios.

1



Introduction 2

1.1 Motivation

Vital signs are a group of biological indicators that show the status of the body’s life-

sustaining functions. They provide an objective measurement of the essential physiological

functions of a living organism, and their assessment is the critical first step for any clinical

evaluation. Traditionally, there are four primary vital signs: body temperature, blood

pressure, breathing rate, and pulse rate (heart rate). In the last few decades, monitoring

vital signs has become an active area of research, with numerous studies reporting that

abnormal changes in vital signs can be early indicators of patient deterioration and

adverse events [17].

1.1.1 Why do we need to monitor vital signs?

The assessment of vital signs is essential for high-quality care. Vital sign information

provides valuable insight into the patient’s condition, including how they are responding

to medical treatment and, more importantly, whether the patient is deteriorating [18].

Abrupt changes in vital signs typically correlate with changes in the cardiopulmonary

status of the patient and often indicate that a higher level of attention is needed [19].

Vital signs can provide early warning of cardiac arrest and its common causes, such as

myocardial infarction, respiratory failure, and sepsis [20]. The diagnosis of sepsis, for

instance, is usually based on the evidence of infection with the presence of a systemic

inflammatory response [21]. This, in turn, is defined by three of the primary vital signs:

either elevated or lowered body temperature, elevated heart rate, and high respiratory

rate. The presence of hypotension (low blood pressure) can also be an indicator of a more

serious infection, such as severe sepsis. The respiratory rate and shock index (defined

as the ratio of heart rate to systolic blood pressure) have also been demonstrated to be

independent prognostic factors in patients with suspected infection [22].

In addition, vital sign values are often used as a tool for decision-making in terms of

clinical behavior and patient care [23]. Early Warning Scores (EWS), mostly using vital

sign abnormalities, are guides used by medical services to quickly determine the degree

of illness of a patient. They are based on the principle that clinical deterioration can be

seen through changes in multiple physiological measurements. The observations are used

to generate a single composite score which is statistically linked to an increased likelihood

of patient deterioration. Within hospitals, EWS are used as a trigger system in which

an increasing score produces an escalated response, varying from a higher frequency of

patient observation up to urgent review by a rapid response team. Fig. 1.1 shows an

observation chart for an EWS used in the UK [24].
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Figure 1.1: National Early Warning Score observation chart (adapted from [24] -
reproduced with permission from Springer Nature).

Furthermore, many diseases manifest in similar symptoms, and measuring vital signs

can help prevent misdiagnosis. Recent research has shown that vital signs can be used

with artificial intelligence for distinguishing between viral infections. More specifically,

based on vital sign information, machine-learning models can be trained to accurately

diagnose and differentiate hospitalized patients with COVID-19 or seasonal influenza [25].

This indicates that vital signs can be used for improving diagnosis, especially when the

healthcare system lacks relevant information about a patient [26].

Therefore it is clear that monitoring vital signs is a key component of healthcare and a

fundamental nursing priority. However, as we will show throughout this chapter, several

studies seem to indicate their importance is underestimated and measurements are often

neglected.

In the next subsections and throughout this thesis we will focus on two of the four

primary vital signs: the breathing rate and the heart rate. These are currently the vital
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Figure 1.2: Inspiration and expiration (adapted from [29] - licensed under CC BY
4.0).

signs that can be measured in a contactless way using radar systems. Therefore, these

vital signs are the main focus of this research.

1.1.2 Breathing (respiration) rate

Respiration is by definition a single complete act of breathing [27]. It is also defined as

the physicochemical process by which an organism supplies its cells and tissues with

the oxygen needed for metabolism, and relieves the carbon dioxide formed in energy-

producing reactions. All aerobic organisms need oxygen to produce energy and, in this

process, carbon dioxide is generated as a waste product that needs to be removed from

the body [28].

In other words, respiration is the movement that brings oxygen from the external

environment to the cells and moves carbon dioxide in the opposite direction. In mammals,

it involves respiratory cycles of inhaled and exhaled breaths. The inhalation is usually an

active process, started by the contraction of the diaphragm muscle. It causes a pressure

variation that brings air into the lungs expanding them. This air is then diffused across

the alveolar-capillary interface and reaches the entire body through the arterial blood.

In contrast, exhalation (breathing out) is usually a passive process. Fig. 1.2 illustrates

the breathing process.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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The breathing rate, or respiratory rate, is the number of breaths per minute. At

rest, normal breathing rate values for healthy adults are around 12 to 20 breaths per

minute (bpm) [15]. However, many factors can affect these limits, including age, activity,

emotional state, fever, and medications. For premature infants, for instance, average

breathing rates can normally reach 60 bpm [30] and go up to 80 bpm under specific

conditions [31]. In any case, a normal respiration rhythm should be even and regular

with equal pauses between inhaling and exhaling [28].

Respiration is carefully controlled by the actions of central and peripheral chemoreceptors

and lung receptors. The body attempts to correct hypoxemia (low levels of oxygen in

your blood) and hypercarbia (increased carbon dioxide levels) by increasing both the tidal

volume (amount of air that moves at each cycle) and the respiratory rate [32]. Tachypnea

(rapid breathing) is a condition described by an abnormally high breathing rate. It can

occur under common physiological conditions (exercises, emotional changes, or pregnancy),

but also under many pathological conditions such as pain, pneumonia, asthma, anxiety,

and sepsis, just to cite a few. On the other side, bradypnea is an abnormally low breathing

rate. It can be caused due to worsening of underlying respiratory conditions leading

to respiratory failure, or due to the usage of central nervous system depressants. More

extremely, an apnea event is the complete cessation of airflow to the lungs for at least 10

seconds. It is commonly caused by airway obstructions, but it can also appear during

cardiopulmonary arrests, and in case of a drug overdose [33].

The depth of breathing is also an important parameter. Hyperpnea is described as an

increased depth of breathing which can be seen in anxiety states, lung infections, and

congestive heart failure. It can evolve to hyperventilation, where both rate and depth of

breathing are high, and can indicate pathological conditions like diabetic ketoacidosis

or lactic acidosis. In contrast, the term hypoventilation describes the decreased rate

and depth of breathing. This condition can be a result of excessive sedation, metabolic

alkalosis, or instances of obesity hypoventilation syndrome [32].

The pattern of breathing also gets affected by various conditions that can indicate an

underlying pathology. Fig. 1.3 illustrates a few examples. The Kussmaul’s breathing

pattern refers to an increased depth of breathing, although at a constant breathing rate.

This presentation can be seen in patients with renal failure and diabetic ketoacidosis [34].

Biot respiration is a condition characterized by a highly irregular or ataxic breathing

pattern, with variable tidal volumes and random periods of apnea [35]. This pattern

is suggestive of raised intracranial pressure or conditions like meningitis. Finally, the

Cheyne-Stokes breathing pattern is similar to Biot’s (alternating breathing and apnea

periods), however, with a sequential increase and decrease in depth during the breathing

periods. It occurs in conditions of raised intracranial pressure, but it can also be seen
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during excessive usage of sedatives and worsening congestive heart failure. Cheyne-Stokes

is pathophysiological in adults but very common in newborns. Due to their immature

respiratory system, premature infants often show periodic Cheyne-Stokes respiration.

With increasing maturity, this transitions to a regular breathing pattern [36].

Normal

Kussmaul

Biot

Cheyne-Stokes

Figure 1.3: Breathing patterns.

The breathing rate is often the first vital sign affected if there is a change in the cardiac

or neurological state of a patient [37]. Abnormal breathing rate values can occur up

to 24 hours before other signs of clinical deterioration [38], and have been associated

with a 13-fold increased risk of mortality [39]. The tachypnea, for instance, is one of the

most significant predictors of in-hospital cardiac arrest and admission to Intensive Care

Units (ICUs). In fact, it was already reported that a respiratory rate higher than 27

breaths/minute was the most important predictor of cardiac arrest in hospital wards [40].

Another study showed that 21% of critical care patients with a respiratory rate between

25 bpm to 29 bpm died in the hospital. Those with a higher respiratory rate had an even

higher mortality rate [41].

There are several methods and devices for monitoring the breathing rate, relying on

different measuring principles. They can be based on the analysis of variations caused by

the breathing activity in the airflow, air temperature, air components, or air humidity [42].

Despite all these options, the breathing rate is still widely measured by counting breaths

manually. In fact, the World Health Organization (WHO) recommends the assessment of

the breathing rate by a 60-second visual count or auscultation for the number of breaths

taken. In addition, it states this is the most reliable method (gold standard) [43]. Besides
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being labor-intensive, this approach is also unsuitable for the early detection of patient

deterioration [44].

When considering automated and continuous breathing monitoring, capnography (which

measures carbon dioxide levels breath by breath) may be the more accurate method [45].

Being intrinsically quite intrusive, these devices are generally only available in critical

care areas and are used only with patients who are intubated and sedated. Impedance

pneumography, electrocardiography (ECG), and photoplethysmography (PPG) are less

invasive methods also widely used for continuous breathing monitoring. While the first

one measures changes in the electrical activity over the chest during inhalation and

exhalation, the others are cardiac sensors that can also measure respiration by analyzing

its modulation effects over the cardiac activity [44].

Despite the growing interest in using these techniques for continuous breathing monitoring,

due to the contact-based nature of the used devices, both have limitations in performance

and usability for long-term monitoring [46]. Extensive reviews on methods and devices

for breathing monitoring can be found in [42, 44, 45, 47, 48]

1.1.3 Heart (pulse) rate

The arteries are blood vessels responsible for carrying blood from the heart to all other

organs within the human body. Besides delivering oxygen and nutrients to all cells and

tissues, the arterial system - part of the circulatory system - also contributes to removing

carbon dioxide and waste products from the cells. The aorta is the largest and most

important artery in the human body, originating from the left ventricle, and extending

down to the abdomen [49].

When the heart beats, it pushes blood into the aorta, which must expand to receive this

new volume. This movement creates a pressure wave through the walls of the arterial

system. This is the pulse. This pulse travels through the entire body, but it can be most

easily felt at points where the arteries approach the body surface. The heart rate can be

measured simply by counting the number of pulses (beats) in a minute [50].

As the breathing rate, the heart rate also provides relevant information for assessing

physiological and pathological processes affecting the body. Normal values for the heart

rate in healthy adults at rest range from 60 to 100 beats per minute [15]. This can

also vary based on different factors including age, gender, activity, emotional state,

metabolism, and medications taken. Abnormally high and low heart rates are referred to

as tachycardia and bradycardia, respectively [51].
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Figure 1.4: Arterial system (adapted from [51] - used with permission).

Continuous monitoring of the heart rate enables evaluation of parameters such as the

heart rate variability (HRV) [52]. As this physiological parameter is controlled by the

autonomic nervous system (ANS), it provides rich information about the physical and

mental status of a patient [53]. The ANS is involved in the regulation of many important

life-sustaining functions, such as homeostasis, blood pressure, and digestion. Imbalances

in the ANS function can be an indicator of impending cardiac diseases and even sudden

cardiac death, one of the leading causes of cardiovascular mortality [54].

The data acquisition of cardiovascular parameters is usually done in a clinical environment,

being carried out by medical staff. The heart rate is commonly measured manually,

especially outside critical care. While the radial artery is most commonly used, the

pulse can be easily felt at any of the artery sites (please refer to Fig. 1.4), by carefully

compressing the appropriate position.

It is important to clarify that the heart rate and pulse rate are technically different. The

heart rate refers to the number of heart contractions (heartbeats) over time, whereas the

pulse rate measures the rate of resulting blood pressure changes throughout the body.

For individuals with certain heart conditions or circulatory disorders, the heart may not
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efficiently push blood through the body within each contraction. These individuals may

have a pulse rate that is lower than their heart rate. However, for most people, each

heart contraction produces a pulse and the heart rate will often be synchronized with

the pulse. Therefore, in general, the pulse is an effective way to measure the heart rate.

The two most common methods for continuous heart rate monitoring are the ECG and

the PPG. The former uses several body-attached electrodes to capture the electrical

activity controlling the expansion and contraction of the heart. The latter analyzes the

light reflection around peripheral arteries to detect blood volume changes occurring due

to the heartbeats. Therefore, while ECG sensors are directly measuring the heart rate,

PPG sensors actually measure the pulse rate.

Despite being the gold standard for measurements in clinical settings, ECG devices are

relatively expensive and require precise placement of electrodes. On the other hand,

PPG devices are cheaper and easier to use. Although based on a different concepts and

measuring different phenomena, both methods provide reliable results when properly

executed. However, as we will show later, performance and usability for long-term

monitoring are limited by several factors, deriving mostly from the need for physical

contact with the monitored subject [54].

From now on we will be using the acronym “bpm” alternatively as breaths per minute

(when talking about the breathing rate) or beats per minute (when talking about the

heart rate). The meaning will be clear from the context.

1.1.4 Continuous monitoring is essential

The importance of monitoring vital signs in clinical practice is indisputable, but how

frequently they should be measured is still unclear [17]. Despite some agreement in

literature regarding how often measurements should be taken, and what parameters

should always be measured, it seems this is based on perceived best practice rather than

evidence [55].

Recording a full set of vital signs at least daily is considered standard for monitoring

patients in acute hospital wards [41]. However, there is strong variability between

institutes and countries, and this depends on clinical conditions, staff availability, cost

issues, organizational practices, etc. For instance, a 12-hourly minimum frequency is

used in the UK, with the timing of subsequent observations being derived from EWS [55].

There is also evidence that the frequency of measurements also varies according to the

moment in which the patient enters the hospital [22]. During the night shift, patients
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had a higher frequency of measurements and less missing data than those visiting the

emergency department during the day or evening [56].

Despite the use of electronic equipment, some of the vital signs are often still measured

through manual procedures and observation, leading to insufficient, subjective, and,

most of the time, unreliable results [57]. Recent studies have found that the level of

documentation of vital signs in many hospitals is poor [41]. In pediatric emergency

departments, 60% and 42.3% of patients had no record of respiratory and heart rates,

respectively [56]. According to [58], poor clinical monitoring was also responsible for

a third of preventable deaths in British hospitals. An audit in Australian hospitals

found that 83% of medical records had incomplete documentation of vital signs, with

the respiratory rate being the most neglected [39].

In fact, the breathing rate has consistently been the least frequently measured vital

sign. It is often not recorded, even when the patient’s primary problem is a respiratory

condition [41]. Another study reported that in pediatric patients with suspected infection,

the respiratory rate had not been measured in 15% of the cases [22], and when patients

were evaluated as “not seriously ill”, medical staff tended to skip the measurement of all

vital signs.

Regarding EWS, despite having relevant predictive value, they are limited by the

intermittent nature of the measurements [59]. Although accurately predicted by vital

sign changes, clinical deterioration often goes unnoticed or is not detected until it is

too late to treat [17]. Vital signs are measured at predetermined intervals, with patient

deterioration possible between recordings. Numerous studies have highlighted a lack

of vital sign measurements in the hours preceding life-threatening events, with more

than 75% of patients having at least one vital sign unrecorded immediately before the

event [39]. This gap between observations seems to be one of the primary failings of

EWS-systems [19]. For instance, considering patients with septic shock, there is an 8%

increase in mortality for every hour of delay in antibiotic administration [59].

In summary, regardless of its clinical importance, research has consistently found that

vital sign assessment is neglected in clinical practice. Recordings are often inaccurate,

incomplete, and even falsified [60]. Whilst this neglect is not a new clinical issue, the

reasons for this remain unclear [39]. In addition, intermittent monitoring prevents full

exploitation of vital sign information and limits the capacity for a prompt response from

emergency teams. Furthermore, the necessity of repetitive measurements contributes

significantly to the medical staff workload [55].

A solution that arises from all these limitations is automated continuous monitoring. This

is one of the most essential components in intensive care medicine. Its implementation
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leads to significant improvements in patient safety [61]. It allows insights into vital sign

trends, and this can be much more informative and predictive than single deviating

values [62]. In fact, in comparison to intermittent monitoring, the predictive value of

continuous vital sign monitoring (VSM) is irrefutable. According to [59], continuous

monitoring of heart rate, systolic blood pressure, and shock index are predictive of

transfusion risk, and this predictive ability improves with the duration of monitoring.

For instance, [63] found that the instability score derived from continuous monitoring

predicted instability 9 minutes before standard intermittent monitoring, in 80% of cases.

As discussed in [59], secondary benefits from continuous monitoring also include cost

savings from the reduced dependency of ICUs and shortened hospital stay. In fact,

there is a highly positive return over investment (ROI) by implementing continuous

monitoring systems. For instance, in the 5-year ROI model adopted in [64], it saved

between $3,268,000 (conservative model) and $9,089,000. It was reported in [65] an

estimated cost reduction of $28,195 per patient when using continuous monitoring. Due

to reduced ICU transfers after implementing continuous monitoring at a 400-bed referral

center in [66], the estimated annual cost reduction was $817,000 in the first year. And it

was projected to reach $1,295,000 in subsequent years. Similarly, in [67], reduced ICU

transfers lead to 367.11 saved ICU-days over a 2-year period. This resulted in estimated

cost savings of more than $2.3 million.

Furthermore, biomedical signals are non-stationary in nature [68]. Besides reducing or, at

least, averaging measurement errors, continuous monitoring enables proper and effective

statistical diagnosis and trend analyses using the measured values. This will certainly

improve the recognition of possible pointers to pathological conditions [17, 54].

However, continuous VSM is still limited to ICUs. It is commonly performed using

expensive equipment with complicated setups. This requires a high staff-to-patient ratio

which restricts monitoring only to the critical care environment. Less intrusive and

accessible remote monitoring devices are thus needed. These new technologies have the

potential to convey the advantages of continuous ICU-style VSM to general wards and

even to the patient home [59].

1.1.5 To be continuous, contactless is needed

Conventionally, continuous monitoring of vital signs is achieved by contact-based sensors

mainly using adhesive, electrodes, wires, and/or chest straps. Most existing physiological

monitoring systems require multiple electrodes attached to the patient and connected by

cables to display units. Although fixed-on-body electrodes usually provide good signal

quality, there are several disadvantages to contact-based methods. And these limitations
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Figure 1.5: Infants with irritant contact dermatitis reaction from medical adhesives;
one caused by transparent adhesive dressing, the other from hydrogel for electrodes

(adapted from [73] - with permission from Elsevier).

are mostly related to the need for direct contact between the sensor and the monitored

subject. Most of the time, the measurement process can be annoying, unpleasant, or

even inappropriate for specific groups of patients. This includes especially: neonates,

infants, elderly, and burned patients [54].

Besides being unpleasant, long-term contact-based monitoring can lead to additional

problems. Medical adhesive–related skin injuries (MARSI) is an underrecognized com-

plication that is thought to impact at least 1.5 million people each year in the United

States [69, 70]. For instance, injuries can occur while removing electrodes attached to

the skin and may include the formation of vesicles, skin erosion, skin tears, epidermal

stripping, or allergic dermatitis. Elderly patients are more susceptible to MARSI. With

aging, the epidermis and the subcutaneous layers become thinner and more susceptible to

mechanical forces. The blood vessels of the dermis also become more fragile, increasing

the risk of bleeding underneath the skin [69].

Adhesive injury is also the most common source of skin breakdown1 in Neonatal Intensive

Care Units (NICUs) [71]. Existing neonatal monitoring systems have undergone little

innovation over the past five decades, nearly all requiring a multitude of rigid sensors

and accessories affixed to the neonate’s skin [72]. And compared with adults, the skin of

premature neonates is up to 60% thinner with substantially lower mechanical strength.

Besides resulting in stress and pain, skin breakdown increases the risk of infection and,

if large areas are involved, it can lead to fluid and temperature loss. As a consequence

of using medical devices with associated adhesives, the incidence of skin breakdown in

hospitalized neonates ranges from 31% to 45%. In smaller premature neonates, 15% of

the entire body surface area can be traumatized daily [72]. Fig. 1.5 shows two infants

with irritant contact dermatitis reaction from medical adhesives.

1also known as “pressure ulcer”, it refers to a localized injury to the skin and/or underlying tissue, as
the result of pressure, or pressure in combination with shear and/or friction.
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In addition, the presence of cables also considerably limits mobility for the complete

duration of the monitoring period [54]. Tethering patients for long periods increases the

risk of venous thrombosis, sleep disturbance, functional decline, and delirium [72]. Wires

and cables also reduce patient comfort, compromise the sustainability of the monitoring

strategy [45], and can be a great barrier to the acceptance of VSM systems at the patient

home.

Mobility restriction is also a problem for neonates. Monitoring cables represent a physical

barrier to kangaroo mother care, a crucial lifesaving intervention for them. It was reported

in [74] that kangaroo mother care reduces all-cause mortality by 40%, hospital-based

infection by 65%, and hypothermia by 72%. In addition, it can result in clinically

significant increases in weight, length, and head circumference growth for neonates [72].

Moreover, infants attached to monitors with leads and wires may be at higher risk of

strangulation or entanglement, especially in situations such as bedding and transport.

This represents a major patient safety issue [61].

Furthermore, the need for precise placement of electrodes requires a competent operator

as misplaced ones may result in faulty recordings. Since trained staff is required,

hospitalization periods can be extended and treatment costs increased. Monitoring

performance may also be time-dependent due to the use of a conductive gel which can

dry over time. Finally, the performance of contact-based devices is also affected by body

movement artefacts [54].

The acquisition of vital sign information in a contactless manner can become a valuable

tool in clinical healthcare applications, as well as in the non-clinical environment [54].

The contactless monitoring of the cardiorespiratory activity neither confines nor inhibits

the patient, reduces hygiene risks, and does not cause any discomfort, irritation, or

skin damage [15, 75]. This is especially important over extended periods of time and

considering patients with sensitive skin. In an ideal measuring setting, the subject would

not be aware of the measuring process itself, thus resulting in a decreased psychological

factor. Besides eliminating several limitations of contact-based sensors, such contactless

devices would therefore result in more objective readings [54].

The challenge of an aging population is pushing toward novel healthcare solutions,

evolving from traditional hospital-based systems to a more person-centric approach where

patients can be remotely observed in their homes [76]. This demand for ubiquitous

monitoring is increasing not only in the medical field but also in several consumer

applications, such as the automotive industry, psychology, security, and sports [54]. In

order to provide continuous measurements in such diverse scenarios, one needs to rely on

contactless devices.
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1.1.6 Why using radars?

While the concept of contactless monitoring of vital signs has been demonstrated before

the 90’s [75, 77], recent research efforts are moving this technology toward low-power,

light-weight, smaller, and cheaper devices [78]. Nowadays, a few technologies are still

under investigation and approaching the market. Even though optical, WiFi and acoustic-

based sensors have shown promising results [15, 50, 79, 80], camera and radar systems

are, until now, the most adopted technologies [42].

The contactless monitoring of cardiorespiratory activity using cameras is mainly based

on three different measured variables: body motion, temperature, and color.

Motion-based methods: When we breathe, the chest wall moves back and forth

to allow the expansion and contraction of the lungs. Also, when the heart beats, the

pulsating blood flow results in small skin displacements that can be seen in different

parts of the body. These small movements can be detected by cameras, thus allowing the

identification of inspiration/expiration and heartbeat cycles under certain conditions.

Thermal-based methods: The resulting airflow while breathing causes small temper-

ature variations around the nostril. Similarly, when the heart beats, the pulsating body

flow also changes the temperature around major superficial arteries. Specific cameras

can be used to track these small changes in temperature, which also provide valuable

information about respiration and heartbeat cycles.

Color-based methods: These methods rely on the detection of subtle skin color

changes due to the cyclical movement of the blood. They are based on a similar

principle as in conventional PPG sensors, however in a contactless way. This is why

these methods are usually called remote photoplethysmography (rPPG) or imaging

photoplethysmography (iPPG). As the cardiac activity is modulated by the respiratory

activity, iPPG signals can also be used to detect breathing cycles [81].

Based on these principles, several camera-based systems for contactless VSM have already

been proposed [82], spanning clinical and non-clinical applications, such as monitoring

newborns, elderly, sleep, activity, and drivers [15]. A variety of cameras are being used,

from advanced thermal or time-of-flight cameras [50] to simpler smartphone, laptop, or

even web cameras [49].

However, camera-based systems have several limitations. They require that patients

remain in the line of sight while being monitored. In fact, a direct view of the monitored
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area is needed. Using blankets, for instance, can be a challenging situation [83]. In

addition, the quality of the vital sign information is directly related to the quality and size

of the extracted region of interest (ROI). Besides the challenge of precise ROI detection

and tracking, image/video processing over large areas demands powerful computational

capabilities. This can prohibitive when considering small devices with low computing

resources [15].

Camera-based devices are also strongly affected by skin pigmentation and ambient

illumination conditions [84]. In fact, any approach relying on cameras requires specific

light conditions and can easily be interfered with by low illumination, smoke, or opaque

obstructions [80]. Furthermore, these methods come at higher costs due to expensive

devices, deployment, and maintenance overhead [76].

Perceived privacy is another important aspect, especially considering non-clinical deploy-

ment and sensitive environments, such as bedrooms and bathrooms [16]. For recording

very rich and detailed information, any type of camera can be seen as privacy-invasive.

Video recording and storage can also lead to safety and operational issues. These seem to

be important obstacles to the wide adoption of this technology. Comprehensive reviews

on camera-based methods for VSM can be found in [49, 82, 85, 86]

On the other hand, radars have already been proven to be a promising technology for

contactless monitoring of vital signs [12, 16, 76]. Unlike camera-based systems [83, 87],

radar signals can penetrate through different materials (such as plexiglass, clothing,

mattresses, and blankets), and are not affected by skin pigmentation or ambient light

levels [88]. Unlike wearable sensors, radar systems do not require users to wear or carry

any additional equipment. People under observation do not need to wear/interact with

any device, or even to comply with instructions that would change their routines [12].

Radar-based VSM has also advantages when considering its applicability in foggy, non-

line-of-sight, and through-wall scenarios [11]. In addition, radar data preserve privacy as

no images or videos are recorded [13]. Furthermore, radar devices can be low-power and

low-cost, and they transmit no more power than a mobile phone.

These inherent characteristics have drawn the attention of the research community, and

a variety of radar types are being used to address different healthcare and consumer

applications, including sleep monitoring [89], life detection and rescue [90], assisted

living [91], diagnosis [92], and many others.

With respect to the practical deployment of radar systems and market-related aspects

(miniaturization, cost, and infrastructure), we are now moving from a research-based

setting to a more practical and close-to-market validation. Despite not being as popular

as cameras and wearables, the intense research and mass production from the automotive
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industry is driving costs down [16], resulting in the large availability of compact and

inexpensive radar modules, with increased capabilities and functionalities.

However, radar devices also have limitations. Due to the reduced transmitted power,

radar signals can be easily buried in the background noise, or even masked by external

interference, including additional body movements from the monitored patient [93]. This

type of interference is a major challenge for accurate estimation in contactless solutions,

as well as for contact-based devices. Specific signal processing techniques are thus needed

in order to ensure reliable and robust measurements.

1.2 Contributions of this thesis

Despite a few recent works investigating more complex scenarios, i.e. multiple sub-

jects [14], occasionally moving [93], and outside laboratory environment [94], most

research on contactless VSM with radar sensors still focus on a single-person setup under

ideal conditions. The subject is typically instructed to remain relatively motionless

(sitting still or lying down), in a quiet environment, and in the absence of other moving

objects [95].

Throughout our literature review, we identified the reasons behind this limitation are

related to the lack of robustness in dealing with practical scenarios. Particularly, two

problems deserve special attention: the additional random body movements (RBMs) from

the monitored patient, and the harmonic interference from breathing over the heartbeat

signal. Although the huge amount of recent work, validation is usually performed in

idealized scenarios, where the subject is breathing calmly, and body movements are being

emulated through predefined behavior.

At a higher level, these remaining challenges can be summarized into three research

questions:

• Question 1) How to precisely recover the vital sign information from the tiny

induced chest wall movements?

• Question 2) How to mitigate the effects of interfering components, especially

RBMs from the monitored patient?

• Question 3) How to accurately estimate vital sign frequencies in different con-

ditions, and particularly, how to estimate the heart rate under the harmonic

interference from breathing?
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In an effort to better understand and eventually answer these three questions, the main

contributions of this thesis are threefold:

• Contribution 1) a new algorithm for recovering the chest wall movements from

radar signals;

• Contribution 2) a novel random body movement and interference mitigation

technique;

• Contribution 3) a robust and accurate heart rate estimation framework.

These contributions were tested under different operational conditions and scenarios,

ranging from ideal simulation settings to complete validation with premature babies in a

real NICU environment.

1.3 List of publications

The work presented in this thesis has resulted in two patent applications, and a number

of peer-reviewed journal and conference papers, currently published or under revision.

The publications related to this thesis are listed below.
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Figure 1.6: Thesis organization and basic DSP block diagram for contactless monitoring
of vital signs.

1.4 Thesis organization

This thesis is a “thesis with publications”. It includes four manuscripts reproduced

in their entirety. While the first one (C3) is part of our literature review, the other

three (C4, J1, and J2) present our contributions to improving the state of the art.

Despite describing complete signal processing solutions in each one of them, the major

contribution in each manuscript is related to a particular stage of the basic DSP block

diagram for contactless monitoring of vital signs. Therefore, each chapter/manuscript

addresses one or more challenges related to this block. Fig. 1.6 shows the thesis structure,

including the basic DSP block diagram. The manuscripts have been listed in Section 1.3.

A more detailed description of each stage in the block diagram will be provided in the

next chapter. In summary:

• Chapter 2 is the first part of our literature review. It provides an introduction

and overview of many concepts related to the contactless monitoring of vital signs
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using radars, and also presents the state of the art in terms of signal processing

techniques for enabling this technology.

• Chapter 3 is the second part of our literature review. Here we present our first

manuscript. It complements the previous chapter by providing a simulation frame-

work and selected results that allow to analyze and compare existing signal pro-

cessing techniques for radar-based monitoring of vital signs.

• Chapter 4 looks into the phase demodulation block. In this chapter, we present

our second manuscript, with a new algorithm for robust recovery of the chest wall

motion from radar data. It greatly extends the resilience of the recovery process if

compared to conventional methods. This is the Contribution 1 of this thesis.

• Chapter 5 addresses the filtering stage and one of its main challenges: how to

deal with random body movements from the monitored subject. In this chapter,

we present a manuscript that shows our work at the NICU, where we monitored

premature babies in a real clinical environment. This work is the Contribution 2

of this thesis and led us to the first patent application (P1).

• In Chapter 6 we focus on the frequency estimation block. Here we present the last

manuscript, in which we proposed a novel algorithm to mitigate the effects of the

harmonic interference from breathing over the heartbeat signal. In this case, the

validation was performed with real data collected while imitating common working

conditions in an office environment. This work is the Contribution 3 of this thesis

and resulted in a second patent application (P2).

• Finally, in Chapter 7 we finalize this thesis by summarizing and connecting the

relevant aspects of our contributions, and discussing what remains as interesting

research avenues.

Each chapter with a manuscript also contains a preamble. It aims to guide the reader

along the thesis, by introducing the general topic and establishing a smooth connection

between the current chapter and the rest of the thesis.

The manuscripts included in each chapter are presented as published or submitted for

consideration. A few formatting aspects have been adjusted to match the rest of the thesis.

All pages, tables, equations, and figures have been numbered consecutively throughout

the thesis for continuity. All references were consolidated into a single reference list,

presented at the end of this thesis.

Please note that each manuscript presents its own notation and the used terms may

differ in each chapter.
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Chapter 2

Monitoring vital signs with radars

2.1 Operating principle

The activity of the cardiovascular and respiratory systems causes some physical and phys-

iological effects on the human body. The chest moves during the inspiration/expiration

cycle as a result of the diaphragm and intercostal muscle movements. The volumetric

changes in the heart muscle due to pumping blood through the circulatory system can

also be transmitted to the chest leading to a subtle movement. These small and periodic

displacements can be detected by radar, allowing accurate estimation of the breathing

and heart rates under certain conditions.

Fig. 2.1 shows the basic operating principle for monitoring vital signs in a contactless

way using radars. When we breathe, or when the heart beats, the subtle motion at

the chest wall surface modulates the transmitted radar signal, which is reflected with

additional phase information regarding this movement. The received signal can thus

be modeled as a scaled and time-shifted version of the transmitted signal, in which the

phase variation over time contains the desirable vital sign information. This time-varying

phase θ(t) is usually modeled as

θ(t) =
4πd(t)

λ
, (2.1)

where λ is the radar operating wavelength, and d(t) represents the displacement signal

which, ideally, would correspond only to the chest wall movements due to breathing and

heartbeat. As seen by the radar, these movements are mainly originated by the reflected

points over the chest moving surface, but it may additionally include residual motion

from the belly, shoulders, sides, and also from the back [96, 97].

23
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Figure 2.1: Contactless VSM with radars: operating principle.

The radar receives the reflected signal and, after analog-to-digital conversion, tries to

reconstruct the chest wall motion by using DSP techniques. Perfect recovery of the

chest movement would allow precise estimation of breathing and heartbeat frequencies

by simple analysis of the signal’s periodicity. However, in practical applications, besides

unavoidable hardware imperfections, the received radar signal is usually mixed with

additional reflections from the external environment, arising not only from different body

movements of the monitored subject but also from every object in the radar’s field of

view. These interfering signals are usually much stronger than those induced by the

chest wall millimeter displacement, and this makes accurate recovery and subsequent

estimation of the breathing and heartbeat frequencies a challenging task.

2.2 The chest wall displacement signal

The chest wall displacement signal is usually modeled as a superposition of both breathing

and heartbeat movements. Simplistically, it could be expressed as

d(t) = db(t) + dh(t), (2.2)

where db(t) represents the displacement due to the breathing movement, and dh(t)

represents the displacement due to the heartbeat movement. Both motions can be

assumed to be periodic but with different ranges of amplitudes and frequencies (spectral

content).

Pure sinusoidal models have been extensively applied for modeling both breathing and

heartbeat displacement signals [78]. This simple assumption is based on the Fourier

theory, which states that any time-varying periodic signal can be represented as a
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superposition of weighted harmonic sinusoids. Usually, in the most simplistic model,

both signals are assumed to have a single dominant frequency and, in this case, db(t)

and dh(t) can be written as

db(t) = ab cos(2πfbt), (2.3)

and

dh(t) = ah cos(2πfht), (2.4)

where ab and ah are the amplitudes of the chest wall movement, whereas fb and fh are

the associated frequencies corresponding to the breathing and heart rates. Despite their

simplicity, these models are widely used [98, 99].

It is important to clarify that, in relation to the heartbeat displacement signal, what

the radar “sees” and what is being modeled is not the actual heart movement, but the

resulting residual movements at the chest wall surface, i.e. the precordial movements1.

At the operating frequency of 24 GHz for instance, there is almost no penetration of

radiation into the body. In fact, typically the skin will reflect around 73% of the incident

wave, with the rest of the energy being quickly dissipated in the first millimeters of the

body [100].

More complex patterns have also been already proposed for the displacement signal.

In [101], the breathing chest wall movement is modeled as a symmetric bell-like shaped

curve. Alternatively, in [28], it corresponds to a low-pass filtered periodic sequence of

quadratic inspiration and exponential expiration. There are also studies using camera-

based systems to model breathing movements by tracking markers distributed along

the chest wall surface [102]. Finally, electromagnetic models and motion kinematics can

also be used for approximating the displacement signal during complex movements as

suggested in [103].

A Gaussian pulse train can be used for modeling the heartbeat, based on the idea

that the heartbeat is a short explosive motion, with a pulsatile nature [104]. In [105],

periodic exponential pulses are low-pass filtered by a (critically damped) second-order

Butterworth filter. A more realistic model uses recorded signals from a seismocardiogram

(SCG) sensor. These sensors measure the accelerations on the chest wall produced by

the myocardial movements of the heart [106]. By taking the double-integral of the SCG

signal, the chest wall displacement due to the heartbeat can be derived [107].

1Precordial impulses are pulsations originating from the heart or great vessels that are visible or
palpable on the anterior chest wall.
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Substituting (2.2) in (2.1) implies the underlying assumption that the monitored subject

and its moving parts can be modeled as a single-point scatter. This is equivalent to

assuming that, when we breathe, or when the heart beats, the moving parts of the body

have the same reflectivity, i.e. the same radar cross section (RCS). However, a few studies

have shown that the manifestation of these vital signs is distributed differently over the

body [108]. In fact, the resulting RCS of the breathing movement is consistently and

significantly larger than the one corresponding to the heartbeat [109], which is rather

intuitive. More recent models [101] are trying to exploit these differences in order to

obtain more realistic patterns for breathing and heartbeat movements.

It is important to mention that when we breathe, or when the heart beats, the resulting

body movements are the manifestation of a complex physiological phenomenon. It is

unlikely that any model could fully characterize it for every person in every situation.

As discussed in [105], these models are highly idealized and not intended to be used as

rigorous physiological models, but merely to capture the essence of these signals and to

allow easy testing of signal processing algorithms.

This also seems to be the reason why most of the proposed processing techniques in

literature are model agnostic and, therefore, the presented models are mostly used for

illustrative purposes. However, regardless of the displacement signal shape, its spectral

structure (frequency content) is mainly determined by its inherent periodicity. This

spectral structure will be further explored throughout this thesis to improve estimation

performance as we will show in subsequent chapters.

2.3 Radar frequencies and devices

As discussed in Section 1.1.6, a multitude of radar types is being used to address different

applications. To comply with these different scenarios, a wide range of radar frequencies

have already been used.

While using a lower operating frequency improves electromagnetic penetration and allows

easier extraction of the displacement signal, higher frequencies result in better phase

sensitivity and increased target reflectivity [13]. Frequencies generally used for radar-

based VSM start from as low as 2 GHz and go up until 230 GHz [78]. Most research is

still focused on frequency bands below 30 GHz, and especially around 24 GHz [110]. This

includes industrial, scientific and medical (ISM) bands, which allow worldwide unlicensed

operation under specific conditions.

However, regulatory authorities have recently decided that the 24-GHz wideband will

be phased out for radar operation in Europe and in the United States [110]. These new



Monitoring vital signs with radars 27

restrictions, and the need for high performance in emerging radar applications, are now

moving research and industry toward mm-wave operation. At this region, the wider

bandwidth significantly increases range resolution and accuracy, which drives the better

separation of objects and improves tracking and classification. Another benefit of higher

operating frequencies is the small form factor of devices. For the same antenna gain

and field of view, the antenna size of a 79-GHz device can be reduced to approximately

one-third if compared to 24-GHz systems. Alternatively, for the same antenna size, mm-

wave operation results in narrow beamwidth which increases directivity and improves

the signal-to-noise ratio (SNR).

In relation to the radar’s waveform, Continuous-wave (CW) radars are usually being

employed for VSM [54, 78, 111]. These devices have the advantages of low transmitted

power, simple hardware structure, and high sensitivity. This explains their widespread

use across various areas. Within this group, unmodulated CW systems, also called

Doppler radars, have the simplest architecture. Due to the transmission and reception of

a simple constant-frequency signal, the radio frequency (RF)-chain is greatly simplified

and no synchronization mechanism is required.

However, the transmission of an unmodulated continuous signal with no timing informa-

tion implies that no distance (range) information is acquired. Besides not being able to

estimate the range of the monitored subject, other moving objects at different distances

may interfere with the unmodulated CW signal, making it more difficult to isolate and

extract the desired vital sign information [13].

For being able to estimate the distance of the monitored subject, typical approaches

use ultrawideband (UWB) [11], frequency-modulated continuous-wave (FMCW) [76],

stepped-frequency continuous-wave (SFCW) [13], or phase-modulated continuous-wave

(PMCW) [112] radars. Recently, the application of millimeter-wave FMCW radars to

short-range VSM has been extensively investigated [12, 16, 42, 111, 113]. These devices

are being widely used in the automotive industry, which is constantly improving this

technology and driving costs down. Such radars benefit from high range resolution and

Doppler sensitivity, yet with simple architecture, that allows using relatively simple

circuits and low-cost analog-to-digital converters (ADCs) [113].

There are several options already available in the market, from different manufacturers,

and spanning frequencies usually from 60 GHz to 79 GHz. A few examples include

the AWR and IWR families from Texas Instruments [114], and the BGT family from

Infineon [115]. Despite the small form factor, large bandwidth and several transmit/receive

channels are usually available, thus conferring high range resolution and multiple-input

multiple-output (MIMO) capabilities. Such devices can be already fully integrated into
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Figure 2.2: Basic DSP block diagram for contactless monitoring of vital signs. The
flow of signals is now highlighted.

evaluation boards containing not only the antenna and radar front-end, but also built-in

processors and a set of interfaces for configuration, control and data extraction.

2.4 Basic signal processing

The signal processing framework for contactless VSM using radars can be divided into

four main parts: preprocessing, phase demodulation, filtering, and estimation. Figure 2.2

shows again the basic signal processing block diagram, now highlighting the flow of

signals into the signal processing chain.

The following sections contain an overview of the basic signal processing steps for enabling

the contactless monitoring of vital signs using radars. More detailed information, including

the relevant equations considering CW and FMCW systems, will be provided throughout

the manuscripts in Chapters 3, 4, 5, and 6.

2.4.1 Preprocessing

The preprocessing block receives the complex baseband radar signals as in-phase and

quadrature samples (bI(t) and bQ(t)) from the ADCs. Its main function is to detect and

extract the signal s(t) corresponding to the monitored subject.

For simpler single-channel CW radar systems (no range or angle processing), the input

ADC signal already contains all the information relative to the radar’s field of view.

In this case, the detector can be directly applied over this signal, just to identify the

moments where the chest wall movements are present.

For modern FMCW or PMCW systems with several receiving channels, the desired vital

sign information is embedded in the slow-time signal, at a specific range and angle position

where the target (monitored subject) is located. The received signals corresponding to

each transmitted pulse are stored to create the radar data cube, which has temporal
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dimensions corresponding to fast-time and slow-time. Using different antenna elements,

the radar signal is also sampled spatially, thus generating an additional dimension along

the receiving ADC channels. The total duration of the collected fast-time samples

corresponds to the duration of the transmitted pulse, whereas the total duration of the

slow-time samples corresponds to the coherent processing interval (CPI). Similarly, the

size of the spatial dimension corresponds to the antenna size or aperture.

Particularizing to FMCW systems, as illustrated by Fig. 2.3, a two-dimensional discrete

Fourier transform (DFT) is usually performed over the radar data cube, across fast-

time and ADC dimensions. This corresponds to an approximation of the matched filter

operation, in the sense of being the linear filter that maximizes the target SNR in presence

of additive noise. This operation also translates the fast-time dimension into frequency

(beat frequency), which in turn is directly related to the target’s range information.

Similarly, the ADC dimension is translated into the angle, corresponding to the target’s

azimuth or elevation information.

Thus, in the next step, the detector should identify the range/angle cells (bins) where the

target is present, i.e. where the chest wall movements can be detected. After detection,

the slow-time signal at the target range/angle bin is finally extracted and will be further

processed for phase demodulation and estimation.

Considering the simplistic scenarios where most solutions are usually validated (single

static target, at short-range), simple amplitude, energy, or constant false-alarm rate

(CFAR) detectors are commonly employed. In this case, most of the techniques used at

the preprocessing block will be classic radar signal processing methods, with no specific

adaptation for processing vital signs.

Recent research is approaching new detection techniques more tailored to the VSM

application. Particularly, considering dynamic scenarios where one of the monitored

subjects can be breathing still (i.e., no translational movement in relation to the radar),

conventional clutter (zero-Doppler) filtering cannot be applied as it may also prevent

vital sign detection from non-moving subjects. In addition, when operating at higher

frequencies with large bandwidth, the human body may become an extended target,

with vital sign energy being spread over several adjacent range bins. In these cases, just

selecting the range/angle bins with maximum amplitude/energy may not be optimal.

2.4.2 Phase demodulation

The phase demodulation block aims to recover the chest wall movement over time.

It is essentially the process where the complex samples from s(t) (corresponding to
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Figure 2.3: Preprocessing steps for FMCW systems.

the reflected signal from the monitored subject) are combined to obtain the recovered

displacement signal d̂(t) (an approximation of the true displacement d(t)).

For providing sufficient SNR, while still preserving the update rate, the phase demod-

ulation and the subsequent steps for vital sign processing are commonly performed

using overlapped sliding windows. This strategy leaves sufficient time to acquire several

breathing/heartbeat cycles, revealing (and enhancing) the periodicity of the movement.

Hence, the obtained frequency value from each processing window corresponds to an

average over the window duration. In addition, the frequency resolution is also improved.

In order to provide new estimates every one or two seconds, large overlaps are usually

employed.

Among several methods, the two most used are the complex-signal demodulation

(CSD) [116] and the arctangent demodulation (AD) [117]. The CSD was first pro-

posed to eliminate the optimum/null detection point problem, which was very common

when operating with former single-channel receivers [118]. With the advent of modern

quadrature receivers, the resulting I and Q channels (bI(t) and bQ(t)) could be combined

in baseband, thus providing optimum detection irrespective of the target distance. The

CSD relies on the small-angle approximation (sin(x) = x) [119] to recover the chest wall

motion. Despite generating intermodulation products and higher order harmonics [120],

for small displacements (in relation to the operating wavelength), the recovered signal

d̂(t) will be a good approximation of the true chest wall movement d(t), and the relevant
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frequency content will be preserved. Therefore, the CSD is mostly used at lower operating

frequencies.

On the other hand, the AD can be used for precise phase recovery. As the name implies,

it uses an arctangent operation to directly recover the input signal phase. An additional

unwrap operation is necessary for removing possible phase discontinuities caused by the

bounded image of the arctangent function. This operation is very sensitive to noise and

interference, and may eventually accumulate errors, resulting in large distortions in the

recovered displacement signal. In Chapter 4 we will further analyze this problem and

present a novel solution for recovering the chest wall displacement.

Before extracting the desired phase information, possible direct current (DC) offsets

must be compensated. Despite the high range resolution provided by FMCW devices,

DC terms originating from other sources (other than the actual chest wall movement)

may eventually be present in the target range bin and should be compensated. Given

that the ideal chest wall (back-and-forth) movement describes an arc in the I/Q plane,

this compensation is usually accomplished using an ellipse fitting algorithm. A detailed

description of the AD, with an extensive review of DC offset calibration strategies, can

be found in [117] and [121], respectively.

To avoid the aforementioned limitations, the so-called differentiate and cross-multiply

(DACM) demodulation has also been proposed [120]. The DACM calculates the derivative

of the arctangent function, followed by an integration step for recovering the phase. In

its extended version, it can be efficiently implemented in a discrete form where the

differentiation is approximated by a forward difference, and the integration is replaced

by an accumulation. Finally, the so-called linear demodulation (LD) can also be used.

It tries to suppress redundant information, by maximizing the variance of the input

signal [4]. It is based on the principal component analysis (PCA) of the input matrix

where its first principal component is used as the demodulated signal. As discussed

in [122], these methods suffer from intermodulation products and higher-order harmonic

interference when working at higher operating frequencies.

2.4.3 Filtering

The filtering block is responsible for improving the signal-to-interference-plus-noise ratio

(SINR) before estimation. The idea is to attenuate the system’s noise and try to eliminate

any interfering components still present in the demodulated signal.

This includes one of the main challenges in monitoring vital signs: how to filter out the

interfering effects of RBMs. In practical monitoring situations, the subject may often move
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body parts like hands, legs, or torso, and even the entire body. The amplitude of these

reflected signals is often much stronger than the millimeter-scale chest wall motion, which

will potentially be masked by this interference. Since spontaneous RBM are inevitable,

solving this problem is fundamental to reliable VSM in practical applications. In addition,

in a real home or clinical environment, multiple moving objects (and additional people)

will often be present, generating even large motions which may further interfere with the

intended monitoring.

A lot of effort has already been devoted to RBM mitigation [123]. Several methods

were proposed in the literature, and even though specific types of movements could be

effectively canceled out, they usually require more complex systems. Most of the existing

solutions rely on extra or duplicated hardware, thus suffering from practical limitations

such as misalignment, synchronization, and cost [124]. This has limited the application

of these techniques in practical environments. Solutions with a single and simple device

that can reliably recover the vital-sign information under RBM scenarios are still rare.

Another direction of research basically tries to identify segments of vital sign data with

RBMs, and simply discard these corrupted segments before estimation [94, 125–128].

However, depending on the processing window length and overlap, even very short

RBMs may affect several seconds of a good signal. Therefore, rather than simply

discarding segments of data, an approach that allows useful exploitation of these episodes

with moderate RBMs is desired. In Chapter 5 we will present our contribution to the

RBM problem. Particularly, rather than just discarding measurements under strong

interference, we developed a novel random body movement mitigation technique based

on the time-frequency decomposition of the recovered signal.

For enhancing the SNR of the displacement signal, several approaches were already

investigated. For instance, many proposals are using autocorrelation-based methods [4,

104, 129]. The heartbeat signal can also be improved by calculating the derivatives of

the displacement signal [107]. In [124], a matched filter approach was used with good

performance under certain conditions.

Finally, in the filtering block, the displacement signal is also separated into the breathing

and heartbeat components. In this way, the estimation can be performed independently

on each of them. While simple bandpass filters are commonly used, recent works are

exploiting more powerful separation techniques. Some examples include the independent

component analysis (ICA) [130], the empirical mode decomposition (EMD) [131] and its

variants - the ensemble empirical mode decomposition (EEMD) [132] and the complete

ensemble EMD with adaptive noise (CEEMDAN) [133] -, the variational mode decompo-

sition (VMD) [134], the nonnegative matrix factorization (NMF) [135], and the empirical

wavelet transform (EWT) [136].
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The filtered signals d̂b(t) and d̂h(t) will ideally be a good approximation of the true chest

wall motion due to breathing and heartbeat, respectively, and can finally be used for

frequency estimation.

2.4.4 Frequency estimation

The frequency estimation block is responsible for detecting the breathing/heartbeat

cycles and calculating their period, or alternatively, for directly estimating the dominant

frequency in which they occur, i.e. the breathing and heart rates.

After phase demodulation and filtering, the displacement signals will ideally contain

only the periodic chest wall movements due to the breathing (d̂b(t)) and heartbeat

(d̂h(t)). As the name implies, the aim of this block is to finally estimate the fundamental

frequencies f̂b and f̂h, which correspond to the breathing and heart rates, respectively.

This is a well-known problem from spectral analysis, in which solutions can usually be

categorized into parametric and non-parametric methods. The latter includes subspace

techniques [137, 138], maximum likelihood [139, 140], and Bayesian estimation [141].

While these methods improve frequency resolution and thus estimation accuracy, they

are computationally more complex than non-parametric methods [142]. In addition, the

good performance of parametric techniques relies on some degree of certainty about the

underlying models that generated the data. This can be an issue when considering the

complexity behind the resulting chest/belly/shoulders movements when breathing or

when the heart beats.

Besides their simplicity, non-parametric methods are known to be more adaptive in

practical applications [143]. Several approaches have been recently proposed, based on

different techniques such as wavelets [136, 144], the chirp Z-transform (CZT) [145, 146],

the DFT [107, 147], the quadrature cosine transform (QCT) [148], and the short-time

Fourier transform (STFT) [129, 149]. Among these, simple DFT-estimation is the most

used [11]. In this case, the frequency estimates correspond to the locations of dominant

peaks in the corresponding spectrum of the displacement signal. While this may be

sufficient for accurate breathing rate estimation in quasi-ideal conditions, i.e., without

additional interference, it may not provide good results when considering more practical

scenarios, especially for the heart rate estimation.

It is important to mention that DFT-based methods suffer from low-frequency resolution

due to smearing and leakage problems caused by the limited data length. However,

using longer processing windows to improve resolution may prevent the detection of

relevant time-varying characteristics of the vital signs. While this can be an issue for

specific applications, e.g. diagnosis, for long-term monitoring, the overlapped sliding
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window approach can usually provide a good compromise between resolution and up-

date rate. More recent approaches to overcome the frequency resolution issue include

sparse reconstruction, stepwise atomic norm minimization, and the synchrosqueezing

transformation [12].

Finally, the frequency estimation block should also deal with residual interfering compo-

nents which were not properly filtered by previous processing steps. This is especially

important when considering heart rate estimation. In many cases, the harmonics from

the breathing signal overlap spectrally with the fundamental frequency component of the

heartbeat signal. In this situation, the estimator should implement additional mechanisms

to avoid wrong estimates originating from harmonic-interfered spectral regions.

In Chapter 6 we will present our contribution to the Frequency Estimation block, where

we proposed a novel estimation framework to overcome the aforementioned challenges.

In this case, we validated our solution with real data collected while imitating common

working conditions in an office environment.

2.5 Simulation framework

As part of our preliminary study and literature review, we developed a simulation

framework and an easy-to-use graphical user interface (GUI) using Matlab.

The idea was to explore existing models of the chest wall displacement signal and use

them to generate simulated radar data in different operational conditions. Further, by

processing these signals, we would be able to investigate the effects of different parameters,

and also to compare existing signal processing techniques for radar-based VSM.

The GUI is divided into three screens, which will be described below:

• The first screen controls the signal generation. It is possible to define several

simulation parameters, including the sampling frequency of the ADC, the radar

operating frequency, the input SNR, the simulation time, and the duration of the

generation window. In addition, it is also possible to emulate hardware imperfections

in the form of I and Q channel imbalances (DC, amplitude, and phase offsets). The

breathing and heartbeat displacement signals can be configured by choosing the

corresponding models, the amplitude, and the range of frequencies. For instance,

the user can select between sinusoidal models for both breathing and heartbeat, or

the model from Albanese [28] for breathing, and the model from Nosrati [104] for

the heartbeat. Finally, the plots allow visualizing of the generated data and its

main properties. Fig. 2.4 shows the signal generation screen.
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• The second screen is dedicated to signal processing and the obtained results. In

this screen is possible to set up basic processing parameters (sampling frequency,

duration, and overlap of processing windows), as well as the phase demodulation

and specific techniques for filtering and enhancing the breathing and heartbeat

signals. For instance, one can configure preprocessing techniques, bandpass filters,

and/or estimation methods. After processing using the selected parameters and

techniques, the figures show the obtained performance for both breathing and heart

rate estimation, where the threshold intervals for the accuracy calculation can also

be independently set up. Fig. 2.5 shows the signal processing screen.

• The third and last screen is a debug tool that shows the obtained results at each step

in the signal processing chain. It includes the I/Q raw data, the recovered displace-

ment after phase demodulation, the filtered displacements, and the corresponding

frequency spectrum. It allows easy visualization if something is not working prop-

erly, and also helps to understand the effects of using different techniques. Fig. 2.6

shows the debug screen.

A selection of some results obtained with this tool was included in manuscript C3, which

will be presented in Chapter 3.

2.6 Some experimental results

The first part of our experimental study was performed using devices that emulated

controlled targets. These devices could be programmed for executing breathing-like

movements, representing the chest wall displacement over time. The objective was to

select appropriate phase demodulation algorithms and parameters, in order to precisely

recover the displacement signal. Finally, human tests were performed in the laboratory,

aiming to validate the complete signal processing chain.

For these experiments, we used a Texas Instruments (TI) mm-wave FMCW radar

(AWR1642 [150]), operating at 77 GHz, with a 4 GHz bandwidth. As we are only

considering single-target scenarios, the radar is configured for using a single transmit

and receiver antenna. The total duration of each chirp was 64 µs, with an inter-frame

period of 10 ms, corresponding to a slow-time sampling frequency of 100 Hz.

The following subsections will describe each scenario and present some of the obtained

results.
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(a) Parameters for signal generation.

(b) Plots of the generated signals.

Figure 2.4: Matlab GUI: signal generation screen.
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(a) Processing parameters.

(b) Obtained results.

Figure 2.5: Matlab GUI: signal processing screen.
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(a) Raw data and preprocessing.

(b) Constellation and frequency
analysis.

(c) Displacement and time analysis.

Figure 2.6: Matlab GUI: debug screen.
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Figure 2.7: Setup for the tests with the speaker.

2.6.1 Speaker tests

The first set of tests was performed using a double-speaker prototype device, configured

for executing a periodic movement, with control of its amplitude and vibration frequency.

In this way, it is possible to emulate the amplitude and periodicity (frequency) of the chest

wall movements from a single-scatter target. For providing ground-truth information

regarding the actual movement, we used the optoNCDT 1320 [151] laser displacement

sensor. The speaker was mounted just in front of the radar, at a distance of 1.5 m. The

proposed setup can be seen in Fig. 2.7.

For these initial tests, we used only one of the speakers and placed a small corner reflector

attached to its dust cap. It was configured for executing a periodic back-and-forth

movement with a frequency of 0.4 Hz, which is equivalent to 12 bpm. The obtained

results are depicted in Fig. 2.8, comparing the displacement measured by the laser sensor,

and the one recovered by the radar using the AD. It can be seen that the radar was able

to precisely recover the periodic movement, which contains approximately 4 full cycles in

20 seconds, corresponding to the programmed frequency of 12 bpm.

2.6.2 Live dummy tests

In order to emulate the more complex movement of a real target, the second set of

tests was performed using a live dummy, developed for repetitive testing of breathing

monitoring in a realistic scenario [152]. The size of the dummy is comparable to a

newborn, and the torso tissue consists of a radar-reflective material with similar RCS.

The dummy is integrated with a vacuum pump, which excites the torso to contract and
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Figure 2.8: Recovered displacement signal from the speaker test.

Figure 2.9: Setup for the tests with the live dummy. The pump is hidden on the right
side of the seat.

expand cyclically. Fig. 2.9 shows the measurement setup, with the live dummy within a

rear-facing child restraint system. The obtained results for a breathing rate of 25 bpm can

be seen in Fig. 2.10, comparing the actual displacement measured by the laser sensor, and

the one recovered by the radar. It can be seen how the radar was again able to precisely

recover the movement. Small differences can still be perceived between the recovered

signals and this is an expected effect. While the laser truly measures a single-scatter

displacement, due to its limited resolution, the radar receives a superposition of signals

reflected from many scatters located over the moving surfaces of the baby’s chest and

belly. Nevertheless, the periodic movement can still be clearly identified.

Additionally, Fig. 2.11 shows the spectrum of the recovered displacement signal using

different phase demodulation techniques: the AD and the CSD. It can be seen how
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Figure 2.10: Recovered displacement signal from the live dummy test.
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Figure 2.11: Live dummy normalized spectrum using AD and CSD.

the strong harmonics generated by the CSD may overshoot the main peak, making it

difficult to identify the correct breathing frequency. This limitation of the CSD at higher

operating frequencies will be further discussed in Chapter 3. On the other hand, the

AD provides a clear spectrum where the dominant peak corresponds to the programmed

breathing rate of 25 bpm. Nevertheless, a few harmonics can still be detected in the AD

signal, and this spectral structure will be used for improving estimation in subsequent

Chapters.

2.6.3 Human tests

For evaluating the final performance of the system, human experiments were also

performed in a laboratory environment. Fig. 2.12 shows the measurement setup, where

the subject was asked to stay seated in front of the radar, at a distance of 1.5 m. A

wearable commercial device, named Hexoskin [153], was used as a reference for the chest
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Figure 2.12: Setup for the tests with humans.
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Figure 2.13: Chest wall displacement during the hold and release test.

wall movement and the actual breathing rate over time. This device has already been

validated for breathing monitoring in different conditions [154].

The first test was a breath, hold, and release test, in which the subject was breathing

for 30 seconds, held the breath for 30 seconds (inhaled), and finally breathed again in

the last 30 seconds. Fig. 2.13 shows the obtained chest wall displacement, comparing

radar data to the reference device. It can be seen the high correlation between both

measurements, where breathe and hold moments can be easily identified. In addition,

the inset figure shows that, when the subject is not breathing, the residual heartbeat

movement becomes also clearly visible in the radar data.

In the last test, the subject was asked to stay seated in front of the radar, at the same

distance, breathing normally for 10 minutes. Fig. 2.14 shows the final estimated values

from radar and reference device. In this case, the estimation was performed using the
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Figure 2.14: Estimated breathing frequency values for the 10-minute test. The red
line is the reference sensor, with the ±1 bpm error interval in green.

simple nonlinear least squares (NLS) algorithm, which will be presented in Chapter 5.

Most of the time (94.5%) the radar provided measurements within the ±1 bpm error

interval, being capable of tracking the actual values even during fast variations of the

breathing frequency. A complete description of these tests and results can be found

in [155].





Chapter 3

Overview of recent techniques

3.1 Preamble

This chapter is the second part of our literature review. Here we present our first

manuscript, which complements the previous chapter by delving deeper into a few topics

and analyzing existing phase demodulation and estimation techniques. In this work, we

describe a simulation framework and show selected results that allow easy performance

comparison between recently proposed solutions for radar-based monitoring of vital signs.

The idea was to go beyond an isolated theoretical analysis and understand the combined

effects along the entire signal processing chain, for different combinations of scenarios,

techniques, and parameters.

We conclude by investigating current limitations in the state of the art and introducing

some of the challenges that will be addressed in the subsequent chapters.

45
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Abstract

Radar-based vital-sign monitoring provides several advantages over standard methodologies. Despite the

huge amount of recent work, the preference for particular technique(s) is in debt, due to lack of a formal

comparison between them. In addition, collection of real data is a time-consuming process and therefore

most of the proposed solutions are only evaluated under very limited scenarios. In this paper we present

a simulation framework and a selection of results which allow easy performance comparison between

radar-based vital-sign processing techniques. The proposed simulation tool scans over multiple breathing

and heartbeat frequencies, and the combined effects along the entire signal processing chain can be

analyzed, for different combinations of scenarios and techniques. The results have shown specific

limitations for each method, thus indicating a need for proper selection based on operating conditions. In

addition, while breathing estimation performance is only limited by noise, heartbeat estimation is limited

by the presence of breathing harmonics and, despite promising results at specific breathing/heartbeat

frequencies, the presented methods fail to fully mitigate this type of interference in all scenarios.

3.2.1 Introduction

Radar-based vital-sign monitoring provides several advantages over standard devices.

Radar signals can penetrate through different materials and are not affected by the skin

pigmentation or ambient light levels. In addition, radar devices are low-power, low-cost

and privacy preserving [13]. These intrinsic characteristics have attracted the attention

of the research community and, in line with recent technological advancements [112], a

multitude of radar types are being used to address different applications such as sleep

monitoring [89], rescue [90], in-car monitoring [156], and many others.

https://doi.org/10.1007/978-3-030-98886-9_8
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To comply with these different scenarios, a wide range of radar frequencies have already

been used. While using a lower frequency improves electromagnetic penetration and

allows easier extraction of the displacement signal, higher frequencies result in better

phase sensitivity and increased target reflectivity [13]. However, the signal processing

framework needs to be adjusted to each scenario, and setting up correct algorithms

and parameters for each application therefore remains a complicated task. Despite

the huge amount of recent work, there is still a lack of a formal and fair comparison

between the basic vital-sign processing techniques. Particularly, given that each new

proposal is evaluated in a very specific and limited scenario, it is difficult to compare

their performance most of the time, and to address strengths and limitations of each

technique. In addition, collection of real data is a time-consuming process and therefore

most of the proposed solutions are only evaluated under very limited scenarios.

In this paper we aim to fill this gap by presenting a simulation framework and repre-

sentative results which allow easy comparison between radar-based vital-sign processing

techniques. The objective is to go beyond an isolated theoretical analysis, and understand

the combined effects along the entire signal processing chain, for different combinations

of scenarios, techniques and related parameters. The remainder of this paper is organized

as follows. In section II, we introduce the signal modeling for vital-sign processing using

radars. The simulation framework is presented in Section III, while Section IV presents

our simulation results. Finally, in Section V, some conclusions are drawn.

3.2.2 Vital-Sign Models

The transmitted radar signal is modulated by the subtle chest-wall movements due to the

breathing and heartbeat mechanisms, and is reflected with additional phase information

related to this movement. Under ideal conditions, this time-varying phase can be written

as

∆θ(t) =
4πdb(t)

λ
+

4πdh(t)

λ
, (3.1)

where λ is the operating wavelength, and db(t) and dh(t) represent the displacement

signal associated to the periodic chest-wall movement due to the breathing and heartbeat,

respectively (different periods). While this signal is directly received from the radar’s

ADC in CW systems, in FMCW or PMCW systems it is the output of the range matched

filter at the target range bin. In any case, the baseband I and Q signals from a target at

nominal distance d0 can be represented as

bI(t) = AI cos

(
θ0 +

4πd(t)

λ

)
+BI + nI(t), (3.2)
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bQ(t) = AQ sin

(
θ0 +

4πd(t)

λ
+ φIQ

)
+BQ + nQ(t), (3.3)

where AI and AQ represent the I/Q amplitude imbalance, φIQ is the I/Q phase imbalance,

θ0 = 4πd0/λ is the constant phase shift, BI and BQ are DC offsets, and d(t) = db(t)+dh(t)

represents the composite chest-wall movement. In addition, nI(t) and nQ(t) represent

the noise component in each channel. Perfect recovery of the chest-wall motion d(t)

allows for a precise estimation of the breathing and heartbeat frequencies by simple

analysis of the movement periodicity. However, in practice, the received radar signal

is usually mixed with additional reflections from the external environment and noise.

These interfering signals are usually much stronger than those induced by the chest-wall

millimeter displacement, thus rendering the accurate recovery and subsequent vital-sign

frequency estimation a challenging task.

Based on [28], the displacement due to breathing db(t) can be modeled as a low-pass

filtered periodic sequence of quadratic inspiration and exponential expiration, expressed

as

db(t) =


−Pm
TiTe

t2 +
PmT

TiTe
t, t ∈ [0, Ti]

Pm

1− e−
Te
τ

(
e−

(t−Ti)
τ − e−

Te
τ

)
, t ∈ [Ti, T ]

(3.4)

where Pm is a constant representing the pressure generated by the respiratory muscles,

which controls the breathing displacement amplitude, Ti is the inspiration time, Te is

the expiration time, T is the breathing period, and τ is a time constant. The inspiratory

and expiratory times are considered fixed fractions of T . Hence, the profile is fully

parameterized by Pm and the actual breathing period T . The value of τ was assumed to

be equal to 1/5 of the expiratory time and a value of 0.6 was used for the inspiratory-

expiratory time ratio [28]. The standard physiological range of the breathing frequency

is 10 to 25 bpm, while the amplitudes of the chest-wall motion can vary from 4 to 12

mm [15].

For modeling the heartbeat, a Gaussian pulse train can be used, based on the idea

that the heartbeat is a short explosive motion, with pulsatile nature. The heartbeat

displacement signal can thus be represented as [104]

dh(t) =
∑
n

ae−
(t−Tn)2

2c2 , (3.5)

where a is a normalization coefficient, c controls the pulse width, and Tn is the time

interval between consecutive pulses. The standard physiological range of the heartbeat

frequency goes from 60 to 100 bpm, while the amplitudes of the chest-wall motion can

vary from 0.2 mm to 0.5 mm [15].
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It is important to mention that the true chest-wall motion is a complex physiological

phenomenon and it is unlikely that any model can fully characterize it in every situation.

However, regardless of the displacement signal shape, its frequency content (spectral

structure) is mainly determined by its inherent periodicity. The models used here are

well-known and selected for illustrative purposes. In addition, the processing techniques

described next are model agnostic and hence the chosen model does not disadvantage

any one of them.

3.2.3 Simulation Framework

The composite displacement signal is used to generate the I and Q samples according

to (3.2) and (3.3), and additive white Gaussian noise (AWGN) is added to the complex

samples according to a predefined SNR value. In addition, the parameters AI, AQ and

φIQ can be used for modelling I/Q imbalance scenarios.

Fig. 3.1a shows 20 seconds of the generated displacements for both breathing and

heartbeat motion, and the composite movement according to the described models. The

amplitude and frequency were selected to be 10 mm and 12 bpm for breathing, and 0.5

mm and 60 bpm for the heartbeat.

Given that standard amplitudes for the heartbeat displacement are usually 10 to 20 times

smaller than the breathing displacement [50], the heartbeat main frequency component

may eventually be masked by interfering harmonics from the breathing movement. Within

the simulation framework, the amplitude relation between then can be independently

controlled by the parameters Pm and a in (3.4) and (3.5) respectively, which will determine

the signal-to-interference ratio (SIR) for heartbeat detection, where SIR = a/Pm.

The simulator allows for scanning over multiple breathing and heartbeat frequencies,

as well as SIR and SNR values, in a Monte Carlo approach. For all iterations of

signal generation and processing, the final estimation root-mean-square error (RMSE)

is calculated, taking into consideration the entire signal processing chain. In this way,

the techniques can be evaluated not only with respect to the noise, but also in relation

to the combined effects of different methods and parameters. Finally, the performance

can also be analyzed considering the influence of breathing over the heartbeat signal and

vice-versa.
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Figure 3.1: Simulated displacement (a) and I/Q (b) signals.

3.2.4 Simulation Results

3.2.4.1 Phase Demodulation

The initial signal processing step is commonly known as phase demodulation. It is

essentially the process where the received I and Q signals are combined with the aim to

recover the displacement signal d(t). Among several methods, the two widely used are

the AD [117] and the CSD [116].

Complex-Signal Demodulation The CSD relies on small displacements (in relation

to the operating wavelength) for recovering an approximation of the chest-wall motion.

In this case, the displacement signal can be reconstructed as

x(t) = bI(t) + j · bQ(t) = x+ exp
{
j
[
θ0 +∆θ(t)

] }
, (3.6)

where x = BI + jBQ represents a combined DC offset. Despite additional higher order

harmonics, for small displacements (in relation to the operating wavelength), the recovered

signal x(t) approximates the true chest-wall movement d(t), and the relevant frequency

content is preserved.

Arctangent Demodulation On the other hand, the AD can be used for precise phase

recovery. The AD directly extracts the phase of the received signal and, under ideal
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conditions, it recovers the displacement signal as

x(t) =
λ

4π
· unwrap

(
arctan

[
bQ(t)

bI(t)

])
, (3.7)

where the unwrap is necessary for removing possible phase discontinuities caused by the

restricted codomain of the arctangent function. This operation is very sensitive to noise

and interference, and may eventually accumulate errors, resulting in large distortions on

the recovered displacement signal.

DACM To avoid the aforementioned limitations, the so called DACM demodulation

has also been proposed [120]. The DACM calculates the derivative of the arctangent

function, followed by an integration step for recovering the phase. Its extended version

can be efficiently implemented in the discrete form

x[n] =
n∑
k=2

bI[k](bQ[k]− bQ[k − 1])− bQ[k](bI[k]− bI[k − 1])

bI[k]2 + bQ[k]2
, (3.8)

where the differentiation is approximated by a forward difference, and the integration is

replaced by an accumulation.

Linear Demodulation Finally, the LD tries to suppress redundant information, and

maximize the variance in the input signal [4]. It is based on the PCA of the input matrix

MIQ =

 bI(t)

bQ(t)

 , (3.9)

where its first principal component is used as demodulated signal.

Fig.3.2 shows the final RMSE for each of these demodulation techniques, considering

breathing estimation at 24 GHz and 60 GHz. In all cases, simple DFT-based estimation

was used, where the estimated frequency is selected as the one yielding the maximum

value of the DFT spectrum. The breathing frequencies are being scanned from 10 bpm

to 25 bpm with intervals of 1 bpm. The relevant simulation parameters are summarized

in Table 3.11, and will be used in the following simulations, unless explicitly stated

otherwise.

At 24 GHz, both the CSD and LD are robust to the noise, with small errors even for

negative values of the SNR. The SNR threshold for correct operation is much higher

for the AD, as well as for the DACM. At higher frequencies, when the displacement

1In this paper, we decided to use “wide” filters intentionally, in order to not interfere with the desired
analysis.
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(a) CSD
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(c) DACM
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(g) DACM
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Figure 3.2: RMSE (bpm) for breathing estimation considering different demodulation
techniques at 24 GHz (a-d) and 60 GHz (e-h).

amplitude is comparable to the operating wavelength, the CSD approximation does not

hold anymore. At this point, intermodulation products and higher order harmonics
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(a) DFT
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(b) time-analysis (TA)
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(c) autocorrelation frequency-time phase
regression (ACC-FTPR)
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(d) NLS

Figure 3.3: RMSE (bpm) for breathing estimation considering the AD and different
estimation techniques at 60 GHz.

start to dominate the spectrum, eventually being higher than the fundamental frequency

component, which leads to estimation errors. The same effect seems to affect the LD.

On the other hand, both AD and DACM presented better performance at 60 GHz.

3.2.4.2 Breathing Estimation

Fig.3.3 shows the final RMSE considering the AD and different estimation techniques

at 60 GHz (from now on, all the presented results will be related to this setup). In Fig.

3.3b the estimation was performed by TA of the displacement signal, where the average

distance between peaks provides an estimate of the signal periodicity [157]. In Fig.

3.3c the ACC-FTPR technique from [104] was used. It is based on spectral estimation

over the displacement signal autocorrelation, with the resolution being further improved

by phase-regression using the complex sample of the dominant peak. Lastly, the NLS

approach recently proposed in [155] was used in Fig. 3.3d. In this case, not only the

dominant peak in the spectrum is used for estimation, but also its inherent harmonics

which could eventually be detected.

In this idealized case of breathing estimation without any external interference, the

performance is limited only by noise and, after the SNR threshold, all techniques reach
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Figure 3.4: (a) RMSE as a function of the reference breathing frequency. (b) RMSE
as function of the SNR.

Table 3.1: Standard simulation parameters.

Parameter Value

Sampling frequency (Hz) 100
Processing window (s) 20
Breathing bandpass filter (Hz) 0.1-0.7
Heartbeat bandpass filter (Hz) 0.75-3
Zero-padding (samples) 2048
Breathing range (bpm) 10-25
Heartbeat range (bpm) 50-110
SNR range (dB) -20 to +20
Number of trials 100

very low error values (always better than 1 bpm). However, by looking closer to the

results in Fig. 3.4, it can be seen that the techniques have improved the frequency

resolution and reduced the final error in relation to the standard DFT estimation. While

Fig. 3.4a shows the error as a function of the reference breathing frequency, for the

best SNR (20 dB), Fig. 3.4b shows the error as a function of the SNR, for a reference

breathing frequency of 18 bpm. In addition, despite better results at higher SNR values,

the TA-based estimation has poorer performance in the presence of noise and thus needs

a higher SNR for correct estimation.
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(a) BR = 10 bpm
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(b) BR = 15 bpm
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(c) BR = 20 bpm
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(d) BR = 25 bpm

Figure 3.5: RMSE (bpm) for heartbeat estimation considering different breathing
frequencies, with a SIR of 1/12.

3.2.4.3 Heartbeat Estimation

On the other hand, heartbeat estimation performance is influenced not only by the

SNR, but mainly by the presence of high-order breathing harmonics. Fig. 3.5 shows the

heartbeat estimation performance at 60 GHz, using the AD and standard DFT estimation,

and considering different breathing frequencies for a SIR of 1/12. It can be seen that for

smaller values of breathing frequency the amount of harmonic interference is low and

the heartbeat frequency can be precisely estimated given the minimum required SNR.

However, for higher breathing frequencies, the interfering harmonics become dominant

until a point where the heartbeat component is completely masked. At this point, the

DFT estimation is in fact measuring breathing harmonics rather than the heartbeat

frequency. This dynamic can be explained as follows: for lower breathing frequencies, the

heartbeat estimation is competing with higher orders (5th, 6th and so on) of breathing

harmonics which are already strongly attenuated. On the other hand, for higher breathing

frequencies, the second and third harmonics are already over the heartbeat frequency

range. These harmonics can be much stronger than the main heartbeat frequency

component and thus prevent accurate estimation. In addition, Fig. 3.6 shows the results

now considering a single breathing frequency of 12 bpm, but varying the SIR from 1/5

(Fig. 3.6a) to 1/20 (Fig. 3.6d). It can be seen in this case that, depending on the
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(a) SIR = 1/5
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(b) SIR = 1/10
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(c) SIR = 1/15
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(d) SIR = 1/20

Figure 3.6: RMSE (bpm) for heartbeat estimation considering different SIR, with a
breathing frequency of 12 bpm.

SIR, even a smaller breathing frequency can generate harmonics capable of masking the

heartbeat component and prevent correct estimation.

Fig. 3.7 shows the heartbeat estimation performance considering different estimation

methods, when the breathing frequency is 12 bpm and the SIR is 1/15. In Fig. 3.7a,

standard DFT estimation was used with no additional harmonic processing. In Fig. 3.7b,

an algorithm for selecting spectrum peaks was used (DFT PS), exploiting the knowledge

of the already estimated breathing frequency and its harmonic-related positions. Instead

of just selecting the maximum spectral peak in the heartbeat region, the algorithm looks

for the higher peak which is not in a possible harmonic position. In Fig. 3.7c a simpler

implementation of the RELAX algorithm [158] was used. In this case, the breathing

harmonic components are iteratively estimated and removed from the displacement signal,

until heartbeat peaks can be found. Lastly, Fig. 3.7d shows the results when spectral

estimation is performed in the region of the second heartbeat harmonic (DFT 2nd).

This algorithm was originally proposed in [99], and is based on the fact that the second

heartbeat harmonic will probably be limited only by noise while the main heartbeat

frequency component can be masked by low-order harmonics of breathing. Both DFT PS

and RELAX presented good performance with accurate estimation, except when the

heartbeat frequency overlaps with the breathing harmonics positions. The DFT 2nd

solves the overlap problem, however it has a higher SNR threshold and fails for higher
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(a) DFT
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(b) DFT PS
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(c) relaxation (RELAX)
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(d) DFT 2nd

Figure 3.7: RMSE (bpm) for heartbeat estimation considering different estimation
methods, with a breathing frequency of 12 bpm, and a SIR of 1/15.

heartbeat frequencies, when the main heartbeat frequency component is within the

second harmonic region (ambiguity).

In order to provide a complete picture of the harmonic relations, Fig. 3.8 finally shows

the RMSE for heartbeat estimation for all combinations between breathing and heartbeat

frequencies, when the SNR and SIR are respectively 20 dB and 1/15. Despite relatively

good performance for specific frequency combinations, most of the time all techniques

fail to provide accurate estimation, specially for higher frequency values. This indicates

that robust solutions would need more powerful methods to deal with the harmonics

problem.

3.2.5 Conclusions

In this paper we presented a simulation framework and representative results to ease

the comparison between radar-based vital-sign processing techniques. The proposed

simulation tool allows for scanning over multiple breathing and heartbeat frequencies,

and the resulting RMSE is calculated using a Monte Carlo approach. In this way, the

combined effects along the entire signal processing chain could be analyzed, for different

combinations of scenarios, techniques and parameters.
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(a) DFT
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(b) DFT PS
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(c) RELAX
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(d) DFT 2nd

Figure 3.8: RMSE (bpm) for heartbeat estimation considering different estimation
methods, and all combinations of breathing and heartbeat frequency. The SNR and

SIR were 20 dB and 1/15, respectively.

We compared different demodulation techniques and the results have shown specific

limitations for each method, thus indicating the need for a proper selection considering

the operating frequency and expected SNR. In addition, in ideal conditions (no external

interference), breathing estimation performance is only limited by noise and standard

techniques may provide accurate results, with minor performance difference between them.

On the other hand, the performance of heartbeat estimation is limited by the presence of

breathing harmonics and, despite promising results at specific frequencies, the presented

methods fail to fully mitigate this interference, specially at higher breathing/heartbeat

frequencies. This indicates that specific harmonic mitigation techniques are thus needed

in order to provide robust heartbeat estimation over all conditions.



Chapter 4

Phase Demodulation

4.1 Preamble

The desired vital sign information is embedded in the phase of the received radar signal.

After detecting the monitored subject, the preprocessing block extracts the corresponding

signal which was modulated by the chest movements. The phase demodulation block

then aims to recover these movements from the selected signal.

As we will show soon, conventional phase demodulation methods have limitations in

practical situations, especially when dealing with interfering RBMs. It is important

to mention that if the interfering signal is not spectrally overlapped with the vital

sign information, it can be easily filtered by conventional spectral analysis. However,

inaccurate phase demodulation may introduce nonlinear errors that can hinder filtering

and prevent subsequent frequency estimation even under the simplest interference.

To enable robust phase demodulation in practical scenarios, in this chapter we present

our second manuscript, with a new algorithm for recovering the chest wall motion from

radar data. It exploits the novel framework of Unlimited Sampling (US) to greatly

extend the resilience of the recovery process. In this way, accurate demodulation can be

achieved, even under strong RBM interference.

59
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Abstract

This paper tackles the contactless recovery of vital sign information from backscattered signals using a

radar device. These sensors do not require any physical contact with the patient, which makes them

extremely suitable for healthcare applications such as the long-term monitoring of patients or elderly

care. In this context, the information regarding the breathing and heart rate is embedded within the

phase of the received radar signal and inherently suffers from a 2π ambiguity. For sensors operating at

millimeter-wave, common recovery methods rely on algorithms that unwrap the phase. These methods,

however, do not possess strong recovery guarantees and often fail when encountering quick phase

variations (e.g., random body movements and larger chest displacements). This can hinder accurate

estimation and possibly prevent the proper medical diagnosis. This paper proposes to do away with

these limitations by using the framework of Unlimited Sampling (US) to address the recovery of the

signal embedded in the phase. Compared to other unwrapping algorithms, the US framework provides

perfect recovery guarantees in practical settings. Furthermore, we show through simulations that the

US-based recovery algorithm greatly extends the resilience of the recovering process when encountering

random body movements at comparable sampling rates.

4.2.1 Introduction

Due to the rapid aging of the population worldwide, a lot of effort is being dedicated

to providing more efficient healthcare solutions. Recently, there has been renewed

interest in the contactless monitoring of vital signs such as breathing and heart rate.

Continuously monitoring this information is crucial for long-term patient care, especially

when conventional cabled or wearable devices cannot be used.

In this context, radar devices are emerging as a promising technology. Radar signals

can penetrate through different materials and are not affected by skin pigmentation
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or ambient light levels. In addition, radar devices preserve privacy [13], and can be

low-power and low-cost. These characteristics make radar sensors very suitable for several

healthcare applications, including sleep monitoring [89], assisted living [91], diagnosis [92],

newborn monitoring [159], and many others.

The information regarding the vital signs is embedded within the phase of the received

radar signal and inherently suffers from a 2π ambiguity. For sensors operating at

millimeter-wave, recovery methods rely on the AD [92, 117, 160], which requires an

additional unwrap operation to unfold the phase. The conventional unwrap algorithm,

however, does not possess recovery guarantees and often fails when encountering quick

phase variations, usually caused by interfering RBMs or even larger chest displacements.

These recovery errors can hinder accurate estimation and possibly prevent the proper

medical diagnosis.

To overcome these limitations, in this paper we propose a new algorithm that uses

the framework of US [161, 162] to address the recovery of the signal embedded in the

phase. Compared to the conventional unwrap algorithm, the US provides perfect recovery

guarantees in practical settings [161–163]. Furthermore, we show through simulations

that the US-based recovery algorithm greatly extends the resilience of the recovering

process when encountering random body movements at comparable sampling rates.

The remainder of this paper is organized as follows. In section 4.2.2, we introduce the

signal modeling for vital sign processing using radars. In Section 4.2.3 we describe a

widely used unwrap-based phase demodulation method and highlight its limitations. In

Section 4.2.4 we present the US framework and how it can be used to overcome these

issues. Finally, in Section 4.2.5, we show in a simulation setting the gain provided by the

US-based recovery algorithm, whereas, in Section 4.2.6, a few conclusions are drawn.

4.2.1.1 Notation

Throughout this paper, we are adopting the following notation: lower case boldface for

vectors x and upper case boldface for matrices X. The letter j represents the imaginary

unit (i.e., j =
√
−1), with the absolute value given by |(·)|. The Euclidean norm of the

vector x is denoted by ∥x∥. For any complex number x we use ℜ and ℑ to denote,

respectively, the real and the imaginary parts of x. The first order difference of a signal

s is denoted by (∆s) [k]
def
= s[k + 1] − s[k], whereas the N -th order difference ∆Ns is

obtained by the recursive application of the finite-difference operator. Finally, S is the

anti-difference operator.
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4.2.2 Vital Sign Models

The transmitted radar signal is modulated by the subtle chest wall motion due to the

breathing and heartbeat mechanisms. The vital sign information is then embedded in

the received radar signal as an additional phase modulation related to the chest wall

movement. The complex slow-time signal received from the monitored subject at nominal

distance d0 can be represented as

s(t) = exp

{
j

(
θ0 +

4πd(t)

λ

)}
, (4.1)

where θ0 = 4πd0/λ is a constant phase shift. The time-varying phase component of the

received signal can be written as

4πd(t)

λ
=

4π

λ

(
db(t) + dh(t) + drbm(t)

)
, (4.2)

where λ is the operating wavelength, and db(t) and dh(t) represent the chest wall motion

due to the breathing and heartbeat, respectively. The additional body movement is

represented by drbm, with the subscript RBM here to highlight its random and unknown

pattern in practical settings. The amplitudes of the chest wall motion vary from 4 to

12 mm when breathing, and 0.2 mm to 0.5 mm when the heart beats [15]. At rest, the

standard physiological range of the breathing rate goes from 10 to 25 breaths per minute,

whereas, for the heart rate, it goes from 60 to 100 beats per minute.

In ideal conditions, perfect recovery of the chest wall motion d(t) would allow for precise

estimation of the breathing and heart rates by simple analysis of the movement periodicity.

However, in practice, the received radar signal is usually tainted by reflections from

the external environment and additional RBMs from the monitored subject. These

interfering signals are usually much stronger than those induced by the chest wall

millimeter displacement, thus rendering the accurate recovery of vital signs challenging.

It is important to note these RBMs cannot be avoided in practical situations. Therefore,

contactless monitoring can only reach its full potential if it can be seamlessly integrated

without added restrictions on the patients. This is why developing methods that are

robust to large RBMs is of paramount importance for radar-based monitoring of vital

signs [76, 112, 124].

4.2.3 Phase Demodulation

Phase demodulation is essentially the process where the complex samples of the slow-time

signal are combined, in order to recover the displacement signal from the phase variation
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Figure 4.1: Chest wall displacement contaminated with additional body movement:
true displacement, wrapped phases around ±λ/2, and recovered signal using the con-

ventional unwrap algorithm.

over time. Several techniques have already been proposed for that, including the complex-

signal demodulation (CSD) [116, 144, 164] and the linear demodulation [4, 93, 165]. As

discussed in [122], these methods suffer from intermodulation products and harmonic

interference when working at higher operating frequencies. To avoid these issues and

enable precise phase recovery, the AD is commonly used. In this case, the recovered

displacement signal can be obtained using

d̂(t) =
λ

4π
· unwrap

(
arctan

[
ℑ(s(t))
ℜ(s(t))

])
. (4.3)

As the phase is bounded by [−π, π], displacements larger than λ/4 will result in disconti-

nuities. To reconstruct the phase and estimate the signal of interest, the AD requires an

additional unwrap operation.

The conventional unwrap algorithm is commonly used, and it has a very straightforward

implementation. Whenever the phase jump between two consecutive samples is greater

than or equal to π radians, it corrects the new sample by adding ±2π, so that the

difference becomes less than π. However, this algorithm is very sensitive to interference.

It often fails when dealing with signals that exhibit quick phase variations, which can

be due to RBMs or even faster chest displacements. In these cases, unwrap errors can

be accumulated and result in large distortions in the recovered displacement signal.

Figure 4.1 shows a 20-second segment of a simulated chest wall displacement signal,

contaminated with a short segment of RBM interference. Initially, when only the

breathing and heartbeat signals are present, the wrapped phases can be accurately

recovered. However, in the presence of additional RBMs, the conventional unwrap fails

and large distortions are then introduced in the recovered signal.
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The well-known Itoh’s condition [166] defines theoretical bounds for the performance of

the conventional unwrap algorithm. It states that a necessary condition for successfully

recovery is that the maximum amplitude of the first-order difference of input samples

should be limited by λ. In other words, the maximum phase (displacement) variation

between adjacent time samples should be smaller than the operating wavelength, i.e.

∀k ∈ [K],
∣∣d[k + 1]− d[k]

∣∣ ⩽ λ, (4.4)

where k is the sample index for a signal with K samples. If this is satisfied, phase

changes greater than π indicate that the phase should be corrected simply by adding

or subtracting 2π. Increasing the sampling frequency will generate highly correlated

samples with a lower first-order difference. So the performance of conventional unwrap is

dependent on the slow-time sampling frequency. This can usually lead to substantial

oversampling. However, Itoh’s condition is a necessary but not sufficient condition for

successful reconstruction. Under practical settings and reasonable amplitude of random

body movements, the conventional unwrap operation used in the AD completely fails to

recover the chest wall displacement signal.

4.2.4 Unlimited Sampling

The previous section introduced the inherent challenge that arises when estimating vital

signs from radar measurements, i.e., the information of interest is embedded in the phase

of the received signal. Considering the limitations of the classic unwrap method, we

introduce here the use of the US framework for recovering the vital sign information.

The US is a novel framework that breaks away from the limitations of the classic

unwrapping method, that is Itoh’s condition, by leveraging the fact that the signals

of interest are bandlimited. It was originally proposed for tackling ADC saturation

by co-designing the sensing architecture and the algorithms that fold the signal; thus

giving an unlimited dynamic range. Earlier publications [161–163] first demonstrated

theoretical recovery capabilities using US-enabled devices, whereas recent publications

are demonstrating its potential in real settings [167–169]. In this work, we leverage this

new framework in the context of recovering the phase for radar-based monitoring of vital

signs.

Let us consider the following acquisition model. Let g(t) := 2d(t) be the signal of interest,

sampled at a rate 1
T , using a modulo-based acquisition system Mλ(·) with a dynamic

range of λ (±λ/2). The acquired folded signal is thus

y[k] = Mλ(g(kT )), (4.5)
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where the link between (4.5) and (4.1) is given by

Mλ(g(kT )) =
λ

2π
∠s(kT ), (4.6)

with 1
T being the slow-time sampling rate. While the conventional unwrap only has a

necessary condition for reconstruction, the US provides the following result:

Theorem 4.1 (Unlimited Sampling Theorem, [162]). Let g(t) be a finite energy, ban-

dlimited signal with maximum frequency Ω and let y[n], n ∈ Z in (4.5) be the modulo

samples of g(t) with sampling rate 1
T . Then a sufficient condition for the recovery of

g(t) from y[n] is that T ⩽ 1
2Ωe (up to additive multiples of 2λ) where e denotes Euler’s

constant.

It is interesting to see that the sampling rate 1
T required for perfect reconstruction neither

depends on the amplitude of the signal nor, and more strikingly, on the dynamic range

λ used for the folded acquisition (e.g. the radar’s wavelength). Herein lies the main

advantage of using the US framework; only the knowledge that the signal is bandlimited is

sufficient to guarantee its perfect reconstruction. One can also see the result in Theorem

4.1 as an extension of the Nyquist sampling theorem to folded signals. Along with this

result, the authors in [162] also developed an iterative reconstruction algorithm that

provides perfect estimates d̃ [k] from the folded measurements y[k].

Algorithm 1 Unlimited Sampling Algorithm

Data: y[k] and λZ ∋ βr ⩾ 2∥d∥∞.

Result: d̃ [k] ≈ d [k].

1) Compute N =
⌈
log λ/2−log βr

log(TΩe)

⌉
.

2) Set z(0)[k] =
(
Mλ(∆

Ny)−∆Ny
)
[k].

3) for n = 0 : N − 2

(i) z(n+1)[k] =
(
Sz(n)

)
[k].

(ii) z(n+1) = λ

⌈
⌊2z(n+1)/λ⌋

2

⌉
(rounding to λZ).

(iii) With J = 12βr/λ, compute κn. κn =

⌊
Sz(n+1)[1]−Sz(n+1)[J+1]

24βr
+ 1

2

⌋
(iv) z(n+1)[k] = z(n+1)[k] + λκ(n).

end

4) d̃[k] = 1
2

[(
Sz(N−1)

)
[k] + y[k] +mλ

]
, mZ.
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This algorithm relies on the fact that finite differences and modulo operations can

somewhat commute at high order [162, Prop. 2]. In this sense, one can also see the US

framework as an extension of Itoh’s condition to higher orders.

Finally, the recovered displacement signal using the US-based recovery can be expressed

as

d̂(t) = US

(
λ

2π
arctan

[
ℑ(s(t))
ℜ(s(t))

])
, (4.7)

where the US operator represents a function that executes the US algorithm.

4.2.5 Simulation Results

In order to assess the performance gain provided by the proposed US-based recovery

method, Monte Carlo simulations were carried out.

Based on [28], the chest wall displacement due to breathing db(t) is modeled as a low-

pass filtered periodic sequence of quadratic inspiration and exponential expiration. For

modeling the heartbeat displacement dh(t), a Gaussian pulse train is used [104], based on

the idea that the heartbeat is a short explosive motion with a pulsatile nature. The initial

phase of both displacements is generated randomly on each run. As an example, the

breathing rate and amplitude were defined as 13 bpm and 12 mm, respectively, whereas

for the heartbeat, we used 70 bpm and 0.5 mm, respectively.

The RBM interfering signal drbm(t) is constructed using three different models related to

different types of body movements:

• First, the ramp body movement was defined as

drbm(t) = arbm
(t− ti)

(tf − ti)
, (4.8)

where arbm is the movement’s amplitude, and t ∈ [ti, tf ], with ti and tf being the

initial and final time of the movement, respectively. This model could represent,

for instance, a simple torso movement to the front.

• The second body movement follows a sine function and is defined as

drbm(t) = arbm sin (2πfrbm(t− ti) + ϕ), (4.9)

where frbm is the movement’s frequency and ϕ ∈ U(−π, π) is the random initial

phase. Here we are modeling a rocking (back-and-forth) motion of the torso, with

controllable amplitude and frequency.
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Figure 4.2: Illustration of simulated body movements.

• And finally, the fully random body movement, which is defined as

drbm(t) = arbm
z(t)

∥z(t)∥∞
, (4.10)

where z(t) is a real signal whose spectrum is bandlimited at frbm, with each

component of the non-zero spectrum being of unit amplitude with a random phase

in [0, 2π]. This model does not impose any particular structure and more closely

resembles an actual interfering body motion.

Figure 4.2 shows examples of the displacements generated by these models. The purpose

of using these different models is twofold. First, by using the first and second models, we

show that our approach can deal with body movements that are commonly occurring in

day-to-day life and that can be easily modeled. Second, to avoid narrowing our study

to specific movements, and to properly showcase the resilience of the US recovery to a

broad range of movements, the fully random movement is used. Indeed, actual body

movements have an inherent limit in their frequency content as they do not exhibit

infinite acceleration. This makes the bandlimited RBM model appealing as it fits both

the physics of the problem and the requirement of Theorem 4.1.

The composite displacement signal d(t) is low-pass filtered and used to generate the

slow-time complex samples according to (4.1), with the phase shift θ0 being modeled as a

random variable, i.e. θ0 ∈ U(−π, π). At each iteration, the generated signal is processed

using the AD with the conventional unwrap operation or the proposed US-based recovery.

From now on, we will refer to these methods simply as AD or US, respectively.

The reconstruction is tested for different amplitudes of the RBM, as well as for different

slow-time sampling rates, in a Monte Carlo approach. The normalized recovery error

(NRE) is then calculated as

NRE = 10 log10

(
∥d− d̂∥
∥d∥

)
, (4.11)
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(a) AD - “ramp”.
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(b) AD - “sine”.
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(c) AD - “all random”.
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(d) US - “ramp”.
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(e) US - “sine”.
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Figure 4.3: Normalized recovery error (in dB) for different body movements.

where d and d̂ represent the vectors with the true and recovered displacement signals,

respectively. The final performance for each method is evaluated by averaging the NRE

over all iterations, with 1000 runs being performed for each scenario. In this initial work,

we are only evaluating the noiseless case.

Figure 4.3 shows the average NRE as a function of the slow-time sampling frequency

and RBM amplitude, considering all the three simulated body movements, using an

operating frequency of fc = 60 GHz (λ = 5 mm). For easy interpretation of the results,

the blue areas represent a perfect recovery of the displacement signal, while the red ones

indicate regions of failure. The duration of the processing window was 20 seconds, and

each movement started at the tenth second, with a duration of 2 seconds.

Figure 4.3a shows the performance of conventional unwrap for the ramp body movement.

It can be seen that it follows the linear behavior stated in (4.4), i.e., for precise phase

recovery, the slow-time sampling rate needs to be increased linearly according to the

amplitude of the interfering body movement. Figure 4.3d shows the performance when

using the US framework. In this case, for recovering RBMs with the same amplitude,

a much smaller slow-time sampling frequency can be used. In fact, after reaching

a minimum value for the slow-time sampling frequency, the proposed algorithm can

precisely recover the displacement signal, independent of the RBM amplitude. The
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Figure 4.4: Normalized recovery error (threshold at -20 dB) for the ramp body
movement, at different operating frequencies.
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Figure 4.5: Normalized recovery error (threshold at -20 dB) for the ramp body
movement, with different durations.

required sampling for perfect reconstruction only depends on the bandwidth of the signal

of interest (not on its amplitude), which is consistent with Theorem 4.1.

Figures 4.3b and 4.3c show the performance of conventional unwrap for the sine and fully

random body movements, with frbm = 0.3 Hz. In these cases, given the more complex

behavior of the additional interference, even smaller amplitudes of RBMs completely

prevent successful recovery of the displacement signal, which would require much higher

sampling rates. On the other hand, it can be seen in Figs. 4.3e and 4.3f, that the

US-based method provides a large improvement compared to conventional unwrap, with

minor degradation at larger amplitudes of the RBM. It only fails when the slow-time

sampling frequency is lower than 20 Hz and 30 Hz for the sine and fully random body

movements, respectively. Therefore, it extends the resilience of the recovery process when

encountering random body movements at comparable sampling rates.

It is important to mention that, if frbm does not overlap with vital sign frequencies,

accurate recovery of the displacement signal using the US would allow easy filtering of the

RBM interference by conventional spectral analysis. However, incorrect demodulation
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using the conventional unwrap algorithm may introduce nonlinear errors that can hinder

filtering and prevent subsequent estimation, even under the simplest RBM interference.

Figure 4.4 shows −20 dB threshold lines in the NRE (perfect recovery below the lines), for

the ramp body movement with the same parameters as before, now at different operating

frequencies. It can be seen that, under the RBM interference, the AD performance

decreases at higher operating frequencies. At 60 GHz and 79 GHz for instance, the AD

cannot recover RBMs with amplitudes larger than 20 cm, even if oversampling at 100 Hz.

Conversely, the US method provides perfect recovery of a 20 cm RBM using a slow-time

sampling frequency lower than 25 Hz or 35 Hz, at 60 GHz and 79 GHz, respectively.

Finally, Fig. 4.5 shows the −20 dB threshold lines for the same ramp body movement,

but now with different durations. Reducing the duration to reach the same amplitude is

equivalent to increasing the movement velocity. In these cases, the AD with conventional

unwrap follows Itoh’s condition with performance degradation at higher velocities, whereas

unwrapping with the US method is independent of the velocity variation and can provide

perfect recovery until 45 cm with less than 30 Hz of slow-time sampling frequency. This

sampling rate is also below the upper-bounded sampling rate predicted by Theorem 4.1

represented by the gray line in Fig. 4.4 and Fig. 4.5.

4.2.6 Conclusion

We proposed in this paper the use of a novel framework for recovering vital signs from

radar measurements. The proposed method relies on the US framework, for being able to

tackle the recovery of signals whose measurements are folded. We first introduced the AD

with the conventional unwrap operation, which has limitations to recover the embedded

phase, especially under the presence of interfering body movements. Leveraging the fact

that these movements are, because of their human nature, bandlimited, we showed that

the US provides an attractive alternative for the successful recovery of the displacement

signal. The simulation results confirmed that the required sampling rate for the US to

succeed was far inferior to the conventional unwrap and, more importantly, independent

of the amplitude of the movement. Future work will extend this initial analysis to noisy

scenarios and, further, to practical measurements using radar sensors.



Chapter 5

Filtering

5.1 Preamble

In this chapter, we will focus on the filtering stage. As discussed in Section 2.4.3, the

goal of this block is to filter any interfering components still present in the chest wall

displacement signal, thus allowing accurate estimation of the breathing and heart rates

in the subsequent signal processing stage.

Here we present a manuscript that shows our work at the NICU, where we monitored

the respiration of premature babies in a real clinical environment. For the first time,

different scenarios common to the NICU daily routine were investigated, irrespective of

the amount of RBMs or external interference.

By using a novel RBM mitigation technique, the proposed radar-based solution was able

to precisely recover the chest wall motion. This allowed clear identification of different

breathing patterns and reliable breathing rate estimation most of the time. These results

can be interpreted as a proof-of-principle that a radar-based approach has the potential

for contactless breathing monitoring in NICUs.

71
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Abstract

Vital signs monitoring systems are essential in the care of hospitalized neonates. Due to the immaturity

of their organs and immune system, premature infants require continuous monitoring of their vital

parameters, and sensors need to be directly attached to their fragile skin. Besides mobility restrictions

and stress, these sensors often cause skin irritation and may lead to pressure necrosis. In this work, we

show that a contactless radar-based approach is viable for breathing monitoring in the Neonatal

Intensive Care Unit (NICU). For the first time, different scenarios common to the NICU daily routine

are investigated, and the challenges of monitoring in a real clinical setup are addressed through different

contributions in the signal processing framework. Rather than just discarding measurements under

strong interference, we present a novel random body movement mitigation technique based on the

time-frequency decomposition of the recovered signal. In addition, we propose a simple and accurate

frequency estimator which explores the harmonic structure of the breathing signal. As a result, the

proposed radar-based solution is able to provide reliable breathing frequency estimation, which is close

to the reference cabled device values most of the time. Our findings shed light on the strengths and

limitations of this technology and lay the foundation for future studies toward a completely contactless

solution for vital signs monitoring.

5.2.1 Introduction

Nearly 15 million infants are born annually before the 37th week of pregnancy, meaning

that about 10% of all births worldwide are premature [170]. Due to their immature organ

systems and associated functions, as well as their immune system, these infants are at a

https://doi.org/10.1038/s41598-022-08836-3
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higher risk of infections, chronic diseases and respiratory problems. The immaturity of

breathing regulation and lungs often lead to apnea-bradycardia and respiratory distress

syndromes. This is commonly followed by bronchopulmonary dysplasia in 27% of

the infants born at less than 30 weeks of gestation [171–174]. Consequently, further

development of these premature infants has to continue ex-utero, and they usually have

to spend several weeks at a NICU.

During this period, continuous monitoring of their underdeveloped organs is necessary.

Often, newborns are dependent on parenteral nutrition, respiratory support, and invasive

diagnostic interventions which, albeit being essential for survival, may cause stress to

the child. Basic vital parameters such as respiration, heart rate and oxygen saturation

also need to be monitored. To this end, several sensors are directly attached to their

fragile skin and connected to the monitoring systems through cables. Besides mobility

restrictions, these sensors often cause skin irritation and may eventually lead to pressure

necrosis [5–10].

In order to promote the development of premature babies, a number of efforts have been

made toward non-invasive monitoring and diagnostic solutions. The use of sensors that

can monitor a variety of vital signs without a cable connection, but bonded to the skin,

is being investigated in [175, 176]. Current studies are also investigating the potential

of different non-contact techniques for non-invasive diagnostics in children. Efforts are

underway to detect pathological changes in body excretions by analyzing volatile organic

compounds [177, 178]. There are approaches using optical methods to monitor the pulse

rate and oxygen saturation without direct skin contact and cable connection, based on

e.g. dynamic light scattering [179], video [84] or photoplethysmography [180, 181]. Of

high relevance for preterm infants is also the diagnosis of respiratory pathologies and

classification regarding periodic breathing and apneas [182, 183]. This task is addressed

using different non-contact techniques, which require redundant measurements of various

vital signs, e.g. respiration motion, heart rate, oxygen saturation or nasal breathing [184–

186].

The contactless monitoring of the cardiorespiratory activity neither confines nor inhibits

the patient, reduces hygiene risks and does not cause any discomfort, irritation or skin

damage [15, 75]. In this context, radars have already been proven to be a promising

technology [12, 16, 76], being intrinsically low-power, low-cost and privacy preserving.

Unlike camera-based systems [83, 87], radar signals can penetrate through different

materials (such as plexiglass, clothing, mattresses and blankets), and are not affected

by skin pigmentation or ambient light levels. However, due to the reduced transmitted

power, these signals can be easily buried in the background noise, or masked by stronger

external interference, including body movements from the monitored patient [93]. This



Filtering 74

interference is a major challenge for accurate estimation in contactless solutions as well

as for cabled devices. Specific signal processing techniques are thus needed in order to

ensure reliable and robust measurements.

Recent works [94, 125] have demonstrated that an ultrawideband radar can provide

reliable breathing rate estimates for neonates under specific conditions. However, these

investigations were limited to a single scenario, where the neonates were lying over an

open-air crib, always in supine position. In addition, radar performance was evaluated

only during minimal movements of the monitored patients. In this article, we take one

step further by using a simpler CW radar device, and investigating premature infants

under different scenarios common to the NICU routine, irrespective of the amount

of movement or external interference. The specificity of the monitored patients in a

real clinical setup creates several challenges which were addressed through different

contributions in the proposed signal processing framework. Particularly, rather than

just discarding measurements under strong interference [94, 125–128], we present a novel

random body movement mitigation technique based on the time-frequency decomposition

of the recovered signal. Additionally, we propose a simple and accurate frequency

estimator, which explores the harmonic structure of the breathing signal.

5.2.2 Problem formulation

The activity of the cardiovascular and respiratory systems causes some physical and

physiological effects on the human body. The chest wall moves during the inspiration/ex-

piration cycle as a result of the diaphragm and intercostal muscle movement. This small

and periodic displacement can be detected by radar, allowing accurate estimation of the

breathing rate under certain conditions. Figure 5.1a illustrates the basic operational

principle of a CW radar. The transmitted signal propagates through the free space and

reaches every object in the radar’s field-of-view, being reflected back with additional

phase information regarding each object’s position. The received signal can thus be

modeled as a scaled and time-shifted version of the transmitted signal, in which the

phase variation over time contains valuable information regarding the scene movement.

This time-varying phase θ(t) can usually be recovered as

θ(t) =
4πd(t)

λ
, (5.1)

where λ is the radar operating wavelength, and d(t) represents the displacement signal

which, ideally, would correspond only to the chest wall motion due to the breathing

mechanism. As seen by the radar, this movement is mainly originated by the reflected

points over the chest moving surface, but it may additionally include residual motion
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Figure 5.1: Continuous-wave radar for breathing monitoring in the NICU.
a, Basic operational principle. b, Block diagram of the signal processing chain. Before
estimation, the received signals from the ADC are phase demodulated and further

processed in the RBM mitigation unit.

from the belly, sides and the back, depending on the patient relative position. In healthy

adults, standard amplitudes for this motion range between 4 mm to 12 mm [102], with

breathing rates varying from 5 to 25 breaths per minute (bpm) [187]. For premature

infants, these amplitudes can be smaller than 1 mm, while the average breathing rate

can normally reach 60 bpm [30], and go up to 80 bpm under specific conditions [31].

Perfect recovery of the chest wall motion d(t) would allow precise estimation of the

breathing frequency fb by simple analysis of the movement periodicity. However, in a real

clinical setup, besides unavoidable hardware imperfections, the received radar signal is

usually mixed with additional reflections from the external environment, arising not only

from different body movements of the monitored patient, but also from every moving

object in the scene. These interfering signals are usually much stronger than those

induced by the chest wall millimeter displacement, and this makes accurate recovery and

subsequent estimation of the breathing frequency a challenging task. In addition, when

considering premature infants, the reduced amplitudes of the chest wall motion, and the

wider range of possible breathing rates pose an additional signal processing challenge in

relation to previously reported research with adults.

5.2.3 Clinical setup and protocol

The study was performed in the Department of Pediatrics, at the Saarland University

Medical Center (Homburg, Germany). Figure 5.2a shows a premature neonate being

monitored with the conventional method. Besides the sensors attached to the chest and

abdomen, and connected by cables to the central monitoring unit (for oxygen saturation,
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Figure 5.2: Clinical setup. a, Conventional monitoring of premature neonate:
connection by cables to the central monitoring unit (heart rate, oxygen saturation,
respiration), and an additional peripheral venous catheter. b, NICU room view. Both
radar and the reference cabled device were controlled from the external computer. c,
Close top view. The radar was attached to a low-vibration tripod, 45 cm away from the

infant. d, Close side view with twins sharing the same bed.

heart rate, and respiration), an additional peripheral venous catheter and a gastric

tube are also necessary in this stage. The clinical setup, including the neonatal cot,

the radar device, and the reference monitoring system is shown in Figure 5.2b-d. The

radar is certified for operation in the 24-GHz ISM band, and it was installed outside the

cot, attached to a low-vibration tripod. The relative distance to the monitored infant

was around 45 cm to 50 cm. Due to the radar’s inherent capabilities, no modification

to the cot structure was necessary, and the plastic cover could remain closed during

the measurements. In Fig. 5.2d, twins are sharing the same bed, with only one being

monitored with the contactless method. Cobedding of twins is a common procedure in
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the NICU, with several studies reporting physiological benefits to the infants [188, 189].

A total of 12 premature infants were included in the study. The Supplementary Table

1 shows a summary of the patient’s information. They were selected on the basis of

medical opinion, and taking into account the medical safety of participating in the

study. For each infant, the measurements were carried out in three different days, at

noon (after feeding), over a period of 25 minutes each. Their natural position was not

changed during each measurement. Besides the supine (with the chest facing the radar),

prone (with the back facing the radar) and side positions, we have also investigated

cobedding cases with only one infant being monitored using the contactless method.

The idea was to investigate the different effects when collecting radar data from the

chest/abdomen and back. Additionally, if monitoring twins is possible, and what would

be a safe distance (in terms of radar interference) between them. The basic principle

that guided the data collection protocol was to ensure seamless operation at the NICU.

A detailed description of the patient’s protocols is shown in Supplementary Tables 2a-d,

including all interventions and additional transients manually annotated during the

measurements.

5.2.4 Signal processing background

Figure 5.1b shows the basic block diagram of the signal processing chain. The initial

signal processing step for CW systems is commonly known as phase demodulation. It

is essentially the process where the received in-phase and quadrature (I and Q) signals

from the radar’s ADC are combined with the aim to recover the displacement signal d(t).

Among several methods, the two most used are the AD [117] and the CSD [116]. While

the AD enables precise recovery of the chest wall motion, it is highly sensitive to hardware

calibration, and to the presence of DC offsets, noise, and external interference. The CSD

is more robust to these effects, but it relies on small displacements for recovering an

approximation of the breathing motion (please refer to the Methods1).

Figure 5.3 shows examples of the recovered breathing motion from radar data, in

comparison to the actual (reference) displacement acquired from the cabled device.

Initially, to precisely reconstruct the chest wall displacement, we selected “clean” segments

of data (no external interference), and the AD was used in both cases. While Fig. 5.3a

depicts a normal breathing pattern obtained at supine position, Fig. 5.3b shows an

occurrence of the Cheyne-Stokes (periodic) breathing pattern [36], with the infant at

prone position. This special form of breathing is physiologically found in neonates, and is

defined by a cyclic variation between hyperpnea and hypopnea [190–192], i.e. repetitive

1In Section 5.2.8
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Figure 5.3: Recovered chest wall motion with different breathing patterns.
a, Normal breathing pattern, under good conditions (no interference). b, Periodic
(Cheyne-Stokes) breathing pattern. c, Normal breathing pattern corrupted by external
interference and ADC saturation. d-f, Approximation using the CSD. g-i, Spectrum

comparing AD and CSD.

short cycles of pauses and breaths. Despite small differences between the recovered radar

signals and the reference device, the periodic breathing movement can still be clearly

identified in both cases. The small amplitudes of the chest wall motion can also be

visualized, with displacements around 2 mm in supine position and 0.5 mm in prone

position. These amplitudes are well below typical values for adults reported in previous

research [50, 54, 193].

The approximated breathing motion, obtained with the CSD, is shown in Fig. 5.3d,e.

Despite noticeable differences when compared to the AD, Fig. 5.3g,h show that both

techniques yield signals with the same fundamental frequency, corresponding to the

average breathing frequency. Given the small displacements we aim to detect, and the

challenging conditions of this real clinical environment, the CSD was adopted in our

solution for long-term monitoring. The harmonic structure of the breathing signal can

also be visualized, with the second harmonic being clearly distinguishable. This harmonic

structure can be used for improving estimation, as we will show latter. However, as

depicted in Fig. 5.3c,f,i, under external interference and eventual ADC saturation, both
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demodulation methods fail to reconstruct the chest wall motion. The spectrum becomes

dominated by the interference components, which will then prevent accurate breathing

frequency estimation. Therefore, additional processing is necessary in order to attenuate

these interfering effects.

5.2.5 Random body movement mitigation

Most research on contactless vital sign monitoring with radar sensors focus on a single-

person setup under ideal motionless conditions [95]. In practical monitoring situations,

the subject may often move body parts like hands, legs or torso, and even the entire body.

These unwanted but unavoidable movements are usually called RBMs. The amplitude of

their reflected signals is often much stronger than the millimeter-scale breathing motion,

which will potentially be masked by this interference. Since spontaneous RBMs are

inevitable, solving this problem is fundamental to reliable vital sign detection in practical

applications.

Several methods for RBM mitigation were already proposed [123], and even though

specific types of movements could be effectively cancelled out, they usually require more

complex systems. Most solutions rely on additional or duplicated hardware, thus suffering

from practical limitations such as misalignment, synchronization, and cost [116, 194, 195].

Another direction of research basically tries to identify segments of vital sign data with

RBMs, and simply discard these corrupted segments before estimation [94, 125–128].

However, depending on the processing window duration, even very short RBMs will affect

several seconds of good signal. Therefore, rather than simply discarding segments of data,

an approach which allows useful exploitation of these episodes with moderate RBMs is

desired. Recent work has begun to address RBMs using a single sensor and within more

challenging scenarios [93]. Nonetheless, experimental validation is still performed under

controlled situations, with RBMs being emulated through predefined behavior, which

results in limited interference over the desired signal.

First, let us assume that RBMs are sparse, i.e. they are not frequent and, when they

occur, their duration is small in relation to the observed time window. This contrasts

with the constant and periodic nature of the breathing movement. Additionally, their

amplitudes are usually much stronger than the standard breathing signal. These specific

time and frequency features will be present in the spectrogram of the recovered signal,

which can be analyzed toward identifying and possibly removing this interference. For

addressing this, we will use the NMF [196, 197], a matrix decomposition technique usually

employed for extracting features from a set of nonnegative data. If x(t) (Fig. 5.1b) is

the recovered signal containing the chest wall motion and eventual RBM interference, its
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magnitude spectrogram |X| can be obtained through the STFT of x(t). The NMF will

then decompose |X| as

|X| ≈ WH =
K∑
i=1

wih
T
i , (5.2)

where the matrices H and W contain, respectively, the associated time and frequency

basis components of |X|, with K being a predefined number of basis. In other words,

W can be seen as the set of frequency templates of |X|, while H contains the timing

information related to the activation of each of these templates. If we look into the time

activation matrix H, the basis components with sparse behavior and higher amplitudes

will often indicate the epochs when the RBM interference is present. Despite the unpre-

dictable frequency spectrum, which will eventually overlap with breathing frequencies,

the RBM distinct time behavior can be captured by the NMF time activation bases H,

whereas the corresponding basis in W will retain its frequency content. This allows

additional flexibility for filtering the RBM interference when compared to standard

spectral analysis methods. We can thus reconstruct the filtered spectrogram |̂X|, by
simply adding back all the wih

T
i matrices, except for the ones containing the interfering

components.

Figure 5.4a shows a 60-second processing window for illustrative purposes, where the

recovered signal x(t) (after CSD) is corrupted by segments of RBMs, with its normalized

spectrogram |X| in Fig. 5.4b. In the case of the CSD, the spectrogram is calculated

based on the complex samples of the recovered signal x(t), and therefore considers both

I and Q channels simultaneously. The NMF decomposition into K = 11 frequency (W )

and time basis (H) components is depicted in Fig. 5.4c,d. Each color represents a pair

of basis components, with the frequency content in Fig. 5.4c, and the corresponding

time activation in Fig. 5.4d. It can be seen that (please refer to the green and blue bases

for instance), due to its random nature, the RBM interference has frequency components

spread over the entire spectrum, overlapping with the breathing frequency region. While

a variety of frequencies can be visualized in W , the sparse and strong bases corresponding

to RBMs can be clearly identified in H (please refer to the Methods1). Removing the

selected bases allows the reconstruction of the filtered spectrogram in Fig. 5.4e, where

the breathing frequency variation over time (around 45 bpm) is now evident. After the

inverse STFT, the RBM filtered time signal is depicted in Fig. 5.4f. Finally, Fig. 5.4g

shows the bandpass spectrum of both the original and the RBM filtered signals. The

corresponding detected values are highlighted respectively with the blue and red markers.

The dashed black line shows the reference value for the average breathing frequency

associated with this processing window. Because of the strong RBM interference, the

1In Section 5.2.8
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Figure 5.4: NMF for random body motion mitigation. a, I and Q samples of
the displacement signal x(t), corrupted by RBMs. b, Normalized spectrogram |X|. The
RBM interference clearly dominates the spectrum and would jeopardize estimation. c,
NMF decomposition into the frequency basis components in W . d, NMF decomposition

into the time basis components in H. e, RBM filtered spectrogram |̂X|. f, I and Q
samples of the RBM filtered time signal x̂(t). g, Bandpass spectrum of the original and

RBM filtered signals.

maximum value of the original spectrum would indicate an erroneous breathing frequency

of 52.1 bpm, very distant from the true value of 42 bpm. After RBM filtering with the

NMF, the modified spectrum indicates a closer value of 42.4 bpm, where the estimation

error would be only 0.4 bpm.

5.2.6 Breathing rate estimation

Different models have already been proposed for representing the back-and-forth breathing

movement d(t), from simple sinusoidal approximations [98, 99], to more complicated

patterns as described in [28, 102]. The breathing movement is a complex phenomenon

which involves different patterns of motion, not only from the chest wall surface, but

also from the belly, shoulders and back [96, 97]. Therefore, it is difficult to identify

time-domain models that fully characterize it in a robust way, for every subject and

monitoring scenario. However, due to the inherent periodic nature of breathing, any
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function representing this movement can eventually be decomposed into Fourier terms,

containing the fundamental frequency and harmonics that correspond to the breathing

rates we aim to estimate. Hence, the displacement signal can be modeled as a sum of

harmonically related complex sinusoids, having frequencies that are integer multiples of

the fundamental breathing frequency. To better exploit this harmonic structure, in this

section we propose a simple and accurate NLS estimator [198], which is asymptotically

efficient for large processing windows, even in colored noise scenarios [199].

Initially, for removing any residual DC values, and possible high frequency noise com-

ponents, the RBM-filtered displacement signal x̂(t) is further filtered using a bandpass

Kaiser window (β = 6.5), from 0.3 Hz to 3 Hz (18 − 180 bpm). This corresponds to

the physiological range of breathing frequencies, also including possible harmonics. The

bandpass filtered signal d̂(t) will ideally be an accurate approximation of the true chest

wall motion d(t) (Fig. 5.1), and can finally be used for breathing frequency estimation.

Before estimation, for improving the SNR [104, 200, 201], we calculate the autocorrelation

function r(t) of the bandpass filtered signal. The estimation is first performed in time

domain, directly over the autocorrelated signal. An initial (coarse) estimation is obtained

through a peak detection algorithm, where the time distance between peaks provides

an estimation of the time between each breath. Eventually, detected peaks can be

excluded if the distance to its neighbors correspond to a frequency outside the expected

physiological range. The initial breathing frequency is thus calculated as the inverse of

the time between selected peaks, averaged over the entire processing window. This initial

estimation will be used to simplify the NLS algorithm.

The following step is to calculate the NLS frequency estimates ω̂, which are obtained

by maximizing the similarity between d̂(t) and the displacement signal model in (5.12).

Under certain conditions (please refer to the Methods1), the solution to this problem (the

resulting cost function in (5.17)) can be efficiently implemented using the Fast Fourier

Transform (FFT) and a linear grid search algorithm [202], where the estimator reduces to

a summation of breathing harmonics over the power spectral density of d̂(t). The initial

time domain estimation is used for limiting the search range, thus avoiding stronger

low-frequency components which may still be present in real data. This strategy also

reduces the computational effort to perform the grid search.

Experimental results

The initial measurements were used for setting up the ideal distance between radar and

the monitored infant (Supplementary Fig. 1). From a total of 30 measurements at the

1In Section 5.2.8
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adjusted position (around 45 cm), 3 were excluded due to recording issues with the

devices. The remaining sequences were processed using sliding windows of 30 seconds,

with 28 seconds of overlap, leading to updated breathing rate estimates every 2 seconds.

This resulted in approximately 20,250 estimates, from 675 minutes of analyzed data. The

measurements proceeded irrespective of the amount of movement or external interference.

The sequences include moments with hiccups, yawn, cry, grunt, periodic breathing, and

also additional movements from the NICU room, e.g. medical interventions and visitors

(Supplementary File 3). All the data processing was performed using Matlab [203].

Figure 5.5 shows examples of I and Q samples from the radar’s ADC, the estimated

breathing frequency values, and the reference values from the cabled device. In Fig. 5.5a,

the monitored infant was sleeping calmly, in supine position, and a nurse was present in

the NICU room during the entire measurement, 2.5 meters away from the baby. These

conditions resulted in good radar measurements with low level of interference. On the

other hand, Fig. 5.5b shows one example where the infant was lying in prone position.

In this case, several segments of strong interference can be visualized in the I/Q input

data. Besides the infant moving freely and grunting, a nurse was also present during this

measurement, from minute 9 and onwards. Figure 5.5c corresponds to one of the twin

cases. A direct intervention over the monitored infant was registered around the third

minute, for fastening the oxygen saturation sensor. The second twin was sleeping calmly

during the entire measurement. The distance between them was around 20 cm. Figure

5.5d shows another example of a highly interfered sequence, where the monitored infant

was constantly moving and accompanied by the mother, just 1 meter away. In this case,

long segments of strong interference (and eventual ADC saturation) can be visualized.

Importantly, when the babies were moving, a high level of saturation was also observed in

the reference cabled device data. During saturation, the ADC clips the input signal at the

maximum allowed magnitude, generating segments of constant amplitude that increase the

low-frequency content of the current processing window. This limitation results in a rapid

decrease in the reference breathing frequency values (valleys), followed by an immediate

recovery to the correct values just after saturation ends (these valleys are highlighted in

Fig. 5.5b,d). This anomalous behavior is not related to any physiological pattern, and

indicates that the reference device is not reliable in these moments. Consequently, for

calculating the performance metrics, we have only considered the processing windows

correspondent to non-saturated data segments of the reference device. This resulted in

18 valid measurements and approximately 4,964 valid breathing rate estimates. The

measurements from the side position resulted in low SNR and unreliable estimates that

were also discarded. On the other hand, radar saturation is being considered inherent

to the measurement setup. Therefore, radar data segments with saturated I and/or Q

samples are being considered valid and processed.
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Figure 5.5: Radar input data and estimated breathing rate. All sequences were
processed with the complete proposed solution (NLS+NMF), and each one represents
a different monitoring scenario. a, Single infant in supine position (chest facing the
radar). b, Single infant in prone position (back facing the radar). c, Twins in the same
bed, spaced by 20 cm, with the monitored infant in prone position. d, Highly interfered

sequence.

A summary of the obtained results is presented in Fig. 5.6. Figure 5.6a-d shows the final

average accuracy, in each of the investigated scenarios, namely: (a) supine position (11

measurements), (b) prone position (7 measurements), (c) single infant in the warming

bed (14 measurements) and (d) twins sharing the same bed (4 measurements). These

scenarios are not exclusive. Supine and prone scenarios include single/twins cases and vice-

versa. The bars compare the performance of three different algorithms: (i) conventional

estimation using the DFT [107, 147, 204], representing the benchmark; (ii) the proposed

NLS estimation (NLS); and (iii) the complete proposed solution (NLS+NMF), including

the NMF-based RBM mitigation algorithm. The same preprocessing steps (phase

demodulation and bandpass filtering) were used in all cases. The accuracy is being

calculated as the percentage of time (in terms of valid processed windows) during which

the final estimation from the radar is within a predefined error interval. For each case,

the 3, 6 and 10 bpm accuracy intervals were considered. For instance, a 6 bpm accuracy

of 80% means that the magnitude of the error between radar estimation and the reference

device was smaller than 6 bpm for 80% of the time.

It can be seen that the proposed techniques provided substantial improvement in all
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Figure 5.6: Summary of results, considering all processed sequences for
each scenario, and comparing different techniques: standard DFT estimation
(DFT), the proposed NLS estimation (NLS), and the complete proposed
solution, with RBM mitigation (NLS+NMF). Average accuracy for different
techniques. a, Supine position. b, Prone position. c, Single infant in the cot. d, Twins
sharing the cot. e, Average accuracy for different scenarios, considering the complete
proposed solution (NLS+NMF). f, Average RMSE for different scenarios and different

techniques.

cases, with up to 17% of enhancement, and reaching a maximum 6 and 10 bpm accuracy

of 79.3% and 93.1% respectively, in prone position. Figure 5.6e directly compares the

performance of the complete proposed solution in each scenario, also including the average

result of all processed sequences. An interesting outcome is related to the fact that the

prone position produced on average the best results, even though the displacements

verified from the back were smaller than the ones from the chest/abdominal region.

This could be a result of the more uniform breathing motion of the posterior chest wall,

since the ossification of the ribs begins at the back. Due to the higher flexibility of

the anterior chest wall, abdominal and thoracic movements yield a more heterogeneous

motion, thus making radar estimation more difficult. In addition, the prone position

might lead to reduced body movements, thus reducing interference. Lastly, single and

twin cases provided on average similar results, thus indicating that a second infant in

the cot may not directly impact radar performance.

The RMSE of each sequence was also calculated, and the average values for each scenario
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are presented in Fig. 5.6f, comparing the proposed techniques with the conventional

DFT estimation. The RMSE is defined as

RMSE =

√√√√ 1

N

N−1∑
n=0

(Bn − B̂n)2, (5.3)

where Bn and B̂n represent, respectively, the reference and estimated breathing rates

(in bpm), in the nth processing window. It can be seen how the proposed solution

outperforms the standard approach, providing significant and robust improvement over

the different scenarios, reducing the RMSE in all cases. The overall RMSE considering

all valid measurements was 6.38 bpm. The measurements in prone position resulted in

the best performance, with a RMSE close to 5 bpm. Supplementary File 4 shows the

Bland-Altman analysis considering all scenarios and also comparing the standard DFT

estimation and the complete proposed solution.

The performance can also be analyzed considering only the moments without RBMs or,

at least, with reduced external interference. For identifying these moments we can use

the RBM mitigation algorithm and look for the processing windows where no interfering

components were captured by the time activation bases H . Given that spurious noise or

additional frequency components may eventually be identified and filtered out as RBMs,

we accepted as “minimal movement windows” the ones in which a maximum of 2 bases

were excluded by the algorithm. Figure 5.7 shows the obtained performance considering

only these moments. The average 10 bpm accuracy for all measurements was higher

than 97%, with the 6 bpm accuracy being higher than 80% in all scenarios. The average

RMSE was 4.3 bpm, with the best result close to 4 bpm in prone position. In this case,

all scenarios presented very similar performance, both in terms of accuracy and RMSE.

The percentage of minimal movement windows in prone position was almost twice the

number in supine position. This difference may confirm that the prone position leads to

reduced random body movements and this is one of the reasons for the better results in

this scenario.

This remaining RMSE is expected and can be explained if we take into consideration

the premature conditions of the monitored infants (Supplementary Table 1), where

the immaturity of their respiratory system and the diagnosed conditions may lead to

irregular breathing patterns and thus hinder estimation. In addition, some transients

may not be detected as RBMs due to their specific characteristics, which may not agree

with our assumption of strength and sparsity (for instance, hiccups which are periodic,

or other continuous movements). Finally, some inaccuracy is also expected from the

reference device, as these sensors (please refer to the Methods1) suffer from imprecision

1In Section 5.2.8



Filtering 87

89.5
87.2

93.1
89.4 89.8

All Supine Prone Single Twins
0

20

40

60

80

100

A
cc

u
ra

cy
 (

%
)

3 bpm 6 bpm 10 bpm

All

Supine
Prone

Single
Twins

4

5

6

7

8

9

10

11

12

R
M

S
E

 (
b

p
m

)

DFT

NLS

NLS+NMF
97.2 96.8 97.8 97.4 96.5

All Supine Prone Single Twins
0

20

40

60

80

100

A
cc

u
ra

cy
 (

%
)

3 bpm 6 bpm 10 bpm

All

Supine
Prone

Single
Twins

4

4.1

4.2

4.3

4.4

4.5

R
M

S
E

 (
b

p
m

)

a b

Figure 5.7: Average performance during minimal movement windows. a
Accuracy for different scenarios. b, Average RMSE for different scenarios.

and cardiac interference, specially in neonates with higher breathing rates and limited

lung aeration [45, 94].

5.2.7 Conclusions

The proposed radar-based solution was able to precisely recover the chest wall motion,

allowing clear identification of different breathing patterns. This capability is the first

step toward breathing frequency estimation, and early non-invasive diagnosis of neonatal

respiratory problems. In addition, most of the time the proposed algorithms provided

reliable breathing frequency estimates, effectively reducing the effects of the RBM

interference. The best performance was achieved when the infants were in prone position,

with the 6 and 10 bpm accuracy reaching almost 80% and 93%, respectively. The overall

RMSE was smaller than 7 bpm, with the best result close to 5 bpm in prone position.

During minimal movements, the 10 bpm accuracy was higher than 97%, with the 6

bpm accuracy being higher than 80% in all scenarios. The average RMSE was 4.3 bpm,

with the best result close to 4 bpm in prone position. These results can be interpreted

as a proof-of-principle that the proposed radar-based approach has the potential for

contactless breathing monitoring in the NICU. However, more experiments are underway

to further reduce the vulnerability to artifacts, e.g. by using optimized algorithms of

data processing and redundant technologies.

Finer radar calibration and a more precise setup adjustment would improve raw data

quality and reduce ADC saturation. Further improvement of radar’s input data can still

be achieved by shifting from CW to MIMO and FMCW architectures. This change would

allow not only range isolation from external interference, but also to steer the radar’s

beam (field-of-view) directly to the monitored patient. The motion robustness can still
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be improved by tailoring the NMF algorithm according to the specific characteristics of

the random body movement interfering signal. One particular case of interest would be

the sparse NMF.

Finally, follow-up studies with more mature and healthy children of different ages would

allow to identify pathologies, age-specific characteristics or confounding factors, and to

adapt the experimental design accordingly. The best average results obtained at prone

position point to the necessity of additional investigation on different clinical setups,

where the radar could be also positioned under the mattress. Furthermore, with the aim

to develop a complete contactless solution, an investigation of the radar capabilities for

heart rate monitoring in this challenging environment is necessary as well as moving to

real-time processing.

5.2.8 Methods

Notation. We are adopting the following notation: lower case boldface for vectors x,

and upper case boldface for matrices X. The letter j represents the imaginary unit

(i.e., j =
√
−1), with the absolute value and angle operators given by the symbols |(·)|

and ∠(·). The transpose, conjugate, and conjugate transpose operators are denoted

respectively by the symbols (·)T, (·)∗, and (·)H. The sets of N -dimensional vectors of

complex and real numbers are represented by CN and RN . The Euclidean norm of the

vector x is denoted by ||x||. The Hadamard product is denoted by ⊙.

Ethics Statement. The study was designed in accordance to the Declaration of Helsinki,

and approved by the regional ethics committee of Saarland (Saarbrücken, Germany), with

reference number 276/17. Written informed consent was obtained from the parents prior

to the data collection, and all the documentation and collected data were pseudonymized.

Radar system. The CW radar device used in this study is a prototype variant of the

IEE’s VitaSense® sensor [152], operating in the 24-GHz ISM band, with an illumination

area of 76.5◦ in azimuth, and 35.5◦ in elevation. At the monitored distances, the low

transmitted power leads to energy absorption rates 20 times below that of a cell phone

[205]. The ADC sampling rate was 16 Hz, and the data acquisition was controlled by

proprietary software on the external computer.

Reference cabled device. Throughout all measurements, the infants were connected

to a reference monitor commonly employed in the NICU. In addition, respiration, heart

rate and oxygen saturation signals were recorded using the VitaGuard® 3100 device
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[206], cable-connected using 3 Kendall® neonatal 4203 electrodes [207]. This device

measures the breathing movement through the electrodes attached to the infant’s chest

(impedance pneumography), and provides the breathing rate with a resolution of 1 bpm,

and an update rate of 1 second. The synchronization between reference and estimated

frequency values was performed offline, based on the correlation between these signals.

After processing an entire measurement (25 minutes), the resulting array with radar

estimated frequency values is compared to the longer array with reference values, in a

sliding window approach. The synchronization index was selected in order to maximize

the correlation between these arrays. This procedure was performed automatically, using

a Matlab routine.

CW radar operational principle. The transmitted CW signal can be written as

xT(t) =
√

AT cos(2πfct+ ϕ(t)), (5.4)

where AT and fc are, respectively, the transmitted signal power and operating frequency,

and ϕ(t) is the transmitter phase noise (local-oscillator). This signal is phase modulated

by the target’s motion, and reflected to the radar for processing. The received signal

from a target at nominal distance d0 can be written as

xR(t) =
√

AR cos

(
2πfct−

4πd0
λ

− 4πd(t)

λ

)
, (5.5)

with AR being the received power, λ the operating wavelength, and d(t) representing

the target motion. After demodulation and analog-to-digital conversion, and assuming

correct I/Q imbalance compensation, the baseband I and Q signals can be represented

as [92]

bI(t) = cos

(
θ0 +

4πd(t)

λ

)
+BI, (5.6)

bQ(t) = sin

(
θ0 +

4πd(t)

λ

)
+BQ, (5.7)

where θ0 = 4πd0/λ is the constant phase shift, and BI and BQ are DC offsets.

Under ideal conditions, the AD can be used for precise phase recovery. In this case, the

displacement signal is reconstructed as [117]

x(t) =
λ

4π
· unwrap

(
arctan

[
bQ(t)

bI(t)

])
= θ0 + d(t), (5.8)
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where the unwrap operation is necessary for removing possible phase discontinuities,

caused by the restricted range of the arctangent function (wrapped phases around (−π, π]

are expected when displacements are greater than λ/4). Before extracting the desired

phase information, the DC components (BI and BQ) must be compensated [147]. Given

that the ideal chest wall (back-and-forth) movement describes an arc in the I/Q plane,

this compensation is usually accomplished using an ellipse fitting algorithm. However,

small displacements (small arcs), noise and/or external interference, usually compromise

the fitting process, and lead to inaccurate DC compensation. In addition, the unwrap

operation is also very sensitive to noise and interference, and may eventually accumulate

errors, resulting in large distortions on the recovered displacement signal.

Using the CSD, the displacement signal can be reconstructed as [116]

x(t) = bI(t) + j · bQ(t) = x+ exp

{
j

(
θ0 +

4πd(t)

λ

)}
, (5.9)

where x = BI + jBQ represents the combined DC offset. However, in this case, this DC

term does not affect the relevant components of the recovered signal, and, in practice,

it can be easily extracted by subtracting the average of the time-domain processing

window. Despite additional higher order harmonics, for small displacements (in relation

to the operating wavelength), the recovered signal x(t) approximates the true chest

wall movement d(t), and the relevant frequency content is preserved. Therefore, besides

being more robust to the DC offsets and external interference, the CSD simplifies the

demodulation procedure. A detailed description of AD and CSD methods can be found

in [117] and [118].

Nonnegative matrix factorization. The magnitude spectrogram |X| ∈ RF×T of the

recovered displacement signal is obtained through the STFT of x(t), where F and T

are, respectively, the number of frequency and time bins used in the STFT operation.

Given that we aim to reconstruct the time version of the RBM-filtered signal, the STFT

weighting window must comply with the constant overlap-add property [208].

The NMF is thus applied to the magnitude of X, and the factorization can be achieved

through an optimization problem given by

minimize
W ,H

L (X, WH)

subject toW ⪰ 0, H ⪰ 0, (5.10)

with H ∈ RK×T and W ∈ RF×K . The symbol “⪰” denotes entry-wise non-negativeness

and L(·, ·) represents a generic similarity metric between |X| and WH. The Euclidean
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(Frobenius) distance is commonly used and, in doing so, simple gradient descent can

be used for minimizing the objective function [197]. The predefined number of basis

components K should be selected considering the different frequency components that

may be present in the calculated spectrogram, including the breathing frequency and

eventual RBM interference. For the long-term monitoring, we have empirically selected

K = 11.

The identification of the time activation basis corresponding to the RBMs is based on

an adaptive amplitude threshold. The breathing pattern is affected by several factors

(subject, gender, age, health condition, posture) and efficient interference detection

requires an adaptive strategy. The RBM interference can be characterized by its distinct

behavior which contrasts with the constant and periodic nature of breathing. Therefore,

subsequent to NMF decomposition, we are looking for strong (stronger than average) and

sparse (short duration in relation to the processing window) time activation basis hi in H .

This can be accomplished simply by comparing the local energy in each time component

of hi, with the average energy in H for the current processing window (under regular

conditions, that would correspond to the average breathing energy). This average energy

acts as the threshold and, by the nature of its computation, it changes for each window

and reflects the signal strength therein. Therefore, the threshold will be automatically

adjusted for each processing window accordingly. Additionally, the sparsity is verified by

checking if the remaining components of that selected basis have negligible amplitude.

The magnitude of the RBM-filtered spectrogram can be reconstructed as

|X̂| =
K∑
i=1

siwih
T
i , (5.11)

where si indicates whether the ith basis corresponds to RBMs or not, i.e. si = 0 when

RBM is present in basis hi, or si = 1 otherwise. In order to synthesize the time-domain

filtered signal x̂(t), it is first necessary to obtain the phase of the filtered spectrogram. A

common practice is to use a Wiener-like filtering approach, which translates into reusing

the phase of the original mixed spectrogram X [209]. The inverse STFT is finally applied

to X̂ = |X̂| ⊙ ∠X, replicating the same window configuration (duration, weights and

overlap) as in the initial STFT. In this work we are using standard rectangular windows

with 3 seconds of duration, 2 seconds of overlap and zero-padding to 256 samples.

The RBM method is applied to every processing window. The method is capable of

automatically detecting and removing the RBM interference, based on the adaptive

amplitude threshold and the sparsity check. No manual annotation is needed. In the

absence of RBMs or other interfering effects, the recovered signal will contain only the

constant and periodic chest wall movement, and the resulting time activation bases H
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will reflect that. In this case, the adaptive amplitude threshold will not identify any

candidate basis containing RBMs, and the filtered signal will be approximately the same

as in the input of the RBM block.

NLS estimation. The breathing displacement signal d(t) can be modeled as a sum of

Lk harmonically related complex sinusoids, having frequencies that are integer multiples

of a fundamental frequency ωk > 0. After sampling for n ∈ {0, · · · , N − 1}, such a signal

can be written as [199]

d(n) =
K∑
k=1

dk(n) =
K∑
k=1

Lk∑
l=1

ak,le
jωkln, (5.12)

where ak,l = Ak,le
jϕk,l is the complex amplitude of the lth harmonic, Lk represents the

number of harmonics (the model order), and K refers to the number of components

(point scatters).

The NLS estimates are obtained by minimizing the Euclidean norm of the differ-

ence between the recovered and filtered displacement signal d̂(t), and the displace-

ment signal model in (5.12). First, let us consider a single source k, and define

dk = [ dk(0) · · · dk(N − 1) ]T ∈ CN , the vector consisting of N consecutive samples of

dk(n), which can be expressed as

dk = Zkak, (5.13)

with ak = [ Ak,1e
jϕk,1 ... Ak,Lke

jϕk,Lk ]T being the vector containing the complex ampli-

tudes of the harmonics, and the matrix Zk ∈ CN×Lk having a Vandermonde structure,

being constructed from the Lk complex sinusoidal vectors as

Zk = [ z(ωk) z(2ωk) ... z(Lkωk) ], (5.14)

with z(ω) = [ 1 ejω ... ejω(N−1) ]T. Writing d̂(t) as the vector d̂ = [ d̂(0) · · · d̂(N − 1) ]T ∈ CN ,

the NLS estimates ω̂k and âk are finally obtained by solving the problem [202]

minimize
ωk,ak

||d̂−Zkak||2. (5.15)

By first minimizing (5.15) with respect to the complex amplitudes ak we obtain the

estimate âk = (ZH
kZk)

−1ZH
k d̂, which when plugged into (5.15) leads to [202]

ω̂k = argmax
ωk

d̂
H
Zk(Z

H
kZk)

−1ZH
k d̂. (5.16)
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Assuming N ≫ 1, then ZH
kZk ≈ N · ILk . Thus, considering only a single dominant

breathing scatter (i.e. K = 1, so that we can drop the index k), we have

ω̂ ≈ argmax
ω

||ZHd̂||2. (5.17)

The matrix product ZHd̂ can be efficiently implemented using an FFT algorithm and a

linear grid search over the candidate frequencies
{
0, 2πN , · · · , 2πN (N − 1)

}
. The estimator

thus reduces to a summation of the breathing harmonics over the power spectral density

of the recovered displacement signal d̂(t). Usually, a few harmonics may be present in

d̂(t). However, the small motion amplitudes of the monitored patients imply a reduced

SNR, where higher-order harmonics will often be masked by noise. Therefore, in this

work, we have adopted Lk = 2. Additionally, the search interval was limited to ±5 bpm

around the initial time domain estimation.

Data Availability

The original dataset analyzed during the current study is available for download at

https://radarmimo.com/.

Code Availability

Matlab reading functions for both radar and reference device are available for download at

https://radarmimo.com/. Please refer to the Supplementary File 1 for a brief description

of the codes.
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Supplementary File 1: Matlab codes

• readRadarRaw.m: simple function for reading radar .csv files with the raw data in

I and Q format.

• testReadRadarRaw.m: procedure for test the reading of radar files and plot.
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Figure 5.8: Radar raw data in I and Q format.

• readReferenceData.m: simple function for reading the reference device .edf files,

with the raw data and reference frequency values.

• testReadReferenceData.m: procedure for test the reading of reference files and

plot.
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Figure 5.9: Reference cabled device raw data (top) and correspondent
frequency values (bottom).
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Supplementary File 2: Patient’s information

• Supplementary Table 1: Summary of patient’s information.

• Supplementary Fig. 1: Radar distance in each measurement.

Figure 5.10: Radar distance in each measurement.
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Supplementary File 3: Patient’s protocols

• Supplementary Table 2a: patient’s protocols (1-3). 1

1The timestamps indicate the moments they happened, starting from the beginning of the measurement
(00:00” to 25:00”).
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• Supplementary Table 2b: patient’s protocols (4-6). 1

1The timestamps indicate the moments they happened, starting from the beginning of the measurement
(00:00” to 25:00”).
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• Supplementary Table 2c: patient’s protocols (7-9). 1

1The timestamps indicate the moments they happened, starting from the beginning of the measurement
(00:00” to 25:00”).
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• Supplementary Table 2d: patient’s protocols (10-12). 1

1The timestamps indicate the moments they happened, starting from the beginning of the measurement
(00:00” to 25:00”).



Filtering 100

Supplementary File 4: Bland-Altman’s analysis

Figure 5.11a shows the Bland-Altman plot considering all measurements for the complete

solution. The mean bias was 0.262, with 95% upper and lower limits of agreement (LOAs)

of 12.01 bpm and -11.48 bpm, respectively. Figure 5.11b shows the Bland-Altman plot

considering all valid estimates for a single measurement (7.3), in prone position (please

refer to the Supplementary File 3). It also compares the performance using standard

DFT estimation and the complete proposed solution. The mean bias was -0.296, with

LOAs of 7.64 bpm and -8.24 bpm, respectively.
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Figure 5.11: Bland-Altman analysis. a, All measurements for the complete solution.
b, Single measurement, comparing the standard DFT estimation and the proposed

solution.



Chapter 6

Frequency Estimation

6.1 Preamble

In this chapter, we will present our last manuscript. We now focus on the frequency

estimation block, in which the aim is to finally estimate the breathing rate and/or the

heart rate. It connects to the previous chapter by assuming that most of the interfering

components (including stronger RBMs) were already filtered, and the resulting signal

contains only the desired chest wall displacement due to breathing or heartbeat.

As discussed in Chapter 3, higher-order harmonics from the breathing signal may interfere

with heart rate estimation and should be considered in the estimator design. In addition,

residual interfering movements may also still be present, especially if these have smaller

amplitudes and continuous nature. These characteristics make them more difficult to

identify and extract before estimation. Therefore, the estimator should provide additional

robustness to deal with them.

In the presented manuscript, we proposed a novel signal processing framework to overcome

these challenges. In this case, validation was performed with real data collected while

imitating common working conditions in an office environment.

101
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Abstract

The respiratory and heart rates are critical physiological parameters and conventional contact-based

monitoring techniques may cause discomfort and epidermal damage, being therefore inadequate for

long-term monitoring. Despite recent advances, accurate contactless vital sign monitoring is still

challenging in practical scenarios, especially in relation to heart rate estimation. In this work, we

propose a comprehensive framework for vital sign processing in frequency-modulated continuous-wave

radar systems and evaluate its performance with real data imitating common working conditions in an

office environment. First, to improve the signal-to-noise ratio before estimation, we propose a novel

slow-time phase correlation processing, which allows early integration of the vital sign energy at nearby

range bins. Subsequently, we present an adaptive nonlinear least-squares framework that explores the

harmonic structure existing in the recovered displacement signal. An additional Kalman filter stage is

designed to select among multiple estimates from different search regions, thus conferring adaptivity and

robustness against harmonic interference and noise. This approach largely provides estimates within the

predefined error intervals, being capable of tracking the true breathing and heart rate values even during

continuous small body movements. The final accuracy and root-mean-square error values have shown

enhanced estimation, outperforming conventional spectral estimation and other recently proposed

methods in almost all scenarios.

6.2.1 Introduction

People are living longer. Between 2015 and 2050, the proportion of the world’s population

over 60 years will nearly double, and outnumber children under the age of 5 [1]. Due

to the rapid aging of the population worldwide, a lot of effort is being dedicated to

providing efficient and more accessible healthcare solutions.

In this context, continuous monitoring of vital signs plays a crucial role in the early

detection of conditions that affect the well-being of a patient. The respiratory and

https://doi.org/10.1109/TMTT.2022.3222384
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heart rates are critical physiological parameters and by continuously monitoring this

information it is possible to detect drowsiness [2], sleep apnea [3] and even depression [4].

However, conventional monitoring devices, usually connected by cables, besides restricting

mobility, may cause discomfort and epidermal damage, being therefore inadequate for

long-term monitoring.

On the other hand, contactless radar-based vital sign monitoring provides several advan-

tages over standard devices. Unlike cameras, radar signals can penetrate through different

materials and are not affected by skin pigmentation or ambient light levels [88]. Unlike

wearable sensors, radar systems do not require users to wear or carry any additional

equipment. In addition, radar devices preserve privacy [13], and can be low-power and

low-cost. These inherent characteristics have drawn the attention of the research com-

munity, and a variety of radar types are now being used to address different healthcare

applications, including sleep monitoring [89], life detection and rescue [90], assisted

living [91], diagnosis [92], and many others.

CW radars have been extensively employed for vital sign monitoring [54, 78, 111]. These

devices have the advantages of low transmitted power, simple hardware structure, and

high sensitivity, which explain their widespread use across various areas. Within this

group, unmodulated CW systems have the simplest architecture, but with the limitation

that no distance information in relation to the target is acquired. In addition, other

moving objects may interfere with the CW radar signal, making it more difficult to

isolate the target information from interfering objects [13]. For being able to estimate the

target distance (range), typical approaches use UWB and FMCW radars. Recently, the

application of millimeter-wave FMCW radars to short-range vital sign monitoring has

been widely investigated [147, 210, 211]. Such radars benefit from high range resolution

and Doppler sensitivity, yet with simple architecture, that allows using relatively simple

circuits and low-cost ADCs [113]. Furthermore, the mass production from the automotive

industry has resulted in the large availability of inexpensive radar modules with increased

capabilities and functionalities [157].

Despite recent advances, accurate vital sign monitoring is still challenging in practical

scenarios, especially in relation to heart rate estimation. Radar-based vital sign pro-

cessing relies on the phase analysis of the back-scattered signal, corresponding to the

chest wall periodic displacement due to the breathing and heartbeat mechanisms. The

recovered displacement signal is usually composed not only of the breathing and heartbeat

fundamental frequencies but also of their associated harmonics. The challenge stems from

the fact that the tiny heartbeat-induced motion is typically several times smaller than

the one originated from breathing. Therefore, the heartbeat signal can be easily buried in

the background noise or masked by higher-order harmonics of the breathing signal. This
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harmonic interference in the heartbeat signal has been extensively reported as one of the

main issues in radar-based vital sign monitoring [112, 212–214] and, as discussed in [122],

depending on the SIR, and the specific combination of fundamental breathing/heartbeat

frequencies, most techniques fail to provide robust heart rate estimation. Furthermore,

additional frequency components and intermodulation products may also be present in

the recovered signal, originated from different sources including radar non-linearities,

phase-demodulation issues [117], and random body movements from the monitored

subject [124]. These interfering elements tend to be dominant in the neighborhood of the

heartbeat fundamental frequency, often preventing detection and hindering estimation.

Antenna

𝑥𝜓(𝑡)

𝑑b 𝑡 + 𝑑h 𝑡 = 𝑑 𝑡

𝑑0
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𝑥R(𝑡)

𝑏I[𝑛] 𝑏Q[𝑛]

Receiver

front-end

ADC

DSP

Radar

Figure 6.1: Contactless radar-based vital sign monitoring. Basic operational principle.
For simplicity, a single ADC channel is being shown.

In this paper, we propose a comprehensive framework for vital sign processing based

on a millimeter-wave FMCW radar system, and we evaluate its performance using real

data collected while imitating typical working conditions in an office environment. First,

to improve the SNR before estimation, we propose a novel slow-time phase correlation

processing, which allows for the integration of displacement signals at nearby range bins,

while still preserving its relevant frequency content. Early integration of these correlated

signals allows useful exploitation of the vital sign energy, without the need of processing

each range bin independently, as suggested in [132]. Subsequently, we present an adaptive

nonlinear least squares (ANLS) framework that explores the harmonic structure existing

in the recovered displacement signal. For estimating the breathing rate, we simplify the

NLS algorithm recently proposed in [155, 159] and adaptively adjust the search region

over the NLS objective function according to previous estimates from adjacent processing

windows. For the heart rate estimation, we extend the basic NLS approach and, to

avoid the harmonic interference from breathing, we explore the original idea in [99]

by generating multiple heart rate estimates based on the heartbeat’s own harmonics.

However, it is impossible to know which of these estimates are reliable and, to overcome

this, we designed an additional Kalman filter stage that uses the gating process (based

on its own prediction) to select the best heart rate estimate, thus avoiding low-SNR,
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ambiguous or harmonic-interfered candidates. Due to the efficient NLS implementation,

based on the fast Fourier transform (FFT), the proposed method can overcome the SNR

limitations reported in [99], without significantly increasing the computational burden.

The remainder of this paper is organized as follows. In Section 6.2.2, we introduce

the basic operational principle and system modeling for contactless radar-based vital

sign monitoring using FMCW radars. The signal processing framework is presented in

Section 6.2.3, whereas in Section 6.2.4 we describe our proposal for robust and accurate

breathing and heartbeat frequency estimation. Finally, Section 6.2.5 presents some

experimental results and, in Section 6.2.6, the conclusions are drawn.

Notation

Throughout this paper, we are adopting the following notation: lower case boldface for

vectors x and upper case boldface for matrices X. The letter j represents the imaginary

unit (i.e., j =
√
−1), with the absolute value and angle operators given by the symbols

|(·)| and ∠(·). The transpose, conjugate, and conjugate transpose operators are denoted

respectively by the symbols (·)T, (·)∗, and (·)H. The sets of N -dimensional vectors of

complex and real numbers are represented by CN and RN . The Euclidean norm of the

vector x is denoted by ||x||. The identity matrix, with size determined from the context,

is denoted by I. For any complex number x we use ℜ and ℑ to denote, respectively, the

real and the imaginary parts of x. We are using the acronym “bpm” alternatively as

breaths per minute (breathing rate) or beats per minute (heart rate). The meaning will

be clear from the context.

6.2.2 System Modeling

Fig. 6.1 shows the basic operational principle of contactless radar-based vital sign

monitoring. The transmitted FMCW signal can be written as

xT(t) =
√
AT cos(2πfct+ π

B

Tp
t2 + ϕ(t)), (6.1)

where AT is the transmitted power, fc is the operating frequency (initial frequency of

the chirp), B is the pulse bandwidth, Tp the pulse duration and ϕ(t) is the transmitter’s

phase noise (local oscillator). When we breath, or when the heart beats, the subtle

chest wall motion modulates the FMCW signal, which is reflected with additional phase

information related to this movement. Ideally, the radar receives a scaled and shifted
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Figure 6.2: Block diagram of the proposed signal processing chain.

version of the transmitted signal given by [157]

xR(t) = α
√

AT cos

(
2πfc(t− td) + π

B

Tp
(t− td)

2 + ϕ(t− td)

)
, (6.2)

where α represents an attenuation coefficient and td = 2r(t)/c is the range-dependent

time delay from a given object at radial range r(t), with c being the speed of light. The

received signal is mixed with a replica of the transmitted signal and, after quadrature

demodulation, it can be approximated as

xψ(t) = Aψe
j(2πfψt+∆θ(t)+∆ϕ(t)), (6.3)

which represents the beat signal, where Aψ is the beat signal amplitude, fψ the beat

frequency and

∆θ(t) = 2πfctd + π
B

Tp
t2d, (6.4)

is the time-varying phase relative to the movement of object. The amplitude terms in

(6.2) and (6.3) may vary slightly according to the chest vibration. However, as we are

interested in the phase of the slow-time signal, this small variation has no implications and

it is often neglected in literature [104, 117, 157]. In addition, due to the range-correlation

effect [215], the residual phase noise ∆ϕ(t) in (6.3) is usually neglected for short-range

applications. Furthermore, the term π B
Tp
t2d in (6.4) can also be discarded as it is negligibly

small in practical scenarios [157]. Finally, for an object at nominal range d0 we have

∆θ(t) =
4πr(t)

λc
=

4πd0
λc

+
4πd(t)

λc
, (6.5)
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where λc = 1/fc is the operating wavelength and, ideally, d(t) would correspond exclu-

sively to the chest wall movement, which is assumed to be the superposition of those

induced by breathing and heartbeat. In this case, we can finally write

∆θ(t) =
4π(d0 + db(t) + dh(t))

λc
, (6.6)

with db(t) and dh(t) being the displacements due to breathing and heartbeat, respectively.

These movements involve multiple patterns of motion, not only from the chest wall surface

but also from the belly, shoulders, and back [96, 97]. Different models have already been

proposed for representing these signals, from simple sinusoidal approximations [98, 99]

to more complicated patterns as described in [28, 102]. Perfect recovery of the chest wall

displacement d(t) would allow precise estimation of breathing and heartbeat frequencies

by analyzing the periodicity of the signal. However, in practical applications, besides

unavoidable hardware imperfections, the received radar signal is usually mixed with

additional reflections from the external environment, arising not only from different

body movements of the monitored subject but also from every object in the radar’s

field-of-view. These interfering signals are usually much stronger than those induced by

the chest wall millimeter displacement, and this makes accurate recovery and subsequent

estimation of the breathing and heartbeat frequencies a challenging task.

6.2.3 Vital Sign Processing

Figure 6.2 shows the signal processing block diagram of the proposed solution for

contactless vital sign monitoring. For providing sufficient SNR, while still preserving the

update rate, this processing is commonly performed using overlapped sliding windows.

This strategy leaves sufficient time to acquire several breathing/heartbeat cycles, revealing

(and enhancing) the periodicity of the movement. Hence, the obtained frequency value

from each processing window corresponds to an average over the window duration. In

addition, the frequency resolution is also improved. In order to provide new estimates

every one or two seconds, large overlaps are usually employed.

The preprocessing block receives the baseband radar signals as in-phase and quadrature

samples (bI[n] and bQ[n]) from the ADCs. In order to extract the slow-time signal from

the monitored subject at a specific range and angle position, we use a two-dimensional

DFT over the radar data cube, across the range and angle dimensions. Given our specific

conditions of monitoring, the detector can be implemented by simply looking for the

slow-time signal at the range/angle bin with greater energy.

The phase demodulation is essentially the process where the complex samples of the

slow-time signal will be combined with the aim to recover the displacement signal
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containing the phase information relative to the chest wall movement over time. Several

techniques have been already proposed for that, including the CSD [116, 144, 164] and

the linear demodulation [4, 93, 165]. As discussed in [122, 216, 217], these methods

suffer from intermodulation products and harmonic interference when applied at higher

operating frequencies. To avoid these issues, and enable precise phase recovery, the

AD [92, 117, 160] is being used in this work. The recovered displacement signal can thus

be obtained as

d̂[n] =
λc

4π
· unwrap

(
arctan

[
ℑ(s[n])
ℜ(s[n])

])
, (6.7)

where s[n] represents the samples of the complex slow-time signal at the target range bin.

The unwrap operation is necessary for removing possible phase discontinuities caused by

the bounded image of the arctangent function. Due to the high sensitivity of mm-wave

devices, wrapped phases around [−π, π] are expected when actual displacements are

larger than λc/4.

Prior to the AD, possible DC offsets must be compensated and, for this, we use the

Levenberg–Marquardt (LM) algorithm, which provides a maximum likelihood estimate

for this problem [218]. For removing any residual DC values, and possible high-frequency

noise components, the recovered displacement signal is filtered using a bandpass Kaiser

window (β = 6.5), from 0.1 Hz to 3 Hz (6 − 180 breaths/minute) for the breathing,

and 0.5 Hz to 5 Hz (30− 300 beats/minute) for the heartbeat. This corresponds to the

physiological range of fundamental frequencies, including a few possible harmonics. The

bandpass filtered signals d̂b and d̂h will ideally be a good approximation of the true chest

wall motion and can finally be used for frequency estimation. The estimation process is

responsible for detecting the breathing/heartbeat cycles and calculating their period, or

alternatively, for directly estimating the dominant frequency in which they occur, i.e.

the breathing and heart rates.

Slow-time Phase Correlation

The larger bandwidth of mm-wave devices yields a much higher range resolution compared

to other radar systems operating at lower frequencies. For instance, if operating at 77 GHz

with 4 GHz of bandwidth, the range resolution is around 4 cm. This improved resolution

increases the ability not only to resolve closely spaced objects but also to filter-out nearby

interference. However, in these conditions, the human body is an extended target and its

energy may spread across a few adjacent range bins. Given that belly and back may also

be involved in the respiration/heartbeat movement, vital sign information may eventually

be detected in these additional range bins.
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To exploit this and improve the SNR before estimation, we propose a novel slow-time

phase correlation processing, which allows for the integration of the vital sign energy of

nearby range bins, while still preserving its relevant frequency content. For achieving this,

we first need to look into the correlation between displacement signals at adjacent range

bins. By stacking the phase demodulated samples in the current processing window,

we can define d̂d and d̂i as the vectors with the recovered displacement signals at the

detected, and the ith adjacent range bin, respectively. We can then calculate the Pearson

correlation coefficient, given by

ρ(d̂d, d̂i) =
cov(d̂d, d̂i)

σ
d̂d

σ
d̂i

, (6.8)

where cov(dd,di) represents the covariance between these vectors, with σdd
and σdi

the

corresponding standard deviations. If the correlation coefficient exceeds a predetermined

threshold, these displacement signals can be summed up and the SNR will improve

accordingly. This allows useful exploitation of the energy in nearby range bins, without

the need of processing each one of them independently, as suggested in [132]. We

can therefore improve estimation performance with no additional cost in terms of

computational burden.

Fig. 6.3 shows the effect of the slow-time phase correlation processing. The recovered

displacement signals at the detected and its four adjacent are depicted in Fig. 6.3a, with

the corresponding calculated values for the correlation coefficient. We empirically set up

a threshold value of 0.8 which, in this example, allowed the integration of 3 additional

range bins. Fig. 6.3b shows the original phase-demodulated signal (at the detected range

bin) and the enhanced signal after processing, where it can be seen how the displacement

amplitude increased. In addition, the periodicity remains the same, as confirmed by

looking into the spectrum in Fig. 6.3c, where it is clear that the main frequency content

is preserved. The peaks corresponding to breathing and heartbeat (inset figure) have

increased, and their frequencies match the true values (black dashed lines) associated

with this processing window. For calculating the SNR improvement, we compared the

SNR at the spectral peak location in the original (detected) displacement, to the one in

the enhanced signal. In this example, the obtained improvements were 3.68 dB and 5.45

dB for the breathing and heartbeat signals, respectively. The SNR values were calculated

according to [219].

6.2.4 Adaptive NLS Estimation

Due to the inherent periodic nature of breathing and heartbeat, any function represent-

ing these movements can eventually be decomposed into Fourier series containing the



Frequency Estimation 110

0 5 10 15 20 25 30

Time (s)

-10

-8

-6

-4

-2

0

2

4

6

8

10

D
is

p
la

ce
m

en
t 

(m
m

)

Bin-2 (0.82)

Bin-1 (0.82)

Detected (1)

Bin+1 (0.99)

Bin+2 (0.07)

(a)

0 5 10 15 20 25 30

Time (s)

-10

-8

-6

-4

-2

0

2

4

6

8

10

D
is

p
la

ce
m

en
t 

(m
m

)

Detected

Enhanced

(b)

0 20 40 60 80 100 120 140 160 180

Frequency (bpm)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
al

iz
ed

 A
m

p
li

tu
d

e

Detected

Enhanced

Reference BR

50 60 70 80 90
0

0.02

0.04

0.06

0.08

0.1

Reference HR

(c)

Figure 6.3: Slow-time phase correlation processing. (a) Phase-demodulated displace-
ment signals of adjacent range bins. (b) Original phase-demodulated signal (at the
detected range bin) and enhanced signal after processing. (c) The spectrum of original
and enhanced signals. The inset figure shows a zoom over the heartbeat frequency
region. The dashed lines represent the true breathing and heartbeat rates associated

with this processing window.
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fundamental frequencies and its associated harmonics. Hence, the displacement signal

can be modeled as a sum of harmonically related complex sinusoids, having frequencies

that are integer multiples of the fundamental breathing/heartbeat frequency. To exploit

this harmonic structure, in this section we will use the simple NLS approach recently

proposed for breathing rate estimation in [155, 159], and extend it for the heart rate

estimation. For doing this, we need to take into consideration the different frequency

ranges of these signals, and particularly pay attention to the interference of breathing

harmonics in the heartbeat signal.

Basic NLS Framework

The chest wall displacement signal d(t) can thus be modeled as a superposition of

K sources with Lk harmonically related complex sinusoids for the kth source, whose

frequencies that are integer multiples of the fundamental frequency ωk > 0. The

fundamental frequencies are related to the physiological frequencies fk (in Hertz) as

ωk = 2π fkfs , where fs is the slow-time sampling frequency which is determined by the time

between transmitted frames. In addition, fk = 1/τk where τk is the breathing/heartbeat

period. After sampling for n ∈ {0, · · · , N − 1}, the model for the chest wall displacement

signal can be written as [199]

d[n] =
K∑
k=1

dk[n] =
K∑
k=1

Lk∑
l=1

ak,le
jωkln, (6.9)

where ak,l = Ak,le
jϕk,l is the complex amplitude of the lth harmonic.

Now, let us consider a single source k, and define dk = [ dk[0] · · · dk[N − 1] ]T ∈ CN , the

vector consisting of N consecutive samples of dk[n], which can be expressed as

dk = Zkak, (6.10)

with ak = [ Ak,1e
jϕk,1 · · · Ak,Lke

jϕk,Lk ]T being the vector containing the complex

amplitudes of the harmonics, and the matrix Zk ∈ CN×Lk having a Vandermonde

structure, being constructed from the Lk complex sinusoidal vectors as

Zk = [ z(ωk) z(2ωk) · · · z(Lkωk) ], (6.11)

with z(ω) = [ 1 ejω · · · ejω(N−1) ]T. Using these definitions, the signal model in (6.9) can

be rewritten as

d =

K∑
k=1

Zkak. (6.12)
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To obtain the NLS estimates, we look for the set of fundamental frequencies that minimize

the difference between the recovered displacement signal d̂ and the signal model in (6.12).

In this way, the NLS optimization problem can be expressed as

{ω̂k} = arg min
{ak},{ωk}

∣∣∣∣∣∣∣∣d̂−
K∑
k=1

Zkak

∣∣∣∣∣∣∣∣2
2

. (6.13)

Assuming that N ≫ 1, and that all frequencies in {Zk} are distinct and well separated,

the sources can be treated independently and (6.13) can be approximated by finding the

fundamental frequency of each one of them, i.e.,

ω̂k = arg min
ak,ωk

∣∣∣∣∣∣∣d̂−Zkak

∣∣∣∣∣∣∣2
2

. (6.14)

These problems are equivalent when the matrices {Zk} are orthogonal, which is true

asymptotically in N , as long as no harmonics overlap [199]. Minimizing (6.14) with

respect to the complex amplitudes ak gives amplitude estimates

âk = (ZH
kZk)

−1ZH
k d̂, (6.15)

which when inserted in (6.14) yields

ω̂k = argmax
ωk

d̂
H
Zk(Z

H
kZk)

−1ZH
k d̂. (6.16)

By the assumption that N ≫ 1, we have ZH
kZk ≈ N · ILk and thus

ω̂k ≈ argmax
ωk

d̂
H
ZkZ

H
k d̂

≈ argmax
ωk

∣∣∣∣∣∣∣ZH
k d̂
∣∣∣∣∣∣∣2
2

.

(6.17)

This resulting cost function can be written as

Lk∑
l=1

∣∣∣∣∣∣∣zH(ωkl)d̂
∣∣∣∣∣∣∣2
2

, (6.18)

which is the periodogram power spectral density estimate of d̂, evaluated at and summed

over the harmonic frequencies ωkl [199]. Therefore, the NLS estimator can be efficiently

implemented using an FFT algorithm and a linear grid search over the discrete candidate

frequencies
{
0, 2πN , · · · , 2πN (N − 1)

}
.

In this work, we are considering single dominant scatters for both breathing and heartbeat,

i.e. K = 2. In addition, the signal models presented here are based on complex
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representations. As the phase-demodulated displacement signal using the AD is real, we

need to map it into complex numbers.

Breathing Rate Estimation

(a)

(b)

Figure 6.4: Adaptive NLS framework. (a) Adaptive search region for breathing rate
estimation. The search region for the current processing window is defined around the
previous NLS estimate. (b) Multiple search regions for heart rate estimation. In this
case, multiple estimates are calculated and the Kalman filter stage adaptively selects

among them.

The NLS objective function will exhibit peaks at the fundamental frequencies and its

associated harmonics. Given the additive procedure in (6.18), additional peaks may also

be erroneously generated at lower frequency positions. For instance, if the true breathing

rate is 20 bpm, an additional peak will be generated at 10 bpm (20 bpm is its harmonic),

and it may have a higher amplitude than the true one at 20 bpm. To avoid detecting

these additional peaks, the NLS estimator proposed in [155, 159] uses an initial (coarse)

estimation as a reference for the NLS search region, which is then limited around this

value. Besides eliminating these eventual strong low-frequency components, this strategy

also reduces the computational effort to perform the grid search.
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In [155, 159], this initial reference estimate is obtained using a peak detection algorithm

applied directly over the time-domain displacement signal. In this work, we propose a

simpler implementation for that. Given the slow variation of the breathing rate over

time, instead of using an additional peak detection algorithm for calculating the reference

value for the NLS search region, we can use the last NLS estimate, calculated from the

previous processing window. Fig. 6.4a illustrates this idea, where fb represents the true

breathing frequency at the current (mth) processing window, and f̂b,m−1 is the previous

estimate. For the first processing window, the search region is initialized over the entire

physiological breathing range. For the subsequent processing windows, the search region

is thus limited around the reference value, and it will adaptively change according to

the breathing rate variation over time. In this way, besides eliminating the additional

processing for calculating a new reference at each processing window, we also avoid using

possible outliers as references for the current search region.

Heart Rate Estimation

The NLS framework does not heavily depend on the white noise assumption. In fact,

when the noise is white, the NLS estimates can be interpreted as maximum likelihood

estimates [198]. However, the NLS estimation performance can be affected by the

nonlinear objective, with multiple peaks, and a very sharp global maximum corresponding

to ωk. Hence, finding ωk by a search algorithm requires accurate initialization [198].

In addition, some of the assumptions made in the previous section may not hold in

specific cases, especially considering heart rate estimation. Particularly, for preserving

the signal stationarity in each processing window, the number of samples N in d̂ is

often small and limited by the CPI. Therefore, it is not always possible to guarantee

that the frequency components in {Zk} are distinct and well separated. In fact, while

breathing estimation is usually only limited by noise, the spectral region considering the

fundamental frequency of the heartbeat is mainly dominated by breathing harmonics. In

this way, spectral overlaps may occur and the heartbeat peak may eventually be masked

by breathing harmonics.

For tackling these limitations and enable robust heart rate estimation, we extend the basic

NLS approach and propose an adaptive framework for adjusting the search region over

the NLS objective function. The basic idea is to generate multiple heart rate estimates

based on its fundamental frequency and associated harmonics. As highlighted in [99],

estimation using the fundamental heartbeat frequency (first harmonic) is mostly limited

by breathing interference, whereas the estimates using higher-order harmonics are only

limited by noise. This is because the fundamental heartbeat frequency “competes” with

still strong 3rd, 4th, and 5th order breathing harmonics. On the other hand, the second
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and third heartbeat harmonics, for instance, share their spectral location with strongly

attenuated 7th, 8th, and 9th order breathing harmonics. The heart rate estimation can

thus be improved if we look for its higher-order harmonics, far away from the strong

breathing interference. However, as the amplitude of these harmonics depends on specific

characteristics of the breathing and heartbeat chest wall movements, as well as on many

other processing parameters, one cannot be sure these higher-order heartbeat harmonics

will always be detectable. Therefore, the conventional estimation based on the heartbeat

fundamental frequency is still needed. In this way, by simultaneously calculating multiple

estimates, we increase the probability of detecting the correct peaks and the solution

becomes more robust.

The basic NLS approach can easily be extended to provide multiple estimates by simply

segmenting the NLS spectrum (objective function) into different search regions, and

performing independent estimations (by finding the maximum value) over each of these

regions. This can be done considering that, for a healthy subject at rest, the physiological

range of the heart rate usually goes from 50 bpm to 90 bpm [220]. In this way, the

search region for the fundamental frequency (first harmonic) can be set up around this

range. A second search region can be defined unambiguously from 100 bpm and up to

180 bpm. Fig. 6.4b illustrates this procedure. An additional search region can also be

defined, looking for the third heartbeat harmonic, from 150 bpm to 270 bpm. However,

as this third region overlaps with the second one, its estimates can be ambiguous in some

cases (this issue will be handled in the next section). Due to the efficient FFT-based

implementation of the NLS method, we can overcome the SNR limitations reported in [99],

without increasing the computation burden. In addition, this “soft” segmentation of the

search regions reduces the computational complexity by only using a single bandpass

filter for heartbeat estimation, in comparison to the double filtering scheme originally

proposed in [99].

Kalman Filter Selection

The NLS method described above provides multiple heart rate estimates for the same

processing window. It is thus necessary to come up with a single value for the heart

rate estimation for each CPI. For doing this, we propose to use the Kalman filter, a

recursive Bayesian algorithm that produces accurate estimates based on noisy or uncertain

measurements. The Kalman filter updates its estimates and parameters sequentially as

new data arrives. Therefore, it is suitable for real-time processing with the overlapped

sliding windows approach commonly used for vital sign processing. As we are considering
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three search regions (three estimates), we can define the measurement vector as

zh =

[
f̂r1

f̂r2
2

f̂r3
3

]T
, (6.19)

where f̂r1, f̂r2 and f̂r3 represent the estimates originated from the first, second, and third

search regions, respectively.

The generic state vector has the form

x =
[
fh f ′

h f ′′
h

]T
, (6.20)

where fh, f
′
h, and f ′′

h represent, respectively, the heart rate and its first and second-order

derivatives. From the current state x̂m,m, at the mth processing window, the predicted

state x̂m+1,m can be calculated using the state transition equation, defined as

x̂m+1,m =


1 ∆t ∆t2

2

0 1 ∆t

0 0 1

 x̂m,m = F x̂m,m, (6.21)

where F is the state transition matrix, with ∆t being the time between each new set of

NLS estimates. To describe the dynamics of the frequency variation over time, we are

using the constant acceleration model, as suggested in [141].

The state vector represents a Gaussian process with mean x̂m,m and covariance Pm,m.

The extrapolated covariance can be calculated as

Pm+1,m = FPm,mF
T +Q, (6.22)

where Q is related to the process noise uncertainty and can be modeled as Q = ggTρ2a

[141], with

g = [0.5∆t2 ∆t 1]T, (6.23)

and ρ2a representing the process noise. With the observation matrix

H =


1 0 0

1 0 0

1 0 0

 , (6.24)

we can calculate the measurement innovation (error) as

em = zh −Hx̂m+1,m, (6.25)
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and its associated covariance given by

Sm = HPm+1,mH
T +R, (6.26)

with R being a diagonal matrix containing the uncertainty in the NLS estimates for each

search region, i.e.

R =


σ2
r1 0 0

0 σ2
r2 0

0 0 σ2
r3

 . (6.27)

The algorithm is initialized with predefined Q and R matrices, and initial state x̂0,0 with

covariance P 0,0. If at least one of the NLS estimates is close enough to the predicted

state in (6.21) (within a predefined gating threshold), we select from zh the estimate

which minimizes the distance between the new measurement and the filter prediction.

Subsequently, we can update the state vector as

x̂m+1,m+1 = x̂m+1,m + kmem(z), (6.28)

where z is the index corresponding to the selected NLS estimate, with the Kalman gain

km being calculated as

km =
Pm+1,mhz
Sm(z, z)

, (6.29)

where hT
z is the zth row of H and Sm(z, z) is the zth diagonal element of Sm. Finally,

the associated covariance

Pm+1,m+1 = (I − kmh
T
z )Pm+1,m, (6.30)

is also calculated in order to be used in the next filter iteration.

If none of the NLS estimates fall within the gate, we treat all of them as outliers. The

Kalman gain is then set to zero and the final estimate will only be based on the predicted

state. However, if this condition holds during several adjacent processing windows, it

may indicate that the state estimate has diverged. In this case, we reset the updated

covariance in (6.30) to its initial (large) value, in order to allow the filter to reacquire.

The final heart rate estimate f̂h for the mth processing window is directly obtained from

the updated state vector in (6.28), and the algorithm runs for each processing window

with the updated state vector, its updated covariance, and a new set of NLS estimates

zh as inputs.

At each iteration, based on its own prediction, the proposed algorithm selects the best

estimate among the three NLS search regions, or can even discard all of them. In this
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way, we are exploring the temporal information relative to the evolution of the heart

rate over time. This knowledge is often neglected by previous approaches that estimate

independently at each processing window. Finally, this procedure provides adaptivity to

different scenarios, by avoiding wrong estimates that could be originated from harmonic-

interfered spectral regions around the heartbeat fundamental frequency, or from low-SNR

and ambiguous detections when estimating using higher-order harmonics at the second

and third search regions.

6.2.5 Experimental Results

For the experiments, we are using a Texas Instruments (TI) mm-wave FMCW radar

(AWR1642 [150]), operating at 79 GHz with a 4-GHz bandwidth. The radar is configured

for using a single transmitter and 4 receiver channels. The total duration of each chirp

is 64 µs, with an inter-frame period of 10 ms, corresponding to a slow-time sampling

frequency of 100 Hz. For providing sufficient integration time, while still preserving the

update rate, the data is processed using overlapped sliding windows with a duration

of 30 s, with 29 s of overlap, which results in updated estimates every ∆t = 1 s. The

NLS search region for breathing estimation was initialized from 8 bpm to 30 bpm and

later reduced to ±2 bpm around the reference (previous) estimate. For the heart rate

estimation, the search regions were defined as described in Section 6.2.4. The number

of harmonics for the NLS estimation was defined as L1 = 5 for breathing and L2 = 3

for the heart rate. The Kalman filter parameters were initialized as follows: ρa = 2,

σr1 = σr2 = σr3 = 1.5 and P 0,0 = 1000I. The initial state is defined as x̂0,0 = [4f̂b 0 0]T,

where f̂b is the estimated breathing rate at the first processing window. This specific

heart rate initialization value of 4f̂b is based on the human pulse-respiration quotient,

which follows a log-normal distribution centered around four [221, 222].

Fig. 6.5a shows the measurement setup, where 5 subjects (all male) with different age

(27-36 years), height (170-192 cm) and weight (60-90 kg), were asked to stay seated

in front of the radar, breathing normally, at approximately a 1-meter distance. The

wearable commercial device named Hexoskin [153] was used as a reference for true

breathing and heart rates. It has two inductance plethysmography sensors (chest and

abdomen) for measuring breathing, and a 1-lead electrocardiograph for the heartbeat.

This device has already been extensively validated for vital sign monitoring in different

conditions [154, 223]. The tests emulated different conditions of movement which are

common to an office work environment. The objective was to understand if small

random movements from hands, arms, and shoulder, which are very close to the chest,

could jeopardize estimation. Besides being static, three other scenarios were emulated:
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Figure 6.5: Vital sign monitoring example. (a) Measurement setup, with the monitored
subject seated in front of the radar, at approximately 1 m distance. (b) Range-angle
map. (c) Range-profile. (d) A segment of the slow-time signal (I and Q samples)
from the target range bin. (e) Phase-demodulated chest wall displacement signal. (f)

Bandpass-filtered signals for breathing and heartbeat.

1) holding a phone and texting, 2) typing on a keyboard, and 3) controlling a mouse

device (“mousing”).

Fig. 6.5b and Fig. 6.5c show, respectively, the range-angle map and the range profile, at
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the output of the preprocessing block. The energy is mostly concentrated at the detected

range bin, but it also spreads over adjacent range bins due to the high range resolution.

This allows us to add up correlated range bins for improving the SNR as described in

Section 6.2.3. The slow-time signal (I and Q samples) at the target range bin can be

seen in Fig. 6.5d. After phase demodulation, the recovered chest wall displacement is

depicted in Fig. 6.5e, with its bandpass-filtered versions for breathing and heartbeat in

Fig. 6.5f. The periodic pattern is clearly seen, as well as the large-amplitude difference

between the breathing and heartbeat signals.

Fig. 6.6a shows the results for a single measurement of 5 minutes. It compares breathing

rate estimates obtained using the proposed ANLS framework, with the conventional DFT

estimation [147, 157, 217] (commonly used as benchmark), and the true values from the

reference wearable device. It can be seen the high correlation between measurements

where, most of the time, both techniques provided radar estimates within the ±1 bpm

error interval. Similarly, Fig. 6.6b compares the obtained heart rate estimates with the

true values from the reference device, for the same measurement of 5 minutes. In this

case, while the proposed ANLS framework provided most estimates within the ±2 bpm

error interval, the conventional DFT estimation is highly affected by breathing harmonics,

specially when the breathing frequency is higher.
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Figure 6.6: Comparison between radar and reference device, for a single measurement
of 5 minutes. (a) Estimated breathing rate using conventional DFT estimation and the
proposed ANLS framework, actual values from the reference device, and corresponding 1-
bpm error interval. (b) Estimated heart rate using conventional DFT estimation and the
proposed ANLS framework, actual values from the reference device, and corresponding

2-bpm error interval.
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Fig. 6.7a shows one example of the chest wall displacement signal under the influence small

random body movements (“typing” scenario). The corresponding estimation results and

comparison to the reference device are depicted in Fig. 6.7b. This example demonstrates

the continuous nature of the emulated random body movements, which differentiate this

work from previous literature [93, 224, 225], where emulated movements are short and

sparse episodes. These results clearly show how the conventional DFT estimation is

strongly affected by the additional interference, whereas the proposed ANLS approach

can still provide accurate heart rate estimation with minor performance degradation.
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Figure 6.7: Measurement under continuous interference of small random body move-
ments (“typing” scenario). (a) Phase-demodulated chest wall displacement signal. (b)
Estimated heart rate using conventional DFT estimation and the proposed ANLS frame-
work, actual values from the reference device, and corresponding 2-bpm error interval.

The obtained results are summarized in Table 6.1, which shows the average accuracy

and RMSE for each scenario, comparing the proposed solution with the conventional

DFT estimation, and the basic NLS approach from [155]. The same preprocessing steps

(phase demodulation and bandpass filtering) were used in all cases. The accuracy is

calculated as the percentage of time (in terms of processed windows) during which the

final estimation from the radar is within a predefined error interval (threshold) in relation

to the reference value. For instance, a 1-bpm accuracy of 80% means that the magnitude

of the error between radar estimation and the reference device was smaller than 1 bpm

for 80% of the time (processing windows). In this work, we considered fixed values of

1-bpm accuracy for breathing and 2-bpm accuracy for the heartbeat. These intervals are

below common values for the threshold of clinical acceptance [165, 226]. The RMSE is
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Figure 6.8: Bland-Altman Analysis. (a) Breathing estimation, considering all mea-
surements. (b) Heart rate estimation, considering all measurements.

defined as

RMSE =

√√√√ 1

M

M∑
i=1

(f̂i − fi)2, (6.31)

where f̂i and fi represent, respectively, the estimated and true (reference) frequency

values (in bpm) in the ith processing window, and M is the total number of processing

windows.

Table 6.1: Average accuracy and RMSE for different scenarios and techniques

Breathing Heartbeat

Scenarios
Accuracy (%) RMSE (bpm) Accuracy (%) RMSE (bpm)

DFT NLS ANLS DFT NLS ANLS DFT NLS ANLS DFT NLS ANLS

Static 86.7 91.0 98.5 0.65 1.07 0.43 49.9 96.7 97.6 12.8 0.84 0.76

Texting 75.7 95.3 96.9 0.67 0.55 0.44 33.4 92.7 91.0 17.8 1.16 1.17

Typing 83.0 94.9 94.6 0.72 0.60 0.62 16.5 85.2 91.1 23.2 1.98 1.30

“Mousing” 83.2 96.8 96.8 0.71 0.57 0.52 45.4 81.0 81.3 15.4 2.50 2.27
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It can be seen how the proposed framework provides accurate and robust breathing and

heart rate estimation in all conditions, with minor performance loss in the scenarios with

additional movement. The most challenging situation arises when moving the arms back

and forth for controlling the mouse device. Besides overlapping nearby range bins, this

movement has a similar behavior as the chest wall displacement, but with much stronger

amplitudes.

In the case of breathing, the proposed solution provided slightly better performance when

comparing to the conventional DFT estimation in all scenarios. The reason is that, in

the absence of strong interfering movements, the breathing displacement signal already

dominates the spectrum and thus simple DFT estimation is sufficient for reasonable

performance. In the case of heart rate estimation, due to the reduced SNR and the

presence of breathing harmonics, the conventional DFT completely fails to provide

accurate estimates. The proposed solution provided significant improvement over all

scenarios, with the best result in the static case, with 97.6% of accuracy. The RMSE

was strongly reduced in all cases, reaching the best performance with 0.76 bpm in the

static scenario. The most challenging condition arises when the monitored subjects

were controlling the mouse device, with the accuracy reducing to 81.3% and the RMSE

increasing to 2.27 bpm.

Fig. 6.8a shows the Bland-Altman plot considering the obtained ANLS breathing rate

estimates for all measurements and scenarios. The mean bias was only 0.057 bpm, with

95% upper and lower limits of agreement (LOAs) of 1.1 bpm and -0.99 bpm, respectively.

These values are well within the expected interval for clinically acceptance [45]. Similarly,

Fig. 6.8b shows the Bland-Altman plot considering the ANLS heart rate estimates for all

measurements and scenarios. The mean bias was only 0.114 bpm, with LOAs of 3.14 bpm

and -2.91 bpm. These results show very good agreement between radar estimates and

the reference device, with comparable or smaller LOAs than recent studies [94, 136, 227],

for both breathing and heart rate estimation.

To better evaluate the impact of the proposed ANLS solution for heart rate estimation,

Fig. 6.9 shows the percentage of use for each of the search regions (illustrated in Fig. 6.4b).

At each processing window, the Kalman filter adaptively selects the best estimate from

one of the three search regions. The main bars show the average utilization of each

region considering all scenarios, whereas the error bars show the maximum and minimum

values obtained in one of the measurements. Even though, most of the time, the

estimate from the first region (fundamental frequency) is used, estimates from the second

and third regions are used on average in 24.3% and 11.6% of the processing windows,

respectively. And these values rise to approximately 44% and 21%, respectively, at

specific measurements. This means that, on average, more than 35% of the time the
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Figure 6.9: Utilization of ANLS estimates from different search regions considering all
measurements.

spectral region around the fundamental heartbeat frequency is dominated by breathing

harmonics or any other additional interference. It confirms the significance of providing

multiple estimates from different spectral regions, with an additional smart mechanism

to select among them.

Table 6.2: Comparison of heart rate estimation performance considering different
solutions

Device Freq. (GHz) Dist. (m) RMSE (bpm) Accuracy (%) / threshold Scenario

[132] FMCW 76-81 1.0 2.53 - Seated, still

[228] IR-UWB 7.29 1.0 2.1 - Lying (supine), still

[229] FMCW 8.4 1.5 > 1.0 - Seated, still

[230] Doppler 2.4 0.5-1.5 1.60 - Seated, still

[138] FMCW 60 1.0-2.5 - 85.6 / 4 bpm Seated, still

[231] FMCW 61 0.4-1.4 - 83.9 / 5 bpm Seated, still

[107] CW 2.4 1.0 - 93.8 / 2 % Seated, still

[232] Doppler 10.5 1.5 - 95 / 2 bpm Seated, still

[133] FMCW 120 1.0 - 93.7 / 3 % Seated, still

ours FMCW 77-81

1.0 0.76 97.6 / 2 bpm Seated, still

1.0 1.58 87.8 / 2 bpm Seated, moving

1.5 1.25 92.9 / 2 bpm Seated, still

2.0 1.71 87.2 / 2 bpm Seated, still

2.5 2.53 67.0 / 2 bpm Seated, still

An additional experiment was also performed at increasing distances from 1.5 m to

2.5, with 5 measurements while seating still at each position. The obtained results

are summarized in Table 6.2, which compares the average performance for heart rate

estimation in all scenarios with recently proposed solutions, validated in similar experi-

mental conditions. It can be seen that, despite its simple implementation, the proposed

ANLS framework outperforms these methods, resulting in higher accuracy and smaller

RMSE values. In addition, when considering the scenarios with additional movement

(texting, typing and “mousing”), the average results show robust performance even
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during small and continuous body movements. Furthermore, at longer distances, despite

an expected performance degradation, the results are promising with RMSE values still

within thresholds of clinical acceptance [165, 226].

Computational Time

To estimate the computational time of the proposed approach we processed different

measurements several times and recorded the average processing time considering all

scenarios. Given that we have a new processing window at every second, we can obtain an

estimate of the average computational time for each iteration (processing window). We

repeated this procedure using the conventional DFT estimation, the simple NLS method

and the complete ANLS approach. In relation to the conventional DFT estimation, the

obtained results show an increase in the computational time around 22% and 42% for

the simple NLS method and the complete ANLS framework, respectively.

6.2.6 Conclusion

In this paper, we presented a complete framework for vital sign processing using a 79-GHz

FMCW device. The solution is based on a simple but accurate adaptive nonlinear least-

squares framework that explores the inherent harmonics existing in the periodic chest wall

displacement signal. In the case of heart rate estimation, an additional Kalman filter stage

adaptively selects among multiple estimates originated from different search regions. The

solution was evaluated with real human data collected while imitating common working

conditions in an office environment. Most of the time the radar provided measurements

within the predefined error intervals, being capable of tracking the reference values even

during continuous small body movements. Due to the similar behavior to the chest wall

movement, the most challenging scenario resulted from controlling the mouse device

with back-and-forth arms movements. The final accuracy and RMSE values showed

robust and accurate estimation, outperforming conventional spectral estimation and

other recently proposed methods in almost all scenarios.

The proposed solution has still limitations under moderate to strong random body

movements, especially when this interference leads to phase demodulation errors by using

the AD. This will be the main direction of future work. Moving toward a complete

solution for vital sign monitoring, additional investigation is also required to understand

the effects of dynamic scenarios with multiple moving subjects and multi-path reflections.





Chapter 7

Discussion

This is the last chapter of this thesis, with the aim to summarize and connect our

contributions to the contactless monitoring of vital signs using radar devices. In addition,

we will also discuss relevant aspects regarding the practical deployment of this technology,

and what remains as interesting research avenues.

7.1 Analysis of the contributions

The careful reader may have noticed that the chronological order of the presented

manuscripts, and their corresponding contributions, does not match the sequential order

in the basic signal processing block diagram. In fact, our first contribution, the NMF-

based RBM mitigation algorithm presented in Chapter 5, is related to the Filtering block.

Later, we moved to heart rate monitoring in a different scenario, and the challenge of

suppressing the harmonic interference from breathing over the heartbeat signal. For

accomplishing this, we proposed the ANLS estimation framework, which is related to

the Estimation block. Finally, in Chapter 4, we came back to the Phase demodulation

block and proposed the use of US for robust recovery of the chest displacement signal in

different conditions.

An unfortunate consequence of this mismatched order is the fact that our contributions

were not cumulative, i.e., the solution corresponding to the last stage in the signal

processing block diagram does not integrate the improvements obtained at previous

stages. We will now try to fill this gap (at least theoretically) by presenting, in Fig. 7.1,

our suggestion for the complete block diagram for radar-based contactless monitoring of

vital signs.
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Figure 7.1: Complete signal processing block diagram.

As discussed in Section 2.4.1, the Preprocessing stage receives the digitized signals from

the ADCs and tries to extract the slow-time signal, corresponding to a specific range and

angle position where the monitored subject is located. Most of the time, classic radar

signal processing techniques are used at this stage.

In the Phase demodulation stage, we propose to use the US demodulation. This includes

the usual DC offset compensation and the arctangent operation, followed by the US

framework replacing the conventional unwrap algorithm. As discussed in Chapter 4, the

classic unwrap algorithm has limitations in practical situations, especially when dealing

with interfering RBMs from the monitored subject. Using the US demodulation enables

precise recovery of the chest wall displacement signal, including the additional RBMs

that may be present in the processing window.

At first sight, our desire to precisely recover also the RBM signal may look counter-

intuitive. However, at this stage, there are two important reasons for this. The first one

was already discussed in Section 4.2.5: if the interfering RBM signal is not spectrally

overlapped with the vital sign information, it will be easily removed by conventional

spectral analysis at the Filtering stage. However, inaccurate demodulation of the RBM

signal may introduce nonlinear errors that can spread the spectral energy over the entire

bandwidth. This can hinder filtering even under the simplest interfering scenario. The

second reason is related to the RBM mitigation algorithm proposed in Chapter 5. There,

we assumed that the RBM signal is inherently sparse and, most of the time, much

stronger than the breathing and heartbeat signals. Precise recovery of the RBM signal

will preserve these characteristics that are fundamental to allow its separation from the

vital sign information by using the NMF factorization.
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In the Filtering stage, the recovered displacement signal must be further processed to

improve the SINR before estimation. In the complete block diagram, we propose to first

use the NMF-based RBM mitigation algorithm, which will remove additional interfering

components.

Subsequently, the isolated displacement signals from adjacent range bins can be combined

using the slow-time phase correlation (STPC) proposed in Chapter 6, Section 6.2.3. As

we discussed there, when operating in the mm-wave region, the human body becomes

an extended target and its energy may spread across a few adjacent range bins. Given

that the belly, back, and shoulders are also involved in the cardiorespiratory movements,

vital sign information may eventually be detected in these additional range bins. The

STPC will efficiently recombine these signals to improve the SNR while still preserving

the relevant frequency content. Finally, the enhanced chest wall displacement signal can

be bandpass-filtered to separate the breathing and heartbeat components.

In the Estimation stage, the ANLS framework, proposed in Chapter 6, can be used

for calculating the vital sign frequencies. As demonstrated by the results in Table 6.1,

for breathing rate estimation, the Kalman filter is not necessary and the adaptation

comes from adjusting the NLS search region according to previous estimates from

adjacent processing windows. For heart rate estimation, despite the techniques employed

at the Filtering stage, most of the time we will still need to deal with the harmonic

interference from breathing. In this case, the ANLS estimator can use the harmonics

from the heartbeat signal to generate multiple heart rate estimates from different spectral

regions. The Kalman filter will then use its gating process to select the best estimates,

thus avoiding erroneous candidates originating from harmonic interfered, low-SNR, or

ambiguous regions.

7.2 On the practical deployment

Despite the recent technological developments, the adoption of novel patient monitoring

systems, including contactless devices, remains a lagging process. In fact, most of the ICU

monitoring devices used today, such as ECGs, were already available 50 years ago. Major

reasons for this slow progress include the lack of awareness and trust in new technologies,

a mismatch of expectations and assumptions by clinical users and manufacturers, and the

fear that the adoption of new devices would lead to an increased workload [61]. Behind

these reasons lies the main concern about reduced accuracy, and that it could lead to
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more false alarms due to unusual (out-of-threshold) estimated values. This could increase

the risk of “alarm fatigue”1 and compromise patient care [72].

Interestingly, alarm fatigue is not a new issue. In fact, it is considered a major limitation

of current continuous monitoring systems. Surprisingly, recent research indicates that

around 70% (at least) of all alarm signals in the critical care environment are false or

non-actionable [61, 233]. As a consequence, a nurse can spend up to 20 minutes per

day managing alarms from existing systems, detracting from essential aspects of patient

care [72].

Besides inadequate alarm setup due to the lack of staff training and resources, one of the

reasons for this situation is related to the current device’s susceptibility to errors, especially

when dealing with interfering artifacts caused by additional body movements [61]. In

fact, there is still an open debate among clinicians on the reliability of current monitoring

devices [234]. Regarding breathing monitoring, for instance, there is a paucity of research

comparing continuous contact-based monitoring methods (e.g., impedance pneumography

and ECG-derived) to visual inspection [43], which is still considered the gold standard

for breathing assessment.

In addition, several studies suggest that current patient monitors have relatively simplistic

built-in data processing for artifact detection, usually employing a reductionist approach

that oversimplifies human physiology [234]. To reduce the occurrences of interfering

artifacts, the general recommendation from manufacturers is that the patient should

be static. In general, performance is not guaranteed if the patient is moving. This

limitation is well-known and most manufacturers already highlight this information in

the operating manuals of these devices [206]. In fact, we experienced and discussed this

issue in Chapter 5. When the babies were moving, a high level of ADC saturation was

observed in the raw data of the reference cabled device. Certainly, in these moments,

the reference device will not be able to generate accurate estimates and, therefore, it is

not reliable.

These limitations of current devices may bring up technical and philosophical discussions

on their reliability. This is especially important considering that, throughout the design

and validation of new monitoring devices, the current ones are commonly used as

references and ground truth for performance validation. And, sometimes, the investigated

scenarios include the ones in which the reference device may not be working properly,

e.g. while the patient is moving.

1Alarm fatigue occurs when clinicians have to deal with so many false or non-actionable alarms that
they become desensitized [233]. False alarms occur when there is an invalid triggering event, whereas
non-actionable alarms are related to events with no clinical relevance.
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In summary, despite being genuine, these general concerns about the adoption of new

devices seem to be more related to the change of status quo rather than a true technical

issue.

Therefore, to increase the benefit and acceptance of new monitoring technologies, it is

crucial to include all stakeholders, especially the medical staff, in the implementation

and, ideally, also in the development and validation of these solutions. This cooperation

should involve product engineering aspects such as usability, interoperability, training,

and frequent evaluation and feedback. This is the only way to ensure that stakeholders are

confident and engaged in the new solution [59]. In our work at the NICU, we attempted

to close this gap by bringing together research, industry, and medical staff, throughout

the early development of our solution.

Another common concern when considering wireless devices relates to exposure to

electromagnetic radiation. However, VSM applications are mainly focused on very

short-range and indoor scenarios, where the monitored subject is usually very close

to the device. As a consequence, most solutions in the literature (including the ones

shown in this thesis) use devices emitting very low power at non-ionizing frequencies.

Radiation levels are usually smaller than those from conventional communication systems

operating within accepted standards. Nevertheless, careful consideration of potential

risks for long-term exposure must be considered before the widespread adoption of radar

technologies for contactless monitoring of vital signs [76].

Finally, regulatory approval is required for the clinical deployment of these systems at

a broad scale. Physiological monitoring systems are considered Class II devices by the

US Food and Drug Administration (FDA), with well-defined requirements for testing

and performance [235, 236]. When considering non-critical consumer applications, the

required accuracy of such systems is unclear as they straddle a grey zone between a

medical device and a consumer product [72]. Approval for use in critical care settings

will surely require larger and more complete clinical trials.

7.3 Future work

Despite the good performance and robustness of the proposed US phase demodulation,

our initial study was purely theoretical and limited to the noiseless scenario. Due to

the difficulties in providing ground truth for the interfering RBMs, we could not use

previously collected data or perform new measurements. A thorough investigation of

this method in practical scenarios is still necessary.



Discussion 132

Whereas the integration of NMF-based RBMmitigation algorithm to the US demodulation

is straightforward, there are two important aspects that require further investigation.

The first one was already mentioned at the end of Chapter 5, and it refers to the NMF

factorization algorithm. We can use our prior knowledge about the signal structure (e.g.

the periodicity of the displacement signal, and/or the sparsity of the RBM signal) to

improve the factorization by imposing constraints on either W or H . For instance, there

are already several “sparse” NMF implementations [197] and we believe that using one of

these algorithms could greatly improve the separation between the vital sign information

and the interfering signals.

The second aspect relates to the inherent time/frequency resolution trade-off when using

the STFT prior to the NMF factorization. In our work, we used short STFT windows (3

seconds) with larger overlaps (2 seconds) in order to increase the time resolution and

improve RBM detection using the time basis on H. However, larger STFT windows

would rather increase frequency resolution and improve the frequency separation between

the desired information and the interfering signals. This would enable RBM detection by

using the frequency basis on W . In addition, this approach would also allow direct use

of the filtered spectrogram X̂ for instantaneous frequency estimation. In this way, we

could eliminate the inverse STFT step (please refer to Section 5.2.5), thus resulting in

reduced computation complexity.

Regarding the proposed ANLS framework, while we understand that breathing rate

estimation performance is already good enough for practical deployment, some work

can still be done to improve heart rate estimation. Particularly, our implementation

of the Kalman filter is still simplistic, and a deeper investigation of the related models

and parameters may result in interesting outcomes. An interesting direction of study

would be the joint breathing/heart rate estimation, by exploring prior knowledge about

their relation, e.g. the pulse-respiration quotient [221, 222], and the associated harmonic

positions. This additional information can be embedded in the dynamic model of the

Kalman filter or even before, in the NLS estimation.

At the NICU, we are already investigating radar performance for the heart rate monitoring

of premature newborns. We are now using a MIMO FMCW radar, at a higher operating

frequency, which will enable not only range isolation from external interference but also

to steer the radar’s field-of-view directly to the monitored infant. In addition, MIMO

beamforming capabilities will also enable simultaneous monitoring of both infants during

the co-bedding of twins.

Despite our attempt to move a bit forward in investigating more realistic scenarios, there

is still a big gap when considering the practical deployment of a radar-based solution for

contactless monitoring of vital signs. Several challenges still need to be addressed, most
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of them related to the dynamics of monitoring in a practical environment. Particularly,

interesting, yet unanswered, research questions arise when monitoring multiple subjects

moving freely.

Even though target separability, tracking, and range migration are classic radar problems,

they become much more complex when considering the simultaneous extraction and

processing of vital sign information when the monitored subjects are moving. The longer

CPIs needed for acquiring at least a few breathing cycles yield to an additional energy

trade-off. For instance, if considering a processing window of 12 seconds (only 2 breathing

cycles at a breathing rate of 10 bpm), the monitored subject can move around 10 meters

while walking slowly. This means that the vital sign energy will be spread over dozens of

range/angle cells, which can completely jeopardize detection and estimation.

Speaking is another major challenge for both breathing and heartbeat monitoring. When

we speak, the breathing pattern becomes irregular and speech-dependent. The additional

body movements will also interfere and can easily mask both breathing and heartbeat

signals. In this case, the interfering RBMs may become less sparse and, therefore, more

difficult to identify and filter out using the technique proposed in Chapter 5.

An intuitive step to overcoming all these challenges is moving to a multi-modal multi-

sensor approach, including distributed radar sensing and cameras. This would allow

additional degrees of freedom to extract the vital sign information and remove the RBM

interference. In this case, sensor fusion becomes a key and challenging aspect, and specific

complexity and cost analysis will be required according to the intended application.

Finally, machine and deep learning techniques could be used in many different ways

to improve radar performance, especially considering the complex physiology behind

the chest wall displacement signal and the difficulty in obtaining precise mathematical

models for representing it. The inherent challenge that arises, in this case, is how to

provide enough data for training.

Investigating these remaining questions will be the main direction of our future work.
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