
Project Report

Autonomous Trustworthy Monitoring

and Diagnosis of CubeSat Health

(AtMonSat)

University of Luxembourg

Faculty of Science, Technology, and Medicine (FSTM)

November 17, 2022

List of contributors

Ross Horne

Department of Computer Science

Faculty of Science, Technology, and Medicine (FSTM)

University of Luxembourg

Sjouke Mauw

Department of Computer Science

Faculty of Science, Technology, and Medicine (FSTM)

University of Luxembourg

Andrzej Mizera (Principal Investigator)

Department of Computer Science

Faculty of Science, Technology, and Medicine (FSTM)

University of Luxembourg

André Stemper

Faculty of Science, Technology, and Medicine (FSTM)

University of Luxembourg

Jan Thoemel

CubeSat Laboratory

Interdisciplinary Centre for Security, Reliability and Trust (SnT)

University of Luxembourg

1

Abstract

This document is the final report concluding the execution of the AtMonSat

project co-funded by the European Space Agency (ESA) under the Open Space

Innovation Platform (OSIP) and the University of Luxembourg. AtMonSat con-

cerns on-board fault detection using artificial neural networks for CubeSat systems

and related spacecraft where computing resources are limited. In particular, the

concrete problem scenario of malfunctioning of CubeSat board elements is consid-

ered. The AtMonSat final report provides the problem statement, discusses the

performed experiments designed to generate proper sets of data, and presents the

details of the proposed solution. The report shows the devised framework to be

both effective and suitable for implementation on a CubeSat.

2

Acknowledgements

We thank Luis Mansilla and Christophe Honvault (the Technical Representative of ESA)

at the Software Technology Section (TEC-SWT) of the ESA European Space Research and

Technology Centre (ESTEC). Their monthly feedback, has helped guide the AtMonSat project

towards relevant outcomes. ESTEC is located at Keplerlaan 1, 2201 AZ Noordwijk, The Nether-

lands.

The AtMonSat project was partly funded by the European Space Agency (ESA) under the

Open Space Innovation Platform (OSIP), under which ESA organizes and launches Campaigns

and Channels to seek ideas related to space research, otherwise known as ESAIdeas. For refer-

ence, this project relates to ESA Contract No. 400134792/21/NL/GLC/my, and ESA activity

description No. I-2020-03332. More than 50% of funding was provided in kind by the Depart-

ment of Computer Science in the Faculty of Science Technology and Medicine at the University

of Luxembourg.

We thank Ines Crisostomo for overseeing contractual and administrative matters at the

University of Luxembourg. We thank Gian Lorenzo Casini and Miguel Yagues Palazon for

assisting with contractual and administrative matters on the side of ESA. We thank Patricia

Conti, Director for Economic Affairs at the Luxembourg Space Agency, who handled the ESA

OSIP budget for Luxembourg.

3

Contents

1 Introduction 1

2 Project summary 3

2.1 Agreed milestones with completion dates 3

3 Experimental data 4

3.1 Synthetic data generation . 5

3.1.1 Physical model . 5

3.1.2 Experimental verification . 6

3.1.3 Simulated datasets . 7

3.2 Lab data acquisition . 8

3.2.1 Experimental setup . 8

3.2.2 Datasets acquisition . 10

4 Methodology 13

4.1 Feature selection and engineering . 14

4.2 Deep-learning model architectures . 18

4.3 Anomaly detection algorithm . 18

4.4 Determination of the anomaly detection threshold 19

5 Implementation 20

5.1 Testbed . 20

5.1.1 Frontend . 20

5.1.2 Backend . 21

5.1.3 Communication . 23

5.2 Conversion of a TensorFlow pre-trained model to a TensorFlow Lite Micro

version . 23

5.3 Anomaly Detection Algorithm . 23

5.3.1 Interpolating Iterations Since Last Change Counter module 25

5.4 PC implementation (native) . 25

5.5 Microcontroller implementation . 26

5.5.1 Baremetal implementation . 26

5.5.2 FreeRTOS implementation . 27

5.6 Power measurement setup . 27

5.7 Post-processing . 28

6 Results 29

6.1 Anomaly detection on synthetic datasets 29

6.2 Anomaly detection on lab datasets . 30

6.2.1 Quantitative evaluation of the algorithm performance 32

6.2.2 Comparison with a rule-based benchmark approach 34

6.3 Performance evaluation of the microcontroller implementation 35

6.3.1 Anomaly detection algorithm execution time measurements 43

6.3.2 Power consumption measurements 48

6.3.3 Memory footprint . 52

7 Conclusions 52

5

1 Introduction

This project concerns on-board fault detection using artificial neural networks for Cube-

Sat systems and related spacecraft where computing resources are limited. CubeSat is

a term coined to refer to a small satellite, which in its most basic form is in the shape

of a 10 cm cube, namely 1U, or a small multiples thereof, e.g., 2U, 3U, and 6U. Cube-

Sats are recommended to comply with the ISO standards defined within the CubeSat

Design Specification [1, 2]. CubeSats play a notable role in the New Space Economy.

These spacecrafts are systems of great interest to the industry, scientific community, and

government agencies as affordable facilities providing capabilities for a broad set of activ-

ities. The great success of CubeSats can be largely attributed to the “low cost and fast

delivery” paradigm they introduced to the space research [3]. Unfortunately, the new

paradigm is also to be considered accountable for the high percentage of failed missions,

due to the fact that CubeSat critical components are built with cheap materials and

to the low-cost processes of production and verification. Furthermore, CubeSats either

implement very limited Fault Detection, Isolation, and Recovery (FDIR) functionality or

lack it completely.

The focus of the AtMonSat project is to improve fault detection on-board CubeSats, as

a prime example of a low-cost mission in Low Earth Orbit (LEO). This focus is motivated

by the following regulatory reasons.

Firstly, due to launch trends, there is increasing concern from Launching States about

liability issues stemming from conjunctions in LEO. Since, under current international

treaties, the Launching State itself is liable if a satellite originating from their territory

is deemed to be at fault in a conjunction, there is a trend towards states limiting their

liability by requiring that operators are covered by insurance. Indications are that this

trend will grow.

Secondly, while the developments of AtMonSat are relevant to spacecraft in general,

we prioritise CubeSats, since there is an explicit ISO standard [4] for CubeSats, which

imposes fewer reliability requirements than normal for spacecraft. In fact, the ISO stan-

dard does not impose any requirements with respect to critical software reliability. This

leaves a gap between the deregulation advocated by the engineering standard, intended

to stimulate innovation, and the demands of an insurer. Insurers will increasingly require

proof that steps have been taken to reduce the possibility of CubeSat failure resulting

in creating a dangerous object in LEO, hence auditable verification and system health

monitoring of CubeSats will likely become essential. By making the results of this project

available in the public domain, we aim to stimulate innovation in the New Space indus-

try by exploring the feasibility and effectiveness of introducing on-board artificial neural

networks that may facilitate the regulatory compliance of CubeSat missions.

Thus the high-level objective of AtMonSat is the development of a framework for

explainable on-board anomaly detection and system health monitoring of a CubeSat.

Notice that in the context of the AtMonSat project, explainable is understood differently

from the classical notion used in the field of Explainable Artificial Intelligence (XAI).

Here by explainable we mean that the proposed solution provides evidence that a prob-

lem of a certain type occurred, i.e., one which induces disturbance to the pattern of

1

interrelations between thermal telemetry data captured by different sensors as explained

in the description of the concrete problem scenario below. The explainability of our so-

lution lies in the choice of the bearer of information on system health, i.e., the complex

thermal pattern. A disturbance in this pattern provides evidence on the occurrence of

an additional heat source due to malfunction of some component of a specific subsystem

of the CubeSat.

The aim of our framework is to make CubeSats more reliable and auditable, thereby

facilitating compliance with regulation imposed by Launching States. Importantly, the

proposed solution does not compromise the low-cost and fast-delivery characteristics of

small spacecrafts. There is also a practical reason for considering CubeSats, specifically

that the project team had direct physical access to a CubeSat during the project, i.e., the

EduSat of the CubeSat Lab at the University of Luxembourg. Thus insight gleaned may

be translated to other space missions with similar resources and regulatory requirements.

To ensure that such missions are targeted a requirement of this project is to ensure that

solutions are implementable on a typical microcontroller, respecting their limited memory

and computational power, while leaving space for control software.

More specifically, within the above broader objective, we have focused on a case

study, explained next, that involves anomalies in temperature readings that fall out of the

scope of simple hardwired threshold triggers, and instead demand multivariate analysis of

multiple components. Such a multivariate analysis is suited to artificial neural networks.

Concrete problem scenario: Malfunctioning of CubeSat board elements. For

this investigation, we have selected a narrow case study in order to obtain datasets for

training, testing and evaluating possible on-board artificial neural network solutions.

The scenario we investigate aims to capture potential malfunctioning of CubeSat board

component(s) manifested in subtle distortions of the temperature pattern inherent to the

operation of the satellite in the LEO. On the CubeSat that we used for the experiments,

various board components are equipped with temperature sensors, i.e., four Maximum

Power Point Trackers (MPPTs), four voltage converters, and one battery monitor, which

are spread across the board and provide real-time measurements. The placements of the

nine sensors are schematically shown in Figure 1.

We consider scenarios under which the malfunctioning of any element on the board

results in an increase of its temperature. Although the malfunctioning element itself

may not be equipped with a temperature sensor, its abnormal state generates additional

heat that is transferred via the mechanisms of thermal conduction (mainly) and thermal

radiation (to some limited extent) across the board. Since our solution is centred on

analysing the complex thermal pattern, it is characterised by a comprehensive health

monitoring capability in the sense that it is not limited to a particular CubeSat board

component, but aimed at detecting anomalies in the operation of any of them. Yet,

by focusing on such a specific scenario, we aim to be able to explain the occurrence of

anomalies as appearance of additional heat sources on the CubeSat board.

Under normal conditions, a CubeSat orbits in LEO while executing tasks related to its

nominal functioning. We can assume that these tasks are performed either constantly or

2

Figure 1: Schematic illustration of the

placement of nine temperature sensors on

the CubeSat board. The temperature sen-

sors are indicated with red crosses framed

with yellow squares.

periodically due to the immanent orbiting movement of the CubeSat around the Earth.

Moreover, due to orbiting, the spacecraft is periodically illuminated by the sun light

which introduces cyclic changes to the temperature values recorded by the sensors. Put

together, it is justifiable to assume that there exists a periodic thermal pattern manifested

in the relative timings of temperature value changes measured by individual sensors on the

board. Under abnormal conditions, the additional heat is introducing disruptions to the

characteristic thermal pattern. The solution proposed within AtMonSat is identifying

subtle changes in the thermal pattern and reports them as plausible indicators of the

malfunctioning of elements on the CubeSat board.

2 Project summary

Before providing details of the project, we present, in this section, an overview of the

agreed milestones achieved.

2.1 Agreed milestones with completion dates

Task Time Contrib. Description

Develop OS

technology for

the hardware-

isolated

interception

of I/O data.

[M1-M3] Mizera,

Stemper,

Horne

Done. Developed solutions for consuming

on-board stream of telemetry from CAN bus

of the EduSat. Telemetry assessed to iden-

tify interesting data for experiments. OS so-

lution allowing monitor and control software

to co-exist identified.

3

Formulation

of the state-

of-the-art AI

techniques

for anomaly

detection and

system health

monitoring.

[M1-M6] Mizera,

Stemper

Done. Assembled candidate artificial neural

networks for anomaly detection and system

health monitoring, in particular LSTM re-

current neural networks, autoencoders, and

CNNs. Models were trained with prelimi-

nary data and an idealised physics model

of temperature variations during normal and

failure modes. Induced anomalies were eval-

uated for their explainability. PCA was ex-

plored for feature extraction.

Construction

and veri-

fication of

adaptable and

explainable

solutions.

[M6-M15] Mizera,

Stemper

Done. Evaluations showed CNNs detected

anomalies most effectively in the case of real

lab data. A prototype was built and verified

against different datasets and parametrisa-

tions. Higher quality data was extracted by

experimenting with EduSat.

Evaluation

and fine

tuning with

respect to the

tumbling of

CubeSats.

[M12-

M15]

Mizera,

Stemper

Done. The solution was benchmarked

against a rule based approach, typically

used. The model detects anomalous varia-

tions in temperature whilst orbiting. Quan-

tisation of the model was found to be effec-

tive on synthetic data only.

Identification

of recom-

mended

solutions for

given types of

missions.

[M16-

M18]

Mizera,

Stemper,

Horne

Done. The on-board stream processing from

M1-M3, and the trained CNN from M12-

M15 were assembled for deployment. Mem-

ory usage, execution time, and power con-

sumption were measured. Solution deployed

using FreeRTOS suited to the on-board mi-

crocontrollers of many spacecrafts.

Notable deviations: We proposed to work on ESA PhiSat2 as the CubeSat. However,

ESTEC took over from PhiLab as supervisors, so we used the EduSat of the University

of Luxembourg. A refinement is that we considered finer temperature anomalies due

to component failure rather than tumbling, since there exist established mechanisms for

stabilising during tumbling. This provided anomalies that were clearly out-of-scope of

rule-based AI, while being in scope of NN-based AI and possible to simulate in our lab

environment.

3 Experimental data

We explain our methodology for generating data. Two types of data is considered. Firstly,

there is the synthetic data we generated from a simulation of the diffusion of heat in a

model of the CubeSat. Secondly, we generated data from an experimental setup using a

4

real CubeSat in a lab environment where environmental factors were minimised in order

to simulate conditions in space.

3.1 Synthetic data generation

We explain the equations used to generate synthetic data. We also cover how the model

is compared to the experimental setup, do justify its correctness, and how it was used to

generate a dataset.

3.1.1 Physical model

We performed thermal simulation of a green printed circuit board (PCB). Since detailed

modelling of a power system motherboard of a CubeSat would be challenging in itself,

a PCB was considered as a largely simplified imitation of the actual motherboard. The

purpose was to relatively effortlessly generate reproducible temperature sensor data with

and without anomalies to allow us to train and evaluate anomaly detection models while

experimental data from a CubeSat was still not available.

For synthetic data generation, we introduced a physical model of the PCB based on

the diffusion equation

∂T (x, y, t)

∂t
= α

∂2T (x, y, t)

∂x2
+ α

∂2T (x, y, t)

∂y2
+

g(x, y, t)

ρ · cp
(1)

with

α =
κ

ρ · cp
,

where κ is thermal conductivity, ρ is the density, and cp is the specific heat capacity.

The simulation of the heat transfer across the PCB, taking into account the specific

placement of heat sources as depicted in Figure 2, was based on solving the diffusion

equation (Eq. 1) in 2D using the Finite-Difference Time-Domain (FDTD) method.

The synthetic data were to resemble the future data obtained with lab experiments

and not in space environment. The rationale behind this decision was the fact that we

did not have the possibility to acquire real-life, in-orbit data and all considerations of the

AtMonSat project were necessarily limited to lab conditions. Therefore, besides radiation,

the thermal simulation model additionally included surface convection, a phenomenon

that does not occur in space.

For the solar panels, the simulation considered irradiance (angle, intensity) and ra-

diative loss. The simulation allows specifying heat sources (yellow rectangles in Figure 2)

that can be key-frame controlled or controlled by an external CSV file. Key-frame based

control allows moving the position of the sources. The latent data for the different

temperature sensors are sampled at the locations indicted by red crosses in Figure 2.

These locations have been coarsely estimated to correspond to the positions of the tem-

perature sensors of the MPPT converters, voltage converters, and the battery monitor

5

PCB (FR4)

Sensor

Heat
source

Solar panel

Air gap

Diffusion equation

Irradiance

Radiation

Radiation

Convection

Figure 2: Simplified thermal simulation of an electrical power supply system of a Cubesat

to generate quantized temperature sensor data.

on the EduSat’s electrical power supply board (specifications for the EduSat appear in

Section 3.2.1). The latent data is then quantized to 1◦C resolution. The source code

of the simplified thermal simulator of an electrical power supply system of a CubeSat

(EPSThermalSimulator) is available in a GitHub repository [5].

3.1.2 Experimental verification

The parameter settings of the physical model were verified in two experiments: 1) Cooling

of a PCB (FR4) and 2) Resistive heating. In order to check the correctness of the

parameters by comparing the model outcomes with the reality, it was necessary to take

the air gap into account, see Figure 2 for illustration.

In the Cooling of a PCB (FR4) experiment, the board was heated up to 55◦C and

then left for cooling down to room temperature, i.e., 23.5◦C. The PCB was of dimension

0.08× 0.065 [m2]. Both radiation and convection were considered for the simulation with

a 20× 25 grid. The experimental setup and the obtained validation results are shown in

Figure 3.

In the Resistive heating experiment, the FR4 PCB board was heated up by a 120

Ohms resistor powered by 100mW (3.3V, 30mA). A temperature sensor was located

next to the resistor. Both radiation and convection were considered for the simulation

with a 30×35 grid. During the experiment, a strong dependence of the measurements on

sensor contact (thermal paste) was observed. The experimental setup and the obtained

validation results are shown in Figure 4.

6

(a) Setup of the PCB cooling

experiment.

(b) Measured and simulated temperatures during FR4 PCB

cooling.

Figure 3: Setup (a) and results (b) of the FR4 PCB cooling experiment.

(a) Setup of the PCB resistive

heating experiment.

(b) Measured and simulated temperatures during FR4 PCB

resistive heating.

Figure 4: Setup (a) and results (b) of the FR4 PCB resistive heating experiment.

3.1.3 Simulated datasets

The simulator was used to generate temperature sensor data both for normal and ab-

normal conditions. Unfortunately, FDTD simulations turned out to be computationally

heavy and, in order to generate longer temperature time series data within reasonable

time frames, the air gap was excluded from consideration. Although this compromised

the match with the reality, we decided to accept this fact since the important factor was to

have some clean and regular data that would allow us to perform an initial pre-selection of

candidate solutions for the detection of subtle anomalies. Anyway, the simulations with

the air gap considered, were adequate for the PCB and not for the actual motherboard.

Furthermore, the actual development of the proposed solution was conducted with lab

data.

In normal conditions, the PCB is illuminated by a source circling around the PCB.

Simulated temperature sensor data in normal conditions, both latent and discretised, are

presented in Figure 5.

7

In the abnormal conditions, an additional heat source placed on the PCB of power

40mW is turned on for 500 s. The simulated temperature sensor data in abnormal con-

ditions with indicated regions of additional heating are shown in Figure 6.

0 2500 5000 7500 10000 12500 15000 17500 20000
Time [s]

22

24

26

28

30

32

Te
m

pe
ra

tu
re

 [°
C]

(a) Latent simulated temperature sensor data in normal conditions.

0 2500 5000 7500 10000 12500 15000 17500 20000
Time [s]

22

24

26

28

30

32

Te
m

pe
ra

tu
re

 [°
C]

(b) Discretised simulated temperature sensor data in normal conditions.

Figure 5: Simulated temperature sensor data in normal conditions.

The simulated temperature sensor datasets were used in the initial phase of the project

to allow us to train, evaluate, and test various anomaly detection candidate deep-learning

models while experimental data from a CubeSat was still not available. Nevertheless,

the synthetic data was characterised by perfect periodicity and no noise. This ideal

regularity presented a representativeness gap that was noticed first when using the “real”

lab generated data discussed next.

3.2 Lab data acquisition

We explain in this section our experimental setup and how we gathered data using the

CubeSat prototype supplied by NanoAvionics. We explain also how we limited the impact

of environmental factors on the dataset so as to focus on the anomaly in question.

3.2.1 Experimental setup

Within AtMonSat an engineering model (EM) was used to generate telemetry data for

analysis. It consists of a NanoAvionics near-flight prototype containing an UHF commu-

8

0 2500 5000 7500 10000 12500 15000 17500 20000
Time [s]

22

24

26

28

30

32

Te
m

pe
ra

tu
re

 [°
C]

(a) Latent simulated temperature sensor data in abnormal conditions.

0 2500 5000 7500 10000 12500 15000 17500 20000
Time [s]

22

24

26

28

30

32

Te
m

pe
ra

tu
re

 [°
C]

(b) Discretised simulated temperature sensor data in abnormal conditions.

Figure 6: Simulated temperature sensor data in abnormal conditions with two anomalies.

The time of additional heating source being on is indicated with light-violet shading bars.

nications subsystem (COM), an electrical power supply system (EPS), attitude control

sensor and actuators (ADC), and an on-board computer (CDH) with an attitude control

algorithm. The EM, i.e., the EduSat of the CubeSat Lab at the University of Luxem-

bourg, is depicted in Figure 7. It is complemented with a laboratory ground segment

consisting of a radio and a personal computer. The system utilises the CubeSat proto-

col [6], which supports a distributed architecture where subsystem are addressable nodes.

The EM is near-flight ready and hence features a high number of typical CubeSat sensors.

Yet, the overall number of sensors and actuators, such as the number of solar panels, is

reduced to enable cost-efficient education and research.

In order to simulate the in-orbit conditions of a CubeSat in LEO, the following ex-

perimental setup was devised. The EduSat was placed on a rotation table, which was

configured to make one full rotation per 90min. That period of the rotation represents

a typical time for a satellite in LEO to complete a full orbit around the Earth. Dedicated

9

Figure 7: The EduSat (NanoAvion-

ics EM) of the CubeSat Lab at

the University of Luxembourg. The

photo on the right presents the in-

terior of the EduSat.

software was controlling the rotation table engine and logging the time and actual angular

position of the EduSat.

To mimic the periodical illumination of a CubeSat by sun light, EduSat was illumi-

nated by two continuous, monolite-style light sources, i.e., Godox SL100Bi and Neewer

SL-60W set to 80% brightness, 6500K and 100% brightness, 5600K, respectively. The

light sources were focused at the height of the EduSat board. In order to keep the room

temperature stable, the experiments were conducted in a basement room with highly

limited sun light access and no other light sources. The experimental setup is shown

in Figure 8. The room temperature was constantly monitored during experiments (see

Figure 8b) and the temperature logs were saved.

For data acquisition, the EduSat was connected to a laptop via a USB-CAN converter

attached to the EduSat’s break-out board for data download. Since the board was linked

to the EduSat with a cable, see Figure 8a, the rotation was causing twisting of the cable.

To avoid any damage, the rotation table was quickly revolving back 360◦ after completing

each full rotation and in this way untwisting the cable.

3.2.2 Datasets acquisition

A number of lab experiments mimicking the in-orbit conditions was performed with the

EduSat to generate relevant telemetry data. For each experiment, telemetry data logged

by the EduSat was collected. The data acquisition frequency was set either to 0.1Hz

or 0.2Hz, corresponding to the recording of one telemetry datapoint per 10 s or 5 s,

respectively. The EduSat buffer capacity was 1340 telemetry entries, so partial data

was systematically downloaded and stored on a computer and later merged into a single

telemetry data time series. The experiments consisted of three phases.

1. Phase I: during this initial phase the light sources were heating up the EduSat

while the rotation was off in order for the EduSat to reach a stable experiment base

temperature.

10

(a) (b)

Figure 8: The experimental setup for data acquisition. (a) The EduSat is placed on

the rotation table, which rotation speed is controlled by dedicated software run on the

laptop. The two light sources illuminate the EduSat at the height of the EduSat board.

The break-out board is connected on one end to the top of the EduSat with a white cable

and on the other end via a CAN-USB converter to a laptop, the latter not visible in the

photo. (b) The room temperature in monitored and logged by a Fluke digital multimeter

visible in the top left corner.

2. Phase II: during it the EduSat was rotating while illuminated by the light sources

and the normal conditions data were collected for a few rotations.

3. Phase III: during this final phase the anomalies were being introduced by turning

on battery heating of specified power and duration which was generating abnormal

conditions data.

In order to simulate anomalies in Phase III, battery heating was used to imitate additional

heating source(s) on the board which could appear due to malfunctioning of some board

component(s). The power and duration of the battery heating was chosen in such a way

that only subtle distortions to the thermal pattern were introduced which could not be

spotted by visual inspection of the plots of the gathered time series data. Sufficient

time was assured after each introduced anomaly for the EduSat to revert to the normal

conditions before a subsequent anomaly was introduced or the experiment was ended.

For each experiment, the raw telemetry data portions downloaded from the EduSat

were merged into a single time series. Next, data corresponding to Phase I were excluded

and the remaining time series was split into to datasets: one containing the normal

condition (nominal) data of Phase II and the other containing the abnormal (also refereed

to as anomalous) data of Phase III. For some experiments Phase II or Phase III could be

missing, leading to generation of only abnormal or normal dataset, respectively. Examples

of normal and abnormal datasets from an experiment are presented in Figure 9, where

each plot shows the readings of the nine EduSat board temperature sensors in time. The

resolution of the temperature sensors was 1◦C. Table 2 provides summary information

on the individual experiments, which datasets were used for the training, evaluation, and

test of the final model of the AtMonSat project.

One additional experiment, not shown in Table 2, was conducted in order to collect

a normal dataset for model validation purposes. We refer to this dataset as the validation

dataset.

11

06-01 08 06-01 09 06-01 10 06-01 11 06-01 12 06-01 13 06-01 14 06-01 15 06-01 16 06-01 17
Timestamp [MM-DD HH]

20

25

30

35

40

Te
m

pe
ra

tu
re

 [
C]

Room temperature
temp_0

temp_1
temp_2

temp_3
temp_4

temp_5
temp_6

temp_7
temp_8

(a) Full dataset containing temperature values from the nine EduSat board sensors for Phase I,

Phase II, and Phase III of the experiment. The blue line in the bottom of the plot presents the

logged room temperature.

10
:00

10
:15

10
:30

10
:45

11
:00

11
:15

11
:30

11
:45

12
:00

12
:15

Timestamp [HH:MM]

35

36

37

38

39

40

Te
m

pe
ra

tu
re

 [
C]

(b) Normal dataset of the experiment.

12
:00

13
:00

14
:00

15
:00

16
:00

17
:00

Timestamp [HH:MM]

35

36

37

38

39

40

Te
m

pe
ra

tu
re

 [
C]

(c) Abnormal dataset of the experiment. The

moments of the introduction of anomalies are

indicated with dashed dark blue vertical lines.

Figure 9: Example of datasets generated in a single experiment. The respective colours

of the lines presenting the values recorded by the nine EduSat board temperature sensors

are kept the same in all plots.

12

Exp. date No. anom. Battery heating power & time Freq. Normal

2022/04/06 3 100%, 60s | 25% 60s | 100%, 10s 0.1Hz ✓

2022/05/18 3 100%, 15s | 100%, 15s | 100%, 15s 0.1Hz ✓

2022/05/20 1 100%, 15s 0.2Hz ✓

2022/05/30 1 100%, 20s 0.2Hz ✓

2022/06/01 4 100%, 20s | 100%, 20s | 100%, 20s | 100%, 20s 0.2Hz ✓

2022/06/03 1 100%, 30s 0.2Hz ✓

2022/06/08 2 100%, 30s | 100%, 30s 0.2Hz ✓

2022/06/15 2 100%, 60s | 100%, 60s 0.2Hz ✓

2022/06/22 2 100%, 60s | 100%, 60s 0.2Hz ✓

2022/07/20 4 100%, 60s | 100%, 60s | 100%, 60s | 100%, 60s 0.2Hz ✗

Table 2: Information on individual data acquisition experiments. For each anomaly, the

battery heating power and heating duration time are provided in the order of appear-

ance separated by the | delimiter. The ’Freq.’ column presents the data acquisition

frequency used in each experiment. The ‘Normal’ column indicates whether normal con-

dition dataset was generated during the respective experiment: ✓ - yes, ✗ - no.

4 Methodology

Health monitoring and real-time detection of any symptoms of anomalous behaviour in

the multivariate telemetry data is a very important task in the operation of artificial

satellites [7]. The traditional and commonly used method for this purpose is the Out-Of-

Limit (OOL) technique, in which the sensor measurements are checked as to whether they

are within predefined ranges [8–10]. However, even the most sophisticated OOL methods

fail to detect complex patterns in spacecraft flight data generated by variations in the

state of components during the nominal functioning of a satellite, and are therefore bound

to miss many anomalies [10]. Moreover, OOL approaches are not capable of detecting

novel behaviours, i.e., events that are novel with respect to a set of behaviours known to

be nominal, for which on-board data measurements (or their differences) are within the

defined OOL thresholds [11, 12]. However, novel behaviours are often early indicators of

upcoming anomalies and failures. In this sense, OOL techniques do not allow forthcoming

problems to be to anticipated [12]. Furthermore, it is very costly to develop and maintain

the sets of rules of OOL anomaly detection systems with the use of expert knowledge [7].

In recent years, data-driven or learning-based methods that mine relevant information

from large datasets have provided breakthroughs in numerous fields. In the context of

spacecraft operation, methods based on machine learning (ML) or artificial intelligence

(AI) techniques offer some effective approaches in the way telemetry data is exploited

in the context of anomaly root cause analysis and novelty detection [12]. In particular,

AI-based approaches are effective in extracting patterns and correlations in intertwined

streams of telemetry data [13]; data, which include many aspects, such as high dimen-

sionality, multimodality, and heterogeneity [7]. In fact, some experts anticipate that

spacecraft operations is an area where AI-based methods can provide the highest benefits

in the space engineering domain [12].

Within AtMonSat , an AI-based solution for the problem scenario described in Sec-

tion 1 has been devised. Several resource constraints are imposed on the proposed

13

anomaly detection algorithm since deployment to a microcontroller is targeted. In par-

ticular, it was necessary for the algorithm to fit into limited memory available on the

microcontroller, to be capable of performing real-time inference with the restricted target

computational resources, and to operate in the allowed energy consumption range. Mem-

ory is particularly pertinent when neural networks are deployed, due to the large number

of parameters for each layer. Details on the available microcontroller’s resources are pro-

vided in Section 5.5 and results of the measurements of actual usage of the resources by

the microcontroller implementation of our anomaly detection solution are presented in

Section 6.3.

4.1 Feature selection and engineering

Feature selection is a crucial step in the development of any ML- or AI-based compu-

tational framework. For the problem scenario of AtMonSat (see Section 1), 9 out of all

500 general telemetry attributes have been chosen. Those selected are the EPS general

telemetry attributes corresponding to temperature sensors of the battery monitor, four

MPPTs, and four voltage converters on the EduSat board. These telemetry attributes

form the first set of features, i.e., the raw temperature sensors features.

The raw readings from the nine temperature sensors were used to engineer another set

of nine features, one for each sensor. The engineered features are nine counters for each

datapoint (i.e., readout from the nine sensors), that each record the number of datapoints

since the last temperature change for the respective sensor. Due to the fact that the arrival

of each datapoint initiates the next iteration of the anomaly detection algorithm in the

target implementation on the microcontroller, see Section 5, datapoints are also referred

to as iterations and the set of engineered features is named as the Iterations Since the

Last Change (ISLC) features. Formally, we define islcTj
[0] = 0 and for i = 1, 2, . . . which

iterates over the indices of subsequent datapoints (iterations), we have

islcTj
[i] =

{
islcTj

[i− 1] + 1, if Tj[i] = Tj[i− 1]

0, otherwise,
(2)

where j ∈ [1..4]. For example, in Table 3, the raw temperature values recorded by four

imaginary sensors T1−4 are presented. The respective ISLC features are presented in

columns islcT1−4 , where a zero value entry indicates the event of temperature change in

comparison to the previous temperature value for the corresponding temperature sensor.

Nevertheless, the research conducted within the AtMonSat project revealed that in

order to obtain meaningful results, certain ISLC subsequences still need to be replaced

with linearly interpolated values as explained next. If islcTj
[i] = 0 for some i > 0, then

let k be the number of iterations to previous temperature change event amongst all the

sensors, i.e.,

k = min({islcTj
[i− 1] + 1} ∪ {islcTl

[i] | l ̸= j}). (3)

Then values islcTj
[i − k + l] for 1 ≤ l < k are replaced with linearly interpolated values

between islcTj
[i− k] and 0, i.e,

islcintTj
[i− k + l] = islcTj

[i− k]− l ∗ (islcTj
[i− k]/k) for 1 ≤ l < k. (4)

14

For an example, see columns islcintT1−4
in Table 3.

The interpolation gives rise to interpolated ISLC features. As observed in our ex-

periments, the interpolation is a crucial step for the considered deep-learning models to

properly train and perform on the anomaly detection task.

Notice that the interpolation requirement introduces an inherent delay to the real-time

anomaly detection. The classification of whether the next datapoint is anomalous or not

cannot be provided immediately upon arrival of the datapoint. In order to compute the

corresponding interpolated ISLC values, the new datapoint needs to be stored together

with subsequent datapoints in a dedicated queue until the moment when a datapoint with

a temperature change on one of the sensors is received. At that point, the interpolated

ISLC values can be computed, the anomaly detection algorithm can be run for all the

datapoints in the buffer, and finally the buffer can be freed.

T1 T2 T3 T4 islcT1 islcT2 islcT3 islcT4 islcintT1
islcintT2

islcintT3
islcintT4

0 37 38 38 39 0 0 0 0 0.00 0 0 0

1 37 38 38 39 1 1 1 1 0.00 1 1 1

2 38 38 38 39 0 2 2 2 0.00 2 2 2

3 38 38 38 39 1 3 3 3 1.00 1 1 3

4 38 39 39 39 2 0 0 4 2.00 0 0 4

5 38 39 39 39 3 1 1 5 1.50 1 1 5

6 38 39 39 39 4 2 2 6 1.00 2 2 6

7 38 39 39 39 5 3 3 7 0.50 3 3 7

8 39 39 39 39 0 4 4 8 0.00 4 4 8

9 39 39 39 39 1 5 5 9 1.00 5 5 4

10 39 39 39 38 2 6 6 0 2.00 6 6 0

11 39 39 39 38 3 7 7 1 1.33 7 7 1

12 39 39 39 38 4 8 8 2 0.67 8 8 2

13 40 39 39 38 0 9 9 3 0.00 9 9 3

14 40 39 39 38 1 10 10 4 1.00 10 10 4

Table 3: Example of ISLC features engineering. Columns T1−4 contain raw values as

recorded by four temperature sensors; columns islcT1−4 contain the corresponding ISLC

values before applying interpolation; columns islcintT1−4
contain the interpolated ISLC fea-

tures, which are used for model training and inference. Red temperature values in columns

T1−4 indicate the events of temperature change, while interpolated values in columns

islcintT1−4
are highlighted with the cyan colour.

For example, let us consider the entries in columns T1−4 in Table 3 with index 5 as

the next datapoint that is available to the anomaly detection algorithm. No temperature

change takes place with respect to the datapoint indexed 4. Therefore, the execution of

the anomaly detection algorithm for this datapoint is postponed. Upon arrival of the

datapoint with index 8, the values in columns islcintT1−4
can be computed and the anomaly

detection algorithm run for points with indices 5–8. Nevertheless, our experiments show

that usually the numbers of subsequent datapoints buffered is not large. A histogram

15

showing the distribution of these numbers obtained when computing the interpolated

ISLC features for all normal datasets of the experiments in Table 2 is shown in Figure 10.

The maximum value is 133.

0 20 40 60 80 100 120 140
Number of buffered datapoints

0

200

400

600

800

1000

1200

Co
un

t

Figure 10: Histogram of the number of

datapoints queued before the anomaly de-

tection algorithm is run. The histogram

is generated from buffering data collected

while computing interpolated ISLC fea-

tures for all normal datasets of the exper-

iments in Table 2.

At first sight, one could argue that the delay in anomaly detection caused by the

need to buffer 100 datapoints is too long: with data acquisition frequency of 0.2Hz this

would result in a delay of 500 s, i.e., 8min. 20 s. However, for our particular scenario,

the anomalies are assumed to manifest themselves via temperature changes. Therefore,

if an anomaly fitting the scenario occurs, it will cause a temperature change, which in

turn will cause the interpolated ISLC values to be computed and the anomaly detection

algorithm to be triggered to detect the abnormal behaviour of the system. Therefore, we

consider this inherent delay to be a minor disadvantage of the proposed solution. Details

on how the ISLC interpolation is implemented in the real-time analysis scenario on the

microcontroller are discussed in Section 5.

We also experimented with two other sets of features. In particular, we considered the

two highest-order components obtained with the Principal Components Analysis (PCA)

applied either 1) to the raw temperature data from the nine sensors, or 2) to the nine

interpolated ISLC values. For anomaly detection, PCA is known to be effective due to its

ability to identify points that violate inter-attribute dependencies [14] and the violations

are most pronounced in the highest-order components, i.e., ones with the lowest variance.

However, our experiments both with synthetic datasets obtained from the simplified

thermal simulator and the real lab datasets found that that taking the feature set to be

the two highest-order PCA components of the nine raw temperature sensor values or of

the nine interpolated ISLC values was not sufficient.

To summarise, since the synthetic datasets are exceptionally clean – they do not

contain any noise, and are regular – they are perfectly periodic, only the nine interpolated

ISLC features were enough to consider for the anomaly detection task. For the noisy and

irregular real lab datasets, both the nine raw temperature sensors features and the nine

interpolated ISLC features were used.

16

InputLayer

float32

input:

output:

[(None, 150, 18)]

[(None, 150, 18)]

Conv1D relu

float32

input:

output:

(None, 150, 18)

(None, 146, 5)

Flatten

float32

input:

output:

(None, 146, 5)

(None, 730)

Dense linear

float32

input:

output:

(None, 730)

(None, 18)

(a) CNN-based model (13,613)

InputLayer

float32

input:

output:

[(None, 150, 18)]

[(None, 150, 18)]

LSTM tanh

float32

input:

output:

(None, 150, 18)

(None, 100)

Dense linear

float32

input:

output:

(None, 100)

(None, 18)

(b) LSTM-based model ver. 1 (49,418)

InputLayer

float32

input:

output:

[(None, 150, 18)]

[(None, 150, 18)]

LSTM relu

float32

input:

output:

(None, 150, 18)

(None, 150, 100)

LSTM relu

float32

input:

output:

(None, 150, 100)

(None, 150, 200)

LSTM relu

float32

input:

output:

(None, 150, 200)

(None, 100)

Dense linear

float32

input:

output:

(None, 100)

(None, 18)

(c) LSTM-based model ver. 2 (410,618)

InputLayer

float32

input:

output:

[(None, 150, 18)]

[(None, 150, 18)]

LSTM tanh

float32

input:

output:

(None, 150, 18)

(None, 150, 500)

LSTM tanh

float32

input:

output:

(None, 150, 500)

(None, 150, 200)

LSTM tanh

float32

input:

output:

(None, 150, 200)

(None, 50)

RepeatVector

float32

input:

output:

(None, 50)

(None, 150, 50)

LSTM tanh

float32

input:

output:

(None, 150, 50)

(None, 150, 50)

LSTM tanh

float32

input:

output:

(None, 150, 50)

(None, 150, 200)

LSTM tanh

float32

input:

output:

(None, 150, 200)

(None, 150, 500)

TimeDistributed(Dense)

float32

input:

output:

(None, 150, 500)

(None, 150, 18)

(d) AutoEncoder (3,281,018)

Figure 11: Main types of deep-learning model architectures considered in the AtMonSat

project with example configurations. The total numbers of parameters are provided in

parentheses in the captions of the individual architectures. The graphs were produced

with the tf.keras.utils.plot model function of TensorFlow.

17

https://www.tensorflow.org/api_docs/python/tf/keras/utils/plot_model

4.2 Deep-learning model architectures

We considered different deep-learning model architectures: CNN-based, LSTM-based,

and an AutoEncoder with different configurations of activation functions and individual

layers. The architectures with example configurations are presented in Figure 11.

We selected the approach of training deep-learning models exclusively with the nor-

mal datasets (i.e., regression training), as an alternative version of training the models

using both normal and abnormal datasets (i.e., classification type of training). All mod-

els were trained with the “Mean Squared Error” (MSE) loss function and the Adam

optimiser with TensorFlow default settings. Early stopping callback was used with

the following configuration: monitor=‘loss’, min delta=1e−2, patience=10, and mode

=‘auto’. The number of epochs was set to 500. The input to the models consisted

of batches of input tensors of shape (window length, number of features), where the

window length defines the size of the number of consecutive (historical) datapoints used

to make the inference. For the target model which is presented in the continuation, we

set window size = 150 and number of features = 18. The output of the models are

tensors of shape (1, number of features), i.e., the models infer a single next datapoint

in terms of interpolated ISLC values and raw temperature values. During training, the

inferred outputs where compared to the actual datapoints using the MSE loss function,

which was optimised with the backpropagation algorithm.

4.3 Anomaly detection algorithm

We explain now the anomaly detection algorithm we developed. The algorithm makes

use of a metric for calculating errors, which turns out to be an important design decision.

The two metrics we considered were: 1) the Euclidean distance and 2) the Mahalanobis

distance between the two vectors of length number of features. In the case of the

Mahalanobis distance, the trained model is run on the training data to estimate the

mean and the inverse standard deviation matrix based on the normal condition error

vectors obtained by subtracting the prediction from the reference. The estimated mean

and inverse of the covariance matrix are used to define the Mahalanobis distance function

for the analysis of the abnormal datasets.

The anomaly detection algorithm developed within AtMonSat is devised as follows.

Step 1: A deep-learning model is trained on data from all the normal datasets gener-

ated with the experiments presented in Table 2 with the settings presented in

Section 4.2.

Step 2: The trained model is run on an anomalous dataset. For each inferred point

an error with respect to the actual datapoint is computed with respect to the

chosen metric (the Euclidean or Mahalanobis distance). The errors, computed

based on the model outputs and the ground-truth feature vectors, are referred

to as the raw anomaly detection signal.

Step 3: The raw anomaly detection signal is post-processed by considering a threshold

value and a so-called hold-off window. The threshold value is determined with

18

a separate procedure described in Section 4.4, while the hold-off window is given

by a duration specifying the number of timepoints. The raw anomaly detection

signal is scanned in the chronological order of the corresponding datapoints

one point after the other. If an error value greater or equal to the threshold

value is observed, the corresponding datapoint is classified as anomalous and

all consecutive datapoints within the hold-off window starting at the anoma-

lous datapoint are classified as normal. Scanning then continues from the first

subsequent error outside the hold-off window.

The post-processing is introduced due to the fact that the information on abnormal

behaviour is carried in the change of the temperature pattern. However, temperature

changes are inherently slow and continuous. Furthermore, there is a delay between the

occurrence of a board element malfunction and the time the disturbance in the tem-

perature pattern is registered by the sensors scattered across the board. The delay is

determined by the thermal conduction characteristics of the board. Given this, the ratio-

nale behind introducing the hold-off window for the post-processing of the raw anomaly

signal is twofold. First, due to continuity of thermal changes, an anomaly is usually indi-

cated by consecutive raw signal values exceeding the threshold. Second, an anomaly can

be demonstrated by the occurrence of multiple anomaly signal peaks one shortly after

the other as observed in some of the generated datasets. The introduction of the hold-off

window post-processing allows all datapoints exceeding the threshold in a window to be

considered as a single anomaly. This cleans the raw anomaly signal for subsequent quan-

titative evaluation of the performance of the models with respect to appropriate metrics

described in Section 6. In our case, we set the hold-off window to 60 timepoints.

4.4 Determination of the anomaly detection threshold

Both the Euclidean and the Mahalanobis error thresholds are determined with the same

approach which mimics the statistical leave-one-out cross-validation (a.k.a. out-of-sample

testing) procedure. One of the normal datasets of the experiments presented in Table 2

is kept aside and all the others are used to train a model with the settings provided

in Section 4.2. Then, the fitted model is run on the kept-aside normal dataset and

the errors are computed and stored. For the Mahalanobis distance, the mean and the

inverse covariance matrix are estimated from the errors obtained by running inference

on all the normal datasets except the one kept aside. The procedure is repeated for all

normal datasets kept aside. Finally, all the errors are used to generate a histogram, i.e.,

an empirical distribution, and the significance threshold value corresponding to a chosen

statistical significance level (e.g., 0.05 or 0.01%) is used as the respective Euclidean or

Mahalanobis error threshold, see Figure 12.

19

0 200 400 600 800 1000 1200 1400
Euclidean error

0

200

400

600

800

1000

1200
Co

un
t

Significance threshold
Figure 12: An empirical dis-

tribution of the Euclidean

error of values inferred by

the CNN-based model ex-

ploited by the anomaly de-

tection algorithm. A signifi-

cance threshold value is in-

dicated by the vertical red

dashed line corresponding to

a statistical significance level

of 0.05.

5 Implementation

The anomaly-detection algorithm devised within the AtMonSat project is implemented

in C++ in a generic way that facilitates the compilation for a PC and targeting to a mi-

crocontroller. The algorithm is embedded in a testbed to allow verification of the results

and performance. Only a small part (e.g., the data link layer and the time metric) of this

testbed is hardware dependent and must be exchanged for the PC and microcontroller

versions. Figure 13 shows a general overview and the differences of both implementations.

All source codes are made available via the AtMonSat GitHub repository [15].

5.1 Testbed

The testbed consists of a frontend and a backend. The frontend is running on the host,

e.g., a PC, and the backend is part of the target.

Figure 14 presents a block diagram of the testbed, shown on the left-hand side, which

is calling the anomaly detection algorithm, shown on the right-hand side, upon reception

of a datapoint. The anomaly detection algorithm itself is discussed in Section 5.3.

5.1.1 Frontend

The testbed frontend consists of a Jupyter notebook (atmonsat testbench.ipynb), which

is running on top of Jupyter and iPython, to control the experiment and to record and

to visualize the results. This notebook allows:

� selecting the connection target, i.e., local or remote experiment;

� selecting the dataset and dataset range (’experiment’, ’normal’, ’anomaly’) to be

send to the target; and

� changing the algorithm settings.

20

Laptop running
testbench notebook

Remote setup

Ju
p
y
te

r
n
o
te

b
o
o
k

Ju
p
y
te

r
+

 i
P
y
th

o
n

L
in

u
x

U
S
B

 /
 C

D
C

NUCLEO-H743ZI2

STM32H743 running
testbed and algorithm

A
tM

o
n
S
a
t

a
n
o
m

a
ly

d
e
te

c
ti

o
n
 a

lg
o
ri

th
m

Te
st

b
e
d

S
T
M

3
2

H
7

4
3

 s
p
e
c
ifi

c

st
a
rt

u
p
.
d
a
ta

li
n
k
 a

n
d
 t

im
in

g

U
S
B

 /
 C

D
C

 t
o

U
S

A
R
T

Laptop running
testbench notebook and anomaly detection

Ju
p
y
te

r
n
o
te

b
o
o
k

Ju
p
y
te

r
+

 i
P
y
th

o
n

Linux

Pipes

A
tM

o
n
S
a
t

a
n
o
m

a
ly

d
e
te

c
ti

o
n
 a

lg
o
ri

th
m

Te
st

b
e
d

Local setup

Figure 13: Overview of the testbed with a local (top) and a remote connection (bottom).

Both versions only differ in the data link layer and the timing functions.

All results and associated settings are stored in a unique (timestamped) directory in the

results subdirectory.

The testbench relies on the dataset notebook (dataset.ipynb) to provide the data

and meta-data for each experiment, and the connection notebook (connection.ipynb) to

provide a reliable connection towards the target.

All experimental data are stored in the datasets directory with a dedicated subdirec-

tory for each experiment. Each subdirectory contains subfolders with raw experimental

data and a meta file (meta.json) to explain and correct the data. The individual datasets

of the experiments can be accessed using the Dataset class of the dataset notebook

(dataset.ipynb).

5.1.2 Backend

The backend consists of a hardware specific data link layer to accept data from the com-

munication byte by byte and to forward it to the hardware independent communication

protocol.

The communication protocol reassembles the transmitted data into objects (e.g., dat-

apoint, inverse covariance matrix for Mahalanobis error) and calls a proper callback han-

21

1x9: int8

testbed
frontend backend

detection
algorithm

threshold

create reply

execution time reply

uint8

uint8 n

RPLYRPLY

periodic call from main

TF lite micro interpreter

Mahalanobis distance

to tensor

to dp<float32, 18>

error

conat to dp<float32,18>

SIPO

z-1

SIPO

change?

interpolate and dequeue

reset

trigger dequeuing

cnt[0..8]++

ERPERP

ACK

ACK

uint8

mACK

1x9: int8

150x9: float32
dp

dp

dp islc

islc

islc

1x9: tensor of int8

1: float32

1: uint8: 0,1
obj[i] 1x9: int8

datapoint 1x9: int8

datapoint 1x9: int8
1x9: float32

1x9: float32

150x9: int8

150x18: tensor of float32

1x9: tensor float32

repeat for 0..N in queue

1x18: float32 1x18: float32

1x18: float32

1x18: float32

M
e
a
s
u

re
d

 t
im

e

inv(cov()):
mean:

18x18 float32
1x18 float32

TF model (quantized)

threshold: 1 float32

Interpolating-ISLCC

Interpolating-ISLCC

D
a
ta

 l
in

k
 U

A
R
T

o
r

p
ip

e
s

Ju
p

y
te

r
n
o
te

b
o
o
k
 c

o
n
n
e
c
te

d
 u

si
n
g

 s
e
ri

a
l
o
r

p
ip

e
s

C
o
m

m
u
n
ic

a
ti

o
n
 p

ro
to

c
o
l

D
a
ta

p
o
in

t
c
a
ll
b

a
c
k
 h

a
n
d

le
r

return to main

DP

return

re
p

e
a
t

fo
r

0
..

N
 v

e
c
to

rs
 i
n

 I
IS

L
C

C
 q

u
e
u

e

Figure 14: Flow diagram of the STM32H743 microcontroller implementation.

dler, such as the datapoint callback handler depicted on the left-hand side of the diagram

in Figure 14, once the object is updated. The diagram only shows the datapoint callback

handler. Other, simpler callback handlers (e.g., initialization, inverse covariance matrix

update) are omitted for clarity, since they are handled the same way as the datapoint

callback handler in the diagram.

The datapoint callback handler’s main purpose is to call one iteration of the the

anomaly detection algorithm upon reception of a datapoint. Moreover, the handler starts

the timer for the execution time measurement prior to the call of the anomaly detection

algorithm iteration and stops the timer after the completion of the iteration. The data-

point callback handler then replies the execution time to the host.

The datapoint callback handler also supplies the anomaly detection algorithm with

the necessary callbacks to reply, e.g., anomaly detection outcome, Mahalanobis distance,

error messages, to the host. These callbacks are exempt from the time measurement as

they are part of the protocol and not of the anomaly detection algorithm.

22

5.1.3 Communication

Communication direction is by default from host to target. It is a half duplex communi-

cation where every received byte is acknowledged by the peer. The design considerations

here are that one USART (Rx+Tx) is sufficient and no multi-threading is required.

The communication transports a stream of data containers of different types. This

allows different content, which is identified by a cmd id, to be transmitted without mod-

ifying the protocol. A dedicated callback handler is called after the reception of each

container type.

Every received byte is acknowledged to confirm the reception and to delay the commu-

nication until processing on the target, which is slower, is completed. This allows working

without buffers and interrupts which otherwise would disturb timing measurements.

Sending an RPLY (reply) instead of ACK (acknowledge) upon reception of a byte

allows the target to change the communication direction from target to host until an ERP

(End of RePly) command is send. Reversing the communication direction allows the

target to send one or multiple reply objects, e.g., detection results and timing information,

to the host.

5.2 Conversion of a TensorFlow pre-trained model to a Tensor-

Flow Lite Micro version

A deep-learning model was implemented and pre-trained using the TensorFlow frame-

work. The model was then converted to its TensorFlow Lite Micro using the provided

converter by TensorFlow Lite, i.e., tf.lite.TFLiteConverter. In the TensorFlow model we

restricted ourselves to just use operators that are implemented in the TensorFlow Lite

Micro and listed in the builtin ops.h file. This allowed straightforward model conversion.

The resulting TensorFlow Lite Micro model was then saved as an array in C++ source file.

The details on the conversion can be found in the firmwares/atmonsat common sources/

atmonsat model quantize.ipynb Jupyter notebook.

Attempts to further quantize the TensorFlow Lite Micro model resulted in significant

performance drop. Therefore, we decided not to quantize the target model. Due to the

time limitations of the AtMonSat project, we decided to leave quantization for future

research as explained in Section 7.

5.3 Anomaly Detection Algorithm

The C++ implementation of the anomaly detection algorithm is build around a Ten-

sorFlow Lite Micro model which is obtained by converting a pre-trained deep-learning

TensorFlow model as described in Section 5.2. The algorithm is evaluated on the arrival

of each datapoint. For the computation of the interpolated ISLC features, datapoints are

entered into the Interpolating Iterations Since Last Change Counter module from where

they are forwarded into two Serial-In-Parallel-Out (SIPO) blocks. The outputs of the

23

https://github.com/tensorflow/tflite-micro/blob/main/tensorflow/lite/builtin_ops.h

P.C. M.C.

command transfer from PC to MC

cmd

select protocol handler
(callback for argumentless commands)

ACK

obj.byte[0]

ACK

obj.byte[1]

ACK

obj.byte[n]

convert value, callback,
deactivate protocol handler

ACK

Command with a reply initiated by MC

cmd

select protocol handler
(callback for argumentless commands)

ACK

... send obj.byte[0..n-1] + ACKs ...

obj.byte[n]

convert value, callback,
deactivate protocol handler

RPY (initiate reply)

reply from MC to PC

cmd

ACK

obj.byte[0]

ACK

obj.byte[1]

ACK

obj.byte[n]

ACK

... more obejcts can be transfered here..

end of reply

cmd := ERP

ACK

after ERP the PC is allowed to continue

cmd

ACK

...

bytes that are NAKed are getting
*

repeated (both directions)

cmd

NAK

cmd

ACK

unhandled commands are CNSed
*

cmd

CNS

Figure 15: A diagram providing an overview of the communication protocol.

24

two SIPOs are two windows (e.g., of width 150) of datapoints that are given as input to

the TensorFlow Lite Micro model after conversion to a float32 tensor, see Figure 14.

The output of the deep-learning model is delayed by one iteration before getting

compared against the new window values of the next iteration. The result of the com-

parison is the error that is measured with a Mahalanobis distance against a predefined

mean. The distance is reported to the host. Next, the Mahalanobis distance is compared

against a pre-determined threshold value and processed with a hold-off window (e.g.,

of the length of 60 samples) as described in Section 4.3. This results in the anomaly

detection decision, which is next reported back to the host.

5.3.1 Interpolating Iterations Since Last Change Counter module

The Interpolating Iterations Since Last Change Counter (IISLCC) module implements the

computation of the interpolated ISLC features described in Section 4.1. Upon reception

of a new datapoint, i.e., a vector with the raw temperature sensors features of length

number of features, the IISLCC increases by 1 its internal counters – one for each of

the number of features raw temperature sensors features. Then, the new datapoint is

compared against the last datapoint for changes detection.

If no change took place, then the new datapoint and a vector of the IISLCC internal

counters’ current values are enqueued in their corresponding queues of fixed size, which

was determined based on the results of the study of datapoints buffering data presented

in Section 4.1. If the queues are full, one anomaly detection callback is forced to free

storage space for the new datapoint.

If a change is detected, the algorithm finds the index (or indices in the case of multiple

simultaneous changes) of the raw temperature sensors feature(s) for which the change(s)

occurred and resets the corresponding counter(s) to 0. Next, for each of the counters,

all queued values are re-visited and replaced with linearly interpolated values between

the value of the first enqueued value of the particular counter and the just reset zero

value, see Section 4.1 for the details on the interpolation. Then, the inference callback

handler is called for each enqueued datapoint and its corresponding vector of all IISLCC

internal counters’ values, emptying both queues. Finally, the current datapoint and its

corresponding vector of all IISLCC internal counters’ current values are enqueued for the

next iteration.

Further details on the IISLCC Implementation can be found in islcc interpolator.h.

5.4 PC implementation (native)

The PC implementation is targeted for a Linux (e.g., Ubuntu) platform. It consists of

the testbed and the anomaly detection algorithm, see the top part of Figure 13. The

data link layer of the testbed uses pipes (stdin, stdout, stderr) for communication with

the controlling Jupyter notebook, where stderr can be used for debugging purposes but is

25

not used by the testbench itself. The time metric is able to measure nanoseconds based

on a Linux Kernel API.

Building the PC implementation can be done by calling the Makefile make. The

Placebo version (version without algorithm) can be build with make PLACEBO=1.

The path to this binary can be setup as one of the settings of the testbench Jupyter

notebook.

5.5 Microcontroller implementation

The microcontroller implementation is targeted towards an STM32H743 32bit ARM®

Cortex®-M7 microcontroller. This is the same microcontroller as the one used in the

EduSat. The STM32H743 microcontroller is a 32-bit Arm® Cortex®-M7 core with

double-precision FPU and L1 cache (16 kB of data and 16 kB of instruction cache).

The complete datasheet can be found at [16].

The implementation was tested on a NUCLEO-H743ZI board, see Figure 16. The

code can be built and uploaded using the STM32CubeIDE from STMicroelectronics.

Figure 16: NUCLEO-H743ZI develop-

ment board with the STM32H743ZI mi-

crocontroller unit (MCU).

Clock configuration functions are provided for four frequencies, i.e., 39MHz, 78MHz,

146MHz, and 298MHz. These values are selected to get a millisecond timer for tim-

ing measurements while fulfilling all core internal timing constraints. The active clock

configuration can be selected in the main stm32.h file. This also adapts the communica-

tion baudrate. The clock frequency is one of the settings that must be changed in the

testbench Jupyter notebook before the communication. This automatically adapts the

communication baudrate for that clock frequency on the host side.

The POWER MEASUREMENT definition must be declared while making power

measurements. This disables all unnecessary consumers (e.g., LEDs).

5.5.1 Baremetal implementation

The barematal implementation is targeted for an STM32H743 microcontroller. It con-

sists of the testbed and the anomaly detection algorithm, see the top part of Figure 13.

The data link layer of the testbed uses USB/CDC protocol for communication with the

controlling Jupyter notebook. The time metric is able to measure milliseconds based

on a 32-bit timer. The main entry of the baremetal implementation can be found in

26

https://www.st.com/en/evaluation-tools/nucleo-h743zi.html
https://www.st.com/en/development-tools/stm32cubeide.html
https://www.st.com/

main stm32.cc. The data link layer is defined in protocol datalink stm32 usart.∗ files and

the time metric is declared in time metric stm32.∗ files.

5.5.2 FreeRTOS implementation

The AtMonSat anomaly detection code was also tested in conjunction with a preemp-

tive FreeRTOS kernel. The anomaly detection algorithm controlled by the testbed is

implemented as one task. The code of this task is close to the baremetal implementa-

tion, see Section 5.5.1. Another dummy task is created to demonstrate multitasking.

All memory used by the kernel and tasks where allocated statically. The main entry of

the FreeRTOS implementation can be found in main stm32 freertos.cc. The data link

layer is defined in protocol datalink stm32 usart.∗ files and the time metric is declared in

time metric stm32 freertos.∗ files.

5.6 Power measurement setup

Increase in power consumption of the microcontroller due to the execution of the anomaly

detection algorithm is estimated as the difference in power consumption of the placebo

version of the firmware and the firmware including the anomaly detection algorithm.

Measuring the difference cancels the power consumption due to the testbed and other

components on the development board.

Laptop running
testbench notebook

Ju
p
y
te

r
n
o
te

b
o
o
k

Ju
p
y
te

r
+

 i
P
y
th

o
n

L
in

u
x

U
S
B

 /
 C

D
C

NUCLEO-H743ZI2

STM32H743 running testbed
backend with anomaly

detection

A
tM

o
n
S
a
t

a
n
o
m

a
ly

d
e
te

c
ti

o
n
 a

lg
o
ri

th
m

Te
st

b
e
d

S
T
M

3
2

H
7

4
3

 s
p
e
c
ifi

c

st
a
rt

u
p
.
d
a
ta

li
n
k
 a

n
d
 t

im
in

g

U
S
B

 /
 C

D
C

 t
o

U
S

A
R
T

GND
D-
D+
VCC

Windows laptop

Fluke 289 True RMS Multimeter
Voltage Logger

Fluke 289 True RMS Multimeter
Current Logger

Figure 17: Overview of the setup for measuring current and voltage during execution of

the testbed with the anomaly detection algorithm on the STM32H743 microcontroller.

An overview of the setup for measuring power consumption is presented in Figure 17,

while a photo of the actual lab setup is shown in Figure 18 shows a photo of the setup

in the lab. Power is measured by recording the voltage and current with two Fluke 289

27

Figure 18: Setup for mea-

suring the current and the

voltage during execution

of the testbed with the

anomaly detection algo-

rithm on the STM32H743

microcontroller.

True RMS multimeters with logging capability. Samples are recorded every second and

they consist of the RMS average value of the voltage or current during that second.

During post processing, the voltage and current logs are realigned. Next, the volt-

age and the current values are multiplied to give a power trace of the experiment.

Mean and standard deviation of the power trace are calculated and reported in the

power statistics.json file. The raw data is saved in CSV files.

5.7 Post-processing

All the data collected during the execution time and power consumption measurements

is stored in raw format. To visualize and aggregate the information, a number of post-

processing Jupyter notebooks is provided.

It is sufficient to run the main post-processing notebook (postprocessing.ipynb) which

applies all other post-processing notebooks to the data.

Notice that the post-processing notebook works on a directory named measurements,

whereas testbench stores the data in the results directory. The data has to be copied by

hand or the measurement root variable in the post-processing notebook needs to be set

with the path to the directory. This is done on purpose to prevent automatically adding

results from a test run into the measurements directory.

Aggregated data is stored inside the measurements directory. Generated plots and

data for each measurement can be found in its subdirectory of themeasurements directory.

28

6 Results

6.1 Anomaly detection on synthetic datasets

We run the raw anomaly detection algorithm, i.e., without post-processing of the raw

anomaly detection signal (Step 3), on the synthetic datasets. We considered three dif-

ferent deep-learning models with architectures presented in Figures 11a, 11c, and 11d,

i.e., a CNN-based model, an LSTM-based model, and an AutoEncoder. The models were

trained with the discretised simulated temperature sensor data in normal conditions pre-

sented in Figure 5. However, in the case of the synthetic data analysis, we introduced

the following modifications:

� the window size parameter was set to 20;

� as input we only used the nine interpolated ISLC features without the nine corre-

sponding raw temperature features;

� the number of filters in the Conv1D layer of the CNN-based model in Figure 11a

was changed from 5 to 64.

Next, the trained models were applied to the discretised simulated temperature sensor

data in abnormal conditions presented in Figure 6. Our experiments revealed that only

the use of the Mahalanobis distance metric was producing meaningful results. The raw

anomaly detection signals, i.e., the Mahalanobis errors, for all the three deep-learning

models are presented in Figures 19, 20, and 21. Clearly all models are capable of correctly

identifying the anomalies.

0 2500 5000 7500 10000 12500 15000 17500 20000
Time [s]

0

100

200

300

400

500

600

M
ah

al
an

ob
is

er
ro

r

Figure 19: Raw anomaly detection signal output by the anomaly detection algorithm with

the CNN-based model in Figure 11a for the discretised simulated temperature sensor data

in abnormal conditions presented in Figure 6. With respect to the original architecture

in Figure 11a, the number of filters of the Conv1D layer was increased to 64. The window

size parameter was set to 20. The times when the anomalous battery heating is on are

indicated with the light-violet bars.

Nevertheless, since the synthetic datasets are ideally regular, i.e., perfectly periodic

and without any noise, deep-learning models with a relatively small number of parameters

29

0 2500 5000 7500 10000 12500 15000 17500 20000
Time [s]

0

100

200

300

400

500

600
M

ah
al

an
ob

is
er

ro
r

Figure 20: Raw anomaly detection signal output by the anomaly detection algorithm

with the LSTM-based model in Figure 11c for the discretised simulated temperature

sensor data in abnormal conditions presented in Figure 6. The window size parameter

was set to 20. The times when the anomalous battery heating is on are indicated with

the light-violet bars.

were capable of capturing the pattern of inter-attribute dependencies during training, and

also capable of identifying anomalies during inference. Thus, we did not perform any fine-

tuning or optimisation of the deep-learning models, but rather decided to focus on the

much more challenging real lab data.

We just mention here that an initial quantization of the models run on a PC did

not result in a significant drop in anomaly detection performance, contrary to what we

observed in the case of real lab data.

6.2 Anomaly detection on lab datasets

The anomaly detection algorithm employing trained models was applied to the anoma-

lous datasets of the experiments presented in Table 2. As in the case of the synthetic

datasets, our experiments revealed that only the use of the Mahalanobis distance metric

was generating meaningful results. Furthermore, only the CNN-based model outlined

in Figure 11a was capable of providing meaningful results for the noisy real-life data in

contrast to synthetic data in which case all types of architectures in Figure 11 are valid.

For example, the raw anomaly detection signal output by the anomaly detection algo-

rithm with the LSTM-based model in Figure 11b for the 2022.06.03 abnormal dataset is

shown in Figure 22. The LSTM-based model failed to identify the anomaly due to the too

high Mahalanobis error threshold indicated with the dashed green line. The high value

of the threshold originated from poor performance of the model on the out-of-sample

test with the 2022.05.30 normal dataset kept aside (see Section 4.4 for details on the

threshold determination). Given this threshold, the anomaly detection algorithm with

the LSTM-based model performed poorly also on other abnormal datasets.

Nevertheless, one could argue that lowering the threshold in some way could lead

to better performance. To verify this, we computed the areas under the precision-recall

30

0 2500 5000 7500 10000 12500 15000 17500 20000
Time [s]

0

5000

10000

15000

M
ah

al
an

ob
is

er
ro

r

Figure 21: Raw anomaly detection signal output by the anomaly detection algorithm

with the AutoEncoder model in Figure 11d for the discretised simulated temperature

sensor data in abnormal conditions presented in Figure 6. The window size parameter

was set to 20. The times when the anomalous battery heating is on are indicated with

the light-violet bars.

curves generated with the anomaly detection algorithm with the LSTM-based model for

individual abnormal datasets. The areas are presented in Table 4.

Exp. date 04/06 05/18 05/20 05/30 06/01 06/03 06/08 06/15 06/22 07/20

PRC area 0.90 0.57 1.00 1.00 0.04 0.25 0.16 1.00 1.00 0.30

Table 4: Areas under the precision-recall curves (PRC) of the anomaly detection algo-

rithm with the LSTM-based model in Figure 11b run on individual abnormal datasets.

A shorter notation is used to denote the datasets, e.g., 04/06 stands for 2022/04/06.

By comparing the areas of the LSTM-based model with the respective areas obtained

with the CNN-based model, which are going to be discussed in Section 6.2.1 and shown

in Figure 26, it was concluded that the CNN-based model is preferable. The conclusion

remained valid for the LSTM-based model in Figure 11c and for other considered variants

with different numbers, shapes, and activation functions of LSTM layers, which are not

shown in this report.

Given the above observations, we henceforth focus on the CNN-based model archi-

tecture. Our experiments with different sizes of the window with past datapoints for

inference, i.e., 100, 150, 200, revealed that the best performance was achieved with the

window size of 150. The CNN-based model is trained as described in Section 4. Addi-

tionally, the trained model is validated with the validation dataset. The results of the

anomaly detection algorithm run on the validation dataset, which is a normal condition

dataset (see Section 3.2), are presented in Figure 23.

Then, the anomaly detection algorithm is run on the anomalous datasets of the ex-

periments in Table 2. The obtained results in terms of the raw anomaly detection signal

and the post-processed anomaly detection signal, which is the final output of the the

proposed anomaly detection algorithm, are presented in Figure 25.

31

11:30 12:00 12:30 13:00 13:30
0

100

200

300

400

500

600
M

ah
al

an
ob

is
er

ro
r

Figure 22: Raw anomaly detection signal output by the anomaly detection algorithm

with the LSTM-based model in Figure 11b for the 2022/06/03 abnormal dataset. The

Mahalanobis threshold value, determined as described in Section 4.4, is indicated with

dashed green line. The blue vertical line shows the anomaly of the dataset.

6.2.1 Quantitative evaluation of the algorithm performance

The confusion matrix values, i.e., the true positives (TPs), false positives (FPs), and false

negatives (FNs), and the values of three standard metrics for classification evaluation,

i.e., precision, recall, and the F1-score, where

precision =
TP

TP + FP
,

recall =
TP

TP + FN
, and

F1-score =
2 · precision · recall
precision + recall

,

(5)

are calculated as explained next. In order to count the TPs, we introduce the notion of

a TP-interval. Let ai be the index of the first datapoint recorded by the temperature

sensors after (or at) the anomaly start time, i.e., the moment of battery heating being

turned on. Since heating anomaly requires time for the temperature change to reach

the sensors, there is an inherent delay, or inertia, before the anomaly is detectable. We

therefore allow the anomaly to be detected within a window of datapoints, referred to

as the anomaly inertia window. In our experiments, we set the length of this window,

denoted laiw, to 60. If an anomaly signal is output by the anomaly detection algorithm

for any of the datapoints with indices in the range [ai, ai + laiw], the anomaly signal is

considered as a TP. However, due to the interpolation of the ISLCs, there is a possi-

bility for an anomaly to be detected and identified before the datapoint with index ai
as the information about the near future is conveyed in the interpolated subsequence of

ISLC(s). For example, the subsequence islcintT1
[4 − 6] in Table 3 contains interpolated

values. By observing it, one can deduce that a temperature change will be captured by

the temperature sensor T1 in the 8th datapoint. To take this possibility into account, the

32

09:00 10:00 11:00 12:00 13:00 14:00
Timestamp [HH:MM]

0

500

1000

1500

2000 Mahalanobis error
Mahalanobis error threshold

(a) The Mahalanobis error, i.e., the inference error measured with the Mahalanobis distance,

on the validation dataset.

09:00 10:00 11:00 12:00 13:00 14:00
Timestamp [HH:MM]

Norm

Abnorm

(b) The output of the anomaly detection algorithm on the validation dataset, i.e., the post-

processed raw anomaly detection signal with hold-off window size of 60 datapoints. The confu-

sion matrix values are as follows: False Positives: 7, False Negatives: 0, True Positives: 0, and

True Negatives: 1925.

Figure 23: Validation results of the anomaly detection algorithm employing the CNN-

based model in Figure 11a.

TP-interval is expanded to the left as follows. It is checked whether any of the nine in-

terpolated ISLC features corresponding to ai-th datapoint contain an interpolated value.

If this is the case, let intstart and intend be the start and the end indices of the inter-

polated subsequence, respectively. In our example, intstart = 5 and intend = 7. Then,

the TP-interval is given by [intstart, ai + laiw]. All anomaly detection signals within this

interval are considered as TPs. In Figure 25, each anomaly is plotted with its TP-interval

visualised with light-violet rectangles in the plots with the final output of the anomaly

detection algorithm.

Once the TPs are calculated, all the remaining anomaly signals are counted as FPs.

Anomalies that are not identified contribute to the number of FNs. Finally, the number

of TNs is obtained with the following expression:

TN = total number of datapoints− (TP + FPs + FN).

Next, the precision, recall, and F1-score are calculated in accordance with Equation 5.

The precision and the recall make it possible to assess the performance of a classifier on

the minority class of an imbalanced dataset [17], as both metrics are unconcerned with

the majority class and only focus on the minority class. In our case the minority class

is ‘abnormal’, i.e., TPs, while the majority class is ‘normal’, i.e., TNs. The quantita-

33

tive evaluation of the anomaly detection algorithm employing the CNN-based model is

provided in Table 5.

CNN-based model, window size=150

Exp. date TP FP FN Precision Recall F1-score

2022/04/06 2 0 1 1.00 0.67 0.80

2022/05/18 1 2 2 0.33 0.33 0.33

2022/05/20 1 0 0 1.00 1.00 1.00

2022/05/30 1 0 0 1.00 1.00 1.00

2022/06/01 3 9 1 0.25 0.75 0.38

2022/06/03 1 2 0 0.33 1.00 0.50

2022/06/08 2 2 0 0.50 1.00 0.67

2022/06/15 2 1 0 0.67 1.00 0.80

2022/06/22 1 0 0 1.00 1.00 1.00

2022/07/20 4 12 0 0.25 1.00 0.40

Table 5: Confusion matrix values (TP, FP, and FN) and the values of three model perfor-

mance metrics (precision, recall, and F1-score) for the CNN-based model (see Figure 11a)

with window size of 150 for the individual abnormal datasets.

There is a significant variance in the values of the precision, recall, and F1-score

metrics for different datasets. This is mainly due to the high level of noise and the fact

that the individual experiments were conducted on different days in the lab. Although

we made all the effort to eliminate any external factors that could distort the generated

data, given our highly limited experimental lab resources and conditions, the external

factors still impacted the data. For example, as can be observed by comparing the room

temperature logs from different experiments, the base room temperature was changing

from one day to another. Because of our efforts, the differences were not very large. Still,

they were inevitably impacting the temperature patterns recorded by the EduSat board

temperature sensors. Given the 1◦C resolution of the sensors, a change in the base room

temperature generated differences in the temperature ranges of the profiles recorded by

the individual sensors, and, even more importantly in the context of our solution, in the

timings between temperature changes registered by the individual sensors. Specifically,

the latter had a direct and significant impact on the values of the interpolated ISLC

features.

The precision-recall curves with computed areas under the curves for individual ab-

normal datasets are presented in Figure 26. Since the anomaly detection domain is highly

skewed, precision-recall curves are more informative than ROC (receiver operating char-

acteristic) curves, since the latter may provide an excessively optimistic evaluation of the

performance [18]. Indeed, due to the highly dominating numbers of TNs, the areas under

the ROC curves are very close to 1 for all abnormal datasets. Therefore, ROC curves in

this case do not reveal the actual performance of our anomaly detection algorithm.

6.2.2 Comparison with a rule-based benchmark approach

We compare the performance of our proposed AI-based solution with a classical approach

to health monitoring in the space industry, i.e., a rule-based approach. For this purpose,

34

we develop the following benchmark procedure. As argued in Section 6.2.1, there is

an inherent inertia before the excessive heat due to malfunctioning of a component reaches

the sensors. Furthermore, the delay may vary for individual sensors on the board, which

is caused by the differences in their distance to the malfunctioning component. With this

in mind, as in the case of TP-intervals, we consider the same anomaly inertia window

of length laiw. For a given datapoint at index i, if all nine sensors record a change in

temperature within datapoints of indices in [i, i+ laiw], then this datapoint is considered

positive; otherwise, it is considered negative. This classification is performed for all

datapoints in the abnormal dataset. Benchmark approach raw classification of datapoints

of an abnormal dataset is shown in Figure 24.

14:30 15:00 15:30 16:00 16:30 17:00 17:30 18:00
Timestamp [HH:MM]

Norm

Abnorm

Figure 24: Raw classification of the datapoints of the abnormal dataset of 2022/05/18 by

the rule-based benchmark approach. The anomaly start times are indicated with vertical

dark blue lines and the classification results are shown with the cyan line.

Next, contiguous subsequences of positive datapoints are considered, referred to as

positive intervals. If a subsequence is longer than 2 laiw, then it is split into consecu-

tive positive intervals of length 2 laiw, with the last one possibly being shorter. In the

benchmark approach, we define an anomaly to be contained within a positive interval

if and only if the start time of the anomaly is within the time range of the positive in-

terval given by timestamps of its datapoints. An anomaly is considered to be correctly

detected and increases the counter of TPs, if it is contained within some positive interval.

If the anomaly is not contained in any of the positive intervals, the anomaly increases

the counter of FNs. Finally, all positive intervals within which no anomaly is contained

increase the counter of FPs. The results of applying the benchmark approach to the

abnormal datasets of the experiments in Table 2 are shown in Table 6. By comparing

the results to the ones in Table 5, one can clearly see that our anomaly detection algo-

rithm outperforms the benchmark solution in most of the cases. These results also justify

to some extent the need of constructing more complex, AI-based frameworks for health

monitoring of CubeSats.

6.3 Performance evaluation of the microcontroller implementa-

tion

The anomaly detection algorithm employing a pre-trained CNN-based model in Fig-

ure 11a is evaluated in terms of the following three criteria: execution time, memory usage,

and energy consumption. The microcontroller implementation of the deep-learning model

is not quantized. Attempts to perform post-training quantization or to run quantization-

aware training resulted in poor performance of the models. Therefore, all the results

presented here are obtained with the deep-learning model implemented with float32.

35

15:30 16:00 16:30 17:00 17:30 18:00
0

100

200

300

400

500

M
ah

al
an

ob
is

er
ro

r

15:30 16:00 16:30 17:00 17:30 18:00
Timestamp [HH:MM]

Norm

Abnorm

(a) Anomaly detection results for the abnormal dataset of the 2022.04.06 experiment.

14:30 15:00 15:30 16:00 16:30 17:00 17:30 18:00
0

100

200

300

400

500

600

M
ah

al
an

ob
is

er
ro

r

14:30 15:00 15:30 16:00 16:30 17:00 17:30 18:00
Timestamp [HH:MM]

Norm

Abnorm

(b) Anomaly detection results for the abnormal dataset of the 2022.05.18 experiment.

36

18:30 18:40 18:50 19:00 19:10 19:20 19:30
0

100

200

300

400

M
ah

al
an

ob
is

er
ro

r

18:30 18:40 18:50 19:00 19:10 19:20 19:30
Timestamp [HH:MM]

Norm

Abnorm

(c) Anomaly detection results for the abnormal dataset of the 2022.05.20 experiment.

18:00 18:10 18:20 18:30 18:40 18:50 19:00 19:10 19:20
0

100

200

300

400

M
ah

al
an

ob
is

er
ro

r

18:00 18:10 18:20 18:30 18:40 18:50 19:00 19:10 19:20
Timestamp [HH:MM]

Norm

Abnorm

(d) Anomaly detection results for the abnormal dataset of the 2022.05.30 experiment.

37

12:00 13:00 14:00 15:00 16:00 17:00
0

500

1000

1500

2000

2500

3000

3500

4000

M
ah

al
an

ob
is

er
ro

r

12:00 13:00 14:00 15:00 16:00 17:00
Timestamp [HH:MM]

Norm

Abnorm

(e) Anomaly detection results for the abnormal dataset of the 2022.06.01 experiment.

11:30 12:00 12:30 13:00 13:30
0

100

200

300

400

500

M
ah

al
an

ob
is

er
ro

r

11:30 12:00 12:30 13:00 13:30
Timestamp [HH:MM]

Norm

Abnorm

(f) Anomaly detection results for the abnormal dataset of the 2022.06.03 experiment.

38

16:30 16:45 17:00 17:15 17:30 17:45 18:00
0

100

200

300

400

500

600

700

800

M
ah

al
an

ob
is

er
ro

r

16:30 16:45 17:00 17:15 17:30 17:45 18:00
Timestamp [HH:MM]

Norm

Abnorm

(g) Anomaly detection results for the abnormal dataset of the 2022.06.08 experiment.

14:45 15:00 15:15 15:30 15:45 16:00 16:15
0

200

400

600

800

1000

1200

1400

M
ah

al
an

ob
is

er
ro

r

14:45 15:00 15:15 15:30 15:45 16:00 16:15
Timestamp [HH:MM]

Norm

Abnorm

(h) Anomaly detection results for the abnormal dataset of the 2022.06.15 experiment.

39

15:30 15:40 15:50 16:00 16:10 16:20 16:30 16:40 16:50
0

50

100

150

200

250

300

M
ah

al
an

ob
is

er
ro

r

15:30 15:40 15:50 16:00 16:10 16:20 16:30 16:40 16:50
Timestamp [HH:MM]

Norm

Abnorm

(i) Anomaly detection results for the abnormal dataset of the 2022.06.22 experiment.

10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00
0

500

1000

1500

2000

2500

M
ah

al
an

ob
is

er
ro

r

10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00
Timestamp [HH:MM]

Norm

Abnorm

(j) Anomaly detection results for the abnormal dataset of the 2022.07.20 experiment.

Figure 25: Anomaly detection results of the anomaly detection algorithm employing the

CNN-based model in Figure 11a. For each experiment two plots are shown: the raw

anomaly detection signal, i.e., the Mahalanobis error (above) and the raw signal after

post-processing, i.e., the final output of the anomaly detection algorithm (below). The

plots contain the Mahalanobis error (red), the Mahalanobis error threshold corresponding

to the 0.05 significance level (horizontal dashed green line), the anomaly start times

(vertical dark blue lines), the True Positive intervals (light-violet rectangles), and the

anomaly detection signal (cyan).

40

0.00 0.25 0.50 0.75 1.00
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

No Skill
Precision-Recall curve (area = 0.99)

(a) Abnormal dataset of 2022.04.06.

0.00 0.25 0.50 0.75 1.00
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

No Skill
Precision-Recall curve (area = 0.69)

(b) Abnormal dataset of 2022.05.18.

0.00 0.25 0.50 0.75 1.00
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

No Skill
Precision-Recall curve (area = 1.00)

(c) Abnormal dataset of 2022.05.20.

0.00 0.25 0.50 0.75 1.00
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

No Skill
Precision-Recall curve (area = 1.00)

(d) Abnormal dataset of 2022.05.30.

0.00 0.25 0.50 0.75 1.00
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

No Skill
Precision-Recall curve (area = 0.18)

(e) Abnormal dataset of 2022.06.01.

0.00 0.25 0.50 0.75 1.00
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

No Skill
Precision-Recall curve (area = 0.17)

(f) Abnormal dataset of 2022.06.03.

41

0.00 0.25 0.50 0.75 1.00
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

No Skill
Precision-Recall curve (area = 0.21)

(g) Abnormal dataset of 2022.06.08.

0.00 0.25 0.50 0.75 1.00
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

No Skill
Precision-Recall curve (area = 1.00)

(h) Abnormal dataset of 2022.06.15.

0.00 0.25 0.50 0.75 1.00
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

No Skill
Precision-Recall curve (area = 1.00)

(i) Abnormal dataset of 2022.06.22.

0.00 0.25 0.50 0.75 1.00
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

No Skill
Precision-Recall curve (area = 0.32)

(j) Abnormal dataset of 2022.07.20.

Figure 26: Precision-recall curves (orange) obtained for the anomaly detection algorithm

with the CNN-based model (Figure 11a) for individual abnormal datasets. The No Skill

lines (dashed blue) indicate the proportion of the number of anomalies to the total number

of datapoints in the anomalous datasets. The areas under the precision-recall curves for

the CNN-based model are provided in the legends.

42

Benchmark rule-based solution

Exp. date TP FP FN Precision Recall F1-score

2022/04/06 1 0 2 1.00 0.33 0.50

2022/05/18 2 0 1 1.00 0.67 0.80

2022/05/20 0 0 1 0.00 0.00 0.00

2022/05/30 0 0 1 0.00 0.00 0.00

2022/06/01 0 1 4 0.00 0.00 0.00

2022/06/03 0 0 1 0.00 0.00 0.00

2022/06/08 0 0 2 0.00 0.00 0.00

2022/06/15 2 0 0 1.00 1.00 1.00

2022/06/22 1 0 0 1.00 1.00 1.00

2022/07/20 2 0 2 1.00 0.50 0.67

Table 6: Confusion matrix values (TP, FP, and FN) and the values of three model per-

formance metrics (precision, recall, and F1-score) for the rule-based benchmark solution

for the individual abnormal datasets.

In order to collect larger samples of measurements, we run the anomaly detection

algorithm on the microcontroller on merged both normal and abnormal datasets of the

individual experiments. We refer to the merged datasets as the experimental dataset of

the given experiment.

6.3.1 Anomaly detection algorithm execution time measurements

We performed detailed measurements of the execution times of the anomaly detection

algorithm run on the microcontroller with different settings of the clock frequency. The

exact part of the anomaly detection algorithm which execution was considered in the

measurements is indicated with the ‘Measured time’ frame in Figure 14. The execution

times were determined for the processing of each datapoint of the individual experimental

datasets. For example, the execution times for each datapoint of the 2022/04/06 experi-

mental dataset processed on the microcontroller with clock frequency set to 298MHz are

shown in Figure 27.

Notice that for some datapoints the execution times are close to 0. These times are just

needed for queuing the datapoints without computation of the interpolated ISLC features

and without the execution of the core part of the anomaly detection algorithm, i.e., the

parts shown inside the ‘repeat for 0..N vectors in IISLCC queue’ and ‘repeat for 0..N in

queue’ frames in Figure 14. The processing of these points is postponed till the moment

when interpolated ISLC feature values can be computed, i.e., when a temperature change

by any of the temperature sensors is detected at the arrival of some future datapoint.

Once temperature change is observed, the interpolated ISLC features are computed and

the anomaly detection algorithm is run for all the queued datapoints, see Section 5.3.1 for

details. Therefore, the subsequences of near 0 execution times are followed by execution

time peaks associated with datapoints which resulted in change detection and dequeuing.

The peaks reflect the processing of all the queued datapoints.

In Table 7, histograms with anomaly detection algorithm execution times for indi-

vidual experiments are shown for four different settings of the microcontroller’s clock

43

0

200

400

M
ah

al
an

ob
is

di
st

an
ce

 sq
ua

re
d

Experimental dataset 2022.04.06 evaluated on remote@298MHz
distance

Abnorm

Norm

De
te

ct
io

n

detection

0.00

0.05

0.10

0.15

Ex
ec

ut
io

n
tim

e
[s

]

execution_time

10:00
11:00

12:00
13:00

14:00
15:00

16:00
17:00

18:00

Timestamp [HH:MM]

38

40

42

44

Te
m

pe
ra

tu
re

 [°
C] temp_0

temp_1
temp_2
temp_3

temp_4
temp_5

temp_6 temp_7 temp_8

Figure 27: Execution time measurements in seconds for the anomaly detection algo-

rithm run on the microcontroller with clock frequency set to 298MHz while analysing

the 2022/04/06 experimental dataset. From top to bottom: raw Mahalanobis error of the

inference, output of the anomaly detection algorithm, execution time for each datapoint,

and temperature values recorded by the nine EduSat board temperature sensors.

frequency, i.e., 39MHz, 78MHz, 146MHz, and 298MHz. The mean execution times are

shown in Figures 28 and 29.

Experimental dataset of 2022/04/06

@39MHz @78MHz @146MHz @298MHz

0.0 0.2 0.4 0.6 0.8 1.0 1.2
100

101

102

103

0.0 0.2 0.4 0.6 0.8 1.0 1.2
100

101

102

103

0.0 0.2 0.4 0.6 0.8 1.0 1.2
100

101

102

103

0.0 0.2 0.4 0.6 0.8 1.0 1.2
100

101

102

103

Experimental dataset of 2022/05/18

@39MHz @78MHz @146MHz @298MHz

0.0 0.2 0.4 0.6 0.8 1.0 1.2
100

101

102

103

0.0 0.2 0.4 0.6 0.8 1.0 1.2
100

101

102

103

0.0 0.2 0.4 0.6 0.8 1.0 1.2
100

101

102

103

0.0 0.2 0.4 0.6 0.8 1.0 1.2
100

101

102

103

Experimental dataset of 2022/05/20

@39MHz @78MHz @146MHz @298MHz

44

0.0 0.5 1.0 1.5 2.0

101

102

103

0.0 0.5 1.0 1.5 2.0

101

102

103

0.0 0.5 1.0 1.5 2.0

101

102

103

0.0 0.5 1.0 1.5 2.0

101

102

103

Experimental dataset of 2022/05/30

@39MHz @78MHz @146MHz @298MHz

0.0 0.5 1.0 1.5 2.0
100

101

102

103

0.0 0.5 1.0 1.5 2.0
100

101

102

103

0.0 0.5 1.0 1.5 2.0
100

101

102

103

0.0 0.5 1.0 1.5 2.0
100

101

102

103

Experimental dataset of 2022/06/01

@39MHz @78MHz @146MHz @298MHz

0.0 0.5 1.0 1.5 2.0
100

101

102

103

0.0 0.5 1.0 1.5 2.0
100

101

102

103

0.0 0.5 1.0 1.5 2.0
100

101

102

103

0.0 0.5 1.0 1.5 2.0
100

101

102

103

45

Experimental dataset of 2022/06/03

@39MHz @78MHz @146MHz @298MHz

0.0 0.5 1.0 1.5 2.0

101

102

103

0.0 0.5 1.0 1.5 2.0

101

102

103

0.0 0.5 1.0 1.5 2.0

101

102

103

0.0 0.5 1.0 1.5 2.0

101

102

103

Experimental dataset of 2022/06/08

@39MHz @78MHz @146MHz @298MHz

0.0 0.5 1.0 1.5 2.0
100

101

102

103

0.0 0.5 1.0 1.5 2.0
100

101

102

103

0.0 0.5 1.0 1.5 2.0
100

101

102

103

0.0 0.5 1.0 1.5 2.0
100

101

102

103

Experimental dataset of 2022/06/15

@39MHz @78MHz @146MHz @298MHz

0.0 0.5 1.0 1.5 2.0
100

101

102

103

0.0 0.5 1.0 1.5 2.0
100

101

102

103

0.0 0.5 1.0 1.5 2.0
100

101

102

103

0.0 0.5 1.0 1.5 2.0
100

101

102

103

Experimental dataset of 2022/06/22

@39MHz @78MHz @146MHz @298MHz

0.0 0.5 1.0 1.5 2.0
100

101

102

103

0.0 0.5 1.0 1.5 2.0
100

101

102

103

0.0 0.5 1.0 1.5 2.0
100

101

102

103

0.0 0.5 1.0 1.5 2.0
100

101

102

103

Experimental dataset of 2022/07/20

@39MHz @78MHz @146MHz @298MHz

0.00 0.25 0.50 0.75 1.00 1.25 1.50
100

101

102

103

0.00 0.25 0.50 0.75 1.00 1.25 1.50
100

101

102

103

0.00 0.25 0.50 0.75 1.00 1.25 1.50
100

101

102

103

0.00 0.25 0.50 0.75 1.00 1.25 1.50
100

101

102

103

Table 7: Histograms of the anomaly detection algorithm execution times for each dat-

apoint of the individual experimental datasets with different settings of the microcon-

troller’s clock frequency. For all histograms, the x-axis is time in seconds and the y-axis

is the logarithm of the count of datapoints processed with times in ranges associated with

the respective histogram bars.

46

20
22

.04
.06

20
22

.05
.18

20
22

.05
.20

20
22

.05
.30

20
22

.06
.01

20
22

.06
.03

20
22

.06
.08

20
22

.06
.15

20
22

.06
.22

20
22

.07
.20

Experimental dataset

10 2

10 1

Ex
ec

ut
io

n
Ti

m
e

[s
]

39 [MHz] 78 [MHz] 146 [MHz] 298 [MHz]

Figure 28: Mean execution times of the anomaly detection algorithm run on individual

experimental datasets for four different settings of the microcontroller’s clock frequency,

i.e., 39MHz, 78MHz, 146MHz, and 298MHz. Standard deviations are shown with black

vertical lines.

39 78 146 298
Clock frequency [MHz]

2022.04.06

2022.05.18

2022.05.20

2022.05.30

2022.06.01

2022.06.03

2022.06.08

2022.06.15

2022.06.22

2022.07.20

Ex
pe

rim
en

ta
l d

at
as

et

0.02205 0.01115 0.00605 0.00300

0.02200 0.01112 0.00603 0.00299

0.02183 0.01104 0.00599 0.00297

0.02204 0.01114 0.00605 0.00299

0.02205 0.01115 0.00605 0.00300

0.02178 0.01102 0.00598 0.00296

0.02203 0.01114 0.00604 0.00299

0.02204 0.01114 0.00605 0.00299

0.02203 0.01114 0.00604 0.00299

0.02203 0.01114 0.00604 0.00299

Execution time mean [s]

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

Figure 29: Mean execution times of the anomaly detection algorithm run on individual

experimental datasets with four different settings of the microcontroller’s clock frequency.

47

6.3.2 Power consumption measurements

Power consumption of the microcontroller while running the testbed with the anomaly

detection algorithm on individual experimental datasets under different settings of clock

frequency is presented in Table 8. Each measurement consists of three phases: 1) the

microcontroller running in idle state, 2) the microcontroller running the testbed with

the anomaly detection algorithm on an experimental dataset, and 3) the microcontroller

again in idle state. The average of the instantaneous power over the processing of one

full experimental dataset, i.e., over the second phase, is referred to as experiment mean

power. The numerical values of experiment mean powers for individual experimental

datasets under different settings of clock frequency are provided in Figure 30.

Measurements of background power, i.e., the idle state instantaneous power consump-

tion, are included for reference and for the calculation of net experiment mean power con-

sumed by the testbed with the anomaly detection algorithm. The net experiment mean

power is calculated as the experiment mean power minus the background mean power,

i.e., the average of background power measurements. The net experiment mean power

consumptions with the standard deviations calculated in accordance with the expression

for the standard deviation of a sum/difference of two uncorrelated random variables, i.e.,

σX−Y =
√

(σ2
X + σ2

Y), are shown in Figure 31.

2022/04/06

@39MHz @78MHz @146MHz @298MHz

0.040

0.045

0.050

0.055

0.040

0.045

0.050

0.055

0.04

0.05

0.06

0.07

0.04

0.06

0.08

0.10

2022/05/18

@39MHz @78MHz @146MHz @298MHz

0.040

0.045

0.050

0.055

0.040

0.045

0.050

0.055

0.04

0.05

0.06

0.07

0.04

0.06

0.08

0.10

2022/05/20

@39MHz @78MHz @146MHz @298MHz

0.035
0.040
0.045
0.050
0.055
0.060

0.035

0.040

0.045

0.050

0.055

0.060

0.04

0.05

0.06

0.04

0.06

0.08

0.10

48

2022/05/30

@39MHz @78MHz @146MHz @298MHz

0.035

0.040

0.045

0.050

0.055

0.060

0.040

0.045

0.050

0.055

0.060

0.04

0.05

0.06

0.04

0.06

0.08

0.10

2022/06/01

@39MHz @78MHz @146MHz @298MHz

0.035

0.040

0.045

0.050

0.055

0.035

0.040

0.045

0.050

0.055

0.060

0.04

0.05

0.06

0.04

0.06

0.08

0.10

2022/06/03

@39MHz @78MHz @146MHz @298MHz

0.035

0.040

0.045

0.050

0.055

0.060

0.040

0.045

0.050

0.055

0.04

0.05

0.06

0.04

0.06

0.08

0.10

2022/06/08

@39MHz @78MHz @146MHz @298MHz

0.035

0.040

0.045

0.050

0.055

0.060

0.040

0.045

0.050

0.055

0.060

0.04

0.05

0.06

0.04

0.06

0.08

0.10

2022/06/15

@39MHz @78MHz @146MHz @298MHz

0.035

0.040

0.045

0.050

0.055

0.060

0.040

0.045

0.050

0.055

0.060

0.04

0.05

0.06

0.04

0.06

0.08

0.10

2022/06/22

@39MHz @78MHz @146MHz @298MHz

0.035

0.040

0.045

0.050

0.055

0.040

0.045

0.050

0.055

0.060

0.04

0.05

0.06

0.07

0.04

0.06

0.08

0.10

49

2022/07/20

@39MHz @78MHz @146MHz @298MHz

0.035

0.040

0.045

0.050

0.055

0.060

0.040

0.045

0.050

0.055

0.060

0.04

0.05

0.06

0.04

0.06

0.08

0.10

power
experiment begin / end
detection threshold: 20%
experiment mean power
background mean power

Table 8: Plots of the microcontroller’s power consumption for different settings of the

clock frequency for individual experimental datasets. Power (black lines) is calculated

from current and voltage values recorded by two multimeters every 1 s. For all plots, the

y-axis is power in watts [W]. The x-axis is the time of current and voltage measurements,

which is unrelated to the presented results and therefore not shown for better readability.

However, for comparison purposes, the x-axis range spans the same time interval for all

plots: starts 30 s prior to the experiment begin (left vertical red dashed line) and ends

180 s after the experiment begin line. The numerical values corresponding to the heights

of the green lines representing experiment mean power are provided in Figure 30.

39 78 146 298
Clock frequency [MHz]

2022.04.06

2022.05.18

2022.05.20

2022.05.30

2022.06.01

2022.06.03

2022.06.08

2022.06.15

2022.06.22

2022.07.20

Ex
pe

rim
en

ta
l d

at
as

et

0.04531 0.04894 0.06397 0.09927

0.04456 0.04881 0.06392 0.09729

0.04419 0.04947 0.06268 0.09637

0.04418 0.04912 0.06354 0.09968

0.04327 0.04991 0.06293 0.10118

0.04356 0.04962 0.06354 0.10014

0.04395 0.04938 0.06347 0.10083

0.04368 0.05023 0.06315 0.09882

0.04363 0.05009 0.06396 0.09910

0.04364 0.04956 0.06398 0.09858

Experiment mean power [W]

0.05

0.06

0.07

0.08

0.09

0.10

Figure 30: Experiment mean power consumed by the microcontroller while running the

testbed with the anomaly detection algorithm on individual experimental datasets with

different clock frequencies.

50

Clock frequency [MHz]

39

78

146

298 Exp
eri

men
tal

 da
tas

et

2022.04.06
2022.05.18

2022.05.20
2022.05.30

2022.06.01
2022.06.03

2022.06.08
2022.06.15

2022.06.22
2022.07.20

P
ow

er
 d

iff
er

en
ce

 [W
]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Net experiment mean power [W]

Figure 31: Net experiment mean power consumed by the testbed with the anomaly

detection algorithm while running on the microcontroller and processing individual ex-

perimental datasets with different clock frequencies. The net experiment mean power is

given by the blue bars. The grey bars represent the means plus standard deviations.

51

6.3.3 Memory footprint

The implementation of the anomaly detection algorithm is using both static memory and

stack. To prevent fragmentation, neither dynamic memory nor heap are used.

To measure the stack and static memory used by the anomaly detection algorithm,

a placebo version of the firmware is implemented. This version contains the complete

testbed without the algorithm itself. The placebo version can be compiled using make

PLACEBO=1 for the PC version or by selecting the PLACEBO profile in the microcon-

troller firmware.

To find the net stack and static memory usage by the algorithm alone, the stack

and static memory used by the placebo version are subtracted from the stack and static

memory used by the complete version, i.e., testbed with the algorithm, respectively.

Stack

To measure the stack of either version, the relevant memory range is initialised by over-

writing it with a commonly used magic value (0xDEADBEEF) prior to running the

firmware and checking the amount of modified bytes afterwards. The initialisation of

the memory range is done in the startup assembly code available in the Core/Startup/

startup stm32h743zitx.s subdirectory of the firmware directory. Checking stack usage is

done using a debugger. Results of the measurements are provided in Table 9.

uC firmware
stack

end address
stack dirty

begin address
stack

used [bytes]

uC::complete 0x24080000 0x2407f4f0 2832

uC::placebo 0x24080000 0x2407fdb0 592

algorithm = complete - placebo – 0x8C0 2240

Table 9: Stack usage of the complete and the placebo uC firmwares. The third line shows

the stack used by the AtMonSat anomaly detection algorithm.

Static memory

Static memory usage for each firmware section is measured using the GNU size utility

(e.g., size -d atmonsat firmware) and listed in Table 10 for different firmware versions

and targets.

On the microcontroller the data and bss sections are stored in the memory RAM D1

(512kB). The text section is stored in flash (2MB). All other memory blocks are unused.

This partitioning is defined in the proper linker script. The percentage values give in

Table 10 are calculated based on the respective sizes of the corresponding memory.

7 Conclusions

Within the AtMonSat project the problem of on-board fault detection using artificial neu-

ral networks for CubeSat systems and related spacecraft with limited computing resources

52

firmware text data bss flash RAM D1

PC::complete 1096106 6256 58184 – – – –

PC::placebo 77562 1968 2792 – – – –

PC::algorithm = complete -

placebo

1018544 4288 55392 – – – –

uC::complete 303948 864 51488 297.67kB 14.53% 51.06kB 9.97%

uC::placebo 176140 840 15944 127.83kB 8.44% 16.32kB 3.19%

uC::algorithm = complete -

placebo

127808 24 35544 168.84kB 6.09% 34.74kB 6.78%

Table 10: Static memory usage of the complete and placebo firmwares compiled for PC

and the microcontroller (uC). The third and the sixth line show the static memory used

by the AtMonSat anomaly detection algorithm for PC and the uC versions, respectively.

was considered. The concrete problem scenario of malfunctioning of CubeSat board el-

ements was investigated. Experiments for generating telemetry data for this particular

scenario were devised and performed with EduSat – a near-flight engineering model of the

CubeSat Lab at the University of Luxembourg. Next, an artificial neural network-based

anomaly detection algorithm for the considered concrete problem scenario was proposed.

Various deep-learning architectures were investigated and the one providing the best per-

formance results, yet compliant with CubeSats’ limited computational resources, was se-

lected. The anomaly detection algorithm employing the chosen CNN-based deep-learning

model was implemented on a development board with the STM32H743ZI microcontroller

unit which was the same as the one in EduSat. Measurements of power consumption,

anomaly detection algorithm execution time, and memory usage were performed. The

AtMonSat anomaly detection algorithm was also tested in conjunction with a preemp-

tive FreeRTOS kernel. The presented results allowed us to draw the conclusion that the

proposed solution is both effective and suitable for implementation on a CubeSat system.

Nevertheless, the simulation of the in-orbit environment for acquisition of relevant

telemetry data posed several considerable challenges given our limited lab resources and

conditions. In particular, due to the nature of the considered subset of telemetry data, i.e.,

thermal data, the experiments were time consuming. First, they required the EduSat’s

temperature to stabilise under illumination. Second, to simulate normal LEO conditions,

the satellite was rotating at the velocity of one full turn per 90min. The generation of

a normal dataset required at least few full rotations. Finally, the abnormal conditions

were simulated by turning on the EduSat’s battery heater. Each such anomaly was

followed by a necessary period of normal conditions in order for the thermal pattern to

get back to normal, which was a rather slow process. Therefore, the number of anomalies

that could be produced in a one-day experimental session was highly limited.

The lab generated data were noisy. Given our limited resources, we were not able

to eliminate all external factors that were distorting the temperature data. Although

we tried to reduce the impact of theses factors as much as possible, we were not able

to eliminate variations in the room temperature between different days on which experi-

ments were conducted. These fluctuations had impact both on the range and the timings

between changes of the temperatures recorded by the individual sensors of the EduSat’s

board.

53

Another issue was related to the way anomalies were introduced. Having in mind the

protection of the valuable EduSat, we were reluctant to introduce any kind of additional

elements to the EduSat’s board that would simulate faulty components since this would

constitute a significant risk to the satellite’s hardware. In consequence, we could not

simulate failures at different locations on the EduSat’s board.

Given the challenges related to data generation, we were not able to obtain more

clean lab-generated datasets for model training, evaluation, and testing. Nevertheless,

our solution proved effective even with the noisy data. As future work, one could consider

the acquisition of higher quality lab data, or even real in-orbit data, and the fine-tuning

of our current solution based on them.

It is worth emphasising that the two types of data considered within the AtMonSat

project, i.e., the synthetic data and lab data, represent two extremes: ideally regular,

clean data and irregular, highly noisy data, respectively. As shown in this report, our

solution is effective on both types. Since it is justifiable to assume that target in-orbit

data would be positioned between the two opposites, our anomaly detection algorithm

would presumably generate less False Positive outcomes for real in-orbit data than in the

case of the lab data. Verification of this would require access to real-life CubeSat mission

telemetry data.

Another potential future research direction would be to try to further reduce the

number of False Positive cases output by the AtMonSat anomaly detection algorithm.

For example, this could be achieved by considering an ensemble of independent light-

weighted models which outputs would be aggregated to provide the final classification

decisions.

The problem of model quantization is another issue that could be further investigated

in the future. In our case, the quantization did introduce a significant drop in performance

for the real lab datasets. Therefore, we decided to implement the final solution using

TensorFlow Lite Micro without quantization. However, one could search for other model

architectures which would provide good results after applying quantization. This would

result in a solution requiring even less memory and computational power.

Finally, our solution could be extended with additional mechanisms for the anomaly

root cause identification. Currently, the detection of an anomaly provides evidence that

an additional heat source stemming from faulty operation of some component on the

EduSat’s board. However, once an anomaly is identified, additional mechanisms could

be triggered which, based on data for other telemetry attributes, would indicate the

malfunctioning component. Development of such mechanisms could be considered as

a follow-up of the AtMonSat project.

54

References

[1] The CubeSat Program, Cal Poly SLO, “CubeSat Design Specification (CDS) Rev.

13,” tech. rep., California Polytechnic State University, 2015.

[2] The CubeSat Program, Cal Poly SLO, “6U CubeSat Design Specification Revision

1.0,” tech. rep., California Polytechnic State University, 2016.

[3] F. Stesina and S. Corpino, “Investigation of a CubeSat in Orbit Anomaly through

Verification on Ground,” MDPI Aerospace, vol. 7, no. 4, p. 38, 2020.

[4] ISO 17770:2017, “Space systems – Cube satellites (CubeSats),” Standard, Interna-

tional Organization for Standardization, Geneva, Switzerland, 2017.

[5] A. Stemper, “Simplified Thermal Simulator of an electrical power supply system

of a Cubesat (EPSThermalSimulator) GitHub Repository.” https://github.com/

andre-stemper/EPSThermalSimulator.git, 2022.

[6] J. De Claville Christiansen, “CubeSat Space Protocol (CSP): Network-Layer delivery

protocol for CubeSats and embedded systems,” Tech. Rep. GS-CSP-1.1, GOMSpace

ApS, 2011.

[7] T. Yairi, N. Takeishi, T. Oda, Y. Nakajima, N. Nishimura, and N. Takata, “A Data-

Driven Health Monitoring Method for Satellite Housekeeping Data Based on Proba-

bilistic Clustering and Dimensionality Reduction,” IEEE Transactions on Aerospace

and Electronic Systems, vol. 53, no. 3, pp. 1384–1401, 2017.

[8] J.-A. Mart́ınez-Heras, A. Donati, M. G. F. Kirsch, and F. Schmidt, “New Telemetry

Monitoring Paradigm with Novelty Detection,” in Proceedings of the SpaceOps 2012

Conference, American Institute of Aeronautics and Astronautics, Inc., 2013.

[9] European Cooperation for Space Standardization, “ECSS-E-ST-70-41C: Space engi-

neering – Telemetry and telecommand packet utilization,” 2016.

[10] J.-G. Meß, F. Dannemann, and F. Greif, “Techniques of Artificial Intelligence for

Space Applications – A Survey,” in European Workshop on On-Board Data Process-

ing (OBDP2019), European Space Agency, 2019.

[11] J. Mart́ınez-Heras and A. Donati, “Enhanced telemetry monitoring with novelty

detection,” AI Magazine, vol. 35, no. 4, pp. 37–46, 2014.

[12] M. Tipaldi, L. Feruglio, P. Denis, and G. D’Angelo, “On applying AI-driven flight

data analysis for operational spacecraft model-based diagnostics,” Annual Reviews

in Control, vol. 49, pp. 197–211, 2020.

[13] R. Zhao, R. Yan, Z. Chen, K. Mao, P. Wang, and R. Gao, “Deep learning and its

applications to machine health monitoring,” Mechanical Systems and Signal Pro-

cessing, vol. 115, 2019.

[14] C. C. Aggarwal, Outlier Analysis. Cham, Switzerland: Springer, 2nd ed., 2017.

55

https://github.com/andre-stemper/EPSThermalSimulator.git
https://github.com/andre-stemper/EPSThermalSimulator.git

[15] A. Stemper, “The AtMonSat Project GitHub Repository.” https://github.com/

andre-stemper/ATMonSAT.git, 2022.

[16] STMicroelectronics N.V., “STM32H742xI/G STM32H743xI/G.” https://www.st.

com/resource/en/datasheet/stm32h743vi.pdf, 2022. Last accessed: [25 October

2022].

[17] G. M. Weiss, “Foundations of imbalanced learning,” in Imbalanced Learning: Foun-

dations, Algorithms, and Applications (Y. Ma and H. He, eds.), ch. 2, pp. 13–41,

Hoboken, New Jersey: John Wiley & Sons, Ltd, 1st ed., 2013.

[18] P. Branco, L. Torgo, and R. P. Ribeiro, “A Survey of Predictive Modeling on Imbal-

anced Domains,” ACM Computing Surveys, vol. 49, no. 2, pp. Article No. 31:1–50,

2017.

56

https://github.com/andre-stemper/ATMonSAT.git
https://github.com/andre-stemper/ATMonSAT.git
https://www.st.com/resource/en/datasheet/stm32h743vi.pdf
https://www.st.com/resource/en/datasheet/stm32h743vi.pdf

	Introduction
	Project summary
	Agreed milestones with completion dates

	Experimental data
	Synthetic data generation
	Physical model
	Experimental verification
	Simulated datasets

	Lab data acquisition
	Experimental setup
	Datasets acquisition

	Methodology
	Feature selection and engineering
	Deep-learning model architectures
	Anomaly detection algorithm
	Determination of the anomaly detection threshold

	Implementation
	Testbed
	Frontend
	Backend
	Communication

	Conversion of a TensorFlow pre-trained model to a TensorFlow Lite Micro version
	Anomaly Detection Algorithm
	Interpolating Iterations Since Last Change Counter module

	PC implementation (native)
	Microcontroller implementation
	Baremetal implementation
	FreeRTOS implementation

	Power measurement setup
	Post-processing

	Results
	Anomaly detection on synthetic datasets
	Anomaly detection on lab datasets
	Quantitative evaluation of the algorithm performance
	Comparison with a rule-based benchmark approach

	Performance evaluation of the microcontroller implementation
	Anomaly detection algorithm execution time measurements
	Power consumption measurements
	Memory footprint

	Conclusions

