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A strategy creating high-resolution adversarial images
against convolutional neural networks and a feasibility study
on 10 CNNs
Franck Leprévost , Ali Osman Topal , Elmir Avdusinovic and Raluca Chitic

Faculty of Science, Engineering and Medicine and Department of Computer Science, University of
Luxembourg, Esch-sur-Alzette, Luxembourg

ABSTRACT
To perform image recognition, Convolutional Neural Networks
(CNNs) assess any image by first resizing it to its input size. In
particular, high-resolution images are scaled down, say to
224× 244 for CNNs trained on ImageNet. So far, existing attacks,
aiming at creating an adversarial image that a CNN would
misclassify while a human would not notice any difference
between the modified and unmodified images, proceed by
creating adversarial noise in the 224× 244 resized domain and
not in the high-resolution domain. The complexity of directly
attacking high-resolution images leads to challenges in terms of
speed, adversity and visual quality, making these attacks infeasible
in practice. We design an indirect attack strategy that lifts to the
high-resolution domain any existing attack that works efficiently
in the CNN’s input size domain. Adversarial noise created via this
method is of the same size as the original image. We apply this
approach to 10 state-of-the-art CNNs trained on ImageNet, with
an evolutionary algorithm-based attack. Our method succeeded in
900 out of 1000 trials to create such adversarial images, that CNNs
classify with probability ≥ 0.55 in the adversarial category. Our
indirect attack is the first effective method at creating adversarial
images in the high-resolution domain.
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1. Introduction

The profusion of images in our modern-day society and the need to analyse quickly the
information they contain for a large series of applications (self-driving cars, face recog-
nition and security controls, etc) has led to the emergence of tools to automatically
process and sort this type of data. Trained Convolutional Neural Networks (CNNs) are
among the dominant and most accurate tools for automatic object recognition and
classification. Nevertheless, CNNs can be led to erroneous classifications by specifically
designed adversarial images. The consequences of such attacks might be catastrophic.
For instance for self-driving cars, an attack changing the perception by a CNN of a stop
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sign into a 50 km per hour signal would lead to car accidents, and put the passengers at
risk. In a more general context, performing attacks reveals CNN weaknesses, which might
lead to more robust CNNs. The present article is in this line of thoughts. Attacks depend
on the adversarial scenario considered. For instance, starting with an original image
classified by a CNN in a given category, the target scenario essentially consists in choosing
a target category, different from the original one, and in creating a variant of the original
image that the CNN will classify in the target category, although a human would classify
this adversarial image still in the original category, or would be unable to notice any differ-
ence between the original and the adversarial image.

Attacks, that intend to construct adversarial images, are classified according to the
level of knowledge about the CNN at the disposal of the attacker. In this hierarchy,
black-box attacks are the most challenging ones, since no knowledge about the architec-
ture of the CNN (number and type of layers, weights, etc.) is assumed. Such attacks already
exist (Andriushchenko et al., 2020; Chitic et al., 2021; Guo et al., 2019; Hu & Tan, 2017;
Papernot et al., 2017; Topal et al., 2022) (see also (Biggio et al., 2013; Carlini & Wagner,
2017; Szegedy et al., 2013; Tsipras et al., 2018) for gradient-based attacks). For instance,
the paper Topal et al. (2022) shows how an evolutionary-based algorithm successfully
fooled 10 CNNs trained on ImageNet (Deng et al., 2009) to sort images of size
224× 224 into 1000 categories ((Chitic, Bernard et al., 2020; Chitic, Leprévost et al.,
2020) provided a first version of this algorithm that fooled VGG-16 (Blier, 2016) trained
on CIFAR-10 (Krizhevsky et al., 2009) to sort images of size 32× 32 into 10 categories).

1.1. Attacks in the R domain

So far, all such attacks – black-box or not – addressed images of moderate size, what is
called here the R domain. A moderate size ranges from 32× 32 (typically for CNNs
trained on CIFAR-10) up to 224× 224 (typically for CNNs trained on ImageNet). It also
encompasses usually slightly larger sizes that trained CNNs may handle natively. The con-
struction of images, adversarial for the target scenario in this ‘traditional’ context, is
achieved by adding some carefully designed adversarial noise to the potentially resized
original image in a process illustrated in Figure 1.

In particular, the adversarial noise created by all these attacks is in the R domain
handled natively by the CNNs. Therefore, the obtained adversarial images are as large as
the CNN’s input size. Said otherwise, attacks in the ‘traditional’ context create an adversarial

Figure 1. Generating an adversarial image of size 224× 224.

90 F. LEPRÉVOST ET AL.



noise of size equal to the size of the CNN input, independently on the size of the original
image. Thismeans that the size of the search space of these attacks does not depend on the
size of the original image, but coincides with the size of the CNN input. Note en passant that
the smaller the input size of the CNN, the easier the creation of adversarial noise.

1.2. Three challenges faced by attacks in the H domain

However, if the adversarial image should preserve almost all the details of an original
image of large size, what we call here an image in the H domain, in particular of a
high-resolution (HR) image, the adversarial noise should have the same size as the original
image, and consequently the adversarial image should as well have the same size as the
original one. A key point is that the adversity character of a modified image is measured
only when it is exposed to the CNN, hence when it is resized to fit into theR domain. The
adversarial character of an image should show up when the CNN proceeds to the classifi-
cation of its resized version, as illustrated in the process given in Figure 2.

Creating adversarial images of large size leads to three challenges in terms of speed,
adversity and visual quality. Firstly, the complexity of the problem increases drastically
with the size of the images, as the search space for the adversarial noise grows quadrati-
cally. For instance, the noise search space provided by the original image represented in
Figure 2 is 86 times larger than it is in the 224× 224 domain. Secondly, the noise intro-
duced in the H domain should be assessed as adversarial in the R domain: it should
‘survive’ the resizing process to fit the CNN. In the example of Figure 2, it would essentially
mean that it survives a 86-fold squeezing process. Thirdly, the noise introduced in the H
domain should be imperceptible to a human eye looking at the images at their native size,
and not merely once they are reduced to fit theR domain. For the example in Figure 2, it
means that a human should not notice any difference between the first and second images
of size 1824× 2364 when looked at full size.

Already the first challenge is a very serious one. Indeed, should it even succeed, getting
directly such an HR adversarial image can take a very long time, even on a performing
HPC. This is probably the reason for which, to the best of our knowledge, so far, no
attack – black-box or not – has attempted to address large size images, in particular
high-resolution images, by creating convenient adversarial noise in the H domain, so
that the modified image, resized to the size handled natively by the CNN, becomes adver-
sarial. Applying existing methods does not work, at least in reasonable time. Although
efficient in the R domain, their extension to the H domain is not.

Figure 2. Generating adversarial images in the H domain.
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1.3. Our contribution: an effective strategy supported by an extensive feasibility
study

This paper is a first step towards the creation of adversarial noise of size of the original
image, whatever this size may be. Our contribution is essentially threefold.

First, we describe an indirect attack strategy that leads to the construction of HR
images in the H domain that are adversarial for the target scenario performed on a
trained CNN (Section 3). The conceptual design of the strategy is flexible enough to lift
to theH domain attacks considered as efficient in theR domain. Furthermore, it lists indi-
cators relevant to the problem, and it describes appropriate tests to assess the behaviour
and the efficiency of potential resizing functions.

Second, we perform a feasibility study of this strategy with 10 explicit HR images and
on 10 CNNs trained on ImageNet. We lift to theH domain a black-box attack based on an
evolutionary algorithm. We prove experimentally that our strategy is highly efficient in
terms of speed and of adversity, and is reasonably efficient in terms of visual quality
(Section 4). Concretely, after having briefly described the evolutionary algorithm used,
we show that our method succeeds in 900 out of 1000 trials, that the most appropriate
resizing function is the Lanczos function, and that the successful attempts require in
average between 48′ and 119.2′ to create 0.55-strong high-resolution adversarial
images (and between 35.7′ and 98.8′ to create good enough high resolution adversarial
images).

Third, this study is completed by an attempt to apply the black-box evolutionary algor-
ithm-based attack directly in the H domain (Section 5). After 48 hours of computation
time, our algorithm is unable to create 0.55-strong high-resolution adversarial images
for any of the 10 CNNs. Although the learning curve of the algorithm improves, and
although it creates images with a ct-label value increased by a factor in the range
[1.71, 5.5] according to the CNN, the attack is not fast enough. These outcomes, that
experimentally substantiate the seriousness of already the first challenge, are an
additional argument in favour of alternative strategies like ours, to efficiently construct
adversarial images in the H domain.

Two sections and an appendix complete this article. Section 2 fixes some notations
about CNNs, formalizes the target scenario in general, and its ‘lifted’ version in the
context of high resolution images. Section 6 wraps up our findings and provides direc-
tions for future research. The appendix section contain additional evidence of our
findings.

All algorithms and experiments were implemented using Python 3.8 (Van Rossum &
Drake, 2009) with NumPy 1.17 (Oliphant, 2006), TensorFlow 2.4 (Abadi et al., 2015),
Keras 2.2 (Chollet, 2015) and Scikit 0.24 (Walt et al., 2014) libraries. Computations were
performed on nodes with Nvidia Tesla V100 GPGPUs of the IRIS HPC Cluster at the Univer-
sity of Luxembourg.

Our paper Leprévost et al. (2022) dealt with one single CNN only, namely VGG-16. This
previous work is substantially extended and enhanced here. First, 10 diverse, state-of-the-
art CNNs are considered. Second, we provide the explicit design of a series of tests, study
closely the behaviour of indicators according to these tests and perform additional exper-
iments. More specifically, we perform 1000 indirect attacks versus 100 in the previous
paper. Third, we carefully study the Loss function (see Section 3.2 for its definition)
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according to different resizing functions. Finally, we perform direct attacks on the 10 CNNs
and provide their convergence graphs and timings.

2. CNNs and the target scenario

CNNs performing image classification are trained on some large dataset S to sort images
into predefined categories c1, . . . , cℓ. The categories, and their number ℓ, are associated
to S, and are common to all CNNs trained on S. The training phase of a CNN is essentially
made in two steps. During the first step, the CNN is given both a series of training images,
and, for each training image, a vector of length ℓ, where each real-value component
assesses the probability that the training image represents an object in the corresponding
category. During the second step, the CNN is challenged against a validation set of images
that assess its ability to sort images accurately.

Once trained, a CNN can be exposed to images (typically) of the same size as those on
which it was trained. In practice, given an input image I , the trained CNN produces a
classification output vector

oI = oI [1], . . . , oI [ℓ]( ), (1)

where 0 ≤ oI [i] ≤ 1 for 1 ≤ i ≤ ℓ and
∑ℓ

i=1 oI [i] = 1. Each component oI [i] of the output
vector defines the ci-label value measuring the probability that the image I belongs to
the category ci.

Consequently, the CNN classifies the image I as belonging to the category ck
if k = argmax1≤i≤ℓ(oI [i]) and one denotes (ck , oI [k]) this outcome. The higher
the label value oI [k], the higher the confidence that I represents an object of the
category ck .

2.1. The target scenario

Let C be a trained CNN as above, ca be a category among the ℓ possible categories, andA
an image classified by C as belonging to ca. One denotes by ta its ca-label value. The target
scenario (ca, ct) performed on A requires first to select a category ct = ca, and then to
construct an image D that is either a good enough adversarial image or a τ-strong adver-
sarial image in the sense made precise below.

In any case, one requires that D remains so close to A that a human cannot notice
any difference between A and D. The quantities L2(A, D) and e(A, D) assess numeri-
cally this human perception. The L2-distance essentially evaluates the difference
between the pixel values of A and D, and ϵ controls (or restricts) the global
maximum amplitude allowed for the value modifications of each individual pixel of
A to obtain D.

A good enough adversarial image is an adversarial image that C classifies as belonging
to the target category ct , without any requirement on the ct-label value beyond being
strictly dominant among all label values. A τ-strong adversarial image is an adversarial
image that C not only classifies as belonging to the target category ct , but for which its
ct-label value tt ≥ t for some threshold value t [ ]0, 1] fixed a priori. We write (ct , tt)
the outcome of the CNN’s classification of D in this latter case.
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2.2. The target scenario lifted to H
In the experiments of Section 4, we shall consider a CNN C that handles images of size
224× 224, and that is trained on ImageNet to classify images into 1000 categories. In
our context, we ask C to give the dominating category, and the corresponding label
value for that category. Henceforth, C’s classifications take values in

V = {(ci, vi), where vi [ ]0, 1] for 1 ≤ i ≤ 1000}. (2)

To express the target scenario in the context of HR images, let H denote the set of
images of various sizes h× w and R denote the set of images of size natively adapted
to C, for instance 224× 224 for the specific CNN considered in Section 4. The only
assumption on the size of an image [ H is to be larger than the CNNs input size. One
assumes given a fixed degradation function

(3)

that transformsany imageI ofH intoan imager(I ) ofR. Thewell-definedcompositionofmaps

(4)

allows C to classify, in particular, the reduced image Aa = r(Ahr
a ) [ R in some class ca,

with ta being the ca-label value outputted by C for Aa, so that C(Aa) = (ca, ta).
In this context, an adversarial HR image for the (ca, ct) target scenario performed on

Ahr
a [ H is an image Dhr

t (Ahr
a ) [ H satisfying the two following conditions. On the one

hand, a human should not be able to notice any visual difference between the original
Ahr

a and adversarial Dhr
t (Ahr

a ) HR images. On the other hand, C should classify the
reduced adversarial image Dt(Ahr

a ) = r(Dhr
t (Ahr

a )) in the category ct for a sufficiently con-
vincing ct-label value. The target scenario (ca, ct) performed on the HR image Ahr

a can be
visualized by the following scheme:

(5)

The image Dhr
t (Ahr

a ) [ H is then a good enough adversarial image or a τ-strong adver-
sarial image if its reduced version Dt(Ahr

a ) = r(Dhr
t (Ahr

a )) is.

3. Attack strategy for the target scenario on HR images

We present here a strategy that attempts to circumvent the three challenges about speed,
adversity and visual quality cited in the Introduction.

94 F. LEPRÉVOST ET AL.



In a nutshell, the first step consists in getting an image inR that is adversarial against the
imageAa [ R reduced fromAhr

a [ H. Although getting such adversarial images in theR
domain is crucial for obvious reasons, the strategy does not depend on how they are
obtained. It applies to all possible attacks that work efficiently in the R domain. This
feature contributes substantially to its flexibility. In a second step, one lifts this low-resolution
adversarial imageup to anHR image, calledhere theHR tentative adversarial image. In the last
step, one checks whether this HR tentative adversarial image fulfils the criteria stated in the
last paragraph of Section 2.2, namely becomes adversarial once reduced. An HR tentative
adversarial image that does so is an HR good enough adversarial image or a τ-strong adversar-
ial image, depending on the outcome of C for its reduced version in theR domain.

3.1. Construction of adversarial images in H
The starting point is a large size imageAhr

a [ H, and its reduced imageAa = r(Ahr
a ) [ R,

classified by C as belonging to a category ca.
For Step 1, one assumes given an image D̃t,t̃t (Ahr

a ) [ R, that is adversarial for the (ca, ct)
target scenario performed onAa = r(Ahr

a ) for a ct-label value exceeding a threshold t̃t . As
already stated, it does not matter how such an adversarial image is obtained.

To perform Step 2, one needs a fixed enlarging function

(6)

that transforms any image of R into an image in H. Anticipating on Step 3, it is worth-
while noting that, although the reduction function ρ and the enlarging function λ have
opposite purposes, these functions are not necessarily inverse one from the other. In
other words, r ◦ l and l ◦ r may differ from the identity maps idR and idH respectively
(usually they do differ).

One applies the enlarging function λ to the low-resolution adversarial D̃t,t̃t (Ahr
a ) [ R to

obtain the HR tentative adversarial image Dhr
t,tt (Ahr

a ) = l(D̃t,t̃t (Ahr
a )) [ H.

For Step 3, the application of the reduction function ρ on this HD tentative adversarial
image creates an imageDt,tt (Ahr

a ) = r(Dhr
t,tt (Ahr

a )) in theR domain. One runs C onDt,tt (Ahr
a )

to get its classification, in the hope to obtain a classification in ct .
The attack succeeds if C classifies this image in ct , potentially for a ct-label value

exceeding the threshold value τ fixed in advance, and if a human is unable to notice
any difference between the images Ahr

a and Dhr
t,tt (Ahr

a ) in the H domain.
Scheme 7 essentially summarizes the different steps encountered so far:

(7)
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3.2. Indicators: the loss function L and L2 distances

Although both D̃t,t̃t (Ahr
a ) and Dt,tt (Ahr

a ) stem from Ahr
a , and belong to the same set R of

low-resolution images, these images nevertheless differ in general, since r ◦ l = idR
actually. This fact has two consequences that affect the design of our attack and clarify
the adjustment described below.

On the one hand, it justifies the necessity of the verification process performed in Step
3 on the HR tentative adversarial image, namely to check whether its reduction indeed
belongs to ct . On the other hand, should it be the case, it implies as well that t̃t and tt
differ. It is then natural to define the real-valued loss function L for a given Ahr

a [ H as

L(Ahr
a ) = t̃t − tt (8)

Our attack is effective if one can set accurately the value of t̃t to match the inequality
tt ≥ t for the threshold value τ, or to make sure that Dt,tt (Ahr

a ) is a good enough adver-
sarial image in the R domain, while controlling the distance variations between Ahr

a

and the adversarial Dhr
t,tt (Ahr

a ). For this, one needs to assess the statistical behaviour of
the loss function L on the one hand, and of the L2 distance of a series of images on
the other hand.

Indeed, while the loss function, that measures differences of values coming from
images in the R domain, assesses the objective of getting an image in the H domain
that fools the CNN, other indicators assess the objective of the visual proximity
between images for a human eye. Therefore, one computes the L2 distance of 4 pairs
of images. The value of L2(Ahr

a , Dhr
t,tt (Ahr

a )), actually the most important one, is between
images that live in the H domain. The values of L2(Aa, D̃t,t̃t (Ahr

a )), L2(Aa, Dt,tt (Ahr
a )) and

L2(D̃t,t̃t (Ahr
a ), Dt,tt (Ahr

a )) are for images that all live in the R domain.
The values of these quantities, and therefore the performances and adequacy of the

resized adversarials to the addressed problem, clearly depend on the reducing and enlar-
ging functions ρ and λ selected in the scheme.

3.3. Static tests with non-adversarial images natively in H
To find out which functions ρ and λ are the most appropriate, we designed a series of tests
with promising candidates. These static tests, called that way since they are performed
with non-adversarial images, are convenient to evaluate the candidates. Scheme 9
shows the path of the test performed with an image Ahr

a [ H as starting point,
knowing that the test is performed with different ancestor images in H, and the results
are averaged among all trials.

(9)
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First Ahr
a is reduced to an image Aa [ R, thanks to the reduction function ρ. One

obtains the classification (ca, t̃a) = C ◦ r(Ahr
a ). Then one resizes Aa first up with λ then

down with ρ. One gets the classification of the resulting image C ◦ r ◦ l(Aa) = (ca?, ta),
where ta is the ca-label value, whether the resized image is classified to ca or not. Note
that the resized non-adversarial image obtained that way is likely to be classified in ca.
Still, the design of the test cannot make this assumption a priori.

One evaluates the value of the loss function L(Ahr
a ) = t̃a − ta, and of the distance func-

tion L2(Ahr
a , l ◦ r(Ahr

a )).
This latter value with images in H gives a hint at a lower bound on the expected L2

distance between Ahr
a and the adversarial image in the H domain our strategy is

aiming at. By construction, it is indeed unlikely that an adversarial in the H domain
could be closer to Ahr

a than l ◦ r(Ahr
a ) will be. Therefore the L2 distance of an HR adver-

sarial to Ahr
a is likely to be ≥ L2(Ahr

a , l ◦ r(Ahr
a )), what makes this latter evaluation

relevant.

4. Feasibility study

The feasibility study is performed with the 10 CNNs trained on ImageNet shown in Table 1
(this table also gives additional information about the parameters and accuracy of these
CNNs), and with the 10 HR imagesAhr

1 , . . . , Ahr
10 shown in Table 2. Out of them, 8 are taken

from the Internet (under Creative Commons Licenses) and 2 are images from the French
artist Speedy Graphito (pictured in SpeedyGraphito, 2020, the corresponding files were
graciously provided by the artist).

Table 2 gives the size of each original HR image, the category ca and the ca-label value
outputted by VGG-16 for Ahr

a . It also provides the target category ct , chosen at random
among the categories = ca of ImageNet, that is used for the target scenario (ca, ct) to
perform on each Ahr

a . Table A1 (in Appendix 1) completes Table 2 by providing, for
each CNN, the corresponding ca-categories and label values (all for the Lanczos interp-
olation method, as explained in Section 4.1).

One interest of adding the two specific artistic images is that, while a human may have
difficulties in classifying them in any category, the CNNs do it, although with relatively
small label values (see Table 2 for VGG-16 and Table A1 in Appendix 1 in general).

We run the static tests to select the ρ and λ functions out of 4 candidates ( Section 4.1).
Then we briefly describe the evolutionary algorithm EAtarget,C that we shall use as a black-

Table 1. The 10 CNNs trained on ImageNet, their number of parameters (in millions) and their Top-1
and Top-5 accuracy.
Ck Name of the CNN Parameters Top-1 accuracy Top-5 accuracy

C1 DenseNet121 8M 0.750 0.923
C2 DenseNet169 14M 0.762 0.932
C3 DenseNet201 20M 0.773 0.936
C4 MobileNet 4M 0.704 0.895
C5 NASNetMobile 4M 0.744 0.919
C6 ResNet50 26M 0.749 0.921
C7 ResNet101 45M 0.764 0.928
C8 ResNet152 60M 0.766 0.93
C9 VGG16 138M 0.713 0.901
C10 VGG19 144M 0.713 0.900
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box attack against each of the 10 CNNs ( Section 4.2). We apply the strategy with the evol-
utionary algorithm and get the HR adversarial images that fool CNNs for the target scen-
ario with the threshold value set to t = 0.55 (Section 4.3). Finally, we discuss the visual
quality of the obtained HR adversarial images, especially from a human point of view
(Section 4.4).

For 1 ≤ a ≤ 10, the HR ancestor image Ahr
a , its resized version l ◦ r(Ahr

a ) [ H
obtained by the static tests ( Section 3.3), and one sample of an adversarial image
Dhr

t,tt (Ahr
a ) [ H per (ca, ct) combination of the target scenario performed on VGG-16,

can be retrieved from https://github.com/aliotopal/HRadversImgs/blob/main/original-
advers.md.

4.1. Selection of ρ and λ

To select the functions ρ and λ, we evaluate four interpolation methods that convert an
image from one scale to another. The Nearest Neighbour (Patel & Mistree, 2013), the
Bilinear method (Agrafiotis, 2014), the Bicubic method (Keys, 1981) and the Lanczos
method (Duchon, 1979; Parsania & Virparia, 2016) are non-adaptive methods among
the most common interpolation algorithms, with the additional advantage of being avail-
able in python libraries.

The static tests designed in Section 3.3 are performed on the 10 HR images of Table 2
with the 10 CNNs of Table 1 for all 16 possible ρ and λ combinations coming from this
selection. Figure 3 summarizes the results in two heatmaps (see Figure A1 in Appendix
1 for individual heatmaps per CNN). They represent the average values (for all CNNs) of
the loss function LC(Ahr

a ) = t̃a − ta (Figure 3(a)), and of L2(Ahr
a , l ◦ r(Ahr

a ) (Figure 3(b),
the two images being in H).

Figure 3(a) shows that the best performing loss value, namely 0.039 (which is
quite close to the optimal 0 value), is achieved when the images are scaled
down with the Bicubic method and up with the Lanczos method (observe that
the Nearest Neighbour method is the default upsizing and downsizing method in
Keras).

However, Figure 3(b) shows that this combination for (r, l) gives the second best L2
distance while (r, l) = (Lanczos, Lanczos) gives the best. Additionally, Figure 3(a)
shows that the loss achieved by the (Lanczos, Lanczos) combination is the fourth best per-
forming combination and remains very moderate.

Since human visual quality of the adversarials in the H domain should prevail,
especially at a very tolerable cost in terms of the Loss function, we select (r, l) =
(Lanczos, Lanczos). This choice is used in all further experiments.

Table 2. For 1 ≤ a ≤ 10, the image Ahr
a classified by VGG-16 in the category ca (interpolation =

‘lanczos’).
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4.2. The evolutionary algorithm EAtarget,C

For C = C1, . . . , C10, the adversarial images are obtained with the evolutionary algorithm
EAtarget,C detailed in Chitic, Bernard et al. (2020), Chitic, Leprévost et al. (2020), and Topal
et al. (2022), whose pseudo code is given in Algorithm 1. Throughout the different gen-
erations, the size of the population is constant and is set to 40 as a result of a series of
experiments. The algorithm starts with 40 identical copies of the ancestor image. The
objective of evolving an individual ind towards an image classified as ct is encoded in
the fitness function

fit(ind) = oC
ind[t]. (10)

Throughout the evolution, the individuals are continuously mutated and recombined
to create population members with larger fitness.

Algorithm 1: EA attack pseudocode

1: Input: CNN C, ancestor A, perturbation magnitude α, maximum perturbation ε, ancestor class ca, ordinal t of target
class ct , g current and X maximum generation;

2: Initialize population as 40 copies of A, with I0 as first individual;
3: Compute fitness for each individual;
4: While (oI0 [t] , t) & x<X do
5: Rank individuals in descending fitness order and segregate: elite 10, middle class 20, lower class 10;
6: Select random number of pixels to mutate and perturb them with +a. Clip all mutations to (−e, e). The elite is not
mutated. The lower class is replaced with mutated individuals from the elite and middle class;

7: Cross-over individuals to form new population;
8: Evaluate fitness of each individual;

The maximum pixel modification on individuals is limited to a fixed range
e = [− 16, 16] throughout the search process to maintain the proximity of the evolved
images with the ancestor image. The step size per selected pixel is set to a = +1. The
individuals compete with each other until one of the EA’s stop conditions is satisfied,
namely until one individual satisfies oC

ind[t] ≥ t (what is called a successful run), or the
maximum number of generations X = 35, 000 is reached.

Figure 3. The overall average values of the loss functions LC(Ahr
a ) = t̃a − ta in Table (a) and of

L2(Ahr
a ), l ◦ r(Ahr

a ) in Table (b).
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4.3. Running the strategy to get adversarial images with the EA

With the rescaling functions (r, l) = (Lanczos, Lanczos), we deploy the strategy detailed
in Section 3.1 with the evolutionary algorithm EAtarget,C for the 10 CNNs and the 10 ances-
tor images Ahr

a . With terminology consistent with Section 2.1, the goal is to create 0.55-
strong HR adversarial images as well as good enough HR adversarial images for the
target scenario (ca, ct) specified in Table 2 (see also Table A1).

Since different seed values for the EA may lead to different results, we increased the
robustness of the outcomes by performing 10 independent runs with random seeds
for each (ca, ct) pair and ancestor Ahr

a , leading to altogether 100 trials per CNN, hence
to 1000 trials altogether.

90% of the runs terminated successfully in less than 35,000 generations. The detailed
success rate for each CNN is shown in Table A2 (Appendix 1).

For each CNN, Table 3 gives the average of four indicators, computed over the successful
runs for the specific CNN considered. avgGens0.55C is the average number of generations
required to obtain the 0.55-strong adversarial images Dhr

t,tt (Ahr
a ) [ H, avgGensgeC is the

average number of generations required to obtain good enough adversarial HR images
Dhr,ge

t,tt (Ahr) while being on the way to 0.55-strong adversarial images, and avggeC,tt is their
average ct-label values. The last indicator AddE0.55C,ge shows the additional effort to move up
from a good enough HR adversarial image, to a 0.55-strong HR adversarial image, measured
as a percentage assessing the proportion of additional generations required.

The three last columns of Table 3 contain the average computational time per gener-
ation (avgTimeC, in second), the average total computational time required to create a
good enough adversarial image (avgTimegeC , in minutes) and the average total compu-
tational time required to create a 0.55-strong adversarial image (avgTime0.55C , in minutes).

Out of the 900 successful trials from 1000 attempts, Table 3 shows that, on average,
good enough HR adversarial images are created by our algorithm in 5954 generations
and 0.55-strong HR adversarial images in 8314 generations (of course with large variations,
depending on the CNN considered). Measured by the number of additional generations
required, the effort necessary to move up from a good enough HR adversarial image, that
has a ct-label value of 0.163 in average, to a 0.55-strong HR adversarial image is 39.6%.

In terms of the average computational time (on the hardware specified at the begin-
ning of this article), roughly 57 minutes were necessary to create a good enough

Table 3. Average performance over the successful runs of EAtarget,C for each C trained on ImageNet in
creating 0.55-strong and good enough HR adversarial images for the target scenario (ca, ct) performed
on Ahr

a .
CNNs avgGensgeC avggeC,tt avgGen0.55C AddE0.55C,ge avgTimeC avgTimegeC avgTime0.55C

C1 DenseNet121 4561 0.150 7765 70.2 0.532 40.5 68.9
C2 DenseNet169 8112 0.241 11221 38.3 0.608 82.2 113.7
C3 DenseNet201 5288 0.166 8077 52.7 0.609 53.7 82.0
C4 MobileNet 4201 0.191 5640 34.9 0.510 35.7 48.0
C5 NASNetMobile 10765 0.224 12981 20.6 0.550 98.8 119.2
C6 ResNet50 4336 0.142 5891 35.9 0.575 41.6 56.5
C7 ResNet101 6261 0.151 8656 38.3 0.578 60.4 83.5
C8 ResNet152 6268 0.143 8477 35.2 0.649 67.8 91.8
C9 VGG16 4069 0.112 6250 53.6 0.567 38.5 59.1
C10 VGG19 5683 0.109 8180 43.9 0.570 54.0 77.7
Overall Avg. 5954 0.163 8314 39.6 0.575 57.3 80.7
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adversarial image, and 80 minutes for a 0.55-strong adversarial image, again with large
variations from one CNN to another.

For each ancestor imageAhr
a for which the algorithm succeeds at least once, one com-

putes the convergence characteristics of the algorithm EAtarget,C for t̃t and for tt on the
way to the HR 0.55-strong adversarial image Dhr

t,tt (Ahr
a ).

An example, representative of the overall behaviour (see Appendix 1, Figures A2 and
A3), is given for VGG-16 in Figure 4 for Ahr

7 , and for Ahr
10, where the graphs are capped on

the horizontal axis at their respective avgGens0.55C9 values.
Table 4 completes the information provided by the convergence graphs. It gives the

average, over the successful among the 10 independent runs per ancestor image, of
the minimum and maximum values of the loss function L(Ahr

a ) = t̃t − tt .
A thorough study of the loss function as the algorithm proceeds, generation for gen-

eration, towards the construction of the HR 0.55-strong adversarial imageDhr
t,tt (Ahr

a ), shows
the following outcome, at least for the successful runs performed in this study (see
Appendix 2, Figure A4 for one detailed example). During the first generations, the
values of the loss function are alternatively positive and negative, and remain very
small, typically of order 10−4. Then, at some point, namely from some generation on
(that differs from one HR ancestor image to another, and from one CNN to another as
well), the loss function becomes ≥ 0, and remains so until the algorithm terminates.

Figure 4. Convergence characteristics for tt and t̃t forAhr
7 (a) andAhr

10 (b) of EAtarget,C for C = VGG16.

Table 4. Average of the minimum and maximum values of L(Ahr
a ) = t̃t − tt .

CNNs Avg. LossC (min) Avg. LossC (max)

C1 DenseNet121 −2.09E−04 2.87E−01
C2 DenseNet169 −3.96E−05 3.58E−01
C3 DenseNet201 −1.28E−05 3.25E−01
C4 MobileNet −4.50E−06 3.32E−01
C5 NASNetMobile −2.89E−06 3.48E−01
C6 ResNet50 −2.45E−05 2.18E−01
C7 ResNet101 −2.31E−05 2.13E−01
C8 ResNet152 −1.53E−05 1.96E−01
C9 VGG16 −7.05E−04 3.94E−02
C10 VGG19 −1.30E−03 4.00E−02
Overall Avg. −2.34E−04 2.32E−01
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Moreover, although some slight fluctuations occur, the asymptotic behaviour of the loss
function is to almost strictly grow from there on.

A consequence of the convergence graphs given in Figures A2 and A3 and of the
numerical values given in Table 4 is that setting a threshold ct-label value
t̃t = tt + Avg.LossC(max) seems a reasonable choice, at least if one aims at getting 0.55-
strongHRadversarial images byourmethod. A safer choicewouldbe to adda value exceed-
ing slightly the absolutemaximumvalueof the loss function amongall such values for all 10
ancestor images. For VGG-16 for instance, it would mean to set the threshold ct-label value
to t̃t = tt + 0.065 since the largest Lmax value is 0.064 for that CNN. However, for some
CNNs, these values vary largely from one ancestor image to another, so that, in a first
approach, we would recommend to add the average loss function instead.

4.4. Visual quality

We first assess numerically the quality of the obtained HR adversarial images as compared
to the HR ancestors. Table 5 gives the three L2 differences of images in the R domain,
namely L12 = L2(Aa, D̃t,t̃t (Aa)), L22 = L2(Aa, Dt,tt (Aa)), and L32 = L2(D̃t,t̃t (Aa), Dt,tt (Aa)), and
the L2 difference (in the H domain) L42 = L2(Ahr

a , Dhr
t,tt (Ahr

a )).
The most saying outcome of Table 5 is that the average value of the L2 distance

between the HR ancestor and adversarial images remains comparable, actually even
smaller, than the corresponding value (namely for Lanczos–Lanczos) measured for non-
adversarial images in the heatmap in Figure 3(b). In other words, at least in average,
our attack does not arm the numerical performance of the resizing functions. It even
enhances it, what is probably due to some statistical artefact.

Still, the ‘true’ visual quality for a human eye is assessed by looking at some represen-
tative examples either from some distance, or by zooming on some areas.

For instance, let us consider the HR ancestor imageAhr
7 represented in Figure 5(a), and

a zoom of that picture on some restricted area (taken at random). Figure 5(b) shows the
non-adversarial resized image l ◦ r(Ahr

7 ) with (l, r) = (Lanczos, Lanczos). Finally, Figure 5
(c) shows the HR 0.55-strong adversarial image created by EAtarget,C for C = VGG-16. To
further illustrate the phenomenon, we proceed similarly (still for VGG-16) with another
ancestor HR image, namely Ahr

10 in Figure 6(a–c).
At somedistance, both thenon-adversarial resized original image and theHR adversarial

seem to have a good visual quality as compared to the HR ancestor. However, the zoomed

Table 5. The three distances L12, L
2
2, and L32 of images in the R domain, and the distance L42 in the H

domain.
CNNs L12 L22 L32 L42
C1 DenseNet121 2357 2266 4096 28112
C2 DenseNet169 2122 2204 1529 33355
C3 DenseNet201 2392 2468 1593 35439
C4 MobileNet 2182 2255 1463 33437
C5 NASNetMobile 2610 2562 1641 28501
C6 ResNet50 2631 2485 1426 28040
C7 ResNet101 2724 2620 1626 34568
C8 ResNet152 2771 2649 1665 34683
C9 VGG16 3211 2951 1485 35424
C10 VGG19 3227 3009 1490 35428
Overall Avg. 2623 2547 1801 32699
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areas show that details from the HR ancestor images become blurry for a human eye, not
only in theHR adversarial images (as seen fromFigures 5c and 6c) but in the non-adversarial
resized images as well (as seen from Figures 5 b and 6b). Moreover, a human eye is not able

Figure 5. Visual comparison in the H domain of Ahr
7 (a) with its non-adversarial resized version

(b) and its adversarial obtained by EAtarget,C for C = VGG-16. (a) Ahr
7 , (b) lor(Ahr

7 ), (c) Dhr
t (Ahr

7 ).
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Figure 6. Visual comparison in the H domain of Ahr
10 (a) with its non-adversarial resized version (b)

and its adversarial obtained by EAtarget,C for C = VGG-16. (a) Ahr
10 , (b) lor(Ahr

10 ), (c) Dhr
t(Ahr

10).
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to distinguish the blurriness that occurs in the non-adversarial resized image from the one
that shows up in the HR adversarial: The loss of details looks the same in both cases.

This experiment, representative of the general behaviour over the CNNs, shows that
the observed blurry effect is not due to an inefficiency of our strategy, nor of the algorithm
EAtarget,C , at least to a large extent, but is due to the lack of high-quality interpolation
methods. Indeed, these experiments show that scaling up to the H domain images
belonging to theR domain, adversarial or not, results in a loss of high-frequency features
on the up-scaled images. Moreover, the very fact that the loss of details looks the same for
a resized non-adversarial image as for the adversarial image created by our algorithm in
the H domain speaks in favour of our attack, since it makes our attack harder to detect.

5. Direct attack in the H domain

In this last part, we show that a direct attack in the H domain, that would aim at making
effective the top arrow of scheme 5 without applying our indirect strategy, is a non-trivial
problem in practice.

Concretely, for each C = C1 . . . , C10, we challenge EAtarget,C to perform a direct attack in
theH domain for the most promising (ancestor, target) pair and the corresponding ances-
tor image Ahr

a , in order to create directly a 0.55-strong HR adversarial image. In all cases,
the process stops when either a direct attack turns out to be successful, or if the comput-
ing time exceeds 48 hours. The most promising pair, and the corresponding ancestor, is
defined as the combination for which the indirect attackwith the algorithm EAtarget,C is the
fastest in terms of the number of generations required to succeed.

Computation shows that the (toucan, wombat) pair, with the corresponding ancestor
imageAhr

5 , is the most promising for C4, C9, C10, and that the (comic book, altar) pair, with
the corresponding ancestor image Ahr

7 , is the most promising for the 7 remaining CNNs.
Clearly, EAtarget,C goes beyond the previous experiments since it now processes a

search space of size 910× 607 in the case of Ahr
5 and of 1280× 800 in the case of Ahr

7 ,
instead of 224× 224 for the indirect attack.

Figure 7 illustrates the convergence characteristics of EAtarget,C when working directly in
the H domain, at least for the combinations and ancestor images considered (see
Figure A5 in Appendix for all 10 CNNs). Figure 7(a) shows the outcome for C = VGG-16
when one proceeds with the ancestor image Ahr

5 , and Figure 7(b) shows the outcome
for C = ResNet-152 when one proceeds with the ancestor image Ahr

7 . The horizontal
axis of the graph is the number of generations, capped at what one gets after 48
hours, and the vertical axis is the ct-label value for the fittest individual.

Although the search space increased by around ‘only’ 11 times forAhr
5 and 20 times for

Ahr
7 , the EA was nevertheless unable to create high-resolution adversarial images within

48 hours, as shown in Table A3, Appendix 3. The EA stopped at ≈ 50, 000 generations for
the 3 CNNs considered in the former case, at ≈ 28, 000 generations for the 7 CNNs con-
sidered in the later case, with the fittest individual obtained still classified by the corre-
sponding CNN as belonging to the ancestor category (toucan or comic book).

More precisely, the ca-label value of the fittest individual takes values in the range
≈ [0.084, 0.748], the actual values depending on the CNN considered. Its target category
label value remains very small, culminating at 7.0E−04 in the best case, achieved by C1,
one of the 7 CNNs considered for the (comic book, altar) pair.
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Although the learning curve of the EA improves (see Figures 7 and A5 in Appendix 3),
the ct-label value of the fittest individual increases by a factor in the range [1.71, 5.5]
depending on the considered CNN (see Table A3, Appendix 3), and the critical regions
to modify are narrowed down as the EA works, the EA is not fast enough to create
images that converge to the target category in reasonable time. Although difficult to
assess precisely, our experiments indicate that attacking directly in the H domain may
take weeks or maybe months to succeed. It may also come out that even the threshold
ct-label value of 0.55 may be out of reach in some cases by such a direct attack.

The reasons for this slowness are twofold. On the one hand, a search space of between
11 and 20 times larger than the size 224× 224, for which EAtarget,C has proven to be
efficient, makes it difficult for the EA to narrow down quickly the regions on which to
focus. On the second hand, the average time per generation, that was ≈ 0.575 seconds
in the R domain, is now ≈ 5.74 seconds in the H domain. Out of the operations purely
linked to the EA, Tables A4 and A5 (Appendix 3) show that the most consuming one is
the mutation process, and that this operation of the algorithm consumes 3× more time
in the H domain than it used to take in the R domain. Although with a lesser timing
effect, the crossover operation of the algorithm also consumes 3× more time in the H
domain than in theR domain. This again is due to the size of the images given to the EA.

Therefore, creating high-resolution adversarial images from Ahr directly in the H
domain requires new methods. The results of this section also sustain, in a way, the indir-
ect strategy adopted in this paper to address HR images.

6. Conclusion

Trained CNNs, performing image recognition, convert input images to some fixed and
moderate size, say 224× 224 for CNNs trained on ImageNet typically. This process trans-
forms the input image into a low-resolution image that the CNN is able to analyse. So far,
attacks, aiming at creating adversarial images fooling these CNNs, create some adversarial
noise of size equal to the input size of the CNN.

Figure 7. Convergence characteristics of EAtarget,C aiming at generating within 48 hours a high-resol-
ution adversarial image by directly evolving (a) Ahr

5 for the (toucan, wombat) pair and C = VGG-16,
and (b) Ahr

7 for the (comic book, altar) and C = ResNet-152. (a) VGG-16 -- Ahr
5 . (b) ResNet-152 - Ahr

7 .
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The method presented in this work is the first effective attempt to make the search
space for the adversarial noise depend on the size of the original image and not on
the CNN’s input size. In particular, it is effective for high resolution images in terms of
speed, adversity and visual quality.

More specifically, the designed indirect strategy lifts any existing attack, efficient in the
low-resolution domain, to an attack that applies in the high resolution domain. We per-
formed an experimental study for 10 CNNs trained on ImageNet, by lifting our evolution-
ary algorithm-based attack EAtarget,C , with the aim to create HR images adversarial for the
target scenario, that these CNNs classify in the target category with confidence ≥ 0.55.
Our algorithm succeeded in 900 cases out of 1000 attempts to create 0.55-strong high
resolution adversarial images.

To sustain this indirect strategy, we also showed that attacking directly in the HR domain
is not feasible in practice. After 48 computation hours, noHR adversarial imagewas obtained
by the direct attack for any of the 10 CNNs, even for the most promising pairs of target and
ancestor categories and corresponding ancestor. A contrario, for the 900 successful
attempts, our indirect attack succeeded to create 0.55-strong adversarial images within, in
average, 48′ for the easiest CNN to deceive, and 119′ for the hardest CNN to deceive.

While this work successfully addresses the adversity and speed issues, we plan to
focus more specifically on the visual quality of the HR adversarial images obtained,
by considering alternative scaling functions, such as adaptive interpolation methods
((Hu & Tan, 2017; Hwang & Lee, 2004; Li & Orchard, 2001; Zhang & Wu, 2008)) or
ML-base methods ((Schulter et al., 2015; Ye et al., 2020)). Already the mere comparison
of these resizing functions for HR non-adversarial images gives a useful benchmark.
Additionally, this study could examine whether an HR adversarial, constructed
thanks to a specific choice of (r, l), remains adversarial once reduced via all (or
some) different downsizing functions.

Furthermore, we intend to apply our strategy to more CNNs, more HR images (of
different nature, e.g. satellite images, medical images, etc), and more attacks, black-
box or not. Additionally, we intend to explore how far the very existence of performing
our attack can be detected by pre-processing defense mechanisms. Lastly, while the
current strategy applies to any existing attack in the R domain, one can try to take
advantage of the outcomes of our study, to design attacks in the H domain, tailor-
made to some existing attacks in the R domain.
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Appendices

Appendix 1

Figure A1. The heat maps of the loss function LC(Ahr
a ) = t̃a − ta for each CNN: (a) C1, (b) C2, (c) C3,

(d) C4, (e) C5, (f) C6, (g) C7, (h) C8, (i) C9, (j) C10.
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Table A1. For 1 ≤ a ≤ 10, the image Ahr
a classified by each CNN in the category ca (interpolation =

‘lanczos’).
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Appendix 2

Figure A2. Convergence characteristics of the EAtarget,C for C = C1, . . . , C5 based on tt and t̃t for each
CNN. Only the pairs with the smallest and largest Lmax values are shown in the figures. (a)
C1 −min(Lmax):A7, (b) C1 −max(Lmax):A8, (c) C2 − min(Lmax):A7, (d) C2 − max(Lmax):A1, (e)
C3 −min(Lmax):A6, (f) C3 −max(Lmax):A9, (g) C4 −min(Lmax):A2, (h) C4 −max(Lmax):A9, (i)
C5 −min(Lmax):A6, (j) C5 −max(Lmax):A7.
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Figure A3. Convergence characteristics of the EAtarget,C for C = C6, . . . , C10 based on tt and t̃t for
each CNN. Only the pairs with the smallest and largest Lmax values are shown in the figures. (a)
C6 −min(Lmax):A2. (b) C6 −max(Lmax):A3. (c) C7 − min(Lmax):A2. (d) C7 − max(Lmax):A1. (e)
C8 −min(Lmax):A2. (f) C8 −max(Lmax):A10. (g) C9 −min(Lmax):A6. (h) C9 −max(Lmax):A4. (i)
C10 −min(Lmax):A6. (j) C10 − max(Lmax):A9.
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Figure A4. The average convergence characteristics of EAtarget,C for C = VGG-16 aiming at generating
an HR adversarial image by directly evolving Ahr

10. The horizontal axis of the graph is the number of
generations, and the vertical axis is the target probability tt , t̃t and the loss L = t̃t − tt . The zoomed-
in section of the graph shows when the t̃t becomes bigger than the tt (≈ 2209thgeneration). As the
loss L curve shows, the distance between t̃t and tt increases over the generations.
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Appendix 3

Figure A5. Convergence characteristics of EAtarget,C aiming at generatingwithin 48 hours a high-resolution
adversarial image by directly evolvingAhr

5 for the (toucan, wombat) pair and C =MobileNet (d), VGG-16 (i),
VGG-19 (j), andAhr

7 for the (comic book, altar) andC =DenseNet121 (a), DenseNet169 (b), DenseNet201 (c),
NasNetMobile (e), ResNet50 (f), ResNet101 (g), ResNet-152 (h). (a) C1 −Ahr

7 . (b) C2 −Ahr
7 . (c) C3 −Ahr

7 . (d)
C4 −Ahr

7 . (e) C5 −Ahr
5 . (f) C6 −Ahr

7 . (g) C7 −Ahr
7 . (h) C8 −Ahr

7 . (i) C9 −Ahr
5 . (j) C10 −Ahr

5 .
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Table A2. Success rates (SR) of EAtarget,C for each CNN over 10 independent runs, for t = 0.55 and X =
35, 000.
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Table A3. Direct attack results of EAtarget,C for the easiest (ca, ct) pairs after 48 hours of execution of the algorithm. In the last column ct ratio = ct end/ct start.
(ca, ct) (toucan, wombat) (comic_book, altar)

# of gen. ca start ca end ct start ct end # of gen. ca start ca end ct start ct end ct ratio

C1 DenseNet121 25695 0.223 0.227 3.0E−04 7.0E−04 2.4
C2 DenseNet169 28155 0.322 0.294 1.4E−04 3.0E−04 2.1
C3 DenseNet201 24983 0.453 0.467 1.4E−04 2.9E−04 2.1
C4 MobileNet 49082 0.497 0.394 7.77E−06 4.31E−05 5.5
C5 NASNetMobile 25098 0.951 0.748 8.3E−05 4.1E−04 5.0
C6 ResNet50 25448 0.280 0.270 2.9E−04 6.9E−04 2.3
C7 ResNet101 26178 0.204 0.084 9.1E−05 1.9E−04 2.1
C8 ResNet152 25328 0.702 0.575 2.0E−05 5.2E−05 2.6
C9 VGG16 46721 0.455 0.405 1.08E-05 1.90E−05 1.8
C10 VGG19 47668 0.145 0.132 5.32E−05 9.11E−05 1.7
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Table A4. Direct attack results of EAtarget,C for all (ca, ct) pairs after 100 generations (hence less than 48 hours). The results show the time spent by the main
operations of EAtarget,C in one generation.

Input Image A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
Image size (n) 910× 604 960× 640 910× 607 2462× 2913 910× 607 641× 600 1280× 800 1280× 800 1954× 2011 1740× 1710 %

Avg. of all CNNs Time per gen 3.528 3.790 3.427 45.570 3.469 2.499 6.239 6.248 24.815 18.871
Resize 0.384 0.401 0.371 3.829 0.373 0.294 0.635 0.636 2.209 1.729 9.2
Prediction 0.155 0.150 0.149 0.156 0.150 0.149 0.150 0.150 0.155 0.153 1.3
Mutation 2.063 2.215 1.995 29.922 2.026 1.410 3.768 3.778 16.050 12.118 63.6
Crossover 0.161 0.179 0.161 2.067 0.161 0.112 0.297 0.297 1.133 0.861 4.6
Time per gen/n 6.42E−06 6.17E−06 6.21E−06 6.35E−06 6.28E−06 6.50E−06 6.09E−06 6.10E−06 6.31E−06 6.34E−06
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Table A5. Indirect attack results of EAtarget,C for all (ca, ct) pairs after 100 generations. The results show the time spent by the main operations of EAtarget,C in one
generation.

Input Image A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
Image size (n) 910× 604 960× 640 910× 607 2462× 2913 910× 607 641× 600 1280× 800 1280× 800 1954× 2011 1740× 1710 %

Avg. of all CNNs Time per gen 0.512 0.516 0.518 0.673 0.517 0.512 0.526 0.530 0.596 0.572
Resize 0.020 0.022 0.020 0.174 0.020 0.016 0.032 0.032 0.101 0.079 9.4
Prediction 0.154 0.155 0.155 0.155 0.156 0.154 0.155 0.155 0.154 0.154 28.3
Mutation 0.143 0.142 0.145 0.146 0.145 0.147 0.142 0.145 0.144 0.143 26.4
Crossover 0.009 0.010 0.009 0.010 0.009 0.009 0.009 0.009 0.010 0.010 1.7
Time per gen/n 9.31E−07 8.39E−07 9.38E−07 9.39E−08 9.36E−07 1.33E−06 5.14E−07 5.17E−07 1.52E−07 1.92E−07
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