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Preface

Lebesgue spaces Lp(Ω, µ) and many of their generalizations (Grand Lebesgue, Lorentz,
Orlicz, Marcinkiewicz spaces) are de�ned by conditions that, in some intuitive sense,
limit the size of the function, but in a way such that the distribution of the values of
the function is irrelevant.
In other words, one measures the mass of the function irrespective of where it is al-
located. This is formalized by saying that these spaces are rearrangement invariant,
that is, given two functions f and g such that

|{x ∈ Ω : |f(x)| ≥ λ}| = |{x ∈ Ω : |g(x)| ≥ λ}|, ∀λ ≥ 0,

then f belongs to the space if and only if g does; two functions satisfying the above
property are called equimeasurable. In the aforementioned Lebesgue spaces, for exam-
ple, this is made clear by the so-called Cavalieri Principle.
If a function f belongs to a given rearrangement invariant function space X, then the
same can be said of its non-increasing rearrangement

f ∗ : t ∈ [0, |Ω|] 7→ inf
{
λ : |{x ∈ Ω : |f(x)| ≥ λ}| ≤ t

}
∈ R+,

which is a non-increasing function that is equimeasurable to the starting function f .
Not all function spaces, though, are rearrangement invariant. The space of Lipschitz
functions, to make an example that students of mathematics encounter early on in
their education, is not a rearrangement invariant space. One (valid, but maybe not the
simplest) way to think intuitively of a counterexample would be to think of a function
having violent oscillation, such as

f(t) = t ∈ [0, 1] 7→
ˆ t

0

∞∑
n=1

(−1)n+1(n2 + n)χ[1− 1
n
,1− 1

n+1 ](s) ds ∈ [0, 1]

which is a piece-wise linear function doing a zig-zag to connect all points of the type

(0, 0)−
(

1

2
, 1

)
−
(

2

3
, 0

)
−
(

3

4
, 1

)
−
(

4

5
, 0

)
− . . .

and so on which is clearly not Lipschitz, but then look at is non-increasing rearrange-
ment f ∗(t), which can be computed to be f ∗(t) = 1− t, which is clearly Lipschitz.
This informal argument suggests that an interesting aspect of functions, that is the
way they oscillate, which is neglected in rearrangement invariant spaces, is crucial to
the de�nition of other interesting function spaces. In the mathematical literature, a
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plethora of di�erent meanings and formal de�nitions have been associated to the word
"oscillation".
In this text we will explore some of the function spaces de�ned by means of oscillation,
in many di�erent senses of the word, �tting into two modes: spaces in which oscilla-
tion is bounded and spaces in which oscillation is vanishing, i.e. arbitrarily small when
measured on a su�ciently small set. This general framework will be made precise in a
diversity of ways.

The outline of the thesis is the following. In the �rst chapter a very large space of
functions introduced by Brezis, Bourgain and Mironescu (see [32]) in 2015 and often
denoted as B is introduced. It is a function space that caught the interest of both
my former advisor Prof. Carlo Sbordone and my current advisor Prof. Gioconda
Moscariello (see [59],[71] and [72]). Even if its introduction is very recent and inspired
by other previously de�ned function spaces, the logic for its placement at Chapter 1
is that B is a space containing all of those who follow, which will be seen as special
subspaces of B.
The space B was introduced to answer a question about functions with discrete range

f : Ω→ Z.

In many function spaces classical to the mathematical analysis, such as Sobolev spaces
(with su�ciently large integrability exponent) these functions are necessarily almost
everywhere constant functions: this is easily proven via the Sobolev-Poincarè inequal-
ity.
What is the largest space we can think of where functions with discrete range are nec-
essarily almost everywhere equal to a constant?
That is the question that was on the table when the space B was introduced. As a
matter of fact, a very natural subspace B0 which will be introduced in Chapter 1 has
the desired property and contains all function spaces that were known to have the
desired property.
The couple (B,B0) of Banach function spaces has many interesting functional proper-
ties.
Since it �ts into a very general and abstract framework for couples of Banach function
spaces introduced by K.M. Perfekt in [120], which we will refer to as an (o,O) pair
or (o,O)�type structure and make us of multiple times throughout this text, we will
present, with respect to this, results from a very recent paper [59]. Moreover, we will
explore an interesting relationship that is between some quantities involved in de�ning
the norm on B and the perimeter of a measurable set: these are the topics of [71] and
[72], by Fusco, Moscariello and Sbordone.

In Chapter 2 we explore the space of Lipschitz functions, in the most general setting
of an arbitrary compact metric space and together with other function spaces from the
family of Holder spaces. The space of Lipschitz function is possibly the most famous
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example of a space de�ned by means of oscillation. As a matter of fact, one de�nes
the pointwise oscillation of a function f over a ball B as

ωf (B) := sup
x,y∈B

|f(x)− f(y)|.

That is the most natural and naive de�nition of oscillation, i.e. the largest distance
there is between two values of f in B. The Holder spaces Lipα, α ∈ (0, 1], of which
the space Lip1 is a special case, can be seen as the spaces of functions whose oscilla-
tion ωf (B) is bounded in terms of α-th power Diamα(B) of the diameter of the ball,
uniformly with respect to all balls contained in the domain of f .
Again in the general context of a compact metric space (K, ρ), we will also introduce
the less famous subspace lipα consisting of functions such that

|f(x)− f(y)|
ρα(x, y)

is not only uniformly bounded for all x, y ∈ K, x 6= y, but vanishing as ρ(x, y) → 0,
i.e. such that

lim
ρ(x,y)→0

|f(x)− f(y)|
ρα(x, y)

= 0.

Again making use of the framework from [120] and some additional arguments from a
recent paper [59], we explore the relationship between the smaller space lipα and Lipα,
explaining exactly under which conditions we can say that the bidual of the smaller
one is isometrically isomorphic to the larger one, as done with Ascione, D'Onofrio and
Manzo in [16].
This type of functional relationship between the two spaces was already explored by
many, but �tting the couple of spaces in the abovementioned framework by K.M.
Perfekt gives new functional analytic information as, for example, an equivalent for-
mulation for the distance of a given function from the smaller space lipα, and also
allows us to infer some interesting properties about the predual of Lipα which is a
Banach space of Borel measures on K, suitably normed. In particular, we present the
results of [16] and [19].
More precisely, regarding the latter, if the space M(K) of �nite signed Borel measures
on K is equipped with the Kantorovich-Rubinstein norm (see Chapter 2 for the def-
inition), then we provide an atomic decomposition result for its completion M(K)c.
Its elements can be decomposed as an in�nite series of measures whose support is of
cardinality at most 2, as we will show with Theorem 2.23.
The last section of the Chapter 2 is devoted to some results obtained in the �eld of
Optimal Control Theory. These results are not yet submitted for publication.
As a matter of fact, it is an interesting application, where almost everywhere di�er-
entiability of Lipschitz functions (Rademacher's Theorem) and some weaker notions
of di�erentiability for Lipschitz functions (Clarke's Generalized Jacobian and Quasi
Di�erential Quotient) play a crucial role.
The Pontryagin Maximum Principle (PMP) has been generalized to a wide variety of
optimal control problems to provide necessary conditions for optima. In a work in
preparation with Prof. Franco Rampazzo (see [20]), we �rst introduce a problem of
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the following type:

dx
dt

(t) = f(x(t), a(t)) +
m∑
i=1

gi(x(t))ui(t), a.e. t ∈ [0, T ],

dν
dt

(t) = |u(t)|,
(x, ν)(0) = (x̂, 0), ν(T ) ≤ K, (T, x(T )) ∈ T,

minimize: Ψ(T, x(T )) +
´ T

0
l(x(t), u(t), a(t)) dt

where u is the control function with values in a cone C, f : Rn × A → Rn is usually
called "drift", A ⊆ Rq, gi, i ≤ n are vector �elds on Rn, T ⊆ R∗ × Rn is a set
called "target", representing admissible �nal times and locations, t,K are positive real
numbers and Ψ : R+×Rn → R and l : Rn×C×A→ R are the �nal and the lagrangian
cost functions respectively.
If the �elds gi are C

1, some second order conditions on optima can be found, expressed
in the language of Lie brackets (see, for example [21]). Using a de�nition from [128]
that generalized Lie Brackets to Lipschitz �elds, and the concept of a Quasi Di�erential
Quotient (QDQ) from [119], we will be able to �nd a second order condition for optima
even if the �elds are Lipschitz: it will be expressed in terms of set-valued Lie Brackets
and QDQ's.

In Chapter 3 we introduce Orlicz spaces

LΨ(Ω) =

{
u ∈ L1(Ω) : ∃λ > 0 such that

ˆ
Ω

Ψ

(
|u|
λ

)
< +∞

}
.

for any choice of a Young function Ψ and the closure of L∞ in LΨ, also known as the
Morse space MΨ and characterized as

MΨ(Ω) =

{
u ∈ L1(Ω) : ∀λ > 0

ˆ
Ω

Ψ
(u
λ

)
dx < +∞

}
.

We �rst show how in [18] we were able to individuate a large subfamily of Orlicz spaces
for which (LΨ,MΨ) �ts into the aforementioned mathematical framework by K.M.
Perfekt, deriving many functional properties of the couple.
In the last section we introduce the Orlicz-Sobolev spaces W 1,Ψ, which are the spaces
of functions in LΨ such that a weak derivative exists and is also in LΨ, and, in line
with the general topic of the text, we present a nice and peculiar result by Tuominen
[134] characterizing it as the space of LΨ functions f such that there exists a function
g also in LΨ bounding the oscillation of f in the following way

|f(x)− f(y)| ≤ |x− y| [g(x) + g(y)] .

This result is a generalization of one obtained by Hajlasz for Ψ(t) = tp and hence
characterizing the classical Sobolev spaces. These types of results, showing that Orlicz-
Sobolev spaces are de�ned by means of oscillation, also provide a way to de�ne these
spaces in the wider context of a generic compact metric space, as the concept of weak
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derivative is no longer needed in the alternative de�nition.
Moreover, in the last section I present some results (see [12]) on Lipschitz regularity for
minima of some functionals in the calculus of variations, a �eld I got a deeper interest
in, since collaborating to [17].
We prove that for suitable Young functions ϕ and ψ with the ∆2 growth condition and
autonomous functionals

F =

ˆ
f(Du) dx

with ψ-growth, assuming W 1,ϕ-quasiconvexity of f = f(z) only asymptotically is
enough to prove local Lipschitz regularity for minima u on a dense subset of the do-
main.
To be more precise, we begin by making use of asymptotic quasiconvexity to prove
partial C1,α regularity of minima in points where the gradient Du of the minimum is
large enough, say larger than M , adapting arguments used for globally quasiconvex
lagrangians.
As a corollary, we infer that minima are locally lipschitz on a dense subset of points.
The idea behind it is that any x0 such that all points in a neighbourhood of x0 are not
points of local holder regularity for Du, is such that Du is essentially bounded by M
around x0, hence u is locally Lipschitz around x0.

Chapters 4 and 5 are dedicated to the spaces BMO and VMO and their respective
subcones BLO and V LO, concluding the text with discussion of what are arguably
the most natural "children" of the very large space B discussed at the beginning (on
the contrary, they were introduced decades earlier than B was introduced).
More precisely, the fourth chapter regards the BMO and BLO which are function
classes de�ned by imposing a bound on two di�erent kinds of oscillation, the so called
mean oscillation of f over I, i.e.

1

|I|

ˆ
I

∣∣∣∣f(x)− 1

|I|

ˆ
I

f(y) dy

∣∣∣∣ dx.
and the so called lower oscillation of f over I, i.e.

1

|I|

ˆ
I

f(x) dx− inf
x∈I

f(x)

respectively, where I is an interval if we are dealing with functions of a single variable,
while it is a hypercube with sides parallel to the coordinate hyperplanes if we wish to
de�ne the function class in Rn.
In an introductory section, we present many properties of BMO and its subcone BLO
and explore the relationship between them and among them and the Muckenhoupt
function classes Ap.
Then, we address the problem of determining a distance formula for functions in BMO
from the subspace L∞ of essentially bounded functions, solved by Garnett and Jones
in 1978 in their paper [74], and, subsequently, my transposition of their result to BLO
in [14].
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In the section that follows, I introduce a new equivalent norm in BLO, inspired by
some characterizations of BLO by Coifman and Rochberg in 1980 (see [51]), that is
much more natural when addressing the aforementioned distance problem. This sec-
tion contains results not yet submitted for publishing.
We then discuss the behaviour of BLO functions with respect to truncation.
As the norm on BLO is de�ned by means of oscillation, we may expect it to have
strange behaviour with respect to truncation, which is a procedure acting on the size
of the function.
That is exactly what happens: we show that bounded functions, functions that can be
BLO-approximated by their truncations and functions that can be BLO-approximated
by bounded functions are three completely di�erent concepts, forming subspaces

L∞, T, L∞
BLO

in strict consecutive inclusion

L∞ ( T ( L∞
BLO

.

Examples are provided in the section. This section also contains original results that
have not been submitted yet for publishing.
In the last section of Chapter 4 the characterizazion

BMO = BLO −BLO,

where of course − stands for Minkowski set subtraction here, is presented. It was
obtained by Coifman and Rochberg in [51].

The last chapter introduces and studies VMO and V LO. They are subsets of BMO
and BLO respectively, de�ned by the condition that the mean (lower, respectively)
oscillation of the function tends uniformly to 0 as the measure of the interval over
which it is computed goes to 0.
One of the results contained in [120] by K.M. Perfekt is that (BMO, VMO) is an
(o,O)-type structure.
A result by Donald Sarason from 1975 (see [130]) is then presented, regarding an
equivalent formula for the BMO-distance of a function from VMO, followed by my
trasposition of this result to V LO, contained in [14].
To draw parallelism between the couple (BMO,BLO) and (VMO, V LO) a result by
M.B. Korey (see [108]) is then stated, showing that

VMO = V LO − V LO,

in analogy to the abovementioned result from [51].
Lastly, in the second to �nal section we display a result from Leibov showing that for
functions in VMO a special interval I∗ can be found such that the mean oscillation of
f over I∗ is the absolute largest, i.e.

 
I∗
|f − fI∗| dt ≥

 
I

|f − fI | dt, ∀I,

providing example that this is not at all true for the generic BMO function.
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The result is presented together with some key insights that allowed its proof and some
of the consequences Leibov obtained from this result, which was solely a lemma in its
paper [110] from 1990.
This result is then generalized, in the last section, to BLO and V LO, discussing how
the approach of Leibov could not exactly apply and that, in a way di�erent from
Leibov result, the existence of this peculiar interval is not logically equivalent to the
V LO property.
This is the content of paper [15] by me and Giacomo Ascione: we specify that for
simplicity of notation and visual interpretation of the result, we restrict the attention
to n = 1, as the argument would otherwise become inherently geometrical, considering
all possible cases for the symmetric di�erence of two cubes in Rn.

To summarize, there are numerous ways of interpreting formally the concept of
oscillation and those give rise to many di�erent function spaces in which the focus is
not on the size of the function but on the variability of its values.
Here we present a collection of result stemming from a functional analytic approach
(with the exceptions of a few applicative results) to studying and understanding some
examples of such function spaces, mostly �tting into the often recurring framework by
K.M. Perfekt which we will properly introduce in Chapter 2 and in large part �tting
under the wide cape of B functions, as de�ned in Chapter 1.
I feel that the �l rouge for this text is the sometimes surprising and counterintuitive
nature of function spaces in which the norm is not interpreted as a measure of size
but of variability of the function values, in a way that cannot be trivially reduced
to commenting the size of the derivatives, as we will explore many contexts in which
derivatives fail to exist in the classical and even in the weak Sobolev or distributional
sense. On the contrary, we will put many di�erent interpretations of the concept of
"oscillation" at the center of everything.
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Chapter 1

The Bourgain-Brezis-Mironescu Space

In this chapter, we de�ne and discuss a very large functional space that contains all of
the other function spaces de�ned by means of oscillation discussed in this thesis. This
space was introduced in 2015 by Bourgain, Brezis, and Mironescu in [32]. They had

noticed that for functions in the fractional Sobolev space W
1
p
,p, p ≥ 1 (see page 23 for

a de�nition) or in VMO (see page 109 for a de�nition), if the range of the function is
discrete, say f : Ω → Z then the function is almost everywhere equal to a constant.
They wanted to identify a wider space X of functions containing all of these function
spaces and such that the above property holds for functions in X having discrete range,
i.e. they are necessarily almost everywhere equal to a constant function.
They found that a su�cient condition for this is to have a bound on a form of mean
oscillation, which we are about to de�ne.
To do so, it is more convenient to introduce new notation gradually. Throughout this
chapter, Qε(a) will denote a hypercube with sides parallel to the coordinate hyper-
planes, whose sidelength is ε and whose center is a. For any function that is summable
on such a cube Q, fQ will denote its integral average over Q and

M(f,Q) =

 
Q

|f − fQ|

will denote what we will call the mean oscillation of f over Q.
For any �xed ε ∈ (0, 1), we will denote by Gε any family of pairwise disjoint cubes of
type Qε(a) such that the cardinality of the family does not exceed ε1−n.We then de�ne

[f ]ε := εn−1 sup
Gε

∑
Qε∈Gε

M(f,Qε)

and �nally we can de�ne the space B as the space of functions such that

[f ]B = sup
0<ε<1

[f ]ε < +∞.

E�ectively, we are asking that the sums of mean oscillations over families of cubes
whose sidelenght is ε and whose collective measure is not larger than ε are bounded
whatever the value of ε ∈ (0, 1).
Associating [f ]B to each f in B induces a seminorm, which is null on almost everywhere

1
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constant functions. To obtain a normed space, which can then be proved to be a Banach
space, we can either consider B modulo almost everywhere constant functions, or add
another seminorm to [f ]B, like the value of |f | at some �xed point in Ω.
The space B clearly contains (and is inspired by) the space BMO of functions of
bounded mean oscillation. Moreover, it can be proven the two function spaces coincide
if and only if we are considering functions of a single variable, otherwise we have strict
inclusion.
With some e�ort, starting from the notorious Poincarè inequality and its generalization
to BV functions or functions in fractionary Sobolev spaces, one can also prove that B

contains W
1
p
,p (see the much more general De�nition 2.5) for any p and BV (for the

de�nition and properties of BV , the space of functions of bounded variation, see [8]).
An important subspace of B is the space

B0 = {f ∈ B : [f ] := lim sup
ε→0+

[f ]ε = 0}.

It was shown very recently in [59] that the couple of spaces (B,B0) �ts into a framework
for describing couples of functional Banach spaces introduced by K.M. Perfekt (see for
example [120] and page 10 of this text) and many interesting functional properties of
B0 with respect to B can be deduced from this, for example:

1. (B0)∗∗ = B and

2. for any other space E such that B = E∗, E is isometrically isomorphic to (B0)∗.

3. The distance
dB(f,B0) = inf

g∈B0

[f − g]B

induced by the [·]B seminorm of a generic function in B from the subspace B0

is equivalent to the quantity [f ], i.e. whenever [f ] is not 0, it can be reasonably
interpreted as the distance of f from the subspace of B where [·] = 0.

In particular, in [59], the authors proved the following result obtaining atomic decom-
position for the predual of B (compare with the result at page 22).

Theorem 1.1 (D'Onofrio, Greco, Perfekt, Sbordone, Schiattarella, 2020, [59]). Con-
sider the Brezis-Bourgain-Mironescu space B([0, 1]n) for functions de�ned on the unit
hypercube of Rn. Let ϕ ∈ B∗. Then for each natural number r there is a positive real
number εr ∈ (0, 1), a family Gεr of disjoint hypercubes of sidelength εr and a summable
function gr satisfying:

1. |Fr| ≤ ε1−n
r

2. supp(gr) ⊆
⋃
Gεr

3. |gr|χQ ≤ εn−1
r

1
|Q| for every cube Q ∈ Gεr

4.
´
Q
gr = 0 for every cube Q ∈ Gεr
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such that ϕ can be decomposed as

ϕ =
∑
r

λrgr

for a suitable sequence {λr}r∈N ∈ `1(R).
The action of f ∈ B on ϕ is then the following

f(ϕ) =
∑
r

λr

ˆ
fgr.

Moreover, the quantity

inf
∑
r

|λr|

where the in�mum is taken over all such representations of ϕ is equivalent to ‖ϕ‖B∗.

The space B can be continuously embedded in the Lorentz/Marcinkiewicz space
L

n
n−1

,∞ of functions f such that

sup
t>0

t
n−1
n

 
[0,t]

f ∗(s) ds < +∞

but B cannot be embedded in the smaller Lebesgue space L
n
n−1 .

On the other hand, for the characteristic function χE of a measurable set E, the
following inequality holds∥∥∥∥∥χE −

 
Q

χE

∥∥∥∥∥
L

n
n−1 (Q)

≤ c(n)‖χE‖B.

On the other hand it is also trivial to notice that∥∥∥∥∥χE −
 
Q

χE

∥∥∥∥∥
L

n
n−1 (Q)

≤ 2

and we can deduce ∥∥∥∥∥χE −
 
Q

χE

∥∥∥∥∥
L

n
n−1 (Q)

≤ cP (E,Q)

from the known isoperimetric inequality, concluding∥∥∥∥∥χE −
 
Q

χE

∥∥∥∥∥
L

n
n−1 (Q)

≤ cmin{1, P (E,Q)}.

Motivated by these two inequalities estimating
∥∥∥χE − ffl

Q
χE

∥∥∥
L

n
n−1 (Q)

one could ask if

there is some kind of relation between ‖χE‖B and min{1, P (E,Q)}. To address this
matter, it is convenient to introduce another quantity that is inspired by the seminorm
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on B but has the advantage of isotropy:

Iε(f) := εn−1 sup
Fε

∑
Q′∈Fε

 
Q′

∣∣∣∣f(x)−
 
Q′
f

∣∣∣∣ dx
where Fε is a collection of hypercubes of sidelength ε with arbitrary orientation (i.e.
not necessarily with sides parallel to the coordinate hyperplanes) and |Fε| < ε1−n.
In [7], the authors proved

Theorem 1.2 (Ambrosio, Bourgain, Brezis, Figalli, 2016, [7]). For every measurable
set E,

lim
ε→0

Iε(χE) =
1

2
min{1, P (E)}

where P (E) =∞ if E is not a set of �nite perimeter.

The two quantities Iε(f) and [f ]ε are not at all uncorrelated. As a matter of fact,

the following two inequalities hold for any function f ∈ L1(Q) and ε ∈
(

0, n−
1
2

)
:

[f ]ε ≤ Iε(f) ≤ [f ]√nε.

Moreover, something more general than

lim
ε→0

εn−1 sup
Fε

∑
Q′∈Fε

 
Q′

∣∣∣∣χE(x)−
 
Q′
χE

∣∣∣∣ dx =
1

2
min{1, P (E)}

holds if we replace the condition on the cardinality of Fε with a weaker condition. As
a matter of fact, it can be proven that for every integer M , one has

lim
ε→0

εn−1 sup
FM,ε

∑
Q′∈FM,ε

 
Q′

∣∣∣∣χE(x)−
 
Q′
χE

∣∣∣∣ dx =
1

2
min{M,P (E)}

where FM,ε is a family of arbitrarily oriented hypercubes of sidelength ε whose cardi-
nality is not larger than Mε1−n.
In particular,

lim
ε→0

εn−1 sup
F∞,ε

∑
Q′∈F∞,ε

 
Q′

∣∣∣∣χE(x)−
 
Q′
χE

∣∣∣∣ dx =
P (E)

2

whereF∞,ε is an arbitrarily large family of arbitrarily oriented hypercubes of sidelength
ε.
Even more than that: upon de�ning

Kε(f) = εn−1 sup
F∞,ε

∑
Q′∈F∞,ε

 
Q′

∣∣∣∣f(x)−
 
Q′
f

∣∣∣∣ dx
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the previous result can be extended to

lim
ε→0

Kε(f) =
1

2
|Df |(Rn)

for every function of bounded variation with values in Z.
The authors in [7] conjectured that for functions in SBV , i.e. functions of bounded
variation that have no Cantor part Dcf , the following equality would hold

lim
ε→0

Kε(f) =
1

4
|Daf |(Rn) +

1

2
|Dsf |(|Rn).

This conjecture was proven true by Fusco, Moscariello and Sbordone in [71], with the
following theorem

Theorem 1.3 (Fusco, Moscariello, Sbordone, 2016, [71]). Let f ∈ SBVloc(Rn). Then

lim
ε→0

Kε(f) =
1

4
|Daf |(Rn) +

1

2
|Dsf |(|Rn).

and its corollary

Corollary 1.4. Let f ∈ W 1,1
loc (Rn). Then

lim
ε→0

Kε(f) =
1

4
|Daf |(Rn).

This formula does not hold for a generic BV function, and it is possible that lim
ε→0

Kε(f)

does not exist as Kε(f) may tend to oscillate between

1

4
|Df |(Rn) and

1

2
|Df |(Rn)

as ε→ 0.
As a matter of fact

Theorem 1.5. Let f ∈ L1
loc(Rn). Then:

1

4
|Df |(Rn) ≤ lim inf

ε→0
Kε(f) ≤ lim sup

ε→0
Kε(f) ≤ 1

2
|Df |(Rn)

and f ∈ BVloc(Rn) if and only if lim inf
ε→0

Kε(f) <∞.

The space BV could then be de�ned as the space of functions such that lim inf
ε→0

Kε(f)

is bounded but we remark here that the corresponding smaller space of functions such
that

lim sup
ε→0

Kε(f) = 0

is trivial, as it only contains constant functions.
Similarly, we can de�ne

Kε(p, f) := εn−p sup
F∞,ε

∑
Q′∈F∞,ε

 
Q′

∣∣∣∣f(x)−
 
Q′
f

∣∣∣∣p dx
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for any p > 1.
In [72], the same authors from [71] proved the following theorem

Theorem 1.6. For any function in W 1,p
loc (Rn), p ∈ [1,∞),

lim
ε→0

Kε(p, f) = γ

ˆ
Rn
|Df |p dx

where

γ(n, p) := max
ν∈Sn−1

ˆ
[− 1

2
, 1
2 ]
n
|x · ν|p dx

Moreover, it was proven that for any function in Lploc(Rn) and p strictly larger than 1,

|Df | ∈ Lploc(R
n) ⇐⇒ lim inf

ε→0
Kε(p, f) <∞

which is a very peculiar characterization ofW 1,p as the right hand side of the equivalence
sign does not involve weak derivatives whatsoever. Sadly, as we stated before, this last
assertion does not hold for p = 1, as �niteness of the in�mum limit of Kε(f) = Kε(1, f)
is a characterization of BV and not of W 1,1.



Chapter 2

The space Lip and related function

spaces

2.1 De�nition of the space of Lipschitz functions on

a compact metric space
Let (K, ρ) be a compact metric space and f : K → R a function de�ned on it. Let

B(K, ρ) (or simply B(K), if no ambiguity arises) be the set of all balls in (K, ρ). We
will use the notation BK,ρ

r (x0) to denote a ball of radius r, centered at x0 in the metric
space (K, ρ), omitting K and ρ from the notation whenever they are understood from
the context.
We de�ne the oscillation ωf as a function on the set B(K):

ωf : B ∈ B(K) 7→ sup
x,y∈B

|f(x)− f(y)| ∈ R.

For any �xed point x0 ∈ K and function f : K → R, the function ωf (Br(x0)) is
decreasing with r and so we can de�ne

ωf (x0) := lim
r→0+

ωf (Br(x0)). (2.1)

Oscillation is an useful concept as it allows to quantify exactly many abstract concepts
and unify a variety of di�erent de�nitions. To make the simplest example, a function
f : K → R is continuous at x0 if and only if ωf (x0) = 0 and continuous in K if and only
if ωf ≡ 0 but wherever a function f is not continuous, ωf is a quantitative measure of
the discontinuity at that point. For example, for the single variable real functions

f(x) =

{
0 if x = 0

sin(1/x) if x ∈ (0, 1]
and g(x) = χ[ 1

2
,0](x)

de�ned from [0, 1] to R we have ωf (0) = 2 and ωg(
1
2
) = 1.

Classically, a function f is said to be Lipschitz in K with Lipschitz constant L if

sup
x,y∈K
x 6=y

|f(x)− f(y)|
ρ(x, y)

= L < +∞

7
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Of course, though, in terms of oscillation, a function is Lipschitz if and only if

ωf (Br(x))

2r
≤ L′ <∞, ∀x ∈ K, ∀r > 0

(but the best constant L′ is not necessarily equal to the Lipschitz constant L as de�ned
earlier).
Any Lipschitz function f is of course uniformly continuous and bounded: the di�erence
between its maximum and minimum on K is at most L · diam(K), where L is its
Lipschitz constant and diam(K) denotes the diameter of the compact set K. Even
more so, it is possible to prove Lipschitz functions are absolutely continuous.
Lipschitzianity is a global property, but a local analogue can be given in the following
way: we will say f is locally Lipschitz at x ∈ K if there exists a neighbourhood Ux of
x in K such that f is Lipschitz in Ux.
The space Lip(K, ρ) consisting of all Lipschitz functions de�ned from the compact
metric space (K, ρ) is a vector space that, when normed with the norm

‖f‖Lip = sup
x,y∈K
x 6=y

|f(x)− f(y)|
ρ(x, y)

+ ‖f‖∞

or, equivalently, with the norm

‖f‖1 = max

 sup
x,y∈K
x 6=y

|f(x)− f(y)|
ρ(x, y)

, ‖f‖∞


is a Banach Space.
Whenever the compact metric space is chosen as (K, d), where K is a compact subset
of an Euclidean space Rn and d is the Euclidean distance, the choice of the metric
d will be often omitted from the notation and we have even higher knowledge of the
properties Lipschitz functions: the following is a classical theorem by Rademacher,
implying the Lipschitz condition is relevant to the existence of derivatives.

Theorem 2.1 (Rademacher). Let f : U ⊆ Rn → Rm be a Lipschitz function with
Lipschitz constant L. Then the set Di�(f) ⊆ U consisting of points in which f is
di�erentiable has full measure in U , i.e. is such that

|U \ Di�(f)| = 0

and the gradient Df , de�ned almost everywhere, is essentially bounded by L.

From this theorem, one can prove that the space of Lipschitz functions Lip(K),
where K ⊆ Rn is nothing but the Sobolev space W 1,∞(K).
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2.2 The spaces Lipα and lipα of Hölder functions

With the same notation as for the previous section and for any α ∈ (0, 1] we now
introduce the Hölder spaces

Lipα(K, ρ) :=

{
f : [f ]α := sup

x,y∈K

|f(x)− f(y)|
ρα(x, y)

<∞
}
. (2.2)

with the norm
‖f‖α = max {[f ]α, ‖f‖∞}

We remark that every Hölder space can be seen as a Lipschitz space as for any
metric ρ and for any α ∈ (0, 1] we have that ρα is still a metric and of course
Lipα(K, ρ) = Lip(K, ρα). Of course any Lipschitz space is also a Hölder space with
choice of α = 1, but some Lipschitz spaces cannot be expressed as Hölder spaces for
any choice of α strictly smaller than 1. This is the case, for example, for any compact
metric space that is compact subset of an Euclidean space with Euclidean distance.
A relevant subspace of Lip(K, ρ) is the subspace

lip(K, ρ) :=

{
f ∈ Lip(K, ρ) : lim sup

ρ(x,y)→0

|f(x)− f(y)|
ρ(x, y)

= 0

}
. (2.3)

and we can also de�ne

lipα(K, ρ) :=

{
f ∈ Lipα(K, ρ) : lim sup

ρ(x,y)→0

|f(x)− f(y)|
ρα(x, y)

= 0

}
. (2.4)

For some choices of a metric ρ, it may happen that lip(K, ρ) is trivial, i.e. it only
contains constant functions. This happens, again, for any compact metric space that is
compact and connected subset of an Euclidean space with Euclidean distance. However,
whenever α < 1, the following proposition (see Example 3.8.3 of [50]) shows lipα(K, ρ)
is never, in this sense, trivial.

Proposition 2.2. For any compact metric space (K, ρ) and 0 < α < β ≤ 1 we have

Lipβ(K, ρ) ⊆ lipα(K, ρ)

Whatever the compact metric space (K, ρ), the space Lipβ(K, ρ) will always contain
at least one family of functions that is not constant, i.e. for any choice of x0 in K the
distance functions:

x 7→ ρβ(x0, x).

Also α-Hölder functions for α < 1 are necessarily uniformly continuous and bounded
but, in the Euclidean case, they are not necessarily di�erentiabile. Extending an anal-
ogous one-dimensional result from De Leeuw, in [56], Wulbert proved the following
theorem, isolating an important functional relationship between lipα(K) and Lipα(K),
with K being a compact subset of some Rn, provided α < 1.

Theorem 2.3 (Wulbert, 1974, [139]). Let K be a compact subset of Rn and α ∈ (0, 1).
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Then
(lipα(K))∗∗ ' Lipα(K),

i.e. there is an isometry of normed spaces between the two.

In this section we will reach a similar conclusion in a wider setting, making use of
the concept of o�O structures, which we now de�ne.

De�nition 2.1 (o�O structures, K.M. Perfekt, 2013, [120]). We say that a pair of
Banach spaces (E0, E), where E0 is a subspace of E, form a o�O structure if there
exist

� a re�exive separable Banach space X;

� a Banach space Y ;

� a family L of bounded linear operators from X to Y ;

� a topology τ on L that is σ-compact locally compact1 Hausdor� topology and
such that the maps Tx : L → Y given by TxL = Lx for any x ∈ X are continuous;

such that E is given by

E =

{
x ∈ X : sup

L∈L
‖Lx‖Y < +∞

}
,

it holds ‖x‖E = sup
L∈L
‖Lx‖Y and E0 is given by

E0 =

{
x ∈ E : lim sup

L→∞
‖Lx‖Y = 0

}
where L→∞ is intended in the Alexandrov one point compacti�cation2 of (L, τ).
Moreover, we are interested in o�O pairs (E0, E) satisfying

assumption AP. For any x ∈ E there exists a sequence {xn}n∈N ⊆ E0 such that
xn ⇀ x in X and supn∈N ‖xn‖E ≤ ‖x‖E.

Let us also give the de�nition of M -ideal.

De�nition 2.2 (Harmand, 2006, [87]). Let X be a Banach space. A linear projection
P is called an L-projection if for any x ∈ X

‖x‖X = ‖Px‖X + ‖x− Px‖X .

A closed subspace J ⊆ X is called an L-summand if it is the range of an L-projection.
Given a subspace J ⊆ X, the subspace J⊥ = {x∗ ∈ X∗ : x∗(y) = 0 ∀y ∈ J} of X∗ is

1σ-compactness means that the topological space is union of a sequence of compact sets and local
compactness means that any point of the topological space has compact neighbourhoods.

2For any topological space T , its Alexandrov compacti�cation is the set T ∪ {∞} with topology
uniquely de�ned by the condition that any point in T keeps its base of neighbourhoods and a base of
neighbourhoods for ∞ is given by the complements in T ∪ {∞} of compact sets of T .
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called annihilator of J .
A closed subspace J ⊆ X is called M -ideal in X if its annihilator J⊥ is an L-summand
of X∗.

o�O structures are very rich in functional informations about the two Banach spaces
they involve. As a matter of fact, K. M. Perfekt proved the following properties of this
structure.

Theorem 2.4 (K.M. Perfekt, 2013, [120]). Under Assumption AP, E∗∗0 is isomet-
rically isomorphic to E.
It can also be proved E∗0 is the strongly unique predual of E, that is any other Ba-
nach space that has dual space isometric to E is itself isometric to E∗0 .
Also, E0 is an M-ideal in E and the following distance formula holds:

dist(x,E0)E = lim sup
L→∞

‖Lx‖Y .

In [16] we identi�ed necessary and su�cient conditions to prove o�O structure for
the pair (lip(K, ρ), Lip(K, ρ)). One of these conditions is what we called Assumption
H.

De�nition 2.3. Let (K, ρ) be any compact metric space. We will say that (K, ρ)
satis�es Assumption H if, for any f ∈ Lip(K, ρ), A a �nite subset of K and
C > 1 real constant, there exists a function g ∈ lip(K, ρ) such that g|A ≡ f |A and
‖g‖1 ≤ C‖f‖1.

The above assumption allows the proof of an approximation property in Lip(K, ρ).

Theorem 2.5 (Angrisani, Ascione, D'Onofrio, Manzo, 2019, [16]). Let us suppose
Assumption H holds and consider f ∈ Lip(K, ρ).
Then, there is a sequence {fn}n∈N ⊂ lip(K, ρ) pointwise converging to f and such that
supn∈N ‖fn‖1 ≤ ‖f‖1.

Proof. Since K is totally bounded, it can be covered by a �nite number of balls of
radius 1, so let us call A0 the set of centers of these balls. We will now recursively
de�ne a sequence of sets {An}n∈N. Suppose now that we have de�ned the set An and
consider the set Kn+1 := K\

⋃
x∈An B2−n−1(x). Since Kn+1 is a compact and thus

totally bounded subset of K, it can be covered by balls of radius 2−n−1, so if we denote
by Bn+1 the corresponding set of centers, we can take An+1 := An∪Bn+1. This ensures
that every point of K has distance less that 2−n from the points in An. We also take
Cn := 1 + 1

n+1
.

Let gn be the function from Assumption H obtained by considering A = An and
C = Cn and de�ne fn := gn

Cn
∈ lip(K, ρ). We have that ‖fn‖α ≤ ‖f‖α, so the only

thing that's left to show is the pointwise convergence, which implies weak convergence
in X. We notice that, by de�nition of fn, it is enough to show that gn → f pointwise.
If we de�ne A∞ :=

⋃
n∈NAn we see that A∞ is dense and for all x ∈ A∞ the sequence

gn(x) eventually becomes constantly equal to f(x). By using the Lipschitz property
we can easily extend the pointwise convergence to the whole K.
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Another assumption needed to reach the main result of this section is a purely
geometrical hypothesis that is needed on the metric space.

De�nition 2.4. We say that a metric space (K, ρ) has the doubling condition if there
exists a positive integer C such that any ball B can be covered by at most C balls
having half the radius.
A Borel measure µ on a metric space (K, ρ) is said to have the doubling condition if

(i) there exist two balls B1, B2 such that µ(B1) > 0 and µ(B2) < +∞;

(ii) there exists a constant C > 0 such that

µ(B2r(x)) ≤ Cµ(Br(x)) (2.5)

for all x ∈ K and all r > 0. The space (K, ρ, µ) is said to be a doubling
metric measure space. A measure µ that satis�es (i) is said to be non-degenerate.
Condition (ii) is called doubling condition and the constant C is called doubling
constant.

First of all, let us observe that the role of the number 2 in (2.5) is easily replaced
by any c > 1. Indeed, if we �x a constant c > 1, one can show that a non-degenerate
measure µ is a doubling measure on (K, ρ) if and only if there exists a constant Cc > 0
such that

µ(Bcr(x)) ≤ Ccµ(Br(x)) (2.6)

for all x ∈ K and all r > 0.
This property implies that any doubling measure µ is fully supported. Indeed, let us
consider a generic x ∈ K and r > 0. Let us suppose by contradiction that µ(Br(x)) = 0.
Then B1 is not contained in Br(x). However, there exists a c > 1 such that B1 ⊆ Bcr(x),
but by doubling condition (2.6) we have µ(Bcr(x)) = 0, concluding the proof.
Moreover, if (K, ρ, µ) is a compact doubling metric measure space, then µ(K) < +∞.
Indeed, if we consider x ∈ K and r > 0 such that B2 = Br(x), since K is compact,
there exists a constant c ≥ 1 such that Bcr(x) = K, concluding that µ(Bcr(x)) < +∞
by doubling condition (2.6).
It is easy to see that if a measure is doubling then the underlying metric space must
be doubling [52], while the converse is not true in general. However in [111] it is shown
that every complete (and in particular compact) doubling metric space can be given a
doubling measure.
We will also work with compact metric spaces of the form (K, ρα) for some metric ρ.
First of all, let us show the following easy lemma.

Lemma 2.6. Fix α ∈ (0, 1). If (K, ρ) is a compact doubling metric space then (K, ρα)
is a doubling metric space. Moreover, any doubling measure µ on (K, ρ) is also doubling
on (K, ρα).

Proof. First of all, since (K, ρ) is a doubling metric space, then there exists a doubling
measure µ on (K, ρ). Using the doubling condition in the form (2.6) for c = 2α and
setting C2α = Cα we have

µ(B(2r)α(x)) ≤ Cαµ(Brα(x))
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hence µ is a doubling measure on (K, ρα). Finally, since we have a doubling measure
on (K, ρα), (K, ρα) is a doubling metric space.

Moreover, let us observe, as a consequence of [81, Lemma 4.7], the following lemma.

Lemma 2.7. Let (K, ρ) be a compact doubling metric space and µ a doubling measure
on it. Then there exist two constants C,Q > 0 such that

µ(Br(x)) ≥ CrQ.

In the following we will need the notion of Besov spaces on metric measure spaces.
From now on, in this section, let us �x a doubling compact metric space (K, ρ) and a
doubling measure µ on K.

De�nition 2.5 (Gogatishvili, Koskela, Shanmugalingam, 2010, [78]). The Besov
space of parameters s ∈ (0, 1) and p, q ∈ [1,∞) on (K, ρ, µ) is the space

Bs
p,q(K, ρ, µ) =

{
f : K → R : f ∈ Lp(K,µ) and

[f ]Bs
p,q

:=

 +∞ˆ

0

dr

r

[ˆ
K

 
Br(x)

|f(x)− f(y)|p

rsp
dµ(y) dµ(x)

]q/p1/q

< +∞
}
.

It is a Banach space when endowed with the norm

‖f‖Bs
p,q

= ‖f‖Lp + [f ]Bs
p,q
.

The space Bs
p,q is obviously separable as it embeds continuously as a subspace of

Lp(K, ρ) which is separable because Lp spaces on separable metric measure spaces are
separable.
With the additional assumption that p = q > 2, a Clarkson type inequality (see
[34],[79]) can be proved, in the sense that follows: as it is more convenient for technical
reasons, introduce the equivalent norm

‖f‖′Bs
p,q

=
[
‖f‖pLp + ([f ]Bs

p,q
)p
]1/p

and then, in a way similar to how it is done in Lp spaces, prove:∥∥∥∥f + g

2

∥∥∥∥p
Bs
p,p

+

∥∥∥∥f − g2

∥∥∥∥p
Bs
p,p

≤ 1

2

[
‖f‖pBs

p,p
+ ‖g‖pBs

p,p

]
This allows to prove that Bs

p,p is uniformly convex, that is for every ε > 0 there
exists δ > 0 such that:

‖f‖Bs
p,p
, ‖g‖Bs

p,p
= 1 and

∥∥∥∥f + g

2

∥∥∥∥
Bs
p,p

> 1− δ =⇒ ‖f − g‖Bs
p,p
< ε.

Recalling that a theorem by Milman and Pettis shows that every uniformly convex
Banach space is re�exive (see for instance [34]), we know that Bs

p,p is a re�exive and
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separable Banach space.
In [78] it has been shown that the seminorm [f ]Bs

p,p
is equivalent to the semi-norm

[f ]Bs
p

=

ˆ
K

ˆ
K

|f(x)− f(y)|p

ρ(x, y)αpµ(Bρ(x,y)(x))
dµ(x)dµ(y).

In particular, if K = Rn, ρ is the Euclidean distance and µ is the Lebesgue measure,
then [·]Bs

p
is the semi-norm characterizing the fractional Sobolev space W s,p(Rn), as

used in [120].
Let us give a de�nition of another interesting functional space on metric measure spaces.

De�nition 2.6 (Karak, 2019, [102]). Let f ∈ Lp(K,µ). Then we say that g is a
Hajªasz s-gradient if

|f(x)− f(y)| ≤ ρs(x, y)|g(x) + g(y)|.

We denote withDs(f) the set of all Hajªasz gradients of f and withDp
s(f) the set of the

Hajªasz gradients of f that are in Lp(K,µ). We say that f belongs to the fractional
Hajªasz-Sobolev space Hs,p(K, ρ, µ) if Dp

s(f) 6= ∅. In particular Hs,p(K, ρ, µ) is a
Banach space when endowed with the norm

‖f‖Hs,p := ‖f‖Lp + [f ]Hs,p

where
[f ]Hs,p := inf

g∈Dps(f)
‖g‖Lp

Let us �rst observe that the fractional Hajªasz-Sobolev spaceHs,p(K, ρ, µ) coincides
with the Hajªasz-Sobolev space H1,p(K, ρs, µ). Hence, in particular, a Morrey-type
embedding theorem can be shown, as a direct consequence of [81, Theorem 8.7].

Theorem 2.8. Let (K, ρ, µ) be a compact metric measure space such that
µ(Br(x)) ≥ crQ for some constants c > 0, Q ≥ 0 and for all x ∈ K, r > 0, and suppose
p > Q

s
. Then there exists a constant C such that for any function u ∈ Hs,p(K, ρ, µ)

and any g ∈ Dp
s(u) it holds

|u(x)− u(y)| ≤ Cd(x, y)s−
Q
p ‖g‖Lp , ∀x, y ∈ K.

Other embedding theorems can be shown, also for more general spaces (see, for
instance, [102]).
From this punctual estimate we deduce that if u ∈ Hs,p(K, ρ, µ) for p > Q

s
then u

is
(
s− Q

p

)
-Hölder continuous. In Lemma 2.7 we have shown that doubling measures

satisfy the previous condition for some Q ≥ 0. From now on let Q be such a constant.
We have

Proposition 2.9. Let (K, ρ, µ) be a doubling compact metric measure space and p > Q
s
.

Then Hs,p(K, ρ, µ) embeds with continuity in L∞.

Proof. Let us denote with D = diam(K). Fix u ∈ Hs,p(K, ρ, µ), g ∈ Dp
s(u) and
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x, y ∈ K. Observe that, by using the previous punctual estimate,

|u(x)| ≤ |u(y)|+ |u(x)− u(y)|

≤ |u(y)|+ Cd(x, y)s−
Q
p ‖g‖Lp

≤ |u(y)|+ CDs−Q
p ‖g‖Lp .

By using the p-homogeneity and convexity of the function t 7→ tp for t > 0 we have

|u(x)|p ≤ C1(|u(y)|p + CpDps−Q ‖g‖pLp)

and then integrating in dµ(y), setting M = µ(K), we have

|u(x)|p ≤ C1

M
(‖u‖pLp +MCpDps−Q ‖g‖pLp).

Now, by using the fact that there exists a constant Cp such that

(ap + bp)
1
p ≤ Cp(a+ b)

for any a, b > 0, we have

|u(x)| ≤ C2(‖u‖Lp + ‖g‖Lp).

Now let us take the in�mum over Dp
s(u) to achieve

|u(x)| ≤ C2 ‖u‖Hs,p ,

and then, taking the maximum on K, we have

‖u‖L∞ ≤ C2 ‖u‖Hs,p .

Concerning the relation between Bs
p,p and Hs,p, one can show the following embed-

ding theorem as a direct consequence of [78, Lemma 6.1].

Theorem 2.10. Let (K, ρ, µ) be a doubling compact metric measure space. Then
Bs

p,p(K, ρ, µ) embeds with continuity in Hs,p(K, ρ, µ).

Actually, the statement of [78, Lemma 6.1] only refers to the inclusion ofBs
p,p(K, ρ, µ)

in Hs,p(K, ρ, µ). However, in the proof, it is shown that there exists a constant C > 0,
depending only on the doubling constant of µ, such that for any u ∈ Bs

p,p(K, ρ, µ)
there exists a g ∈ Dp

s(u) such that [u]Hs,p ≤ ‖g‖Lp ≤ C[u]Bs
p,p
. Summing on both sides

‖u‖Lp one has the continuous embedding.
As a corollary of the previous two embedding theorems we have the following

Corollary 2.11. Let (K, ρ, µ) be a doubling compact metric measure space and p > Q
s
.

Then Bs
p,p(K, ρ, µ) embeds continuously in L∞.

Now we are ready to show the main result of the section.
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Theorem 2.12. Let (K, ρ, µ) be a doubling compact metric measure space. Then the
pair (lip(K, ρ), Lip(K, ρ)) exhibit a o�O structure if and only if Assumption H

holds, in which case we have the following consequences:

� (lip(K, ρ))∗∗ ' Lip(K, ρ) isometrically;

� for f ∈ Lip(K, ρ) the following distance formula holds:

dist
Lip(K,ρ)

(f, lip(K, ρ)) = lim sup
ρ(x,y)→0

|f(x)− f(y)|
ρ(x, y)

; (2.7)

� lip(K, ρ) is an M-ideal in Lip(K, ρ), hence

(Lip(K, ρ))∗ ' (lip(K, ρ))∗ ⊕1 (lip(K, ρ))⊥; (2.8)

� (lip(K, ρ))∗ is the strongly unique predual of Lip(K, ρ).

Proof. First of all we need a re�exive and separable Banach space X in which we can
embed Lip(K, ρ). Thus �x s ∈ (0, 1) and p > Q

s
and consider

X = Lip(K, ρ)
Bs
p,p
,

since we have shown thatBs
p,p is re�exive, separable and Lip(K, ρ) continuously embeds

in it, so the closure of Lip in Bs
p,p also has these properties and will be our X.

As Banach space Y let us choose R×R, endowed with the L∞ norm, i.e.

‖(x, y)‖R×R = max{|x|, |y|}.

Our family of operators will be the following:

L =

{
Lx,y,z : f ∈ X 7→

(
f(x)− f(y)

ρ(x, y)
,
ρ(x, y)

D
f(z)

)
∈ R2, x, y, z ∈ K, x 6= y

}
.

It is clear that these operators are linear.
If we set V := K2\Diag(K2), we can give L the product topology of V ×K, where on
V we have the trace topology induced by the topology on K2. In the following we will
identify L with W := V ×K.
Since K is a compact metric space, it is σ-compact, locally compact, Hausdor� and
separable and so is also V . These properties easily transfer to L, being it a product
space. In particular an exhaustive sequence Kn of compact subsets of L is given by

Kn =

{
(x, y) ∈ K2 : ρ(x, y) ≥ 1

n

}
×K

hence taking the limit as L→∞ is equivalent to taking the limit as

ρ(x, y)→ 0.

Now we need to show the continuity of the maps Tf : L ∈ L 7→ L(f) ∈ R×R for
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f ∈ X. We notice that it is enough to prove this for f ∈ Lip(K, ρ), since we can use
a diagonal argument, combined with the boundedness of the operators themselves, to
extend this to the whole X.
This is easy because (xn, yn, zn)→ (x, y, z) as n goes to in�nity implies

ρ(xn, yn)→ ρ(x, y) and ρ(zn, z)→ 0,

so using the continuity of f and ρ we easily obtain

max

{∣∣∣∣f(xn)− f(yn)

ρ(xn, yn)
− f(x)− f(y)

ρ(x, y)

∣∣∣∣ , ∣∣∣∣ρ(xn, yn)

D
f(zn)− ρ(x, y)

D
f(z)

∣∣∣∣}→ 0

proving that Tf is continuous for any f ∈ Lip(K, ρ).
It is easy to observe that

sup
(x,y,z)∈W

‖Lx,y,zf‖R×R = sup
(x,y,z)∈W

max

{∣∣∣∣f(x)− f(y)

ρ(x, y)

∣∣∣∣ , ρ(x, y)

D
|f(z)|

}
= max{[f ]1, ‖f‖∞} = ‖f‖1 ,

while the o-structure for lip(K, ρ) follows from the inequality

|f(x)− f(y)|
ρ(x, y)

≤ ‖Lx,y,zf‖R×R ≤
|f(x)− f(y)|

ρ(x, y)
+
ρ(x, y)

D
‖f‖L∞ .

Concerning the continuity of Lx,y,z, let us recall, from Corollary 2.11, that there exists
a constant C such that ‖f‖Bs

p,p
≥ C ‖f‖L∞ . Hence we have

|f(x)− f(y)|
ρ(x, y) ‖f‖Bs

p,p

≤ 2

Cρ(x, y)

while
ρ(x, y)|f(z)|
D ‖f‖Bs

p,p

≤ ρ(x, y)

CD
,

thus Lx,y,z : X → R×R is a bounded linear operator.
Finally let us observe that we have shown that, supposed that Assumption H

holds, for any f ∈ Lip(K, ρ) there exists a sequence {fn}n∈N ⊂ lip(K, ρ) such that
fn → f point-wise and supn∈N ‖fn‖1 ≤ ‖f‖1, hence, by Banach-Alaoglu theorem, we
can extract a subsequence of fn that weakly converges to f in X, concluding the proof
of one implication.
Concerning the other implication, let us suppose that the o�O structure holds. Then
we know that (lip(K, ρ))∗∗ ' Lip(K, ρ) isometrically. However, in [82] it is shown that
such isometry is equivalent to Assumption H, concluding the proof.

The following proposition by Hanin allows to prove that all of the su�cient con-
ditions for exhibiting o�O structure are satis�ed by (lipα(K, ρ), Lipα(K, ρ)) provided
α < 1.

Proposition 2.13 (Hanin, 1994, [82]). Let (K, ρ) be a compact metric space, α ∈ (0, 1),
f ∈ Lipα(K), A a �nite subset of K and C > 1 a real constant. Then there exists a
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function g ∈ Lip1(K) such that g|A ≡ f |A and ‖g‖α ≤ C‖f‖α.

Corollary 2.14. For any α ∈ (0, 1) the pair

(lipα(K, ρ), Lipα(K, ρ))

exhibits an o�O structure.

Proof. By Proposition 2.13, Assumption H is satis�ed, hence the thesis.
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2.3 Atomic decomposition of the space of Borel Mea-

sures: an application to measure theory

Let (K, ρ) be a compact metric space and let us denote by M(K) the space of all
�nite signed Borel measures on K. Of course M(K) is a vector space and it is usually
normed with total variation, i.e.

ν 7→ |ν|(K) := ν+(K) + ν−(K).

However, we will be interested in a di�erent norm on M(K), which has the advantage
of being strictly related to the metric ρ and, as a matter of fact, we can even say it
extends it, in some sense. Of course K can be embedded as a set of M(K) by mapping
each point x of K to the Dirac measure δx concentrated at x. This norm we are about
to de�ne, called the Kantorovich-Rubinstein norm in honour of the mathematicians
that �rst thought of it, has the property that

‖δx − δy‖ρ = ρ(x, y)

hence, in the sense speci�ed above, extending the metric ρ from K to the set of �nite
signed Borel measures on K.
To de�ne it on M(K) we �rst have to de�ne it on a subspace, M0(K), which is the
space of all measures ν in M(K) such that ν(K) = 0. These measures are called
vanishing measures.
To any such a measure ν we associate the family Ψν of all non-negative measures
ψ ∈M(K ×K) such that for any Borel F ⊂ K the balance condition

ψ(K,F )− ψ(F,K) = ν(F ) = ν+(F )− ν−(F ) (2.9)

Remark 2.15. This balance condition has an interpretation in Optimal Transport The-
ory, as we can read Equation (2.9) to say that ψ is a transport plan from ν+ to ν−.
As a matter of fact, �nite non-negative Borel measures on K are the perfect math-
ematical object to describe (eventually degenerate, i.e. concentrated in null measure
sets) distributions of mass in a set K, this is because any question of the type: how
much of the mass distributed according to ν is in the Borel subset B of K is naturally
answered by computing ν(B). In the framework of Optimal Transport Theory, a non-
negative measure Ψ on K ×K satisfying the balance condition is a proposed method
of redistributing the mass from the way it is distributed according to ν+ to the way
it is distributed according to ν−: with this interpretation, we read Ψ(A,B) as how
much of the mass from A is moved to B and we read the balance condition as saying
that the mass that Ψ moves from all of K to F minus the mass that Ψ moves from K
away to F is exactly equal to the di�erence of masses in F in the starting and target
distributions. Integrating ρ(x, y) over K × K with respect to the measure Ψ means
computing the cost of the transport plan Ψ, as ρ(x, y)dψ(x, y) is the in�nitesimal cost
of moving mass from x to y, with the assumption that the cost is proportional to the
distance.
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The norm of ν ∈M0(K) is de�ned by:

||ν||0ρ = inf
ψ∈Ψν

ˆ ˆ
K×K

ρ(x, y)dψ(x, y) (2.10)

and its value with the corresponding optimal transfer gives the solution to the mass
transfer problem from µ− to µ+ with cost ρ (see [9] and reference therein); moreover
for generic µ ∈M(K) by

||µ||ρ = inf
ν∈M0(K)

{||ν||0ρ + |µ− ν|(K)} (2.11)

It is worth noting that the in�mum in (2.10) is the same if taken over a smaller set Ψ̄ν

of measures ψ ∈M+(K ×K) such that

ψ(·, K) = ν−, ψ(K, ·) = ν+

where ν− and ν+ are the negative and the positive variation of ν and the set of mea-
sures with �nite support is dense in M(K) in the KR-norm.
When equipped with this norm, M(K) enjoys important properties which are well
revealed by Dunford-Pettis Theorem [28]: in particular weakly compact sets are char-
acterised as those consisting in uniformly bounded and uniformly additive (in other
words: equiabsolutely continuous) sets of measures. Of course "weakly" means with
respect to the duality σ(M,M ′). Unfortunately there is not trasparent characterization
of the dual M ′.
The main property of the space M(K) endowed with the KR norm is the following
duality relation (see, for instance, [82, Theorem 0]):

(M(K))∗ = Lip(K, ρ) (2.12)

(alternatively, we also have (M0(K))∗ = Lip(K, ρ), where in this case the functions in
Lip are considered modulo a constant). What Hanin did in [82] is to �nd a necessary
and su�cient condition for ρ to enjoy this other duality relation:

(lip(K, ρ))∗ = (M(K))c, (2.13)

where (·)c refers to the completion. These two results combined, in particular, would
imply biduality for the pair (lip(K, ρ), Lip(K, ρ)).
A family of distances that satis�es the assumption given by Hanin is given by {ρ̃α}0<α<1,
where ρ̃ is a given distance, so in particular we obtain that

(lipα(K, ρ̃))∗∗ = Lipα(K, ρ̃),

with the intermediate space being M(K) endowed with the Kantorovich-Rubinstein
norm ‖ · ‖ρ̃α corresponding in this case to the metric ρ̃α.
What we proved in Section 2.2 about o�O structure for (lipα(K, ρ), Lipα(K, ρ)) will
have a consequence on the possibility to decompose any �nite signed Borel measure on
(K, ρ) as series of simpler �nite signed Borel measures on (K, ρ) that we will call atoms
as their support is of cardinality at most 3. This will be the main result of this section.
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To be able to reach it, let us show the following abstract result on o�O structures, which
deals with atomic decomposition of elements of the predual E∗ of a given Banach space
E. The �rst occurrence in the literature of the concept of atomic decompositions was
in a paper of E. Stein when considering the Hardy space E∗ = H1 (see [66],[53]: in
that case E = BMO, the space of functions of bounded mean oscillation introduced
by John and Nirenberg in 1961 (see Chapter 4).

Theorem 2.16 (Angrisani, Ascione, D'Onofrio, Manzo, 2020, [16]). Let (E0, E) be an
o-O pair such that the space of the operators (L, τ) is separable. Then there exists a
constant C ∈ (0, 1) such that for any Φ ∈ E∗ there exist two sequences (gn)n∈N ⊂ E∗
and (λn)n∈N ∈ `1(R+) such that ‖gn‖E∗ = 1,

Φ =
∑
n∈N

λngn

and

C
+∞∑
n=1

λn ≤ ‖Φ‖E∗ ≤
+∞∑
n=1

λn.

Proof. Since we have that the map Tx : L ∈ L 7→ Lx ∈ Y is continuous, we can also
observe that

E =

{
x ∈ X : sup

L∈L
‖Lx‖Y < +∞

}
.

From [59, Theorem 3] we know that for Φ ∈ E∗ there exists a sequence (y∗n)n∈N ∈ `1(Y ∗)
such that

Φ =
+∞∑
n=1

L∗ny
∗
n

for some sequence {Ln}n≥0 ⊂ L independent from Φ, where L∗n ∈ Lin(Y ∗, E∗) is
the adjoint operator of Ln. Now let us recall that ‖Ln‖Lin(E,Y ) = ‖L∗n‖Lin(Y ∗,E∗)

. By
de�nition of E, we can use the Banach-Steinhaus theorem to assure that there exists
a constant K1 such that

‖L∗n‖Lin(Y ∗,E∗)
= ‖Ln‖Lin(E,Y ) ≤ K1.

Let us then de�ne

gn =
L∗ny

∗
n

‖L∗ny∗n‖E∗
(gn = 0 if L∗ny

∗
n = 0) and λn = ‖L∗ny∗n‖E∗ to obtain

Φ =
+∞∑
n=1

λngn.

Now let us observe that, since ‖gn‖E∗ = 1,

‖Φ‖E∗ ≤
+∞∑
n=1

λn.



22 CHAPTER 2. THE SPACE LIP

Let us also observe that

‖L∗ny∗n‖E∗ ≤ ‖L
∗
n‖Lin(Y ∗,E∗)

‖y∗n‖Y ∗ ≤ K1 ‖y∗n‖Y ∗

so that

‖y∗n‖Y ∗ ≥
1

K1

λn.

Since the predual is strongly unique, by using the isometry in [59, Theorem 3] we have
that there exists a constant K2 (independent from Φ) such that

‖Φ‖E∗ ≥ K2

+∞∑
n=1

‖y∗n‖Y ∗ ≥
K2

K1

+∞∑
n=1

λn.

Pose C = K2

K1
to conclude the proof.

Now we are ready to give an atomic decomposition of the space M(K) endowed
with the Kantorovich-Rubinstein norm induced by a metric ρα for some α < 1.

Theorem 2.17 (Angrisani, Ascione, D'Onofrio, Manzo, 2020, [16]).
Fix α ∈ (0, 1) and let µ ∈M(K).
Then there exist a sequence of atomic measures (µn)n∈N ⊂M(K) with

card(supp(µn)) ≤ 3

and a sequence (γn)n∈N ∈ `1(R) with γn ≥ 0 such that

µ =
+∞∑
n=1

γnµn

where the convergence is intended in the Kantorovich-Rubinstein norm with respect to
ρα. Moreover there is C > 0 such that

C
+∞∑
n=1

γn ≤ ‖µ‖ρα ≤
+∞∑
n=1

γn (2.14)

Proof. Since we have shown that the pair (lipα(K, ρ), Lipα(K, ρ)) admits a o�O struc-
ture whenever α ∈ (0, 1), we know that (lipα(K, ρ))∗ is the strongly unique predual of
Lipα(K, ρ) and (lipα(K, ρ))∗ ' (M(K))c. Moreover, let us observe that the topology
on L is the one induced by the natural topology on V ×K×(0, 1], hence it is separable.
Thus we know that there exist a sequence (γn)n∈N ∈ `1(R) with γn ≥ 0 and a sequence
(µn)n∈N ⊂ (M(K))c such that

µ =
+∞∑
n=1

γnµn

with ‖µn‖ρα = 1.

Now recall that µn = L∗ng
∗
n

γn
by de�nition for some operators Ln ∈ L and for some
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g∗n ∈ Y ∗ = R2. Let us observe that for any g ∈ R2 and f ∈ Lipα(K, ρ) we have

〈Lnf, g〉 =
f(xn)− f(yn)

ρ(xn, yn)α
g1 +

ρ(xn, yn)α

Dα
f(zn)g2

while

〈f, L∗ng〉 =

ˆ
K

fdL∗ng.

From these two relations we have for any g ∈ R2

L∗ng =
δxn − δyn
ρ(xn, yn)α

g1 +
ρ(xn, yn)α

Dα
g2δzn

where δx is the Dirac delta measure concentrated in x. Hence we can conclude that µn
is a purely atomic measure with card(supp(µn)) ≤ 3.

Everything we said so far has the �aw of not being applicable to the most classic of
all metric spaces: Euclidean spaces. With the choice of K ⊂ Rn and ρ(x, y) = |x− y|
we can still infer an interesting atomic decomposition for the space M(K) of Borel
measures on K and its completion M(K)c with respect to the Kantorovich-Rubinstein
norm. In what follows, since the metric space is �xed, there is no use in specifying
the metric as a subscript of the Kantorovich-Rubinstein norm, so that we will simply
denote it with ‖ · ‖KR (or ‖ · ‖KR0 for the one de�ned on M0(K)) honouring the initials
of Kantorovich and Rubinstein. What is left of this section is dedicated to this question
and its answer contained in [19]. To do so, let us introduce the notation

Lip0(K) = Lip(K)/R,

i.e. the Lipschitz space Lip(K) modulo constant functions.
In Lip0(K), to simplify the notation, we will identify any function f : K → R with its
equivalence class. If we endow Lip0(K) with the norm

‖f‖Lip0(K) = sup
(x,y)∈K2

x 6=y

|f(x)− f(y)|
|x− y|

,

then this normed space is a Banach space.
In the following we will need to embed the spaces Lip(K) and Lip0(K) into suitable
re�exive Banach spaces, which can be also seen as a special subcase of the aforemen-
tioned Besov spaces. For our purposes, the natural candidates are fractional Sobolev
spaces. An almost complete survey on such spaces is given in [57].

De�nition 2.7. Let us denote by W s,p(Ω) for s ∈ (0, 1) and p > 1 the fractional
Sobolev space consisting of the functions f ∈ Lp(Ω) such that

‖f‖p
Ẇ s,p(Ω)

:=

ˆ
Ω

ˆ
Ω

|f(x)− f(y)|p

|x− y|ps+n
dxdy < +∞.
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If we endow W s,p(Ω) with the norm

‖f‖W s,p(Ω) = ‖f‖Ẇ s,p(Ω) + ‖f‖Lp(Ω)

it is a re�exive separable Banach space (since it is uniformly convex by means of a
Clarkson-type inequality [79]). The homogeneous fractional Sobolev space Ẇ s,p(Ω) is
de�ned as Ẇ s,p(Ω) = W s,p(Ω)/R and if we endow this space with the norm ‖f‖Ẇ s,p(Ω)

it is a re�exive separable Banach space (for the same reason as before).

Remark 2.18. Let us recall that if ps > n then, by a fractional Morrey-type embedding
theorem, we have thatW s,p(Ω) ↪→ C(K) (this is true for any doubling compact metric-
measure space as a consequence of the Morrey embedding for Hajªasz-Sobolev spaces
[81, Theorem 8.7] and the continuous embedding of Besov spaces into them [78, Lemma
6.1]). In this case we will always consider the continuous version of a function in
W s,p(Ω).

Another characterization of Ẇ s,p(Ω) for sp > n is given as the space of functions
f ∈ W s,p(Ω) such that f(z) = 0, for an a priori �xed point z ∈ K (here we are
implicitly using the embedding W s,p(Ω) ↪→ C(K)). In particular we have (by using
the same idea adopted for Lip(K)) that the norm

‖f‖W s,p(Ω),z = ‖f‖Ẇ s,p(Ω) + |f(z)|

is equivalent to ‖·‖W s,p(Ω). By identifying C(K)/R in the same way we have

Ẇ s,p(Ω) ↪→ C(K)/R.
Moreover, let us make the de�nition of atoms and dipoles precise

De�nition 2.8. We will call δ-atom any measure µ ∈M(K) whose support is �nite.
Moreover, we call dipole any measure µ ∈M0(K) of the form µ = α(δx− δy) for some
α ∈ R and (x, y) ∈ K2, with α 6= 0 and x 6= y.

To obtain a decomposition of elements of M0(K)c - which will induce a decom-
position of elements of M0(K) - we generalize the approach of [16], which relies on
the o�O structure of (lipα,Lipα), by using results contained in [59], which allow us to
remove the dependence on the "little o" space, as it is trivial for Lip and Lip0. We
start by writing Lip0 in a suitable way. Indeed we want to make use of [59, Theorem
3] and, to do this, we have to characterize Lip0 by means of linear bounded operators
L : X → Y where X is a re�exive Banach space containing Lip0 and Y is some other
Banach space. In particular, we want to �nd a countable family F = {Lj}j∈N of such
kind of operators such that

Lip0(K) = {f ∈ X : sup
j∈N
‖Ljf‖Y < +∞}.

As we will see from the following Lemma, the natural choice we have for Y is R and
for X is Ẇ s,p(K). Indeed, as we stated before, Ẇ s,p(K) is separable and re�exive
and contains Lip0(K) by de�nition. Moreover, we can chose s and p in a suitable
way to obtain Ẇ s,p(K) continuously embedded into the quotient space C(K)/R. This
choice will be useful to show the boundedness of Lj. Here the compactness of K
plays a prominent role, as in this case C(K) ⊂ L∞(K) (that will be useful to show
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boundedness of Lj). In case we choose K to be not compact (for instance unbounded),
then we need to �nd a di�erent approach to show boundedness of the operators. For
now, let us focus on the compact case.

Lemma 2.19. There exists a sequence of functionals

(Lj)j∈N : X = (Ẇ s,p(Ω))→ Y = R

such that
Lip0(K) = {f ∈ Ẇ s,p(Ω) : sup

j∈N
|Ljf | < +∞}

and
‖f‖Lip0(K) = sup

j∈N
|Ljf |.

Proof. First of all, let us �x s ∈ (0, 1) and p > 1 such that ps > n, so that
Ẇ s,p(Ω) ↪→ C(K)/R. Let us consider D1 ⊂ K, a countable set such that K = D1,
and K1 = K \D1. Now let us consider D2 ⊂ K1, a countable set such that K1 = D2.
Finally, let us de�ne D = D1 ×D2. Observe that D1 ∩D2 = ∅ so, for any (x, y) ∈ D,
x 6= y. Moreover, D is countable, hence we can enumerate D = {(xj, yj)}j∈N. Finally
D = K ×K. Let us de�ne

Lj : f ∈ Ẇ s,p(Ω)→ f(xj)− f(yj)

|xj − yj|
∈ R .

Lj is obviously linear. Moreover, since Ẇ s,p(Ω) ↪→ C(K)/R we have

|f(xj)− f(yj)|
|xj − yj|

≤ 2

|xj − yj|
‖f‖L∞(K) ≤ Cj ‖f‖Ẇ s,p(Ω) ,

hence Lj ∈ (Ẇ s,p(Ω))∗ for any j ∈ N.
Finally, let us observe that by density of D in K ×K and continuity of f ∈ Ẇ s,p(Ω),

‖f‖Lip0(K) = sup
j∈N
|Ljf |

concluding the proof.

Now that we have this rewriting of the de�nition of Lip0(K) we can use the tech-
niques employed in [59] to obtain the desired atomic decomposition. Before giving the
main result, let us make use of the ideas behind [59]. Indeed, in such case, one can
de�ne the operator V : Lip0 → `∞ as, for any f ∈ Lip0, V f(j) = Ljf for any j ∈ N.
Thus, after obtaining that V Lip0 ' Lip0 (here we are using Y = R and R∗∗ ' R) it is
not di�cult to check that a predual (Lip0)∗ is isometrically isomorphic to `1/P where
P = (V Lip0)⊥ ∩ `1 (where with ⊥ we denote the annihilator). This gives us a series
representation of the elements of M0(K)c viewed as a predual of Lip0(K). This is an
underlying reason for the following result.

Theorem 2.20 (Angrisani, Ascione, Manzo, 2021, [19]). There exists a constant
C ∈ (0, 1) such that for any choice of functional µ ∈ M0(K)c there exists a sequence
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(αj)j∈N ∈ `1(R) such that

µ =
+∞∑
j=1

δxj − δyj
|xj − yj|

αj,

where the series converges in KR0, and

C
+∞∑
j=1

|αj| ≤ ‖µ‖KR0
≤

+∞∑
j=1

|αj|, (2.15)

where the sequences (xj)j∈N and (yj)j∈N are de�ned in Lemma 2.19. Moreover, the
sequence of δ-atoms (µj)j∈N ⊂M0(K) de�ned as

µj =
δxj − δyj
|xj − yj|

spans M0(K)c, with ‖µj‖KR0
= 1 for any j ∈ N. In particular, the δ-atoms µj are

dipoles, hence have support of cardinality exactly 2.

Proof. By [59, Theorem 3] we know that there exists C ∈ (0, 1) such that for any
µ ∈M0(K)c there exists a sequence (αj)j∈N such that

µ =
+∞∑
j=1

L∗jαj,

where L∗j is the adjoint operator of Lj, and

C
+∞∑
j=1

∥∥L∗jαj∥∥KR0
≤ ‖µ‖KR0

≤
+∞∑
j=1

∥∥L∗jαj∥∥KR0
.

Since one has

〈f, L∗jαj〉 = 〈Ljf, αj〉 =
f(xj)− f(yj)

|xj − yj|
αj,

then

L∗jαj =
δxj − δyj
|xj − yj|

αj

concluding the proof.

Remark 2.21. Let us remark that one could use any separable Banach space X such
that Lip(K) ⊂ X ⊂ L∞(K), where the second inclusion is continuous, in place of
W s,p(Ω).
Moreover, let us observe that the previous theorem provides a `1/P -atomic decompo-
sition of M0(K)c.

We now devote to a similar atomic decomposition in the larger space M(K)c, with
the help of the space Lip(K). This time we cannot use the same operators as in Lemma
2.19 since they de�ne a seminorm on Lip(K). The following rewriting of Lip(K) relies
on the fact that we can consider on R2 the `∞ norm.
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Lemma 2.22 (Angrisani, Ascione, Manzo, 2021, [19]). There exists a sequence of oper-
ators (Lj)j∈N ∈ Lin(W s,p(Ω),R2), where we equip R2 with the norm
‖(x, y)‖`∞ = max{|x|, |y|}, such that

Lip(K) = {f ∈ W s,p(Ω) : sup
j∈N
‖Ljf‖`∞ < +∞}

and
‖f‖Lip(K) = sup

j∈N
‖Ljf‖`∞ .

Proof. First of all, let us �x s ∈ (0, 1) and p > 1 such that ps > n, so that
W s,p(Ω) ↪→ C(K), and let us consider the set D ⊂ K2 de�ned in Lemma 2.19. Let us
de�ne

Lj : f ∈ W s,p(Ω)→
(
f(xj)− f(yj)

|xj − yj|
, f(xj)

)
∈ R2 .

Lj is obviously linear. Moreover, since W s,p(Ω) ↪→ C(K) we have

max

{
|f(xj)− f(yj)|
|xj − yj|

, |f(xj)|
}
≤ max

{
2

|xj − yj|
, 1

}
‖f‖L∞(K) ≤ Cj ‖f‖W s,p(Ω) ,

hence Lj ∈ Lin(W s,p(Ω),R2) for any j ∈ N.
Finally, let us observe that by density of D in K × K, D1 in K, and continuity of
f ∈ Ẇ s,p(Ω) we have

‖f‖Lip(K) = sup
j∈N
‖Ljf‖`∞

concluding the proof.

As we did earlier, we can now use the techniques of [59] to obtain the atomic
decomposition of M(K)c. Let us recall that the starting point of the following result is
still the series decomposition that follows from [59, Theorem 3] that we discussed before
Theorem 3.2. Moreover, let us recall that Remark 2.21 holds also for the following
theorem.

Theorem 2.23 (Angrisani, Ascione, Manzo, 2021, [19]). There exists a constant
C ∈ (0, 1) such that for any functional µ ∈ M(K)c there exists a sequence
((α1

j , α
2
j ))j∈N ∈ `1(R2) such that

µ =
+∞∑
j=1

(
δxj − δyj
|xj − yj|

α1
j + δxjα

2
j

)
,

where the series converges in KR, and

C

+∞∑
j=1

(|α1
j |+ |α2

j |) ≤ ‖µ‖KR ≤
+∞∑
j=1

(|α1
j |+ |α2

j |), (2.16)

where the sequences (xj)j∈N and (yj)j∈N are de�ned in Lemma 2.22. In particular, the
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sequence of δ-atoms (µj)j∈N ⊂M(K) de�ned as

µj =

{
δxk−δyk
|xk−yk|

j = 2k − 1

δxk j = 2k
(2.17)

spans M(K)c, and ‖µj‖KR ≤ 1 for any j ∈ N.

Proof. By [59, Theorem 3] we know that there exist C̃ ∈ (0, 1) and
((a1

j , a
2
j))j∈N ∈ `1(R2) such that for any µ ∈M(K)c

µ =
+∞∑
j=1

L∗jαj,

where L∗j is the adjoint operator of Lj, αj = (α1
j , α

2
j ) ∈ R2, and

C̃
+∞∑
j=1

∥∥L∗jαj∥∥KR ≤ ‖µ‖KR ≤ +∞∑
j=1

∥∥L∗jαj∥∥KR . (2.18)

As in the proof of Theorem 2.20, we have

L∗jαj =
δxj − δyj
|xj − yj|

α1
j + δxjα

2
j .

Now let us determine some upper and lower bounds for
∥∥L∗jαj∥∥KR. To do this, let us

recall that

‖δx − δy‖KR = min{|x− y|, 2} ≤ |x− y|, ‖δx‖KR = 1 ∀x, y ∈ K.

Hence we have for the upper bound

∥∥L∗jαj∥∥KR ≤
∥∥δxj − δyj∥∥KR
|xj − yj|

|α1
j |+

∥∥δxj∥∥KR |α2
j | ≤ |α1

j |+ |α2
j |. (2.19)

Concerning the lower bound, let us recall (see [84, Section 4.1]) that

∥∥L∗jαj∥∥KR = sup
‖f‖Lip(K)≤1

(
f(xj)− f(yj)

|xj − yj|
α1
j + f(xj)α

2
j

)
. (2.20)

Let d = diam(K) and let us de�ne the functions

fj(z;α1
j , α

2
j ) =


1−|xj−z|
d+1

α1
j , α

2
j ≥ 0

1+|xj−z|
d+1

α1
j < 0 and α2

j ≥ 0
−1−|xj−z|

d+1
α1
j ≥ 0 and α2

j < 0
−1+|xj−z|

d+1
α1
j , α

2
j < 0.
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By using this function as test function in (2.20) we obtain∥∥L∗jαj∥∥KR ≥ 1

d+ 1
(|α1

j |+ |α2
j |) (2.21)

Using Equations (2.19) and (2.21) in Equation (2.18) and setting C = C̃
d+1

we �nally
achieve Equation (2.16).

Remark 2.24. Let us observe that the sequence of δ-atoms (µj)j∈N is composed by delta
measures and dipoles. In particular, if j is even, then µj is a delta measure and then
the cardinality of its support is exactly 1. On the other hand, if j is odd, then µj is a
dipole and then the cardinality of its support is exactly 2. Thus we have that for any
functional µ ∈M(K)c there exists a sequence (αj)j∈N ∈ `1(R) such that µ =

∑+∞
j=1 αjµj

where µj are δ-atoms with support of cardinality at most 2.
We still have a `1/P -atomic decomposition ofM(K)c. However, in this case, the atoms
µj are such that ‖µj‖KR ≤ 1. In particular, if diamK ≤ 2, we obtain again ‖µj‖KR = 1
for any j ∈ N, while, in general, this is true only for even j. Let us also observe that
to obtain the lower bound in this case, Kantorovich-Rubinstein duality for the norm
on M(K)c (see [84]) is actually the main tool.

Remark 2.25. Let us stress that both inequalities (2.15) and (2.16) hold true for re-
spectively a certain sequence (αj)j∈N ∈ `1(R) and ((α1

j , α
2
j ))j∈N ∈ `1(R2). In partic-

ular, setting µ ∈ M0(K)c, inequality (2.15) is not necessarily valid for any sequence

(αj)j∈N ∈ `1(R) such that µ =
∑+∞

j=1

δxj−δyj
|xj−yj | αj in KR0 with the same constant C.

This is due to the fact that we have an isometric isomorphism between (M0(K))c and
`1(R)/P , which is a quotient space with norm ‖[α]‖`1/P = infβ∈P ‖α− β‖`1 for any

α = (αj)j∈N ∈ `1(R), while the inequality is expressed in terms of the `1 norm of one
of the representatives of the class [α] characterizing µ ∈ (M0(K))c. The same holds for
(2.16).

Remark 2.26. Let us observe that if µ ∈M0(K)c and

µ =
+∞∑
j=1

(
δxj − δyj
|xj − yj|

α1
j + δxjα

2
j

)
, α1, α2 ∈ `1(R)

then
∑+∞

j=1 α
2
j = 0. This is a direct consequence of the fact that µ(K) = 0.

With the same strategy exploited in the previous remark, we can prove a similar
property for any µ ∈M(K)c, as we can see from the following Proposition.

Proposition 2.27 (Angrisani, Ascione, Manzo, 2021, [19]). Let µ ∈ M(K)c and
((α1

j , α
2
j ))j∈N ∈ `1(R2) be the sequence de�ned in Theorem 2.20. Suppose

((β1
j , β

2
j ))j∈N ∈ `1(R2) is another sequence such that

µ =
+∞∑
j=1

(
δxj − δyj
|xj − yj|

β1
j + δxjβ

2
j

)
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and inequalities (2.16) hold. Then

+∞∑
j=1

(α2
j − β2

j ) = 0

Proof. Let us de�ne the following measures for N ∈ N:

µαN =
N∑
j=1

δxj − δyj
|xj − yj|

α1
j + δxjα

2
j

µβN =
N∑
j=1

δxj − δyj
|xj − yj|

β1
j + δxjβ

2
j

νN = µαN − µ
β
N =

N∑
j=1

δxj − δyj
|xj − yj|

(α1
j − β1

j ) + δxj(α
2
j − β2

j ).

First of all, let us observe that both µαN and µβN converge in KR norm towards µ.
Now let us observe that

N∑
j=1

∥∥∥∥δxy − δyj|xj − yj|
(α1

j − β1
j ) + δxj(α

2
j − β2

j )

∥∥∥∥
KR

≤
N∑
j=1

(|α1
j − β1

j |+ |α2
j − β2

j |)

≤
N∑
j=1

(|α1
j |+ |α

j
2|) +

N∑
j=1

(|β1
j |+ |β2

j |).

Taking the limit as N → +∞ we obtain that the series in the left-hand side converges
and in particular

+∞∑
j=1

∥∥∥∥δxy − δyj|xj − yj|
(αj − βj)

∥∥∥∥
KR

≤ 2

C
‖µ‖KR .

Now let us consider M > N > 0 in N and observe that

‖νN − νM‖KR =

∥∥∥∥∥
M∑

j=N+1

δxy − δyj
|xj − yj|

(α1
j − β1

j ) + δxj(α
2
j − β2

j )

∥∥∥∥∥
KR

≤
M∑

j=N+1

∥∥∥∥δxy − δyj|xj − yj|
(α1

j − β1
j ) + δxj(α

2
j − β2

j )

∥∥∥∥
KR

.

In particular (νN)N≥0 is a Cauchy sequence in the Banach spaceM(K)c, thus it admits
a limit ν ∈M(K)c given by

ν =
+∞∑
j=1

(
δxy − δyj
|xj − yj|

(α1
j − β1

j ) + δxj(α
2
j − β2

j )

)
.
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Now we need to identify ν. To do this, let us just observe that

ν = lim
N→+∞

νN = lim
N→+∞

(µαN − µ
β
N) = µ− µ = 0,

and then we have

0 =
+∞∑
j=1

(
δxy − δyj
|xj − yj|

(α1
j − β1

j ) + δxj(α
2
j − β2

j )

)
. (2.22)

However, we have, by [84, Equation 1.18]

0 = ‖0‖KR =

∥∥∥∥∥
+∞∑
j=1

(
δxy − δyj
|xj − yj|

(α1
j − β1

j ) + δxj(α
2
j − β2

j )

)∥∥∥∥∥
KR

≥

∣∣∣∣∣
+∞∑
j=1

(α2
j − β2

j )

∣∣∣∣∣ ,
concluding the proof.

Let us observe that the same strategy does not lead to uniqueness of the coe�cients.
Indeed Equation (2.22) does not imply

+∞∑
j=1

(|α1
j − β1

j |+ |α2
j − β2

j |) = 0,

in view of Remark 2.25.
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2.4 Generalized Di�erentiability for Lipschitz Func-

tions: an application to Optimal Control Theory

2.4.1 An introduction to the problem
On the one hand, necessary conditions for minimizers of nonsmooth optimal control

problems are usually given in terms of a Maximum Principle involving some kind of
generalized di�erentiation and connected approximating cones: since the early Seven-
ties the vast and rich literature of Nonsmooth Analysis has addressesed this important
issue (see [48], [116] and [137] for example). On the other hand, the so-called higher
order necessary conditions require an higher regularity of the dynamics. This is the
case, in particular, of necessary conditions encountered in Geometric Control Theory,
which involve Lie brackets of the dynamics: the mere existence of these brackets re-
quires that the involved vector �elds have a su�cient degree of di�erentiation. Indeed,
let us recall that the Lie bracket of two di�erentiable vector �elds h1, h2 is de�ned, in
any system of coordinates, as [h1, h2] = Dh2h1 − Dh1h2. Therefore, one needs h1, h2

to be at least di�erentiable, or even smoother when iterated brackets are considered.
A natural question is: what to do if h1, h2 are just Lipschitz continuous? After all, the
domains Diff(h1) and Diff(h2) where h1 and h2, respectively, are di�erentiable, have
full measure by Rademacher's Theorem, so that the Lie bracket [h1, h2] is classically
de�ned on Diff(h1)∩Diff(h2), i.e. almost everywhere. So it is reasonable to wonder if,
as it happens in the smooth case, such almost-everywhere-de�ned brackets would be
capable to provide informations about the limit behavior of controlled trajectories hav-
ing a vanishing �rst order part. Actually, in connection with controllability problems,
this question has been addressed in [128] , where the following everywhere-de�ned,
set-valued Lie bracket for Lipschitz continuous vector �eld has been introduced:

[f, g]set(x) = co
{

lim
n→∞

[f, g](xn), xn → x, xn ∈ Diff(f) ∩Diff(g)
}

(2.23)

In [126], [127] this notion of set-valued Lie bracket has proved suitable for the gen-
eralization of some classical results of di�erential geometry �like the commutativity
criterion or Frobenius Theorem� from the smooth case to the non-smooth one but see
Simich, Montanari for di�erent approaches. Let us point out that the utilization of
some larger Lie brackets does not lead to satisfactory generalizations of the known
results involving the classical Lie brackets.3

Now, controllability and optimality can be regarded (from the view-point of set-
separation) as sort of dual problems. So, it is somehow natural to investigate the
following question:

Q. Can one add to a standard (non-smooth) Maximum Principle a necessary condi-
tion for minima which involves the set-valued Lie brackets de�ned in (2.23)?

In the present section, which is a condensation of the results obtained in [20](still in
state of preprint), we give a positive answer to this question, in relation with an optimal

3For instance, as a bracket larger than [f, g]set one could consider the set {L2h1−L1h2, (L1, L2) ∈
∂h1×∂h2}, where ∂h denotes the Clarke's generalized Jacobian. On the other hand, one would obtain
a bracket smaller than [f, g]set simply undoing convexi�cation in (2.23).



2.4. LIPSCHITZ IN OPTIMAL CONTROL THEORY 33

control problem of the form4

(P )


minimize Ψ(T, x(T )) over processes (T, u, a, x),

where x : [0, T ]→ Rn solves

dx

dt
= f(x) +

m∑
i=1

gi(x)ui x(0) = x̂ ‖u‖1 ≤ K (T, x(T )) ∈ T.

(2.24)

Here, the vector �elds gi : Rn → Rn, i = 1, . . . ,m are Lipschitz continuous and the
controls u take values in Rm. In particular, the controls u(·) are unbounded in L∞ while
they are costrained to have L1-norm less or equal to K. The end-time T is not �xed,
but the considered trajectories x : [0, T ] 7→ Rn verify (T, x(T )) ∈ T, where the target T
is a given subset of R+×Rn. Let us point out that a minimizer for problem (P ) rarely
exists with the slow growth hypothesis we will make on the cost function. Actually, in
order to guarantee existence of a minimizer, one densely embeds the original problem
in the extended problem

(Pext)



minimize Ψ(t(S), y(S)) over processes (S,w0, w, t, y)

where (t, y) : [0, S]→ R1+n solves
dt

ds
= w0(s)

dy

ds
= f(y)w0 +

m∑
i=1

gi(y)wi (t, y)(0) = (0, x̂) ‖w‖1 ≤ K, (t, y)(S) ∈ T

where the controls (w0, w) belong to the set⋃
S>0

{
(w0, w) ∈ L∞([0, S],R+ ×C) : w0(s) + |w(s)| = 1

}
.

Observe that problem (Pext) is simply obtained from (P ) by �rst reparametrizing time
through

t(s) :=

ˆ s

0

w0(σ)dσ, w0 > 0,

{
w(s) := u(t(s))w0(s),

y(s) := x(t(s))
,

and then allowing also impulsive subintervals I ⊆ [0, S] (i.e. w0(s) ≡ 0 ∀s ∈ I). Notice,
in particular, that (Pext) is a problem with controls which are bounded in L∞.

As for necessary condition for a minimizer (S,w0, w, y0, y) of the extended problem
(P )ext, intuition suggests that answering question Q should mean complementing the
usual, non smooth, maximum principle (in one of the available versions) with conditions
that tell something about the relation between the corresponding adjoint variable p(·)

4Here a simpli�ed form of the problem is presented. In the general form of the problem considered
later in this section, the drift f is allowed to depend on bounded control a, and an additional current costˆ T

0

l(x, u, a) dt is considered. Moreover, the controls u are allowed to range over a cone C = C1×C2,

where, C1 is a closed cone in Rm1 containing the coordinate axes, C2 is a closed cone in Rm2 not
containing any straight line, and m = m1 +m2.
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and set-valued Lie brackets [gi, gj]set.

Our main result, which we state below in a simpli�ed form �see Theorem 2.35 for
a rigorous and more general statement�, actually says that at almost every s ∈ [0, S]
a sort of generalized Goh condition holds true:

Theorem 2.28 (Angrisani, Rampazzo, 2021, preprint). Let (S,w0, w, y0, y) be a local
minimizer for the extended problem (Pext), and assume that ‖w‖1 < K. Then there
exist multipliers (p0, p, λ) ∈ R∗×AC([0, S]; (Rn)∗)×R∗ such that, besides the standard
necessary conditions of Pontryagin Maximum Principle, we have the following new
condition:

� For any i, j ∈ {1, . . . ,m} and for almost any s ∈ [0, S],

0 ∈ p(s) · [gi, gj]set(y(s)). (2.25)

Clearly, the importance of such a result relies on the possibility that a trajectory
allowed by the standard maximum principle is not a minimizer, in that it does not
verify condition (2.25). An example in the last subsection of this section illustrates
this circumstance is actually possible.

Let us mention that a crucial tool for the proof of Theorem 2.28 (in the more general
version of Theorem 2.35), is represented by the Quasi Di�erential Quotient, a notion
of generalized di�erentation (valid also for set-valued maps) introduced in [119] as a
special case of Sussmann's Approximate Generalized Di�erential Quotients [4]. This
tool and the corresponding notion of approximating multi-cone are �exible enough to
allow an expression of variational cones generated by multiple set-valued Lie brackets
as well as appying of a peculiar criterion (see Theorem 4.37, p. 265 in [4] or Theorem
2.3 in [119]) which connects set-separation and cone-separability. In turn, the latter
property is equivalent to the existence of multipliers (p0, p, λ).

We conclude this presentation by making some remarks concerning applications and
desirable developments. Though the pervasiveness of control-a�ne control systems is
such that no justi�cation is needed for treating a low regularity issue involving them,
the fact that we allow unbounded controls must be underlined. Let us just mention
that they show up naturally e.g. in Classical Mechanics as soon one identi�es the
control with a moving part of a given mechanical system (but also in other techno-
logical applications, e.g. in neurological dynamics or aerospace navigation). However,
another, fully mathematical, application maybe deserves some attention: we refer to
case that when the control system is driftless, and, in particular, to sub-Riemannian
geometry. Actually, in this event, due to rate-independence, any unbounded control
can be replaced by a bounded control without changing the resulting trajectory (up
to reparametrization). Hence our result might be regarded as a �rst step towards the
investigation of some kind of non-smooth sub-Riemannian geometry.

Throughout this section the elements of an Euclidean space Rq will be thought as
column vectors, while row vectors will represents the linear one-forms, i.e. the elements
of the dual space (Rq)∗. To save space, if q1 . . . , qr are positive integers and if xi ∈ Rqi for
all i = 1, . . . , r, q := q1 + . . . , qr, the notation (x1, . . . , xr) will denote the q-dimensional
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column vector x1
...
xr

 .

The space of all linear operators from a vector space X to a vector space Y will be
denoted by Lin(X, Y ). Whenever X and Y are Euclidean spaces, it will be understood
as a space of matrices.

IfM(·) is a n×n-matrix-valued L1 function on [0, S̄], let us use the notation e
´ s2
s1

M(s) ds
,

s1, s2 ∈ [0, S̄] to denote the fundamental matrix solution of the linear equation

dv

ds
(s) = M(s)v(s). (2.26)

Namely, for every s1, s2 ∈ [0, S̄], v̄ ∈ Rn, e
´ s2
s1

M
v̄ = v(s2), where v(·) is the solution to

(2.26) such that v(s1) = v̄.
Moreover, we remark that the symbol dist (·, ·) is used in this section both for the
Euclidean distance between two points and for the distance of a point x from a set S,
namely

dist (x, S) = inf
s∈S

dist (x, s) .

Lastly, for any subset S of an Euclidean space, by co(S) we mean the convex hull of S,
i.e. the smallest convex set containing S, obtainable by intersection of all convex sets
containing S. The symbol co(S) denotes the closure of such convex hull, and it is also
the smallest closed convex set containing S.

2.4.2 Set-valued Lie brackets, Quasi Di�erential Quotients,

and Approximating Cones

De�nition 2.9 (Clarke's Generalized Jacobian). Let F : y ∈ RN 7→ F (y) ∈ Rn be an
almost everywhere di�erentiable map and y0 ∈ RN . We say that the set ∂yF (y0) is the
Clarke's Generalized Jacobian of F at point y0 if

Lin(RN ,Rn) ⊇ ∂yF (y0) := co
{

lim
n→∞

DF (yn) : Diff(F ) 3 yn → y0

}
.

De�nition 2.10 (Quasi Di�erential Quotients (QDQ)). Let F : RN ⇒ Rn be a set-
valued map, (γ̄, ȳ) ∈ RN × Rn, Λ ⊂ Lin{RN ,Rn} be a compact set, and Γ ⊂ RN be
any subset. We say that Λ is a Quasi Di�erential Quotient (QDQ) of F at (γ̄, ȳ) in
the direction of Γ if there exists a modulus ρ : (0,+∞)→ (0,+∞) and ∀δ > 0 there is
a continuous map

(Lδ, hδ) : (γ̄ +Bδ) ∩ Γ→ Lin(RN ,Rn)× Rn

such that
min
L′∈Λ
|Lδ(γ)− L′| ≤ ρ(δ), |hδ(γ)| ≤ δρ(δ), and

ȳ + Lδ(γ) · (γ − γ̄) + hδ(γ) ∈ F (γ), (2.27)
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whenever γ ∈ (γ̄ +Bδ) ∩ Γ .

Remark 2.29. Whenever F is a single-valued continuous map from RN to Rn, the
inclusion (2.27) is actually an equality. In this case, to show that Λ is a QDQ of F at
(γ̄, F (γ̄)) it would be enough to �nd a family {Lδ, δ > 0} of continuous maps

Lδ : (γ̄ +Bδ) ∩ Γ→ Lin(RN ,Rn)

satisfying,

min
L′∈Λ
|Lδ(γ)− L′| ≤ ρ(δ), and |F (γ)− F (γ̄)− Lδ(γ)(γ − γ̄)| ≤ δρ(δ)

whenever δ > 0 and γ ∈ (γ̄+Bδ)∩Γ, as in this case the continuity of the error function
hδ := F (γ)− F (γ̄)− Lδ(γ)(γ − γ̄) would follow from the hypotheses.

Remark 2.30. To further specialize the previous remark, assume F is single-valued and
continuous and assume one is able to �nd a positive real number ε̃ > 0 and a single
continuous map

L : Bε̃ ∩ Γ→ Lin(RN ,Rn)

satisfying

lim
Γ3γ→0

dist (L(γ),Λ) = 0, and lim
Γ3γ→0

|F (γ)− F (0)− L(γ)γ|
|γ|

= 0.

This is enough to prove that Λ is a QDQ for F at (0, F (0)) in the direction of Γ. This
is because one could de�ne Lδ to be the restriction of L to Bδ ∩ Γ and a valid choice
for the modulus ρ(δ) would then be, trivially

ρ(δ) := max

{
sup

γ∈Bδ∩Γ
dist (L(γ),Λ) , sup

γ∈Bδ∩Γ

|F (γ)− F (0)− L(γ)γ|
δ

}
,

which is well de�ned on (0, ε̃) (provided ε̃ was chosen suitably small), positive, non-
decreasing, tends to 0 as δ → 0+ and so Λ is proven a QDQ as pre�gured.

In any Euclidean space Rn, a subset C ⊆ Rn is called a cone if αv ∈ C, ∀α ≥ 0 and
∀v ∈ C. A set C whose elements are cones is called a multicone.
For any given cone C ⊆ Rn, the set

C⊥ = {v ∈ Rn, v · c ≤ 0 ∀c ∈ C}

is a closed cone in Rn called the polar cone of C. On the other hand, the polar cone of
a multicone, de�ned by

C⊥ =
⋃
C∈C

C⊥,

is not necessarily a closed subset of Rn.
Two cones C1 and C2 are said to be transversal if C1 − C2 = Rn, where C1 − C2 is
the set of di�erences c1 − c2, with c1 ∈ C1 and c2 ∈ C2. In addition, they are strongly
transversal if they also have non-trivial intersection. Trivially, this is equivalent to
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saying there exists µ ∈ (Rn)∗ such that µ · v > 0 for some v ∈ C1 ∩ C2

Two multicones C1 and C2 are transversal if the same can be said for any couple of
cones C1 ∈ C1 and C2 ∈ C2. Two transversal multicones C1 and C2 are also strongly
transversal, if there exists a single µ ∈ (Rn)∗ such that for any C1 ∈ C1 and C2 ∈ C2

an element v ∈ C1 ∩ C2 such that µ · v > 0 can be found.
Since two cones C1 and C2 are linearly separated, i.e. C⊥1 ∩−C⊥2 6= {0}, if and only if
they are not transversal, two cones or even multicones that are not strongly transversal
are sometimes termed weakly linearly separated.
It was shown by Hector Sussmann in [132] that two multicones C1 and C2 are weakly
linearly separated if for every 0 6= µ ∈ (Rn)∗ there exist C1 ∈ C1, C2 ∈ C2, π1 ∈ C⊥1 ,
π2 ∈ C⊥2 and a non-negative real number π0 such that

(π0, π1, π2) 6= (0, 0, 0) and π1 + π2 = µ · π0.

This statement of weak linear separation becomes extremely useful whenever a non-
zero functional −µ is chosen in the polar cone of every cone of the multicone C2, as
it then follows from π2 − µ · π0 = −π1, that two cones C1 ∈ C1 and C2 ∈ C2 can be
found, that are linearly separated.
A convex multicone is simply a multicone consisting solely of convex cones.

De�nition 2.11 (QDQ approximating multicones). Let S be any subset of Rn and
x ∈ S. A convex multicone C is said to be a QDQ approximating multicone if there
exists a function F : (R+)N → Rn such that F ((R+)N) ⊆ S, Λ is a QDQ for F at
(0, x) and

C = {L · (R+)N , L ∈ Λ}.

De�nition 2.12 (Local separation of sets). Two subsets S1 and S2 are locally separated
at x if and only if there exists a neighbourhood Ux of x such that

S1 ∩ S2 ∩ Ux = {x}.

As a consequence of an open mapping theorem involving QDQ's, the following fact
holds true (see Theorem 4.37, p. 265 in [4] where the lemma was proven in the more
general context of AGDQ's, of which QDQ's are a special case)

Lemma 2.31. If two subsets S1 and S2 are locally separated at x and if C1 and C2

are QDQ approximating multicones for S1 and S2, respectively, at x, then C1 and C2

are not strongly transverse.

The proof of the following lemma can then be recovered from [132].

Lemma 2.32. Let C1 and C2 be two multicones that are not strongly transversal. If
there is a linear functional µ that is in C⊥2 but not in −C⊥2 for all C2 ∈ C2, then there
are two cones C1 ∈ C1 and C2 ∈ C2 that are linearly separated.

2.4.3 Lie brackets for Lipschitz vector �elds
Given two Lipschitz vector �elds f, g : Rn → Rn, it is known by Rademacher's

theorem that the set Diff(f) ∩ Diff(g) of points of di�erentiability of f and g is a has
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full measure. Basing on this fact, the authors of [128] introduce the following concept
of a set-valued Lie bracket:

[f, g]set(x) = co
{

lim
n→∞

[f, g](xn), → x, xn ∈ Diff(f) ∩Diff(g)
}
,

where we mean that all existing limits along sequences (xn) ⊂ Diff(f) ∩ Diff(g) are
considered. Clearly, for every x ∈ Rn, one has [f, g]set(x) 6= ∅. Moreover [f, g]set(x) =
{[f, g](x)} as soon as f, g are of class C1 in a neighborhood od x. One trivially has
that the relations [f, f ]set = {0} and [f, g]set = −[g, f ]set keep holding for set-valued
brackets, with the understanding that −S is the set of opposites of elements in S.
Furthermore, some basic results have been generalized to set-valued Lie brackets . For
instance, the �ow of f, g locally commute if and only if [f, g]set = 0. Furthermore, by
means of generalization of the involutivity condition involving set-valued brackets, a
Frobenius-type result, holds true for Lipschitz distributions as well(see, for instance,
[127]).

Finally, iterated set-valued Lie brackets for Lipschitz vector �elds and their relations
with local controllability have been introduced in [67].

2.4.4 The problem and the main result
Let us recall problem (P ), which has been presented in the introductive subsection.

Actually, the problem below (still labeled (P)) is more general, in that it includes a
current cost, a more general set where the controls u take values, and the continuous
dependence of the drift f on some bounded control a.

(P )

minimize Ψ(T, x(T )) +

ˆ T

0

l(x(t), u(t), a(t)) dt,

over all feasible strict-sense processes (T, u, a, x, ν) of
dx

dt
= f(x, a) +

m∑
i=1

gi(x)ui, a.e. t ∈ [0, T ],

dν

dt
= |u|,

(x, ν) = (x̂, 0), ν ≤ K, (T, x) ∈ T, 5

(2.28)

The hypotheses for problem (P ) are as follows:

i) the state variable x belongs to Rn, for some n > 0;6;
ii) the vector �elds gi : Rn → Rn, i = 1, . . . ,m are locally Lipschitz continuous

vector �elds on Rn;
iii) the controls u = (u1, . . . , um) belong to (the closed cone) C = C1 × C2, where,

for some non negative integers m1 and m2 such that m = m1 + m2, C1 ⊆ Rm1

is a closed cone containing the coordinate axes, and C2 ⊆ Rm2 is a closed cone
which does not contain any straight line;

iv) the control a takes values in a compact set A ⊂ Rq;
v) f , which is sometimes called the drift, is continuous in (x, a), and, for any value

a ∈ A, the vector �eld f(·, a) : Rn → Rn is locally Lipschitz continuous;

5Notice that we have rewritten the L1 bound ‖u‖1 ≤ K in the equivalent form ν ≤ K.
6See Remark 2.33.
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vi) the real-valued Lagrangian l := l(x, u, a) has the form l(x, u, a) = l0(x, a)+l1(x, u)
and is continuous; furthermore, for every (u, a), x 7→ l(x, u, a) is locally Lipschitz
continuous with respect to x, uniformly with respect to a; moreover, the so-

called recess function l̂1(x,w0, w) := lim
r→w0

rl1

(
x,
w

r

)
is well-de�ned and locally

Lipschitz with respect to x, uniformly when (w0, w) ranges on the bounded set
[0, 1]× (C ∩B1) ;

vii) the �nal cost Ψ(t, x) is of class C1, 0 ≤ K ≤ +∞, and the (time-dependent)
target T ⊆ R+ × Rn is a closed subset.

The elements of
U =

⋃
T>0

{T} × L1([0, T ],C × A)

will be called strict-sense controls. If (T, u, a) ∈ U is a strict-sense control and (x, ν) is
the unique Carathéodory solution of the above system, then (T, u, a, x, ν) will be called
a strict-sense process. Moreover, we will say that a strict-sense process (T, u, a, x, ν) is
feasible if (T, x(T ), ν(T )) ∈ T× [0, K].

Remark 2.33. This problem, our results and all the mathematical tools and ideas we
make use of throughout this section could also be extended to the context of an n-
dimensional manifold M , being intrinsic/chart-independent. We restrict ourselves to
Rn for the sake of clarity and to avoid further complicating the notation.

De�nition 2.13. We say that (T , u, a, x, ν) is a local minimizer for problem (P) if
there exists δ > 0 such that

Ψ(T , x(T )) +

ˆ T

0

l(x(t), u(t), a(t)) dt ≤ Ψ(T, x(T )) +

ˆ T

0

l(x(t), u(t), a(t)) dt

for all feasible processes (T, u, a, x, ν) such that |T −T |+ ‖(x, ν)− (x, ν)‖∞ < δ where,
since (x, ν) and (x, ν) may have di�erent domains, we �rst extend them to R+ so they
stay constant to their �nal values (x, ν)(T ) and (x, ν)(T ), respectively.

As mentioned in the introductive subsection, since the control u are unbounded and
the problem (P) has slow growth, in order to achieve existence of a minimizer one tries
to consider some form of closure, or even compacti�cation. The impulsive extension
makes the job, so our necessary conditions will refer to it. To describe it, let us begin
introducing the set

W :=
⋃
S>0

{S} ×
{

(w0, w, α) ∈ L∞([0, S],R+ ×C × A) : essinf(w0 + |w|) > 0
}

of extended-sense controls. For any (S,w0, w, α) ∈W, we say that (S,w0, w, α, y0, y, β)
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is an extended-sense process if (y0, y, β) is the unique Carathéodory solution of

dy0

ds
(s) = w0(s),

dy

ds
(s) = f(y(s), α(s))w0(s) +

m∑
i=1

gi(y(s))wi(s),

dβ

ds
(s) = |w(s)|,

(y0, y, β)(0) = (0, x̂, 0).

a.e. s ∈ [0, S],

Furthermore an extended-sense process (S,w0, w, α, y0, y, β) is said feasible if
(y0(S), y(S), β(S)) ∈ T× [0, K]. The extended problem is de�ned as

(Pext)

minimize Ψ(y0(S), y(S)) +

ˆ S

0

le((y, w0, w, α)(s)) ds

over all feasible processes (S,w0, w, α, y0, y, β)

where the extended lagrangian le is de�ned by setting

le(x,w0, w, α) := l0(x, α)w0 + l̂1(x,w0, w) ∀(x,w0, w, α) ∈ R+ ×C × A,

l̂1 being the above-de�ned recession function. For instance, if
l(x, u, a) = l0(x, a) + `(x)|u|r for some r ∈ [0, 1] and some Lipschitz function `, one has
le(x,w0, w, α) = l0(x, α)w0 + `(x)|w|r(w0)1−r. In general, in view of the sublinearity of
l in u, le is well-de�ned.

The notion of local minimizer in the extended problem (Pext) is de�ned similarly
to that of the original problem:

De�nition 2.14. We say that (S,w0, w, α, y0, y, β) is a local minimizer for problem
(P )ext if there exists δ > 0 such that

Ψ(y0(S), y(S)) +

ˆ S

0

le(y(s), w0(s), w(s), α(s)) ds ≤

≤ Ψ(y0(S), y(S)) +

ˆ S

0

le(y(s), w0(s), w(s), α(s)) ds

for all feasible processes (S,w0, w, α, y0, y, β) such that |S−S|+‖(y0, y, β)−(y0, y, β)‖∞ <
δ, where, since (y0, y, β) and (y0, y, β) may have di�erent domains, we �rst extend them
to R+ so they stay constant to their �nal values (y0, y, β)(T ) and (y0, y, β)(T ), respec-
tively.

There is an obvious one-to-one correspondence between strict-sense processes and
extended-sense processes such that w0(s) > 0 for almost any s ∈ (0, S). This corre-
spondence preserves feasibility of a process, and minima of the strict sense problem
correspond to minima for the space-time extended problem having w0(s) almost every-
where positive (see [21]).

Thanks to the rate-independence of the extended system 7 without loss of generality

7By, rate-independence we mean that if σ : [0, Ŝ] → [0, S] is a di�eomorphism, then
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we can make the following convention:

Convention: we assume that any given local minimizer (S,w0, w, α, y0, y, β) is
canonical, meaning that w0(s) + |w(s)| = 1 for almost every s ∈ [0, S].

Remark 2.34. By allowing w0 = 0 and imposing the constraint w0(s) + |w(s)| = 1 we
get the sought compactness of the minimization domain.

For every process (S,w0, w, α, y0, y, β), we will set

yl(s) :=

ˆ s

0

le(y(σ), w0(σ), w(σ), α(σ))dσ

(so that yl is the unique Carathéodory solution to the trivial di�erential equation
dyl

ds
(s) = le(y(s), w0(s), w(s), α(s)) with initial condition yl(0) = 0.)

Lastly, let us introduce the Hamiltonian function

H : Rn ×
(
R1+n+1+1

)∗ × (R+ ×C × A
)
→ R

de�ned by

H(y, p0, p, λ, π, w
0, w, a) := p0w

0 + p

(
f(y, a) +

m∑
i=1

gi(y)wi

)
− λle(y, w0, w, a) + π|w|.

We are now in the position of stating our main result in this section:

Theorem 2.35 (Maximum Principle). Let (S,w0, w, α, y0, y, β) be a canonical local
minimizer for the extended problem (Pext), and let T be any QDQ-multicone approx-
imating the target set T at (y0, y)(S).
Then there exist multipliers (p0, p, λ, π) ∈ R∗ × AC([0, S]; (Rn)∗) × R∗ × R∗ such that
π ≤ 0 (with π = 0 as soon as β(S) < K) and the following conditions are satis�ed:

i) λ ≥ 0,

ii) (p0, p, λ) 6= 0;

iii) For almost all s ∈ [0, S], p veri�es the adjoint di�erential inclusion

ṗ ∈ −p ∂y

(
f(y, α)w0 +

m∑
i=1

gi(y)wi

)
+ λ∂yl

e(y, w0, w, α) ;

iv) (p0, p(S)) + λ

(
∂Ψ

∂y0
,
∂Ψ

∂y

)(
(y0, y)(S)

)
∈ −

⋃
T∈T

T⊥ ;

(S,w0, w, α, y0, y, β) is a process if and only if (Ŝ, w0 ◦ σ,w ◦ σ, α ◦ σ, y0 ◦ σ, y ◦ σ, β ◦ σ) is a pro-
cess.
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v) For almost all s ∈ [0, S],

max
[
H(y(s), p0, p(s), λ, π, w

0, w, a)
]
(1+ζ) = H(y(s), p0, p(s), λ, π, w

0(s), w(s), α(s)).

where the maximization is performed among values (w0, w, a, ζ) ∈ R+ ×C × A× [−ρ, ρ].

If, in addition, we assume that that β(S) < K and l̂1(·, 0) ≡ 0, the following
m1(m1 − 1)

2
second order conditions hold true as well:

vi) For any i, j ∈ {1, . . . ,m1} and for almost any s ∈ [0, S], one has

0 ∈ p(s) [gi, gj]set(y(s)). (2.29)

2.4.5 An equivalent �xed end-time problem

Let us begin with a standard reparametrization procedure which allows one to
reduce problem (P ) to a �xed end-time problem. To save space, we introduce the
notation

F(y, w0, w, a) :=
(
w0, F e(y, w0, w, a), le(y, w0, w, a)

)
,

for all (y, w0, w, a) ∈ R1+n+1 × R+ ×C × A, where

F e(y, w0, w, a) := f(y, a)w0 +
m∑
i=1

gi(y)wi,

Let us �x S̄ > 0, ρ > 0. We say that (S̄, w0, w, α, ζ, y0, y, yl, β) is a rescaled space-
time process if (S̄, w0, w, α, ζ)(·) ∈ W × L∞([0, S], [−ρ, ρ]) and

(
(y0, y, yl), β

)
is the

unique (Carathéodory) solution of the rescaled Cauchy problem
d

ds

(
(y0, y, yl), β

)
=
(
F(y, w0, w, a), |w|

)
·
(

1 + ζ
)

(
(y0, y, yl), β

)
(0) =

(
(0, x̂, 0), 0

) (2.30)

Moreover, we call (S̄, w0, w, α, ζ, y0, y, yl, β) feasible if
(
(y0, y), β

)
∈ T× [0, K].

The rescaled optimization problem is de�ned as as{
minimize Ψ((y0, y)(S)) + yl(S),

over feasible rescaled processes .
(2.31)

Remark 2.36. It is common knowledge that, for small enough ρ > 0, a process
(S,w0, w, α, y0, y, β) is a canonical local minimizer for the extended problem (Pext)
if and only if the rescaled space-time process (S̄, w̄0, w̄, ᾱ, 0, ȳ0, ȳ, ȳl, β̄) is a local min-
imizer for �xed-end-time problem (2.31). Therefore, in the proof of the Maximum
Problem we are allowed to replace the hypothesis of the theorem with the assump-
tion that (S̄, w̄0, w̄, ᾱ, 0, ȳ0, ȳ, ȳl, β̄) is a local minimizer of the rescaled problem (2.31).
Therefore, we posit the assumption that ζ̄ ≡ 0 throughout the proof.
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2.4.6 Set separation

For some δ > 0, let us consider the δ-reachable set Rδ ⊆ R1+n+1+1 de�ned by:

Rδ :=


(
y0, y, yl + Ψ ◦ (y0, y), β

)
(S) : (S,w0, w, α, ζ, y0, y, yl, β) is a process

that veri�es |S − S|+ ‖(y0 − y0, y − y, yl − yl, β − β)‖∞ < δ


and the projected δ-reachable set

R
′

δ := pr
(
Rδ

)
⊆ R1+n+1,

where the projection operator pr is de�ned by setting

pr(x0, x, xl, β) := (x0, x, xl), ∀(x0, x, xl, β) ∈ R1+n+1+1.

Let us introduce also the pro�table set

Pδ :=

((
T×

]
−∞, yl(S) + Ψ(S)

[ )⋃{(
y0, y, yl(S) + Ψ(S)

)})
× [0, K]

and the projected pro�table set

P
′

δ := pr
(
Pδ

)
=

(
T×

]
−∞, yl(S) + Ψ(S)

[)⋃{(
y0, y, yl(S) + Ψ(S)

)}
Lemma 2.37. Let us assume that β(S) < K. Then for any δ > 0 su�ciently small, the
projected pro�table set P

′

δ and the projected δ-reachable set R
′

δ are locally separated at(
y0, y, yl(S) + Ψ(S)

)
.

Proof. Indeed, by the de�nition of local minimizer it follows that the pro�table set Pδ

and the δ-reachable set Rδ are locally separated at
(
y0, y, yl(S) + Ψ(S), β(S)

)
. From

this one get the thesis trivially (see [21], Lemma 6.12).

With the ultimate aim of applying a suitable separability criterion for approxi-
mating cones, we now build a family of QDQ approximating cones to the projected
δ-reachable set R

′

δ at
(
y0, y, yl(S) + Ψ(S)

)
. Let us de�ne the set V of variation gen-

erators as the union V := V1

⋃
V2, where V1 and V2 are the sets of needle variation

generators and of bracket-like variation generators de�ned asV1 := R+×C×A×[−ρ, ρ]

and V2 :=

[
{1, . . . ,m1}2 \ diag

(
{1, . . . ,m1}2

)]
, respectively.

De�nition 2.15. Let (0, S)Leb ⊂ [0, S] be the set of Lebesgue points of the function
s 7→ (w0(s), F

e
(s), l

e
(s), |w|(s)) ì where F

e
and l

e
denote the functions F e and le

evaluated along the optimal process we are studying. For every variation generator
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c ∈ V and every instant s, let us de�ne the variation
(
v0
c,s, vc,s, v

l
c,s

)
as follows:

(
v0
c,s, vc,s, v

l
c,s

)
:=




 w0(1 + ζ)− w0(s)

F e(y(s), w0, w, a)(1 + ζ)− F e
(s)

le(y(s), w0, w, a)(1 + ζ)− le(s)

 if c = (w0, w, a, ζ) ∈ V1,
and s ∈ (0, S)Leb

{0} × [gi, gj]set(y(s))× {0} if c = (i, j) ∈ V2

and s ∈ (0, S).

Moreover, when c = (w0, w, a, ζ) ∈ V1, and s ∈ (0, S)Leb, we set vνc,s := |w|(1 + ζ) −
|w(s)|.

Let us point out that, to retain uniformity of notation, we always regard
(
v0
c,s, vc,s, v

l
c,s

)
as a subset of vectors of R1+n+1 , though it reduces to the singleton formed by that the
usual needle variation vector as soon as c ∈ V1.

De�nition 2.16. Let us �x an instant s ∈ (0, S) and a rescaled control
w = (w0, w, α, ζ) ∈ L∞

(
[0, S],R+ ×C × A× [−ρ, ρ]

)
(with essinf(w0 + |w|) > 0).

� If c = (ŵ0, ŵ, â, ζ̂) ∈ V1, the family of controls
{
wε,c,s(s) : ε ∈ [0, s)

}
de�ned

setting

wε,c,s(s) =

{
w(s) if s ∈ [0, s− ε) ∪ (s, S]

(ŵ0, ŵ, â, ζ̂) if s ∈ [s− ε, s]

will be called a needle control approximation of w(s) at s associated to c.

� If c = (i, j) ∈ V2, the family of controls {wε,c,s(s) : 0 < 8
√
ε ≤ s} de�ned by

setting

wε,c,s(s) =



w(s) if s 6∈ [s− 8
√
ε, s]

(2w0, 2w, α, ζ) ◦ γε(s) if s ∈ [s− 8
√
ε, s− 4

√
ε]

(0, ei, a, 0) if s ∈ [s− 4
√
ε, s− 3

√
ε]

(0, ej, a, 0) if s ∈ [s− 3
√
ε, s− 2

√
ε]

(0,−ei, a, 0) if s ∈ [s− 2
√
ε, s−

√
ε]

(0,−ej, a, 0) if s ∈ [s−
√
ε, s],

where a ∈ A is arbitrarily chosen8 and γε(s) := 2s − s + 8
√
ε, the bracket-like

approximation of w.

For any (s, c) ∈ [0, S]×V and any ε su�ciently small, consider the functional Aε,c,s

(from the space of rescaled controls w into itself) de�ned by setting Aε,c,s(w) := wε,c,s.
In addition, given N variation generators c1, . . . , cN ∈ V and N instants 0 < s1 < s2 <
. . . sN ≤ S for a ε̃ > 0 su�ciently small, let us de�ne the multiple perturbation

[0, ε̃]N 3 ε 7→ wε := AεN ,cN ,sN ◦ . . . ◦Aε1,c1,s1(w).

8Since w0 = 0, the choice of a is irrelevant
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Let us set (w0
ε, wε, aε, ζε) := wε, and let us use (y0

ε, yε, y
l
ε, βε) to denote the solution

(on [0, S]) of the Cauchy problem 9
d

ds
(y0, y, yl, β) =

(
F
(
y, w0

ε, wε, aε

)
, |wε|

)
(1 + ζε)

(y0, y, yl, β)(0) = (0, x̂, 0, 0)

(Pε,c,s)

De�nition 2.17. Let N be a natural number, and let us choose choose N variation
generators c1, . . . , cN ∈ V and N instants 0 < s1 < s2 < . . . ≤ sN ≤ S, with
sk ∈ [0, S]Leb as soon as ck ∈ V1. For every k = 1, . . . , N and any L1-map [0, S] 3 s 7→
(M,ω)(s) ∈ Lin(Rn,Rn)× (Rn)∗, let us consider the (1 + n+ 1)× (1 + n+ 1) matrix

E′k(M,ω) :=


1 0 0

0 e

´ S

sk
M

0

∂Ψ

∂y0
(S)

∂Ψ

∂y
(S)e

´ S

sk
M

+

ˆ S

sk

(
ω(s)e

´ sk

s
M
)
ds 1

 (2.32)

where the exponential of a matrix is de�ned as in Subsection 2.4.1. Subsequently,
de�ne the subset Λ′N ⊂ Lin(RN ,R1+n+1) as

Λ′N :=


E′1(M,ω)


V 0

1

V1

V l
1

 , . . . ,E′N(M,ω)


V 0
N

VN

V l
N


 ,

(M,ω)(s) ∈ ∂y
(
F
e
, l
e)

(s), s ∈ [0, S],
is a measurable selection, and

(V 0
k , Vk, V

l
k) ∈ (v0

ck,sk
, vck,sk , v

l
ck,sk

)

 .

In the special case when ck ∈ V1 for all k ∈ {1, . . . , N}, we can also de�ne the
(1 + n+ 1 + 1)× (1 + n+ 1 + 1) matrix

Ek(M,ω) :=



1 0 0 0

0 e

´ S

sk
M

0 0

∂Ψ

∂y0
(S)

∂Ψ

∂y
(S)e

´ S

sk
M

+

ˆ S

sk

(
ω(s)e

´ sk

s
M
)
ds 1 0

0 0 0 1


(2.33)

9Of course, wε and (yε, βε) depend also on the parameters ck and sk, but we avoid writing them
when possible in order to simplify the notation.
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and the subset ΛN ⊂ Lin(RN ,R1+n+1+1),

ΛN :=



E1(M,ω)


V 0

1

V1

V l
1

V ν
1

 , . . . ,EN(M,ω)


V 0
N

VN

V l
N

V ν
N



 ,

(M,ω)(s) ∈ ∂y
(
F
e
, l
e)

(s), s ∈ [0, S],
is a measurable selection, and

(V 0
k , Vk, V

l
k , V

ν
k ) ∈

∈ (v0
ck,sk

, vck,sk , v
l
ck,sk

, vνck,sk)


.

Theorem 2.38 and Corollary 2.39 represent the most important technical step of
the proof of the Maximum Principle, and will be proved in Section 2.4.8.

Theorem 2.38. Let
(
y0, y, yl, β

)
and

(
y0
ε, yε, y

l
ε, βε

)
as in the previous subsections. If

we assume the extra assumption l̂1(·, 0, ) ≡ 0, then the set Λ′N is a QDQ at 0 of the
map

(R+)N 3 ε 7→

(
y0
ε(S), yε(S), ylε(S) + Ψ

(
y0
ε(S), yε(S)

))
.

Moreover, in the special case when ck ∈ V1 for all k ∈ {1, . . . , N} (and l̂1(·, 0, ) is
possibly non vanishing) , ΛN is a QDQ at 0 of the map

(R+)N 3 ε 7→

(
y0
ε(S), yε(S), ylε(S) + Ψ

(
y0
ε(S), yε(S)

)
, βε(S)

)
.

Corollary 2.39. Let us use the same notations as in Theorem 2.38 and let us assume
that l̂1(·, 0, ) ≡ 0. For any choice of δ > 0, the family

Λ′N(R+)N = {L′(R+)N : L′ ∈ Λ′N}, 10

is an approximating QDQ-multicone of the projected δ-reachable setR′δ at
(
y0, y, yl(S)+

Ψ(S)
)
. Moreover, in the special case when ck ∈ V1 for all k ∈ {1, . . . , N} (and l̂1(·, 0, )

is possibly non vanishing),

ΛN(R+)N = {L(R+)N : L ∈ ΛN}

is an approximating QDQ-multicone of δ-reachable setRδ at
(
y0, y, yl(S)+Ψ(S), β(S)

)
.

Generalizing a classical procedure, we now use the fact that Λ′N(R+)N is a QDQ
approximating multi-cone of R′δ at

(
y0, y, yl(S)+Ψ(S)

)
to deduce a linear separability

result at time S, which in turn can be regarded as a Maximum Principle at S.

Lemma 2.40. Let N a positive integer and let Λ′N be de�ned as in the previous sub-
section. Let us assume that β(S) < K whenever ck ∈ V2 for some k ∈ {1, . . . , N}.
Then, for any approximating QDQ-multicone T to the target T at

(
y0, y

)
, there exists

(ξ0, ξ, ξc) ∈ (R× Rn × R)∗\{(0, 0, 0)} such that

(i) ξc ≤ 0 ,

10One sets L(R+)N = {Lε : ε ∈ (R+)N}
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(ii) (ξ0, ξ, ξc) ∈
(
L′(R+)N

)⊥
, for some L′ ∈ Λ′N ,

(iii) (ξ0, ξ) ∈ −T⊥ for some T ∈T.

Additionally, if ck ∈ V1 for all k ∈ {1, . . . , N} then there exists an additional multiplier
π ≤ 0 with the condition

(iv) (ξ0, ξ, ξc, π) ∈
(
L(R+)N

)⊥
, for some L ∈ ΛN ,

Proof. By Lemma 2.37 we know that, for δ > 0 su�ciently small, the projected prof-
itable set P

′
and the projected δ-reachable set R

′

δ are locally separated.
Moreover, if T is an approximating QDQ-multicone to the target at

(
y0, y

)
, then{

T × (−∞, 0) : T ∈T
}
is an approximating QDQ-multicone to the projected prof-

itable set P
′
at
(
y0, y, yl(S) + Ψ(S)

)
.

It follows approximating QDQ-multicones
{
T × (−∞, 0) : T ∈ T

}
and Λ′N(R+)N

are not strongly transverse, from Lemma 2.31. Now, since
{
T× (−∞, 0) : T ∈T

}
is

a multicone such that all its cones are contained in the semispace R1+n × (−∞, 0] we
can apply Lemma 2.32 and infer the existence of (ξ0, ξ, ξc) ∈ (R×Rn×R)∗\{(0, 0, 0)},
L ∈ ΛN , and T ∈T, such that

(ξ0, ξ, ξc) ∈
(
L(R+)N

)⊥
, (ξ0, ξ, ξc) ∈

(
T × R−

)⊥
.

In particular, ξc ≤ 0 and (ξ0, ξ) ∈ −T⊥, which concludes the �rst part of the proof.
The existence of a π ≤ 0 such that property (iv) holds follows from a similar reasoning
addressing the local separation of the pro�table set and the δ-reachable set in the
augmented space R1+n+1+1.

By using propagation due to the adjoint inclusion, as a direct consequence of Lemma
2.40 we get amaximum principle for the instants s1, . . . , sN and the variation generators
c1, . . . , cN :

Lemma 2.41. Let N a positive integer. Assume β(S) < K and l̂1(·, 0, ·) ≡ 0 whenever
ck ∈ V2 for some k ∈ {1, . . . , N}. Then, for any approximating QDQ-multicone T to
the target T at

(
y0, y

)
, there exist

(p0, p, λ) ∈ R∗ × AC
(
[0, S], (Rn)∗

)
× R∗ and T ∈T

such that λ ≥ 0 and:

i)

ṗ ∈ −p ∂y

(
f(y, α)w0 +

m∑
i=1

gi(y)wi

)
+ λ ∂yl

e(y, w0, w, α) ; (2.34)

ii)

(p0, p(S)) + λ

(
∂Ψ

∂y0
,
∂Ψ

∂y

)(
(y0, y)(S)

)
∈ −T⊥ ; (2.35)
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iii) if ck = (w0
k, wk, ak, ζk) ∈ V1,

H(y(sk), p0, p(sk), λ, 0, w
0
k, wk, ak) ≤
≤ H(y(sk), p0, p(sk), λ, 0, w

0(sk), w(sk), α(sk)) (2.36)

iv) if ck = (ik, jk) ∈ V2,
min

V ∈[gik ,gjk ]set
p(sk) V ≤ 0. (2.37)

If, instead, β(S) = K and all ck are in V1 there exists π ≤ 0 such that

H
(
y(sk), p0, p(sk), λ, π, w

0
k, wk, ak

)
≤

≤ H
(
y(sk), p0, p(sk), λ, π, w

0(sk), w(sk), α(sk)
)

(2.38)

holds in place of 2.36.

Proof. Let us observe that, by the elementary theory of a�ne ODEs, we can rephrase
(ii) from Lemma 2.40 by saying that there exists a linear form (ξ0, ξ, ξc) ∈ (R× Rn ×

R)∗\{(0, 0, 0)}, a measurable selection M(s) ∈ ∂y
(
f(y, α)w0 +

m∑
i=1

gi(y)wi
)
, a.e. s ∈

(0, S), a measurable selection ω(s) ∈ ∂yle(y, w0, w, α) a.e. s ∈ (0, S), and a choice of(
V 0
j , Vj, V

l
j

)
∈
(
v0
cj ,sj

, vcj ,sj , v
l
cj ,sj

)
, ∀j = 1, . . . , N,

such that ξ0 ≤ 0 and, ∀k = 1, . . . , N,

ξ0V
0
k + ξe

´ S
sk
M(s)

Vk + ξc

[
∂Ψ

∂y0
(S)V 0

k +

+
∂Ψ

∂y
(S)e

´ S
sk
M(s)

Vk +

ˆ
S

sk

ω(s)e
´ sk
s M(σ) dσ dsVk + V l

k

]
≤ 0.

(2.39)

Setting λ := −ξc, p0 := ξ0 − λ ∂Ψ
∂y0 (S) and, for all s ∈ [0, S],

p(s) :=

(
ξ − λ∂Ψ

∂y
(S)

)
e
´ S
s M(σ) dσ − λ

ˆ S

s

ω(σ)e
´ s
σ M(τ) dτ dσ,

p(·) satis�es the adjoint di�erential equation ṗ(s) = −p(s)M(s) +λω(s). In particular,
p(·) veri�es the di�erential inclusion (2.34). Therefore, inequality (2.39) can be written
as

p0V
0
k + p(sk)Vk − λV l

k ≤ 0, (2.40)

while (iii) of Lemma 2.40 now reads as (2.35) Specializing (2.40) to bracket-like varia-
tions ck = (ik, jk) ∈ V2 , we obtain (2.37), whereas, when ck = (w0

k, wk, ak, ζk) ∈ V1 is
a needle variation generator, we get (2.36).

The case β(S) = K and all needle variations is proved similarly, by making use of
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(iv) instead of (ii) from Lemma 2.40.

2.4.7 In�nitely many variations

To complete the proof of Theorem 2.35, we now combine some classical non-empty
intersection arguments with the crucial fact that the set-valued brackets are convex-
valued.
We will do so only in the case when β(S) < K, but the same ideas can be used to
deal with the case β(S) = K (which however allows only for the '�rst order' part of
our maximum principle). As a matter of fact, the maximum condition is the easiest
to deal with, and its proof is not that di�erent from classical proofs in the smooth
case. Instead, a special care is needed to prove the set-valued Lie-Bracket higher order
condition.

By Lusin's Theorem, there exists subsets Eq ⊂ [0, S̄]s, q = 0, 1, 2, ..., such that

i) E0 has null measure,

ii) for every q > 0 Eq is a compact set such that the restriction to Eq of the map

s 7→

(
w0(s),

(
f(y(s), α)(s), w0(s) +

m∑
i=1

gi(y(s))wi(s)
)
, le(y(s), w0(s), w(s)), |w|(s)

)

is continuous, and

iii) (0, S)Leb =
+∞⋃
q=0

Eq.

For every q > 0 let use Dq ⊆ Eq to denote the set of all density points of Eq. By
the Lebesgue density theorem we have that, for every integer q ≥ 1, Dq has the same

Lebesgue measure as Eq, so the set D :=
+∞⋃
q=1

Dq is a set of measure equal to S.

De�nition 2.18. Let X ⊆ D ×V be any subset of time-generator pairs. We will say
that a triple (p0, p, λ) ∈ R×AC([0, S];Rn)×R+ satis�es property (PX) if the following
conditions (1)-(3) are veri�ed:

(1) p satis�es the di�erential inclusion

ṗ ∈ −p ∂y

(
f(y, α)w0 +

m∑
i=1

gi(y)wi

)
+ λ∂yl

e(y, w0, w, α) for a.e. s ∈ [0, S];

(2.41)

(2) one has

(p0, p(S)) + λ

(
∂Ψ

∂y0
,
∂Ψ

∂y

)(
(y0, y)(S)

)
∈ −

⋃
T∈T

T⊥; (2.42)
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(3) for every (s, c) ∈ X, if c = (w0, w, a, ζ), then

p0w
0(1+ζ)+p(s)

(
f(y(s), a)w0 +

m∑
i=1

gi(y(s))wi

)
(1+ζ)−λle(y(s), w0, w, a) ≤

p0w
0 + p(s)

(
f(y(s), α(s))w0(s) +

m∑
i=1

gi(y(s))wi(s)

)
−

− λle(y(s), w0(s), w, α(s)), (2.43)

while, if c = (i, j), then

min
V ∈[gi,gj ]set(y(s))

pn(s)V ≤ 0. (2.44)

For any given subset X ⊆ D ×V, let us set

Θ(X) :=

{
(p0, p, λ) ∈ R× AC([0, S];Rn)× R : |(p0, p(S), λ)| = 1,

(p0, p, λ) veri�es the property (PX)

}
.

Lemma 2.42. For any subset X ⊆ D×V, Θ(X) is a compact subset of R×AC([0, S];Rn)×
R, when the latter is endowed with the norm ‖(p0, p(·), λ)‖ := |p0|+ |λ|+ ‖p‖∞.

Proof. Consider a sequence (p0,n, pn(s), λn) ∈ Θ(X). The set-valued maps

s 7→ ∂y

(
f(y(s), α(s))w0(s) +

m∑
i=1

gi(y(s))wi(s)

)

s 7→ ∂yl
e
(
y(s), w0(s), w(s), α(s)

)
have uniformly bounded closed convex values as they are Clarke Jacobians of func-
tions that are globally Lipschitz when cut o� to a compact set containing a tubular
neighbourhood of the set y([0, S]). Furthermore, the quantities |pn(S)|, λn and p0,n are
bounded in norm by 1, so that we are in the position to use the following fact:

� Let C(s) : [0, S] ⇒ Rn and B(s) : [0, S] ⇒ Rn be a measurable multivalued
function with compact convex non-empty values. Moreover, assume that the sets
B(s) (respectively C(s)) are all contained in a �xed ball centered at 0 ∈ Rn and
of radius B∗ (respectively C∗).
Let pn(s) be a sequence of solutions to the di�erential inclusion

ṗ(s) ∈ p(s)B(s) + C(s), for almost all s ∈ [0, S] (2.45)

all satisfying |pn(S)| ≤ 1. Then there is a subsequence of pn(s) that uniformly
converges to a function p(s), and p(s) is also a solution to the di�erential inclu-
sion (2.45).

The proof of this fact can be deduced, e.g., from Theorem 1 in Chapter 2 of [22].
Therefore, modulo thrice extracting subsequences from our sequence, we can assume
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λn → λ ≥ 0, p0,n → p0 and pn → p ∈ AC uniformly for s ∈ [0, S],

with p(s) still satisfying the di�erential inclusion (2.41). Since the paths pn converges
uniformly to p, properties (2.43) and (2.42) are inherited by p(s) from the sequence
pn(s) by passing to the limit. Finally, passing to the limit we get that (2.44) holds true
as well.

Our main result from this section is concluded showing that Θ(D ×V) 6= ∅ with a
non-empty intersection argument. This was of course taken care of in [20] but the proof
is rather standard in its classical components while rather complicated and technical
in its parts concerning the set-valued Lie brackes, so that we do not fully report it here
for the sake of readability and brevity.
Next subsection, however, deals with the proof of crucial Theorem 2.38, which we had
postponed.

2.4.8 Proof of Theorem 2.38

In order to conclude the proof of Theorem 2.35, we have to prove Theorem 2.38.
For the sake of brevity and readability, here, we will not be slavish on the technical
details. Let us recall its statement:

Theorem 2.38. (Angrisani, Rampazzo, 2021, preprint) Let
(
y0, y, yl, β

)
and(

y0
ε, yε, y

l
ε, βε

)
as in the previous subsection. If we assume the extra assumption l̂1(·, 0, ) ≡

0, then the set Λ′N is a QDQ at 0 of the map

(R+)N 3 ε 7→

(
y0
ε(S), yε(S), ylε(S) + Ψ

(
y0
ε(S), yε(S)

))
.

Moreover, in the special case when ck ∈ V1 for all k ∈ {1, . . . , N} (and l̂1(·, 0, ) is
possibly non vanishing) , ΛN is a QDQ at 0 of the map

(R+)N 3 ε 7→

(
y0
ε(S), yε(S), ylε(S) + Ψ

(
y0
ε(S), yε(S)

)
, βε(S)

)
.

Proof. Let us introduce a molli�er (in the variable y ∈ Rn), namely a C∞ function

ϕ : Rn → R+, with support contained in the unit ball, and such that

ˆ
Rn
ϕ(y) dy = 1.

For every η > 0, let us set ϕη(y) :=
1

ηn
ϕ

(
y

η

)
, and let us de�ne the molli�ed vector

�eld

Fη

(
y, w0, w, a

)
:=

ˆ
Rn

F
(
y + h,w0, w, a

)
ϕη(h) dh.

Observe that the control vector �eld F is continuous, and, in addition, it is locally
Lipschitz continuous in the variable y. Moreover, we can apply a cut o� tehcnique and
make F equal to zero outside a compact set containing a small neighbourhood of our
local minimizer, so that global Lipschitz continuity (in y) can be assumed as well. It
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follows that Fη converges uniformly to F as η goes to 0. For any �xed ε ∈ R+ with a
suitably small norm, let us introduce the molli�ed perturbed Cauchy problem

d

ds

(
(y0, y, yl), β

)
=
(
Fη(y, w

0
ε, wε, aε), |w|

)
·
(

1 + ζε

)
(
(y0, y, yl), β

)
(0) =

(
(0, x̂, 0), 0

) (2.46)

and let us use
(
y0
η,ε, yη,ε, y

l
η,ε, βε

)
to denote its unique Carathéodory solution.

Let us de�ne the function zη,ε(s) :=
∣∣(y0

η,ε, yη,ε, y
l
η,ε)(s)− (y0

ε, yε, y
l
ε)(s)

∣∣, s ∈ [0, S̄],
and let us observe that, from the inequality

zη,ε(s) ≤
ˆ s

0

∣∣∣Fη(yη,ε, w
0
ε, wε, aε)−F(yε, w

0
ε, wε, aε)

∣∣∣(1 + ζε

)
dσ ≤ˆ s

0

∣∣∣Fη(yη,ε, w
0
ε, wε, aε)−F(yη,ε, w

0
ε, wε, aε)

∣∣∣(1 + ζε

)
dσ + L(1 + 2ρ)

ˆ s

0

zη,ε(σ) ≤

2K(1 + 2ρ)Sη + L(1 + 2ρ)
´ s

0
zη,ε(σ)dσ,

11

and Gronwall's Lemma, we deduce∣∣(y0
η,ε, yη,ε, y

l
η,ε)(s)− (y0

ε, yε, y
l
ε)(s)

∣∣ = zη,ε(s) ≤ Cη, ∀s ∈ [0, S̄], (2.47)

where C is a positive constant depending only on S, K, and L. Therefore∥∥(y0
η,ε, yη,ε, y

l
η,ε)− (y0

ε, yε, y
l
ε)
∥∥
∞ → 0

as η → 0, uniformly with respect to ε.
Assume, for a start, that N = 1. By the de�nition of wε,c,s1(s) and by standard

estimates on needle variations (see e.g. [21]), one gets the following fact:12

� if c = (w0, w, a, ζ) is a needle variation generator, then

y0
η,ε

yη,ε
ylη,ε

 (s1)−

y0
η

yη
ylη

 (s1) = ε

 w0(1 + ζ)− w0(s1)

F e
η (yη(s1), w0, w, a)) (1 + ζ)− F e

η(s1)

leη (yη(s1), w0, w, a)) (1 + ζ)− leη(s1)

+φ1(η, ε),

(2.48)
where we have used the notation(

F
e

η(s), l
e

η(s)
)

:=
(
F e
η , l

e
η

) (
yη(s), w

0(s), w(s), a(s)
)

∀s ∈ [0, S],

and, for every η ≥ 0, φ1(η, ·) is a continuous function verifying φ1(η, ε) = o(ε),
uniformly with respect to η. In other words, φ1(η, ε)/|ε| → 0 as ε → 0,
uniformly with respect to η. This is because it can be proven that |φ1(η, ε)| < Cε2,
with C only depending on the Lipschitz constant and L∞ norm of F: such an
inequality is, in turn, proven by expressing (y0

η,ε, yη,ε, y
l
η,ε)(s1) and (y0

η, yη, y
l
η)(s1)

as Caratheodory solutions of their respective dynamic systems.

11K is a bound for the maps F and Fη and L is a Lipschitz constant for the maps (y0, y, yl) 7→
F(y0, y, yl, w0, w, a), independent of (w0, w, a)

12We write c, ε, s1 instead of c1, ε, s1, respectively.
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To write down a similar estimate for bracket-like variation generator, we will need an
exact integral formula for commutator-like multi�ows that was found in [128]. More
precisely we make use of the following fact that the authors proved: for any two
smooth �elds that are bounded and with bounded derivatives, such as gi,η and gj,η in
our situation, one has(

e−
√
εgj,η ◦ e−

√
εgi,η ◦ e

√
εgj,η ◦ e

√
εgi,η

)
(yη(s1)) =

= yη(s1) +

ˆ √ε
0

ˆ √ε
0

[gi,η, gj,η](θ(yη(s1), σ,
√
ε, τ)) dτ dσ + o(ε) (2.49)

where θ(x, σ, t, τ) :=
(
e(τ−t)gi,η ◦ eσgj,η ◦ etgi,η

)
(x) and etf (x) denotes the value at t of

the solution to the Cauchy Problem {y′ = f(y), y(0) = x}.
Using the integral average theorem, we have(

e−
√
εgj,η ◦ e−

√
εgi,η ◦ e

√
εgj,η ◦ e

√
εgi,η

)
(yη(s1)) =

= yη(s1) + ε · [gi,η, gj,η](θ∗(yη(s1), ε)) + o(ε) (2.50)

where θ∗(yη(s1), ε) is an abbreviation of θ(yη(s1), σ∗,
√
ε, τ ∗) for some suitable σ∗ and τ ∗

in (0,
√
ε). The precise expression of θ∗(yη(s1), ε) is not going to be relevant in future

calculations: we only remark that |θ∗(yη(s1), ε) − yη(s1)| < C
√
ε for some constant

C > 0.

� if c = (i, j) is a bracket-like variation generator, theny0
η,ε

yη,ε
ylη,ε

 (s1)−

y0
η

yη
ylη

 (s1) = ε

 0
[gi,η, gj,η](θ

∗(yη(s1), ε)) + o(ε)
0

 , (2.51)

where, for every ` = 1, . . . , N, η > 0, the molli�ed vector �eld g`,η is de�ned as

g`,η(y) :=

ˆ
Rn
g`(y + h)ϕη(h) dh,

To deal with the general case N ≥ 1, for every k = 1, . . . , N , let us set

v0
k,η,ε

vk,η,ε
vlk,η,ε

 :=



 w0(1 + ζ)− w0(sk)

F e
η (yη(sk), w

0, w, a)) (1 + ζ)− F e

η(sk)

leη (yη(sk), w
0, w, a)) (1 + ζ)− leη(sk)

 if, ck ∈ V1, 0
[gi,η, gj,η](θ

∗(yη(s1), εk))
0

 . if ck ∈ V2
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Using induction, by (2.48), (2.51) one easily gets (see e.g. [21])y0
η,ε

yη,ε
ylη,ε

 (S)−

y0
η

yη
ylη

 (S) =
N∑
1

εk e

´
S̄

sk

∂Fη
∂y

v0
k,η,ε

vk,η,ε
vlk,η,ε

+ o(|ε|), (2.52)

where o(|ε|) is independent of η.
from which we obtain y0

η,ε(S)

yη,ε(S)
ylη,ε(S) + Ψ

(
y0
η,ε(S), yη,ε(S)

)
 =

 y0
η(S)

yη(S)
ylη(S) + Ψ

(
y0
η(S), yη(S)

)
+ L(η, ε)ε + o(|ε|),

where we have set, for every small enough η > 0, 13

L(η, ε) =

E′1
(
∂F

e

η

∂y
,
∂l
e

η

∂y

)
·


v0

1,η,ε

v1,η,ε

vl1,η,ε

 , . . . ,E′N

(
∂F

e

η

∂y
,
∂l
e

η

∂y

)
·


v0
N,η,ε

vN,η,ε

vlN,η,ε


 ∈ Lin

(
RN ,R1+n+1

)

Therefore, using (2.47), one gets(
y0
ε(S), yε(S), ylε(S) + Ψ

(
y0
ε(S), yε(S)

) )>
=(

y0
η,ε(S), yη,ε(S), ylη,ε(S) + Ψ

(
y0
η,ε(S), yη,ε(S)

) )>
−[(

y0
η,ε(S), yη,ε(S), ylη,ε(S) + Ψ

(
y0
η,ε(S), yη,ε(S)

) )>
−
(
y0
ε(S), yε(S), ylε(S) + Ψ

(
y0
ε(S), yε(S)

) )>]
=(

y0
η(S), yη(S), ylη(S) + Ψ

(
y0
η(S), yη(S)

) )>
+ L(η, ε)ε + o(|ε|) + o(

√
η) =(

y0(S), y(S), yl(S) + Ψ
(
y0(S), y(S)

) )>
+ L(η, ε)ε + o(|ε|) + o(

√
η)−[(

y0(S), y(S), yl(S) + Ψ
(
y0(S), y(S)

) )>
−
(
y0
η(S), yη(S), ylη(S) + Ψ

(
y0
η(S), yη(S)

) )>]
=(

y0(S), y(S), yl(S) + Ψ
(
y0(S), y(S)

) )>
+ L(η, ε)ε + o(|ε|) + o(

√
η) (2.53)

Now, our intention is to choose η as a function of ε, namely η = η(ε) = |ε|2, so that we
reduce to just one vector-valued parameter ε, we have o(

√
η) = o(|ε|) and we denote,

more simply L(ε) = L(η(ε), ε).
Clearly, as soon as ck ∈ V1, one has

dist
( (
v0
k,η(ε),ε, vk,η(ε),ε, v

l
k,η(ε),ε

)
,
(
v0
ck,sk

, vck,sk , v
l
ck,sk

) )
→ 0 as ε→ 0. (2.54)

This holds true if ck ∈ V2 as well, but we postpone the technical and lenghty proof of
this to Lemma 2.43 below, for the sake of clarity.

13See (2.32) for the de�nition of the matrices Ek (·, ·)
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Given a convex compact set Q ⊂ Lin(Rn,Rn), let us use PQ : Lin(Rn,Rn) →
Lin(Rn,Rn) to denote the projection of x on Q. For any η > 0, let us consider the
selection Mη : [0, S]→ Lin(Rn,R) ∈ ∂yF

e
de�ned by setting

Mη(s) := P∂yF e(s)

(
∂F

e

η

∂y
(s)

)
∀s ∈ [0, S],

where we have used the overlined notation

∂F
e

η

∂y
(s) :=

∂F e
η

∂y

(
yη(s), w

0(s), w(s), α(s)
)

∂yF
e
(s) := ∂yF

e
(
y(s), w0(s), w(s), α(s)

)
∀s ∈ [0, S].

Now, consider the function

s 7→ dη(s) := dist

(
∂F

e

η

∂y
(s) , ∂yF

e
(s)

)
=

∣∣∣∣∣∂F
e

η

∂y
(s)−Mη(s)

∣∣∣∣∣ ,
which is measurable (see e.g. Proposition 5.8 in [4]) and essentially bounded in terms
of the Lipschitz constant of F . Furthermore, through an argument akin to that utilized
to prove Lemma 2.43 below , one proves that the sequence of measurable, equi-bounded
functions dη(s) pointwise converges to 0 as η → 0, for almost every s in the compact
set [0, S]. Therefore ‖dη‖1 → 0 converges to zero in L1. Now, the exponential map

M(·) 7→ e
´ S
(·)M is Lipschitz continuous (from L1 to C0) when restricted to a family of

matrices uniformly bounded in L1 , i.e., for some constant C,

max
s∈[0,S]

∣∣∣∣∣e
´ S

s
Mη − e

´ S

s

∂F
e
η

∂y

∣∣∣∣∣ ≤ C‖dη‖1.

Hence,

max
s∈[0,S]

dist

(
e

´ S

s

∂F
e
η

∂y ,

{
e

´ S

s
M
, M(·) ∈ ∂F e

η(·)

})
= max

s∈[0,S]

∣∣∣∣∣e
´ S

s
Mη − e

´ S

s

∂F
e
η

∂y

∣∣∣∣∣→ 0

as η → 0. Moreover, in the same spirit, ∂l
e

dy
has vanishing distance from ∂yle and the

integral of ∂l
e

dy
on any time interval has vanishing distance from the set of integrals of

measurable selections of ∂yl
e
over the same time interval. Therefore, as (R+)N 3 ε→ 0

implies η = η(ε)→ 0, we can conclude:

dist (L(ε),Λ′N)→ 0 as (R+)N 3 ε→ 0.

The proof of the �rst statement in Theorem 2.38 is then concluded as we are precisely
in the situation described by Remark 2.30.

The second statement is trivially obtained by repeating the same calculations also
keeping track of β, which does not depend on y, hence it does not call for the above
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molli�cation argument and the procedure is straightforward noticing:

βε(S)− β(S) :=
N∑
k=1

ˆ sk

sk−εk
|wk|(1 + ζk)− |w(σ)| dσ.

As it is rather technical, we omit here the proof of

Lemma 2.43. If ck is a bracket-like variation generator and η = η(ε) = |ε|2, then

dist
( (
v0
k,η,ε, vk,η,ε, v

l
k,η,ε

)
,
(
v0
ck,sk

, vck,sk , v
l
ck,s

) )
→ 0 as ε→ 0 (2.55)

2.4.9 An example
In this simple example, by direct computation one can check that, for any value

of the parameter r ∈] − 2,−1] the control (w̄0
r , w̄

1
r , w̄

2
r , ar) de�ned below is not op-

timal, while for r = −2 it is optimal. Let us see that, while this fact was not
deductible from the First Order Maximum Principle, the the non-optimality of the
controls (w̄0

r , w̄
1
r , w̄

2
r , ar) for any r ∈]− 2,−1] is immediately established by the Higher

Order Maximum Principle.
dx

dt
= f(x, a) + g1(x)u1 + g2(x)u2

dν
dt

= |(u1, u2)|
(x(0), ν(0) =

(
1, 0, 2, 0

)
(x(1), ν(1) ∈ T× [0, K]

T = R+ ×
{
x ∈ R3, |x− (0, 0, 0.5)| ≤ 0.5

}
, K = 2.

f(x, a) =

0
0
a

 , g1(x) =

 1
0

−x2 + |x2|

 g2(x) =

 0
1

x1 + |x1|


(a, u) ∈ A×C := [1, 2]× R2

(
dy0

ds
,
dy1

ds
,
dy2

ds
,
dy3

ds

)
=
(
w0 , w1 , w2 , (−y2 + |y2|)w1 + (y1 + |y1|)w2 + rw0

)
(y0, y) =

(
0, 1, 0, 2

)
Ψ(t, x) := |x|2 + (t− 1)2

For every r ∈ [−2,−1] let us consider the space-time control (w̄0
r , w̄

1
r , w̄

2
r , ar) de�ned by

(
w̄0
r , w̄

1
r , w̄

2
r , ar

)
(s) :=

(√
2

2
,−
√

2

2
, 0, r

)
∀s ∈ [0,

√
2].

(
ȳ0
r , ȳ

1
r , ȳ

2
r , ȳ

3
r

)
(s) :=

(√
2

2
s, 1−

√
2

2
s, 0, 2 + r

√
2

2
s

)
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(
dpr0
ds

,
dpr1
ds

,
dpr2
ds

,
dpr3
ds

)
(s) ∈(

0,−pr3(s)
(
1 + ˜sgn(ȳ1

r(s))
)
w̄2(s),−pr3(s)

(
− 1 + ˜sgn(ȳ2

r(s))
)
w̄1(s), 0

)
where we have used the notation

˜sgn(η) := {sgn(η)} ∀η 6= 0, ˜sgn(0̄) := [−1, 1],

{1 + ˜sgn(0̄)} := [0, 2] , {−1 + ˜sgn(0̄)} := [−2, 0] . 14

Hence (
dpr0
ds

,
dpr1
ds

,
dpr2
ds

,
dpr3
ds

)
(s) ∈

(
0 , 0 ,

√
2

2
pr3(s)[−2, 0], 0

)
If r = −1 (

pr0, p
r
1, p

r
2, p

r
3

)
(
√

2) ∈ λ
(
0, 0, 0, 2

)
+
(
0, 0, 0, (−∞, 0]

)
for some λ ∈ (−∞, 0]. Notice that pr3(

√
2) < 0: indeed, if it were pr3(

√
2) = ρ + 2λ ≥

0 for some ρ ≤ 0, this would imply pr3(
√

2) = ρ = λ = 0, hence it would follow(
(pr0, p

r
1, p

r
2, p

r
3)(·), λ

)
=
(

(0, 0, 0, 0), 0
)
, which would violate the nontriviality condition

i) of the Maximum Principle in Theorem 2.35. So, we can de�nitely assume15 that(
pr0, p

r
1, p

r
2, p

r
3

)
(
√

2) ≡ (0, 0, 0,−1) (2.56)

If r = (−2,−1) (
pr0, p

r
1, p

r
2, p

r
3

)
(
√

2) ∈ λ
(
0, 0, 0, 2(r + 2)

)
+
(
0, 0, 0, 0

)
for some λ ∈ (−∞, 0]. One has that pr3(

√
2) = 2(r + 2)λ < 0: indeed, if it were

pr3(
√

2) = 2(r+2)λ ≥ 0, this would imply λ ≥ 0, i.e. λ = 0, thence
(
(pr0, p

r
1, p

r
2, p

r
3)(·), λ

)
=(

(0, 0, 0, 0), 0
)
, which would violate the nontriviality condition i). So, also in this case,

we can de�nitely assum that(
pr0, p

r
1, p

r
2, p

r
3

)
(
√

2) ≡ (0, 0, 0,−1) (2.57)

If r = −2 (
pr0, p

r
1, p

r
2, p

r
3

)
(
√

2) ∈ λ
(
0, 0, 0, 0

)
+
(
0, 0, 0, [0,+∞]

)
So we can choose (

pr0, p
r
1, p

r
2, p

r
3

)
(
√

2) = (0, 0, 0, 0) and λ = −1 (2.58)

14Also, we set aB := {ab, b ∈ B}, for any natural number q, any a ∈ R, and any subset B ⊂ Rq.
Furthermore, for any natural number q and any collection of subsets B1, . . . , Bq ⊂ R, we use the
notation (B1, . . . , Br) := {(b1, . . . , br) , b1 ∈ B1, . . . , br ∈ Br} .

15For multipliers are de�ned up to multiplication by a positive number
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so that (
pr0, p

r
1, p

r
2, p

r
3

)
(s) ≡

(
0, 0, 0, 0

)
is a solution of the adjoint equation verifying the end-point condition (2.58). Let us no-
tice that, for any value of the parameter r ∈ [−2,−1], the adjoint path
s 7→

(
pr0, p

r
1, p

r
2, p

r
3

)
(s) satis�es the Hamiltonian maximization

max
(w0,w,a,ζ)∈W×A×[−ρ,ρ]

H
(
ȳ(s), pr0, p(s), λ, w

0, w, a, ζ
)

= H
(
ȳ(s), pr0, p(s), λ, w̄

0, w̄(s), ā(s), 0
)
,

where (we have written y, w, and p for (y1, y2, y3), (w1, w2), and (p1, p2, p3), respectively,
and) we have set

H(y, pr0, p
r, w0, w, a) := pr0w

0 + p
(
f(y) + g1(y)w1 + g2(y)w2

)
.

Therefore, upon setting β̄r(s) :=
√

2
2
s, ∀s ∈ [0,

√
2], we have proved that, for any value

of the parameter r ∈ [−2,−1], the canonical process
(√

2, w̄0
r , w̄r, ȳ

0
r , ȳr, β̄r

)
veri�es the

First Order Maximum Principle de�ned by i)-v) in Theorem 2.35 However, for all val-

ues of the parameter r belonging to ]−2, 1] the canonical process
(√

2, w̄0
r , w̄r, ȳ

0
r , ȳr, β̄r

)
does not verify the bracket-involving condition vi) in Theorem 2.35. Indeed, one has

[g1, g2]set(x) = (0, 0, 2 + sgn(x1)− sgn(x2)) if x1, x2 6= 0,

[g1, g2]set(x) =
(

0, 0,
[
1− sgn(x2), 3− sgn(x2)

])
if x1 = 0, x2 6= 0,

[g1, g2]set(x) =
(

0, 0,
[
1 + sgn(x1), 3 + sgn(x1)

])
if x1 6= 0, x2 = 0,

[g1, g2]set(x) =
(

0, 0,
[
0, 4
])

if x1 = x2 = 0.

Therefore, for all s ∈ [0,
√

2),

pr(s)[g1, g2]set(ȳr(s)) = (0, 0,−1)
(

0, 0,
[
2, 4
])

= [−4,−2] 63 0.

Now let r = −2. By direct computation we already know that the control

(
w0
r , w

1
r , w

2
r , r
)
≡ (

√
2

2
,−
√

2

2
, 0, r)

is optimal (indeed (y0
r , y

1
r , y

2
r , y

2
r , y

3
r) = (1, 0, 0, 0)), so the Higher Order Maximum Prin-

ciple applies. Actually, with the above choice of the multipliers 16 one has

pr(s)[g1, g2]set(ȳr(s)) = 0 ∀s ∈ [0,
√

2].

16i.e.
(
pr0, p

r
1, p

r
2, p

r
3

)
≡ (0, 0, 0, 0), λ = −1.



Chapter 3

Orlicz Spaces and related function

spaces

3.1 Orlicz Spaces: de�nition and functional analytic

properties

In this section we will de�ne Orlicz spaces LΨ, which are a generalization of the idea
of Lebesgue Lp spaces. They are de�ned as spaces of functions satisfying some integra-
bilty conditions, and it can also be shown they are rearrangement invariant function
spaces, hence they do not �t into the family of spaces de�ned by means of oscillation
we are exemplifying in this text, but they are introduced for a reason nonetheless. We
will see a beautiful result in the next section stating that functions whose derivatives
belong to Orlicz spaces can be characterized in terms of a suitable kind of oscillation.
In addition to that, in this section, we report a result we recently obtained (see [18])
with Giacomo Ascione and Gianluigi Manzo for a family of Orlicz spaces LΨ, stating
that the closure MΨ of L∞ in them forms an o�O structure (MΨ, LΨ). As we know
from Theorem 2.4 in Section 2.2 and from Theorem 2.16 in Section 2.3, this will imply
a series of interesting functional properties satis�ed by LΨ.
Moreover at the end of the chapter we will devote a section to presenting an application
of these concepts to the theory of regularity in Calculus of Variations.

De�nition 3.1. We say that a function Ψ : [0,+∞)→ [0,+∞) is a Young function if

Ψ(t) =

ˆ t

0

ψ(τ) dτ for t > 0

where ψ : [0,+∞)→ [0,+∞) is a non-decreasing function such that:

� ψ(0) = 0;

� ψ(t) > 0 for any t > 0;

� ψ is right-continuous;

� lim
t→+∞

ψ(t) = +∞.

59
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De�nition 3.2. Let Ψ be a Young function and Ω a measurable space. The Orlicz
space LΨ(Ω) is de�ned as

LΨ(Ω) =

{
u ∈ L1(Ω) : ∃λ > 0 such that

ˆ
Ω

Ψ

(
|u|
λ

)
< +∞

}
.

The quantity ‖u‖LΨ(Ω) = inf

{
λ > 0 :

ˆ
Ω

Ψ

(
|u|
λ

)
dx ≤ 1

}
is called Luxemburg norm

of u. Orlicz spaces are Banach function spaces with respect to the Luxemburg norm
[25].

From now on we will deal mainly with Ω = Q0 := [0, 1]n ⊂ Rn: if n = 1 we will
equivalently denote it with I0, with the I standing for "interval". Moreover, whenever
it is not necessary to specify the domain of integration, we will denote the Luxemburg
norm as ‖·‖Ψ. Of course, with the choice Ψ(t) = tp we obtain precisely Lebesgue spaces
Lp with their usual Lp norm. Another famous example of an Orlicz space is the space
Exp of exponentially summable functions that one obtains if he chooses Ψ(t) to be
Ψ(t) = et − 1.
It can be shown that two Orlicz spaces are set-theoretically equal and with equivalent
norms if the two functions Ψ1 and Ψ2 de�ning them are such that Ψ1(t)/Ψ2(t) is
bounded away from 0 and +∞ as t goes to +∞, showing that it is only the de�nitive
growth rate of the Young function that determines the corresponding Orlicz space.
We will denote by Φ the Young conjugate function of Ψ, that is the only Young function
Φ such that Φ′ = (Ψ′)−1. In other words, if

Ψ(t) =

ˆ t

0

ψ(s) ds then Φ(t) =

ˆ t

0

ψ−1(s) ds,

where the inverse function ψ−1 is intended in the generalized sense, i.e.

ψ−1(s) = inf{σ : ψ(σ) ≥ s}

as it is not obvious that ψ is bijective, as it is taken as a non-decreasing but not
necessarily strictly increasing function.
Conjugate (or complementary) Young functions induce Orlicz spaces LΨ and LΦ with
a very strong interplay stemming from the Young inequality

|ab| ≤ Ψ(a) + Φ(b)

which allows the proof of a Holder inequality

ˆ
|f(x)g(x)| ≤ ‖f‖Ψ‖g‖Φ.

In turn, this is a starting point to understand any possible duality relationship that
there is between complementary Orlicz spaces.
As a matter of fact, whenever Ψ = tp/p with p ∈ (1,+∞), we have that the conjugate
function is Φ = tq/q where q is such that 1

p
+ 1

q
= 1 and the corresponding Orlicz spaces

Lp and Lq are a couple of Lebesgue spaces that is such that any of them represents the
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dual space of the other.
But Young functions give rise to Orlicz spaces with very di�erent functional properties
based on their growth rate: for example the space Exp is not re�exive like (most of) the
Lebesgue spaces Lp. To explore exactly what it is that determines functional properties
like re�exivity, we give the following de�nitions.

De�nition 3.3. We say a Young function Φ satis�es the ∆2 condition if there exists
a constant C > 1 such that for any t ∈ [0,+∞)

Φ(2t) ≤ CΦ(t).

([109]) We say that a Young function Ψ satis�es the ∆0 condition if there is a k > 1
such that

lim
t→+∞

Ψ(kt)

Ψ(t)
= +∞.

It can be shown that this second ∆0 growth condition is a strong negation of the
∆2 condition for Ψ and implies that the conjugate function Φ of Ψ satis�es the ∆2

condition.

Proposition 3.1 (Chen, 1996, [46]). The following properties are equivalent:

� Φ satis�es the ∆2 condition;

� L∞(Q0) is dense in LΦ(Q0).

� LΦ(Q0) is separable.

Proposition 3.2 (Lefevre, 2008, [109]). If Ψ satis�es the ∆0 condition then its con-
jugate Φ satis�es the ∆2 condition and for all p > 1

lim
t→+∞

Ψ(t)

tp
= +∞.

Moreover, it can be shown that

Proposition 3.3. The space LΨ is re�exive and in duality with the space LΦ if and
only if Φ is the conjugate of Ψ and they both satisfy the ∆2 condition.

De�nition 3.4. Let Ψ be a Young function. The Morse space MΨ is de�ned as the
closure of L∞ in LΨ:

MΨ(Q0) = L∞(Q0)
LΨ(Q0)

or, equivalently

MΨ(Q0) =

{
u ∈ L1(Q0) : ∀λ > 0

ˆ
Q0

Ψ
(u
λ

)
dx < +∞

}
.

With respect to this, we specify that equivalent formulas for the distance of a
function from L∞ (that is the same as the distance from its closure MΨ) have been
found in a paper by Carozza and Sbordone [44].
The aim of this section is to identify a large class of Orlicz spaces LΨ which have a
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o−O structure with their subspace MΨ. In particular we will show that an equivalent
norm of the form

|||u|||Ψ := sup
0<t<1

u∗∗(t)

Ψ−1(1/t)

where u∗∗ will be de�ned later, can be introduced for Young functions Ψ such that
the function t 7→ Ψ−1(1/t) belongs to LΨ(0, 1). In these cases, when it is possible to
introduce this new norm and prove it equivalent to the Luxemburg norm, we will be
able to prove the o�O structure of (MΨ, LΨ).
Let us recall an important notion that is needed in order to de�ne u∗∗ and reach a
proof of the above statement.

De�nition 3.5. The non-increasing rearrangement of u ∈ L1(Ω) where |Ω| = 1 is the
function u∗ : [0, 1]→ [0,+∞] de�ned as

u∗(t) = sup
|A|=t

inf
A
|u|.

We recall that two functions u1 ∈ L1(Ω1) and u2 ∈ L1(Ω2) are said to be equimea-
surable if u∗1 = u∗2. Orlicz spaces have the useful property that if u ∈ LΨ(Q0) and
v ∈ L1(Q0) is equimeasurable to u then v ∈ LΨ(Q0) and ‖u‖Ψ = ‖v‖Ψ. We recall also
that a Banach space with this property is said to be rearrangement invariant (see also
[25]).
We would like to use u∗ to de�ne an equivalent norm. However, the map u 7→ u∗

is not sub-additive. For this reason we have to use another function, linked to the
non-increasing rearrangement.

De�nition 3.6. Given a function u : Q0 → R the maximal function of u∗ is the
function

u∗∗(t) =

 t

0

u∗(τ) dτ.

For the maximal function, one can easily show the following result.

Proposition 3.4 (Bennett, 1988, [25]). Consider u, v ∈ L1(Q0). Then

� u∗∗ ≡ 0 if and only if u = 0 almost everywhere;

� If |u| ≤ |v| a.e. then u∗∗ ≤ v∗∗;

� u∗ ≤ u∗∗;

� (au)∗∗ = |a|u∗∗ for any a ∈ R;

� (u+ v)∗∗ ≤ u∗∗ + v∗∗.

In particular u∗∗ is sub-additive and thus it can be used to de�ne a norm. For a
rearrangement invariant Banach function space X it is possible to de�ne a function
φX(t) := ‖χE‖X , where |E| = t, called the fundamental function. It satis�es a useful
property.
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Proposition 3.5. Let Ψ be a �nite Young function and u ∈ L1(Q0). Then, for any
t > 0:

u∗∗(t)

Ψ−1(1/t)
≤ ‖u‖Ψ .

Proof. Given a Banach space X we denote its associate ([124, De�nition 6.2.4]) with
X ′. It can be shown ([124, Lemma 7.9.13]) that

ˆ t

0

u∗(τ) dτ ≤ ‖u‖X ϕX′(t) (3.1)

and ([124, Theorem 7.9.6])
ϕX(t)ϕX′(t) = t, (3.2)

so combining (3.1) and (3.2) we obtain that

u∗∗(t)ϕX(t) ≤ ‖u‖X

Since an easy calculation shows that for the Orlicz space LΨ(Q0) endowed with the

Luxemburg norm ϕLΨ(t) =
1

Ψ−1(1/t)
, the proof is complete.

De�nition 3.7 (Kaminsksa, 2004, [97]). Let A : [0,+∞)→ [0,+∞), A(0) = 0, A be
increasing, and A(t) > 0 for t > 0. Then the Marcinkiewicz space LA,∞ (also called
weak Lorentz space) is the collection of all measurable functions f such that

‖f‖LA,∞ = sup
t>0

1

A(t)

ˆ t

0

f ∗(τ) dτ < +∞

Corollary 3.6. Let Ψ be a �nite Young function. Then

LΨ ↪→ LA,∞ where A(t) = tΨ−1(1/t).

We are now ready to study the quantity

|||u|||LΨ = sup
0<t<1

u∗∗(t)

Ψ−1(1/t)
.

From Proposition 3.4 and 3.5, one can easily prove that this is a norm on LΨ and if
|u| ≤ |v| we have |||u|||Ψ ≤ |||v|||Ψ.

Theorem 3.7 (Angrisani, Ascione, Manzo, 2019, [18]). Let us de�ne the quantity

N∗(u) = sup
0<t<1

u∗(t)

Ψ−1(1/t)
.

The following statements are equivalent:

i. Ψ−1(1/t) ∈ LΨ(I0) i.e. there exists k > 0 such that

ˆ
I0

Ψ

(
1

k
Ψ−1

(
1

t

))
dt <∞;
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ii. u ∈ LΨ(Q0) ⇐⇒ |||u|||Ψ < +∞;

iii. u ∈ LΨ(Q0) ⇐⇒ N∗(u) < +∞;

iv. There exist two constants K1, K2 > 0 such that for all u ∈ L1(Q0)

K1N∗(u) ≤ K1 |||u|||Ψ ≤ ‖u‖Ψ ≤ K2N∗(u) ≤ K2 |||u|||Ψ .

Proof. To show that i.⇒ii. we �rst notice that the forward implication in ii. is just

Proposition 3.5. To show the other implication we notice that since u∗∗(t) ≤ |||u|||Ψ Ψ−1

(
1

t

)
we obtain ˆ 1

0

Ψ

(
u∗∗(t)

λ

)
dt ≤

ˆ 1

0

Ψ

(
|||u|||Ψ
λ

Ψ−1

(
1

t

))
dt

so that ii. implies u∗∗ ∈ LΨ(I0), but this implies u∗ ∈ LΨ(I0) and by Luxemburg
representation theorem [124, Theorem 7.8.3] u ∈ LΨ(Q0).
The implication ii.⇒iii. follows from the inequality u∗ ≤ u∗∗.
The implication iii.⇒i. is trivial if n = 1 (so that Q0 = I0) since if

Ψ−1(1/t) 6∈ LΨ and
∣∣∣∣∣∣Ψ−1

∣∣∣∣∣∣
LΨ(I0)

= 1

we get a negation of iii., while in the general case we choose a function f such that
u∗(t) = Ψ−1(1/t) (we can get such a function as the limit of a suitable sequence of
simple functions).
Let's now show that i., iii.⇒iv. From iii. and from N∗(u) ≤ |||u|||Ψ we obtain that if
one of the quantities involved is in�nite then so are the others. From i. we can choose
K2 = ‖Ψ−1(1/t)‖LΨ(I0) < +∞ because in this case

ˆ 1

0

Ψ

(
u∗(t)

N∗(u)K2

)
dt ≤

ˆ 1

0

Ψ

(
1

K2

Ψ−1

(
1

t

))
dt ≤ 1

and N∗(u) ≤ |||u|||Ψ. Finally, Proposition 3.5 shows that K1 = 1.
Finally, iv. trivially implies ii. so the proof is concluded.

Corollary 3.8. Let Ψ be a �nite Young function. The embedding of LΨ in LA,∞ as in
Corollary 3.6 has norm 1.
Also, it is an isomorphism if and only if Ψ−1(1/t) ∈ LΨ.

Remark 3.9. Observe that under the hypotheses of Theorem 3.7 we have that u ∈
LΨ(Q0) if and only if u∗∗ ∈ LΨ(I0) since we know that if u∗∗ ∈ LΨ(I0) then, by mono-
tonicity of the norm, u∗ ∈ LΨ(I0) and then u ∈ LΨ(Q0) by Luxemburg representation
theorem [124, Theorem 7.8.3], while:

‖u∗∗‖LΨ(I0) ≤ KN∗(u
∗∗) = K |||u|||Ψ < +∞.
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We now consider, for u ∈ LΨ(Q0), the quantity

[u] := lim sup
t→0

u∗∗(t)

Ψ−1(1/t)
.

Proposition 3.10. Let Ψ be a Young function. Then ∀u1, u2 ∈ LΨ(Q0) and ∀v ∈ L∞(Q0)

� [v] = 0;

� [u1 + u2] ≤ [u1] + [u2];

� [u1 − v] = [u1].

Now we want to show a measure of the distance between a generic function u ∈ LΨ(Q0)
and L∞(Q0) which follows from the quantities [u] that is equivalent from the usual dis-
tance induced by the Luxemburg norm.

Theorem 3.11 (Angrisani, Ascione, Manzo, 2019, [18]). Let Ψ be a Young function
such that Ψ−1(1/t) ∈ LΨ(I0). Then there exist two constants D1, D2 > 0 such that

D1[u] ≤ inf
v∈L∞

‖u− v‖Ψ ≤ D2[u].

Proof. Since, by Theorem 3.7, we have that

[u] = [u− v] ≤ |||u− v|||Ψ ≤ ‖u− v‖Ψ ,

we can take D1 = 1. On the other hand, for any ε > 0, by de�nition of [u], there exists
a δε < 1 such that for any t ∈ [0, δε] we have

u∗(t) ≤ u∗∗(t) ≤ ([u] + ε)Ψ−1

(
1

t

)
.

The function

uε(x) =

{
u(x) u(x) ≤ u∗(δε)

0 u(x) > u∗(δε)

is in L∞(Q0), and we have that (u− uε)∗ = u∗χ[0,δε].
If we now take D2 = ‖Ψ−1(1/t)‖LΨ(I0) we have

ˆ 1

0

Ψ

(
(u− uε)∗(t)
D2([u] + ε)

)
dt =

ˆ δε

0

Ψ

(
u∗(t)

D2([u] + ε)

)
dt

≤
ˆ δε

0

Ψ

(
1

D2

Ψ−1

(
1

t

))
dt ≤ 1,

hence, taking the limit as ε→ 0 we have

inf
v∈L∞

‖u− v‖Ψ ≤ D2 · [u].
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From this equivalent distance we obtain also the following norm-attaining property.

Corollary 3.12. For any v ∈MΨ there exists a t̃ ∈ [0, 1] such that

|||v|||Ψ =
v∗∗(t̃)

Ψ−1(1/t̃)
.

Proof. From Theorem 3.11 we have for v ∈ MΨ that lim
t→0

v∗∗(t)

Ψ−1(1/t)
= 0. Hence if we

consider the function g : t ∈ (0, 1] → v∗∗(t)

Ψ−1(1/t)
, it can be extended with continuity in

0 by posing g(0) = 0. The existence of such t̃ ∈ [0, 1] is then assured by Weierstrass
theorem.

We can �nally prove the announced main result of this section

Theorem 3.13 (Angrisani, Ascione, Manzo, 2019, [18]). Let Ψ be a Young function
such that Ψ−1(1/t) ∈ LΨ(I0). Suppose there exists a p > 1 such that

lim
t→+∞

Ψ(t)

tp
= +∞

(in particular if Ψ is ∆0).
Then (MΨ(Q0), LΨ(Q0)) is a (E0, E) pair satisfying Assumption AP.
As a consequence, under this assumption,

� (MΨ(Q0))∗∗ is isometric to LΨ(Q0)

� (MΨ(Q0))∗ is the strongly unique predual of LΨ(Q0)

� MΨ(Q0) is a M-ideal in LΨ(Q0) with respect to |||·|||Ψ

Proof. The assumption on the growth of Ψ allows us to choose X = Lp(Q0) [45]. The
choice for Y and L however is not that straightforward.
LetK be the set of all functions Ẽ : [0, 1]→ F, whereF is the σ-algebra of measurable
sets of Q0, that satisfy the following conditions

| Ẽ(t)| = t, ∀t ∈ [0, 1] (3.3)

and
s < t⇒ Ẽ(s) ⊂ Ẽ(t) (3.4)

and we de�ne the space Y to be

Y =

{
u = {uẼ}Ẽ∈K ∈

(
L1(Q0)

)K
: ‖u‖Y := sup

Ẽ∈K

∥∥uẼ

∥∥
L1(Q0)

< +∞

}
.
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If {uj}j∈N is a Cauchy sequence, by de�nition, for every ε > 0 there is a ν ∈ N such
that for all j, k ≥ ν we have that

sup
Ẽ∈K

∥∥∥uj,Ẽ − uk,Ẽ∥∥∥
L1(Q0)

= ‖uj −uk‖Y < ε,

so that if we take u = {uẼ}Ẽ∈K such that uẼ = lim
j→∞

uj,Ẽ we easily see that u ∈ Y and

uj converges to u in Y , thus Y is a Banach space. We �nally choose our collection of
operators to be L = {Lt : t ∈ (0, 1]}, endowed with the topology induced from the
natural topology on (0, 1], where

Ltu =

{
uχẼ(t)

tΨ−1(1/t)

}
Ẽ∈K

.

Let us proceed to show that our choices for X, Y and L give us the spaces LΨ(Q0)
and MΨ(Q0).
In [25] we can �nd the following alternative expression for u∗∗:

u∗∗(t) =
1

t
sup
|E|=t

ˆ
E

u dx. (3.5)

Suppose that for every measurable E ⊂ Q0 and for all 0 ≤ a < |E| < b ≤ 1 there is

a function Ẽ : [a, b] → F satisfying (3.3) and (3.4) such that Ẽ(|E|) = E. Then we

would easily have that ‖Ltu‖Y =
u∗∗(t)

Ψ−1(1/t)
by Equation (3.5), and this implies that E

is LΨ(Q0) endowed with our equivalent norm |||·|||Ψ.
Let us now show this claim. We �rst prove that for all measurable and bounded U ⊂ Rn

there is a function Ẽ : [0, |U |]→ F satisfying (3.3) and (3.4).

Let Qs =
[
−s

2
,
s

2

]n
and suppose U ⊂ QM . The function

m : s ∈ [0,M ] 7→ |U ∩Qs| ∈ [0, |U |]

is continuous, increasing and takes the values 0 in t = 0 and |U | in t = M , so it is

surjective and we can choose Ẽ(t) = U ∩Qs, where m(s) = t.
Properties (3.3) and (3.4) are easy to show. We can use this to prove our claim. We
consider the two functions

Ẽ1 : [0, |E|]→ F |E and Ẽ2 : [0, 1− |E|]→ F |Q0\E,

so we can take

Ẽ(t) :=


Ẽ1(t) if 0 ≤ t < |E|
E if t = |E|
E ∪ Ẽ2(t− |E|) if |E| < t ≤ 1,

and by restricting Ẽ to the interval [a, b] we can conclude the proof of this claim.
All we need to show now are the topological properties ofL. SinceL is homeomorphic
to (0, 1] we immediately get the local compactness, σ-compactness and the Hausdor�
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property. The boundedness of the operators Lt easily follows from Hölder inequality,
so all we need to prove is the continuity of the operator Tu : L ∈L 7→ Lu ∈ Y . Let us
�x a value Ẽ for the index of Lu. Since Ls → Lt i� s→ t, we can write for h > 0 (the
case h < 0 is similar)

‖Lt+hu− Ltu‖L1 ≤
ˆ

Ẽ(t)

∣∣∣∣ 1

(t+ h)Ψ−1(1/(t+ h))
− 1

tΨ−1(1/t)

∣∣∣∣ |u|+
+

ˆ
Ẽ(t+h)\ Ẽ(t)

|u|
|(t+ h)Ψ−1(1/(t+ h))|

≤

≤
∣∣∣∣ 1

(t+ h)Ψ−1(1/(t+ h))
− 1

tΨ−1(1/t)

∣∣∣∣ ‖u‖L1 +

+

∣∣∣∣ 1

(t+ h)Ψ−1(1/(t+ h))

∣∣∣∣ ‖u‖Lp h p−1
p

which, when h→ 0+, converges to 0 uniformly with respect to Ẽ due to the continuity

of
1

tΨ−1(1/t)
.

Hence, with these operators we can describe LΨ(Q0) and MΨ(Q0) as

LΨ(Q0) =

{
u ∈ Lp : sup

L∈L
‖Lu‖Y < +∞

}
MΨ(Q0) =

{
u ∈ Lp : lim sup

L→∞
‖Lu‖Y = 0

}
.

Now consider u ∈ LΨ(Q0) ⊆ Lp(Q0). Recall that for any positive function in Lp(Q0)
there exists an increasing sequence of L∞(Q0) functions converging to it in Lp(Q0).
Hence let us consider u+

j and u−j converging respectively to u+ and u−.
Thus uj = u+

j − u−j converges in Lp(Q0) to u and |uj| is an increasing sequence con-
verging to |u|. Hence |uj| ≤ |u| and by monotonicity of the norm |||·|||Ψ

|||uj|||Ψ ≤ |||u|||Ψ .

Finally taking the supremum over j we have

sup
j∈N
|||uj|||Ψ ≤ |||u|||Ψ .

Let us now see some examples where our theory gives meaningful results.
First of all, it is well known that the space EXP (Q0), which is an Orlicz space with
Ψ(t) = et − 1, admits |||·|||Ψ as equivalent norm (see [25]). Indeed it is easy to check
that Ψ−1(1/t) = log(1 + (1/t)) ∈ LΨ(I0). Moreover, it is also easy to check that Ψ
satis�es the ∆0 condition.
Let us now show a more general result.

Proposition 3.14. Let Ψ be a Young function of the form eν(t) − 1 such that ν is a
convex function.
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Then Ψ satis�es the ∆0 condition and Ψ−1(1/t) ∈ LΨ(I0).

Proof. The ∆0 condition easily follows from the inequality

Ψ(kt) = eν(kt) − 1 ≥ ekν(t) − 1

for any k > 1 and ν(t)→ +∞ as t→ +∞.
Now observe that, being Ψ a Young function, ν(0) = 0 and ν is strictly increasing.
Moreover for any r > 0

eν(r/2) ≤
√
eν(r) ≤ eν(r)

√
eν(r) − 1

,

since ν(r/2) ≤ ν(r)/2. If r > 0 is such that ν ′(r) and ν ′(r/2) exists, then we also have
ν(r/2) ≤ ν ′(r). Combining these two inequalities we have

1

2
ν ′
(r

2

)
eν(r/2) ≤ 1

2

ν ′(r)eν(r)

√
eν(r) − 1

.

Integrating this inequality in the interval [0, r], applying �rst the logarithm and then
ν−1 we obtain

r

2
≤ ν−1

(
log
(√

eν(r) − 1 + 1
))

.

Now, for any t > 0, consider r = Ψ−1(1/t) = ν−1(log(1 + 1/t)) to obtain

1

2
Ψ−1

(
1

t

)
≤ ν−1

(
log

(√
1 +

1

t

))
= Ψ−1

(√
1

t

)

and then applying Ψ we �nally have

Ψ

(
1

2
Ψ−1

(
1

t

))
≤
√

1

t

hence t 7→ Ψ−1(1/t) ∈ LΨ(0, 1).

Observe that Ψ(t) = et − 1 (which is the Young function de�ning EXP ) �ts in
this case, together with functions like Ψ(t) = et

α − 1 for α > 1, Ψ(t) = ee
t−1 − 1,

Ψ(t) = ee
et−1−1 − 1 and so on.

However, Young functions of the form Ψ(t) = elog1+ε(t+1) − 1 for ε > 0 do not �t in the
previous cases. For these we can show the following proposition.

Proposition 3.15. Let Ψ be the Young function Ψ(t) = elog1+ε(1+t) − 1, with ε > 0.
Then Ψ satis�es the ∆0 condition and Ψ−1(1/t) ∈ LΨ(I0).

Proof. It is easy to prove that Ψ satis�es the ∆0 conditon. To study this case, one can
consider the change of variable t = 1/s, by which the condition Ψ−1(1/t) ∈ LΨ(I0) is
shown to be equivalent to the existence of a k > 1 such that

ˆ 1

0

Ψ

(
1

k
Ψ−1

(
1

s

))
ds =

ˆ +∞

1

1

t2
Ψ

(
1

k
Ψ−1(t)

)
dt < +∞.



70 CHAPTER 3. ORLICZ SPACES

Let us study the case in which ε ∈ (0, 1). We have

Ψ−1(t) = elog
1

1+ε (1+t) − 1

and then, after some calculations

Ψ

(
1

k
Ψ−1(t)

)
= exp

(
log1+ε

(
1 +

1

k
elog

1
1+ε (1+t) − 1

k

))
− 1

' t

e(1+ε) log
ε

1+ε t
,

where the symbol ' means we are considering functions with the same asymptotic
behaviour at +∞. This asymptotic equivalence follows from Taylor expansion of
t 7→ (1 + t)1+ε near 0 up to the second order term.
Since for t large enough

e(1+ε) log
ε

1+ε t ≥ logp t

for any p > 1, we obtain

ˆ +∞

1

1

t2
Ψ

(
1

k
Ψ−1(t)

)
dt < +∞.

A similar argument works for ε > 1 by considering a Taylor expansion of higher order.
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3.2 Orlicz-Sobolev Spaces as de�ned by means of os-

cillation
Let Ψ be any Young function and LΨ(Ω) the corresponding induced Orlicz space

over an open subset Ω of an Euclidean space Rn. We will say that a function f ∈ LΨ(Ω)
is in the Orlicz-Sobolev space W 1,Ψ(Ω) if there is a function g ∈ LΨ(Ω;Rn) acting as
weak gradient of f , i.e.

ˆ
Ω

f(x)Dϕ(x) dx = −
ˆ

Ω

g(x)ϕ(x) dx, ∀ϕ ∈ C∞c (Ω),

where by C∞c (Ω) we denote the space of test functions, i.e. inde�nitely di�erentiabile
functions with compact support, but it can be proven by density arguments that the
role of C∞c (Ω) can be equivalently played, a posteriori, by any function in a suitable
Orlicz-Sobolev space W 1,Φ, with Φ being the conjugate of Ψ.
Exactly in the same way as Lebesgue spaces are what one obtains by choosing Ψp(t) =
tp and looking at the induced Orlicz space LΨ, classical Sobolev spaces are a special
case of Orlicz-Sobolev spaces. The fact that all Lebesgue spaces are rearrangement-
invariant extends to all Orlicz spaces while on the other hand examples to show that
W 1,Ψ is not rearrangement invariant can be found for all choices of a Young function
Ψ.
In this section we will present a recent result by Heli Tuominen (see [134]) characterizing
Orlicz-Sobolev spaces in terms of oscillation. To understand the result a few de�nitions
are needed. We already looked at the Hardy-Littlewood maximal operator M : we now
de�ne a restricted version.

De�nition 3.8. Let f(x) be any locally integrable function, f ∈ L1
loc(Rn), and R > 0.

The restricted Hardy-Littlewood maximal operator MR maps f to a function MRf
de�ned by the position

MRf(x) = sup
R>r>0

1

|Br(x)|

ˆ
Br(x)

|f(y)| dy

where Br(x) is a ball of center x and radius r.

In [81], citing, in turn, some results from [29], Hajlasz remarked that a function
f ∈ Lp is in the Sobolev space W 1,p if and only if

|f(x)− f(y)| ≤ C(n)|x− y|
[
M2|x−y|(|Df |)(x) +M2|x−y|(|Df |)(x)

]
, for a.e. x, y.

As the restricted Hardy-Littlewood maximal operator preserves the p integrability of
the function if p > 1, this can be expressed more neatly in other words: a function
f ∈ Lp (with p > 1) is in the Sobolev spaceW 1,p if and only if there is another function
g ∈ Lp bounding the Lipschitz oscillation in the following way

|f(x)− f(y)|
|x− y|

≤ g(x) + g(y),

for almost every x, y ∈ Rn with x 6= y.
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This result is extremely interesting as it provides a very natural way of extending the
de�nition of Sobolev spaces to compact metric measure spaces, by substituting |x− y|
for another metric ρ(x, y). This de�nition, �rst proposed by Hajlasz, of a Sobolev
space for functions of metric measure space, is at the core of [81]: provided a few
reasonable assumptions on behaviour of the measure on balls, but we do not go into
further technical detail, it gives rise to a function space for which many properties of
the Sobolev space are preserved. This function spaces are often referred to as Hajlasz-
Sobolev spaces and denoted by M1,p(K, ρ, µ). The reader is invited to compare with
Section 2.2
What Tuominen did in [134] was precisely an extension of this result to Orlicz-Sobolev
spaces. He proved the following theorem.

Theorem 3.16. Let Ψ be a Young function and Φ be its conjugate and assume Ψ and
Φ both satisfy the ∆2 condition. Then a function f ∈ LΨ(Rn) is in the Orlicz-Sobolev
space W 1,Ψ(Rn) if and only if there is a function 0 ≤ g ∈ LΨ, real constants C > 0
and σ > 1 and a null set E, |E| = 0, such that for all x, y ∈ Rn \ E, the following
inequality holds

|f(x)− f(y)| ≤ C|x− y|
[
Ψ−1(Mσ|x−y|Ψ(g)(x)) + Ψ−1(Mσ|x−y|Ψ(g)(y))

]
.

Sadly this result cannot be expressed as neatly as the one by Hajlasz as the one
in W 1,p with p > 1, because Ψ(g) is a function in L1, and the Hardy-Littlewood
maximal operator is not expected to preserve simple summability (p = 1), so that we
cannot rewrite the result substituting Ψ−1(Mσ|x−y|Ψ(g)(x)) for a generic function g in
LΨ, but this result further motivates and justi�es the introduction of Orlicz-Sobolev
spaces even in the context of compact metric measure spaces: a construction that was
done by Aïssaoui in [5] at about the same time as the paper by Tuominen appeared.
These spaces are often referred to as Musielak-Orlicz-Sobolev spaces and generalize the
Hajlasz-Sobolev spaces by imposing conditions of type:

|f(x)− f(y)|
ρ(x, y)

≤ g(x) + g(y)

for almost all x 6= y in the metric space and for LΨ functions f and g.
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3.3 Orlicz and Hölder spaces in regularity theory

Hölder spaces are absolutely pervasive in regularity theory, starting from an ex-
tremely famous result by Ennio de Giorgi (see [55]), proving Hölder regularity for
solutions of elliptic equations in divergence form with measurable bounded coe�cients.
As a matter of fact, this result is immediately traslated into Hölder regularity for gra-
dients of minima for strictly convex integral functionals on W 1,p

loc (Ω,R).
It is known that this, in turn, is the starting point of a bootstrap argument proving
higher regularity for minima of functionals with more regular lagrangian functions,
hence giving a positive answer to the famous XIX Hilbert problem.
Such a clean result, however, is only possible in the scalar case. Ennio de Giorgi himself
found a counterexample in the vectorial case, i.e. a functional

F(u) =

ˆ
Ω

f(x,Du(x)) dx

de�ned onW 1,2(Ω,RN) and a minimum u : Ω→ RN such that, for any choice of N > 2,
u fails to have gradient Du belonging to the Hölder space Lipα(Ω) for any choice of
α ∈ (0, 1).
On the other hand, in the multidimensional case N > 1, it is often possible to prove
partial regularity, i.e. pointwise regularity on a set of points whose complement is
negligible, in some sense. Some assumption on f under which this is usually done
is an integral form of convexity called W 1,p-quasiconvexity. Whenever the functional
F is autonomous, i.e. not depending directly from x (and, in this section we will
even assume f : z ∈ RnN → f(z) ∈ R depends exclusively on the gradient Du),
W 1,p-quasiconvexity is the assumption that the lagrangian f satis�es the inequality

 
B1

f(z +Dφ(x)) dx ≥ f(z), ∀z, ∀φ ∈ C∞0 (B1,RN).

This condition was introduced by Morrey in 1951 (see [117]) and it was shown to be a
necessary and su�cient condition for the weak lower semicontinuity of the functional
F in W 1,p. It is a condition strong enough to imply that a�ne functions are local
minima. Stronger forms of quasiconvexity were later introduced, such as uniform or
strict quasiconvexity, whose de�nition we will see later. In light of this, we mention
the �rst regularity result for minima of strictly quasiconvex functionals due to Evans
(see [62])
Another idea that is central to this section is the concept of (p, q) growth: we will
give de�nitions further in the section, but we also refer the reader to [112] by Paolo
Marcellini.
As a matter of fact, classically (see [62], [2] and [41]), W 1,p-quasiconvexity is paired
with an assumption on the growth of f , of the type |f(z)| ≤ C(1 + |z|)p.
Marcellini (see [113]) replaced it with the more �exible (p, q) growth conditions, by
considering a Lagrangian function f that is W 1,p-quasiconvex but satis�es |f(z)| ≤
C(1 + |z|)q for di�erent p and q. In this context he proved many regularity results and
subsequently, several contributions were added to the theory by various authors.
In [43] and in [92], autonomous functionalsF(u) =

´
f(Du) of the calculus of variations

are studied, with the hypothesis of quasiconvexity for the Lagrangian function f = f(z)



74 CHAPTER 3. ORLICZ SPACES

only holding asymptotically, i.e. for z : |z| > M . The idea is to show that the
typical methods used to prove density of the set Reg(u), i.e. the set of points of local
Hölderianity for the gradient Du of a minimizer u, can be adapted to prove that the
set of points x0 in which |Du|(x0) is large and u is not locally Lipschitz around x0 is
no-where dense.
Thinking of Lipschitz functions as functions in W 1,∞, i.e. admitting an essentially
bounded weak derivative, allows to conclude that u is at least locally Lipschitz in a
dense subset of its domain.
This section is devoted to a similar problem, but for functionals with a (ϕ, ψ) structure,
where ϕ and ψ are more generally Young functions with the so-called ∆2 condition that
play the role that t 7→ tp and t 7→ tq play in the usual (p, q) theory. More precisely, we
will assume that the lagrangian f does not grow faster than ψ, but is asymptotically
ϕ-quasiconvex for di�erent Young functions ϕ and ψ (see further in the section for a
precise formulation of the problem).
The problem is approached with inspiration to some methods used by T. Schmidt in
his paper [131], but also looking at [92] and adapting those leading to the announced
conclusion.
In general, a very good survey of the topic was done by Mingione in [115].
Lastly, with respect to Hölder spaces, we remark that, in this context, it is also very
useful to rethink of them via Campanato's integral characterization. As a matter of
fact, in [35], Campanato introduced the spaces

Lλ,p(Ω) :=
{
u : [u]pλ,p := sup

Br(x0)⊆Ω

1

rλ

ˆ
Br(x0)

|u(x)− uBr(x0)| dx < +∞
}

sometimes called Campanato or Morrey-Campanato spaces. He then proved that when-
ever λ in (n, n+ p) these spaces coincide with Lipα, with α = λ−n

p
.

3.3.1 The problem
In this section we study multidimensional integrals of the type

F(u) =

ˆ
Ω

f(Du(x)) dx for u : Ω→ RN

where Ω is an open bounded set in Rn, n ≥ 2, N ≥ 1. We consider Young functions
ϕ, ψ ∈ C2([0,+∞)) and a Lagrangian function f s.t. the following assumptions hold:

(H.1) Regularity- f ∈ C2(RnN ,R).

(H.2) The following inequalities hold

pϕ
ϕ′(t)

t
≤ ϕ′′(t) ≤ qϕ

ϕ′(t)

t

pψ
ψ′(t)

t
≤ ψ′′(t) ≤ qψ

ψ′(t)

t

for all t ≥ 0, where pϕ, qϕ, pψ, qψ > 0 are positive constants.
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(H.3) Asymptotical W 1,ϕ-quasiconvexity- There exists M >> 0, γ > 0 and a
continuous function g such that

f(z) = g(z), ∀z : |z| > M

and such that g is strictly W 1,ϕ-quasiconvex, i.e. satis�es

 
B1

g(z +Dφ) ≥ g(z) + γ

 
B1

ϕ1+|z|(|Dφ|), ∀z, ∀φ ∈ C∞0 (B1,RN)

where ϕa(t) is de�ned for any 0 < a ∈ R via the following equality

ϕ′a(t) = ϕ′(a+ t)
t

a+ t
and ϕa(0) = 0

and it was shown in [92] to satisfy the property

ϕa(t) ∼ t2ϕ′′(a+ t).

(H.4) Growth conditions- The following inequalities hold

Γ′ϕ(|z|) ≤ f(z) ≤ Γ′′(1 + ψ(|z|))

|D2f(z)| ≤ Γ′′(1 + ψ′′(|z|))

for all z ∈ RnN for some positive constants Γ′,Γ′′ > 0.

(H.5) Range of anisotropy We assume that, for any a > M , the function
Na = ϕa ◦ (ψ′a)

−1 is a Young function and the following inequality regarding
its complementary Young function N∗a holds

[Na]
∗(t) ≤ cϕβa(t)

for all t >> 1 and some 1 ≤ β < n
n−1

It can be shown (see Lemma 3.24 in the next subsection) that (H.5) implies the in-
equality

ψ(t) ≤ cϕβ(t), ∀t >> 1

. If ϕ(t) = tp and ψ(t) = tq, (H.5) is equivalent to q < p+ 1
n
.

In [92], it was proven that (H.3) is equivalent to:

(H.3') There exists M >> 0, γ > 0 such that

∀z : |z| > M

 
B1

f(z +Dφ) ≥ f(z) + γ

 
B1

ϕ1+|z|(|Dφ|), ∀φ ∈ C∞0 (B1,RN)

under our hypotheses. In particular, it follows from the fact that f is locally bounded
from below.
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We will study local W 1,ϕ-minimizers of F, i.e. functions u such that

F(u) ≤ F(u+ φ) ∀φ ∈ W 1,ϕ
0 (Ω,RN).

In the case of a globally quasiconvex functional and with the superquadratic hypothesis
ϕ(t) > a(t2 − 1), D. Breit and A. Verde in [33] proved that if u is a local minimizer
of F, then u is in C1,α in a open dense subset of Ω. Adapting and generalizing their
arguments, we prove partial C1,α regularity of a local minimizer u of F around points
in whose neighbourhoods |Du| is large, without the assumption of superquadraticity
and with quasiconvexity only in its asymptotical formulation. More precisely, we will
obtain the following result

Theorem 3.17 (Angrisani, 2021, preprint). Let f, ϕ, ψ satisfy hypotheses
(H.1),(H.2),(H.3),(H.4) and (H.5) and let u be a local minimizer of the corresponding
functional F. Let z0 ∈ RnN such that |z0| > M + 1 and assume there is a x0 ∈ Rn

with the property that

lim
ρ→0+

 
Bρ(x0)

|V (Du(x))− V (z0)|2 = 0,

then u is locally C1 in a neighbourhood of x0, where V (z) is de�ned in section 3.3.2.

This theorem has the following corollary

Corollary 3.18. In the hypotheses and notation of Theorem 3.17, the set of points of
local Lipschitzianity of u is a dense open subset of Ω.

3.3.2 Technical lemmas and de�nitions
The following lemma will be useful while obtaining our Caccioppoli estimate. The

proof can be found in [69].

Lemma 3.19. Let −∞ < r < s < +∞ and a continuous nondecreasing function
Ξ : [r, s]→ R be given. Then there are r̃ ∈ [r, 2r+s

3
] and s̃ ∈ [ r+2s

3
, s], for which hold:

Ξ(t)− Ξ(r̃)

t− r̃
≤ 3

Ξ(s)− Ξ(r)

s− r

and
Ξ(s̃)− Ξ(t)

s̃− t
≤ 3

Ξ(s)− Ξ(r)

s− r
for every t ∈ (r̃, s̃).
In particular, we have s−r

3
≤ s̃− r̃ ≤ s− r.

The following lemma is about Young functions satisfying hypothesis (H.2)

Lemma 3.20. Let h be a Young function satisfying (H.2). Then we have

(a) h satis�es ∆2(h) < +∞ and ∆2(h∗) < +∞
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(b) For all t > 0 the following inequality holds:

h(1)(tp − 1) ≤ h(t) ≤ h(1)(tq + 1)

where p = pϕ + 1 and q = qϕ + 1 if h = ϕ and p = pψ + 1 and q = qψ + 1 if h = ψ

(c) For all t > 0, h′(t)t is equivalent to h(t)

For the proof, see Lemma 3.1 in [68].
We will also make use of Lemma 3.2 from [92], which we rewrite here for the convenience

of the reader.

Lemma 3.21. Let ϕ be a Young function such that ϕ and ϕ∗ both enjoy the ∆2 con-
dition. For z1, z2 ∈ RnN and θ ∈ [0, 1], denote zθ = z1 + θ(z2 − z1). Then, uniformly
in z1, z2 ∈ RnN with |z1|+ |z2| > 0 and in µ > 0, it holds

ϕ′(µ+ |z1|+ |z2|)
µ+ |z1|+ |z2|

'
ˆ 1

0

ϕ′(µ+ |zθ|)
µ+ |zθ|

dθ

De�nition 3.9 (Excess). For any z ∈ RnN let us de�ne the quantity

V (z) :=

√
ϕ′(|z|)
|z|

z

and let us notice that, with our hypotheses, we have

|V (z1)− V (z2)|2 ' ϕ|z1|(|z1 − z2|).

We also de�ne the excess function

Φϕ(u, x0, ρ, z) :=

 
Bρ(x0)

|V (Du)− V (z)|2 dx

and

Φϕ(u, x0, ρ) :=

 
Bρ(x0)

|V (Du)− V [(Du)Bρ(x0)]|2 dx

where by putting a set as a pedix to a function we refer to the integral average of the
function over the set, i.e. (Du)Bρ(x0) =

ffl
Bρ(x0)

Du(x) dx. We immediately notice that

Φϕ(u, x0, ρ, z) '
 
ϕ|z|(|Du− z|) dx

In [33], D. Breit and A. Verde proved that if u is a W 1,ϕ minimizer of F on Bρ(x0),
for all L > 0 and α ∈ (0, 1) there exists ε0 > 0 such that if

Φϕ(u, x0, ρ) ≤ ε0 and

∣∣∣∣∣
 
Bρ(x0)

Du

∣∣∣∣∣ ≤ L

2

then u ∈ C1,α
loc (Bρ(x0);Rn).
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We will now replicate their reasoning in the weaker hypothesis of asymptotic ϕ-quasiconvexity
and without assumption of superquadratic growth behaviour of ϕ. With this aim, we
start with the following lemmas.

Lemma 3.22. If there exists z0, |z0| > M + 1 and x0 such that:

 
Bρ(x0)

|V (Du)− V (z0)|2 → 0 as ρ→ 0+

then there exists r1 = r1(x0, z0)such that for all r < r1∣∣∣∣ 
Br(x0)

Du

∣∣∣∣ > M + 1.

Proof. Let |z0| = M + 1 + ε. Then there must be a r1 (of course this depends on the
speci�c values of x0 and z0) such that for all r < r1 we have:

 
Br(x0)

ϕ|z0| (|Du− z0|) ≤ ϕ|z0|

(ε
2

)
, ∀r < r1

where we have also made use of our previous remark that |V (Du)− V (z0)|2 is equiv-
alent to ϕ|z0| (|Du− z0|).
which, by Jensen inequality means:∣∣∣∣ 

Br(x0)

Du− z0

∣∣∣∣ ≤ ε

2
, ∀r < r1.

This in turn gives:∣∣∣∣ 
Br(x0)

Du

∣∣∣∣ ≥ |z0| −
ε

2
= M + 1 + ε− ε

2
> M + 1, ∀r < r1.

The following is a rewriting of Lemma 2.5 from [33] that will be useful to us.

Lemma 3.23. Let 0 < r < s and β < n
n−1

. Then there exists a linear operator

Tr,s : W 1,ϕ(Ω,RN)→ W 1,ϕ(Ω,RN)

de�ned as

Tr,su(x) =

 
B1(0)

u(x+ ξ(x)y) dy, with ξ(x) :=
max{0,min{|x| − r, s− |x|}}

2

such that

(a) Tr,su = u on Br and outside Bs;

(b) Tr,su ∈ u+W 1,ϕ
0 (Bs \Br,Rn);
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(c) |DTr,su| ≤ cTr,s|Du|

(d) The following estimates holds:

ˆ
Bs\Br

ϕ(|Tr,su|) dx ≤ c

ˆ
Bs\Br

ϕ(|u|) dx

ˆ
Bs\Br

ϕ(|DTr,su|) dx ≤ c

ˆ
Bs\Br

ϕ(|Du|) dx

ˆ
Bs\Br

ϕβ(|Tr,su|) dx ≤ c(s− r)−nβ+n+β

[
sup
r≤t≤s

θ(t)− θ(r)
t− r

+ sup
r≤t≤s

θ(s)− θ(t)
s− t

]β
ˆ
Bs\Br

ϕβ(|DTr,su|) dx ≤ c(s−r)−nβ+n+β

[
sup
r≤t≤s

Θ(t)−Θ(r)

t− r
+ sup

r≤t≤s

Θ(s)−Θ(t)

s− t

]β
where

θ(t) :=

ˆ
Bt

ϕ(|u|) dx, Θ(t) :=

ˆ
Bt

ϕ(|Du|) dx.

The following result is contained in [34].

Lemma 3.24. Choose any positive constant L larger thanM and let a ∈ (M,L). Then
for any t > 0 we have

ψa(t) ≤ K ·H(ϕa(t))

where K = K(M,L, β, ψ, ϕ) is a positive real constant depending on L and H(t) :=
t+ tβ.

Proof. Let us start with the case t ≤ 1. In this case, by (H.2),

ψa(t) ' ψ′′(a+ t)t2 ' ψ(a+ t)
t2

(a+ t)2
≤ max

[M,L+1]
ψ · t2

(a+ t)2
≤

≤ K1 min
[M,L+1]

ϕ · t2

(a+ t)2
≤ K1ϕ(a+ t)

t2

(a+ t)2
' K1ϕa(t)

where

K1 =

max
[M,L+1]

ψ

min
[M,L+1]

ϕ
∈ (0,+∞)

depends only on M,L, ψ and ϕ.
On the other hand, if t > 1,

ψa(t) ' ψ′′(a+ t)t2 ' ψ(a+ t)
t2

(a+ t)2
≤ ϕβ(a+ t)[

t2

(a+ t)2
]β ·
(

1 +
a

t

)2β−2

≤

≤ K2

[
ϕ(a+ t)t2

(a+ t)2

]β
' K2ϕa(t)

β

where K2 = (1 + L)2β−2.
The thesis follows with K = max{K1, K2}.
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3.3.3 Caccioppoli Inequality

This subsection is dedicated to the Caccioppoli inequality, which will be the main
tool of the proof of partial regularity.

Lemma 3.25 (Angrisani, 2021, preprint). Let the assumptions (H.1)− (H.5) hold for
a given M . Consider any positive constant L > M > 0 and a consider W 1,ϕ-minimizer
u ∈ W 1,ϕ(Bρ(x0);RN) of F on a ball Bρ(x0) contained in Ω. For all z ∈ RnN with
M < |z| < L+ 1, let q(x) be an a�ne function with gradient z and v(x) = u(x)− q(x).
Then

 
B ρ

2

ϕ|z|(|Dv|) dx ≤ c

 
Bρ

ϕ|z|

(
|v|
ρ

)
dx+

+ c

{ 
Bρ

[
ϕ|z|(|Dv|) + ϕ|z|

(
|v|
ρ

)]
dx

}β

. (3.6)

Proof. Assume for simplicity x0 = 0 and choose

ρ

2
≤ r < s ≤ ρ.

De�ne

Ξ(t) :=

ˆ
Bt

[
ϕ|z|(|Dv|) + ϕ|z|

(∣∣∣∣ v

s̃− r̃

∣∣∣∣)] dx.
We choose in addition r ≤ r̃ < s̃ ≤ s as in Lemma 3.19. Let η denote a smooth cut-o�
functions with support in Bs̃ satisfying η ≡ 1 in Br̃ and 0 ≤ η ≤ 1, |∇η| ≤ 2

s̃−r̃ on Bρ.
Using the operator from Lemma 3.23, we set

ζ := Tr̃,s̃[(1− η)v] and ξ := v − ζ.

By quasiconvexity we have

γ

ˆ
Bs̃

ϕ|z|(|Dξ|) ≤
ˆ
Bs̃

f(z +Dξ)− f(z) =

=

ˆ
Bs̃

f(z +Dξ)− f(Du) + f(Du)− f(Du−Dξ) + f(Du−Dξ)− f(z) ≤ . . .

Now, of course
´
f(Du)− f(Du−Dξ) ≤ 0 and Du = z +Dξ +Dζ, so

. . . ≤
ˆ
Bs̃

f(z +Dξ)− f(z +Dξ +Dζ) +

ˆ
Bs̃

f(z +Dξ)− f(z) ≤

≤
ˆ
Bs̃

ˆ 1

0

|Df(z +Dξ + θDζ)−Df(z)||Dζ| dθ, dx+

+

ˆ
Bs̃

ˆ 1

0

|Df(z + θDζ)−Df(z)||Dζ| dθ, dx =: I1 + I2.

We now estimate I1, recalling our growth hypotheses (H.4) and also making use of
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Lemma 3.21. We deduce:

I1 ≤
ˆ
Bs̃

ˆ 1

0

ˆ 1

0

|D2f(tz + (1− t)(z + θDζ))||θDζ|Dζ| dt dθ, dx ≤

≤ Γ′′
ˆ
Bs̃

ˆ 1

0

ˆ 1

0

|ψ′′(|tz + (1− t)(z + θDζ|))||Dζ|2 dt dθ, dx ≤

≤ c

ˆ
Bs̃

ψ′(2|z|+ |z +Dζ|)
2|z|+ |z +Dζ|

|Dζ|2 dx ≤

≤ c

ˆ
Bs̃

ψ|z|(|Dζ|) dx.

Regarding I2 we can deduce:

I2 ≤
ˆ
Bs̃

ˆ 1

0

ˆ 1

0

|D2f(t(z +Dξ + θDζ) + (1− t)z)||Dξ + θDζ||Dζ| dt dθ dx ≤

≤ c

ˆ
Bs̃

ˆ 1

0

ˆ 1

0

ψ′′(|t(z +Dξ + θDζ) + (1− t)z|)|Dξ + θDζ||Dζ| dt dθ dx ≤

≤ c

ˆ
Bs̃

ψ′′(|z|+ |Dξ|+ |Dζ|)(|Dξ|+ |Dζ|)|Dζ| dx ≤

≤
ˆ
Bs̃

ψ′|z|(|Dξ|+ |Dζ|)|Dζ| dx ≤

≤ c

ˆ
Bs̃

ψ′|z|(|Dξ|)|Dζ|+ c

ˆ
Bs̃

ψ′|z|(|Dζ|)|Dζ| ≤

≤ c

ˆ
Bs̃

ψ′|z|(|Dξ|)|Dζ|+ c

ˆ
Bs̃

ψ|z|(|Dζ|) dx

Combining the two, we obtain

γ

ˆ
Bs̃

ϕ|z|(|Dξ|) ≤ c

ˆ
Bs̃

ψ′|z|(|Dξ|)|Dζ|+ c

ˆ
Bs̃\Br̃

ψ|z|(|Dζ|) dx.

Now we use a Young inequality on ψ′|z|(|Dξ)|Dζ|, namely

ψ′|z| ≤ c[N|z|(ψ
′
|z|(|Dξ)) + N∗|z|(|Dζ|)].

This, together with the de�nition of N|z|, our anisotropy assumption (H.5) and Lemma
3.24 lets us deduce

γ

ˆ
Bs̃

ϕ|z|(|Dξ|) ≤ c

ˆ
Bs̃

H[ϕ|z|(|Dζ|)] dx+

+ c

[ˆ
Bs̃\Br̃

ϕ|z|(|Dξ|) dx+

ˆ
Bs̃\Br̃

ϕβ|z|(|Dζ|) dx
]
≤
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≤ c

[ˆ
Bs̃\Br̃

ϕ|z|(|Dζ|) dx+

ˆ
Bs̃\Br̃

ϕβ|z|(|Dζ|) dx+

ˆ
Bs̃\Br̃

ϕ|z|(|Dξ|)
]

≤

≤ c

ˆ
Bs̃\Br̃

ϕ|z|(|DTr̃,s̃[(1− η)v]|) dx+ c

ˆ
Bs̃\Br̃

ϕβ|z|(|DTr̃,s̃[(1− η)v]|)+

+ c

ˆ
Bs̃\Br̃

ϕ|z|(|Dv|) ≤

≤ c

ˆ
Bs̃\Br̃

ϕ|z|(|Dη||v|+|Dv|)+c(s̃−r̃)−nβ+n+β

[
sup
[r̃,s̃]

Ξ(t)− Ξ(r̃)

t− r̃
+ sup

[r̃,s̃]

Ξ(s̃)− Ξ(t)

s̃− t

]β
+

+ c

ˆ
Bs̃\Br̃

ϕ|z|(|Dv|) dx ≤

≤ c′
ˆ
Bs̃\Br̃

ϕ|z|

(∣∣∣∣ v

s̃− r̃

∣∣∣∣)+ ϕ|z|(|Dv|) dx+

+ c(s− r)−nβ+n[Ξ(s)− Ξ(r)]β

where an estimate from Lemma 3.23, (d) was used and Lemma 3.19 was also used.
Now, starting again from the left,

ˆ
Br

ϕ|z|(|Dv|) dx ≤ c

ˆ
Bρ

ϕ|z|

(
|v|
s̃− r̃

)
+

+ c′
ˆ
Bs\Br

ϕ|z|(|Dv|) dx+ c(s− r)n
[

Ξ(ρ)

(s− r)n

]β
Using the hole-�lling method we have

ˆ
Br

ϕ|z|(|Dv|) dx ≤
c′

1 + c′

ˆ
Bs

ϕ|z|(|Dv|)+

+ c(s− r)n
[

(s− r)−n
ˆ
Bρ

ϕ|z|(|Dv|) + ϕ|z|

(
|v|
s̃− r̃

)]β
+

+ c

ˆ
Bρ

ϕ|z|

(
|v|
s− r

)
dx

A well-known lemma (see [58], Lemma 3.1) concludes the proof.

3.3.4 A-harmonicity

Consider a bilinear form A on RnN . We assume that the upper bound

|A| ≤ Λ (3.7)

with Λ > 0 holds and that the Legendre-Hadamard condition

A(yxT , yxT ) ≥ λ|x|2|y|2 for all x ∈ Rn, y ∈ RN (3.8)
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with ellipticity constant λ > 0 is satis�ed.
We say that h ∈ W 1,1

loc (Ω,RN) is A-harmonic on Ω i�

ˆ
Ω

A(Dh,Dφ) dx = 0

holds for all smooth φ : Ω→ RN with compact support in Ω.
The following lemma will ensure that, for large z, the bilinear form A = D2f(z)
satis�es the Legendre-Hadamard condition.

Lemma 3.26. Let f satisfy (H.1) and (H.3′) for a given M > 0. Then, for any
given z such that |z| > M , we have that A = D2f(z) satis�es the Legendre-Hadamard
condition

A(ζxT , ζxT ) ≥ λ|x|2|ζ|2 for all x ∈ Rn and ζ ∈ RN

with ellipticity constant λ = 2γ.

Proof. Let u be the a�ne function u(x) = zx with z such that |z| > M . Quasiconvexity
in z ensures that u is a W 1,ϕ-minimizer of the functional F induced by f and that the
function:

G(t) = GΦ(t) := FB1(u+ tΦ)− γ
ˆ
B1

ϕ1+|z|(|tDΦ|) dx

has a minimum in t = 0 for any φ ∈ W 1,ϕ
0 (B1,RN) and, in the same way as it is done

in ([77], Prop. 5.2), from G′Φ(0) = 0 and G′′Φ(0) ≥ 0 the Legendre-Hadamard condition
will follow.
As a matter of fact, from G′′(0) ≥ 0, we obtain:

ˆ
B1

∂2F

∂zαk ∂z
β
j

(z0)Dkφ
αDjφ

β dx ≥ 2γ

ˆ
B1

|Dφ2| dx (3.9)

for every φ ∈ C1
c (B1,RN). Let us φ = ν + iµ and write (3.9) for ν and for µ, i.e.:

ˆ
B1

∂2F

∂zαk ∂z
β
j

(z0)Dkν
αDjν

β dx ≥ 2γ

ˆ
B1

|Dν2| dx (3.10)

and ˆ
B1

∂2F

∂zαk ∂z
β
j

(z0)Dkµ
αDjµ

β dx ≥ 2γ

ˆ
B1

|Dµ2| dx (3.11)

we obtain:
ˆ
B1

∂2F

∂zαk ∂z
β
j

(z0)
[
Dkν

αDjν
β +Dkµ

αDjµ
β
]
dx ≥ 2γ

ˆ
B1

|Dν2|+ |Dµ2| dx (3.12)

and hence:

Re

ˆ
B1

∂2F

∂zαk ∂z
β
j

(z0)Dkφ
αDjφ

β
dx ≥ 2γ

ˆ
B1

|Dφ|2 dx

Now, consider any ξ ∈ Rn, η ∈ RN , τ ∈ R and Ψ(x) ∈ C∞c (B1,R) and take φ to be
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φ(x) = ηeiτ(ξ·x)Ψ(x). Since φα(x) = ηαΨ(x)eiτξ·x, we have

ˆ
B1

∂2F

∂zαk ∂z
β
j

(z0)ηαηβ[τ 2ξkξjΨ
2 +DkΨDjΨ ] dx ≥ 2γ|η|2

ˆ
B1

(|DΨ |2 + τ 2|ξ|2|Ψ(x)|2) dx.

Dividing by τ 2 and letting τ →∞ we get:

ˆ
B1

∂2F

∂zαk ∂z
β
j

(z0)ξkξjη
αηβΨ 2(x) dx ≥ 2γ|η|2|ξ|2

ˆ
B1

Ψ 2(x) dx

and since this holds for all Ψ ∈ C∞c (B1,R) the proposition is proved.

Remark 3.27. Assume f ∈ C2
loc

(RnN). Then for each L > 0, there is a modulus of
continuity ωL : [0,+∞[→ [0,+∞[ satisfying lim

z→0
ωL(z) = 0 such that for all z1, z2 ∈ RnN

we have:

|z1| ≤ L, |z2| ≤ L+ 1⇒ |D2f(z1)−D2f(z2)| ≤ ωL(|z1 − z2|2).

Moreover, ωL can be chosen such that the following properties hold:

1. ωL is non-decreasing,

2. ω2
L is concave,

3. ω2
L(z) ≥ z for all z ≥ 0.

The following lemma will allow approximation by A-harmonic functions.

Lemma 3.28. Let f satisfy (H.1)�(H.5) for a given M > 0. Choose any L > M > 0
and take u ∈ W 1,ϕ(Ω,RN) to be a W 1,ϕ-minimizer of F on some ball Bρ(x0).
Then for all z : M < |z| ≤ L and φ ∈ C∞c (Bρ(x0)) we have∣∣∣∣∣

 
Bρ(x0)

D2f(z)(Du− z,Dφ) dx

∣∣∣∣∣ ≤ c
√

ΦϕωL(Φϕ) sup
Bρ(x0)

|Dφ|. (3.13)

where Φϕ := Φϕ(u, x0, ρ, z), the constant c depends only on n,N ,Γ′,Γ′′,L and ωL is the
modulus of continuity of the above Remark (see also [131]).

Proof. Setting v(x) := u(x)− zx, the Euler equation of F gives∣∣∣∣∣
 
Bρ

D2f(z)(Dv,Dφ) dx

∣∣∣∣∣ =

=

∣∣∣∣∣
 
Bρ

[
D2f(z)(Dv,Dφ) +Df(z)Dφ−Df(Du)Dφ

]
dx

∣∣∣∣∣ .
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If |Dv| ≤ 1 we have

|D2f(z)(Dv,Dφ) +Df(z)Dφ−Df(Du)Dφ| ≤

≤
ˆ 1

0

∣∣D2f(z)−D2f(z + tDv)
∣∣ dt|Dv|‖Dφ‖∞ ≤

≤ ωL(|Dv|2)|Dv|‖Dφ‖∞ ≤
≤ cωL(ϕ|z|(|Dv|))ϕ|z|(|Dv|)‖Dφ‖∞

where in the last step we used (H.2) to infer

|Dv|2 . inf
t∈[M,L+1]

ϕ′′(t)|Dv|2 ≤ ϕ′′(|z|+ |Dv|)|Dv|2 ' ϕ|z|(|Dv|).

If |Dv| > 1, we use theM ≤ |z| ≤ L and ϕ(t) > ct (see Lemma 3.20) on t > 1, together
with (H.4) to obtain:

|D2f(z)(Dv,Dφ) +Df(z)Dφ−Df(Du)Dφ| ≤

≤ c

(
|Dv|+ |Dv|

ˆ 1

0

D2f(|z + t(Du− z)|) dt
)
‖Dφ‖∞ ≤

c

(
|Dv|+

ˆ 1

0

ψ′(|z + t(Du− z)|)
|z + t(Du− z)|

dt

)
‖Dφ‖∞ ≤

≤ c

[
ϕ(|Dv|) +

ψ′(|z|+ |Du− z|)
|z|+ |Du− z|

]
‖Dφ‖∞ ≤

≤ c

[
ϕ(|Dv|) +

ψ′(2|z|)
|z|

+
ψ′(2|Du− z|)

2|Du− z|

]
‖Dφ‖∞ ≤

≤ c [ϕ(|Dv|) + 1 + ψ′(|Dv|)] ‖Dφ‖∞ ≤
≤ cϕ(|Dv|)‖Dφ‖∞ ≤ cϕ|z|(|Dv|)‖Dφ‖∞.

In the second to last step we also used ψ′(t) < c(ϕ(t) + 1) for t > 1 which follows by
the Young inequality

ψ′(t) · 1 ≤N(ψ′(t)) + N∗(1)

where N = ϕ ◦ (ψ′)−1, and the fact that ϕ(|Dv|) > c|Dv| > c.
Now, by the fact that ω2

L(t) ≥ t for t ≥ 0 we get∣∣∣∣∣
 
Bρ

D2f(z)(Dv,Dφ) dx

∣∣∣∣∣ ≤ c‖Dφ‖∞
 
Bρ

ωL(ϕ|z|(|Dv|))
√
ϕ|z|(|Dv|) dx

and since ωL is non-decreasing, using Cauchy-Schwartz and Jensen inequalities we get∣∣∣∣∣
 
Bρ

D2f(z)(Dv,Dφ) dx

∣∣∣∣∣ ≤ c
√

ΦϕωL(Φϕ)‖Dψ‖∞

which concludes the proof.

The following lemma is from a paper by Teresa Isernia, Chiara Leone and Anna
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Verde (see [91]).

Lemma 3.29 (Isernia, Leone, Verde, 2021, submitted). Let 0 < λ ≤ Λ < ∞ and
ε > 0. Then there is a δ(n,N, ϕ, ϕ∗,Λ, λ, ε) > 0 such that the following assertion holds:
For all κ > 0, for all A satisfying (3.7) and (3.8) and for each
u ∈ W 1,ϕ(Bρ(x0);RN) satisfying∣∣∣∣∣

 
Bρ(x0)

A(Du,Dφ) dx

∣∣∣∣∣ ≤ δκ sup
Bρ(x0)

|Dφ|

for all smooth φ : Bρ(x0)→ RN with compact support in Bρ(x0) there is an A-harmonic
function h ∈ C∞loc(Bρ(x0),RN) with

sup
Bρ/2(x0)

|Dh|+ ρ sup
Bρ/2(x0)

|D2h| ≤ c∗ϕ−1
|z|

( 
Bρ(x0)

ϕ|z|(|Du|)

)

and  
Bρ/2(x0)

ϕ|z|

(
|u− h|
ρ

)
dx ≤ ε

[ 
Bρ(x0)

ϕ|z|(|Du|) + ϕ(γ)

]
.

Here c∗ denotes a constant depending only on n,N, q1,Λ, λ.

3.3.5 Excess decay estimate

Proposition 3.30. Let z0 be s.t. |z0| > M + 1 and x0 be s.t.

lim
ρ→0

 
Bρ(x0)

|V (Du(x))− V (z0)|2 = 0

then
Φp(u, x0, ρ)→ 0 as ρ→ 0.

Proof. Let (Du)ρ :=
ffl
Bρ(x0)

|Du|. We have, by triangular inequality

Φp(u, x0, ρ) =

 
Bρ(z0)

|V (Du(x))− V ((Du)ρ)|2 dx ≤

≤ c

[ 
Bρ(x0)

|V (Du(x))− V (z0)|2 dx+

 
Bρ(x0)

|V (Duρ)− V (z0)|2 dx

]
.

First summand of the right side is going to 0 by hypothesis. The second summand is
equivalent to

ϕ|z0|

(∣∣∣∣∣
 
Bρ(x0)

Du(x)− z0 dx

∣∣∣∣∣
)
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which, by Jensen inequality, is less than

 
Bρ(x0)

ϕ|z0|(|Du(x)− z0|) dx.

This is, again, in turn, equivalent to

 
Bρ(x0)

|V (Du(x))− V (z0)|2

which is vanishing by hypothesis.

Finally, we can prove

Lemma 3.31. Assume f , ϕ and ψ satisfy hypotheses (H.1) � (H.5) for given
pϕ, qϕ, pψ, qψ and M .
Let L > M + 1 > 0, α ∈ (0, 1), x0 ∈ Ω and z0 ∈ RnN such that L > |z0| > M + 1.
Then there are constants ε0 > 0, θ ∈ (0, 1) and a radius ρ∗ > 0 such that the following
holds 1.
Let u a W 1,ϕ-minimizer of F on Bρ(x0), with ρ < ρ∗ and x0 ∈ Rn satisfying

lim
ρ→0

 
Bρ(x0)

|V ((Du(x))− V (z0)|2 = 0.

If
Φϕ(u, x0, ρ) ≤ ε0 (3.14)

then
Φϕ(u, x0, θρ) ≤ θ2αΦϕ(u, x0, ρ).

Proof. Let z0 be such that |z0| > M + 1 and x0 any point such that

lim
ρ→0

 
Bρ(x0)

|V (Du(x))− V (z0)|2 = 0.

In what follows, for simplicity of notation, we assume that x0 = 0 and we abbreviate

z = (Du)ρ :=

 
Bρ

Dudx

and
Φϕ(·) := Φϕ(u, 0, ·).

where ρ > 0 is any positive value small enough (smaller than a ρ∗ that will be deter-
mined throughout the proof).
As the claim is trivial if ∃ρ s.t. Φϕ(ρ) = 0 we can assume Φϕ(ρ) 6= 0.
Setting

w(x) := u(x)− zx

1ε0, θ, ρ
∗ depending on n,N,L, pϕ, qϕ, pψ, qψ,Γ, α, γ, x0, z0 and ΛL := max

BL+2

|D2f |
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we have by our equivalent de�nition of Φϕ(ρ) that

 
Bρ

ϕ|z|(|Dw|) dx = Φϕ(ρ)

Next we will approximate by A�harmonic functions, where A := D2f(z).
If ρ is chosen su�ciently small we have L > |z| > M + 1, hence, from |A| ≤
max
BL+2

|D2f | =: ΛL and from Lemma 3.23 we deduce that A satis�es (3.8) with ellipticity

constant 2γ. Lemma 3.28 yields the estimate:∣∣∣∣∣
 
Bρ

A(Dw,Dφ) dx

∣∣∣∣∣ ≤ C2

√
Φϕ(ρ)ωL (Φϕ(ρ)) sup

Bρ

|Dφ|

for all ρ < ρ∗ and for all smooth functions φ : Bρ → RN with compact support in Bρ,
where C2 is a positive constant depending on n,N, p1, q1,Γ, L,ΛL.
For ε > 0 to be speci�ed later, we �x the corresponding constant δ(n,N, ϕ,ΛL, γ, ε) > 0
from Lemma 3.29.
Now, let ε0 = ε0(n,N, ϕ,ΛL, γ, ε) be small enough so that (3.14) implies:

C2ωL(Φϕ(ρ)) ≤ δ (3.15)

κ =
√

Φϕ(ρ) ≤ 1. (3.16)

We apply Lemma 3.29 obtaining an A-harmonic function h ∈ C∞loc(Bρ;RN) such that

sup
Bρ/2

|Dh|+ ρ sup
Bρ/2

|D2h| ≤ c∗ϕ−1
|z| (Φϕ(ρ))

where c∗ = c∗(n,N, ϕ,ΛL, γ) and

 
Bρ/2

ϕ|z|

(
|w − h|

ρ

)
dx ≤ ε

[
Φϕ(ρ) + ϕ|z|(κ)

]
≤ cεΦϕ(ρ). (3.17)

where this last step follows by noticing that ϕ|z|(t) ' t2 when t < 1.
Now �x θ ∈ (0, 1/4]. Taylor expansion implies the estimate:

sup
x∈B2θρ

|h(x)− h(0)−Dh(0)x| ≤

≤ 1

2
(2θρ)2 sup

x∈Bρ/2
|D2h| ≤ 2c∗θ2ρϕ−1

|z| (Φϕ(ρ)) .
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It follows:

 
B2θρ

ϕ|z|

(
|w(x)− h(0)−Dh(0)x|

2θρ

)
dx ≤

≤ c
[
θ−qϕ−1−n

 
Bρ/2

ϕ|z|

(
|w − h|

ρ

)
dx+

+

 
B2θρ

ϕ|z|

(
|h(x)− h(0)−Dh(0)x|

2θρ

)
dx
]
≤

≤ c
[
θ−qϕ−1−nεΦϕ(ρ) + ϕ|z|(θκ)

]
≤

≤ c
[
θ−qϕ−1−nεΦϕ(ρ) + θ2Φϕ(ρ)

]
≤ cθ2Φϕ(ρ)

where the last step is obtained by choosing ε := ε(θ) = θqϕ+n+3 (so, remember that ε
and hence δ and ε0 depend on whatever θ is) and recalling the de�nition of w we have:

 
B2θρ

ϕ|z|

(
|u(x)− zx− (h(0) +Dh(0)x)|

2θρ

)
dx ≤ cθ2Φϕ(ρ). (3.18)

On the other hand, we remark that, using the properties of h:

|Dh(0)| ≤ c∗ϕ−1
|z| (Φϕ(ρ)) (3.19)

We can take ε0 small enough such that (3.14) implies

|Dh(0)| ≤ 1. (3.20)

Using this fact together with (3.19) we get

Φϕ(2θρ, z +Dh(0)) ≤

≤ c

[
(2θ)−n

( 
Bρ

|V (Du(x))− V (z)|2 dx+ ϕ|z|(|Dh(0)|)

)]
≤

≤ c
[
θ−n (Φϕ(ρ) + Φϕ(ρ))

]
≤ cθ−nΦϕ(ρ). (3.21)

Now we need to use Caccioppoli inequality (3.6) with q(x) = h(0) + [z +Dh(0)]x and
z +Dh(0) playing the role of z (we can do so because |z +Dh(0)| > M), and we get

Φϕ(θρ, z +Dh(0)) ≤ c
[
θ2Φϕ(ρ) + θ2βΦϕ(ρ)β + θ−nβΦϕ(ρ)β

]
. (3.22)

Thereby the condition |z + Dh(0)| ≤ L + 1 of Lemma 3.25 can be deduced from the
smallness of |Dh(0)|.
Now, if ε0 is chosen small enough, depending on θ, (3.14) implies the following:

θ−nβΦϕ(ρ)β−1 ≤ θ2, (3.23)



90 CHAPTER 3. ORLICZ SPACES

and from the fact that θ ≤ 1 we have

Φϕ(θρ, z +Dh(0)) ≤ cθ2Φϕ(ρ).

Adapting Lemma 6.2 in [131] (it just uses simples ideas like the ones from Proposition
3.30) we deduce, from (3.23):

Φϕ(θρ) ≤ C3θ
2Φϕ(ρ), (3.24)

where C3 > 0 depends on n,N, ϕ,Γ, γ,ΛL, L.
Finally, we choose θ ∈ (0, 1

4
] (depending on α and whatever C3 depends on) small

enough such that
C3θ

2 ≤ θ2α (3.25)

holds, and ε0 small enough such that (3.15), (3.16), (3.23) follow from (3.14). Taking
into account (3.24) and (3.25) the proof of the proposition is complete.

Applying this last lemma in iteration we get the following (see also [131], Lemma
7.10)

Lemma 3.32. Assume f , ϕ and ψ satisfy hypotheses (H.1)�(H.5) for given pψ, qψ, pϕ, qϕ
and M .
Let L > 2M + 2 > 0, α ∈ (0, 1), x0 ∈ Ω and z0 ∈ RnN such that L

2
> |z0| > M + 1.

Then there is a constant ε̃0 > 0 and a radius ρ∗ > 0 2 such that the following holds.
Let u a W 1,ϕ-minimizer of F on Bρ(x0), with ρ < ρ∗ and x0 ∈ Rn satisfying

lim
ρ→0

 
Bρ(x0)

|V (Du(x))− V (z0)|2 = 0.

If
Φϕ(u, x0, ρ) ≤ ε̃0 (3.26)

then there is a constant c depending on n,N, L, p1, q1,Γ, α, γ, x0, z0 such that

Φϕ(u, x0, r) ≤ c

(
r

ρ

)2α

Φϕ(u, x0, ρ)

for any r < ρ.

The theorem announced in the introduction follows from Campanato's integral
characterization of Hölder continuity.

2depending on n,N,L, pϕ, qϕ, pψ, qψ,Γ, α, γ, x0, z0 and ΛL := max
BL+2

|D2f |



Chapter 4

Bounded mean or lower oscillation:

BMO and BLO

4.1 De�nition of BMO and BLO
In this chapter we will deal with some function spaces and function classes de�ned

by bounding the value of di�erent types of oscillation. Our de�nitions will be given in
the context of functions of a single variable. Many properties of the resulting spaces are
shared by functions of several variables, but attention to some technical geometrical
details needs to be made.
First, we will give a de�nition based on the concept of mean oscillation, that is de�ned
by considering the average distance between a function f and its integral average over
an interval I, i.e., the quantity

1

|I|

ˆ
I

∣∣∣∣f(x)− 1

|I|

ˆ
I

f(y) dy

∣∣∣∣ dx.
De�nition 4.1. A real valued locally integrable function f(x) ∈ L1

loc(R) is said to
have Bounded Mean Oscillation (f(x) ∈ BMO(R)) if:

sup
I

 
I

|f(x)− fI |dx = ‖f‖BMO <∞ (4.1)

where fI denotes
ffl
I
f(x)dx and I spans the set of all compact intervals.

One can prove that BMO(R) is a vector space and, modulo the set of functions
that are almost everywhere equal to a constant, the already de�ned quantity ‖ · ‖BMO

is a norm on it that makes it a Banach Space. This is because any function that is
almost everywhere equal to a constant will have zero mean oscillation over any interval.
Another option to de�ne a norm on it, other than to consider the quotient with respect
to almost everywhere costant functions, would be to add to ‖f‖BMO the L1-norm of
the function over [0, 1], for example.
To de�ne the BMO property for functions of several variables one could equivalently
employ hypercubes Q or balls B contained in Rn, obtaining exactly the same space of
functions. However, the two resulting norms are not exactly the same and hypercubes
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with sides parallel to the coordinate axes are what are conventionally used.
This space was introduced by John and Nirenberg in 1961 ([63]). In this paper, the two
authors proved a strong inequality for BMO functions, proving that the set of points
such that the function deviates more than λ from its own integral average decays
exponentially with λ. This is an important "self-improving" property of elements of
BMO.

Theorem 4.1 (John, Nirenberg, 1961, [63]). Let f be a function in BMO(Rn). There
exist constants c1, c2 > 0 such that for any cube Q ∈ Rn, we have

|{x ∈ Q : |f(x)− fQ| > λ}| < c1exp

(
−c2

λ

‖f‖BMO

)
|Q|

This inequality has a corollary implying some form of exponential summability of
the di�erence between the function and its own integral average.

Corollary 4.2. Let f be a function in BMO(Rn). Then there exists some C > 0 and
some A(f) ≤ C‖f‖BMO such that

sup
Q⊆Rn

ˆ
Q

e
|f(x)−fQ|
A(f) dx < +∞

In particular, from John-Nirenberg inequality one can also prove that BMO func-
tions are locally p-summable for any �nite p ≥ 1.

Corollary 4.3. Let f be a function in BMO(Rn). Then f ∈ Lploc(Rn) for any p ∈
[1,+∞).

However, a function in BMO is not necessarily locally essentially bounded. An
example of a function in BMO that is not bounded is the following:

f(x) = log(|p(x)|) ∈ BMO \ L∞, for any polinomial p(x) 6≡ 0.

Of course, though, any function in L∞ is also a BMO function and

L∞ ↪→ BMO

with a continuous embedding, as it is easy to prove that

‖f‖BMO ≤ 2‖f‖∞

always holds.

De�nition 4.2. A real valued locally integrable function f(x) ∈ L1
loc(R) is said to

have Bounded Lower Oscillation (f(x) ∈ BLO(R)) if

sup
I

 
I

[f(x)− inf
I
f ]dx = sup

I
[fI − inf

I
f ] = ‖f‖BLO <∞. (4.2)

We remark here that inf denotes the essential in�mum.
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Of course, as in the de�nition of BMO, it is useful to think the class of BLO(R)
functions modulo the set of all functions which are almost everywhere equal to a con-
stant.
Of course:

� ∀f, g ∈ BLO, f + g ∈ BLO and ‖f + g‖BLO ≤ ‖f‖BLO + ‖g‖BLO

� ∀α > 0, ∀f ∈ BLO, αf ∈ BLO and ‖αf‖BLO = α‖f‖BLO

but BLO 6= −BLO so that BLO is not a vector space and an example of a function
f(x) = − log(|x|) ∈ BLO but not in −BLO was pointed out by Korey [108].
It is common among many authors to use the ‖ · ‖BLO notation (see [108]) and refer to
it as a norm even if it is not de�ned on a vector space; we will also do so in this paper.
It is obvious, by the de�nitions, that:

‖f‖BMO ≤ 2‖f‖BLO, ∀f ∈ BLO. (4.3)

As explained in the Introduction of [108], by intersecting BLO and −BLO we exactly
get the space of all essentially bounded functions L∞.
In particular, of course, L∞ is included in BMO and BLO and ‖ · ‖BMO ≤ 2‖ · ‖L∞
and ‖ · ‖BLO ≤ 2‖ · ‖L∞ .
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4.2 Muckenhoupt weights, maximal functions and their

relation to BMO and BLO
In this section we will give de�nition of some function classes called Muckenhoupt

weights and explain why they were introduced in connection to an operator called
Hardy-Littlewood maximal operator, to then show the strong connection they have
with BMO.

De�nition 4.3. Let p ∈ (1,∞).
A weight w : Rn → [0,+∞[ belongs to the Ap class of Muckenhoupt if

Ap(w) = sup
B⊂⊂Rn

 
B

w(x)dx

( 
B

w−
q
p (x)dx

) p
q

<∞ (4.4)

where q is the Hölder conjugate of p, i.e. the only real number such that 1
p

+ 1
q

= 1,
and B is any ball contained in Rn.

It is possible to show that the same space of functions is de�ned upon substituting
balls for cubes, but in this context balls are conventionally used.
We would like to remark that the case of p = 2 is peculiar as p = q:

De�nition 4.4. A weight w : Rn → [0,+∞[ belongs to the A2 class of Muckenhoupt
if

A2(w) = sup
B⊂⊂Rn

 
B

w(x)dx

 
B

w−1(x)dx <∞ (4.5)

where A2(w) is sometimes called the A2 constant of w

Also, we de�ne Muckenhoupt classes of weights also for p = 1 as

De�nition 4.5. A weight w : Rn → [0,+∞[ belongs to the A1 class of Muckenhoupt
if

A1(w) = sup
B⊂⊂Rn

ffl
B
w(x)dx

infB w(x)
<∞ (4.6)

where A1(w) is sometimes called the A1 constant of w

Lastly, we de�ne the class even for p =∞ as

A∞ =
⋃
1≤p

Ap.

Muckenhoupt weights are relevant to a useful operator called Hardy-Littlewood maxi-
mal operator, which we de�ne here

De�nition 4.6. Let f(x) be any locally integrable function, f ∈ L1
loc(Rn).

The Hardy-Littlewood maximal operator M maps f to a function Mf de�ned by the
position

Mf(x) = sup
r>0

1

|Br(x)|

ˆ
Br(x)

|f(y)| dy

where Br(x) is a ball of center x and radius r
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This new function Mf(x) is measurable as the integral function is continuous as
a function of x and r. It can be shown, though it is not trivial as it may seem, that
Mf(x) is almost everywhere �nite. This last property is consequence of the so-called
Hardy-Littlewood inequality, stated below.

Theorem 4.4. (Hardy, Littlewood,1930,[86]) Let f(x) be any integrable function, f ∈
L1(Rn). There exists a constant Cn > 0, only depending on the dimension n, such that
for any λ > 0 the following inequality, bounding the measures of the superlevel sets,
holds

|{Mf ≥ λ}| < Cd
λ
‖f‖L1

With some e�ort and the use of a Marcinkiewicz interpolation theorem, the follow-
ing stronger estimate follows

Theorem 4.5. (Hardy, Littlewood,1930,[86]) Let f(x) be any function in Lp(Rn) for
some p ≥ 1. There exists a constant Cp,n > 0, depending on the dimension n and on
p, such that the following estimate holds

‖Mf‖Lp < Cp,n‖f‖Lp

The above theorem proves, in particular, that M is a bounded operator from the
classic Lebesgue space Lp to itself for any p ≥ 1.
The relationship between Muckenhoupt weights and the Hardy-Littlewood maximal
operator is, in this context, made clear by the following theorem

Theorem 4.6. (Muckenhoupt,1972,[118]) A weight w ≥ 0 in L1
loc(Rn) belongs to the

Muckenhoupt class Ap for some p if and only if one of the following equivalent state-
ments hold:

1. The Hardy�Littlewood maximal function is bounded on Lp(w(x)dx), that is

ˆ
|M(f)(x)|pw(x) dx ≤ C

ˆ
|f |pw(x) dx,

for some C depending only on p and the supremum in the de�nition of Ap.

2. There is a constant c such that for any locally integrable function f on Rn, and
all balls B:

(fB)p ≤ c

w(B)

ˆ
B

f(x)pw(x) dx,

where:

fB =
1

|B|

ˆ
B

f, w(B) =

ˆ
B

w(x) dx.

With clever use of the de�nition ofAp weights, Jensen inequality and John-Nirenberg
inequality one can �nally prove the abovementioned strong relationship between Muck-
enhoupt weights and BMO

Theorem 4.7 (Muckenhoupt, 1972, [118]). The following relations hold:

1. If 0 ≤ w ∈ Ap for some p ≥ 1, then logw ∈ BMO
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2. If f ∈ BMO, then for su�ciently small δ, we have eδf ∈ Ap for some p ≥ 1. In

particular, it can be proven e
f
µ ∈ A2 if µ > ‖f‖BMO

c2
where c2 is the constant from

the John-Nirenberg inequality.

Notice that the smallness assumption for δ is necessary as − log |x| is BMO but
e− log |x| = 1

|x| is not Ap for any p ≥ 1. For a suitable choice of δ = δ(p) > 0, however,

e−δ log |x| = 1
|x|δ is a Muckenhoupt weight in Ap.

This next theorem, due to Coifman and Rochberg ([51], Corollary 3), shows a similar
connection between the Muckenhoupt class A1, BLO and the Hardy-Littlewood max-
imal operator.

Theorem 4.8 (Coifman, Rochberg, 1980, [51]). We have

1. w ∈ A1 ⇒ logw ∈ BLO and ‖ logw‖BLO ≤ logA1(w)

2. f ∈ BLO ⇒ ef/µ ∈ A1, ∀µ > ‖f‖BMO

c2
where c2 is the constant from the

John-Nirenberg inequality.

Lemma 4.9 (Coifman, Rochberg, 1980). Let w ∈ L1
loc be a weight and ε ∈ [0, 1).

Then:
Mw(x)ε ∈ A1

with A1 constant depending on ε but not on w.
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4.3 Distance to the L∞ subspace
We have already stated above that any L∞ function is in BLO and, even more

so, it is a BMO function. The position that L∞ occupies in BMO and BLO will be
further investigated in this section, making further use of the strong duality between
Muckenhoupt classes, BMO and BLO.
The following theorem further explores this relation between Muckenhoupt classes and
BMO and BLO, specializing to the Muckenhoupt classes A2 and A1.
It proves that the largest possible δ such that eδf ∈ A2 for a given function f is related
to the distance of the function f in BMO from its subspace L∞ of essentially bounded
functions.

Theorem 4.10 (Garnett, Jones, 1978, [74]). There exist two absolute constants
a2, a3 > 0 depending only on n such that for every real valued function f ∈ BMO(Rn)
the following inequalities hold:

a2ε(f) ≤ dist
BMO

(f, L∞) ≤ a3ε(f) (4.7)

where
ε(f) = inf{µ > 0 : e

f
µ ∈ A2} (4.8)

In [6] Alberico and Sbordone found sharp constants for these inequalities in the case
n = 1. They proved that one can choose a2 to be 2

e
.

In this section we restrict to n = 1 and prove a similar result underlining a connection

between the smallest possible µ such that e
f
µ in A1 and the distance of f ∈ BLO to

L∞ measured with the (so-called) BLO norm. The result is the following

Theorem 4.11 (Angrisani, 2017, [14]). There exist two absolute constants d1, d2 > 0
such that for every real valued function f ∈ BLO(R) the following inequalities hold:

d1σ(f) ≤ dist
BLO

(f, L∞) ≤ d2σ(f) (4.9)

where:
σ(f) = inf{µ > 0 : e

f
µ ∈ A1} (4.10)

To be able to prove it, we will �rst need a lemma showing some relevant properties of
the above de�ned quantity σ(f).

Lemma 4.12. Let f1, f2 ∈ BLO and g ∈ L∞. We have:

1. σ(f1) ≤ 2
c2
‖f1‖BLO

2. σ(f1 + f2) ≤ σ(f1) + σ(f2)

3. σ(f) = σ(f − g)

Proof. The �rst statement follows immediately from the second statement in Lemma
4.8 and the known inequality ‖ · ‖BMO ≤ 2‖ · ‖BLO.
To prove the second statement it will be enough to prove that for every µ1 and µ2 such



98 CHAPTER 4. BMO AND BLO

that e
f1
µ1 and e

f2
µ2 are in the Muckenhoupt class A1, we have e

f1+f2
µ1+µ2 ∈ A1.

Observe that, if θ := µ1

µ1+µ2
, we have:

e
f1+f2
µ1+µ2 =

(
e
f1
µ1

)θ (
e
f2
µ2

)1−θ
. (4.11)

It is always the case, by use of the Holder inequality, that w1, w2 ∈ A1 ⇒ wθ1w
1−θ
2 ∈ A1

so that the proof of the second statement is �nished.
The third statement follows directly from the second with the observation that σ(g) =
0, ∀g ∈ L∞.

We are now ready to prove the main result of this section

Proof of Theorem 4.11. To prove the left inequality, by Lemma 4.12, observe that for
every g ∈ L∞:

c2

2
σ(f) =

c2

2
σ(f − g) ≤ ‖f − g‖BLO (4.12)

and then take the in�mum with respect to g ∈ L∞ over both sides, so that d1 can be
chosen to be c2

2
.

To prove the other inequality choose µ0 ∈ (σ(f), 2σ(f)) and de�ne w = ef/µ0 ∈ A1.

By Lemma 4.9 we have (Mw)
1
2 ∈ A1. This means that 1

2
log(Mw) is in BLO, by

Theorem 4.8 and by the same theorem

‖ log(Mw)‖BLO ≤ 2 log
(
A1((Mw)

1
2 )
)

=: K.

Since this last quantity does not depend on w, by what is stated in Lemma 4.9, we
have that

‖µ0 log(Mw)‖BLO ≤ µ0K with K an absolute constant. (4.13)

We observed that:
w ≤Mw ≤ A1(w)w (4.14)

and this implies that:

log
( w

Mw

)
∈ L∞. (4.15)

We conclude that:

dist
BLO

(f, L∞) ≤

∥∥∥∥∥f − µ0 log
( w

Mw

)∥∥∥∥∥
BLO

=

= ‖µ0 log(Mw)‖BLO ≤ µ0K < (2K)σ(f) (4.16)

so that d2 can be chosen to be 2K.
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4.4 A new norm to tackle the distance problem

In this section, inspired by a work (see [51]) of Coifman and Rochberg on a de-
composition of A1 weights through the Hardy-Littlewood maximal operator and by its
consequences on BLO, we de�ne a new norm on BLO that is equivalent to the usual
one.
This new norm ‖ · ‖′BLO will have the advantage of making

dist
BLO′

(f, L∞) := inf
g∈L∞

‖f − g‖′BLO

explicitely and exactly computable in terms of σ(f). The beauty of this result is that
this norm is not arti�cially constructed for this scope, but rather naturally inspired
from properties of BLO functions with respect to the Hardy-Littlewoood maximal
operator.
As a matter of fact, we will prove the equality:

dist
BLO′

(f, L∞) = σ(f) := inf{µ > 0 : e
f
µ ∈ A1} (4.17)

showing that, in this new norm, the distance from L∞ is exactly the reciprocal of the

critical exponent for which the function e
f
µ is in A1, reaching a result that is, notably,

a quantitative improvement with respect to the one in the previous section.
To reach this objective, we quote another result by Coifman and Rochberg contained in
[51], concerning powers ofMw for w ∈ L1

loc. The two authors also proved that, modulo
L∞ functions, all A1 functions arise as some power of Mw for a suitable w ∈ L1

loc, i.e:

Theorem 4.13 (Coifman, Rochberg, 1980, [51]). Assume w ∈ A1.
There are functions 0 < A < b(x) < 1 ∈ L∞, g ∈ L1

loc and a number ε ∈ [0, 1) such
that:

w(x) = b(x)Mg(x)ε

For the convenience of the reader we will repeat the proof of this theorem paying
particular attention to the value of A and how it depends on A1(w).
To do so, an inequality known as the reverse Holder inequality is needed:

Theorem 4.14. If w ∈ A1, then there is a su�ciently small value of η > 0 and a
constant cη depending on η but not on I ⊂ R such that:( 

I

w1+η(x)dx

) 1
1+η

≤ cη

 
I

w(x)dx.

In particular, we have w1+η ∈ A1 and A1(w1+η) ≤ c1+η
η A1(w)1+η.

Furthermore, cη < c3 := 2e, ∀η < 1.

Using this theorem we have that for every w ∈ A1 there is always a η ∈ (0, 1) such
that A1(w1+η) ≤ c1+η

3 A1(w)1+η.
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Proof of Theorem 4.13. Choose a su�ciently small η < 1 as in the reverse Holder
inequality and de�ne

b(x) =
w(x)

[M(w1+η(x))]
1

1+η

and g(x) = w(x)1+η (4.18)

noticing that g(x) ∈ L1
loc.

We have that b(x) ≤ 1 ⇐⇒ w1+η(x) ≤ M(w1+η(x)) but this latter inequality holds
a.e. since almost every point x ∈ R is a Lebesgue point for w1+η(x) ∈ L1

loc.
A lower bound on b(x) can be obtained by observing that:

b(x) =
w(x)

[M(w1+η(x))]
1

1+η

=

[
w(x)1+η

M(w1+η(x))

] 1
1+η

≥

≥
[

1

A1(w1+η)

] 1
1+η

≥ 1

c3A1(w)
> 0. (4.19)

Now take ε ∈ (0, 1) to be 1
1+η

.

We have that w(x) = b(x) [Mg(x)]ε so that the theorem is proven and we can choose
A to be 1

c3A1(w)
.

By combining theorems 4.9 and 4.13, in light of the known duality expressed by
Lemma 4.8 we get that:

f(x) ∈ BLO ⇐⇒ ∃ α > 0, b(x) ∈ L∞, g(x) ∈ L1
loc,

f(x) = α log(Mg(x)) + b(x) (4.20)

The logical equivalence in (4.20) leads us to de�ne:

‖f‖′BLO =

= inf
{
α + ‖b‖∞ : α > 0, b ∈ L∞ s.t. ∃g ∈ L1

loc, f = α log(Mg) + b
}

which has, of course, the same properties of ‖ · ‖BLO and we will now prove the equiv-
alence of the two.

Theorem 4.15 (Angrisani, preprint). There exist two absolute constants d1, d2 > 0
such that, for every f ∈ BLO:

d1‖f‖BLO ≤ ‖f‖′BLO ≤ d2‖f‖BLO (4.21)

Proof. During this proof, c1 and c2 will still denote the constants in John-Nirenberg
inequality.
We will divide the proof in steps, addressing the latter inequality �rst.

Step 1: Showing that ∃c4 > 0 such that ∀f ∈ BLO, A1

(
e

fc2
4‖f‖BLO

)
≤ c4:

Take λ = 4‖f‖BLO
c2

log ζ in John-Niremberg inequality.
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We have:

|{t ∈ I : |f(t)− fI | >
4‖f‖BLO

c2

log ζ}| ≤ c1ζ
− 4‖f‖BLO
‖f‖BMO |I|. (4.22)

Notice that:

|f(t)− fI | >
4‖f‖BLO

c2

log ζ ⇐⇒ e
c2|f(t)−fI |
4‖f‖BLO > ζ. (4.23)

By Cavalieri's principle we have:

ˆ
I

e
c2|f(t)−fI |
4‖f‖BLO dt =

ˆ ∞
0

|{t ∈ I : e
c2|f(t)−fI |
4‖f‖BLO > ζ}|dζ ≤

≤ |I|+
ˆ ∞

1

|{t ∈ I : e
c2|f(t)−fI |
4‖f‖BLO > ζ}|dζ. (4.24)

But we can use (4.23) to bound the last integral so that (4.24) becomes:

ˆ
I

e
c2|f(t)−fI |
4‖f‖BLO ≤ |I|+ |I|

ˆ ∞
1

c1ζ
− 4‖f‖BLO
‖f‖BMO ≤ |I|+ |I|

ˆ ∞
1

c1ζ
−2dζ = |I|(1 + c1). (4.25)

where ‖ · ‖BMO ≤ 2‖ · ‖BLO was also used.
By dividing both sides of (4.25) by |I| and using x ≤ |x|, we get to

 
I

e
c2(f(t)−fI )

4‖f‖BLO ≤ 1 + c1 (4.26)

so that:  
I

e
c2

4‖f‖BLO
f(t)
dt ≤ (1 + c1)e

c2fI
4‖f‖BLO ≤ (1 + c1)e

c2(infI f+‖f‖BLO)

4‖f‖BLO (4.27)

where we used f ∈ BLO. Lastly:
 
I

e
c2

4‖f‖BLO
f(t)
dt ≤ (1 + c1)e

c2
4 inf

I
e

c2
4‖f‖BLO

f(t)
(4.28)

and this �rst step is concluded by taking c4 = (1 + c1)e
c2
4 .

Step 2: Showing that ‖f‖′BLO ≤ d2‖f‖BLO Take f(x) ∈ BLO. By the �rst step we

have w(x) = e
f(x)c2

4‖f‖BLO ∈ A1.
By theorem 4.13 we have b ∈ L∞, 0 < A < b(x) < 1, ε ∈ [0, 1), g ∈ L1

loc such that:

w(x) = b(x)[Mg(x)]ε (4.29)

and so

f(x) =
4‖f‖BLO

c2

log(b(x)) +
4‖f‖BLO

c2

ε log(Mg(x)). (4.30)

In particular, de�ne

B(x) = 4‖f‖BLO
c2

log(b(x)) and α = 4‖f‖BLO
c2

ε.
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Since 1 ≥ b(x) ≥ 1
c3A1(w)

, taking logarithms and using the �rst step we have that

0 < |B(x)| < [log c3 + log c4]
4‖f‖BLO

c2

=: c5
4‖f‖BLO

c2

. (4.31)

Also, notice α < 4‖f‖BLO
c2

since ε < 1.
By combining this with (4.31) we get

‖f‖′BLO ≤ α + ‖B‖∞ ≤
[
(1 + c5)

4

c2

]
‖f‖BLO,

so that by denoting d2 =
[
(1 + c5) 4

c2

]
we conclude the second step.

Step 3: Showing d1‖f‖BLO ≤ ‖f‖′BLO.
Take any α > 0, g ∈ L1

loc and b ∈ L∞ such that f = α log(Mg) + b.
We have:

‖f‖BLO ≤ α‖ log(Mg)‖BLO + ‖b‖BLO ≤ 2α‖ log((Mg)
1
2 )‖BLO + 2‖b‖∞.

But by the �rst proposition in Lemma 4.8 we have:

‖f‖BLO ≤ 2α log
[
A1((Mg)

1
2 )
]

+ 2‖b‖∞.

Theorem 4.9 by Coifman and Rochberg stated that A1((Mg)ε) does not depend on g,

so that A1((Mg)
1
2 ) ≤ c6, with c6 absolute constant.

For this reason we have

‖f‖BLO ≤ 2α log c6 + 2‖b‖∞. (4.32)

for each possible decomposition of f , so that by taking the in�mum and denoting
1
d1

= max{2, 2 log c6} we conclude the last step of the proof.

We can now prove the announced main result of this section

Theorem 4.16 (Angrisani, preprint). For every f ∈ BLO we have that:

dist
BLO′

(f, L∞) = inf
h∈L∞

‖f − h‖′BLO = σ(f)

Proof. First notice that:

dist
BLO′

(f, L∞) = inf
h∈L∞

inf{µ+ ‖b‖∞ : f − h = µ log(Mg) + b}

so that, for any µ and g, by a proper choice of h, b can always be chosen to be 0.
This means that

dist
BLO′

(f, L∞) = inf{µ > 0 : ∃g(x) ∈ L1
loc, f(x)− µ log[Mg(x)] ∈ L∞}. (4.33)

On the other hand, since a weight e
f
µ ∈ L1

loc is in the Muckenhoupt class A1 if and
only if it can be written as b(x)[Mg(x)]ε for suitable 0 < A < b(x) ∈ L∞, g ∈ L1

loc and
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ε ∈ [0, 1), we have:

σ(f) = inf
{
µ > 0 : ∃b ∈ L∞, ε < 1, g ∈ L1

loc, e
f(x)
µ = b(x)[Mg(x)]ε

}
(4.34)

or, by taking logarithms:

σ(f) = inf
{
µ > 0 :

∃b(x) ∈ L∞, ε < 1, g(x) ∈ L1
loc,

f(x)

µ
= b′(x) + ε log[Mg(x)]

}
(4.35)

where we have denoted b′(x) = log(b(x)) ∈ L∞.
Equivalently:

σ(f) = inf
{
µ > 0 : ∃ε < 1, g(x) ∈ L1

loc, f(x)− µε log[Mg(x)] ∈ L∞
}

(4.36)

which is the same thing as:

σ(f) = inf
{
µ > 0 : ∃g(x) ∈ L1

loc, f(x)− µ log[Mg(x)] ∈ L∞
}

(4.37)

Let us better explain this last step, between Equation (4.36) and (4.37).
A real number a satis�es

a < inf{µ > 0 : ∃ε < 1, g(x) ∈ L1
loc, f(x)− µε log[Mg(x)] ∈ L∞} (4.38)

if and only if there is no ε < 1 and g ∈ L1
loc such that f − aε log(Mg(x)) ∈ L∞, which

is equivalent to saying that:

@a′ < a : f − a′ log(Mg(x)) ∈ L∞ (4.39)

which happens if and only if:

a ≤ inf{µ > 0 : ∃g(x) ∈ L1
loc, f(x)− µ log[Mg(x)] ∈ L∞}

The proof is concluded by comparing (4.33) e (4.37).
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4.5 Approximation by truncation and molli�cation in

BLO
Of course, the previous sections implies that the closure of L∞ in BLO can be

characterized as:
f ∈ L∞BLO ⇐⇒ ∀µ > 0, e

f
µ ∈ A1. (4.40)

Let us start this section by providing an example of an unbounded function in L∞
BLO

,

proving L∞ ⊂ L∞
BLO

is strict.
Throughout this example we restrict the attention to the interval J = (0, 1

e
) and con-

sider the function f(x) = log(− log x). This function is well de�ned but not L∞(J).
However, we will prove erf(x) = [− log x]r is A1 on (0, 1

e
) for arbitrarily large r, con-

cluding through (4.40) that it is in the closure of L∞ in BLO.
To prove this, observe that gr(x) = [− log x]r is decreasing and always greater than 1
in J : this helps with the estimate of A1(gr).
Indeed:

A1(gr) = sup
I⊂⊂J

ffl
I
gr(x)dx

infI gr
= sup

[0,b]⊂⊂J

ffl b
0
gr(x)dx

inf [0,b] gr
= sup

b≤1/e

1

gr(b)

 b

0

gr(x)dx. (4.41)

This is because gr(x) is decreasing and for every interval I = [a, b], by considering the
interval I ′ = [0, b] we have the obvious inequalities:

� (gr)I′ ≥ (gr)I

� infI′ gr = gr(b) = infI gr.

By taking b = e−t we have

A1(gr) = sup
t≥1

et

tr

ˆ e−t

0

[− log x]rdx. (4.42)

We will now show via the induction principle on the integer r that the quantity of
which we are taking the supremum in (4.41) is decreasing with respect to t for every
positive integer r. This will help us with computing its supremum.
As a matter of fact, the right hand side equals 1 + 1

t
for r = 1 so the base case of the

induction principle is satis�ed.
We will now procede by induction and assume it is decreasing for r − 1 and let us

call fr(t) =
´ e−t

0
[− log x]rdx. Using integration by parts we get the recursive formula

fr(t) = tr

et
+ rfr−1(t) and then et

tr
fr(t) = 1 + r

t

[
et

tr−1fr−1(t)
]
.

As the product of two positive decreasing functions is still decreasing, we proved that
the right hand side in Equation (4.42) is decreasing in t for every n and this implies:

A1(gr) =

 1/e

0

[− log x]rdx

because the supremum in 4.41 is obtained when t = 1.
One could compute A1(gr) exactly with this strategy, but for us it is enough to observe
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it is �nite for every r, i.e. A1(erf ) < ∞ for every r ∈ N and f(x) ∈ L∞
BLO

by the
aforementioned characterization.
Let us call T the set of BLO functions f such that, if we de�ne the truncated functions,

{f}k =


k if f(x) ≥ k

f(x) if − k ≤ f(x) ≤ k

−k if f(x) ≤ −k

we get lim
k→∞
‖f − {f}k‖BLO = 0.

We will now also show that both inclusions in

L∞ ⊂ T ⊂ L∞
BLO

(4.43)

are strict.
Our example of an unbounded function that is approximable by truncation is exactly
the one from the previous section: in fact we will show that f(x) = log(− log x) ∈ T
even if it is unbounded, concluding L∞ ⊂ T is strict.
To do so, notice:

f − {f}k =

{
f(x)− k if f(x) ≥ k

0 if f(x) ≤ k

and since f − {f}k is non-negative, when we compute ‖f − {f}k‖BLO we can ignore
all intervals having intersection with {x : f(x) < k} = (e−e

k
, e−1).

In other words, ‖f − {f}k‖BLO(0,1/e) = ‖f − k‖
BLO(0,1/eek )

= ‖f‖
BLO(0,1/eek )

.

Let us call Jk = (0, 1/ee
k
) so that our goal is to show that ‖f‖BLO(Jk) → 0 as k →∞.

In [73], Garcia showed that e‖f‖BLO ≤ A1(ef ).
In this case, since ef(x) = − log x:

‖f‖BLO(Jk) ≤ log[A1(− log x)]Jk

where the subscript Jk denotes the fact that we are considering the A1 constant of
− log x over Jk.
With the same strategy as before, we get:

[A1(− log x)]Jk = sup
t≥ek

et

t

ˆ e−t

0

[− log x]dx =
ee
k

ek

ˆ e−e
k

0

[− log x]dx =
1 + ek

ek

so that:

0 ≤ lim
k→∞
‖f − {f}k‖BLO ≤ lim

k→∞
log[A1(− log x)]Jk = lim

k→∞
log(1 +

1

ek
) = 0.

proving the strictness of the �rst inclusion in (4.43).
We now need to show that there is a function which is approximable by bounded

functions but not by truncation, i.e. a function f ∈ L∞BLO which is not in T .
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To do so we will �rst show that any function of the type

η(x) =
∞∑
n=0

nχ[an+1,an) with an strictly decreasing to 0 (4.44)

is not in T and then we carefully choose {an} in such a way that η(x) is in L∞
BLO

.
To prove the aforementioned claim notice that, for a function f(x) of the type in (4.44):

‖f − {f}k‖BLO = ‖f‖BLO(0,ak) ≥ 1, ∀k ∈ N. (4.45)

This is because the BLO norm of a jump function is at least equal to the maximum
size of its jumps: one can prove that it is by choosing intervals of the tipe [an+1, an + ε]
with su�ciently small ε > 0.

Our example of a function in L∞
BLO

which is not approximable by truncation will
then be of the type described in (4.44) with the choice an = 1/ee

n
(considered on the

interval J).
As a matter of fact, taking f to be

f(x) =
∞∑
n=0

nχ[1/een+1 ,1/een )

let us compute A1(erf ). Notice that f is decreasing and with the usual reasoning:

A1(erf ) = sup
b≤1/e

ffl b
0
erf(x)dx

erf(b)
≤ sup

n∈N

ffl an+1

0
erf(x)dx

ern

where the second inequality comes from considering an+1 ≤ b < an and overestimating
the integral average over [0, b] with the one over [0, an+1] since f is decreasing.
Explicitely computing the integral via the de�nition gets to:

A1(erf ) = sup
n∈N

1

an+1

∞∑
i=n+1

er(i−n)[ai − ai+1]

and then substituting an we get

A1(erf ) = sup
n∈N

ee
n+1

∞∑
j=1

erj
[

1

een+j −
1

een+j+1

]
=
∞∑
j=1

1

e[en(ej−e)−rj] .

Noting that the series on the right hand side is dominated by a convergent one that
does not depend on n, i.e:

∞∑
j=1

1

e[en(ej−e)−rj] ≤
∞∑
j=1

1

e[ej−e−rj] = K(r) < +∞, ∀r, n ∈ N

shows that f(x) lies in L∞
BLO

, but, like every other function of this type, is not
approximable by truncation.
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4.6 Coifman and Rochberg's decomposition of BMO
In this section, we present a proof by Coifman and Rochberg of the fact that any

BMO function can be written as the di�erence of two BLO functions. At the end of
the section we will also say something about a di�erent proof, made possible nowadays
a consequence of a decomposition result for the Muckenhoupt class A2 that was not
known at the time of paper [51] by Coifman and Rochberg, making use, again, of
the connection between Muckenhoupt classes of weights and BMO and BLO. The
way Co�man and Rochberg proved it in 1980 is as a consequence of the following
representation theorem for BMO functions due to L. Carleson [40]

Theorem 4.17 (Carleson, 1976, [40]). Let ϕ be a non-negative Lipschitz function
supported in the unit ball of Rn with and satisfying

´
Rn ϕ(y) dy = 1. There are constants

c1 and c2 such that if ε(y) is any measurable function and b1 and b2 are bounded
functions then the function

f(x) = b1(x) +

ˆ
Rn

1

ε(y)n
ϕ

(
x− y
ε(y)

)
b2(y) dy (4.46)

is in BMO and
‖f‖BMO < c1(‖b1‖∞ + ‖b2‖∞).

Conversely, if f is in BMO then f can be written in the form (4.46) with functions b1

and b2 which satisfy
‖b1‖∞ + ‖b2‖∞ ≤ c2‖f‖BMO

Theorem 4.18 (Coifman, Rochberg, 1980, [51]). A function f in is BMO if and only
if it can be written as di�erence of two functions f1, f2 in BLO, i.e.

f(x) = f1(x)− f2(x)

in a way such that
‖f1‖BLO + ‖f2‖BLO ≤ c‖f‖BMO

for some absolute constant c > 0.

Proof. We will prove the result by decomposing the function b2 in (4.46) as the dif-
ference of two non-negative functions b2 = h1 − h2 and then showing that for every
non-negative function 0 ≤ h(x) ≤ k, we have that

g(x) =

ˆ
Rn

1

ε(y)n
ϕ

(
x− y
ε(y)

)
h(y) dy

is a BLO function. To do so we are going to need the di�erence between the integral
average and the in�mum of g(x) over the generic cube Q.
Fix any cube Q and denote by Q the concentric cube whose sidelength is 5 times
larger. We will again split h(x) = h1(x) + h2(x), where h1(x) = h(x)χQ(x) and
h2(x) = h(x)[1− χQ(x)] and 0 ≤ h1(x), h2(x) ≤ k will still hold and this will induce a
splitting g(x) = g1(x) + g2(x). Since

gQ − inf
Q

(g) ≤ (g1)Q + (g2)Q − inf
Q

(g) (4.47)
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we need an estimate of (g1)Q:

 
Q

ˆ
Rn

1

ε(y)n
ϕ

(
x− y
ε(y)

)
h1(y) dy dx =

=
1

|Q|

ˆ
Rn

ˆ
Rn

1

ε(y)n
ϕ

(
x− y
ε(y)

)
dxh1(y) dy =

=
1

|Q|

ˆ
Rn
h1(y) dy ≤ 5nk.

where
´
ϕ = 1 was used.

On the other hand, let x and x′ be in Q, and let us estimate

|g2(x)− g2(x′)| ≤
ˆ
Rn\Q

∣∣∣∣ 1

ε(y)n

[
ϕ

(
x− y
ε(y)

)
− ϕ

(
x′ − y
ε(y)

)]∣∣∣∣ dy
Now, since y is outside the cube Q, which is 5 times larger than the cube Q in which x
and x′ are taken, there is going to be a positive constant α such that if ε(y) < α|x− y|
then ε(y) < |x′ − y| and so the integral is going to be 0. This means we can continue
estimating assuming that ε ≥ α|x − y|. In what follows, let us call L the Lipschitz
constant of ϕ and D the diameter of the original cube Q:

|g2(x)− g2(x′)| ≤

≤ L

ˆ
Rn\Q

1

ε(y)n+1
|x− x′| dy ≤ LD

αn+1

ˆ
Rn\Q

1

|x− y|n+1
dy ≤

≤ LD

αn+1

ˆ
{|x−y|>D}

1

|x− y|n+1
dy ≤ βk

with some positive constant β > 0.
So, continuing from (4.47) and noticing infQ(g) = infQ(g2) we have:

gQ − inf
Q

(g) ≤ (g1)Q + (g2)Q − inf
Q

(g2) ≤ (5n + β)k < +∞

proving that g is in BLO. This shows that the BMO function we started with can be
expressed as di�erence of two BLO functions. The bounds on the norms are given by
the bounds by Carleson, together with the fact that BLO continuously embeds into
BMO and L∞ continuously embeds into BLO.

The same result can also be obtained avoiding Carleson theorem by making use of a
more recent result about Muckenhoupt classes, proved by Peter Jones in [95] stating
that any weight in the Muckenhoupt class A2 can be written as the ratio of two weights
in A1, with bounds on the A1 constants of the factors. Combining this result with the
aforementioned strong interplay between BMO and A2 or BLO and A1, which is an
exponential interplay, the result is e�ortlessly obtained. Of course this connection goes
both ways, so that the independent proofs of these strongly correlated results both give
some deep insights into the topic, but for the sake of brevity we stop at this proof.
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Vanishing mean or lower oscillation:

VMO and V LO

5.1 De�nition of VMO and V LO and their relation to

BMO and BLO
In this section we give the de�nition of a couple of relevant subclasses of BMO

and BLO respectively. We will start with the space of functions with vanishing mean
oscillation, i.e. VMO functions. The idea de�ning this space is that, together with
an upper bound on how big the mean oscillation can be, we also request that the
mean oscillation on VMO functions vanishes uniformly as the Lebesgue measure of
the interval I on which it is computed goes to 0. This is an integral version of the
concept of uniform continuity.

De�nition 5.1 (Sarason, 1975, [130]). A BMO function f(x) is said to have Vanishing
Mean Oscillation (f ∈ VMO(R)) if it also satis�es:

V (f) = lim sup
|I|→0

 
I

|f(x)− fI |dx = 0. (5.1)

The same idea can be used in de�ning the class of functions of vanishing lower
oscillation, which we will denote by V LO.

De�nition 5.2 (Korey, 2001, [108]). A BLO function is said to have Vanishing Lower
Oscillation (f ∈ V LO(R)) if it also satis�es:

W (f) = lim sup
|I|→0

[fI − inf
I
f ] = 0. (5.2)

In the same way as BLO is not a vector space (but instead we might think of it as
a subcone of BMO) because it is not in general true that the opposite of a function of
bounded lower oscillation is also a function of bounded lower oscillation, the same can
be said of V LO: an example will follow after the next proposition.
The following proposition gives one possible interpretation of the property V LO by
connecting it to a classical function property: uniform continuity. We already said
that a function is in BLO and in −BLO at the same time if and only if it is essen-
tially bounded. The cone −BLO is sometimes referred to as BUO (Bounded Upper

109



110 CHAPTER 5. VMO AND V LO

Oscillation).
Here we show a simple lemma proving that a function is at the same time in V LO and
in −V LO, this latter one sometimes referred to as V UO (Vanishing Upper Oscillation),
if and only if it is bounded and uniformly continuous.

Proposition 5.1. Let f ∈ L1
loc(R) be a function such that f and −f belong to V LO(R).

Then f is in the space BUC(R) of bounded and uniformly continuous functions.

Proof. We already now that f is essentially bounded. Let us now write the conditions

W (f) = lim sup
|I|→0

[fI − inf
I
f ] = 0. (5.3)

and
W (−f) = lim sup

|I|→0

[(−f)I − inf
I

(−f)] = 0. (5.4)

The latter of the two can be rewritten as

W (−f) = lim sup
|I|→0

sup
I

(f)− fI = 0. (5.5)

hence, by putting it together with the former, one deduces

lim sup
|I|→0

ωf (I) = 0 (5.6)

where ωf is classical oscillation of f as de�ned in (2.1), proving f is uniformly con-
tinuous and essentially bounded. To conclude, of course notice that, for a continuous
function, an essential bound is the same thing as a bound.

Exactly in the same way one proves BLO ⊂ BMO, it is also true that V LO ⊂ VMO.
The above inclusion is strict, as shown by the example of the function

f(x) = −

√
log

(
1

|x|

)
which is in VMO but it is in V LO \ −V LO, so that −f(x) ∈ VMO \ V LO.
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5.2 Distance in BMO and BLO to VMO and V LO
In his paper [130] from 1975, Donald Sarason proved, among other results, the

following theorem, expressing the distance of a function in BMO from the subspace
VMO of functions of vanishing mean oscillation.

Theorem 5.2 (Sarason, 1975, [130]). There exists an absolute constant a1 > 0 such
that for every real valued function f ∈ BMO(R) the following inequalities hold:

V (f) ≤ dist
BMO

(f, V MO) ≤ a1V (f) (5.7)

where

V (f) = lim sup
|I|→0

 
I

|f(x)− fI |dx. (5.8)

The aim of this section is to prove

Theorem 5.3 (Angrisani, 2017, [14]). There exists an absolute constant a4 > 0 such
that for every real valued function f ∈ BLO(R) the following inequalities hold:

W (f) ≤ dist
BLO

(f, V LO) ≤ a4W (f) (5.9)

where:

W (f) = lim sup
|I|→0

 
I

[f(x)− inf
I
f ]dx. (5.10)

This theorem is evidently analogous to Sarason's Theorem 5.7.
We adapt the proof of a lemma by Sarason (see [130]) to show that we also have:

Lemma 5.4. If h ∈ BLO and ϕ > 0 is in Cc, then g(x) = (h ? ϕ)(x) is in V LO.

Proof. Since BLO ∩ UC ⊆ V LO and BLO ⊆ BMO, since Sarason already proved
that such a convolution is uniformly continuous, we only need to prove that g is in
BLO.
First, notice that:

gI =

 
I

ˆ
R
ϕ(y)h(x− y)dydx =

ˆ
R

 
I

ϕ(y)h(x− y)dxdy =

ˆ
supp(ϕ)

ϕ(y)hI−ydy (5.11)

and

inf
I
g = inf

I

ˆ
supp(ϕ)

ϕ(y)h(x− y)dy ≥
ˆ
supp(ϕ)

ϕ(y) inf
I−y

hdy (5.12)

where this last inequality requires ϕ ≥ 0.
From these it follows that:

gI − inf
I
g ≤

ˆ
supp(ϕ)

ϕ(y)[hI−y − inf
I−y

h]dy ≤ ‖ϕ‖L1‖h‖BLO

so that g ∈ BLO.
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We remind that, for every f ∈ BMO:

W (f) = lim sup
|I|→0

 
I

(
f(x)− inf

I
f
)
dx.

The following properties are easy to check:

� W (f1 + f2) ≤ W (f1) +W (f2), ∀f1, f2 ∈ BLO.

� W (g) = 0, ∀g ∈ V LO.

� W (f) ≤ W (f − g), ∀f ∈ BLO, g ∈ V LO.

� W (f) ≤ ‖f‖BLO, ∀f ∈ BMO

We are now ready to prove (5.9), using also techniques from [43].

Proof of Theorem 5.3. Using properties of W (·):

W (f) ≤ W (f − g) ≤ ‖f − g‖BLO, ∀g ∈ V LO, ∀f ∈ BLO. (5.13)

The �rst inequality we have to prove follows from (5.13) taking the in�mum over all
possible g ∈ V LO.
We get:

W (f) ≤ dist
BLO

(f, V LO) (5.14)

Note that of course inf
g∈V LO

‖f − g‖BLO < +∞, since V LO ∩ −BLO 6= ∅.
We will now prove that:

inf
g∈V LO

‖f − g‖BLO ≤ a4W (f), ∀f ∈ BLO. (5.15)

Pick λ > W (f). Then:

∃ε > 0, ∀I, |I| ≤ ε⇒
 
I

f(x)− inf
I
fdx ≤ λ.

We de�ne:

F = {In}n∈Z, In = [n
ε

3
, (n+ 1)

ε

3
], I+

n = In−1 ∪ In ∪ In+1, ∀n ∈ Z

and
h(x) =

∑
n∈Z

χInfIn .

Our �rst goal is to prove that the size of the discontinuities of h(x) is not bigger than
12λ.
This is done observing that, for j ∈ {n− 1, n, n+ 1}, we have:

|Ij|−1

ˆ
Ij

|f(x)− fI+
n
|dx ≤ 3|I+

n |−1

ˆ
I+
n

|f(x)− fI+
n
|dx ≤ 6λ.
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so that:
|fIj − fI+

n
| ≤ 6λ

which in turn implies:
|fIj − fIk | ≤ 12λ

for j, k ∈ {n− 1, n, n+ 1}.

We now want to show that f ∈ BLO ⇒ h ∈ BLO.
If |I| ≤ ε

3
, we have hI − infI h =

ffl
I
[h(x)− infI h]dx ≤ 12λ.

If |I| ≥ ε
3
we choose a minimal F′ ⊂ F with the property that I ⊂ I ′ =

⋃
J∈F′

J .

It is easily proven that |I
′|
|I| ≤ 3 from which it follows:

hI − inf
I
h =

1

|I|′
|I|′

|I|

ˆ
I

h(x)− inf
I′
hdx ≤ 3

 
I′
h(x)− inf

I′
hdx. (5.16)

Note also that

hI′ =
1

|I ′|

ˆ
I′
h(x)dx =

1

|I ′|
∑
J∈F′

ˆ
J

fJdx =
1

|I ′|
∑
J∈F′

ˆ
J

f(x)dx = fI′ (5.17)

and that infI′ f ≤ infI′ h. From that it follows that:

hI − inf
I
h ≤ 3[fI′ − inf

I′
f ] ≤ 3‖f‖BLO

and so h ∈ BLO.
Now de�ne g(x) = (h ? ϕ)(x), with ϕ > 0 in Cc such that ‖ϕ‖L1 = 1 and
supp(ϕ) ⊂ (− ε

6
, ε

6
).

We have that g ∈ V LO for Lemma 5.4. Using that |h(x)−h(x−y)| ≤ 12λ if y ∈ supp(ϕ)
one can prove that ‖h− h ? ϕ‖∞ ≤ 12λ and so:

‖h− g‖BLO ≤ 2‖h− g‖∞ ≤ 2 · 12λ = 24λ (5.18)

The last thing to do is to prove that

‖f − h‖BLO ≤ 13λ (5.19)

and then the proof will be �nished because of triangular inequality.
We divide the proof of (5.19) according to the measure of I.
If |I| ≤ ε

3
we have:

[(f − h)I − inf
I

(f − h)] ≤ [fI − inf
I
f ] + [sup

I
h− hI ] ≤ λ+ 12λ = 13λ.

If |I| ≥ ε
3
we consider F′ and I ′ as before and we have that:

[(f − h)I − inf
I

(f − h)] ≤ (f − h)I + sup
J∈F′

sup
J

[fJ − f ] ≤ (f − h)I + λ.
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We then notice that:

(f − h)I = |I|−1
∑
J∈F′

ˆ
I∩J

f(x)− h(x)dx ≤ 3|I ′|−1
∑
J∈F′

ˆ
J

|f(x)− fJ |dx

and:

3|I ′|−1
∑
J∈F′

ˆ
J

|f(x)− fJ |dx ≤ 3|I ′|−1
∑
J∈F′
|J |

 
J

|f(x)− fJ |dx ≤

≤ 6λ|I ′|−1
∑
J∈F′
|J | = 6λ.

By combining (5.18) and (5.19) through the triangular inequality we conclude the proof
of the theorem:

dist
BLO

(f, V LO) ≤ ‖f − g‖BLO ≤ ‖f − h‖BLO + ‖h− g‖BLO ≤ 13λ+ 24λ = 37λ.
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5.3 Korey's decomposition of VMO
In the section "Coifman and Rochberg's decomposition of BMO" we talked about

the decomposition
BMO = BLO −BLO

i.e. the characterization of BMO as the space of functions that can be written as
the di�erence of two BLO functions, with some bounds on the norm of the two BLO
components in terms of the BMO norm of the decomposed function.
In 2001, in the paper [108], M.B. Korey proved a similar result for VMO, showing that

VMO = V LO − V LO.

More precisely he proved

Theorem 5.5. Each VMO function is the di�erence of two V LO functions. That is,
if f ∈ VMO(Q0) then there exist V LO(Q0) functions F and G such that f = F − G
and

‖F‖BLO + ‖G‖BLO ≤ C‖f‖BMO.

The constant C depends only on the dimension

This result was reached by direct use of a powerful tool called Calderon-Zygmund
decomposition and, as it is also explained in [108], a direct approach like the one used
for decomposing BMO was not possible and Carleson's result was not a useful starting
point anymore.
Also, it is �rst proven in the dyadic case, i.e. looking at cubes that are obtained from
Q0 by partitioning cube into 2n subcubes and iterating this partitioning procedure
some �nite number of times. For example, if n = 2 and Q0 = [0, 1]2, every cube of the
type [

a

2k
,
a+ 1

2k

]
×
[
b

2k
,
b+ 1

2k

]
with 0 ≤ a, b < 2k and k ∈ N is a dyadic cube.
In other words, the result was �rst proven by Korey in the context of VMOd and V LOd

which are analogues of VMO and V LO but de�ned using only dyadic cubes, and then
extended to VMO and V LO with geometrical techniques.

We remark here also that M.B. Korey could not make direct use of the afore-
mentioned Peter Jones decomposition result for A2, stating an A2 weight w can be
decomposed as the quotient of two A1 weights w1, w2. With respect to this topic, he in
fact improved the original result (see [107]). He showed Peter Jones estimates on the
A1 weights w1 and w2 are asymptotically optimal for ideal weights: i.e, if A2(w) < 1+ε,

then the wi can be found such that A1(wi) ≤ 1 +Cε
1
2 for an absolute constant C > 0,

but this is not true for any exponent larger than 1/2 for a suitably small choice of
ε > 0.
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5.4 Leibov's norm-attaining intervals in VMO
This section is dedicated to another interesting property that is peculiar of VMO

functions in the BMO space. It was proven by Leibov while reaching a structure
theorem for closed subspaces of VMO and it has to do with the de�nition of the BMO
norm: it is of course expressed as a supremum, but Leibov needed to individuate,
whenever possible, an interval I∗ attaining the supremum, i.e. such that

 
I∗
|f − fI∗| dt ≥

 
I

|f − fI | dt

for any other interval I. In particular, in [110], Leibov was able to prove that this
property holds for VMO functions

Lemma 5.6 (Leibov, 1990, [110]). If f ∈ VMO([0, 1]) then there exists and interval
I∗ ⊆ [0, 1] such that

‖f‖BMO =

 
I∗
|f − fI∗ |dt (5.20)

In this section we will dissect and analyse the proof of this lemma, even if it is
relatively straightforward, with the purpose of proving an analogue result in the next
section.
To do so, it will be convenient to introduce some notation.
We will refer to an interval in terms of its center x and half-lenght h as in:

Ixh := [x− h, x+ h].

Let us �x h ∈
(
0, 1

2

]
and de�ne Sh = [h, 1− h]: we have that Ixh ⊆ [0, 1] if and only if

x ∈ Sh. Thus we can de�ne the set

T =

{
(x, h) ∈ R2 : h ∈

(
0,

1

2

]
, x ∈ Sh

}
(5.21)

such that Ixh ⊆ [0, 1] if and only if (x, h) ∈ T . Finally, for a generic function
f ∈ BMO([0, 1]), let us de�ne the function F : T → R given by

F (x, h) =

 
Ixh

|f − fIxh |dt, (5.22)

which is always a continuous function since f ∈ L1([0, 1]). Thus the norm onBMO([0, 1])
can be also de�ned as:

‖f‖BMO = sup
(x,h)∈T

F (x, h). (5.23)

We can also restate the VMO property in terms of F . We have that:

f ∈ VMO ⇐⇒ lim
h→0

sup
x∈Sh

F (x, h) = 0 (5.24)

that is to say that F converges to 0 as h→ 0 uniformly with respect to x.
The idea of the proof of the lemma by Leibov is to notice that F is continuous, and
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since f is in VMO, it can be extended by continuity to the closure of T , namely:

T̃ =

{
(x, h) ∈ R2 : h ∈

[
0,

1

2

]
, x ∈ Sh

}
(5.25)

by posing F = 0 on [0, 1]× 0.
A straightforward application of Weierstrass theorem concludes the proof. In particular
three main ingredients emerge:

� The compactness of T̃ ;

� The continuity of F on T ;

� The fact that if f ∈ VMO([0, 1]) then F can be extended with continuity of the

whole T̃ .
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5.5 Norm-attaining intervals in V LO

The aim of this section is to �nd an analogue of Lemma 5.6 by Leibov in the sub-
class of BLO-functions. In order to follow the same sketch of proof as described in the
previous section and obtain the same result for functions in V LO([0, 1]) with respect
to the norm in BLO([0, 1]) we will need to write the norm of a function f in such space
in terms of a suitable two variables function F and then assure this three hypothe-
ses. We will see that even the second one is not necessarly satis�ed by functions in
BLO([0, 1]) \ V LO([0, 1]).
By using the same notation in the previous section for Ixh , Sh and T , for a generic
function f ∈ BLO([0, 1]) let us de�ne the function F : T → R to be

F (x, h) =

 
Ixh

fdt− inf
Ixh

f (5.26)

Thus the norm on BLO([0, 1]) can be also de�ned as

‖f‖BLO = sup
(x,h)∈T

F (x, h). (5.27)

In terms of F , we have that f ∈ V LO([0, 1]) if and only if

lim
h→0

sup
x∈Sh

F (x, h) = 0 (5.28)

that is to say that F converges to 0 as h→ 0 uniformly with respect to x.
However, this time it is not true that F is continuous in T for any f ∈ BLO([0, 1]). In
particular, let us observe that for any f ∈ BLO([0, 1]) we can de�ne:

G(x, h) =

 
Ixh

fdt (5.29)

H(x, h) = inf
Ixh

f (5.30)

to obtain that
F (x, h) = G(x, h) +H(x, h) (5.31)

thus, since G is continuous in T (since f ∈ L1([0, 1])), then F is continuous if and only
if H is continuous.
Let us consider for instance the function

f(x) =

{
0 0 ≤ x ≤ 1

2

1 1
2
< x ≤ 1.

(5.32)

We have that f ∈ BLO([0, 1]) since f ∈ L∞, but we also have that

H(x, h) =

{
0 h ≤ x < 1

2
+ h

1 1
2

+ h ≤ x ≤ 1− h
(5.33)
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so H is not continuous and then also F is not continuous. In particular, let us observe
that since f admits a discontinuity jump, f 6∈ V LO([0, 1]).
Moreover, let us observe that

G(x, h) =


0 h ≤ x ≤ 1

2
− h

2x+2h−1
4h

1
2
− h < x ≤ 1

2
+ h

1 1
2

+ h < x ≤ 1− h
(5.34)

and then

F (x, h) =

{
0 x ∈

[
h, 1

2
− h
)
∪
[

1
2

+ h, 1− h
]

2x+2h−1
4h

x ∈
[

1
2
− h, 1

2
+ h
) (5.35)

for which sup(x,h)∈T F = 1 but F (x, h) < 1 for any (x, h) ∈ T .
Let us return to our aim, which is to show an analogue of Leibov's Lemma for V LO
functions. To do so we need to prove that, at least for a function f in V LO, the
corresponding F is continuous.

Proposition 5.7 (Angrisani, Ascione, 2018, [15]). Let f ∈ V LO([0, 1]).Then

H(x, h) = inf
Ihx

f

is continuous in T .

Proof. Let us prove this assertion by contradiction. Fix (x, h) ∈ T and let us suppose
there exists a ε > 0 such that for any δ > 0 there exists a point (yδ, kδ) such that

|x− yδ|+ |h− kδ| ≤ δ (5.36)

and
|Hf (x, h)−Hf (yδ, kδ)| ≥ ε. (5.37)

To �x the ideas, let us consider δn = 1
n
and let us denote yn := yδn , kn := kδn , I := Ixh

and In := Iynkn . Moreover, we can suppose n is big enough to have I ∩ In 6= ∅.
Equation (5.37) assures that

Hf (x, h) = inf
I
f > inf

In∪I
f =: mn. (5.38)

and that
inf
I∩In

f 6= mn (5.39)

thus
mn = inf

I∆In
f (5.40)

where I∆In = (I \In)∪(In\I). Let us suppose that In\I 6= ∅ and mn = infIn\I f . Now
let us observe that In \ I has at most two connected components I1 = [x+ h, yn + kn]
and I2 = [yn − kn, x− h]. Thus let us suppose that mn = infI1 f .
Let us suppose that n is big enough to have yn + kn < x+ 3h and then let us consider
the interval

I∗1 = [2(x+ h)− yn − kn, yn + kn] (5.41)
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on which we have that infI∗1 f = mn. Moreover, let us observe that by construction
|I∗1 ∩ I| = |I1| and |I∗1 | = 2|I1|. Now, since we have supposed that mn = infIn\I f , then

mn = H(yn, kn) ≤ H(x, h) (5.42)

and
H(x, h) ≥ mn + ε. (5.43)

By de�nition we have
inf
I∗1∩I

f ≥ H(x, h) ≥ mn + ε. (5.44)

Now let us observe thatˆ
I∗1

fdt =

ˆ
I∗1∩I

fdt+

ˆ
I1

fdt ≥ (2mn + ε)|I1| (5.45)

and then  
I∗1

fdt ≥ mn +
ε

2
(5.46)

so that  
I∗1

fdt− inf
I∗1
≥ ε

2
. (5.47)

In such case, let us denote with I∗n := I∗1 . If mn = infI2 f , we can construct in a similar
way an interval I∗2 on which we have (5.47) and we can pose I∗n := I∗2 . The construction
of I∗n can be done in the same way if I \ In 6= ∅ and mn = infI\In f . Thus, for any n
there exists an interval I∗n with length |I∗n| = yn + kn − x− h such that

 
I∗n

fdt− inf
I∗n
≥ ε

2
(5.48)

that is a contradiction with the fact that f ∈ V LO([0, 1]) since |I∗n| → 0.

Now we can prove the main result

Proposition 5.8 (Angrisani, Ascione, 2018, [15]). If f ∈ V LO([0, 1]) then there exists
an interval I∗ ⊆ [0, 1] such that

‖f‖BLO =

 
I∗
fdt− inf

I∗
f (5.49)

Proof. Since f ∈ V LO([0, 1]), H (and then F ) is continuous on T . Moreover, since F
converges to 0 as h→ 0 uniformly with respect to x, we can extend F with continuity
to

T̃ =

{
(x, h) ∈ R2 : h ∈

[
0,

1

2

]
, x ∈ Sh

}
(5.50)

by posing F (x, 0) = 0. Thus, since F is continuous on T̃ that is compact, there exists

a point (x∗, h∗) ∈ T̃ such that

sup
(x,h)∈T

F (x, h) = sup
(x,h)∈T̃

F = F (x∗, h∗) (5.51)
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and in particular we have I∗ = Ix
∗

h∗ .

Let us conclude this section by showing that f ∈ V LO([0, 1]) is a su�cient but not
necessary condition. Consider

f(x) =

{
4x− 1 x ∈

[
0, 1

2

]
0 x ∈

(
1
2
, 1
]
.

(5.52)

First let us observe that f ∈ BLO([0, 1]) since f ∈ L∞([0, 1]). Then let us consider the
intervals Ih =

[
1
2
− h, 1

2
+ h
]
for h < 1

4
. Then

lim
h→0

 
Ih

fdt− inf
Ih
f = lim

h→0
h− 1

2
= −1

2
(5.53)

so f 6∈ V LO([0, 1]). Let us consider an interval I ⊆ [0, 1]:

� If I ⊆
[
0, 1

2

]
then, posing I = [x− h, x+ h],

inf
I
f = 4x− 4h− 1 (5.54)

and  
I

fdt = 4x− 1 (5.55)

hence  
I

fdt− inf
I
f = 4h. (5.56)

But if I ⊆ [0, 1
2
], then h ∈

[
0, 1

4

]
so we have on these intervals

sup
I

 
I

fdt− inf
I
f = 1. (5.57)

� If I ⊆
[

1
2
, 1
]
, then we have

 
I

fdt− inf
I
f = 0. (5.58)

� In the other cases, we can always suppose that I ⊆
[

1
4
, 1
]
, since if it is not true

then we can construct Ĩ = I ∩
[
0, 1

2

]
such that infI f = inf Ĩ f and

 
I

fdt ≤
 
Ĩ

fdt (5.59)

and then I is not in�uential to determine the norm of f in BLO. If we consider
I ⊆

[
1
4
, 1
]
then infI f = 0. Posing I = [a, b], then we can consider Ĩ =

[
a, 1

2

]
to

obtain that  
I

fdt ≤
 
Ĩ

fdt = 2a ≤ 1. (5.60)
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With these considerations, we can conclude that ‖f‖BLO = 1.
However, posing I∗ =

[
0, 1

2

]
, we have

 
I∗
fdt− inf

I∗
f = 0 + 1 = 1 = ‖f‖BLO . (5.61)
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