
Fluoroscopy provides real-time X-ray screening of patient’s organs and of

various radiopaque objects, which make it an invaluable tool for many

interventional procedures. For this reason, the number of fluoroscopy

screenings has experienced a consistent growth in the last decades.

However, this trend has raised many concerns about the increase in X-ray

exposure, as even low-dose procedures turned out to be not as safe as they

were considered, thus demanding a rigorous monitoring of the X-ray dose

delivered to the patients and to the exposed medical staff. In this context, the

use of very low-dose protocols would be extremely beneficial. Nonetheless,

this would result in very noisy images, which need to be suitably denoised in

real-time to support interventional procedures. Simple smoothing filters tend

to produce blurring effects that undermines the visibility of object boundaries,

which is essential for the human eye to understand the imaged scene.

Therefore, some denoising strategies embed noise statistics-based criteria to

improve their denoising performances. This dissertation focuses on the Noise

Variance Conditioned Average (NVCA) algorithm, which takes advantage of

the a priori knowledge of quantum noise statistics to perform noise reduction

while preserving the edges and has already outperformed many state-of-the-

art methods in the denoising of images corrupted by quantum noise, while

also being suitable for real-time hardware implementation. Different issues

are addressed that currently limit the actual use of very low-dose protocols in

clinical practice, e.g. the evaluation of actual performances of denoising

algorithms in very low-dose conditions, the optimization of tuning parameters

to obtain the best denoising performances, the design of an index to properly

measure the quality of X-ray images, and the assessment of an a priori noise

characterization approach to account for time-varying noise statistics due to

changes of X-ray tube settings. An improved NVCA algorithm is also

presented, along with its real-time hardware implementation on a Field

Programmable Gate Array (FPGA). The novel algorithm provides more

efficient noise reduction performances also for low-contrast moving objects,

thus relaxing the trade-off between noise reduction and edge preservation,

while providing a further reduction of hardware complexity, which allows for

low usage of logic resources also on small FPGA platforms. The results

presented in this dissertation provide the means for future studies aimed at

embedding the NVCA algorithm in commercial fluoroscopic devices to

accomplish real-time denoising of very low-dose X-ray images, which would

foster their actual use in clinical practice.
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Chapter 1 

Introduction 

1.1 The need for dose reduction in fluoroscopic procedures 

Fluoroscopy is a medical imaging modality that provides continuous, real-time X-ray screening of 

patient’s organs (also with contrast agents) and of various radiopaque objects involved in surgery 

(e.g. surgical instruments, catheters, wire-guides, prosthetic implants, implanted devices). This makes 

it appealing for image-guided surgical procedures [1 – 2], such as orthopaedic surgery, angioplasty, 

pacemaker and defibrillator implantation. Fluoroscopy-guided procedures are also widespread in 

diagnostics, e.g. angiography (i.e. the imaging of blood vessels using contrast agent), investigations 

of gastrointestinal tract, assessment of joints motion, spine kinematics and implanted prosthesis [3 – 

5], and also in therapeutics, e.g. in image-guided radiotherapy, cancer ablation, lithotripsy [6 – 11]. 

Hence, fluoroscopy is undoubtedly an invaluable tool for several medical procedures and, indeed, its 

use in clinical practice has experienced a consistent growth in the last decades [12 – 22]. However, 

this trend has raised many concerns about the safety risks related to the increase in exposure to X-

rays, as they may cause serious damages to human tissues and organs [23 – 26], also being important 

risk factors for the development of tumours. Even the low-dose procedures have recently been found 

to be not as safe as they were considered [24]. While there is no general consensus on the models to 

be adopted for the prediction of dangerous X-rays exposure effects and their related safety limits, 

many medical associations suggest that the use of fluoroscopy, and, generally, of all medical 

procedures involving the exposure to X-rays, should always be carefully evaluated and monitored in 

clinical practice. This is why the rigorous monitoring of the X-ray dose delivered to the patients and 

to the exposed medical staff has gained progressively more attention in the scientific literature, also 

being subject to formal regulations from national and international health organizations [27 – 29]. 

Considering the constantly increasing number of fluoroscopy-based procedures in clinical practice 

and the need to keep the overall dose delivered to the patients as low as reasonably achievable 

(A.L.A.R.A principle [30 – 37]), it is clear that very low-dose fluoroscopic procedures would be 

extremely beneficial. 

1.2 Quantum-limited X-ray images 

The A.L.A.R.A principle clarifies the current limitation to access such very low-dose 

procedures: it is not possible to arbitrarily reduce the X-ray dose beyond certain levels, as it would 

cause severe degradation of image quality, which could seriously hinder the physician’s ability to 

understand the scenario and operate correctly. Indeed, the X-ray dose depends on a number of 

parameters and conditions, such as the X-ray tube settings (i.e. tube current and voltage), the exposure 

time,  the distance between the X-ray source and the irradiated tissue, the anti-scatter grids and the 

additional filtration [38]. Generally, most of these parameters are selected to optimize determined 
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features of the imaged scene, thus, only the tube current and, sometimes, the exposure time can be 

modified to reduce the overall dose delivered to the patient. As an example, a common practice to 

limit the overall exposure time in fluoroscopy during surgical procedures is to turn off the X-ray 

source periodically and/or to use pulsed protocols, which place a limitation on frame rate though [38]. 

However, the exposure times are still very long and unpredictable in interventional fluoroscopy [26, 

39], as they depend on the particular needs of the surgeon in each situation. 

In practice, the dose is mainly limited by reducing the tube current, which implies a reduction 

of the X-ray radiation intensity, i.e. the number of X-ray photons that reach the detector. This low 

photons availability gives rise to a signal-dependent, Poisson-distributed noise, usually referred to as 

“quantum noise” or “Poisson noise” [40]. Quantum noise is inherent to the image formation process, 

thus it cannot be avoided or even limited by improving detectors technology and requires the 

application of proper denoising strategies in the digital domain [40]. Moreover, it can be proved that 

the Signal-to-Noise Ratio (SNR) of Poisson noise is equal to the square root of the expected photon 

count, which is directly related to the dose, so the lower the dose, the lower the SNR. X-ray images 

are affected also by other sources of noise, such as the electronic noise of the detectors and the readout 

circuitry, as well as the quantization noise involved in the analogue to digital conversion. This sources 

are usually modelled as additive white gaussian noise (AWGN), therefore they are considered as 

signal-independent. X-ray images that are mainly limited by quantum noise are referred to as 

quantum-limited, and this is the case of low-dose fluoroscopic images, in which quantum noise 

represents by far the dominant noise source [40]. Models and properties of quantum noise in raw 

images, as well as in images processed with luminance transformations commonly implemented in 

fluoroscopic devices (e.g. log-mapping and gamma correction) are detailed in Chapter 1. 

1.3 Poisson noise reduction 

Commercial fluoroscopic devices usually implement only simple spatial or temporal 

averaging. Spatial correlation, due to the Point Spread Function (PSF) of the specific fluoroscopic 

device, lowers the noise reduction ratio of spatial averaging, whereas temporal uncorrelation, ensured 

by the reduced lag times of modern flat panel detectors (less than 1 ms as compared to the 33 ms 

sampling time, corresponding to the maximum frame rate of 30 frames per second) [41], is usually 

exploited via temporal filtering in commercial devices. However, simple smoothing filters usually 

don’t achieve acceptable results, as they introduce significant blurring effects, thus accomplishing 

noise reduction to the detriment of fine image details (e.g. edges, textures, etc.). Indeed, the edge 

blurring caused by spatial smoothing, as well as the motion blurring caused by temporal smoothing, 

both reduce the edge sharpness and, therefore, the perceptibility and localization of boundaries 

between different objects and body parts, thus impairing the physician’s ability to understand the 

imaged scene. 

The random fluctuations in luminance signals are all related to the stochastic nature of photons 

arrival on a detector, therefore the Poisson noise model applies to every kind of images acquired in 

low-photons availability conditions, such as confocal and fluorescence microscopy [42 – 43], 

astronomical imaging [44] and night photography [45]. The last application field, which undoubtedly 

draws the largest interest due to its tight relationship with consumer electronics,  has encouraged the 

development of a number of different approaches for single images or image sequences affected by 

Poisson noise [46 – 54]. However, it is worth underlining that photographs belong to the class of 
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natural images, whose main features and scopes are profoundly different as compared to medical 

images [55]. Hence, predicting the efficiency of methods tailored to natural images in the denoising 

of medical X-ray images is not straightforward and rather requires dedicated evaluations on both 

images with real noise and with clinically relevant information. Indeed, real fluoroscopic noise has 

far more complex components (e.g. fixed pattern noise, Compton scatter noise) and it is also modified 

by different non-idealities of the imaging system, such as the PSF and the Detective Quantum 

Efficiency (DQE) of the X-ray detectors, as well as the polyenergetic spectrum of the X-ray radiation, 

thus showing up as not an ideal Poisson random process [56 – 59]; clinical structures are known to 

alter the structural information of medical images with respect to natural ones, hence, all those 

methods that make assumptions on representative features of the latter may fail when dealing with 

the former, as those assumptions may not hold for them [55]. In addition to the approaches developed 

within the context of night photography, some denoising strategies explicitly devised for medical X-

ray images and sequences have also been proposed [40, 60 – 72, 75 – 77]. Further details on the 

performances of denoising strategies proposed for Poisson noise removal in images and videos are 

described in Chapter 5. 

1.4 The low-dose and real-time constraints 

One of the most appealing features of fluoroscopy is undoubtedly the real-time operation, 

which is essential in interventional procedures to allow the physician monitor the internal organs of 

the patient and promptly intervene in response to every change in the scenario. Hence, it is clear that 

denoising approaches devised to improve fluoroscopic image quality in these applications must be 

suitable for real-time implementation, which means that they should not exhibit an impractical 

computational burden. Although the technological development of the last decade has assuredly 

increased the computational power of digital systems, many denoising approaches proposed in 

literature are still far from being suitable for real-time implementation, mainly because they rely on 

optimization processes that do not ensure practical and stable computational times and, thus, the 

observance of the real-time constraint [60]. 

Considering the paramount importance of dose reduction in X-ray imaging, the ability to 

provide substantial image quality restoration in heavily degraded images and image sequences is 

compulsory to foster very low-dose procedures in clinical practice. While there is a natural inclination 

to project the gain in image quality obtained at lower noise levels also to higher noise levels 

(quantified by means of the many Image Quality Assessment (IQA) metrics and indices proposed in 

literature [55, 78 – 80]) to predict the effectiveness of determined approaches in very noisy conditions, 

this is not observed in practice, as the validity of their basic assumptions is progressively hindered by 

the degraded quality of the images to be restored. Therefore, the lower the original image quality, the 

lower the gain in image quality, independently of the denoising power of the specific algorithm. 

However, the decrease in image quality improvement with the degraded original image quality is 

dependent on the specific algorithm, in particular on the robustness of its basic assumptions to the 

noise, thus, as stated in the previous paragraph, it is mandatory for denoising algorithms to be tested 

on very noisy X-ray images, in order to assess if they could effectively enable very low-dose 

procedures. 
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1.5 Current issues in fluoroscopic image denoising 

In light of the requirements and constraints described so far, a conspicuous part of the 

approaches proposed in literature have not demonstrated their effectiveness in providing a suitable 

image quality restoration for very low-dose fluoroscopic sequences. Many algorithms cannot operate 

in real-time [69 – 70], or are claimed to be suitable for real-time but have not been experimentally 

demonstrated [65– 66], while the great part of the few algorithms that achieve real-time filtering of 

Poisson noise have never been tested on real fluoroscopic images acquired at very low doses [53, 81]. 

Moreover, their performances have very often been only assessed on static scenes corrupted by 

simulated Poisson noise: such scenes clearly represent oversimplistic test benches for processing of 

image sequences, which are rather meant to capture scenes with moving objects. Indeed, a trade-off 

between noise reduction and edge preservation exists also for temporal filtering, hence, an effective 

edge-aware denoising algorithm would probably not take full advantage of the temporal dimension 

in order to prevent motion blur, whereas another algorithm might achieve deeper noise reduction at 

the cost of increasing motion blur, and it is clear that assessing their performances on static scenes, 

where no motion blur may occur, would not highlight the edge-awareness of the former, but rather 

the mere improvement in noise reduction of the latter. An example of this observation is given in 

Chapter 5. Moreover, the gain in image quality provided by the proposed approaches is usually 

measured via IQA metrics and indices that, at the best, are well-suited for natural images, but more 

commonly are still mere global measures of pixel-wise dissimilarities (e.g. Mean Squared Error, Peak 

Signal-to-Noise-Ratio), already recognized as very inaccurate predictors of  the perceived image 

quality. The inability to provide reliable measures of perceived image and video quality in medical 

X-ray imaging certainly hinders the assessment and comparison of actual performances of algorithms 

for image quality restoration and, thus, the research of more performing approaches. The issues just 

described highlight that efficient and reliable solutions have not been found yet, which enable the 

real-time quality improvement of X-ray images in very low-dose fluoroscopy procedures so as to 

foster their use in clinical practice. 

1.6 Dissertation outline 

This dissertation presents an analysis of image quality assessment and restoration in very low-dose 

fluoroscopic sequences, by analysing and addressing issues of different nature that currently place 

limitations on the use of very low-dose fluoroscopy imaging in clinical practice. The dissertation is 

organised as follows: 

• Chapter 2 describes mathematical models for quantum noise statistical properties in raw and 

transformed X-ray images; 

• Chapter 3 details the quantum noise filtering approach the dissertation is focused on (i.e. the 

Noise Variance Conditioned Average algorithm), also comparing it with several state-of-the-

art denoising algorithms; 

• Chapter 4 presents an interesting application of the NVCA algorithm to fluoroscopy-based, 

automated spine kinematics analysis; 

• Chapter 5 presents the comparison between NVCA and the current state-of-the-art algorithm 

for Gaussian video denoising VBM4D, adapted to Poisson-Gaussian noise reduction via a 

variance stabilizing transformation, also with a focus on the trade-off between noise reduction 
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and edge-preservation in the case study of fluoroscopic sequences for spine kinematics 

analysis; 

• Chapter 6 addresses the current issues on unsuitability of common IQA metrics and indices 

in predicting the quality of low-dose X-ray images as perceived by a human subject and 

presents a feasibility study on a novel edge-aware IQA index devised to guide more accurately 

the identification of the best trade-off between noise reduction and edge-awareness; 

• Chapter 7 presents an improved version of the NVCA algorithm, based on the separation of 

filtering operations in the temporal and spatial domains and the use of more performing space-

variant thresholds, as well as its real-time implementation on a Field-Programmable Gate 

Array (FPGA) platform; 

• Chapter 8 presents an innovative approach to enable the real-time implementation of the 

NVCA algorithm in fluoroscopy procedures with time-varying noise statistics due to changes 

in X-ray tube settings, based on an a priori noise characterisation for a commercial 

fluoroscopic device, which would obviate the need for inferring noise statics after any change 

of tube settings. 
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Chapter 2 

Quantum noise model and statistics 

2.1 Poisson – Gaussian mixture model 

In an X-ray system, the number of photons that emerge from a patient and reach a single pixel of the 

detector plane can be modelled by a temporally stochastic Poisson process [40 – 41, 62, 82 – 83], 

whose probability density function (pdf) is described in (1): 

𝑝(𝑛) =
λ𝑛

𝑛!
𝑒−λ (1) 

where λ is the expected photon count. Simple calculations allow deriving a very important feature of 

Poisson distribution, namely the Expected Value – Variance Relationship (EVaR), which is reported 

in (2): 

σ𝑝
2(μ𝑝) = μ𝑝 (2) 

Therefore, the variance of the number of photons that reach a single pixel is equal to the expected 

photon count. This property confirms that, as already stated in the Introduction, the SNR of Poisson 

noise, which is defined as the ratio of the expected value and the standard deviation, is equal to the 

square root of the average photon count √λ. However, in practice, the information carried by this 

random process occurring at a single detector pixel is usually coded in a digital image, and particularly 

in the grey level of the corresponding image pixel, which is proportional to the actual photon count, 

thus being characterized by a modified EVaR, as reported in (3): 

g(λ) = 𝑎 · p(λ)    →    𝜎𝑔
2(𝜇𝑔) = 𝑎 · 𝜇𝑔 (3) 

where g is the grey level of the digital image pixel corresponding to the detector pixel that is reached 

by a number of photons described by p, and a is the coefficient of proportionality between g and p, 

also known as “detector gain”. The EVaR clarify the signal-dependent nature of quantum noise 

(heteroscedasticity), which, unlike the well-known AWGN, cannot be characterized by a single, 

global noise variance estimate (homoscedasticity), but rather requires the estimation of the detector 

gain, in order to be able to estimate the local, signal-dependent noise variance from the local mean 

luminance. 

As previously stated, X-ray images are also affected by other sources of noise that are usually 

modelled as AWGN. Considering that quantum noise and AWGN sources are mutually independent, 

the latter introduce a constant contribution to the noise variance (i.e. a noise floor), which should be 

included in the noise model, as shown in (4): 
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 𝜎𝑔
2(𝜇𝑔) = 𝑎 · 𝜇𝑔  +  𝑏 (4) 

where b corresponds to the overall variance of the AWGN component. This model is known as 

Poisson – Gaussian mixture and has been used in various denoising approaches devised for low-light 

images [40, 47 – 50, 60 – 61, 64, 71 – 72] which thus require the estimation of EVaR parameters (a 

and b), commonly referred to as noise parameters. 

2.2 Effect of luminance transformations on noise model 

Most fluoroscopic devices implement luminance transformations, such as the logarithmic mapping 

and the gamma – correction, usually to perform a white compression. This operations obviously 

modify the statistics of the noise and, in particular, the EVaR. Therefore, it is important to take it into 

account when performing the estimation of noise parameters. To analytically derive the EVaR 

obtained after the application of luminance transformations, it is important to express the Poisson – 

distributed signal at the generic pixel g(x,y) as an additive noise model. Although Poisson noise is 

inherently signal – dependent, it can be well approximated by a signal – dependent Gaussian noise, 

with equal expected value and variance, for not too low expected values [85 – 86]. Considering also 

the effect of detector gain a, the pixel luminance g(x,y) is expressed as a Gaussian distribution with 

variance equal to the expected value multiplied by the detector gain, which can be decomposed in a 

deterministic term s(x,y) (the signal) corresponding to the expected value, and a stochastic term n(x,y) 

(pure noise) corresponding to a zero-mean Gaussian random variable with the same variance,  as 

reported in (5). 

 

{
 
 
 

 
 
 
𝑔(𝑥, 𝑦) = 𝑎 ⋅ 𝑝(𝑥, 𝑦);           𝑝(𝑥, 𝑦) ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(λ(𝑥, 𝑦))

𝑔(𝑥, 𝑦) ≈ 𝑔′(𝑥, 𝑦);              𝑔′(𝑥, 𝑦) ~ N(𝑎 ⋅ μ𝑔, 𝑎
2 ⋅ μ𝑔)

𝑔(𝑥, 𝑦) ≈ 𝑠(𝑥, 𝑦) + 𝑛(𝑥, 𝑦);        𝑛(𝑥, 𝑦) ~ 𝑁(0, 𝑎2 ⋅ μg)

 (5) 

Indeed, deriving the EVaR for this approximated description yields the same expression found for 

the original Poisson – distributed pixel luminance: 

 {

𝐸[𝑔(𝑥, 𝑦)] = E[𝑠(𝑥, 𝑦)] = 𝑎 ⋅ μ𝑔                                            

𝑉𝑎𝑟[𝑔(𝑥, 𝑦)] = 𝑉𝑎𝑟[𝑛(𝑥, 𝑦)] = 𝑎2 ⋅ μ𝑔 = 𝑎 ⋅ 𝐸[𝑔(𝑥, 𝑦)]
 (6) 

Considering the logarithmic mapping operation reported in (7), it is possible to derive the related 

EVaR, which is outlined in (8) (to simplify the notation, the dependence on pixel position (x,y) was 

omitted). 

𝑔𝑙𝑛 = 𝑐𝑙𝑛  ⋅ 𝑙𝑛(1 + 𝑔) ≈ 𝑐𝑙𝑛 ⋅ 𝑙𝑛 [𝑠 (1 +
𝑛

𝑠
)] = 𝑐𝑙𝑛 ⋅ 𝑙𝑛(𝑠) + 𝑐𝑙𝑛 ⋅ 𝑙𝑛 (1 +

𝑛

𝑠
) = 𝑠𝑙𝑛 + 𝑛𝑙𝑛 (7) 

𝑉𝑎𝑟[𝑔𝑙𝑛] = 𝑎 ⋅ 𝑐𝑙𝑛
2 ⋅ e

−
E[gln]
cln  (8) 
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Carrying out the same procedure for the gamma – correction operation (9), it is possible to obtain an 

approximated analytic expression of the related EVaR (10): 

{
 
 

 
 𝑔γ = 𝑐γ ⋅ 𝑔

γ = 𝑐γ ⋅ 𝑠
γ ⋅ (1 +

𝑛

𝑠
)
γ

                                                                      

𝐸 [ 
𝑛

𝑠
 ] = 0 ≪ 1  →   𝑔γ ≈ 𝑐γ ⋅ 𝑠

γ ⋅ (1 + γ
𝑛

𝑠
)  =  𝑐γ ⋅ 𝑠

γ  +  𝑐γ ⋅ 𝑠
γ ⋅ γ

𝑛

𝑠

 (9) 

 

{
 
 

 
 𝐸[𝑔𝛾] = 𝑐γ ⋅ 𝑠

γ                                                                                                                      

𝑉𝑎𝑟[𝑔𝛾] = 𝑐𝛾
2 𝑠2𝛾 𝛾2 ⋅

𝑎 𝑠

𝑠2
= 𝑎 γ2 𝑐γ

1
γ (𝑐γ ⋅ 𝑠

γ)
(2−

1
γ
)
= 𝑎γ2𝑐γ

1
γ ⋅ 𝐸[𝑔γ]

(2−
1
γ
)
         

 (10) 

 

2.3 Limitations of the noise models 

The presented models are based on the hypothesis that the pixel luminance can be described 

by a single Poisson random variable multiplied by the detector gain a and potentially superimposed 

to statistically independent, space – invariant Gaussian component. However, as already stated in the 

Introduction, this is a simple yet useful approximation of a far more complex behaviour, which is 

based on the assumption of monoenergetic X-ray radiation and quasi – ideal detector response. 

Indeed, the X-ray radiation generated by commonly used X-ray tubes has a polyenergetic spectrum, 

which means that the photons produced by the tube have different energies, and this has an impact 

on the actual statistics of the detected signals. The formation of transmission X-ray images is based 

on the attenuation of X-rays due to their interaction with the object to be imaged, which mainly 

happens via three mechanisms, namely the photoelectric absorption, the Compton scattering and the 

Rayleigh scattering. However, at the energies involved in common X-ray screenings, photoelectric 

absorption and Compton scattering dominate the overall attenuation phenomenon, which is taken into 

account by means of a synthetic parameter, referred to as the linear attenuation coefficient µl. Each 

material is characterized by its own linear attenuation coefficient, which is also a function of the 

photon energy (μ𝑙 ∝
1

𝐸3
). The exponential law in (11) defines the relationship between the average 

number of X-ray photons at energy E on a primary incident ray (Nin) and the average number of 

photons at the same energy on the corresponding primary ray (Nout) that emerges from an 

homogeneous object with linear attenuation coefficient µl: 

 𝑁𝑜𝑢𝑡(𝐸) = 𝑁𝑖𝑛(E) ⋅ 𝑒
−μ𝑙(E)⋅𝑥 (11) 

where x is the optical path length of the primary ray within the object. It is clear from (11) that photons 

at different energies experience different attenuations and, thus, are described by Poisson random 

variables with expected values equal to the average numbers of emerging photons Nout(E). In common 

flat panel detectors, the actual signal from the detector is obtained through a conversion of the overall 
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energy released by the photons that reach the detector in a voltage signal, which can be expressed as 

in (12): 

 𝑉 = 𝐶 ⋅ ∫ 𝑁𝑜𝑢𝑡(𝐸)
𝐸𝑚𝑎𝑥

𝐸𝑚𝑖𝑛

⋅ 𝐸 𝑑𝐸 (12) 

where C is an energy-to-voltage conversion factor. Equation (12) highlights that by only removing 

the assumption of monoenergetic radiation, the expression of the signal provided by a sensing element 

of an X-ray detector is far from being a simple Poisson variable, and it is rather a weighted sum of 

the Poisson variables describing the arrivals of X-ray photons of different energies, with weights 

corresponding to the related photons energies. It is also important to note that single sensing elements 

of detectors may exhibit reduced sensitivities at certain energy levels, depending on their material 

and thickness, which may also experience stochastic fluctuations, commonly referred to as Swank 

noise [56, 88]. In addition, different sensing elements and related readout circuitry may exhibit non-

uniform gain and offset terms, giving rise to the so-called fixed-pattern noise, which adds a 

contribution to the spatial noise variance that is proportional to the square of the local exposure [56 – 

59]. Moreover, Compton scattered rays that reach a sensing element of the detector introduce an 

additional contribution, which depends on the interaction of the X-ray photons with other elements 

of the imaged object, thus usually causing a reduction of contrast and an increase of noise power at 

the same time [87]. Finally, the spreading of secondary quanta over neighbour sensing elements in 

the detector material, determines a non-negligible correlation between the luminance values of 

neighbour pixels, quantified by the PSF of the detector, which introduce a further alteration of noise 

statistics and appearance in the final image 

 The limitations just described give an idea of the several parameters that influence the 

appearances and features of real fluoroscopic noise, which certainly cannot be fully captured by the 

simple Poisson – Gaussian model. However, it is worth remembering that models are always partial 

representation of real phenomena and, above all, they should have the proper level of accuracy and 

complexity for their intended applications. It is clear that a model accounting for all the above-

mentioned phenomena would be almost impractical to be implemented in denoising strategies for 

fluoroscopic noise and, therefore, simplified models with reasonable accuracy should be considered 

for denoising purposes. On the other hand, a denoising strategy undoubtedly has to deal with reality. 

For interventional fluoroscopy applications this means that, besides being tested on synthetic 

sequences that mimic determined features of fluoroscopic sequences, denoising algorithms must 

ultimately prove their effectiveness in real-time processing of actual, very low-dose fluoroscopic 

sequences. 
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Chapter 3 

The Noise Variance Conditioned Average 

algorithm 

3.1 Basic principles of NVCA denoising 

The main idea behind the NVCA [40] denoising strategy comes from the observation that the 

undesirable blurring effects caused by the simple moving average algorithm arise when the grey 

values of noisy pixels belonging to different objects are averaged together. Indeed, besides certainly 

reducing noise, this operation literally spreads the luminance of brighter pixels over their 

neighbourhood, creating intermediate grey values that were not present in the original noiseless image 

and resulting in smoothed edge profiles. This behaviour can be easily interpreted in the frequency 

domain: the edges represent abrupt spatial changes in luminance, so their spectral power is mainly 

concentrated at relatively high spatial frequencies; the moving average filter is a low-pass 

(smoothing) filter, therefore it reduces the amplitude of the higher frequency components, while 

leaving the amplitude of lower frequency components almost unaltered, which results in the observed 

slower spatial variations in luminance. However, smoothed edge profiles substantially hinder the 

ability of localizing object boundaries, because profiles are characterised by many pixels with small, 

comparable luminance variations, which make it difficult for the human vision system (HVS) to 

determine which of them correspond to the true edge location. The same issues apply to the motion 

blur in an image sequence. Indeed, when an object moves in the scene, it is represented by pixels in 

different spatial positions within subsequent frames and, from a single pixel point of view, the same 

pixel represents different objects within subsequent frames, hence the instantaneous luminance values 

it assumes at any given time during the sequence actually belong to different distributions. Motion 

blur results from the time averaging of pixel luminance during objects motion, when they exit from 

or go in determined pixels areas.  It follows that the key to prevent blurring effects when performing 

a moving average is to discriminate between noisy pixels belonging to the same object, which can be 

effectively averaged to reduce noise power, and noisy pixels of different objects, which should not 

be included in the same average operation. Certainly, a method to perform such a discrimination is 

required, which should be based on an assumption that is sufficiently robust to noise.  

The NVCA algorithm is based on the hypothesis that pixels whose difference in luminance is 

greater than a certain multiple of the local noise standard deviation (SD) are more likely to belong to 

different objects, i.e. their difference in luminance is more likely to be due to the actual local contrast 

(the true signal) than to the spurious variations caused by the noise. Hence, NVCA performs a 

conditioned average in a common sliding window fashion and uses the outlined criterion to identify 

the neighbours pixels that belong to a different object, in order to exclude them from the average 

operation that produces the filtered value of the current pixel. In particular, the NVCA algorithm 

performs a conditioned spatio-temporal moving average, in order to take advantage of the temporal 
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dimension as well. Indeed, a sequence of 2D images represents a 3D matrix, thus 3D spatio-temporal 

masks of pixels can be defined, which are generically described as S×S×T matrices, where S and T 

are the mask sizes in the spatial and temporal domain, respectively. Let indicate the position of the 

current pixel as (m,n,p), with (m,n) being the position indices within the frame and p the frame index. 

The NVCA algorithm considers the spatio-temporal neighbourhood of size S×S×T centred at the 

pixel g(m,n,p), i.e. all the pixels g(m – i, n – j, p – k) with 𝑖, 𝑗 ∈ [ − ⌊ 
𝑆

2
 ⌋ ;  ⌊ 

𝑆

2
 ⌋ ] and 𝑘 ∈ [ 0;  𝑇 − 1 ], 

and computes the differences between the grey level of each pixel in the neighbourhood and the grey 

level of the current pixel. Then, the algorithm estimates the local noise SD by assuming the grey level 

of the current pixel as the expected value of a mixed Poisson – Gaussian distribution, whose SD given 

by (13): 

 𝜎(𝑚, 𝑛, 𝑝) = √𝑎 ⋅ 𝑔(𝑚, 𝑛, 𝑝) + 𝑏  (13) 

with a, b being the Poisson – Gaussian noise parameters introduced in Chapter 2. 

Afterward, the algorithm determines a threshold Gth for the grey levels differences, in order to create 

a binary mask M of Boolean values that flag the pixels to be included in the average computation. 

The threshold is assumed as a multiple of the local noise SD with a coefficient Nσ as shown in (14): 

 𝐺𝑡ℎ(𝑚, 𝑛, 𝑝) = 𝑁σ ⋅ 𝜎(𝑚, 𝑛, 𝑝) = 𝑁σ ⋅ √𝑎 ⋅ 𝑔(𝑚, 𝑛, 𝑝) + 𝑏 (14) 

 and the generic element of the binary mask M can be defined as: 

 {
 𝑀(𝑖, 𝑗, 𝑘) = 0    𝑖𝑓 |𝑔(𝑚 −  𝑖, 𝑦 − 𝑗, 𝑝 − 𝑘) − 𝑔(𝑚, 𝑛, 𝑝)| > 𝐺𝑡ℎ(𝑚, 𝑛, 𝑝)

𝑀(𝑖, 𝑗, 𝑘) = 1   𝑖𝑓 |𝑔(𝑚 −  𝑖, 𝑦 − 𝑗, 𝑝 − 𝑘) − 𝑔(𝑚, 𝑛, 𝑝)| ≤ 𝐺𝑡ℎ(𝑚, 𝑛, 𝑝)
 (15) 

The filtered value of the current pixel gf(m,n,p) is then obtained by averaging the grey levels of the 

pixels in the spatio – temporal neighbourhood mask whose corresponding elements in the binary 

mask M are non-null, as described in (16). Figure 1 shows a schematic description of NVCA. 

 𝑔𝑓(𝑚, 𝑛, 𝑝) =
1

∑ 𝑀(𝑖, 𝑗, 𝑘)𝑖,𝑗,𝑘
 ⋅ ∑ ∑ ∑ 𝑀(𝑖, 𝑗, 𝑘)

⌊ 
𝑆
2
 ⌋

𝑗=−⌊ 
𝑆
2
 ⌋

⌊ 
𝑆
2
 ⌋

𝑖=−⌊ 
𝑆
2
 ⌋

𝑇−1

𝑘=0

⋅ 𝑔(𝑚 − 𝑖, 𝑛 − 𝑗, 𝑝 − 𝑘) (16) 

Despite its simple formulation, NVCA is able to provide significant noise reduction in real 

low-dose fluoroscopic sequences, while substantially preserving the sharpness and detectability of 

object boundaries [3 – 4, 60]. It is precisely the simplicity that made its real – time implementation 

feasible on programmable hardware like the Field Programmable Gate Arrays (FPGA) [61]. Indeed, 

NVCA does not depend upon iterative schemes, thus ensuring deterministic computational times, and 

exhibits a low computational complexity, as it requires only one division per pixel (the local noise 

SD threshold can be obtained from a lookup table), which yields an order of multiplications (big-O 

notation [89 – 90]) equal to 𝑂(𝑁) for an image sequence of √N
3

× √N
3

× √N
3

 pixels. 

Despite its simple formulation, NVCA is able to provide significant noise reduction in real 

low-dose fluoroscopic sequences, while substantially preserving the sharpness and detectability of 

object boundaries [3 – 4, 60]. It is precisely the simplicity that made its real – time implementation 

feasible on programmable hardware like the Field Programmable Gate Arrays (FPGA) [61]. Indeed, 

NVCA does not depend upon iterative schemes, thus ensuring deterministic computational times, and 
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exhibits a low computational complexity, as it requires only one division per pixel (the local noise 

SD threshold can be obtained from a lookup table), which yields an order of multiplications (big-O 

notation [89 – 90]) equal to 𝑂(𝑁) for an image sequence of √N
3

× √N
3

× √N
3

 pixels. 

 

 

Figure 1. Schematic representation of the NVCA algorithm 

3.2 Effects of parameters choice 

The NVCA filter has three parameters, namely the spatial and temporal mask sizes S, T, and the noise 

SD threshold multiplier Nσ, that can be selected in order to achieve the optimal results; however it is 

not as straightforward as it might seem. Indeed, while for the moving average algorithm the effect of 

increasing or decreasing the mask size, in space and/or in time, is well-known from theory of linear 

space- and time-invariant filters, it is not the case for NVCA, as it is rather a space- and time-variant 

(i.e. non – linear) filter. Certainly, it could be observed that, provided the algorithm is efficient in 

selecting the pixels belonging to the local noise statistics, it would better to increase the mask size, 

both in space and time, so as to achieve a deeper noise reduction, because more pixels would 

potentially be averaged together. Moreover, by using a large spatio – temporal mask, the NVCA 

algorithm could result in an equivalent tracking of a relatively small object that moves within the 

region defined by the spatial extent of the mask during the time interval defined by the temporal 

extent. Nonetheless, considering that the algorithm would not provide ideal performances in practice, 

it follows that increasing the mask size would result in an increased number of misclassified pixels, 

as indeed moving away from the current pixel increases the chances to run into another object, which 

could be confused with the current one, thus resulting in the generation of blurring effects.  

In addition, the choice of the noise SD threshold multiplier Nσ should be analysed as well, as 

it plays a key role in the statistical assumption at the core of NVCA operating principle. Indeed, Nσ     

regulates the number of pixels that are classified as belonging to the same object of the current pixel 

and, therefore, it modulates the amount of noise reduction (the larger the number of averaged pixels, 

the deeper the noise reduction) as well as the amount of edge blurring (the larger the number of 
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averaged pixels, the higher the percentage of pixels misclassified as belonging to the local noise 

distribution). This can be proved in terms of probability. Considering a spatio – temporal 

neighbourhood that comprises a dark object over a bright background, let λ1 and λ2 be the expected 

values of the related Poisson distributions, which can be approximated by Gaussian distributions with 

equal mean and variance X1 ~ N(λ1, λ1), X2 ~ N(λ2, λ2). Let assume that the current pixel belongs to 

the dark object and define a confidence interval as a function of the parameter Nσ :  

 [ λ1 − 𝑁σ√λ1;    λ1 + 𝑁σ√λ1 ] (17) 

The probability that a value from the dark pixels distribution is correctly classified as belonging to 

the same distribution, i.e. the True Positive rate (TP) is given by (18): 

 𝑇𝑃 = 𝑃(λ1 − 𝑁σ√λ1 ≤ 𝑋1 ≤ λ1 + 𝑁σ√λ1 ) = 𝐹1(λ1 + 𝑁σ√λ1 ) − 𝐹1(λ1 − 𝑁σ√λ1 ) (18) 

where F1(x) is the Cumulative Distribution Function (CDF) of the dark pixels distribution, defined 

as: 

 𝐹1(𝑥) =
1

2
(1 + 𝑒𝑟𝑓 (

𝑥 − μ1

√2σ1
))  =  

1

2
(1 + 𝑒𝑟𝑓 (

𝑥 − λ1

√2λ1
)) (19) 

Therefore the TP can be described as in (20): 

 𝑇𝑃 =
1

2
(𝑒𝑟𝑓 (

λ1 + 𝑁σ√λ1 − λ1

√2λ1
) −  𝑒𝑟𝑓 (

λ1 − 𝑁σ√λ1 − λ1

√2λ1
)) = 𝑒𝑟𝑓 (

𝑁

√2
) (20) 

The probability that a value from the bright pixels distribution is misclassified as belonging to the 

dark pixel distribution, i.e. the False Positive rate (FP) is given by (21): 

𝐹𝑃 = 𝑃(λ1 + 𝑁σ√λ1  ≤  𝑋2 ≤ λ1 + 𝑁σ√λ1 ) = 𝐹𝑋2(λ1 + 𝑁σ√λ1 ) − 𝐹𝑋2(λ1 − 𝑁σ√λ1 )  =

=
1

2
(𝑒𝑟𝑓 (

λ1 + 𝑁σ√λ1 − λ2

√2λ2
) − 𝑒𝑟𝑓 (

λ1 − 𝑁σ√λ1 − λ2

√2λ2
)) 

(21) 

Defining the contrast as C = λ1 – λ2, (21) can be expressed as a function of C: 

𝐹𝑃 =
1

2
(𝑒𝑟𝑓 (

𝑁σ√λ1 − 𝐶

√2λ2
) − 𝑒𝑟𝑓 (

−𝑁σ√λ1 − 𝐶

√2λ2
)) (22) 

The contrast C, in turn, can be expressed as a function of the Contrast-to-Noise Ratio (CNR): 

 𝐶𝑁𝑅 =
μ2 − μ1

√σ1
2 + σ2

2
 =  

λ2 − λ1

√λ1 + λ2
 =  

𝐶

√2λ1 + 𝐶
 (23) 

 𝐶 =
𝐶𝑁𝑅2 + 𝐶𝑁𝑅√𝐶𝑁𝑅2 + 8λ1

2
 (24) 

As an example, Figure 2 depicts TP and FP as functions of Nσ and CNR, which confirm that by 

increasing Nσ both TP and FP increase. However, the local accuracy would depend also on the 

percentages of dark (positives) and bright (negatives) pixels within the considered spatio – temporal 
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neighbourhood. In particular, Figure 2.(c) gives a practical demonstration of a concept expressed in 

the Introduction: the decrease in the original image quality of the noisy images to be restored, here 

quantified via the CNR, determines a progressive increase in the failure rate of the statistical 

assumptions at the core of denoising strategies, which obviously leads to a decrease of the denoising 

power and, therefore, of the gain in image quality that could be provided. 

By neglecting the 𝐹𝑋2(λ1 − 𝑁σ√λ1 ) term in (21) (thus overestimating FP) to simplify the 

relationship between FP and Nσ, it is also possible to derive the expression of the Nσ value which 

should be chosen to obtain a determined FP, given the local CNR in the spatio – temporal 

neighbourhood of the original noisy sequence, which is outlined in (25).  

  

(a) (b) 

  

(c) (d) 

Figure 2. (a) Rate of correctly classified dark object pixels (true positive rate) as a function of Nσ ; (b) Rate of bright 

misclassified background pixels (false positive rate) as a function of the Nσ for six CNR values; (c) False positive rate as 

a function of the CNR for six Nσ values; (d) False positive rate as a 2D function of Nσ and CNR. 
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𝑁𝜎 =
√2(𝜆1 + 𝐶(𝐶𝑁𝑅))  𝑒𝑟𝑓

−1(2𝐹𝑃 − 1) + 𝐶(𝐶𝑁𝑅)

√𝜆1
 

(25) 

where C(CNR) refers to the relationship described in (24). Figure 3 shows 2D and 3D plots of Nσ as 

a function of CNR and FP. The negative values of Nσ suggest that a left one-sided confidence interval 

should be adopted to obtain the desired FP for lower CNR values. However, recalling that (25) has 

been derived from an overestimate of FP, it is reasonable that practical values of Nσ can be chosen to 

ensure a determined FP also at lower CNR values, as confirmed by Figure 2.(b)  

 
 

(a) (b) 

Figure 3. (a) Nσ as a function of CNR for six values of FP; (b) Nσ as a 2D function of CNR and FP. 

It is worth noting that the results of the present analysis were derived based on theoretical statistics, 

but, in practice, the NVCA algorithm must deal with a quite limited number of noisy observations, 

which would result in a certain variability of the actual results with respect to the theoretical 

predictions. In these cases, simulation studies with various levels of accuracy and complexity could 

be of help to assess the reliability of the theoretical predictions and their effects in terms of image 

quality. A first attempt to quantitively analyse the performance of NVCA as a function of its free 

parameters (S,T, Nσ) is described in Chapter 6, which presents a preliminary study on a novel IQA 

index for X-ray images that could be used precisely to guide the identification of NVCA parameters 

ensuring the best trade – off between noise reduction and edge preservation. 

  



19 

 

Chapter 4 

Application of NVCA to spine kinematics 

analysis  

In this chapter, a demonstration of the effectiveness of the NVCA denoising algorithm in low-dose 

fluoroscopic sequences is presented within the context of a fluoroscopy-based diagnostic procedure 

for the assessment of spine kinematics, which will be considered as a case study for further 

investigations in the following chapters. In particular, the examined application is aimed at providing 

an automated, quantitative assessment of intervertebral kinematics from a guided flexion – extension 

motion sequence, imaged via a low – dose fluoroscopy protocol. The automated extraction of 

intervertebral kinematics is performed by means of a template matching method described in [3 – 4], 

which relies on a normalised cross-correlation index computed from horizontal and vertical image 

derivatives. As the derivative operation is highly sensitive to noise, a smoothing operation is generally 

included in the derivative operators kernels, but in low – dose fluoroscopy images this may be not 

enough to avoid the distortions caused by the noise, thus requiring additional pre – processing with 

smoothing filters. However, the edge blurring effects introduced by common smoothing filters 

significantly hinder the ability of cross-correlation to match the contours of the selected template 

when operating on image derivatives, hence an edge-aware noise reduction algorithm is required to 

provide a substantial noise reduction while preserving the edge sharpness. The study here presented 

assessed the effectiveness of NVCA filtering in improving image quality to allow obtaining reliable 

estimations of spine kinematics, and also focused on a quantitative performance comparison between 

the results achieved by using different derivative operators. 

 

4.1 Spine kinematics 

Spine kinematics aims to detect abnormalities in the motion of the spine segments, in order to 

diagnose spine pathologies. To this aim,  spatial relationships between the vertebrae are measured 

during various activities that involve a specific spine motion, to determine whether those are in a 

normal range of motion (ROM) [91 – 92]. However, many studies have shown that a number of both 

cervical and lumbar spine pathologies do not show up with abnormal ROM, and could be rather 

revealed by detecting abnormal patterns of intervertebral motion. A well-known example is the 

cervical spine instability, which arises from the ligamentous disruption with subsequent atlantoaxial 

instability, often caused by traumatic flexion-extension movements exerted on the spine, e.g. in car 

accidents or heavy impacts on the neck [93]. It is also related to other pathologies, such as rheumatoid 

arthritis [94], or to congenital deviation, like those involved in the down syndrome [95]. Such a 

pathological condition prevents the vertebrae from maintaining their normal pattern of displacements 
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under physiological loads, which precisely ensures the spine stability in healthy subjects [91]. Low 

back pain (LBP) is another well-known pathology of the spine that can lead to substantial disability. 

It is considered as a consequence of degenerations of lumbar vertebral segments, often caused by 

degenerative disease, facet joint hypertrophy, postoperative status, postoperative spinal fusion, 

trauma, scoliosis or other congenital spine lesions, which can significantly affect spinal load-bearing 

capability [96 – 97]. The increment of the intervertebral joints that occur in these spine disorders, due 

to a combined action of disks, ligaments, vertebral joints and muscle degenerations, can lead to 

abnormal kinematics of the intervertebral segments [98 – 99]. 

Currently, functional flexion – extension radiography is the most widespread method for the 

clinical diagnosis of spine instability. However, it is limited to few end-of-range spinal positions, 

usually one radiograph in a neutral position and two radiographs in the final flexion and extension 

positions. Indeed, motion capture is a form of time sampling, as it is ultimately aimed at deriving 

kinematic signals; hence, using N radiographs to describe the spine motion is equivalent to acquire N 

samples of the time evolution of the segmental displacements pattern, which means that the 

continuous motion between two time samples would not be captured and should be reconstructed via 

interpolation methods. However, the use of a limited number of samples undoubtedly places a 

limitation on the information that could be extracted from the kinematic signals thus sampled, as it is 

well-known from the Nyquist – Shannon sampling theorem. In particular, the derivative operation for 

discrete signals exhibits an high sensitivity to the sampling period, showing substantial errors for 

poorly sampled signals.  

Essentially, flexion – extension radiography is suitable for finite motion measurements (e.g. 

ROM), but not for measurements of velocities and accelerations associated to relative movements of 

intervertebral segments, as they require the computation of first and second derivatives of 

displacement signals. Nonetheless, many authors suggested that the instantaneous centre of rotation 

(ICR), which is determined from measurements of linear and angular displacement and velocities, is 

the most sensitive and specific measurement to detect the damage of intervertebral disk and facet 

joints, also at early stages. The ICR stands also as a reliable, stable parameter of the quality of 

vertebral motion, which allows the detection and analysis of abnormal motion patterns. Indeed, 

according to different studies, the ICRs were found to exhibit a wider scatter on patients with neck 

pain as compared to healthy subjects, while studies on patients with cervical headache report that 

abnormal ICRs were found in the upper cervical segments. Other studies, also on LBP, found that 

disk degeneration may lead to abnormal location of the related intervertebral ICR, while maintaining 

finite intervertebral translation and rotation within a physiological ROM [3, 91, 100 – 102].  

The estimation of spine kinematics thus requires a continuous screening of specific spinal 

tracts during patients’ motion, which cannot be provided by radiography. Instead, this task can be 

rather accomplished via fluoroscopy, also with a reasonably low X-ray dose [3 – 4, 99]. Certainly, 

the high number of frames to be processed prevents performing a manual tracking of vertebral bodies, 

as it would be undoubtedly burdensome and unreliable. Indeed, the vertebrae tracking process must 

be very accurate and precise, as even very little errors in the estimation of displacements and rotations 

of vertebrae generally result in much higher errors in the reconstruction of intervertebral kinematics, 

especially of ICR trajectories. An automated method for spine kinematics estimation from 

fluoroscopic sequences was proposed in [3 – 4]. It is based on a template matching operation that 

computes a normalized cross-correlation index between the image derivatives of a vertebra template 
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and of multiple rotated versions of the current frame, in order to match their contours and, thus, 

estimate the horizontal and vertical displacements as well as the rotation angle of the selected vertebra 

in each frame of the acquired fluoroscopic sequence. The computation of image derivatives requires 

to filter the images with derivative operators, which are basically approximations of continuous 

derivatives in the discrete domain.  

4.2 Application and performances of derivative operators 

Many different derivative operators have been proposed in literature [78, 103]. However, there is no 

general consensus on which one provides the best performances, because there is no unequivocal 

definition of edges, which is rather dependent on the specific task. One of the most common 

applications of derivative operators is certainly edge detection, which is considered by far one of the 

key steps to analyse medical images, with the aim to extract reliable diagnostic information from 

them. After computing the image derivatives, the edge detectors perform further processing to extract 

the binary edge maps. Since the noise is known to introduce spurious edges, by causing abrupt 

luminance variations, common edge detectors usually apply thresholding operations on the image 

derivatives with the aim to maintain the strongest edges, considered as the “true” edges, while 

completely disregarding the weaker ones, which, ideally, should only be the noisy ones. Indeed, the 

quality of the detected edges is highly dependent on the validity of the assumptions made by the edge 

detector, which could fail because of image noise, different lighting conditions, local contrast 

variations and edge density [104]. This unavoidably results in a loss of part of the information, 

depending also on the selected threshold, which plays a key role in the performances of edge 

detection. However, general-purpose methods for self-adaptation of the threshold have not been 

proposed yet, and the optimal threshold is very often identified by means of a trials and errors 

approach [105 – 106]. Similarly, in literature there is a lack of quantitative studies on derivative 

operators performances for image processing applications, even for specific tasks, and the common 

trend is to select an operator and heuristically find the threshold which yields the best performance. 

In medical imaging, it is even worse, as in most cases the evaluation is generally limited to qualitative 

aspects and the measurement of edge detection performances is merely based on how well edge 

detector markings match with the visual perception of object boundaries of the human operator [107]. 

Although the literature is dominated by edge detection applications, the derivative operators have 

also many other applications, such as the template matching method for spine kinematics described 

above that achieves higher performances by directly operating on image derivatives rather than binary 

edge maps. In this study the performances of different derivative operators were evaluated and 

compared by analysing the results yielded in the estimation of ICR trajectories from a low-dose 

fluoroscopic sequence of a guided flexion-extension motion of the lumbar spine of a healthy subject. 

4.3 Lumbar spine motion protocol 

The data used in this study have already been presented in a previous work [108] and consisted of a 

sagittal fluoroscopic image sequence of a healthy subject (see Figure 4), performing a flexion-

extension lumbar spine motion while lying on his side. In order to ensure a controlled and passive 

motion, the subject was tied with the L4 – L5  segment bind to the hinge of a motorized table, which 

was programmed to perform a smooth arc to 40° left from the neutral position, then to 40° right and, 

finally, return back to the neutral position. The X-ray tube was set at 73 kV, 2 mA and the duration 
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of the whole screening was 30 s, with an overall measured dose of 0.9 Gy·cm2 [109]. The X-ray 

images were acquired with a frame rate of 5 frames per second and a spatial resolution of 0.43 mm × 

0.43 mm (pixel dimension), and an 8-bit grayscale resolution. 

 

Figure 4. A frame of the raw fluoroscopic sequence. 

 

4.4 Noise reduction with NVCA 

Although cross-correlation is generally quite robust to noise, low-dose fluoroscopic images are 

usually characterised by a very poor image quality, which may invalidate the results of template 

matching methods. For this reason, the raw fluoroscopic sequence was pre-processed via NVCA 

denoising, which required a preliminary estimation of noise parameters. To this aim, a static scene at 

the end of the raw sequence, during which the table did not move and kept the subject fixed, was 

extracted by considering the last 30 frames. The experimental EVaR was obtained by computing the 

sample mean and variance for each pixel along the temporal dimension (i.e. by considering the grey 

levels assumed by the same pixel in subsequent frames) and reported in Figure 5. Its scattered 

appearance is due to the variability of the sample variance for such a small number of observations, 

which grows with the mean, as expected from the theoretical EVaR of the Poisson noise. The noise 

parameters, i.e. the slope a and intercept b of the straight line representing the theoretical EVaR, were 

obtained by performing a linear regression on the measured data. The linear regression and related 

parameters are reported in Figure 5 as well.  
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Figure 5. 2D plot of measured EVaR with linear regression and estimated noise parameters 

 

Finally, noise reduction was accomplished by applying NVCA with a 7×7×3 spatio – temporal 

mask and a noise SD threshold multiplier Nσ = 3. The effectiveness of NVCA denoising can be 

assessed by visual comparison of Figure 6.(a-b), which show the same frame from the raw noisy 

sequence and the denoised sequence. It is worth noting how the NVCA algorithm substantially 

removed the so-called “quantum mottles”, while preserving the edge sharpness also in areas with very 

low local contrast, such as the L4 – L5 segment at the bottom of the frame. This can be probably 

better appreciated in Figure 6.(c-d) that show the corresponding edges extracted from the considered 

frames. 

4.5 Quantitative comparison of ICR trajectories 

The horizontal and vertical image derivatives to be fed to the template matching block of the 

spine kinematics analysis were computed from the sequence denoised via the NVCA algorithm. The 

first-order derivative operators used to produce the different image derivatives, were proposed by 

Roberts, Sobel, Prewitt and Cerciello et al. [3], and their kernels are reported in (26), (27), (28) and 

(29), respectively. 
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(a) (b) 

  

(c) (d) 

Figure 6. (a) Frame from the original noisy sequence; (b) corresponding frame from the sequence denoised with NVCA; 

(c-d) edges extracted with Cerciello et al. operators from the frames depicted in (a-b), respectively. 
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 𝐻1 =  [
1 0
0 −1

]                    𝐻2 =  [
0 1
−1 0

] (26) 

 𝐻1 =  [
−1 0 1
−2 0 2
−1 0 1

]     𝐻2 =  [
−1 −2 −1
0 0 0
1 2 1

] (27) 

 𝐻1 =  [
−1 0 1
−1 0 1
−1 0 1

]     𝐻2 =  [
−1 −1 −1
0 0 0
1 1 1

] (28) 

 

𝐻1 =  

[
 
 
 
 
 
−1 −1 0 0 1 1
−1 −1 0 0 1 1
−1 −1 0 0 1 1
−1 −1 0 0 1 1
−1 −1 0 0 1 1
−1 −1 0 0 1 1]

 
 
 
 
 

 

 

𝐻2 =  

[
 
 
 
 
 
−1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1
0 0 0 0 0 0
0 0 0 0 0 0
1 1 1 1 1 1
1 1 1 1 1 1 ]

 
 
 
 
 

 

(29) 

The method for the extraction of intervertebral kinematics from fluoroscopic sequences 

described in [3], first requires the used to select a the template of the vertebra to be tracked from the 

first motionless frame (see Figure 7.(a)). Then, the template matching block computes a normalized 

cross-correlation index (NCC) [4] between the derivatives of the vertebra template and of several 

rotated versions of each considered frame. The NCC formula is reported in (30): 

𝑁𝐶𝐶𝑥(𝑖, 𝑗) =
∑ ∑ 𝑔𝑥(𝑖 + 𝑥, 𝑗 + 𝑦)

𝑀/2
𝑦=−𝑀/2

𝑁/2
𝑥=−𝑁/2 ⋅ 𝑡𝑥(𝑥, 𝑦)

√∑ ∑ 𝑔𝑥2(𝑖 + 𝑥, 𝑗 + 𝑦)
𝑀/2
𝑦=−𝑀/2

𝑁/2
𝑥=−𝑁/2 ⋅ √∑ ∑ 𝑡𝑥2(𝑖 + 𝑥, 𝑗 + 𝑦)

𝑀/2
𝑦=−𝑀/2

𝑁/2
𝑥=−𝑁/2

 

𝑁𝐶𝐶𝑦(𝑖, 𝑗) =
∑ ∑ 𝑔𝑦(𝑖 + 𝑥, 𝑗 + 𝑦)

𝑀/2
𝑦=−𝑀/2

𝑁/2
𝑥=−𝑁/2 ⋅ 𝑡𝑦(𝑥, 𝑦)

√∑ ∑ 𝑔𝑦2(𝑖 + 𝑥, 𝑗 + 𝑦)
𝑀/2
𝑦=−𝑀/2

𝑁/2
𝑥=−𝑁/2 ⋅ √∑ ∑ 𝑡𝑦2(𝑖 + 𝑥, 𝑗 + 𝑦)

𝑀/2
𝑦=−𝑀/2

𝑁/2
𝑥=−𝑁/2

 

𝑁𝐶𝐶(𝑖, 𝑗) =
1

2
𝑁𝐶𝐶𝑥(𝑖, 𝑗) +

1

2
𝑁𝐶𝐶𝑦(𝑖, 𝑗) 

(30) 

where M, N are the dimension of the vertebra template, tx, ty are the horizontal and vertical 

components of the image gradient of the vertebra template, and gx, gy are the corresponding 

components of the image gradient of the rotated version of the current frame. The rotation angle, as 

well as the horizontal and vertical displacements of the tracked vertebra are estimated by identifying 

the rotated version of the current frame which scores the highest NCC and, then, locating the spatial 

position of its global maximum. Finally, an interpolation of intervertebral kinematic data (i.e. the 

relative displacements and rotation angle of the upper vertebra with respect to the lower vertebra) is 

carried out with quintic smoothing splines to obtain a continuous description of the time evolution of 
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intervertebral displacements and rotation angles, which allows to derive also the linear and angular 

velocities and, eventually, the trajectory of the intervertebral ICR.  

The described method was applied to extract four distinct descriptions of the kinematics of 

the L2 – L3 intervertebral segment, by processing the image derivatives provided by each of the four 

considered derivative operators. Figure 7.a depicts the selected templates for the L2 and L3 vertebrae 

with boundaries highlighted in red and with two red squares of 5×5 pixels located at their centres. 

Figure 7.b shows a subsequent frame of the sequence, where the two aforementioned red squares 

were located at the estimated centre coordinates of the highest template matchings for the two 

vertebrae.  

  

(a) (b) 

Figure 7. Initial frame with centres and borders of upper and lower vertebrae templates highlighted in red; (b) subsequent 

frame with estimated centres of  upper and lower vertebrae highlighted in red. 

 

The raw kinematic data of the L2 – L3 intervertebral segment estimated from the image 

derivatives of each frame were interpolated with quintic smoothing splines by using an equivalent 

cut-off frequency of 0.250 Hz (corresponding smoothing factor of 0.936), and then linear and angular 

velocities were computed as first analytical derivatives of the continuous splines descriptions. For the 

sake of comparison, the velocities were also derived directly from the raw data, by means of first 

order differences, to demonstrate the amount of errors obtained even with poorly time resolved 

kinematic signals extracted from continuous X-ray screening of body motion. To this aim, raw and 

spline interpolated data, obtained by using Cerciello et al. derivative operators, are reported in Figure 

8. While the displacements exhibited a pretty good accordance, the velocities computed from raw 

data turned out to be very noisy, as opposed to those obtained from interpolated data, which showed 
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up as quite smooth. Considering well-known ICR sensitivity to errors of kinematic data, the velocities 

computed from raw data could not be used for ICR coordinates computation.  

 

Figure 8. Comparison between raw and spline interpolated data of intervertebral kinematics obtained with Cerciello et 

al. operators 
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The ICR trajectories, i.e. the time sequence of ICR spatial coordinates, were computed from 

the splines descriptions of kinematic signals via the following formulas (31): 

{
 
 

 
 𝐼𝐶𝑅𝑥(𝑡) = −

𝑣𝑦(𝑡)

ω(𝑡)
+ 𝑟𝑥(𝑡)

𝐼𝐶𝑅𝑦(𝑡) =      
𝑣𝑥(𝑡)

ω(𝑡)
+ 𝑟𝑦(𝑡)

 (31) 

The ICR trajectories computed from the different image derivatives provided by the four derivative 

operators were quantitatively compared in pairs, by computing the mean and SD of the Euclidean 

distances of their corresponding points, as well as the trajectory of their point-wise differences 

(referred to as “difference trajectory”) and the parameters of the related minimum bounding circle, 

i.e. the radius and centre coordinates. The results obtained for the six pairs of ICR trajectories were 

organized in Table 1 and Table 2. 

Table 1. Euclidean distance and minimum bounding circle parameters of ICR trajectories pairs 

Derivative 

Operator 

Euclidean  

distance 

Minimum  

bounding circle 

Mean 

(mm) 

SD 

(mm) 

Centre-Origin 

distance 

(mm) 

Radius 

(mm) 

Cerciello et al. - Prewitt 0.37 0.09 0.47 0.29 

Cerciello et al. - Sobel 0.39 0.10 0.52 0.31 

Cerciello et al. - Roberts 0.59 0.14 0.72 0.46 

Prewitt - Sobel 0.03 0.02 0.03 0.06 

Prewitt - Roberts 0.24 0.12 0.25 0.27 

Sobel - Roberts 0.23 0.11 0.22 0.25 

Figure 9 shows the six pairs of compared ICR trajectories (left column), along with their 

corresponding difference trajectories with the minimum bounding circles (right column). Finally, in 

Figure 10 the ICR trajectory obtained with Cerciello et al. operators was superimposed on the first 

frame of the filtered sequence (assuming the centre of the lower vertebra’s template as the origin of 

the reference system), in order to provide visual feedback and to allow the contextualization of the 

ICR coordinates locus into the actual intervertebral segment. 

Prewitt and Sobel operators achieved the most similar results: indeed their related ICR 

trajectories scored both the minimum mean and SD of Euclidean distances (0.03 mm ± 0.02 mm) as 

well as the minimum radius (0.06 mm) and centre – origin distance (0.03 mm) of the minimum 

bounding circle of their difference trajectory. On the other hand, Cerciello et al. and Roberts 
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operators, provided the most different results, as their related ICR trajectories scored both the 

maximum mean and SD of Euclidean distances (0.59 mm ± 0.14 mm) together with the maximum 

radius (0.46 mm) and centre – origin distance (0.72 mm). Moreover, the trajectory obtained with 

Cerciello et al. operators resulted to be, on average, the most distant from the others, as, according to 

Table 2, the trajectory achieved the maximum average values for the mean Euclidean distance from 

other trajectories (0.45 mm), and also for the centre-origin distance (0.57 mm) and radius (0.35 mm) 

of the minimum bounding circle of the difference trajectories. 

Table 2. Average parameters of each ICR trajectory with respect to the others. 

Derivative 

Operator 

Euclidean 

distance 

Minimum bounding  

circle 

Mean 

(mm) 

SD 

(mm) 

Centre-Origin 

Distance 

(mm) 

Radius 

(mm) 

Cerciello et al. 0.45 0.11 0.57 0.35 

Prewitt 0.21 0.08 0.25 0.21 

Sobel 0.22 0.08 0.26 0.21 

Roberts 0.35 0.12 0.40 0.33 

 

Detectable differences were found in the obtained ICR trajectories, but their significance level 

for clinical applications should be further evaluated, in order to assess if the derivative operators 

under discussion could be considered as equivalent or not. However, it is not possible at the moment, 

because there is no consensus and sufficient data on kinematic parameters features associated with 

specific spinal pathologies. Anyway, the results highlighted the need for a quantitative analysis of 

derivative operators performances in applications aimed at providing quantitative results, which in 

this case was carried out by quantitatively analysing the effects of different derivative operators on 

the eventual ICR trajectories provided to researchers/doctors. Surprisingly, this issue is rarely 

addressed in medical imaging studies and definitely deserves much more attention, considering the 

large use of derivative operators in the plethora of medical image processing applications proposed 

in literature. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 
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(g) (h) 

  

(i) (j) 

  

(k) (l) 

Figure 9. Comparison of ICR trajectories obtained with different derivative operators. Panels on the left column show 

the pairs of compared trajectories, while panels on the right column show their corresponding difference trajectory along 

with the minimum bounding circle. 
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Figure 10. Superimposition of the ICR trajectory, obtained with Cerciello et al. operators, on the initial frame, with origin 

of reference system set at the centre of the lower vertebra template. 
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Chapter 5 

Performance comparison with state-of-

the-art algorithms 

5.1 State of the art of denoising algorithms 

To date, a plethora of algorithms have been proposed for noise removal in images and videos, which 

are based on very different principles as well as assumptions on distinctive features of images and 

noise [78, 103]. Nonetheless, while scientific literature is rich in approaches devised for space-

invariant additive white gaussian noise (AWGN), undoubtedly much less effort has been devoted to 

directly address the problem of noise suppression in Poisson-corrupted data. Since the effectiveness 

of denoising algorithms is strongly dependent on the validity of the considered noise model, it follows 

that AWGN denoising strategies cannot be successfully applied to Poisson noise removal [4, 78, 103, 

111]. Indeed in [40] NVCA was tested on single natural images corrupted by simulated Poisson noise 

and outperformed several state-of-the-art denoising algorithms (e.g. Adaptive Variational denoising 

[112], 4-PDE denoising [113], Total Least Squares denoising [114], K-SVD [115], Wavelet-based 

Hidden Markov Models [116]), especially those designed for AWGN, while also entailing a much 

lower computational burden. In spite of its simplicity, NVCA was so efficient in reducing noise power 

that it scored a Peak Signal-to-Noise Ratio (PSNR) only about 2 dB lower than the much more 

complex BM3Dc algorithm [46], which is an adaptation for Poisson-Gaussian noise of the most 

famous Block Matching and 3D filtering (BM3D [117]), still considered a state-of-the-art algorithm 

for single image Gaussian denoising [118 – 121].  

BM3Dc relies on a variance stabilising transformation (VST), i.e. a point-wise operation that 

transforms an heteroscedastic random distribution into an homoscedastic one (e.g. conversion from 

signal-dependent to signal-independent noise). The VST for Poisson-distributed data is known as 

Anscombe transform (AT) [122], which provides a practically Gaussian distribution with unit 

variance.  

 𝐼𝐴𝑇(𝑚, 𝑛) = 2√𝐼(𝑚, 𝑛) +
3

8
 (32) 

 

{
 
 

 
 
𝐸[𝐼𝐴𝑇(𝑚, 𝑛)] = 2√𝐸[𝐼(𝑚, 𝑛)] +

3

8
−

1

4𝐸[𝐼(𝑚, 𝑛)]1/2
+ 𝑂 (

1

𝑚𝐸[𝐼(𝑚, 𝑛)]3/2
)

𝑉𝑎𝑟[𝐼𝐴𝑇(𝑚, 𝑛)] = 1 + 𝑂 (
1

𝐸[𝐼(𝑚, 𝑛)]2
)                                                                   

 (33) 

Therefore, AT should allow applying all the denoising methods devised for AWGN to the suppression 

of Poisson noise. Unfortunately, the AT cannot be directly applied to X-ray images, because, 
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according to the Poisson – Gaussian noise model presented in Chapter 2, the actual distributions of 

pixels grey levels result from the transformation of the pure Poisson distributions of photons arrivals, 

due to the detector gain and the additional electronic noise (zero-mean AWGN). The proper VST for 

Poisson-Gaussian distributions is the Generalised Anscombe Transform (GAT) [50 – 51, 64], which 

requires the knowledge or the estimation of the noise parameters (a, b):  

 𝐼𝐺𝐴𝑇(𝑚, 𝑛) =
2

𝑎
√𝑎 ⋅ 𝐼(𝑚, 𝑛) +

3

8
𝑎2 + 𝑏 (34) 

However, the inverse GAT, which is required to bring the processed data back in the original domain, 

is known to suffer from bias errors [50 – 51]. It is also worth underlining that, according to (33), the 

variance stabilization provided by both AT and GAT is fully effective only for sufficiently high 

expected luminance values, which means that for images obtained with lower X-ray doses (i.e. lower 

luminance and number of photons per pixel) it would introduce increasingly higher errors. Moreover, 

real fluoroscopic data are usually modified by sensor non-linearities (e.g., clipping effects) and by 

white compression operations, which are commonly implemented in commercial fluoroscopic 

devices (e.g. log-mapping, gamma-correction) [40]. Inverting these non-linearities would require 

proper strategies to detect transformed data, infer the adopted transformation and estimate its 

parameters: these are not straightforward task and would result, anyway, in a further increase of the 

overall computational burden, which is usually not so low. Indeed, the state-of-the-art algorithm for 

AWGN denoising usually exhibit high computational complexities and, sometimes, unpredictable 

computational times, when they are based on iterative solving of minimization problems. These 

aspects usually prevent them from achieving real-time operation, thus making them suitable for post-

processing only. 

Other recent approaches mainly concentrate on edge enhancement, to recover from blurring 

effects caused by noise reduction [72 – 74] and on the recognition of curvilinear structures (e.g. 

guidewires, catheters) [68], but they do not provide a global approach to noise reduction. Surprisingly, 

although it has long been known that the majority of fluoroscopy screenings is employed in 

interventional procedures, there is still a lack of effort in designing computationally efficient 

approaches for real-time processing of low-dose fluoroscopic sequences, focusing rather on decidedly 

more complex approaches (e.g. [69 – 70, 72 – 75]) that have not been demonstrated yet to outperform 

the simpler denoising algorithms devised for real-time fluoroscopic noise suppression, such as 

NVCA. Nevertheless, some of the authors of the BM3D algorithm, which has originally been devised 

for single image denoising, have more recently proposed two extensions for video processing, which 

are likewise widely regarded as the state-of-the-art for video denoising, and, indeed, they have been 

used as a reference for the performance assessment of new algorithms in many recent studies [43, 54, 

76]. The most recent of them is the Video Block-Matching and 4D joint filtering (VBM4D) algorithm 

[123], which undoubtedly offers improved performances by explicitly taking advantage of the 

temporal dimension through an approach based on motion estimation. The operating principle at the 

core of VBM4D, however, is the same of BM3D (i.e. block matching and collaborative filtering in a 

transform domain), which has been proved to be efficient for images corrupted by AWGN. 

Considering the promising performances that this state-of-the-art video denoiser could achieve in 

Poisson – Gaussian noise reduction when combined with the GAT, a performance comparison with 

the NVCA algorithm was carried out on synthetic and real low-dose fluoroscopic sequences, both 

static and dynamic, also with a focus on computational performances. The performances of a simple 
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spatio – temporal moving average (MA) filter were also assessed to provide a reference for the 

effectiveness of filtering operations that are usually implemented in commercial fluoroscopic devices. 

5.2 VBM4D 

In VBM4D spatio-temporal volumes are constructed by tracking blocks along trajectories 

defined by the motion vectors and mutually similar volumes are stacked along an additional fourth 

dimension, thus producing a 4-D structure, termed group [123]. The VBM4D extends the paradigm 

of non-local grouping and collaborative filtering of BM3D, to exploit not only the spatial redundancy, 

but also the temporal redundancy that characterizes the video sequences. The spatio – temporal block-

matching operation allows for tracking and reallocation of moving objects as well, which ensures a 

deep noise reduction with a good edge preservation, at least for the natural images it was devised for. 

These advantages made VBM4D a state-of-the-art algorithm for effective video denoising and, thus, 

a reference for performance assessment of novel algorithms [43, 54, 70, 74 – 77, 124 – 125]. On the 

other hand, VBM4D needs the entire image sequence to be processed and it is also very time 

consuming, thus not being suitable for a real-time implementation. 

5.3 Computational complexity and computational time 

The computational burden of the NVCA and VBM4D algorithms can be compared in terms of the 

number of required multiplications/divisions for an input of size N, which is generally expressed by 

the big-O notation [89 – 90]. Let consider a single frame of √𝑁 √𝑁 pixels to be processed. The 

BM3D algorithm can be mainly decomposed in two phases: the block matching (grouping) and the 

3D collaborative filtering. The block matching phase has a computational complexity order of O(N2 

K), with a √𝐾 √𝐾 mask size [126 – 127]. The 3D collaborative filtering phase provides for the 

processing of the 3D arrays identified by the block matching operation, and consists of 3D 

transformation, spectrum shrinkage, and 3D inverse transformation. Considering the case of a 3D-

FFT transform [128] (which has a computational complexity of O(N log N), with N being the total 

number of data to be processed) applied to a single 3D array composed by S similar blocks of √𝐾 √𝐾 

pixels, the computational complexity order can be expressed as O((K·S) log (K·S)). Indicating with R 

and G, respectively, the total number of √𝐾 √𝐾 blocks in the image, and the number of 3D arrays 

identified by the block matching operation, and assuming every single 3D array to be composed by 

S similar blocks, it is possible to express the computational complexity order of the whole 3D filtering 

operation as O( G·(( K·S) log(K·S)) ). Since G = R/S and R = N/K, the computational complexity can 

be expressed as O(N log(K·S)). If the block matching does not find any similar blocks (i.e. S = 1), the 

computational complexity order is O(N log K). Alternatively, if the block matching provides a single 

3D array composed by all the R blocks (i.e. S = R), the computational complexity order is O(N log 

N). The computational complexity of the block matching is of some orders of magnitude higher than 

that of the 3D filtering, and so it dominates the computational complexity of the whole BM3D 

algorithm. Since VBM4D works along an additional dimension (i.e. time), thus processing a larger 

amount of data, its computational complexity is certainly higher than that of BM3D. NVCA, instead, 

provides for a single division operation per pixel [40, 60 – 61] and, therefore, considering same frame 

of √𝑁 √𝑁 pixels, it has a computational complexity order of O(N), which is several orders of 

magnitude lower than VBM4D’s one. Computational times were estimated for MA, NVCA and 
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VBM4D filters to carry out a quantitative comparison of their actual computational burden. The 

evaluation of computational times was performed on a real fluoroscopic sequence acquired by 

imaging a static scene of a custom step phantom, which will be detailed in the following paragraphs.  

5.4 Image quality assessment indices 

A quantitative comparison of the improvements in visibility provided by the analysed algorithms 

requires objective measures of image quality. To this aim, three image quality assessment (IQA) 

indices were considered, namely the Full-Width at Half-Maximum of the line spread function 

(referred to as FWHM), the CNR and the Feature Similarity Index [129]. 

FWHM is a No-Reference IQA index that quantifies the blurring introduced by a filtering 

operation, by measuring the width of the line spread function obtained as the derivative of the edge 

spread function (i.e. the edge “step” profile). Essentially, FWHM measures the width of the edge 

region where there is a significant spatial luminance variation, so, the more the edge is blurred (i.e. 

its luminance is literally spread over its neighbourhood), the more the edge is large, scoring an higher 

FWHM. Usually, an horizontal or vertical edge is manually selected, which is considered as very 

sharp (at least before the potential edge blurring had occurred); then a line of pixels in the orthogonal 

direction is extracted and fitted with a sigmoidal function representing the edge profile, in order to 

reduce the influence of spurious noisy luminance fluctuations on the FWHM estimates. In this 

analysis the following function was used: 

 
𝜓(𝑥) =

1

2
(1 − erf (

x − c

√2d
)) 

(35) 

where erf(∙) denotes the error function, x is the spatial variable (pixel position along the selected line), 

and c, d are fitting coefficients, which basically determine the location and steepness of the edge 

spread function. The FWHM was computed as FWHM = 2.355 · d. It was estimated as the mean 

value over consecutive edge profiles and its uncertainty was estimated as the standard deviation over 

these estimates. 

The CNR is a measure of details visibility and was adopted to quantify the local trade-off 

between noise reduction and details preservation. It was computed with the following formula: 

 𝐶𝑁𝑅 =
μ𝑅𝑂𝐼𝐴 − μ𝑅𝑂𝐼𝐵

√𝜎2𝑅𝑂𝐼𝐴 + 𝜎2𝑅𝑂𝐼𝐵
 (36) 

Where ROIA and ROIB refer to the regions of interest (ROI) shown in Figure 12, i.e. two smooth 

regions located at both sides of an edge (without including the edge region). 

 FSIM [129] is a Full-Reference IQA index, which requires a reference (ideally noiseless) 

image to be computed. It was developed within the framework of the well-known Structural 

Similarity index (SSIM), which quantifies image quality as the sum of three measured components, 

namely luminance, contrast and structure. SSIM is claimed to be based on a perceptual model that 

takes into account important predictors of the response to visual stimuli of the human vision system 

(HVS), thus providing a score that is highly correlated with the perceived image quality. However, 

in a very recent publication [130], Nilson & Akenine-Möller from NVIDIA have reported that this 

feature of SSIM lacks a scientific foundation and have also shown some paradoxes in its actual 
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behaviour. FSIM maintains the same expression for image quality, but replaces contrast and structure 

components with two novel measures, namely the phase congruency and the gradient magnitude, 

which take more into account the edge information and have been shown to represent low-level 

features employed by the HVS in the first interpretation of the scene, according to neurobiological 

studies [129, 131].  

5.5 Static fluoroscopic sequence of a step phantom 

The first analysed sequence was acquired with a commercial fluoroscopic device (GE 9900 Elite C-

arm [132]), by imaging a static scene with the custom-made stop phantom that is schematically 

depicted in Figure 11. The round field of view at the patient table had a diameter of 9 inch; the X-ray 

tube peak voltage and current were set to 57 kVp and 1 mA, respectively, to simulate a real 

interventional cardiac procedure; a sequence of 712 consecutive frames of 328 x 333 pixels were 

acquired at a frame rate of 25 fps and the grey values were digitized in a 16-bit scale. The step 

phantom is composed of seven superimposed, square, 1 mm – thick aluminium sheets with edges of 

30 cm, 26 cm, 22 cm, 18cm, 14 cm, 10 cm and 6 cm. They were piled-up with the centres placed on 

the same axis in order to produce a step phantom whose projected images presented flat regions with 

different average values. The sheets were fixed together by two metal screws and bolts, which are 

also visible in the object Figure 12, along with the ROIs defined for IQA. 

 

Figure 11. Schematic of the home-made test object used for the noise characterization. 
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Figure 12. A frame of the aluminum step phantom fluoroscopic sequence. The manually selected regions of interest are 

shown in yellow: the ROI1 was chosen for the FWHM estimation and the ROIA and ROIB were chosen for CNR 

estimation. The two dark circles in the middle correspond to the two metallic screws and bolts that hold the aluminum 

sheets together. 

Since both NVCA and GAT require the knowledge of noise parameters, the EVaR was measured 

from the acquired fluoroscopic sequence. The method presented in Chapter 4 was adopted, as well as 

the one presented in [47 – 48, 52], which takes also into account the data clipping due to sensor 

response, and provides an automatic segmentation of uniform regions in a single image, from which 

the noise parameters estimates are extracted. The former estimated a and b to be 43.90×0-4 a.u. and 

-0.99×10-4 a.u.2, respectively, with an high goodness of fit (R2 = 0.9196). The latter was performed 

in each of the 712 frames and the estimated a and b parameters were reported in distinct plots in 

Figure 13, by considering the frame numbers as abscissas. The median and SD values were 37.91×10-

4 a.u. (std dev = 2.25 ×10-4) and 0.05×10-4 a.u.2 (std dev = 0.75 ×10-4) for a and b res. Figure 14, 

depicts the straight lines representing the EVaRs with the parameters estimated from the temporal 

sequences of pixels (dash dotted lines) and with the method described in [48]. 

 The Poisson – Gaussian noise model described in Chapter 2 assumes the pixels grey 

values to be uncorrelated. However, the limited spatial resolution of the imaging system determines 

correlation between adjacent pixels in the spatial domain. In order to quantify such a correlation, the 

2D autocorrelation matrix of ROIA (see Figure 12) was computed. This ROI was selected on a flat, 

uniform region (i.e. not including edges) at the centre of the field of view. The 2D autocorrelation 

matrix of ROIA was calculated for each frame and averaged across the computed matrices in order 

to obtain a single matrix. Finally, the 1D autocorrelation curve was calculated as the radial profile of 

the 2D matrix. The temporal correlation of consecutive pixel values was also studied by computing 

the 1D autocorrelation of the time sequence of each image pixel and averaging over all pixels. Figure 

15 show a comparison between spatial and temporal 1D autocorrelation curves, where it can be 

observed that the temporal autocorrelation scored a value of 0.09 a.u.2 for a single inter-frame time 

interval, and, similarly, the spatial autocorrelation, scored a value of 0.15 a.u.2 for a single pixel size. 

These results confirm the hypothesis of weak, practically negligible temporal correlation, due to the 

reduced response time of modern flat panels (less than 1 ms versus the 33 ms sampling time, 
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corresponding to the maximum frame rate of  30 fps), but also the spatial correlation scored low 

values. 
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Figure 13. a) A and b) B coefficients estimated via the algorithm provided in [48]. Since A and B are estimated for each 

frame, the image frame number is reported on the x-axis. 
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Figure 14. Expected value – variance relationship as estimated in space according to [48] and in time using the 

fluoroscopy sequence of the aluminum phantom. 
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Figure 15. Average autocorrelation function evaluated in space (black crosses) and over time (white squares). The 

fluoroscopy sequence of the aluminum phantom was used. 

After the noise parameters estimation, the step phantom sequence was filtered with VBM4D, NVCA 

with 3x3x3, 5x5x5 and 7x7x7 mask sizes and Nσ = 1, 1.5, 2, 2.5, 3, and spatio – temporal moving 

average with the same mask sizes used for NVCA. Figure 16 shows a comparison of the same frame 

extracted from the original noisy sequence and the sequences filtered via VBM4D, NVCA with 3x3x3 

and 5x5x5 pixels mask sizes and Nσ = 2, spatio – temporal moving average with 3x3x3 and 5x5x5 

pixels mask size. Figure 17 reports the profile across the edge outlined in yellow in Figure 16.a) for 

the original noisy sequence, as well as for the sequence processed via NVCA with a 7×7×7 pixels 

mask size and Nσ = 2, and for that processed via  a moving average with a 7×7×7 pixels mask size. 

Figure 18 outlines the FWHM values, measured for the raw and processed data on 40 consecutive 

vertical profiles sampled in the ROI1 in Figure 12. As expected, it can be seen that by increasing Nσ, 

with a fixed mask size, also the FWHM achieved by NVCA filtering increased, and that happened 

also for fixed Nσ for increasing mask sizes (1.8 pixels for Nσ = 1, 3.1 pixels and 4.4 pixels for Nσ = 2 

and Nσ = 3, respectively) Moreover, the FWHM achieved by the moving average turned out to be 

always higher than the NVCA ones for corresponding mask sizes, which indicated an higher 

smoothing. VBM4D, instead, caused a decidedly smaller increase of the FWHM, which means that 

it has introduced a much lower smoothing. Indeed, only by setting Nσ = 1 it was possible to obtain 

comparable FWHM with the NVCA filter. 

The CNR values are depicted in Figure 19 where it can be assessed that VBM4D achieved the 

highest CNR and that, despite the strong dependency of the CNR on NVCA threshold, it was not 

possible to make NVCA reach the same CNR levels of VBM4D by increasing Nσ. Surprisingly, all 

the sequences processed via the moving average filter scored CNR values that turned out to be always 

higher than those scored by NVCA, although the moving average had produced more edge blurring. 

This result highlighted that the CNR is not as edge-aware as it could seem and tends to weight noise 

reduction more than edge-preservation. With respect to the original noisy sequence, VBM4D, NVCA 

and moving average filter provided an increase in CNR of 14%, 10% and 13%, respectively.  
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Figure 16. a) Raw image; b) VBM4D with algebraic inversion; c) NVCA, 3x3x3 mask Nσ = 2 ; d) moving average 3x3x3 

mask; e) NVCA, 5x5x5 mask Nσ = 2;  f) moving average 5x5x5 mask. The yellow vertical line in a) indicates the profile 

selected for the spatial resolution 
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Figure 17. Profiles across the edge outlined in Figure 16.a) for the raw image, the image filtered via NVCA algorithm 

(7x7x7 mask Nσ =2) and that filtered with a 7x7x7 average filter. Continuous lines represent the fitting curves adopted. 

The R2 was 0.9782 for the raw data, 0.9970 in the case of the average filter and 0.9977 in the case of the NVCA filter. 
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Figure 18. FWHM values for the evaluated filters and the raw data. The W/O label corresponds to the moving average 

filters. 

 

Figure 19. CNR values for the NVCA filters, VBM4D and raw data. The W/O label corresponds to the moving average 

filters. 

Figure 20 reports the FSIM global quality index, computed for the NVCA filtered images by 

using the time average of the whole sequence as the reference image, considering different mask sizes 

and different thresholds.  

For threshold levels of Nσ = 2.5 and Nσ = 3, the NVCA led to FSIM values comparable or 

larger than those of the VBM4D. However, it is important to underline that for such values of Nσ, the 

FWHM of NVCA almost doubled that of VBM4D. This result also shed a light on the claimed edge-

awareness of the FSIM index, which would have “guided” the NVCA algorithm toward an increased 

blurring instead of suggesting the result of most edge-aware denoising. 
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Figure 20. FSIM indices obtained by using the NVCA, VBM4D and the average filter (labelled W/O) denoisers. It was 

evaluated on the static image of the aluminium step phantom; the reference image was obtained by averaging over time 

all the raw fluoroscopic frames. 

Finally, the computational times required by MA, NVCA and VBM4D to process the 712 

frames of the step phantom sequence were determined. All the tests were conducted in MATLAB® 

R2016b, run on an Intel Core i7-3770 CPU at 3.40 GHz, and all compared filters were implemented 

via MEX files (i.e. C/C++ subroutines created in MATLAB®). In Table 3 the computational times 

required by MA and NVCA are reported as percentages of the computational time  required by 

VBM4D. As expected, computational times required by the NVCA filters with different mask sizes 

turned out to be just few percent of that required by the VBM4D. Hardware implementations of 

NVCA, such as those presented in [61], can further reduce the computational times by computing the 

local noise SD threshold from a lookup table instead of directly implementing the formula reported 

in (14), which involves the computation of square root and multiplication operations. 

Table 3. Relative computational times of the NVCA and moving average (MA) filters calculated with respect to the 

computational time of VBM4D, taken as reference. 

Spatial mask 

dimension 3×3 5×5 7×7 

Temporal mask 

dimension 1 2 3 5 7 9 1 2 3 5 7 9 1 2 3 5 7 9 

NVCA-to-VBM4D 

computation time (%) 
1.5 2.1 2.4 3.1 3.7 4.3 2.7 3.9 4.7 6.6 8.5 10.0 4.7 6.4 8.1 11.7 15.2 18.3 

MA-to-VBM4D 

computation time (%) 1.1 1.2 1.2 1.3 1.4 1.5 1.1 1.4 1.7 2.1 2.3 2.7 1.6 2.0 2.5 3.1 3.7 4.3 
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5.6 Synthetic sequence with moving object 

In order to evaluate the blurring effects introduced when imaging moving objects, three synthetic, 

noiseless sequences were designed (Figure 21), starting from a fully digital contrast-detail phantom,  

set as a static background, and then including a rectangular, high-contrast object moving horizontally 

from left to right at a speed of 1, 2 and 3 pixels per frame. All the objects presented ideal edges and 

the contrast between the moving object and the image background was 46% (evaluated as the percent 

ratio between the mean pixel value within the rectangle and the mean pixel value of the image 

background). Afterward, three noisy sequences were devised by adding a simulated Poisson noise to 

the noiseless sequences just created. The yellow ROI in Figure 21 shows the edge portion selected 

for the FWHM evaluation (the ROI includes as much vertical edges as possible, excluding the upper 

and lower corners). The overall FWHM was estimated as the average FWHM over 10 consecutive 

profiles. The ROI dimension was chosen in order to include as many lines as possible with the aim 

of reducing the noise influence on the FWHM estimates. The FWHM evaluated across the selected 

edge are reported in Figure 23. 

 

Figure 21. Digital phantom with a moving rectangular insert. The red arrows indicate the moving direction of the insert 

over the consecutive frames. The yellow ROI outlines the region for the evaluation of the FWHM on the insert edge.  

Figure 22 shows a profile across the ideal edge of the object moving at 1 pixel/frame after the 

application of VBM4D, NVCA and moving average filter with 5×5×5 pixels mask size. It can be 

noted that while the simple average filter introduced a significant motion blur (FWHM values more 

than 20 times higher than those of the other filters), both VBM4D and NVCA well preserved the edge 

sharpness, but VBM4D provided a higher noise reduction. 

For the moving object speed of 1 pixel/frame, differences in motion blur introduced by 

VBM4D and NVCA resulted negligible. However, the spatial resolution of the sequence denoised by 

VBM4D degraded when increasing object speed (2.2 times when increasing from 1 to 2 pixels/frame), 

while the NVCA spatial resolution remained unaltered. Also in the case of moving average filter; the 

FWHM increased as the object speed increased. 
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Figure 22. Edge profiles across the edge of the moving object in the sequence of the digital phantom for 5×5×5 average 

filter, VBM4D and 5×5×5 NVCA filter (Nσ = 2). Insert speed = 1 pixel/frame. 
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Figure 23. FWHM evaluated across a moving edge in the digital phantom for 5×5×5 average filter, VBM4D and 5×5×5 

and 7×7×7 NVCA filter (Nσ = 2). 

5.7 Interventional fluoroscopy sequence 

NVCA and VBM4D performances were evaluated on a further real fluoroscopic sequence (Figure 

24), acquired during a surgical procedure, which shows a moving radiopaque needle, as well as a 

small implanted catheter. The sequence was acquired with the same device and settings used for the 

aluminium step phantom (GE 9900 Elite C-arm [132]; tube voltage = 57 kVp, anode current = 1 mA; 

detector frame rate = 25 fps, frames dimension = 328×333 pixels and grey levels digitalized in a 16-

bit scale). Figure 25 shows a ROI of the original surgical sequence and of its versions denoised via  
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Figure 24. A frame of the surgical fluoroscopy sequence (left) and an enlargement of its central region (right). The 

radiopaque needle appears at the top of the image enlargement. 

 

Figure 25. The enlargement of the real fluoroscopic image including the radiopaque needle: a) raw image, the yellow 

vertical line was manually placed across the needle to evaluate blur, b) image filtered with VBM4D and algebraic 

inversion of the Anscombe transform; image filtered with NVCA (Nσ = 1.5) with mask size of c) 5x5x1 pixels, d) 5x5x3 

pixels, e) 5x5x5 pixels and f) 5x5x7 pixels. 

VBM4D and NVCA filter with Nσ =1.5 and mask size of 5×5×1 pixels (spatial filter), 5×5×3 pixels, 

5×5×5 pixels and 5×5×7 pixels. From Figure 26 it can be seen that no substantial differences in the 

profile blurring were caused by passing from a pure spatial filter (5×5×1 pixels mask) to a mask size 
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of 5×5×3 pixels. However, increasing the temporal extent of NVCA mask to 5 pixels led to a 

reduction in the signal peak level along with a profile spread.  

0 5 10 15 20 25
0.03

0.04

0.05

0.06

0.07

 

 

P
ix

e
l 
v
a
lu

e
 (

a
.u

.)

Position (pixel)

 NVCA 5x5x5

 NVCA 5x5x3

 NVCA 5x5x1

 VBM4D

 Raw
Profile across the needle

 

Figure 26. Profile across the needle outlined in Figure 25. 

However, by visually comparing the denoising performances of VBM4D and NVCA, a 

number of undesired effects could be noted. As an example, VBM4D caused losses of contrast and 

edge sharpness in originally low-contrast areas, such as the ribs and the portions of the needle in the 

vicinity of the ribs boundaries and over the ribs. Moreover, the small dark catheter appears as 

extremely blurred and also fragmented in many points. In general, VBM4D introduced a “cartoon-

like” effect [133] in almost all areas of the image, probably caused by the patch-based operation and 

the final aggregation. Indeed, medical images are much more complex, e.g. they do not exhibit large 

smooth areas, like natural images, therefore, patch-based methods tend to fail more easily [70] by 

both grouping together patches that are actually not so similar, thus exceeding in smoothing operation, 

or not being able to find enough patches, thus providing poor noise reduction. NVCA preserved much 

more the edge sharpness by reducing the amount of smoothing in the neighbourhood of edges 

(because of the exclusion of more outliers belonging to other objects), especially of larger moving 

objects which indeed represent the worst condition for the spatio-temporal edge-aware filtering. 

5.8 Image derivatives in flexion – extension fluoroscopy sequence 

NVCA and VBM4D were also tested on the flexion – extension fluoroscopy sequence of the lumbar 

spine presented in Chapter 4. First, the noise parameters were extracted from the static scene depicted 

in the last 30 frames of the sequence, by using the EVaR estimation approach based on time sequences 

of pixels grey levels. Then the noise parameters just retrieved were used to apply the GAT to the 

whole sequence, in order to obtain the transformed sequence to be processed via VBM4D. For 

demonstration purposes, the EVaR estimation was repeated on the transformed data, to show the 

effectiveness of the variance stabilisation provided by the GAT. The results of EVaR estimation from 

original and transformed data are depicted in Figure 27.(a-b), respectively, where it can be seen that 
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the GAT allowed obtaining a distribution with approximately unit variance and absolutely negligible 

signal-dependence. 

 
(a) 

 
(b) 

Figure 27. Experimental EVaRs (scatter points), linear regressions (straight lines) and noise parameters for: a) original 

noisy sequence; b) noisy sequence after generalised Anscombe transformation. 
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Afterward, an NVCA filter with 11117 mask size and Nσ = 3 was applied to the raw 

fluoroscopic sequence, while VBM4D was applied to the transformed data, which were eventually 

processed with the inverse transform, to bring them back in their original domain. The results are 

depicted in Figure 28, where, surprisingly, it is quite evident by visual inspection that the VBM4D 

provided a lesser noise power reduction as compared to NVCA. Nonetheless, as already demonstrated 

in Chapter 4 for a smaller mask size, NVCA provided a very accurate edge preservation. This can be 

assessed also by visual inspection in Figure 29, where a ROI of the original noisy sequence including 

the L2 vertebral body is depicted (Figure 29.a) along with the related image gradients of the noisy 

and filtered sequences, which were obtained via the Sobel operators described in (27) in Chapter 4. 

It is very clear from Figure 29, that NVCA outperformed VBM4D by simultaneously providing a 

deeper noise reduction (in Figure 29.d many spurious edges due to the residual noise are still visible) 

and a decidedly more powerful preservation of edge sharpness that allowed accurate delineation of 

vertebral bodies contours , while VBM4D caused a significant blurring also for high-contrast edges. 

 
(a) (b) (c) 

Figure 28. Comparison of a single frame from: (a) noisy sequence with selected ROI; (b-c) sequences filtered with NVCA 

and VBM4D. 

The analyses presented in this chapter focused on the performance assessment of NVCA, 

VBM4D and MA filters, in terms of details visibility and edge blurring provided in the filtered 

sequences. The denoising algorithms were tested on sequences with both static and moving scenes, 

simulated and real fluoroscopic noise, with and without clinically relevant structures.  

VBM4D provided the best performances in the step-phantom sequence, which represented a very 

long static scene, with real fluoroscopic noise but without any clinically relevant structure. 

Considering that VBM4D is designed as a post-processing algorithm and takes into account the whole 

spatio – temporal volume of the sequence, and that the step-phantom scene undoubtedly shares many  



50 

 

  

(a) (b) 

  

(c) (d) 

Figure 29. (a) ROI extracted from the noisy sequence, shown in Figure 28.a; the same ROI extracted from the image 

gradients of the (b) noisy, (c) NVCA-filtered and (d) VBM4D-filtered sequences, respectively. The luminance of the image 

gradients was stretched in the same grey levels interval, so as to allow a fair comparison. 

features with natural images, such as being dominated by large smooth areas and including 

sharp, high-contrast edges, this result was not unexpected. 

Undoubtedly, this scene is not very challenging as compared to those the VBM4D has already 

been tested on: indeed, the absence of any kind of motion obviously prevented motion blur to show 

up, even when applying the simple MA filter; moreover the presence of sharp, high-contrast, 

geometric objects contours assuredly increased the amount of similar patches, within the same frame 

and even more so in the whole sequence, as the scene is absolutely motionless, and eased their 

recognition, thus supporting a significant increase in the VBM4D denoising power. Nonetheless, the 

VBM4D provided a 14 % increase in CNR, which was not so higher than the 13 % and 10 % increases 

provided, respectively, by MA and NVCA, which instead required computational times that turned 

out to be few percent of the time required by VBM4D. 

The first issues arose when processing the synthetic sequences with the moving object, which 

did not include real fluoroscopic noise, nor clinically relevant structures. Indeed, the VBM4D 
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provided reasonable edge preservation only for the lowest object speed of 1 pixels/frame, causing an 

increased blurring of originally sharp and high-contrast edges for increasing speeds, as proved by the 

increase in the estimated FWHM of the edge spread function. Instead, NVCA provided an accurate 

edge preservation, regardless of the object speed, which suggests a kind of stability of its 

performances with respect to very different conditions of the imaged scene. It is worth noting that, as 

in the case of the step-phantom sequence, the absence of complex, clinically relevant structures, as 

well as the presence of high-contrast objects contours, certainly eased the grouping of similar patches 

within the whole sequence; moreover, the simulated Poisson noise undoubtedly ensured better 

performances in the variance stabilisation provided by the GAT, as compared to the case of real 

fluoroscopic noise, which has actually more complex features as already explained in Chapter 2. 

Nevertheless, the performances of VBM4D turned out to be significantly degraded, thus suggesting 

that the presence of objects moving at various speeds is a critical factor for VBM4D performances, 

regardless of the details visibility and the structures complexity, which is quite surprising for a video 

denoising algorithm that is claimed to provide for a motion estimation process to avoid motion blur 

and boost denoising performances. 

These aspects were heightened when processing the interventional fluoroscopy sequence that 

represented a moving scene of a cardiac surgical procedure, which included both real fluoroscopic 

noise and clinically relevant structures.  The denoising results provided by all the NVCA filters with 

different mask sizes clearly outperformed the result of VBM4D, which presented many critical 

quality issues, among which a general cartoon-like appearance; the loss of contrast and edge 

sharpness of low-contrast and/or moving edges of clinical relevance, i.e. the contours of organs (e.g. 

ribs, lungs) as well as the contours of surgical instruments, such as an high-contrast, slowly moving, 

implanted catheter, which appeared completely blurred and fragmented in his thinnest parts, and an 

inserting needle, which appeared blurred when approaching or superimposing on ribs areas in the X-

ray projection. 

While VBM4D remains undoubtedly a state-of-the-art denoising algorithm for natural image 

sequences corrupted by AWGN, this study demonstrated that, even if adapted to the Poisson – 

Gaussian denoising problem via the GAT, it is not able to ensure an efficient, edge-aware denoising 

of real low-dose fluoroscopic sequences, beside also exhibiting a very high computational burden as 

compared to simpler, yet effective approaches like NVCA. This result, not only prevents its 

application to the real-time processing of fluoroscopic sequences during interventional procedures, 

but also discourage its potential use as a post-processing algorithm for previously acquired, low-dose 

fluoroscopic sequences. 

The use of “automated” IQA indices like CNR and FSIM, highlighted some of the critical 

issues that arise when applying this indices to medical images. Indeed, both CNR and FSIM suggested 

that the best denoising results were achieved by NVCA when using the highest Nσ values, which also 

yielded that highest FWHM (i.e. the worst edge blurring) though. These results demonstrate that CNR 

and FSIM are not as edge-aware as they were thought to be, and highlight the urge of conceiving an 

IQA index that is well-suited to describe the most important features that influence the actual quality 

of X-ray medical images as perceived by a human operator. Such an IQA index, indeed, would also 

be of help to guide the analysis and identification of the best settings for parameterised algorithms 

like NVCA, for which the final image quality (at least from a qualitative visual point of view) is 

known to be heavily dependent on parameters selection in a not straightforward fashion. To this aim, 
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a novel edge-aware IQA index for X-ray images is proposed in Chapter 6, along with its preliminary 

assessment against CNR and FSIM indices. 
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Chapter 6 

Edge-aware image quality assessment for 

X-ray image denoising optimization 

This chapter addresses two issues that emerged in the previous chapters, namely the reliable 

quality assessment of medical X-ray images and the optimisation of NVCA performances through 

identification of the optimal parameters settings. Indeed, it has been shown that NVCA performances 

have a significant dependency on the particular choice of its parameters and on various image 

features, which has not been fully understood yet. Moreover, both CNR and FSIM proved unable to 

give a good measure of edge perceptibility (even though they are commonly considered to be quite 

sensitive to edge sharpness), and to give it enough weight in the evaluation of the image quality of 

fluoroscopic images, where edges play a key role in the ability of human eye to understand the scene. 

It follows that also the objective comparison between different denoising strategies would suffer from 

this flaw, thus giving potentially unreliable results. Both issues may share a common solution: the 

design of an edge-aware IQA index that could give a more accurate evaluation of X-ray image quality 

and, therefore, guide the identification of the optimal parameters settings that yield the highest image 

quality. In this chapter a novel IQA index is presented and a preliminary performance comparison 

against FSIM and CNR is carried out by simultaneously assessing their ability to identify the NVCA 

denoising result with the highest image quality and, as a consequence, the related optimal parameters 

choice for NVCA in a synthetic fluoroscopic sequence with definite features. 

6.1 Image quality assessment 

Image quality assessment is a fundamental task for the analysis of image quality enhancement [55, 

78 – 80]. Enhancement algorithms are aimed at improving different features, such as mean luminance, 

contrast, spatial resolution, edge sharpness, which influence the image quality as perceived by the 

human vision system. However, the HVS has a very complex behaviour, which cannot be accounted 

for by a mere recipe of simple image parameters. As an example, the HVS, just like other human 

senses, is subject to masking effects, which alter in various ways the perceptibility of certain details 

or components of the visual informational content, depending on several conditions [134]. In addition, 

the HVS exhibits astonishing, and in some way still unclear, statistical capabilities, which result in a 

significant robustness to various kinds of distortions and noises [12]. Nonetheless, the possibility to 

predict the quality perceived by the HVS with reasonable accuracy is still desirable and required in 

many applications, e.g. real-time quality check during images acquisition and transmission, objective 

comparison of methods for image quality enhancement, parameters optimization for image 

processing algorithms. To this aim, several IQA metrics and indices have been proposed in literature, 

which can be divided in three main categories, namely Full-Reference IQA (FR-IQA), Reduced-

Reference IQA (RR-IQA) and No-Reference IQA (NR-IQA) [55, 78 – 80]. FR-IQA indices are aimed 
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at quantifying the loss in image quality by measuring the discrepancies between a reference image 

and a distorted version, and require the availability of the full reference image. RR-IQA does not 

require the full reference image but only synthetic information. Since in most practical applications 

the reference image is usually unavailable, a number of NR–IQA indices have been proposed, which 

attempt to quantify the quality of a distorted image without directly comparing it with the original 

one. However, NR–IQA indices are usually tailored to natural images, which differ substantially from 

medical images in terms of structural content, statistical distributions of noise, and image artifacts 

[79], and are generally not competitive with FR-IQA metrics, as they need to deal with multiple kinds 

of distortion [55]. FR-IQA metrics are then preferable to evaluate the ability of an algorithm to 

recover the original content of a medical image from a distorted version. Examples of classic, 

widespread FR-IQA metrics are the Mean Squared Error (MSE) and the PSNR, which are both based 

on a measure of the error between the original reference image and the distorted image and have no 

relation with the human visual perception. SSIM has been one of the first IQA indices to be claimed 

to rely on a perception-related model that could better describe the image quality as perceived by the 

human eye, even though Nilson & Akenine- Möller from NVIDIA recently argued that there is no 

evidence of such relationship with human perception and demonstrated that SSIM produces the 

largest quality estimation errors precisely on the edges [130], which play a key role in the recognition 

and tracking of objects and organs in fluoroscopy. The HVS relies on edges much more than smooth 

areas to interpret the scene of an image, and it is very robust to noise [135 – 137]. While smooth areas 

are mainly affected by noise, the edges are corrupted by blurring effects as well, which should be 

considered at least as much as the noise when evaluating image quality. However, since the number 

of edge pixels is statistically much lower than that of pixels in smooth areas, the blurring effects are 

often disregarded in favour of noise, especially in IQA indices that rely on pooling a single quality 

score from pixel-wise distortion measures which are given the same importance, regardless of their 

spatial positions [129]. Indeed, in [138 – 140] it has been shown that by using space-variant weights 

that take into account the kind and amount of contribution of each pixel to the perceived image 

quality, the predictive performances of various IQA indices, even as simple as PSNR, could be 

improved. This supports the intuition that pixels can provide very different contributions to the HVS 

perception, based on the role they play in the scene interpretation, and suggests that common pooling 

strategies are not so favourable. 

6.2 Sensitivity of Edge Detection 

In literature, many edge-aware FR-IQA indices have been proposed (e.g. [129, 141 – 142]),  among 

which FSIM is currently the most recent and referenced index and, therefore, could be considered as 

the state of the art. Nevertheless, in the previous chapters it proved uncapable of detecting the loss in 

edge sharpness due to blurring effects, which was instead measured via the FWHM of the edge spread 

function. A novel edge-aware IQA index, named Sensitivity of Edge Detection (SED), is then 

proposed to provide a reliable measure of image quality in fluoroscopic sequences. The index is based 

on the assumption that the sharper the edges, the better the edge detection. Therefore, edge detection 

is adopted to quantify the differences in sharpness and visibility of edges between the original and 

distorted versions of an image. In particular, the index measures the sensitivity of edge detection, 

defined as the ratio of true edge pixels in the distorted image to the total of edge pixels in the original 

image, both identified by using the same parameters of the Canny edge detector [143]. The map of 

true edge pixels is obtained by computing a pixel-wise logical AND operation between the edge maps 
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of the distorted and original versions of the image. Then, the number of edge pixels is derived both 

in the true edges map and in the edges map of the original image, and their ratio is computed to obtain 

the SED score, as reported in (37):  

 

𝐸𝑡𝑒𝑠𝑡 = 𝐸𝑑𝑔𝑒𝑀𝑎𝑝(𝐼𝑡𝑒𝑠𝑡) 

𝐸𝑟𝑒𝑓 = 𝐸𝑑𝑔𝑒𝑀𝑎𝑝(𝐼𝑟𝑒𝑓) 

 

𝑆𝐸𝐷 =
|𝐸𝑡𝑒𝑠𝑡 ∧ 𝐸𝑟𝑒𝑓|1

|𝐸𝑟𝑒𝑓|1

 

(37) 

6.3 Synthetic test sequence design 

A synthetic fluoroscopic sequence was used to assess the capabilities of FSIM and SED to identify 

the NVCA parameters values that yield the best trade-off between noise reduction and edge 

preservation in moving scenes. The building block of the sequence was a sequence of binary maps 

representing a full circle with a radius of 7 pixels, moving along a square trajectory at a speed of 1 

pixel/frame. The final sequence of binary maps (50 frames of 100×100 pixels), referred to as binary 

sequence, was devised via superimposition of several building blocks at randomly distributed starting 

points. Then, an 8-bit grayscale, noiseless sequence (referred to as reference sequence) was obtained 

by assigning grey levels of 127 and 86 to the background and the moving circles, respectively. Finally, 

the reference sequence was corrupted with simulated Poisson noise, so as to obtain a noisy sequence 

with a CNR of 2 (defined as in (36)). The same frame extracted from binary, reference and noisy 

sequences are depicted in Figure 30. The actual CNR obtained by adding Poisson noise to the 

reference sequence, computed by applying the formula reported in (36), was equal to 1.99, thus 

confirming that the condition on CNR was matched. 

   

(a) (b) (c) 

Figure 30. Comparison of the 20th frame of (a) binary sequence; (b) noiseless sequence; (c) noisy sequence. 

6.4 Identification of optimal NVCA parameters based on FSIM and SED scores 

The noisy sequence was filtered with NVCA by considering all the combinations of parameters 

values, within certain ranges, thus producing several filtered versions of the noisy sequence. In 

particular, the ranges considered for each parameter were: 1 to 15 in steps of 2 for S (spatial mask 
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size), 1 to 7 in steps of 1 for T (temporal mask size), 1 to 4 in steps of 0.2 for Nσ. Therefore, a total of 

1680 filtered sequences were obtained. 

The FSIM and SED scores were computed for the noisy sequence and for all the 1680 filtered 

versions obtained with NVCA filtering, by considering the noiseless reference sequence as the ground 

truth. The FSIM scores were computed via the MATLAB function “FSIM Index with automatic 

downsampling” (Version 1.0, Copyright© 2010 Lin Zhang, Lei Zhang, Xuanqin Mou and David 

Zhang) [129]. The Canny edge detection involved in the computation of the SED scores was 

performed via the MATLAB “edge” function (Version 10.1, R2017b). The default parameters set in 

the “edge” function were adopted, as they provided good results in the reference sequence. The FSIM 

and SED scores were organized in 3D matrices (15×7×16) and for each of them the overall maximum 

value was located, in order to identify the related NVCA parameters. 

The optimal parameters values identified by FSIM and SED indices are reported in Table 4. 

The best results, according to both IQA indices, were obtained with the same filter mask dimensions 

(i.e. 5×5×2), but with two different values for Nσ (higher values produce higher noise reduction but 

also heavier edge blurring). Moreover, other image quality related parameters were also computed 

for the noisy and filtered sequences. In particular, the CNR, as well as contrast and noise SD were 

calculated and reported in Table 5. 

Table 4. Comparison of IQA results: the first three columns are the optimal parameters identified with FSIM and SED 

indices, the last two columns are the IQA scores achieved by the noisy sequence and the best sequences identified with 

FSIM and SED indices 

Sequence Sopt Topt Nσ opt FSIM SED 

Vnoise - - - 0.60 0.82 

VFSIM 5 2 3 0.88 0.82 

VSED 5 2 2 0.82 0.85 

 

Table 5. Comparison of contrast, noise SD and CNR of the noisy and filtered sequences with highest IQA scores. 

Sequence Contrast Noise SD CNR 

Vnoise 41.0 20.6 1.99 

VFSIM 36.2 10.4 3.50 

VSED 38.8 12.1 3.21 

The filtered sequences with the highest image quality scores can be visually compared in 

Figure 31, where the same frames extracted from the reference and noisy sequences are reported in 

the upper panels, while those extracted from the best results identified by FSIM and SED are reported 

in the lower panels. It can be clearly observed that the sequence that achieved the highest SED score 

(Figure 31.(d)) is characterized by sharper edges with respect to the sequence that obtained the highest 
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FSIM score (Figure 31.(c)), which instead provided slightly better noise reduction. Finally, for the 

sake of completeness, the edges revealed by the Canny edge detector, adopted in the SED index 

computation, are reported in Figure 32. For the reference sequence the detected edges are highlighted 

in purple, while for the noisy and filtered sequences, the correctly detected edges (true edges) and the 

missed ones are highlighted in red and blue, respectively. 

  

(a) (b) 

  

(c) (d) 

Figure 31. Comparison of a  frame from (a) original noiseless sequence; (b) noisy sequence; (c) filtered sequence with 

higher FSIM score; (d) filtered sequence with higher SED score 

According to the results, the best sequence identified by SED was characterized by an overall higher 

edge sharpness with respect to the best sequence suggested by FSIM, as it can be assessed by visual 

comparison of Figure 31.(c-d) and Figure 32.(c-d). This could also be inferred from a quantitative 

comparison of their SED scores, as they indicate the percentage of correctly detected edge pixels, 

which is surely dependent on the edge sharpness and the local contrast. This seems to be confirmed 

also by the values reported in Table 5, where it can be noticed that the NVCA filter which produced 

the best quality sequence according to FSIM, provided poor edges preservation, as it achieved the 

lowest contrast value. 

However, it provided a greater noise reduction (also at the cost of smearing edges) and so it 

achieved a slightly better CNR. It is worth mentioning that the sequence with the highest FSIM score 

achieved almost the same SED score of the noisy sequence (no significant improvements in 

percentage of correctly detected edges), while the sequence with the best SED score achieved a much 

higher FSIM score with respect to the noisy sequence, and also an higher SED score (significant 

improvements in both noise reduction and percentage of correctly detected edges).  
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(a) (b) 

  

(c) (d) 

Figure 32. Comparison of the edges detected in a frame of the noiseless, the noisy and the filtered sequences with higher 

IQA scores. In the original noiseless sequence (a) the edges are highlighted in purple, while in the noisy and filtered 

images (b-c) the correctly detected and the missed edges are highlighted in red and blue, respectively. 

A more in-depth analysis of the performances of NVCA and the behaviour of SED and FSIM 

could be carried out by analysing the variations of the optimal results that could be obtained by 

varying Nσ. Indeed, it is reasonable that the optimal settings for NVCA would vary according to 

different features that influence the quality of the original noisy sequence, thus preventing the 

identification of a unique optimal setting. Hence, unless a robust method is conceived to determine 

those features and to automatically set the optimal NVCA parameters accordingly, a manual setting 

of these parameters should be performed, so it would be interesting to figure out how the mask sizes 

should be varied when increasing or decreasing Nσ. Figure 33 depicts the results of this analysis. 

In Figure 33.(a) it could be observed that, in practice, by increasing Nσ, nothing changes in 

the optimal sizes of the mask according to FSIM (552), apart from a slight increase of the optimal 

T value for Nσ < 1.5. Instead, in Figure 33.(b) it is clear that, according to SED, the mask sizes should 

be reduced when increasing Nσ. This is understandable, as an increase in Nσ results in an increased 

inferential error probability, whose undesired effects could be amplified by relatively large mask 

sizes, simply because of the higher absolute number of pixels that could be misclassified during the 

NVCA filtering. Looking at the lower panels in Figure 33, it can be noticed that the trend of SED 

with Nσ has a local maximum that is much more emphasised, as compared to the trend of FSIM, 

which, instead, decreases very slowly as Nσ increases. These trends explain the inability of FSIM to 

account for the edge blurring effects, due to large Nσ values, as well as the edge-awareness of SED, 

which penalizes both excessively blurred edges, due to large Nσ values, and excessively noisy edges, 

due to small Nσ values. 



59 

 

  

(a) (b) 

  

(c) (d) 

Figure 33. Optimal mask sizes and IQA scores as functions of Nσ. First row shows the optimal mask sizes as functions 

of NSIGMA, according to (a) FSIM and (b) SED. Second row shows the IQA scores as functions of NSIGMA, obtained 

by using the corresponding optimal mask sizes depicted in the first row. 

These behaviours of the FSIM and SED indices would be even more stressed in noisy 

conditions with lower CNR, because the noise amplitude and the inferential error probability would 

be higher and, as a consequence, also the weights that they would have on the image quality, 

according to FSIM and SED, respectively. For this reason, the above described analyses were carried 

out also on a noisy sequence with a further reduced CNR, which was set to be equal to 1. It is worth 

underlining that this condition is quite challenging for the statistical validity of the basic principle of 

NVCA, as already shown in Chapter 3. Nonetheless, it is an interesting condition to assess the 

denoising performances that NVCA would provide for low-contrast details in very noisy conditions, 

which could be encountered in very low-dose fluoroscopy procedures. Table 6 and Table 7 outline 

the results of the analysis for the noisy sequence with CNR = 1. It can be noted that, besides 

suggesting a lower Nσ opt as in the case with CNR = 2, SED also suggested smaller mask sizes as 

compared to FSIM, probably to deal with the increased inferential error probability and the related 

risk to produce blurring effects. As expected, the best result according to FSIM did not increase the 

SED score with respect to the noisy data and caused a significant reduction of contrast and noise SD, 

while the best result according to SED increased both FSIM and SED scores with respect to the noisy 

data and preserved much more the contrast, at the cost of an higher residual noise SD. Also in this 

case, the highest CNR was achieved by the best result according to FSIM, even though it provided 
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the highest contrast loss, thus proving that the noise power has more weight in the image quality 

measured by both FSIM and CNR. 

Table 6. Results for noisy sequence with CNR = 1. Comparison of IQA results: the first three columns are the optimal 

parameters identified with FSIM and SED indices, the last two columns are the IQA scores achieved by the noisy sequence 

and the best sequences identified with FSIM and SED indices. 

Sequence Sopt Topt Nσ opt FSIM SED 

Vnoise - - - 0.54 0.65 

VFSIM 5 3 3.4 0.87 0.57 

VSED 3 2 2.2 0.76 0.69 

 

Table 7. Results for noisy sequence with CNR = 1. Comparison of contrast, noise SD and CNR of the noisy and filtered 

sequences with highest IQA scores. 

Sequence Contrast Noise SD CNR 

Vnoise 22.0 21.5 1.02 

VFSIM 16.8 6.41 2.62 

VSED 20.1 10.3 1.96 

A visual comparison of the filtered sequences with the highest image quality scores can be 

carried out in Figure 34 and Figure 35. The best sequence according to FSIM appears as deeply 

blurred  and poor contrasted (Figure 34.(c)), and indeed exhibits a conspicuous number of missed 

edge pixels (the blue ones in Figure 35.(c)), even higher than those of the noisy sequence (Figure 

35.(b)). The best sequence according to SED, instead, features significantly softer edge blurring 

effects and maintains the contrast almost unaltered, resulting with no doubts in a decidedly higher 

visual image quality (Figure 34.(d)). Indeed, it provided better edge detection performances with 

respect to the noisy sequence, as proven by the higher number of true edge pixels (highlighted in red) 

and the lower number of missed edge pixels (highlighted in blue) in Figure 35.(d). 

Figure 36 shows the histograms of pixels grey values computed for the noisy and the filtered 

sequences. In Figure 36.(a) the two Poisson distributions related to the circles and the background 

cannot be distinguished and the distribution appears as unimodal, which is compliant with the 

condition of CNR = 1. This situation seems impossible to deal with by employing the core criterion 

of NVCA, because the distributions of the background and the circles are almost overlapping. 

Nonetheless, NVCA succeeded in reducing the noise power so as to allow the two distributions to be 

distinguished again in Figure 36.(b-c). It is worth noting that the distributions in Figure 36.(b), albeit 

exhibiting a reduced SD as compared to those showed in Figure 36.(c), turn out to be also heavily 

skewed, which suggests the occurrence of some kind of distortion in the filtering operation. 
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(a) (b) 

  
(c) (d) 

Figure 34. Results for noisy sequence with CNR = 1. Comparison of a frame from (a) original noiseless sequence; (b) 

noisy sequence; (c) filtered sequence with higher FSIM score; (d) filtered sequence with higher SED score 

  
(a) (b) 

  

(c) (d) 

Figure 35. Results for noisy sequence with CNR = 1. Comparison of the edges detected in a frame of the noiseless, the 

noisy and the filtered sequences with higher IQA scores. In the original noiseless sequence (a) the edges are highlighted 

in purple, while in the noisy and filtered images (b-c) the correctly detected and the missed edges are highlighted in red 

and blue, respectively. 
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(a) 

  

(b) (c) 

Figure 36. Results for noisy sequence with CNR = 1. Comparison of histograms of grey level occurrences in (a) noisy 

sequence; (b) filtered sequence with higher FSIM score; (c) filtered sequence with higher SED score.  

In Figure 37.(a) the optimal mask sizes, along with the FSIM and SED scores are depicted as 

a function of Nσ. As in Figure 33, it could be observed that by increasing Nσ the optimal sizes of the 

mask (553) remain practically unaltered, according to FSIM, and, this time, this is also true for 

SED, which, instead, selected different optimal mask sizes (332) . Looking at the lower panels in 

Figure 37, it can be observed that the trend of FSIM practically does not show a local maximum, 

while the trend of SED with Nσ is much more emphasised, with a clear maximum at Nσ = 2.2.  

The preliminary results obtained in this study suggest that the novel SED index could be more 

efficient than FSIM in identifying the filter parameters which yield the best trade-off between noise 

reduction and edge preservation for the processing of low-dose fluoroscopy sequences. However, 

more extensive analysis of SED performances should be carried out in different conditions, e.g. 

different objects shape, dimension and speed, also comparing SED against other well-established 

IQA indices. 
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(a) (b) 

  

(c) (d) 

Figure 37. Results for noisy sequence with CNR = 1. Optimal mask sizes and IQA scores as functions of Nσ. First row 

shows the optimal mask sizes as functions of NSIGMA, according to (a) FSIM and (b) SED. Second row shows the IQA 

scores as functions of NSIGMA, obtained by using the corresponding optimal mask sizes depicted in the first row. 
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Chapter 7 

Improved NVCA with spatio-temporal 

domain separation 

In this chapter, an improved version of the NVCA algorithm is presented, which outperforms in many 

cases the state of the art of Poisson denoising in video sequences, always ensuring at least comparable 

performances. As in the original NVCA algorithm, the computational burden is kept sufficiently low, 

therefore, unlike many state-of-the-art algorithms characterized by a very high complexity that 

prevents their actual real-time implementation, the proposed algorithm is ideally suited for real-time, 

hardware implementation on small Field Programmable Gate Arrays (FPGA), also requiring very 

limited percentages of their hardware resources. 

The main improvements can be summarized as follows: 

a) The joint spatio – temporal filtering is split in cascaded temporal and spatial filtering 

operations, in order to increase the ability to discriminate and restore low-contrast details in 

very noisy conditions; 

b) IIR filters are used for time filtering, which allows for equivalent long time averaging while 

reducing the hardware resource burden, in particular the memory that would be required to 

store many high-resolution frames to filter with long time windows; 

c) local adaptive thresholds are introduced in both temporal and spatial domains to improve the 

recognition of noisy and edge pixels, depending on their amount of motion activity, in order 

to jointly avoid motion blur and increase the ability to denoise and preserve static or slow 

moving low-contrast edges; 

d) isolated pixels removal is also included in spatial filtering to deal with the tails of noise 

distributions that are too far from their expected value and would be hardly filtered by the 

core criterion of NVCA; 

e) real-time filtering of 10241024 resolution video at 49 fps is demonstrated with an hardware 

implementation on the smallest FPGA of the Altera StratixIV family, by using, at most, the 

22% of its hardware resources. 

The improved NVCA algorithm is tested against several state-of-the-art denoising algorithms and is 

compared with the hardware implementation of the original NVCA algorithm presented in [61]. 
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7.1 Spatio-temporal domain separation filtering algorithm 

The main idea at the core of this new algorithm comes from the observation that the scenes 

imaged in fluoroscopic procedures are characterised by both quasi-static and dynamic areas. While 

the latter pose unavoidable limitations to the denoising operation due to the motion of objects, which 

prevents the possibility to average a significant number of noisy observations and to provide 

substantial noise power reduction (otherwise motion blur effects could occur), the former allow 

exploiting much more the temporal redundancy of image sequences, thus providing stronger edge-

aware noise reduction in the time domain, which, in turn, allows for a more accurate discrimination 

of low-contrast edges in the spatial domain. Hence, this observation supports the development of an 

approach based on the separation of time and spatial domain filtering. 

Indeed, when performing a joint spatio – temporal conditioned average, as in the original 

NVCA algorithm, the same threshold is used to discriminate between noisy and edge pixels both in 

space and time within the same spatio – temporal neighbourhood. This principle of operation 

determines a trade-off between a deep noise reduction, which could be achieved by selecting a 

relatively high threshold (i.e. high values for Nσ) at the risk of causing edge blurring, and the 

preservation of sharpness of low-contrast edges, which requires the selection of a lower threshold at 

the cost of achieving a poor noise reduction. However, if pixels in a certain area are characterised by 

a static luminance, pure temporal filtering provides absolutely edge-preserving noise reduction, thus 

improving the CNR of low-contrast edges without affecting their sharpness. The higher CNR thus 

obtained brings two advantages: an improved edge-awareness, i.e. the ability to distinguish the 

luminance variations due to low-contrast edges from the spurious fluctuations caused by noise, and a 

lower level of noise reduction required to accomplish a reasonable structures perceptibility. The latter 

complies with the selection of lower values for Nσ, which unavoidably entails a lower number of 

pixels included in the filtering operation, i.e. a lower noise reduction ratio (NRR), but is also essential 

to achieve the improved edge-awareness. For a given edge contrast, the possibility to decrease Nσ 

depends on the noise level of each time-filtered pixel, that is on the NRR, which, in turn, depends on 

the number of averaged pixels involved in its computation. By exploiting this information, an 

equivalent space-variant Nσ can be determined, which defines an adaptive spatial threshold allowing 

for the improved performances just described. 

Figure 38 shows the conceptual overview of the filtering algorithm. The filter operates on a 

video with a LK pixels frame size. The input luminance of the pixel at the position (i,j) of the n-th 

frame is referred to as p(i,j,n). The algorithm consists of a first stage composed by temporal filters, 

referred to as T-filters, and a second stage composed by a spatial filter, referred to as S-filter. Each T-

filter(i,j) performs an NVCA filtering along the temporal dimension on the luminance of the pixels at 

the position (i,j) in subsequent frames. In practice, the ensemble of the T-filters can be regarded as a 

NVCA filter with a purely temporal mask (i.e. with spatial mask size S = 1). The output of the T-

filters, referred to as pT(i,j,n), is then fed at the input of the S-filter, that, for each frame n, performs 

an NVCA filtering in the spatial domain on pixels within a (2X+1)×(2Y+1) neighbourhood of the 

position (i,j). Indeed, the S-filter can be regarded as a NVCA filter with a purely spatial mask (i.e. 

with temporal mask size T = 1). The output of the S-filter is referred to as pS(i,j,n).  
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A synthetic sequence with a 512×512 frame size, corrupted by simulated Poisson noise, is 

used to show the performance of the subsequent steps of the algorithm. The sequence includes a static 

background, resembling a contrast – detail phantom  used in quality assessment of X-ray devices (flat 

background with circles of different sizes and contrast), and a dark rectangle moving from left to 

right. A frame of the noisy reference video is shown in Figure 39.(a). 

 

Figure 38. Schematic representation of the improved NVCA algorithm operation with the cascaded temporal and spatial 

denoising stages. 

7.2 Temporal filters design 

Let us consider a pixel at position (i,j), which is initially supposed to belong to a static object. The 

pixels p(i,j,n) are random variables with Poisson distribution, potentially modified by non-linear 

point-wise luminance transformations (e.g. log-mapping, gamma-correction), which can be locally 

approximated [85, 86] as a normal distribution N(,2), if the number of photons per pixel is greater 

than 10 or 20 (hypothesis widely verified also in fluoroscopy), where the variance 2 is a function of 

the mean  

 𝜎2(𝑖, 𝑗, 𝑛) = 𝐺(𝜇(𝑖, 𝑗, 𝑛)) (38) 

If the object is static, the input pixels of the T-filter at the position (i,j) have a constant mean, and 

therefore a constant variance as well. In addition, the reduced response time of modern X-ray 

detectors (~1 ms [41], much lower than the minimum frame period of 33 ms, corresponding to the 

maximum frame rate of 30 fps) allows assuming that pixels p(i,j,n) at the same spatial position (i,j) 

and in different frames n are mutually independent and normally-distributed. In this hypothesis, it is 

well known that the best filtering technique is represented by the moving average, which equally 

weights all the samples in a temporal window of length M, [144]: 

 
𝑝𝑇(𝑖, 𝑗, 𝑛) =

1

𝑀
∑ 𝑝(𝑖, 𝑗, 𝑛 − 𝑚)

𝑀−1

𝑚=0

 (39) 

Obviously, the average in (39) results in motion blur effects for moving objects, which worsen for 

increasing M , thus determining a trade-off between noise reduction and edge preservation. Moreover, 

it is worth noting that (39) is poorly suited for an hardware implementation if a large number of 

frames needs to be filtered, because a great amount of memory would be required for them to be 

stored. As an example, in a finite impulse response (FIR) filter implementation (e.g. [40, 61]), storing 

128 frames of a video with 1024×1024 frame size an 8 bits/pixel resolution would require 128 MB 
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of memory, and, at a frame rate of 25 fps, a memory bandwidth of 3.1 GB/s. For this reason, FIR 

filter based implementations generally employ much lower frame memory lengths (M), which 

unavoidably limits the NRR the circuit can provide. 

 

Figure 39. Filtered frame of a test video (filter parameters: M=128, X=Y=1) that presents in the background scene circles 

with different sizes (diameters on top of (a)) and contrast (contrast at right of (a)) and a rectangular object that moves 

from left to right: (a) input noisy video; (b) effect of the temporal filtering algorithm realized by using a simple IIR filter. 

The motion blur effect is relevant; (c) output of the temporal filtering algorithm realized by using the conditioned IIR 

approach. The motion blur effect is removed but the noise on the background scene is increased (compare (b) with (c)) 

due to the phenomenon of false reset of the filter; (d) output of the proposed T-filter temporal algorithm. The problem of 

false reset is almost completely resolved; (e) output of the complete spatio-temporal denoising algorithm (S filter 

cascaded to T-filters). Note the reduction of noise on the moving object and the complete elimination of the false reset on 

the background scene 

To overcome this issue, infinite impulse response (IIR) filters could be employed for temporal 

filtering, so the T-filters shown in Figure 38 are designed as N-th order IIR filters that approximate 

the impulse response of a moving average FIR filter with M >> N. Therefore, the IIR T-filters can be 

described by the following equation: 

 𝑝𝑇(𝑖, 𝑗, 𝑛) = ∑ 𝑏𝑚𝑝(𝑖, 𝑗, 𝑛 − 𝑚)

𝑁

𝑚=0

− ∑ 𝑎𝑚𝑝𝑇(𝑖, 𝑗, 𝑛 − 𝑚)

𝑁

𝑚=1

 (40) 

Using (40) instead of (39) results in a significantly reduced amount of the memory needed to 

implement the T-filter (e.g. one IIR filter with N = 10 can be used to approximate the behaviour of a 

FIR filter with M = 128). Indeed, a method to determine the filter coefficients (bm, am) that allow 

approximating (39) with (40) should be devised, and would be presented in the next paragraphs. 

Figure 40 shows the signal flow-graph of the IIR filter. In order to simplify algorithm description, the 

filtering operation (40) is expressed as follows: 
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 𝑝𝑇(𝑖, 𝑗, 𝑛) = 𝑏𝑜𝑝(𝑖, 𝑗, 𝑛) + ∑ 𝑏𝑚𝑠𝑖𝑚(𝑖, 𝑗, 𝑛)

𝑁

𝑚=1

− ∑ 𝑎𝑚𝑠𝑜𝑚(𝑖, 𝑗, 𝑛)

𝑁

𝑚=1

 (41) 

 
𝑠𝑖𝑚(𝑖, 𝑗, 𝑛) = 𝑝(𝑖, 𝑗, 𝑛 − 𝑚)     𝑓𝑜𝑟:   𝑚 = 1. . 𝑁 

𝑠𝑜𝑚(𝑖, 𝑗, 𝑛) = 𝑝𝑇(𝑖, 𝑗, 𝑛 − 𝑚)   𝑓𝑜𝑟:   𝑚 = 1. . 𝑁 
(42) 

where the delayed inputs and outputs, [sim(i,j,n), som(i,j,n)], i.e. the outputs of the delay elements, are 

grouped together and referred to as filter state. For a static pixel, whose luminance fluctuations are 

solely caused by noise, the elaboration proceeds through the IIR approach described in (41)-(42). 

 

Figure 40. Signal flow-graph of the IIR filter. The output of the delay elements [sim(i,j,n), som(i,j,n)] with m = 1..N is the 

filter state 

Figure 39.(b) shows a frame of a test video processed with the IIR filter (41)-(42) that approximates 

a temporal filter of length M = 128. A significant motion blur effect on the central rectangle can be 

observed in Figure 39.(b), which was caused by the transient of the temporal filter. The designed T-

filters actually implement a simple moving average in the time domain, which is known to be unable 

to provide an edge-preserving noise reduction for moving objects. Hence, the edge-preserving 

criterion at the core of NVCA denoising should be embedded in the IIR T-filters, in order to perform 

the average computation across the frames only on the pixels at the same spatial position that belong 

to the same object. However, considering that the average computation on the M frames is not explicit 

as in a FIR filter, it follows that the original NVCA criterion based on the determination of a binary 

mask obtained by comparing the differences between all mask pixels with the current pixel could not 

be implemented, hence a different way of embedding this criterion was conceived, which is based on 

a filter reset approach. 

Let us assume that pixel p(i,j,n) has been classified as belonging to a different moving object 

with respect to the pixels p(i,j,n – 1) previously processed by the T-filter(i,j). In this hypothesis, the 

filter state is completely reset to impose a novel steady state condition for the IIR filter, thus the 

temporal filtering of the pixel and the update of the filter state proceed as follows: 

 𝑝𝑇(𝑖, 𝑗, 𝑛) = 𝐺𝐷𝐶 ⋅ 𝑝(𝑖, 𝑗, 𝑛) (43) 

 
𝑠𝑖𝑚(𝑖, 𝑗, 𝑛 + 1) = 𝑝(𝑖, 𝑗, 𝑛)     𝑓𝑜𝑟:   𝑚 = 1. . 𝑁 

𝑠𝑜𝑚(𝑖, 𝑗, 𝑛 + 1) = 𝑝𝑇(𝑖, 𝑗, 𝑛)   𝑓𝑜𝑟:   𝑚 = 1. . 𝑁 
(44) 

where: 

 𝐺𝐷𝐶 =
∑ 𝑏𝑚
𝑁
𝑚=1

1 + ∑ 𝑎𝑚
𝑁
𝑚=1

 (45) 
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This event, named filter reset, completely discards the actual history of the pixel, which is replaced 

according to the assumption that the past pixel inputs in the filter memory had all been equal to p(i,j,n) 

precisely. Obviously, considering that all past pixels inputs are equal, thus representing a static input 

signal, the output pixel pT(i,j,n) is equal to the input pixel p(i,j,n) multiplied by the DC gain of the IIR 

filter, as reported in (45). Accordingly, also all the past pixel outputs in the filter memory are set to 

pT(i,j,n), thus completing the reset of filter state. For the following frames, the processing continues 

by using (41)-(42) if no new filter reset occurs at position (i,j). 

To ascertain that a pixel p(i,j,n) corresponds to a different moving object, an adaptive temporal 

threshold TT(i,j,n) is introduced, so that a filter reset in pixel (i,j) is performed when the following 

condition holds: 

 |𝑝(𝑖, 𝑗, 𝑛) − 𝑝𝑇(𝑖, 𝑗, 𝑛 − 1)| > 𝑇𝑇(𝑖, 𝑗, 𝑛) (46) 

where the threshold TT(i,j,n) can be derived as follows. In order to identify whether p(i,j,n) belongs 

to a different moving object, p(i,j,n) can be compared with the previous output of the T-filter, i.e. 

pT(i,j,n−1), which is a weighted sum of p(i,j,n−1), mutually independent and assumed as belonging 

to the same object, and indeed represents the most accurate information about the expected value of 

pixel luminance at position (i,j) in the previous frames. Recalling that p(i,j,n) ~ N[(i,j,n ), 2(i,j,n)], 

where, according to (38), 2(i,j,n) is function of (i,j,n ) it follows that 

pT(i,j,n−1) ~ N((i,j,n−1 ), 
2(i,j,n−1)). 

 The problem of defining whether p(i,j,n) belongs to the same object of pT(i,j,n−1) by using 

(46) is the statistical hypothesis testing problem defined by (47): 

 𝑯𝟎:    𝜇(𝑖, 𝑗, 𝑛) = 𝜇𝑇(𝑖, 𝑗, 𝑛 − 1) (47) 

In practice, (46) assumes that if the difference in luminance between the current input pixel p(i,j,n) 

and the last output pixel pT(i,j,n) (i.e. the closest approximation of the expected luminance value of 

previously processed pixels) is higher than the threshold, then p(i,j,n) and pT(i,j,n) do not belong to 

the same distribution and a filter reset is required. Obviously this condition is not always verified and, 

given the selected threshold TT(i,j,n), a probability of error , referred to as false reset probability, 

can be determined, which corresponds to the probability that, although the two pixels belong to the 

same distribution (i.e. H0 is verified), their difference exceeds the selected threshold: 

 𝑃[|𝑝(𝑖, 𝑗, 𝑛) − 𝑝𝑇(𝑖, 𝑗, 𝑛 − 1)| > 𝑇𝑇(𝑖, 𝑗, 𝑛)  |  𝑯𝟎] = 𝛼 (48) 

where 1− represents the confidence level of the test. Recalling that the two random variables p(i,j,n) 

and pT(i,j,n−1) are mutually independent, it follows that, under the hypothesis H0, the random variable 

corresponding to their difference can be expressed as in (49): 

 𝑝(𝑖, 𝑗, 𝑛) − 𝑝𝑇(𝑖, 𝑗, 𝑛 − 1)   ∼   𝑁[0, 𝜎𝐷
2(𝑖, 𝑗, 𝑛 − 1)] (49) 

 𝜎𝐷
2(𝑖, 𝑗, 𝑛 − 1) = 𝜎2(𝑖, 𝑗, 𝑛) + 𝜎𝑇

2(𝑖, 𝑗, 𝑛 − 1)              (50) 

The variance 
2(i,j,n−1) of the IIR filter response can be computed by approximating the filter 

impulse response with that of the emulated moving average filter (i.e. arectangular window of length 

M): 
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 𝑝𝑇(𝑖, 𝑗, 𝑛 − 1) = ∑ ℎ𝑚(𝑘 − 1)𝑝
′(𝑖, 𝑗, 𝑛 − 𝑘)

∞

𝑘=1

≅
1

𝑀
∑𝑝′(𝑖, 𝑗, 𝑛 − 𝑘)

𝑀

𝑘=1

 (51) 

 

with p’(i,j,n – k) defined as follows: 

 𝑝′(𝑖, 𝑗, 𝑛 − 𝑘) = {
𝑝(𝑖, 𝑗, 𝑛 − 𝑘)                               𝑘 ≤ 𝑚(𝑖, 𝑗, 𝑛 − 1)
𝑝(𝑖, 𝑗, 𝑛 − 𝑚(𝑖, 𝑗, 𝑛 − 1))         𝑘 > 𝑚(𝑖, 𝑗, 𝑛 − 1)

 (52) 

where m(i,j,n−1)[1,M] is the number of frames from which the pixel pT(i,j,n−1) can be considered 

static. As an example, if the last filter reset occurred at the frame n−k*, then m(i,j,n-1) = k*. In (52) 

p(i,j,n−k) are mutually independent and belong to the same distribution, that is they have the same 

expected value and variance ((i,j,n−) 
2(i,j,n–1)). In addition, under hypothesis H0, their 

expected value and variance are equal to those of p(i,j,n), that is p(i,j,n−k) ~ N((i,j,n ), 2(i,j,n)). 

From (51)-(52) it is possible to derive the expression of 
2(i,j,n–1): 

 𝜎𝑇
2(𝑖, 𝑗, 𝑛 − 1) = 𝜎2(𝑖, 𝑗, 𝑛) ⋅ (

𝑚(𝑖, 𝑗, 𝑛 − 1)2

𝑀2
−
𝑚(𝑖, 𝑗, 𝑛 − 1)

𝑀
(2 +

1

𝑀
) + (1 +

2

𝑀
)) (53) 

Then, the expression of D
2(i,j,n−1) can be computed by substituting (53) in (50): 

 𝜎𝐷
2(𝑖, 𝑗, 𝑛 − 1) = 𝜎2(𝑖, 𝑗, 𝑛) ⋅ 𝑔(𝑚(𝑖, 𝑗, 𝑛 − 1)) (54) 

 𝑔(𝑚) =
𝑚2

𝑀2
−
𝑚

𝑀
(2 +

1

𝑀
) + (2 +

2

𝑀
) (55) 

Finally, the solution of (48) can be obtained from (49) as follows: 

 𝑇𝑇(𝑖,𝑗,𝑛) = 𝐶𝐷𝐹𝑁
−1 (1 −

α

2
) ⋅ √σ2(𝑖, 𝑗, 𝑛) ⋅ 𝑔(𝑚(𝑖, 𝑗, 𝑛 − 1)) (56) 

where CDFN
−1(p) is the inverse normal cumulative distribution function,  is the false reset 

probability, m(i,j,n-1)[1,M] is a counter which counts, at the position (i,j), the number of frames 

from a previous filter reset, and g(m) is the non-linear function defined in (55). It is worth noting that 

the multiplicative coefficient of the square root in (56) corresponds to the N coefficient of the original 

NVCA formulation, which here has been explicitly related to the probability of erroneous 

classification of pixels as belonging or not to the same distribution. Moreover The false reset 

probability was set to  = 2.7×10-3, which gives CDFN
−1(1−/2) = 3. 

According to (38), the noise variance 2(i,j,n) depends on the expected luminance (i,j,n), 

which is obviously unknown, and can be approximated as the previous filtered output pT(i,j,n-1): 

 𝜎2(𝑖, 𝑗, 𝑛) ≃ 𝐺(𝑝𝑇(𝑖, 𝑗, 𝑛 − 1)) (57) 

From (56)-(57), the threshold TT(i,j,n) becomes a function of pT(i,j,n-1) and m(i,j,n-1), and with the 

chosen  value can be expressed as follows: 

 𝑇𝑇(𝑖, 𝑗, 𝑛) = 3 ⋅ √𝐺(𝑝𝑇(𝑖, 𝑗, 𝑛 − 1)) ⋅ 𝑔(𝑚(𝑖, 𝑗, 𝑛 − 1)) (58) 
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The expression in (58) can be easily computed in hardware, as pT(i,j,n-1) is part of the filter state, 

m(i,j,n-1) is the count value of a 7-bits counter and the two non-linear functions G(·) and g(·) can be 

implemented via lookup tables. 

Figure 41 shows the plot of threshold TT(i,j,n) as a function of m(i,j,n-1). The proposed 

approach is able to adaptively reduce the threshold TT(i,j,n) when the time from the previous filter 

reset increases (m(i,j,n-1) increases), thus improving the ability of the algorithm to restore low-

contrast edges which remain static for a sufficient number of frames. Figure 39.(c) shows the filtering 

result obtained by using the T-filter algorithm with filter reset. The conditioned filtering operation 

avoids motion blur on moving objects. However, a significant noise appears on the background scene, 

which is due to the occurrence of false resets in the considered frame, as well as to the occurrence of 

false resets in previous frames that propagate to the current frame. 

This effect can be mitigated by reducing the false reset probability , which however would 

increase the threshold TT(i,j,n) and, consequently, the motion blur. Instead, a false reset propagation 

avoidance could be achieved by modifying the T-filter algorithm to avoid that a false reset from the 

previous frames propagates to the current frame. 

 

Figure 41. Plot of the thresholds TT(i,j,n) and TS(i,j,n) as a function of m(i,j,n-1). In the plot M = 128 and CDFN
-1(1-/2)=3 

are assumed 

Assuming that a pixel p(i,j,n) of the n-th frame is being processed, and that a filter reset occurred in 

frame n−1 in the same position (i,j) (that is m(i,j,n-1) = 1), to verify whether a false reset occurred at 

frame n−1, the current pixel value p(i,j,n) should be compared with pT(i,j,n−2) (i.e. the last output of 

the pixel distribution preceding the false reset event). A false reset is detected, with probability 1−2, 

if the current pixel p(i,j,n) turns out to belong to the same distribution of pT(i,j,n−2), i.e. if the 

following condition holds: 

 |𝑝(𝑖, 𝑗, 𝑛) − 𝑝𝑇(𝑖, 𝑗, 𝑛 − 2)| < 𝑇𝑇(𝑖, 𝑗, 𝑛) (59) 

Once a false reset is detected, a corrective action can be performed, which consists in restoring the 

filter state at the instant n – 1, as follows: 

 𝑝𝑇(𝑖, 𝑗, 𝑛) = 𝑏𝑜𝑝(𝑖, 𝑗, 𝑛) + ∑ 𝑏𝑚𝑠𝑖𝑚(𝑖, 𝑗, 𝑛 − 1)

𝑁

𝑚=1

− ∑ 𝑎𝑚𝑠𝑜𝑚(𝑖, 𝑗, 𝑛 − 1)

𝑁

𝑚=1

 (60) 
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This approach reduces the probability of propagation of the false reset events for more than one frame 

from  to 2, that is, from 2.710−3 to 7.310−6, for the particular choice of . 

If the condition (59) is not verified, the elaboration proceeds by using (41)-(42). The flowchart 

in Figure 42 summarizes the complete T-filter algorithm. Figure 39.(d) shows the filtering result 

obtained by using the complete T-filter algorithm of Figure 42. The algorithm showed very good 

capabilities to track moving objects while being able to reduce the noise due to false reset events. 

Moreover, it could be noted that some background noise due to residual false reset events still shows 

up within the frames (compare the background scene in Figure 39.(b) with Figure 39.(d)). This noise 

is the one generated within the current frame (which does not propagate from previous frames) and 

will be further attenuated by the spatial filter described in the following paragraph. 

 

Figure 42. Flowchart of the T-filter algorithm, including filter reset and false reset propagation avoidance 

As previously mentioned, a method to design the IIR T-filters coefficients should be devised. 

Several numerical methods exist to design IIR filters [145 – 148] . However, most techniques (e.g. 

[145 – 146]) aims to minimize error metrics in the frequency domain, while in the present application 

the error in the time domain is the actual target. An IIR filter design technique was conceived based 

on the Steiglitz – McBride iterative method [148], which attempts to minimize the squared error in 

the time domain between the actual impulse response of the IIR filter and the desired impulse response 

hd(n), that in this case is represented by a rectangular window of length M. More in-depth information 

on the adopted design procedure can be found in [149]. 

7.3 Spatial filters design 

As shown in Figure 38, the output frame of the T-filters stage is fed to an S-filter that performs a 

conditioned spatial average on the pixels pT(i’,j’,n) of the (2X+1)(2Y+1) neighbourhood of pT(i,j,n), 

by excluding all pixels that do not belong to the same object of the central pixel, that is all the 

pT(i’,j’,n) whose difference in luminance with pT(i,j,n) exceeds a determined spatial threshold 

TS(i,j,n), which can be derived as follows.  

By following the same approach used for T-filters, the generic pixel pT(i’,j’,n) is considered 

in the average computation only if it is statistically inferred that it belongs to the same object of pixel 

pT(i,j,n) by using the following criterion: 

 |𝑝𝑇(𝑖
′, 𝑗 ′, 𝑛) − 𝑝𝑇(𝑖, 𝑗, 𝑛)| ≤ 𝑇𝑆(𝑖, 𝑗, 𝑛) (61) 

This results in the following statistical hypothesis testing problem: 

 𝑯𝟎:   𝜇𝑇(𝑖
′, 𝑗 ′, 𝑛) = 𝜇𝑇(𝑖, 𝑗, 𝑛) (62) 
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Essentially, as in the case of temporal filtering, (61) assumes that if the difference in luminance 

between the central pixel pT(i,j,n) and its neighbours pixels pT(i’,j’,n) is lower than the threshold 

TS(i,j,n), then they belong to the same distribution and, therefore, are included in the filtering 

operation. The problem is solved by defining a threshold TS(i,j,i’,j’,n), for which it is possible to 

determine the error probability of the criterion described in (61): 

 𝑃[|𝑝𝑇(𝑖
′, 𝑗 ′, 𝑛) − 𝑝𝑇(𝑖, 𝑗, 𝑛)| > 𝑇𝑆(𝑖, 𝑗, 𝑖

′, 𝑗 ′, 𝑛)  |  𝑯𝟎] = 𝛼 (63) 

It is worth noting that, according to (63), the threshold TS is not only a function of (i,j) but also of 

(i’,j’), as, indeed, the variance of the random variable corresponding the pixels difference 

pT(i,j,n) − pT(i’,j’,n) depends on the variances of both pT(i,j,n) and pT(i’,j’,n), which, in turn, according 

to (53), depend on m(i,j,n) and m(i’,j’,n), respectively. However, with the help of a large number of 

simulations, it has been verified that it is possible to use the same threshold for all pixels pT(i’,j’,n) in 

the considered neighbourhood of pT(i,j,n), by assuming T
2(i’,j’,n) = T

2(i,j,n), which leads to  use a 

threshold TS(i,j,n) defined as: 

 𝑇𝑆(𝑖, 𝑗, 𝑛) ≜ 𝑇𝑆(𝑖, 𝑗, 𝑖
′, 𝑗 ′, 𝑛)|

𝜎𝑇
2(𝑖′,𝑗′,𝑛)=𝜎𝑇

2(𝑖,𝑗,𝑛)
 (64) 

which allows deriving the following expression for the threshold: 

 𝑇𝑆(𝑖, 𝑗, 𝑛) = 𝐶𝐷𝐹𝑁
−1 (1 −

𝛼

2
) ⋅ √2 ⋅ 𝜎𝑇

2(𝑖, 𝑗, 𝑛)) (65) 

Considering the expression of T
2(i,j,n) given in (53), and also (54) and (50), the threshold can be 

expressed as: 

 𝑇𝑆(𝑖, 𝑗, 𝑛) = 𝐶𝐷𝐹𝑁
−1 (1 −

𝛼

2
) ⋅ √2 ⋅ 𝜎2(𝑖, 𝑗, 𝑛) ⋅ (𝑔(𝑚(𝑖, 𝑗, 𝑛)) − 1) (66) 

In (66) the variance 2(i,j,n) of the noise depends on (i,j,n), which is obviously unknown and can be 

approximated as pT(i,j,n). The threshold TS(i,j,n) can be expressed as in (67) by setting the same error 

probability considered in the temporal filtering  = 2.7×10−3, which yields CDFN
−1(1−/2) = 3: 

 𝑇𝑆(𝑖, 𝑗, 𝑛) = 3√2 ⋅ 𝐺(𝑝𝑇(𝑖, 𝑗, 𝑛)) ⋅ (𝑔(𝑚(𝑖, 𝑗, 𝑛 − 1)) − 1) (67) 

Figure 41 shows the threshold TS(i,j,n) as a function of m(i,j,n) for M = 128. Note that, by 

increasing m(i,j,n), the noise of pixels pT(i’,j’,n) is reduced, which allows using a very low threshold 

TS(i,j,n), while maintaining a good confidence level for the statistical criterion in (61). As an example, 

Figure 41 shows that TS(i,j,n) reduces to 0.375(i,j,n) for m(i,j,n) = M = 128. The automatic 

adaptation of the thresholds to match the local estimated noise level, grants to the improved NVCA 

algorithm the ability to recognize and restore very low-contrast object contours. 

By following the averaging approach of the original NVCA algorithm, the pixels pT(i’,j’,n) 

classified as belonging to the same distribution of the current pixel pT(i,j,n) could be simply averaged 

together to produce the output pixel pS(i,j,n). However, it should be observed that the pixels pT(i’,j’,n) 

are not equally reliable in terms of the information they bring about the true expected luminance of 

the current pixel pT(i,j,n). Indeed, according to (53), pixels with larger associated m values, i.e. pixels 

which have been averaged for a larger number of frames, are characterized by lower noise and, 

therefore, provide more reliable information on the true (noiseless) luminance of the current pixel 

neighbourhood, which is used in practice to infer the current pixel luminance. Hence, when estimating 

the average neighbourhood luminance, to infer the true current pixel luminance, pixels with larger m 
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values should be given more weight. This was attained by implementing the weighted conditioned 

average of pixels pT(i’,j’,n) described in (68): 

 𝑝𝑆(𝑖, 𝑗, 𝑛) =
∑ ∑ 𝑝𝑇(𝑖

′, 𝑗 ′, 𝑛) ⋅ 𝑚𝑡ℎ(𝑖
′, 𝑗 ′, 𝑛)

𝑗+𝑌

𝑗′=𝑗−𝑌
𝑖+𝑋
𝑖′=𝑖−𝑋

∑ ∑ 𝑚𝑡ℎ(𝑖 ′, 𝑗 ′, 𝑛)
𝑗+𝑌

𝑗′=𝑗−𝑌
𝑖+𝑋
𝑖′=𝑖−𝑋

 (68) 

where the weights mth(i’,j’,n) given to each pixel are equal to m(i’,j’,n), for the pixels belonging to 

the distribution of the current pixel, and forced to zero for those violating (61): 

 𝑚𝑡ℎ(𝑖
′, 𝑗 ′, 𝑛) = {𝑚

(𝑖 ′, 𝑗 ′, 𝑛)   
0             

𝑖𝑓  |𝑝𝑇(𝑖
′, 𝑗 ′, 𝑛) − 𝑝𝑇(𝑖, 𝑗, 𝑛)| ≤ 𝑇𝑆(𝑖, 𝑗, 𝑛)

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (69) 

An additional improvement of the S-filter performance can be achieved by separately 

processing the isolated pixels. A pixel pT(i,j,n) is considered isolated if there are no pixels pT(i’,j’,n) 

in its 33 spatial neighbourhood that belong to the same object, that is: 

|𝑝𝑇(𝑖’, 𝑗’, 𝑛) − 𝑝𝑇(𝑖, 𝑗, 𝑛)| > 𝑇𝑆(𝑖, 𝑗, 𝑛) ,        ∀𝑖
′ ∈ [𝑖 − 1; 𝑖 + 1], ∀𝑗′ ∈ [𝑗 − 1; 𝑗 + 1]  (70) 

Isolated pixels may be realizations of the tails of noise distributions, but they can also be caused by 

either the residual false reset noise introduced by the T-filters or the speckle noise of the sensor. 

Therefore, a processing stage dedicated to isolated pixels was included in the S-filter to detect the 

isolated pixels by means of (70) and replace each of them with the unconditioned weighted average 

of the pixels in its 33 spatial neighbourhood, computed by excluding the isolated pixel itself from 

the average computation. In conclusion, the complete description of S-filter operation is given in (71): 

𝑝𝑆(𝑖, 𝑗, 𝑛) =

{
 
 
 
 
 

 
 
 
 
 ∑ ∑ 𝑝𝑇(𝑖

′, 𝑗 ′, 𝑛) ⋅ 𝑚𝑡ℎ(𝑖
′, 𝑗 ′, 𝑛)

𝑗+𝑌
𝑗′=𝑗−𝑌

𝑖+𝑋
𝑖′=𝑖−𝑋

∑ ∑ 𝑚𝑡ℎ(𝑖
′, 𝑗 ′, 𝑛)

𝑗+𝑌

𝑗′=𝑗−𝑌
𝑖+𝑋
𝑖′=𝑖−𝑋

    𝑖𝑓∃𝑝𝑇(𝑖
′, 𝑗 ′, 𝑛)| 𝑖′≠𝑖

𝑗′≠𝑗

:                             

                                                                                     |𝑝𝑇(𝑖
′, 𝑗 ′, 𝑛) − 𝑝𝑇(𝑖, 𝑗, 𝑛)| ≤ 𝑇𝑆(𝑖, 𝑗, 𝑛)

∑ ∑ 𝑝𝑇(𝑖
′, 𝑗′, 𝑛)

𝑗+1
𝑗′=𝑗−1

𝑗′≠𝑗      

𝑖+1
𝑖′=𝑖−1
𝑖′≠𝑖       

⋅ 𝑚(𝑖′, 𝑗′, 𝑛)

∑ ∑ 𝑚(𝑖′, 𝑗′, 𝑛)
𝑗+1
𝑗′=𝑗−1

𝑗′≠𝑗      

𝑖+1
𝑖′=𝑖−1
𝑖′≠𝑖       

      
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(𝑖𝑠𝑜𝑙𝑎𝑡𝑒𝑑 𝑝𝑖𝑥𝑒𝑙)
                                   

 (71) 

Figure 39.(e) shows the result provided by the complete cascaded temporal and spatial filtering 

scheme depicted in Figure 38,where it can be observed that the spatial conditioned average helped in 

further reducing both the residual noise on the moving object and the false reset noise of the T-filters, 

while ensuring a very accurate edge delineation.  

7.4 Performance comparison with state of the art 

The performances of the improved NVCA algorithm just described were compared against 

several state-of-the-art denoising methods, namely 4-PDE [113], BM3D [117], BM3Dc [46], UINTA 

[150], NLM [151], VBM3D [152], STGSM [153], as well as the original NVCA algorithm [40, 61]. 

Since some of these algorithms feature a number of parameters to be set, a parameter tuning procedure 

was carried out to make those algorithms achieve the finest image restoration. Two image quality 
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metrics were considered, namely PSNR and SSIM [134]. The first test was performed on a synthetic, 

noiseless, static sequence (assumed as reference) composed by 500 frames of 512512 pixels, which 

was then corrupted with a simulated Poisson noise (PSNRin = 20.1 dB, SSIMin = 0.234). The results 

are reported in Table 8, where it can be verified that VBM3D obtained the best performances by 

achieving a PSNRout of 45.3 dB (i.e. a noise reduction of 25.2 dB) and a SSIMout of 0.995. Indeed, 

the original NVCA algorithm [40] achieved a SSIMout of 0.968 and a PSNRout of 30.8 dB, which was 

about 14.5 dB lower than VBM3D. However, it should also be noted that, while NVCA has already 

attained real-time operation via hardware implementation, as demonstrated in [61], this could not be 

accomplished by VBM3D, due to its very high computational burden. The improved NVCA filter 

here proposed, surprisingly, outperformed VBM3D and also achieved comparable performances for 

small mask sizes (e.g. with X = Y = 1 and M = 32, i.e. an equivalent 3x3x32 spatio – temporal mask, 

it achieved  a PSNRout of 44.3 dB while VBM3D achieved a PSNRout of 45.3 dB). 

To assess the effectiveness of the improved NVCA algorithm in an experimental scenario, a 

real fluoroscopic sequence was used, which represented a static scene of an X-ray step phantom. The 

phantom was made by seven square aluminium sheets (side lengths from 6 cm to 30 cm), each 1 mm 

thick, superimposed one to each other in a ladder structure (see Figure 11 in Chapter 5). The scene 

was imaged with a GE OEC 9900 [132] fluoroscope and RAW video data have been processed. 

Figure 43.(a) shows an unfiltered frame of the scene (Figure 43.(b) is a 100300 pixels detail). 

Table 8. Denoising methods comparison. As input a test video was used, which was composed by 500 frames of a static 

image (assumed as reference) with resolution 512512 pixel, corrupted by a simulated Poisson noise (PSNRin = 20.1 dB   

SSIMin = 0.234) 

Denoising 

method 
4-PDE  BM3D  VBM3D  BM3Dc  NLM  UINTA  STGSM  

NVCA  

X=Y=3 K=5 

PSNRout 

(dB) 
28.4 39.9 45.3 40.1 37.7 28.8 40.2 30.8 

SSIMout 0.740 0.990 0.995 0.991 0.980 0.840 0.993 0.968 

Improved NVCA (various temporal and spatial mask sizes) 

Denoising 

method 

X=Y=1 

M=32 

X=Y=2 

M=32 

X=Y=3 

M=32 

X=Y=1 

M=64 

X=Y=2 

M=64 

X=Y=3 

M=64 

X=Y=1 

M=128 

X=Y=2 

M=128 

X=Y=3 

M=128 

PSNRout 

(dB) 
44.3 48.1 49.8 47.3 50.9 52.5 49.9 53.1 54.4 

SSIMout 0.989 0.996 0.998 0.995 0.998 0.999 0.997 0.999 0.999 
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(a) (b) (c) 

Figure 43. (a) Fluoroscopic image from the test video sequence; (b) 100x300 pixels zoom of (a); (c) result of the proposed 

filter (X=Y=1, M=32) 

Table 9. Comparison of denoising methods for a 100x300 pixels region taken from a real fluoroscopic sequence. Image 

characteristics: PSNRin = 24.5dB   SSIMin = 0.462. 

 

Denoising method PSNRout (dB) SSIMout 

4-PDE 31.7 0.855 

BM3D 36.4 0.963 

VBM3D 38.2 0.973 

BM3Dc 37.5 0.975 

NLM 36.2 0.980 

UINTA 28.9 0.879 

STGSM 36.9 0.971 

NVCA 

X=Y=3 K=5 
31.1 0.931 

Improved NVCA 

X=Y=1 M=32 
40.0 0.981 

The zoomed image processed by using the proposed spatio-temporal filter (X = Y = 1, M = 32) is 

shown in Figure 43.(c) and confirms that the proposed algorithm provides an effective, edge-aware 

denoising. Table 9 quantifies the performances achieved on the experimental video and compares 

again the proposed approach with the state of the art. Table 9 confirms that the proposed technique, 

also with M = 32, achieves performances comparable to VBM3D. 

Two publicly available video sequences [112], also corrupted with simulated Poisson noise, 

were considered to further test the proposed algorithm. The single frames obtained in the case of 

bridge close video with a PSNRin of 20 dB are depicted in Figure 44. Table 10 outlines the results for 

two input noise levels, which confirm that the improved NVCA provided similar performances as 

compared to the best performing approaches (VBM3D, STGSM). Indeed, the new algorithm achieved 

a PSNRout of only about 2 dB less than VBM3D and an higher SSIMout (0.915 vs. 0.896), but was 

slightly outperformed by STGSM, which achieved both an higher PSNRout (35.4 dB vs. 31.2 dB) 

and an higher SSIMout (0.945 vs. 0.915). Nonetheless, STGSM requires forward and inverse wavelet 

transforms, as well as motion estimation/compensation algorithms, which make it unsuitable for real-

time hardware implementation, similarly to VBM3D.  
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure 44. Single frame result images obtained filtering the “bridge close” publicly available video [112]. (a) Noiseless 

reference; (b) Noisy (PSNRin=20dB); (c) VBM3D; (d) BM3Dc; (e) NLM; (f) UINTA; (g) STGSM; (h) NVCA (X=Y=3, 

K=5); (i) improved NVCA (X=Y=1, M=32). 

 

Table 10. Comparison of denoising methods for two publicly available video sequences [112]to which Poisson noise has 

been applied. 

 

Denoising 

method 

PSNRin = 20dB PSNRin = 15dB 

Akiyo Bridge close Akiyo Bridge close 

PSNRout 

(dB) 
SSIMout 

PSNRout 

(dB) 
SSIMout 

PSNRout 

(dB) 
SSIMout 

PSNRout 

(dB) 
SSIMout 

VBM3D 33.5 0.896 29.0 0.831 28.9 0.814 24.9 0.740 

BM3Dc 32.3 0.905 28.5 0.751 24.6 0.493 25.7 0.615 

NLM 28.3 0.857 27.0 0.701 25.4 0.623 23.8 0.568 

UINTA 26.8 0.690 25.2 0.628 16.2 0.307 18.1 0.310 

STGSM 35.4 0.945 27.6 0.813 30.7 0.907 23.7 0.718 

NVCA 

X=Y=3 K=5 
28.9 0.785 25.8 0.676 22.7 0.354 22.3 0.519 

Improved 

NVCA 

X=Y=1 M=32 

31.2 0.915 28.5 0.858 30.1 0.876 25.1 0.802 
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7.5 Hardware Implementation  

The improved NVCA algorithm, as mentioned above, was implemented in hardware to 

achieve a real-time operation. In particular, 10-th order IIR T-filters (i.e. N = 10) performing an 

equivalent moving average on 128 samples (i.e. M = 128), as well as an S-filter with 33 spatial mask 

size (i.e. X = Y = 1), were implemented on an Altera StratixIV EP4SGX70HF35C2 FPGA, which is 

the smallest FPGA of the StratixIV family, i.e. the one with the lowest amount of hardware resources. 

The Altera Quartus II software was used to accomplish the synthesis and the place & route procedures 

for the circuit, while the Mentor Questa Sim software was employed for behavioural and gate level 

simulations. Figure 45 shows the top-level architecture of the designed circuit. The system receives 

the stream of input pixels Pixin(i,j,n) in a serial fashion. The pixels, represented on 8 bits (as indicated 

by the number of parallel lines reported for the arrow corresponding to the stream of input data), are 

ordered by columns (i index), then by rows (j index) and finally by frames (n index), and are 

synchronized by the clkfilter signal. A frame of size 10241024 (K = L = 1024) was assumed, so the 

state of 10241024 = 1,048,576 IIR filters was stored in the external memory of Figure 45, which in 

the present implementation was a 1 GB DDR2 800 SDRAM.  

 

Figure 45. Top-level architecture of the proposed filtering system 

The designed circuit uses only the 22% of the logic resources of the target FPGA, which 

means that plenty of resources is still available for additional circuitry. In particular, Table 11 details 

the logic resource usage for each block of the top-level architecture depicted in Figure 45, where it 

can be assessed that the percentage usage is well balanced for different resources, such as ALM, Flip 

Flops, embedded memory, and DSP elements, and never exceeds the 22% of the related total 

resources. As expected, the frame rate turned out to be limited by the filter block (T-filters + S-filter) 

to 49 fps for the considered frame size of 10241024 pixels. It is worth mentioning that most modern 

fluoroscopic devices usually provide 10241024 greyscale images with a frame rate up to 30 fps, for 

which the proposed circuit would easily achieve real-time operation. 

Table 12 outlines performance and resource usage of the improved NVCA algorithm as 

compared to the hardware implementation of the original NVCA algorithm described in [108], which 

was based on a spatio – temporal FIR filter. The comparison clearly shows that the improved NVCA 
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clearly outperforms the original NVCA by entailing a lower percentage usage for all different 

resources but the DSP elements. 

Table 11. Resource usage of the proposed circuit 

Proposed 

Circuit 

#ALM 

(%) 

#FF 

(%) 

#M9K 

(%) 

MLAB (kb)  

(%) 

#DSP 

(%) 

Frequency 

(MHz) 

Frame rate 

(fps)* 

Filter* 
3041  

(10%) 

2408      

(4%) 

0         

(0%) 

0               

(0%) 

14    

(4%) 
52.3 49 

Filter State 

Manager + 

Buffering 

Unit 

3057  

(11%) 

3404      

(6%) 

10       

(2%) 

63             

(7%) 

0      

(0%) 
200 138 

FIFO 
139     

(<1%) 

165     

(<1%) 

16       

(3%) 

0.064     

(<1%) 

0     

(0%) 

200 

and 52.3 
- 

Total 
6237  

(22%) 

5977    

(11%) 

26       

(6%) 

63             

(7%) 

14    

(4%) 
- 49 

*Frame size 1024 × 1024 

The introduction of additional multipliers in the S-filter, which were needed to implement the 

operation described by (71), determined the higher usage of DSP elements, whose percentage is in 

any case very low (4% only). It is worth highlighting that the improved NVCA hardware 

implementation entails a sensible reduction (about 75%) of the ALM and Flip flops usage  with 

respect to the circuit proposed in [108], mainly because of the reduced number of buffering elements 

within the FPGA. This is attained via the separation of the temporal and spatial filtering operations, 

which allows reducing the hardware complexity, and the use of the IIR scheme in place of the FIR 

scheme, which further optimizes the implementation of the T-filters. 

Table 12. Comparison with original NVCA hardware implementation presented in [108] 

Circuit  
#ALM     

(%) 

#FF   

(%) 

#M9K 

(%) 

MLAB (kb) 

(%) 

#DSP 

(%) 

Frequency 

(MHz) 

Frame rate 

(fps)* 

Original 

NVCA 

[108] 

 

23202  

(80%) 

22480 

(39%) 

116 

(25%) 

103 

(11%) 

2 

(<1%) 
51.4 49 

Improved 

NVCA 

[112] 

6237 

(22%) 

5977 

(11%) 

26  

(6%) 

63 

(7%) 

14  

(4%) 
52.3 49 

*Frame size 1024 × 1024 
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7.6 Progresses and limitations 

The improvements brought to the original NVCA algorithm, i.e. the separation of the filtering 

operation in the space and time domains, the IIR-based implementation of temporal filtering and the 

use of adaptive thresholds, yielded both enhanced denoising performances and reduced hardware 

usage. However, more extensive testing should still be carried out to assess the performances of the 

improved NVCA algorithm in different challenging conditions, such as low-contrast high-noise 

moving edges (i.e. low CNRin), with different speed and size. In addition, the new algorithm features 

five free parameters in its most general formulation, namely the equivalent temporal window length 

M and the IIR order N for the T-filters, the spatial mask size S for the S-filter, and the two inferential 

error probabilities αT (false reset probability) and αS, for the T-filters and S-filter, respectively. Hence, 

for the algorithm to be effectively used in both online and offline processing, some indications should 

be devised to find the optimal parameters settings for different situations and conditions, which 

requires further investigation, as well as the assessment of an edge-aware IQA index that provides 

reliable estimates of image quality, as showed in Chapter 6. Moreover, the possibility to tune these 

parameters in real time should also be addressed in the context of the hardware implementation, as 

their effects on the circuital design are very different. Indeed, changing the filter mask sizes in real 

time could be quite challenging, as it would require the stream of data to be modified between 

different blocks of the top-level architecture; adapting the equivalent time window length M for the 

T-filters would either require the computation of new IIR filters coefficients through the iterative 

procedure described in [112], which is clearly unsuitable for real-time operation, or the 

predetermination of a limited set of coefficients to be selected in real time, thus providing for a fixed 

number of settings for the parameter M; modulating the inferential error probabilities (αT, αS), instead, 

could be easily achieved by either adding a multiplier at the output of each LUT for threshold 

computation (designed by considering a unit multiplier in (58) and (67) in place of the CDF-1(1-α/2) 

term) or by implementing a 2D LUT that contains the threshold values corresponding to a number of 

fixed settings for the parameter α.  

Finally, an unsolved issue still remains, which has never been addressed and would prevent 

NVCA and any denoising strategy based on the a priori knowledge of noise statistics (e.g. all the 

AWGN denoising schemes combined with the generalised Anscombe transform) from achieving an 

effective real-time denoising of fluoroscopic sequences. Indeed, the noise parameters (introduced in 

Chapter 2) required by these strategies may experience substantial variations due to alterations of 

imaging conditions and, thus, they cannot be inferred a priori; hence, they are usually extracted 

offline directly from the noisy data to be processed, which clearly does not comply with real-time 

operation. Ideally, the noise parameters estimation should be performed after any change in the 

imaging conditions, but this would be hardly feasible, especially during image-guided interventional 

procedures, which undoubtedly represent the most appealing and widespread applications of low-

dose fluoroscopy. This awkward yet crucial issue is addressed in Chapter 8. 
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Chapter 8 

Noise characterization in fluoroscopic 

devices 

This chapter focuses on a very important issue that has never been addressed in literature and 

has  serious implications on the real-time performances of algorithms for quantum noise suppression: 

the estimation of noise parameters in time-varying imaging conditions. Indeed, the denoising 

performances of algorithms that take advantage of the a priori knowledge of noise properties, such 

as NVCA, depend not only on the selection of potential tuning parameters, but also on the validity of 

the noise model and, of course, on the accuracy of its parameters, commonly referred to as noise 

parameters [4, 63, 103, 111]. However, noise parameters may vary due to alterations of imaging 

conditions among distinct image acquisitions, and even within the same acquisition, as in the case of 

video sequences. As an example, in natural images and videos acquisition, fluctuations of 

environmental light conditions, as well as the adjustment of settings of the imaging device, may alter 

the statistical properties of the noise that affects the acquired images. In X-ray imaging, the light 

source is regulated by acting on two controls of the imaging device itself, that is the current and the 

peak-voltage of the X-ray tube, which, therefore, appear as the main parameters the noise properties 

depend on. These parameters can be adjusted during fluoroscopically-guided interventional 

procedures, in order to attain the desired details visibility for different tissues, while limiting the X-

ray dose delivered to the patient. Hence, these fluoroscopic sequences turn out to be corrupted by a 

quantum noise with time-varying statistics, which would invalidate any previously performed 

estimation of the noise parameters, thus limiting the effectiveness of denoising strategies based on 

noise statistics. A solution to this issue is investigated, which is based on the possibility of pre-

characterizing the noise parameters for a single fluoroscopic device at many different X-ray tube 

settings, in order to be able to switch among different predetermined parameters in real time, 

according to the particular choice of the X-ray tube settings. 

8.1 Innovative approach: a priori noise characterization 

Denoising approaches that make direct use of Poisson statistics, as well as those based on the 

combination of generalized Anscombe transform and AWGN denoising schemes, both require noise 

parameters to be accurately estimated from noisy images prior to their actual processing, in order to 

achieve a reasonable trade-off between noise reduction and edge preservation, especially in images 

that are heavily affected by noise (e.g. low-dose X-ray images). While it is not usually a major concern 

in offline implementations, it could be a serious limitation in real-time operation, which undoubtedly 

represents the most appealing application of fluoroscopic sequence denoising. Indeed, the variations 

of tube settings and detector gain that occur during a fluoroscopically-guided procedure modulate the 

statistics of quantum noise, and this can be drawn also from (11) and (12), as the number and energies 
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of the incident X-ray photons depend on the current and the peak-voltage of the X-ray tube, which, 

together with the peculiar energy spectrum of the X-ray tube and the overall energy-to-voltage 

conversion factor of the detector (i.e. the detector gain), influence the expected value of the signal at 

the detector and, accordingly, the noise variance. Hence, the estimation of noise parameters should 

be repeated ideally after any change in X-ray tube settings to ensure the highest denoising 

performances, but this is hardly feasible in practice. 

An a priori characterization of noise at different X-ray tube settings could obviate the need 

for inferring noise statics prior to each new image sequence acquisition, by providing predetermined 

noise parameters values to be selected in real time, according to the current tube setting. This would 

always provide accurate noise parameters estimates, thus enabling the effective real-time 

implementation of edge-aware denoising strategies that take advantage of noise statistics to improve 

the image quality in fluoroscopically-guided interventional procedure. However, the reliability of 

such an approach should be effectively assessed for real fluoroscopic images, because the actual 

dependency of quantum noise statistics on X-ray tube settings has never been investigated.  

The algorithm considered for noise estimation (described in Chapter 4) has already been used 

in previous publications about the NVCA denoising algorithm [40, 60], as well as in Chapters 4, 5 

and 7, but its performances have never been assessed thoroughly, and this could affect the reliability 

of the conclusions that could be drawn about the feasibility of the proposed approach. Therefore, the 

algorithm was first tested in silico on several synthetic fluoroscopic sequences, which were corrupted 

by different levels of simulated mixed Poisson – Gaussian noise. The ability of the algorithm to 

retrieve the noise parameters with reasonable accuracy was assessed by varying the number and 

distribution of grey levels within the designed sequences, as well as the number of frames exploited 

for noise estimation. Indeed, considering that the algorithm infers the statistics of noise by computing 

the sample mean and variance of each pixel along the temporal dimension, it follows that the number 

of frames available for noise characterization poses a limitation on the actual number of observations 

of the random processes that describe each pixel luminance. This results in a certain variability of the 

variance values corresponding to the same mean value, which affects the accuracy of noise parameters 

estimates. 

Afterward, the matching of noise parameters was assessed between real fluoroscopic 

sequences acquired by imaging two different X-ray phantoms via the same commercial fluoroscopic 

device with corresponding X-ray tube settings, as it would support the prospect of pre-calibrating the 

noise parameters at many different tube settings and using them directly in real-time denoising of 

new fluoroscopic sequences acquired in the same conditions. 

 

8.2 Validation on sequences with a variable number of grey levels 

The estimation of noise parameters depends on the number and distribution of the EVaR 

points (i.e. the expected value – variance couples)  on which the linear regression is performed, i.e. 

on the number and distribution of grey levels within the scene. For this reason, 14 synthetic sequences 

were designed to represent static scenes with different number and distribution of grey levels. Each 

sequence was composed by 100 frames of 128128 pixels represented on 8 bits. The grey levels were 

assigned to the 128 columns of the scenes in a periodic fashion, from the darkest to the lightest level 
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and then starting again from the darkest one. The first seven sequences, depicted in Figure 46, 

included 2 up to 128 grey levels in powers of 2, equally spaced in the interval [64;192], which is 128 

wide and centred at the half of the whole representation interval. The further seven sequences, shown 

in Figure 47, included 8 grey levels, equally spaced in the intervals described in (72), which are 

centred at the half of the representation interval and have a decreasing width from 48 down to 16. 

[64 +  8𝑘;  192 –  8𝑘], 𝑘 =  1,2, . .7 (72) 

 

    
(a) (b) (c) (d) 

   

 

(e) (f) (g)  

Figure 46. Static frames of the seven synthetic sequences with increasing number of grey levels (2 to 128 in power of 2) 

equally spaced in the range [64;192]. 

    
(a) (b) (c) (d) 

   

 

(e) (f) (g)  

Figure 47. Static frames of the seven synthetic sequences with 8 grey levels equally spaced in narrowing ranges. 
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Each of the fourteen sequences with variable number of grey levels was corrupted with six 

different levels of simulated mixed Poisson-Gaussian noise, by using all the combinations of values 

considered for noise parameters (reported in Table 13). Noise estimation was performed in each of 

the resulting 84 noisy sequences by considering 4 different number of available frames, i.e. 10, 25, 

50, 100. Therefore, a total of 336 noise estimates were actually retrieved (i.e. 56 for each noise level). 

Table 13. Noise parameters of the noise levels used to corrupt the synthetic scenes 

Noise level a b 

Level 1 0.5 0 

Level 2 1 0 

Level 3 2 0 

Level 4 0.5 144 

Level 5 1 144 

Level 6 2 144 

In Table 14 the noise parameters estimates extracted from all the 14 synthetic sequences with 

variable number of grey levels are reported. For each sequence, the parameters were subdivided by 

the corresponding noise level and the number of frames used for noise estimation. Table 15 outlines 

the relative estimation errors, except for the errors related to null nominal values of parameter b (i.e. 

noise levels 1 to 3), which were reported as absolute errors and highlighted in blue. A substantial 

difference was observed in the estimation errors obtained in sequences 1-7 and sequences 8-14, which 

turned out to be on average consistently higher than those of the former. Mean and SD of the 

estimation errors are reported in Table 16. 

Table 14. Noise parameters estimates extracted from the synthetic sequences with variable number 

of grey levels. 

SEQUENCE 
NOISE  

LEVEL 

NOISE PARAMETERS ESTIMATES 

F = 100  F = 50 F = 25 F = 10 

a b a b a b a b 

# 1 Level 1 0.499 0.219 0.499 0.164 0.496 0.486 0.492 0.541 

 Level 2 1.000 0.177 0.997 0.509 0.999 0.301 0.982 1.420 

 Level 3 2.002 0.000 1.997 0.423 1.990 0.890 1.979 1.611 

 Level 4 0.501 144.123 0.498 144.267 0.497 144.292 0.485 145.350 

 Level 5 0.998 144.704 0.999 144.677 1.007 144.210 0.969 148.179 

 Level 6 1.982 145.831 1.980 145.990 1.972 146.625 1.991 142.812 

# 2 Level 1 0.499 0.000 0.497 0.263 0.497 0.319 0.502 0.000 

 Level 2 0.996 0.644 1.000 0.296 1.004 0.017 1.005 0.000 

 Level 3 1.991 1.026 1.986 1.454 1.977 1.961 1.948 5.245 

 Level 4 0.499 144.388 0.492 145.639 0.483 146.561 0.484 146.777 

 Level 5 1.007 143.364 1.007 142.704 1.012 142.916 0.996 145.420 

 Level 6 1.972 146.909 1.966 147.741 1.956 148.271 1.951 150.376 

# 3 Level 1 0.499 0.000 0.499 0.000 0.498 0.076 0.495 0.475 
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 Level 2 1.000 0.032 0.997 0.448 0.999 0.000 1.005 0.000 

 Level 3 2.003 0.000 2.003 0.000 1.982 2.372 1.937 7.186 

 Level 4 0.494 144.731 0.492 145.069 0.491 144.987 0.478 147.119 

 Level 5 0.993 144.216 0.990 144.539 0.989 145.180 1.014 142.565 

 Level 6 1.995 144.514 1.992 144.470 1.965 147.347 1.900 154.883 

# 4 Level 1 0.500 0.000 0.501 0.000 0.499 0.183 0.498 0.290 

 Level 2 0.997 0.426 0.994 0.685 0.993 0.731 0.980 2.008 

 Level 3 2.003 0.000 2.001 0.000 1.996 0.427 1.967 4.308 

 Level 4 0.503 143.416 0.504 143.169 0.507 142.878 0.509 142.205 

 Level 5 0.999 144.480 0.985 145.829 0.998 144.244 0.991 144.283 

 Level 6 2.007 143.594 1.992 145.409 1.993 145.278 1.956 149.775 

# 5 Level 1 0.499 0.225 0.500 0.163 0.498 0.371 0.499 0.546 

 Level 2 0.998 0.319 1.000 0.000 0.992 0.666 0.983 1.701 

 Level 3 2.002 0.000 2.001 0.000 1.999 0.000 1.988 0.799 

 Level 4 0.498 144.208 0.496 144.494 0.485 145.650 0.489 145.185 

 Level 5 0.991 145.120 0.995 144.875 0.991 144.985 0.992 143.967 

 Level 6 1.996 144.303 2.000 144.076 1.965 148.333 1.946 150.476 

# 6 Level 1 0.499 0.000 0.500 0.000 0.502 0.000 0.502 0.000 

 Level 2 0.999 0.245 0.998 0.114 0.989 1.001 0.998 0.493 

 Level 3 1.985 2.175 1.978 3.152 1.979 3.007 1.954 5.703 

 Level 4 0.500 144.032 0.493 144.862 0.504 144.187 0.475 147.657 

 Level 5 1.000 144.427 1.007 143.392 1.001 143.756 1.003 143.969 

 Level 6 1.967 148.324 1.962 148.507 1.948 150.805 1.939 151.995 

# 7 Level 1 0.497 0.297 0.497 0.232 0.502 0.000 0.502 0.000 

 Level 2 1.001 0.000 1.000 0.000 0.998 0.000 0.989 0.932 

 Level 3 2.005 0.000 2.005 0.000 1.991 1.350 1.998 0.000 

 Level 4 0.490 145.374 0.496 144.925 0.503 144.809 0.518 143.333 

 Level 5 1.004 143.627 1.000 144.352 1.000 144.691 0.989 144.986 

 Level 6 1.994 145.828 1.992 145.552 1.966 148.917 1.981 145.708 

# 8 Level 1 0.499 0.092 0.496 0.427 0.493 0.958 0.488 1.766 

 Level 2 0.997 0.525 1.004 0.000 1.003 0.000 1.006 0.341 

 Level 3 1.984 1.572 1.980 2.232 1.974 2.874 1.956 5.122 

 Level 4 0.495 144.268 0.487 145.075 0.477 147.021 0.471 148.122 

 Level 5 0.988 145.929 1.004 144.260 0.997 144.697 0.998 145.961 

 Level 6 1.959 149.049 1.957 149.624 1.959 149.799 1.914 154.707 

# 9 Level 1 0.500 0.000 0.499 0.000 0.499 0.000 0.499 0.000 

 Level 2 0.995 0.806 0.987 1.750 0.979 2.564 0.991 1.684 

 Level 3 1.982 2.547 1.975 3.152 1.987 1.219 1.963 4.332 

 Level 4 0.505 143.527 0.506 142.999 0.511 142.740 0.518 142.698 

 Level 5 1.002 143.975 0.991 145.257 0.967 147.542 0.970 147.524 

 Level 6 1.985 145.971 1.960 149.439 1.979 146.578 1.982 146.331 

# 10 Level 1 0.499 0.006 0.496 0.408 0.496 0.380 0.494 0.753 

 Level 2 0.996 0.263 0.996 0.243 0.991 0.840 0.976 2.465 

 Level 3 1.995 0.862 1.987 1.832 1.961 5.898 1.902 13.168 

 Level 4 0.488 145.676 0.500 144.077 0.519 142.098 0.518 141.881 

 Level 5 0.993 145.449 0.996 144.993 0.966 148.708 0.936 152.320 

 Level 6 1.997 144.294 1.981 145.680 1.957 149.669 1.818 167.430 
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# 11 Level 1 0.500 0.000 0.499 0.191 0.493 0.983 0.473 3.255 

 Level 2 0.995 0.663 1.000 0.000 0.994 0.735 0.980 2.463 

 Level 3 1.988 1.764 1.966 4.574 1.966 4.751 1.901 12.557 

 Level 4 0.503 144.160 0.501 144.395 0.499 144.464 0.495 145.074 

 Level 5 1.000 143.979 1.010 142.701 1.004 143.532 0.943 153.708 

 Level 6 1.968 148.911 1.917 155.485 1.890 159.302 1.832 165.283 

# 12 Level 1 0.500 0.000 0.499 0.088 0.498 0.369 0.501 0.000 

 Level 2 1.001 0.000 1.002 0.000 1.005 0.000 0.957 5.675 

 Level 3 1.979 3.193 1.956 6.100 1.944 8.350 1.805 24.896 

 Level 4 0.489 145.414 0.474 146.719 0.465 147.809 0.455 149.046 

 Level 5 0.974 147.411 1.002 143.844 0.988 145.695 0.875 159.413 

 Level 6 1.928 153.771 1.903 157.066 1.873 161.648 1.642 190.281 

# 13 Level 1 0.494 0.792 0.487 1.628 0.475 3.250 0.479 2.813 

 Level 2 0.962 4.859 0.979 2.943 0.976 3.194 0.990 1.739 

 Level 3 1.928 9.451 1.890 13.995 1.801 25.274 1.612 48.691 

 Level 4 0.474 147.159 0.439 151.314 0.466 148.189 0.433 152.869 

 Level 5 1.005 143.476 0.992 145.375 0.977 147.319 0.878 160.387 

 Level 6 1.952 150.488 1.914 154.792 1.834 165.616 1.505 205.340 

# 14 Level 1 0.502 0.000 0.501 0.000 0.496 0.662 0.476 3.158 

 Level 2 0.901 12.725 0.886 14.400 0.832 21.182 0.635 46.330 

 Level 3 1.779 28.759 1.754 31.707 1.425 74.866 0.984 131.379 

 Level 4 0.491 145.234 0.509 142.511 0.460 148.487 0.267 173.398 

 Level 5 0.824 166.638 0.845 163.836 0.802 169.539 0.483 210.223 

 Level 6 1.652 188.843 1.540 202.970 1.183 250.552 0.622 321.903 

 

Table 15. Errors on noise parameters estimates extracted from the synthetic sequences with 

variable number of grey levels. All values are expressed as relative errors, except for those 

reported in blue, which are expressed as absolute errors, since they refer to a null parameter 

(b = 0). 

SEQUENCE 
NOISE 

LEVEL 

ERRORS ON NOISE PARAMETERS ESTIMATES 

F = 100 F = 50 F = 25 F = 10 

a (%) b (%) a (%) b (%) a (%) b (%) a (%) b 

# 1 Level 1 -0.162 0.219 -0.136 0.164 -0.768 0.486 -1.55 0.541 

 Level 2 0.0147 0.177 -0.291 0.509 -0.0539 0.301 -1.84 1.420 

 Level 3 0.0808 0 -0.170 0.423 -0.508 0.890 -1.04 1.61 

 Level 4 0.280 0.0856 -0.352 0.185 -0.545 0.203 -2.91 0.937 

 Level 5 -0.203 0.489 -0.0668 0.470 0.652 0.146 -3.12 2.90 

 Level 6 -0.902 1.27 -1.01 1.38 -1.42 1.82 -0.466 -0.825 

# 2 Level 1 -0.120 0 -0.531 0.263 -0.615 0.319 0.452 0 

 Level 2 -0.371 0.644 -0.0341 0.296 0.412 0.0166 0.513 0 

 Level 3 -0.462 1.03 -0.699 1.45 -1.16 1.96 -2.62 5.25 

 Level 4 -0.103 0.269 -1.68 1.14 -3.33 1.78 -3.16 1.93 

 Level 5 0.692 -0.441 0.652 -0.900 1.24 -0.753 -0.416 0.986 

 Level 6 -1.41 2.02 -1.71 2.60 -2.22 2.97 -2.44 4.43 

# 3 Level 1 -0.192 0 -0.258 0 -0.457 0.0757 -0.998 0.475 
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 Level 2 0.0387 0.0323 -0.317 0.448 -0.140 0 0.515 0 

 Level 3 0.143 0 0.147 0 -0.897 2.37 -3.15 7.19 

 Level 4 -1.19 0.507 -1.69 0.742 -1.86 0.685 -4.30 2.17 

 Level 5 -0.656 0.150 -0.987 0.374 -1.15 0.819 1.43 -0.997 

 Level 6 -0.251 0.357 -0.413 0.326 -1.73 2.32 -5.01 7.56 

# 4 Level 1 0.0441 0 0.161 0 -0.258 0.183 -0.303 0.290 

 Level 2 -0.280 0.426 -0.634 0.685 -0.734 0.731 -2.04 2.01 

 Level 3 0.169 0 0.0460 0 -0.195 0.427 -1.64 4.31 

 Level 4 0.665 -0.406 0.806 -0.577 1.39 -0.779 1.80 -1.25 

 Level 5 -0.0787 0.333 -1.49 1.27 -0.187 0.170 -0.862 0.197 

 Level 6 0.346 -0.282 -0.413 0.978 -0.335 0.888 -2.19 4.01 

# 5 Level 1 -0.101 0.225 -0.0615 0.163 -0.336 0.371 -0.187 0.546 

 Level 2 -0.213 0.319 -0.0221 0 -0.783 0.666 -1.73 1.70 

 Level 3 0.110 0 0.0465 0 -0.0326 0 -0.614 0.799 

 Level 4 -0.444 0.145 -0.762 0.343 -2.96 1.15 -2.30 0.823 

 Level 5 -0.928 0.778 -0.464 0.608 -0.868 0.684 -0.839 -0.0229 

 Level 6 -0.206 0.210 0.0003 0.0526 -1.74 3.01 -2.68 4.50 

# 6 Level 1 -0.159 0 0.0337 0 0.417 0 0.396 0 

 Level 2 -0.132 0.245 -0.187 0.114 -1.09 1.00 -0.182 0.493 

 Level 3 -0.751 2.18 -1.11 3.15 -1.03 3.01 -2.30 5.70 

 Level 4 -0.0030 0.0225 -1.43 0.599 0.896 0.130 -5.01 2.54 

 Level 5 -0.0178 0.297 0.671 -0.422 0.0955 -0.169 0.330 -0.0215 

 Level 6 -1.66 3.00 -1.88 3.13 -2.58 4.73 -3.05 5.55 

# 7 Level 1 -0.506 0.297 -0.501 0.232 0.334 0 0.402 0 

 Level 2 0.106 0 0.043 0 -0.225 0 -1.11 0.932 

 Level 3 0.258 0 0.260 0 -0.453 1.35 -0.11 0 

 Level 4 -2.04 0.954 -0.859 0.642 0.639 0.562 3.53 -0.463 

 Level 5 0.393 -0.259 -0.0288 0.245 0.0427 0.480 -1.07 0.685 

 Level 6 -0.315 1.27 -0.392 1.08 -1.68 3.42 -0.931 1.19 

# 8 Level 1 -0.199 0.0919 -0.766 0.427 -1.40 0.958 -2.45 1.77 

 Level 2 -0.329 0.525 0.362 0 0.259 0 0.588 0.341 

 Level 3 -0.783 1.57 -1.02 2.23 -1.31 2.87 -2.22 5.12 

 Level 4 -1.02 0.186 -2.54 0.746 -4.52 2.10 -5.85 2.86 

 Level 5 -1.15 1.34 0.394 0.181 -0.304 0.484 -0.236 1.36 

 Level 6 -2.04 3.51 -2.15 3.91 -2.07 4.03 -4.28 7.44 

# 9 Level 1 0.0822 0 -0.141 0 -0.233 0 -0.158 0 

 Level 2 -0.496 0.807 -1.32 1.750 -2.09 2.56 -0.889 1.68 

 Level 3 -0.888 2.55 -1.26 3.15 -0.642 1.22 -1.87 4.33 

 Level 4 1.07 -0.329 1.28 -0.695 2.17 -0.875 3.55 -0.904 

 Level 5 0.156 -0.0175 -0.934 0.873 -3.30 2.46 -3.05 2.45 

 Level 6 -0.735 1.37 -2.01 3.78 -1.03 1.79 -0.899 1.62 

# 10 Level 1 -0.199 0.00626 -0.828 0.408 -0.712 0.380 -1.22 0.753 

 Level 2 -0.355 0.263 -0.401 0.243 -0.926 0.840 -2.41 2.47 

 Level 3 -0.265 0.862 -0.626 1.83 -1.97 5.90 -4.90 13.2 

 Level 4 -2.32 1.16 0.0743 0.0532 3.72 -1.32 3.58 -1.47 

 Level 5 -0.736 1.01 -0.375 0.689 -3.36 3.27 -6.38 5.78 

 Level 6 -0.156 0.204 -0.962 1.17 -2.15 3.94 -9.10 16.3 
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# 11 Level 1 0.0627 0 -0.172 0.191 -1.49 0.983 -5.33 3.26 

 Level 2 -0.513 0.663 -0.0014 0 -0.564 0.735 -1.98 2.46 

 Level 3 -0.598 1.76 -1.68 4.57 -1.69 4.75 -4.94 12.6 

 Level 4 0.672 0.111 0.223 0.275 -0.292 0.323 -0.937 0.746 

 Level 5 -0.0336 -0.0143 0.985 -0.902 0.435 -0.325 -5.69 6.74 

 Level 6 -1.61 3.41 -4.15 7.98 -5.51 10.6 -8.42 14.8 

# 12 Level 1 -0.0121 0 -0.176 0.0885 -0.475 0.369 0.222 0 

 Level 2 0.127 0 0.195 0 0.459 0 -4.29 5.68 

 Level 3 -1.07 3.19 -2.20 6.10 -2.80 8.35 -9.76 24.9 

 Level 4 -2.28 0.982 -5.29 1.89 -6.92 2.65 -8.94 3.50 

 Level 5 -2.59 2.37 0.237 -0.109 -1.18 1.18 -12.5 10.7 

 Level 6 -3.58 6.79 -4.85 9.07 -6.35 12.3 -17.9 32.1 

# 13 Level 1 -1.22 0.792 -2.52 1.63 -5.08 3.25 -4.14 2.81 

 Level 2 -3.82 4.86 -2.12 2.94 -2.43 3.19 -1.03 1.74 

 Level 3 -3.60 9.45 -5.52 14.0 -9.94 25.3 -19.4 48.7 

 Level 4 -5.14 2.19 -12.3 5.08 -6.85 2.91 -13.3 6.16 

 Level 5 0.478 -0.364 -0.789 0.955 -2.31 2.31 -12.2 11.4 

 Level 6 -2.42 4.51 -4.31 7.49 -8.30 15.0 -24.8 42.6 

# 14 Level 1 0.362 0 0.229 0 -0.830 0.662 -4.70 3.16 

 Level 2 -9.89 12.7 -11.4 14.4 -16.8 21.2 -36.5 46.3 

 Level 3 -11.1 28.8 -12.3 31.7 -28.7 74.9 -50.8 131 

 Level 4 -1.76 0.857 1.76 -1.03 -8.00 3.12 -46.6 20.4 

 Level 5 -17.6 15.7 -15.5 13.8 -19.8 17.7 -51.7 456 

 Level 6 -17.4 31.1 -23.0 41.0 -40.9 74.0 -68.9 124 

 

Table 16. Mean and standard deviation of the noise parameters estimation errors. The statistics are computed for 

sequences 1-7 and   8-14 separately, and for each considered number of available frames (F). 

PARAMETER 

ERROR 
SEQUENCES 

ERRORS ON NOISE PARAMETERS ESTIMATES 

F = 100 F = 50 F = 25 F = 10 

Mean SD Mean SD Mean SD Mean SD 

𝑎𝑒𝑟𝑟𝑝  
1-7 -0.0025 0.0056 -0.0042 0.0065 -0.0062 0.0105 -0.0126 0.0176 

8-14 -0.0226 0.0422 -0.0280 0.0503 -0.0467 0.0825 -0.1078 0.1643 

𝑏𝑒𝑟𝑟𝑝  
1-7 0.0051 0.0083 0.0068 0.0094 0.0115 0.0144 0.0175 0.0235 

8-14 0.0362 0.0724 0.0458 0.0920 0.0751 0.1610 0.1686 0.2793 

𝑏𝑒𝑟𝑟𝑎𝑏𝑠  
1-7 0.2755 0.5082 0.3763 0.7232 0.6742 0.8471 1.5837 2.1418 

8-14 3.2800 6.7123 4.0795 7.5838 7.5403 16.832 14.885 30.1688 

Considering that the actual concern of denoising are not the mere errors on noise parameters, 

but rather the reconstruction errors on the processed images, a qualitative and quantitative 

performance assessment of the noise estimation algorithm was carried out by comparing the denoising 

results achieved via the NVCA algorithm with the actual and the estimated noise parameters. To this 

aim, two synthetic noiseless test sequences were designed, which represented a dark rectangle moving 

from the left to the right at a speed of 1 pixel per frame over a brighter, uniform background. The 
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sequences were corrupted with two different levels of mixed Poisson-Gaussian noise, corresponding 

to level 3 and level 6 reported in Table 13. The contrast in the two noiseless sequences was set to 

obtain a CNR of 4 for both sequences. In practice, the same grey level was assigned to the moving 

rectangle in both sequences, while two different grey levels were assigned to their backgrounds. 

Figure 48 shows the final frame of the two noiseless sequences, their noisy versions and the results 

obtained via NVCA filtering by using the actual noise parameters. 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 48. Synthetic sequences with a moving rectangle, adopted to test the effect of the noise estimation errors on NVCA 

filtering performances. In the first row, panels (a)-(b), the noiseless sequences are reported. The contrast was set in order 

to obtain a CNR = 4 in both related noisy sequences, which are depicted in the second row, panels (c)-(d). In the last 

row, panels (e)-(f), the sequences denoised via the NVCA algorithm by using the actual noise parameters are shown. 

 Afterward, the noisy synthetic test sequences were filtered via the NVCA algorithm, by using 

the most inaccurate noise parameters estimates, so as to identify the worst cases from the denoising 

point of view. Then, the worst results obtained for estimates extracted by using 25 and 10 frames, 

from sequences 1-7 and 8-14, were identified according to measures of dissimilarity between the 

sequences filtered with inaccurate noise parameters, referred to as the sub-optimal filtered sequences, 

and the sequence filtered with the actual noise parameters, referred to as the optimal filtered sequence. 

Two well-established image quality assessment indices were adopted, namely the Mean Squared 

Error (MSE), which is a global measure of dissimilarity between images, and the Full Width at Half 

Maximum (FWHM) of the edge spread function, which is a no-reference local measure of edge 

sharpness. As a first dissimilarity measure to quantify the global deviation from the optimal denoising 

result, the MSE between the sub-optimal and the optimal filtered sequences was computed. However, 

MSE is known to have high sensitivity to the overall image noise, but poor sensitivity to edge blurring 
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effects, especially in noisy conditions like those encountered in low-dose fluoroscopy, as already 

shown in Chapter 5. Since the edge-awareness is a major concern of medical image denoising, the 

local loss of edge sharpness due to the noise parameters estimation errors was considered as a further 

measure of dissimilarity, and was evaluated by estimating the Δ FWHM, that is the difference in 

FWHM between the sub-optimal and the optimal filtered sequences. The quantitative results of this 

analysis are summarized in Table 17, where it could be noticed that the worst results were always 

obtained in the sequences 8-14. 

Table 17. Results of the denoising performance analysis. The dissimilarity scores between the sub-optimal and 

optimal filtered sequences are reported, along with the corresponding noise parameters estimates, the number 

of frames (F) used in the estimation, and the actual noise parameters values. 

SEQUENCES a b Frames 𝑎𝑒𝑠𝑡 𝑏𝑒𝑠𝑡 𝑀𝑆𝐸(𝑆𝑓𝑖𝑙𝑡, 𝑆𝑓𝑖𝑙𝑡𝑒𝑟𝑟) 𝛥 𝐹𝑊𝐻𝑀 

1 - 7 
2 0 25 1.979 3.007 0.090284 0.001851 

2 0 10 1.937 7.186 0.199485 0.002836 

8 - 14 
2 0 25 1.425 74.866 2.276551 0.041098 

2 0 10 0.984 131.379 5.324343 0.256335 

Figure 49 depicts the sub-optimal filtered sequences (end frame of each sequence), as well as 

the corresponding image differences with the optimal filtered sequence, where it can be observed that 

the pixels with the highest differences in luminance are almost all distributed in the edges 

neighbourhood, which is consistent with the measured increase in Δ FWHM. However, it can be 

assessed by visual inspection that the sub-optimal results shown in Figure 49.(a-c) and the optimal 

result shown in Figure 48.(e) are very similar. 

 The noise parameters estimation algorithm achieved very low estimation errors in the 

first seven sequences, while performing substantially worse on the last seven sequences. Indeed, it is 

worth noting that, even with only 10 frames (i.e. 10 distinct realizations of the stochastic processes 

representing the random distribution of the grey level of each pixel along the temporal dimension),the 

average percentage error in the first 7 sequences was lower than 2 %, whereas the average error in 

the last 7 sequences turned out to exceed these value, even for estimations performed by using the 

maximum number of available frames. Furthermore, it could be assessed by visual inspection that, 

even the worst errors achieved in the first 7 sequences, produced sub-optimal filtered sequences which 

were very similar to the optimal one, as opposed to the sub-optimal sequences produced by the 

estimates from the last 7 sequences, which clearly showed edge blurring (confirmed by the increases 

in Δ FWHM). These results clarify that ensuring a reasonable contrast in the test sequences to be used 

for noise characterization is mandatory to achieve reliable estimates. Moreover, the very small 

number of frames required by the noise estimation algorithm to achieve a reasonable accuracy allows 

for its application also to very short static scenes.  

 



93 

 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

(g) (h) 

Figure 49. Synthetic sequences with a moving rectangle filtered via the NVCA algorithm by considering the noise 

parameters estimates reported in Table 17. The images in each row were obtained by using the noise parameters in the 

corresponding row of Table 17. On the first column the end frames of the filtered sequences were depicted, while the 

differences of the same images with the end frame of the sequence filtered with the actual noise parameters were reported 

on the second column. 

8.3 Validation on sequences from an X-ray simulator 

The fourteen synthetic sequences described in the previous paragraph are characterized by 

scenes that are very uncommon in medical applications, therefore four additional sequences were 

produced via an X-ray simulator [155 – 157] and depicted in Figure 50. This allowed testing the noise 

estimation algorithm on scenes with content of clinical relevance, while still having a ground truth to 

derive quantitative measures for performance assessment. The five sequences devised via the X-ray 

simulator were corrupted with the same noise levels reported in Table 13. An example of noiseless 

and noisy versions of a sequence is depicted in Figure 51). Noise estimation was performed by using 

25 frames, which turned out to be the minimum number of frames to retrieve noise parameters with 
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a reasonable accuracy, according to the results obtained in the validation on the 14 sequences with a 

variable number of grey levels. 

  

(a) (b) 

  

(c) (d) 

Figure 50. Static frames of the four synthetic sequences devised via the X-ray simulator. 
The results of the noise parameters extraction from the four synthetic sequences designed via 

the X-ray simulator were reported in Table 18. The mean and SD of relative errors, outlined in Table 

19 turned out to be almost comparable with those obtained in the 14 synthetic sequences, thus proving 

that the presence of clinically relevant structures does not alter the estimates accuracy, which, more 

generally, is not influenced by the particular informational content of the scene. In light of the results 

presented so far, the algorithm under test proved reliable in extracting noise parameters estimates 

with high accuracy, even from very short static scenes of only 10 frames, and can be used to assess 

the feasibility of the a priori noise characterization approach. 

8.4 A priori noise characterization on real fluoroscopic sequences 

Real fluoroscopic sequences were acquired by imaging two commercial X-ray phantoms, 

namely TOR-18FG [158] and TOR-CDR [159] (Leeds Test Objects, 7 Becklands Cl, Roecliffe, York 

YO51 9NR, UK), via a commercial fluoroscopic device (INTERMEDICAL S.r.l. IMD Group, Via 

E. Fermi 26, 24050 Grassobbio (BG), Italy). The fluoroscope acquired frames of 15361536 pixels, 

represented on 16 bits, with a pulsed protocol at 15 fps. Each phantom was placed over an anti-scatter 

grid, just above the flat panel detector, between two blocks of five plexiglass square sheets of 25 cm 
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x 25 cm x 1 cm (see Figure 52), which were used to produce an equivalent Compton scattering noise 

that would occur when imaging the human body. Five sequences were acquired for each phantom by 

using the X-ray tube settings reported in Table 20. The noise estimation algorithm was applied to 

extract the noise parameters estimates from the ten acquired fluoroscopic sequences. Then, a 

comparison was carried out between parameters extracted from each couple of sequences acquired 

with the same X-ray tube settings. 

 

(a) 

 

(b) 

Figure 51. Comparison of noiseless and noisy versions (noise level 6) of the same static frame of sequence #2 from X-ray 

simulator, depicted in Figure 50.(b). 
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Table 18. Noise parameters estimates and related errors extracted from the synthetic sequences designed 

via the X-ray simulator. All errors are expressed as relative errors, except for those reported in blue, which 

are expressed as absolute errors, since they are referred to a null parameter (b = 0). 

SEQUENCE 
NOISE 

LEVEL 

NOISE PARAMETERS 

ESTIMATES 

ERRORS ON NOISE PARAMETERS 

ESTIMATES 

F = 25 

a b a b 

# 1 Level 1 0.500 0.060 -0.000727048 0.059883648 

 Level 2 0.997 0.471 -0.003291033 0.470661055 

 Level 3 1.975 3.426 -0.012272794 3.425821807 

 Level 4 0.498 144.398 -0.004674595 0.002767017 

 Level 5 0.986 145.765 -0.013538244 0.012257184 

 Level 6 1.925 153.412 -0.037355982 0.065361524 

# 2 Level 1 0.495 0.475 -0.010395139 0.475398655 

 Level 2 0.992 0.895 -0.007838176 0.894760806 

 Level 3 1.983 1.892 -0.008364067 1.892067765 

 Level 4 0.486 145.463 -0.027658002 0.010161948 

 Level 5 0.978 146.466 -0.022149186 0.017126109 

 Level 6 1.958 148.589 -0.021242895 0.031867285 

# 3 Level 1 0.497 0.321 -0.00529215 0.320866941 

 Level 2 1.000 0.145 -0.000132407 0.145309017 

 Level 3 1.964 4.633 -0.017766988 4.632563092 

 Level 4 0.496 144.592 -0.008127859 0.004107655 

 Level 5 0.984 146.179 -0.015820705 0.015130572 

 Level 6 1.894 156.968 -0.053154461 0.09005548 

# 4 Level 1 0.497 0.217 -0.005063311 0.216921236 

 Level 2 0.996 0.480 -0.003516649 0.479907074 

 Level 3 1.990 1.128 -0.004842556 1.127681369 

 Level 4 0.492 144.824 -0.016299257 0.005725547 

 Level 5 0.987 145.610 -0.013160495 0.0111835 

 Level 6 1.968 147.608 -0.01615601 0.025058435 

 

 

Table 19. Mean and standard deviation of the errors on noise parameters estimated 

in the sequences designed via the X-ray simulator by using 25 frames. 

PARAMETER 

ERROR 

ERRORS ON NOISE PARAMETERS ESTIMATES 

F = 25 

Mean SD 

𝑎𝑒𝑟𝑟𝑝  -0.0135 0.0114 

𝑏𝑒𝑟𝑟𝑝  0.0226 0.0244 

𝑏𝑒𝑟𝑟𝑎𝑏𝑠  1.0811 1.3120 
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Table 20. X-ray tube settings used to acquire the real fluoroscopic sequences 

X-ray tube setting Kilovoltage peak (kV) Current (mA) 

#1 40 10 

# 2 40 20 

# 3 40 30 

# 4 40 40 

# 5 40 50 

Figure 53 shows four frames of the real fluoroscopic sequences: in particular, the frames in 

the left column depict the TOR 18FG phantom, while the ones in the right column refer to the TOR 

CDR phantom. The frames in the first row were acquired with X-ray tube setting #5 (40 kVp, 50 

mA), while those in the second row with setting #1 (40 kVp, 10 mA). 

  
(a) (b) 

  

(c) (d) 

Figure 52. Pictures of the X-ray phantoms with plexiglass sheets: (a) top view of TOR-18FG ; (b) top view of TOR-CDR; 

(c) side view of TOR-18FG; (d) side view of TOR-CDR. 

Due to the very low tube currents involved, the original images turned out to be too dark for 

practical visualization, as indeed the luminance values were confined within very narrow ranges in 

the lower part of the representation interval. For this reason, the images in Figure 53 have been 

processed with a full-scale histogram stretch, disregarding the grey levels of the few lightest pixels 

in the leftmost part of the images. This processing obviously altered the mean luminance, which was 
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originally much lower in the images acquired at 10 mA compared to those acquired at 50 mA, but 

made the noise much more visible, allowing easier comprehension of the effect of X-ray tube current 

reduction on the SNR of the images. 

  
(a) (b) 

  

(c) (d) 

Figure 53. Static frames from the real fluoroscopic sequences. The frames shown in the first and second rows were 

acquired at 50 mA and 10 mA (40 kVp), respectively. The frames in the left column depict the TOR 18FG phantom, 

while those in the right column depict the TOR CDR.  

The noise parameters extracted from the real fluoroscopic sequences are reported in Table 21, 

along with the relative errors of the parameters retrieved from TOR CDR sequences with respect to 

those extracted from the TOR 18FG sequences, for corresponding X-ray tube settings. The relative 

errors (mean and SD) were -0.36% ± 0.90 % and 0.30 % ± 2.8 %, for parameters a and b, respectively, 

and turned out to be comparable to those obtained in the analyses of the performances of the noise 

parameters estimation algorithm. The noise parameters extracted from the two phantoms sequences 
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are also plotted in Figure 54, where it can be verified that their trends with the tube current are very 

similar. 

Table 21. Noise parameters estimates retrieved from the real fluoroscopic sequences, with relative errors on single 

parameters extracted from TOR CDR sequences with respect to TOR 18FG ones for each tube setting. 

kVp mA 
TOR 18FG TOR CDR ERRORS 

𝑎 𝑏 𝑎 𝑏 𝑎𝑒𝑟𝑟 
 

𝑏𝑒𝑟𝑟 

40 10 7.15091 123.033 7.20909 125.312 0.00814 0.01852 

40 20 4.37212 401.807 4.32512 384.611 -0.01075 -0.04280 

40 30 3.45425 522.778 3.45683 526.265 0.00075 0.00667 

40 40 2.99311 615.161 2.95042 633.000 -0.01426 0.02900 

40 50 2.66481 702.262 2.65917 704.725 -0.00212 0.00351 

 

To further demonstrate the viability of the proposed approach and, at the same time, also the 

effectiveness of the NVCA denoising in very noisy conditions, the fluoroscopic sequence obtained 

by imaging the TOR18FG phantom at 40 kVp, 10 mA (i.e. the one with the most degraded quality) 

was filtered via NVCA, by using the same mask size and noise SD threshold multiplier (5x5x7, Nσ = 

1.5) and by considering both the noise parameters extracted from the same sequence and the ones 

extracted from the sequence acquired by imaging the TOR CDR phantom with the same X-ray tube 

settings. The differences between the filtered sequences were quantitatively assessed by computing 

their MSE, which turned out to be equal to 1.7  10-4 and was mainly due to less than 500 unmatching 

pixels (lower than 5 ppm of the whole sequence). Undoubtedly, the MSE is extremely small and 

practically negligible, thus supporting the feasibility of the a priori noise characterization (recall that 

MSE as high as 0.2, reported in Table 17, resulted in imperceptible differences from a qualitative 

visual point of view, as in Figure 49.c-d). The raw and filtered sequences are shown in Figure 55. 

It is the first time that the trends of Poisson – Gaussian noise parameters are investigated as a 

function of the X-ray tube settings. It can be noted that parameters a and b show increasing and 

decreasing trends with tube current, respectively. While the reduction of parameter a with tube current 

is understandable, as for increasing tube current (i.e. increasing luminance) it is reasonable that the 

detector gain is reduced to avoid clipping effects, the increasing trend of b is not clear. Hypotheses 

have been made on its cause but none of them seems to provide a proper explanation for the observed 

trend. One possible source could be the electronic noise from the detector and the readout circuitry. 

However, there is no clue on why the circuitry noise (referred to the circuit after the gain stage of 

each detector) should have a dependency on the mean luminance. It could be possible for the detector 

noise, which arises before the gain stage and is amplified by the detector gain. 

However, the detector gain showed a decreasing trend with the tube current, so the equivalent 

AWGN noise contribution to the final signal should have been reduced by the detector gain for 

increasing tube currents. Considering the presence of the square plexiglass plates that increase 

Compton scattering, this phenomenon was ascribed to the increased number of Compton photons. 

However, Compton scattering contribute to the image formation with fluxes of scattered X-ray 

quanta, whose arrival on the detector is still described by a Poisson process, hence it could not have 

contributed to the AWGN component of the noise, i.e. the signal-independent variance contribution. 
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          (a) 

 
             (b) 

Figure 54. Noise parameters estimated from real fluoroscopic sequences. 

Static frames from the real fluoroscopic sequences. The frames shown in the 

first and second rows were acquired at 50 mA and 10 mA (40 kVp), 

respectively. The frames in the left column depict the TOR 18FG phantom, 

while those in the right column depict the TOR CDR. 

                  

                 

   

 

   

 

   

 

   

 

   

 

   

 

        

       

                  

                 

   

   

   

   

   

   

   

   

 

        

       



101 

 

 
(a) 

  
(b) (c) 

Figure 55. (a) Raw fluoroscopic sequence acquired by imaging the TOR 18FG phantom at 40 kVp, 10 mA; Filtered 

sequences obtained via NVCA with 557 mask and Nσ = 1.5, by using the noise parameters extracted from: (b) the raw 

TOR 18FG phantom sequence depicted in (a); (c) the raw TOR CDR phantom sequence acquired at 40 kVp, 10 mA. The 

two sequences are practically identical, as their MSE is lower than 210-4 and the number of unmatching pixels is lower 

than 5 parts per million. 
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In conclusion, the present analysis first ascertained the reliability of the estimation algorithm 

described in Chapter 4 in retrieving the noise parameters with high accuracy, as it was critical to 

detect even subtle differences that could potentially show up between noise parameters extracted from 

distinct sequences. Then, the algorithm was used to verify the hypothesis that noise parameters in the 

same fluoroscopic device mainly depend on the particular choice of X-ray tube settings, which would 

support the feasibility of the proposed a priori noise characterization approach.  To this aim, the 

match between noise parameters extracted from pairs of real fluoroscopic sequences, acquired 

independently by imaging two different X-ray phantoms via the same fluoroscopic device, with the 

same X-ray tube settings, was assessed. The encouraging results of this analysis suggest, for the first 

time in literature, that an a priori characterization of noise for a single fluoroscopic device is feasible 

and could support the actual real-time implementation of edge-aware denoising strategies that take 

advantage of noise statistics to improve the trade-off between noise reduction and details 

preservation.  
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Conclusions 

In this dissertation, different issues have been addressed, which currently turn out to limit the 

actual use of very low-dose X-ray fluoroscopy imaging in clinical practice. Indeed, the main 

challenge of very low-dose protocols is represented by the significant degradation of details visibility 

due to quantum noise, which could be dangerous for patient safety. Being inherent to the image 

formation process, quantum noise is a physical limit and cannot be addressed by improving sensors 

technology, rather demanding efficient real-time denoising strategies to improve image quality in 

image-guided interventional procedures. This dissertation focused on the Noise Variance 

Conditioned Average algorithm, which had already demonstrated to outperform many state-of-the-

art methods in the denoising of images corrupted by quantum noise, while also keeping a reasonable 

computational burden that allows for its real-time hardware implementation. 

In Chapter 5, NVCA was compared against VBM4D, which is widely recognized as the 

current state-of-the-art denoising method for AWGN. VBM4D was adapted to Poisson – Gaussian 

noise via the generalised Anscombe transform. While showing higher performances in static scenes, 

VBM4D was outperformed by NVCA in moving scenes, especially with real fluoroscopic noise. 

Indeed, VBM4D provided significant blurring and cartoon-like effects on the edges of low-contrast 

noisy areas, also degrading the visibility of small objects (e.g. catheters) as well as the quality of 

object contours in image derivatives. NVCA, instead, attained decidedly better edge preservation, 

especially for low-contrast moving objects, while providing a slightly lower noise reduction. 

Moreover, a lower bound for the computational complexity of VBM4D was found to be several orders 

of magnitude higher than the complexity of NVCA, thus confirming the practical unsuitability of 

VBM4D for real-time implementations. The results of these analyses also highlighted two further 

issues, namely the reduction of the improvements in image quality with the reduction of the quality 

of the input noisy images, as well as the unreliability of both classical and recent IQA indices (e.g. 

MSE, PSNR, CNR, FSIM) in predicting the image quality of X-ray images as perceived by the human 

eye. 

The first issue was investigated in Chapter 3 via a theoretical statistics approach. In particular, 

the analysis focused on the statistical discrimination criterion at the core of the NVCA operation, 

which is aimed at classifying pixels as belonging or not to the same object, in order to avoid blurring 

effects by selectively performing an average operation only on similar pixels.  Analytical expressions 

of true positive and false positive rates of such a classification were derived as a function of both the 

input CNR, which is a measure of the input image quality, and the noise SD threshold coefficient of 

NVCA (Nσ), which regulates the trade-off between noise reduction and edge preservation. The 

analysis showed that FP grows quite rapidly for CNR decreasing below 1.5, and that it can be reduced 

by lowering Nσ, which however reduces the TP as well (i.e. the noise reduction ratio), thus confirming 

the observed reduction in denoising power. An approximate relationship between Nσ and CNR was 

also found, which could be used to devise a more complex adaptation scheme for the local threshold, 

based on an automatic selection of Nσ, in order to ensure a desired FP and improve the preservation 

of very low-contrast edges without preventing NVCA from attaining a deeper noise reduction on 
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edges featuring higher contrasts. However, this would demand also a robust automated estimation of 

local CNR, which is not straightforward and requires further studies. 

In Chapter 6, a novel edge-aware IQA index was proposed to address the unsuitability of 

common IQA indices for image quality prediction in medical X-ray images. The novel SED index 

was assessed against FSIM and CNR and proved capable of suggesting the optimal values for the 

tuning parameters of NVCA, which yielded the best image quality also according to visual perception. 

This IQA index could be used to accomplish more objective comparisons between different strategies 

for quantum noise suppression, as well as to carry out more in-depth investigations of the dependency 

of the optimal NVCA parameters on different features, such as CNR, shape, dimension and speed of 

moving objects within the scenes imaged via X-ray fluoroscopy. 

Chapter 7 presented an improved version of the NVCA algorithm, which is based on the 

separation of the filtering operation in the space and time domains, along with its hardware 

implementation, which attained a real-time operation for sequences of 10241024 pixels frames at 

49 fps. The cascaded temporal and spatial filtering granted an improved capability of recognition and 

restoration of low-contrast moving edges, as well as a substantial reduction of hardware complexity, 

which allowed implementing the improved NVCA algorithm on the smallest FPGA platform of the 

Altera StratixIV family, by using at most the 22 % of its hardware resources. These improvements 

support the actual implementation of the NVCA algorithm within a real fluoroscopic device, which 

would provide a real-time improvement of fluoroscopic image quality and is expected to foster the 

use of very low-dose protocols in fluoroscopy-guided interventional procedures. However, besides 

the selection of the optimal parameters, which is still to be solved, another issue should be addressed 

to enable the effective real-time denoising of fluoroscopic sequences, namely the estimation of time-

varying noise parameters. 

Chapter 8 addressed this issue by presenting an innovative approach based on the a priori 

characterisation of noise parameters at many different X-ray tube settings, to obviate the need for 

inferring noise statics after any change of tube settings, and to be able to switch among different 

predetermined parameters in real time, according to the particular choice of the X-ray tube settings. 

The feasibility of such an approach was demonstrated by first assessing the performances of a noise 

parameters estimation algorithm (already used in other studies focused on NVCA) and then verifying 

the match between noise parameters extracted from pairs of real fluoroscopic sequences, acquired 

independently by imaging two different X-ray phantoms via the same commercial fluoroscopic 

device, with the same X-ray tube settings. In addition to confirming the feasibility of the a priori noise 

characterization approach, the results also lay the foundations to design calibration procedures for 

fluoroscopic devices that embed statistics-based edge-aware strategies for the real-time denoising of 

fluoroscopic sequences. 

Further studies are foreseen to carry out a more extensive noise characterization on a single 

device, e.g. over an expanded grid of X-ray tube settings (mA, kVp), to demonstrate the robustness 

of the proposed approach. Furthermore, looking upon the considerable number of  noise estimations 

that must be performed to cover the actual grid of commonly used settings, it is reasonable that 

complete noise characterization procedures would be very long. In order to shorten the time required 

by these procedures, an approach could be investigated, which is based on the interpolation of noise 

parameters estimates corresponding to certain points of the tube settings grid (mA, kVp), to determine 

the noise parameters for different tube settings, without performing the explicit noise estimation. 
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Indeed, this approach would grant the possibility of performing the actual noise estimation for a small 

number of X-ray tube settings and then retrieving a conspicuous number of noise parameters 

estimates via interpolation, thus speeding up the overall calibration procedure. Moreover, the 

performances of the proposed approach must be effectively assessed in real-time denoising of low-

dose fluoroscopic sequences, e.g. by embedding the a priori noise characterization in the hardware 

implementation of the NVCA algorithm presented in Chapter 7. To this aim, another interesting study 

would be the investigation of the potential implementation of NVCA on a System-on-Chip (SoC) 

platform [160], which combines the computing power of custom hardware accelerators with the 

flexibility of dedicated software run by embedded microprocessors. Very appealing is also the 

possibility to exploit the High-Level Synthesis (HLS) tools for SoC design [161], which allow 

hardware descriptions to be synthesized from software descriptions (e.g. in C language) and could 

potentially enable faster and more flexible design flows to bring improvements at algorithmic level 

directly into hardware. Finally, the overall improved NVCA denoising scheme should be embedded 

in a commercial fluoroscopic device to test its performances in its real operating environment. 
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