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A method for a first-order approximation estimation of the longitudinal
impedance of a synchrotron component, starting from power loss
measurements on the device, is proposed. This method also estimates
the resonance frequency and the quality factor of the impedance after
the execution of several machine runs, without disconnecting the
device. After a detailed description of the method, its suitability is
demonstrated through a practical case study using power loss
measurements of the Large Hadron Collider (LHC) at the the European
Organization for Nuclear Research (CERN).
Then, electromagnetic simulations were used to benchmark recent
theoretical models and assess their possibility to compute the two
beam power loss. It is shown how beam-induced power loss can
largely differ from the single beam case when two beams are present
in the same component. Simulation studies are shown in the case of a
resonant pillbox cavity. This benchmark also allowed simulating cases,
for which the lumped impedance assumption of the available analytical
formula may not be valid anymore.
Finally, machine learning models were developed to detect heating
from pressure measurements in synchrotron colliders. These results
allow to analyse all the pressure measurements in the time avail- able
between two consecutive machine runs. Due to the prevalence of
noise and the diversity of the behaviours, simple heuristic-based
techniques do not achieve high performance. To overcome the limits of
simple heuristic-based algorithms, several machine learning models
have been trained, tested and compared with an heuristic-based
approach which is used as base-line. In particular, it is shown for the
case of the Large Hadron Collider (LHC) that machine learning models
reached better performance both in precision and recall scores with
respect to the baseline.
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Abstract

A method for a first-order approximation estimation of the longitudinal impedance
of a synchrotron component, starting from power loss measurements on the device, is
proposed. This method also estimates the resonance frequency and the quality factor
of the impedance after the execution of several machine runs, without disconnecting
the device. After a detailed description of the method, its suitability is demonstrated
through a practical case study using power loss measurements of the Large Hadron
Collider (LHC) at the the European Organization for Nuclear Research (CERN).

Then, electromagnetic simulations were used to benchmark recent theoretical mod-
els and assess their possibility to compute the two beam power loss. It is shown
how beam-induced power loss can largely differ from the single beam case when two
beams are present in the same component. Simulation studies are shown in the case
of a resonant pillbox cavity. This benchmark also allowed simulating cases, for which
the lumped impedance assumption of the available analytical formula may not be
valid anymore.

Finally, machine learning models were developed to detect heating from pres-
sure measurements in synchrotron colliders. These results allow to analyse all the
pressure measurements in the time available between two consecutive machine runs.
Due to the prevalence of noise and the diversity of the behaviours, simple heuristic-
based techniques do not achieve high performance. To overcome the limits of sim-
ple heuristic-based algorithms, several machine learning models have been trained,
tested and compared with an heuristic-based approach which is used as base-line. In
particular, it is shown for the case of the Large Hadron Collider (LHC) that machine
learning models reached better performance both in precision and recall scores with
respect to the baseline.
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Introduction

The main figure of merit for the high energy particle accelerators performance is lu-
minosity [1]. High luminosity values can be reached by incremental increase of the
beam intensity, which means increasing the number of charged particles stored in
the accelerator. The strong electromagnetic (EM) field produced by charged particle
beams [2] stored in a high-energy, high-intensity accelerator such as the LHC may in-
duce heating of surrounding equipment. Such heating scales quadratically with the
bunch intensity [3] and can represent a limit to increasing the performance of the ma-
chine: for instance, beam-induced heating was one of the major limitations to reach
nominal performance of the machine for the case of LHC during its first Run (2010-
2013) [4]. This phenomenon is commonly referred to as beam–induced radio frequency
(RF) heating [5]. There are various sources of heating in a high-energy accelerator. The
major beam-induced phenomena that may induce heating are: direct particle loss on
the surrounding accelerator structures [6], electron cloud [7], synchrotron radiation
[8], and beam–induced RF heating due to impedance [3].
For each machine component such as collimators, kickers, and magnets, the impedance
can be measured with different tests, based on RF measurements (called bench mea-
surements), before installation. Much of the present literature focuses on the global
impedance model [9]. Conversely, one of the objective of this thesis focuses on the
local impedance information obtained during operation.

In the literature, the heat load and beam induced heating are not used in the es-
timation of the impedance parameters but they are treated in several application as:
the ALBA stripline kicker heatload, the beam induced heating in SOLEIL, the DCCT
(DC Current Transformer) and FCT (Fast Current Transformer) heating in PETRA III,
the wake field analysis in PEP-II SLAC B-factory, the beam induced RF heating in
the LHC and the beam heat load due to geometrical and resistive wall impedance in
COLDDIAG [10].
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The most common test is the wire measurement method [11]: a wire is stretched
inside the component in order to emulate the beam EM field and to assess the S-
parameters, which describe the electrical behavior of linear electrical networks when
undergoing various steady state stimuli by electrical signals [12]. All these tests
require the machine to be shut down for direct access to the component under test or
the equipment to be measured before installation or removal from the machine.

Most of the impedances from the accelerator components can be modeled with
good approximation as a series of resonator impedances [13]. Three parameters are
needed to fully describe an impedance with the resonator model: (i) fr, the resonance
frequency; (ii) Qr, the quality factor, which characterizes the resonator bandwidth
relative to fr; and (iii) Rs, the shunt impedance, which represents the real part of the
impedance at the frequency f = fr. Narrow–band impedances are usually generated
by geometric imperfections or unintended cavities, while broad–band impedances
are related to the material losses of the machine component. As a result, the impact
on the power loss of a narrow– or very narrow–band impedance could be reduced
by changing slightly the geometry of the component. This operation can be very
difficult if the component is already built. Similarly, for a broad–band impedance,
usually the material of the component would have to be changed in order to reduce
its impedance, which is also an undesired operation.
Particles injected into the machine are grouped in bunches, spaced by a fixed distance,
or analogously at a fixed time interval assuming a constant velocity. The power loss
increases with the total number of bunchesM injected into the machine [3]. However,
the relation between power loss and number of bunches depends on the impedance
bandwidth [3]. In particular it is commonly assumed that [14]:

• For narrow–band impedances, Ploss ∝M2.

• For broad–band impedances, Ploss ∝M .

The current literature does not specify the effective boundaries of the impedance
bandwidth where the above relations are valid.
This thesis focuses on three main aspects of the beam–induce heating: the impedance
estimation from power loss measurements, the impact of two counter-rotating beams
on the beam–induced heating and the machine learning detection of the beam–induced
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heating from pressure measurements. The first subject of this thesis proposes a method
to provide a first-order approximation of Qr and fr by measuring the power loss,
while the parameters of the beam in the machine are varied. The Qr and fr val-
ues, modelled as a resonator, are assessed from measurements (or estimations) of the
power loss only.

All the above considerations are valid when there is a single beam circulating in a
machine component. However, in some devices of circular colliders there is an extra
complication due to the presence of two counter-rotating particle beams. In recent
circular colliders, the two beams circulate by design in two separate vacuum cham-
bers to avoid beam-beam effects. However, in the collision regions and, sometimes
in other components, they have to transit in the same vacuum chamber. In this case,
the particles of one beam move in opposite direction with respect to the particles of
the other beam. The main studies of the interaction between two beams are: Pel-
legrini [15] and Wang [16] studied longitudinal and transverse counter-moving two
beam instabilities linked to resonant modes for the Large Electron Positron storage
ring (LEP) [17]. However their work is focused on the long range effects and does
not describe what happens when both counter-moving beams are inside the cavity.
Zimmerman [18] discussed the transverse resistive wall wakefield problem for two
counter-moving beams. Zannini et al. [3, 19] and Grudiev [20] presented models
to compute the RF-heating induced in a vacuum chamber traversed by the counter-
moving beams.
Some of these 2-beam components have presented beam induced heating damage or
excessive outgassing during operation, and it is important to understand how the
two–beam power loss differs from the single beam case inside a resonant cavity. The
second subject of this thesis is the better understanding of the two–beam power loss
inside a resonant cavity and the limits of its analytical [3] formula with electromag-
netic simulations.

The heating can be studied and monitored in different ways. One way of measur-
ing heating is by means of temperature probes. In the LHC, this is commonly done
with PT100 [21] probes in the LHC ring, and more recently also with optical fibres
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inside the CMS detector [22]. Heating in the LHC can also by monitored by measur-
ing the required cooling power to compensate for the beam–induced power loss [23].
The temperature monitoring system in LHC is focused on known critical components
from heating point of view, and large fractions of the accelerator are not equipped
with dedicated temperature monitoring. Heating of surrounding equipment can also
be detected indirectly with pressure measurements [24]. The idea is based on the out-
gassing phenomenon [25] produced by the increase in temperature in a high-vacuum
environment. The outgassing is directly observed as pressure increase by means of
vacuum gauges as for the case of the injection protection device (TDI), during the
2012 LHC run [4].

The LHC vacuum monitoring system has more than 1200 vacuum gauges dis-
tributed along the LHC circumference [26]. With respect to the direct temperature
monitoring, the vacuum-based indirect measurement is more dense and systematic.
However, analysing the pattern of each pressure measurement is not a trivial task.
Expert knowledge is needed to identify heating from the behaviour of a pressure
measurement. Moreover, due to the large amount of pressure data retrieved after
each fill of the LHC, classifying each pressure measurement as indicating heating or
not is a tedious and time-consuming task. A fill is an LHC operation cycle, starting
with the gradual injection of the two counter-rotating beams and finishing with the
beam dump. During the LHC operation, each fill is injected in the LHC roughly 2
hours after the dump of the previous one. In such a short time, all the 1200 pressure
measurements cannot be analysed manually in order to prevent heating that could
cause damage during the next fill. Therefore, the heating detection process can be
improved by automatising the classification of the pressure measurements, provid-
ing a significant gain of time with very high performance. Moreover, such a tool can
be also used to retrieve old data with heating indication in order to double check that
no abnormal heating was missed in the past runs.

Finally this thesis proposes a Machine Learning-based heating detection from
pressure measurements for synchrotron colliders with a test case on the CERN Large
Hadron Collider.

The structure of the thesis is as follows:

• Chapter 1: Beam–induced heating. Introduction to the beam–induce heating
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with a particular focus on the power loss due to impedance. Review of the
literature and derivation of the formulae used in this thesis.

• Chapter 2: Machine learning for heating detection. Introduction to the pres-
sure measurements in the LHC followed by a description of the machine learn-
ing techniques applied in this thesis.

• Chapter 3: Impedance of a synchrotron component from beam-induced power
loss. Methodology of the impedance estimation of a synchrotron component
from beam induced heating. Derivation of the formulae adopted in the method.
Detailed explanation on how to derive the resonance frequency fr and the Q
factor of an impedance based on power loss measurements.

• Chapter 4: Power loss simulations. Methodology applied on power loss sim-
ulation studies. Description of the resonant cavity model used for power loss
simulation. Single beam power loss simulations set up both for single bunch
and multi-bunch scenarios. Two beam power loss simulations with comparison
with the single beam case. Investigation of the dependence on the phase shift
of the two-beam power loss with comparison between simulation studies and
two-beam power loss equation.

• Chapter 5: Heating detection from pressure measurements. Methodology of
the heating detection from pressure measurements. Description of a simple
heuristic algorithm used as base model. Presentation of the preprocessing tech-
niques that helped in improving the models performance. Detailed description
of the machine learning models adopted.

• Chapter 6: Results of impedance of a synchrotron component from beam-
induced power loss. Results of the impedance estimation technique with an
example of the implementation of the methodology in the LHC.

• Chapter 7: Results of power Loss simulations. Results of the simulation stud-
ies for both single beam and two-beam power loss. Analysis of the dependence
of the two-beam power loss on the cavity geometry.
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• Chapter 8: Results of heating detection from pressure measurements in the
CERN Large Hadron Collider. Results of the heating detection from pressure
measurements. Analysis of the impact of the preprocessing technique on the
machine learning models. Comparison between machine learning models and
simple heuristic base model for the case of the LHC..
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Part I

Background
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Chapter 1

Beam-induced heating

1.1 Overview

This chapter focuses on the beam–induced RF heating due to impedance. First, the
concept of wake function and beam coupling impedance is introduced focusing in
particular on the case of the longitudinal plane. In the longitudinal plane, the rela-
tionship between the beam coupling impedance and the energy loss by a bunch of
particles is further discussed. After that, the power loss is defined as well as how to
compute it numerically for the single beam case. The concept of a filling scheme is
then introduced for a circular collider and in particular for the LHC.

Finally the two-beam power loss is introduced with its analytical derivation. Also
the assumption that leads to the numeric computation and its expression are pre-
sented.

1.2 Wakefields

The wake function describes the electromagnetic interaction of the beam with the
surrounding environment. The reference to a "wake" originates from the similarities
of the electromagnetic fields generated by a charged particle beam to the wake left
by a boat, which is travelling into the see. This reference indeed fits particularly well
with the beam wakefields because - due to the ultrarelativistic speed of the particle
in the LHC - the fields all lie behind the source, like the waves are always behind the
boat, which generates them.
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FIGURE 1.1: Source and test charge particles [27]

The electromagnetic (EM) problem is posed by setting the Maxwell’s equations
with the beam as source term and boundary conditions given by the structure, in
which the beam propagates. In order to understand the wakefields, it is common to
consider the simple case of a single charge that acts like a source followed by a test
charge (Fig: 1.1). In the following, these assumptions are made:

• Wakefields are considered superimposed to the external fields (e.g. dipoles,
quadrupoles, RF cavities).

• The particles are moving at the same speed v = βc, so they keep the same
distance between each other (Rigid motion approximation).

The wakefields are related to the momentum variation :

∆p =

∫ +∞

−∞
F(xs, ys, zs, xt, yt, zt)dt (1.1)

where (xs, ys, zs) are the source’s coordinates and (xt, yt, zt) are the test particle coor-
dinates. The force acting on the test particle is the Lorentz’s force:

F = q(E + v× B) (1.2)
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E and B are obtained by solving the Maxwell’s problem. The wakefields is defined as
[28]:

W (xs, ys, zs, xt, yt, zt, t) = − 1

qsqt

∫ +∞

−∞
F · dz (1.3)

It is possible to observe that this definition is strongly related to the momentum if we
consider that dz = vdt so [29]:

W = − v

qsqt

∫ +∞

−∞
F · t (1.4)

that is related to the momentum (given the rigid motion approximation):

W (xs, ys, zs, xt, yt, zt, t) = − v

qsqt
∆p (1.5)

1.2.1 Longitudinal wakefields and impedance

The wakefields can be decomposed on the longitudinal and on the transverse planes.
By naming Wl the longitudinal plane and Wt the transverse plane. It is common to
distinguish those two components because they lead to different beam dynamics ef-
fects. The following will focus on the longitudinal component since only the longitu-
dinal impedance plays a role in the power loss computation [3]. As for the wakefield,
also the electromagnetic field of the electromagnetic problem inside the beam pipe
can be decomposed as follows:

E = Elẑ + Ett̂, B = Blẑ +Btt̂ (1.6)

For the longitudinal case v = vẑ implying that the magnetic field does not give any
contribution to the longitudinal component of the Lorentz force (Eq. 1.2), so neither
to the momentum , nor to the wakefields. In this case it is possible to write:

Wl(xs, ys, zs, xt, yt, zt, t) = − v

qsqt
∆pl (1.7)

with
∆pl =

∫ +∞

−∞
qtEl(xs, ys, zs, xt, yt, zt)dt. (1.8)
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The longitudinal coupling impedance is then defined as:

Zl(xs, ys, xt, yt, w) =

∫ +∞

−∞
Wl(xs, ys, zs, xt, yt, zt)e

jwtdt (1.9)

with t = s
v

and s = zt−zs. It is possible to observe with the assumption of rigid motion
approximation that this impedance only depends on the relative distance between the
particles, s, and not on their absolute position zs, zl.

1.2.2 Resonator impedance model

The resonator model is widely used to model impedances for the computation of
power loss [30, 31, 32]. The resonator impedance (Zres) formula is

Zres(f) =
Rs

1 + jQr(
f
fr
− fr

f
)
, (1.10)

where Qr is the quality factor, related to the width of the real part of the impedance,
fr is the resonance frequency representing the impedance position, Rs is the shunt
impedance, and j2 = −1.

Figures 1.2a and 1.2b show the real and the imaginary parts of the impedance of
the resonator model, respectively, for a given value of fr and different values of the
Q–factor.

Narrow and broad band impedance

The beam impedance is defined in the frequency domain, therefore the bandwidth
concept is widely used. In this manuscript, it is common to distinguish between the
narrow band and the broad band impedance.:

• narrow band : an impedance that covers just few lines of the power spectrum.

• broad band : an impedance that covers all the lines of the power spectrum.

A narrow band impedance usually has Qr > 103 while a broad band has Qr = 0. For
intermediate values of Qr it there is not a defined nomenclature for the bandwidth.
The lines of the spectrum depends on the spacing between two following bunches.



1.3. Filling schemes 13

(A) Real part

(B) Imaginary part

FIGURE 1.2: Real part (a) and imaginary part (b) of the resonator model
impedance for fr = 500MHz and for different values of Qr.

1.3 Filling schemes

The filling scheme defines the time distribution of the bunches of particles in the ma-
chine. Considering the LHC, it has 3564 slots (buckets), in which the bunches could be
injected. The LHC can accelerate protons and ions. In this manuscript it is assumed
that the particles are protons. The filling scheme is the map of the slots actually oc-
cupied by the bunches. It is encoded as 1, if a slot is occupied by a bunch, and 0

otherwise. The filling scheme can be appreciated by observing the longitudinal time
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distribution of the beam (Fig. 4.8). The longitudinal time distribution is the longi-
tudinal proton density (i.e. number of protons per unit of time). The longitudinal
direction is classically measured either in meters or in seconds in the LHC. The lon-
gitudinal time distribution is referred as λ(z) or λ(t) depending on the considered
unit.

FIGURE 1.3: Longitudinal time distribution of the beam for the fill num-
ber 5979 of a LHC run of the 21-07-2017 in the time window from 18:44:26
to 18:48:15 (before reaching collision energy). The horizontal axis can be

converted in space as the particles are moving at constant speed.

The bunch longitudinal profile is characterized by two main parameters: bunch
length and bunch shape. The bunch shape is the longitudinal model that best fits its
shape. Common bunch shapes that have the same full width half maximum are:

• Gaussian: s(t) = 1
σ
√
2π
e−(t)

2/2σ2

.

• q-Gaussian: s(t) = 32
5πH

(1− 4t2

H2 )2.5 with H = 2σ
√

2log(2)
1−2−0.4 .

• Cosine: s(t) = 1
τc

[cos ( πt
2τc

)]2 with τc = 2.77σ.

• Parabolic: s(t) = 1− ( t
σ
)2.

where σ is referred to the Gaussian r.m.s. Assuming that the bunch longitudinal
distribution is Gaussian, the bunch length is defined as 4σ of such a Gaussian distri-
bution.
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1.4 Power loss

The power lost by the beam in a circular collider depends on whether one or two
beams are circulating in the machine. In the following the power loss derivation is
presented for both the single beam and two counter-rotating beam cases.

1.4.1 Single beam power loss

It is possible to derive the single beam power loss formula starting from the energy
loss under the rigid motion approximation. Considering v ' c the energy can be
written as E ' mv2, so it is possible to formulate the longitudinal wakefield from the
Eq. 1.7 as [27]:

Wl(zt − zs) = −∆E(zt − zs)
qsqt

(1.11)

and:
∆E(zt − zs) = −Wl(zt − zs)qsqt (1.12)

In order to relate the bunch distribution to the charged particle, the longitudinal
particle distribution λ(z) is considered. It represents the number of charges per unit
length, normalized to the average number of charges in the bunches Nb : the integral
of λ(z) along a single bunch results to be 1. So, the electrical charge in a bunch slice dz′

at a coordinates z′ will be λ(z′)eNbdz
′. It is now possible to consider the infinitesimal

increment of energy loss as :

dE(zt − zs) = −Wl(zt − zs)λ(zs)eNbdzsλ(zt)eNbdzt (1.13)

which can be rearranged as

dE(zt − zs) = −Wl(zt − zs)λ(zs)λ(zt)e
2N2

b dzsdzt (1.14)
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where dE(zt − zs) is the energetic variation given by a source slice of the bunch at zs
acting on a test slice at zt. The whole bunch energetic variation is given by [33]:

∆E = −
∫ +∞

−∞
dzt

∫ +∞

−zt
dzsWl(zt − zs)λ(zs)λ(zt)e

2N2
b , (1.15)

since only preceding slices can affect a test slice, at ultra-relativistic velocities. Re-
membering that a convolution integral is equal to the inverse Fourier transform of a
product of the Fourier transforms:

∆E = −
∫ +∞

−∞
dzt

∫ +∞

−∞

dw

2π
Zl(w)Λ(w)e−jw

zt
v λ(zt)e

2N2
b (1.16)

where Λ(w) = FT [λ(z)]. Repeating the same procedure integrating in dzt,

∆E = −e
2N2

b

2π

∫ +∞

−∞
dwZl(w)Λ(w)

[∫ +∞

−∞
dzte

jw
zt
v λ(zt)

]∗
= −e

2N2
b

2π

∫ +∞

−∞
dwZl(w)Λ(w)Λ∗(w)

= −e
2N2

b

2π

∫ +∞

−∞
dwZl(w)|Λ(w)|2

because the wakefields are real, from the Fourier Transform proprieties results:

Z∗l (w) = Zl(−w) (1.17)

that tells that Im[Zl(w)] is odd. Now, considering that λ(z) is real, |Λ(w)|2 is even
so their product integrated on a symmetric domain is zero. Observing that the en-
ergy loss is real, so the imaginary part of the impedance does not contribute to its
calculation. Finally the energy loss is obtained:

∆E = −e
2N2

b

2π

∫ +∞

−∞
dwRe[Zl(w)]|Λ(w)|2 (1.18)

The power loss is derived by dividing ∆E by the time interval in which the energy
has been lost from the beam.
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Numeric computation of the single beam power loss

In the one turn case, the dE gained or lost from the test particle in the position zt due
to the source slice dzs is given by:

dE(zt, zs) = e2NbMλ(zs)W (zs − zt)dzs

where λ(zs) is the longitudinal profile of the beam that integrated over zs and
multiplied by eNbM gives the total charge of the beam.

For the multi turn case, it has to be taken into account that each particle sees also
the wake fields of all the previous turns of the beam in the machine, so:

dE(zt, zs) = e2NbMλ(zs)
+∞∑

k=−∞

W (zs − zt + kC)dzs,

where C is the length of the accelerator. The energy seen by the test particle is ob-
tained by integrating the energy over all the preceding source slices from the test
particle to +∞ following the causality principle:

E(zt) = e2NbM

∫ +∞

−zt
dzsλ(zs)

+∞∑
k=−∞

W (zs − zt + kC)

Because the integral is zero for z < zt, the lower bound of the integral can be
extended to −∞. To obtain the total energy gained or lost by the beam the energy
E(zt) has to be divided by the test particle charge and integrated all over the beam by
multiplying for the charge of the test particles:

Ebeam =
1

e

∫ +∞

−∞
dzteNbMλ(zt)E(zt)

= e2N2
bM

2

∫ +∞

−∞
dztλ(zt)

∫ +∞

−∞
dzsλ(zs)

+∞∑
k=−∞

W (zs − zt + kC)

Now remembering the mathematical identity

+∞∑
k=−∞

W (zs − zt + kC) =
+∞∑

k=−∞

W (zs − zt) ~ δ(zs − zt + kC),
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where ~ is the convolution operator, results in:

Ebeam = e2N2
bM

2

∫ +∞

−∞
dztλ(zt)

∫ +∞

−∞
dzsλ(zs)

+∞∑
k=−∞

W (zs − zt) ~ δ(zs − zt + kC)

= e2N2
bM

2

∫ +∞

−∞

∫ +∞

−∞
dzsdztλ(zs)λ(zt)

+∞∑
k=−∞

W (zs − zt) ~ δ(zs − zt + kC)

Because the convolution is also the inverse Fourier Transform of the product of
the Fourier transforms, the beam energy Ebeam becomes:

Ebeam = e2N2
bM

2f0

∫ +∞

−∞

∫ +∞

−∞
dzsdfλ(zs)Λ(f)ej

2πfzt
c

+∞∑
p=−∞

Z(f)δ(f + pf0)e
j
2πf(zs−zt)

c

= e2N2
bM

2f0

∫ +∞

−∞
dfΛ(f)

+∞∑
p=−∞

Z(f)δ(f + pf0)

∫ +∞

−∞
dzsλ(zs)e

j 2πfzs
c

= e2N2
bM

2f0

∫ +∞

−∞
dfΛ(f)Λ∗(f)

+∞∑
p=−∞

Z(f)δ(f + pf0)

= e2N2
bM

2f0

+∞∑
p=−∞

∫ +∞

−∞
df |Λ(f)|2Re[Z(f)]δ(f + pf0)

= e2N2
bM

2f0

+∞∑
p=−∞

|Λ(pf0)|2Re[Z(pf0)]

Where in the first step it has been considered that:

F [
+∞∑

k=−∞

W (zs − zt) ~ δ(zs − zt + kC)] = f0

+∞∑
p=−∞

Z(f)δ(f + pf0)

with F [W (zs − zt)] = Z(f).
The first integral goes away because of the Fourier transformation of λ(zs) while the
second one goes away because of the property of the Dirac’s delta.
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Therefore the power loss per turn is:

Ploss = Ebeamf0

= e2N2
bM

2f 2
0

+∞∑
p=−∞

|Λ(pf0)|2Re[Z(pf0)]

= I2beam

+∞∑
p=−∞

|Λ(pf0)|2Re[Z(pf0)] (1.19)

with wb = Mw0. From this formula it is very interesting to note that for a broad band
impedance, Ploss is linear with M while for a really narrow-band impedance, Ploss is
quadratic with M [34]. The behaviour of the Ploss will be described in detail in the
following chapters.
It is important note that this formula doesn’t clearly explains what will happen with
a resonator impedance with quality factors with values intermediate between broad
band and narrow band.

One aim of the this thesis is also to better understand the impact of the impedance
bandwidth on Eq. 1.19.

1.4.2 Two–beam power loss

The two beams power loss can be derived similarly as the single beam case [19].
Considering two counter rotating beams named beam 1 and beam 2, it is possible

to define the following wakefields:

• W11(s, z): effect of charge in beam 1 evaluated on beam 1.

• W22(s, z): effect of charge in beam 2 evaluated on beam 2.

• W21(s, z): effect of charge in beam 2 evaluated on beam 1.

• W12(s, z): effect of charge in beam 1 evaluated on beam 2.

With these definitions it is possible to write the energy loss per turn on beam 1 by
rewriting Eq. 1.15 as:
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∆E1 = e2N2
b

∫ +∞

−∞
dztλ1(zt)

∫ +∞

−zt
dzs(W11(zt − zs)λ1(zs)−W21(zt − zs)λ2(zs)), (1.20)

where the minus sign inside the integral refers to counter rotating beams and plus
sign for beams rotating in the same direction. λ1(z) and λ2(z) are the longitudinal
distribution of beam 1 and beam 2. Analogously for beam 2 it is possible to write:

∆E2 = e2N2
b

∫ +∞

−∞
dztλ2(zt)

∫ +∞

−zt
dzs(W22(zt − zs)λ2(zs)−W12(zt − zs)λ1(zs)). (1.21)

The total energy loss is simply:

∆E = ∆E1 + ∆E2.

Assuming the same longitudinal distribution, at a certain longitudinal distance s

from the interaction point (IP) between the beams,

λ1(z) = λ(z), λ2(z) = λ(z − 2s),

by defining the phase shift τs = 2s/c represented in Fig. 1.4 it is possible to rewrite
∆E1 and ∆E2 in the Fourier domain as follows:

∆E1 =
e2N2

b

2π

∫ +∞

−∞
dw|Λ(w)|2[Z11(w)− Z21(w)e−jwτs ] (1.22)

∆E2 =
e2N2

b

2π

∫ +∞

−∞
dw|Λ(w)|2[Z22(w)− Z12(w)ejwτs ]. (1.23)

Having Z21(w) = Z12(w) due to the reciprocity theorem [35], the total energy loss by
the two beam results to be:

∆E =
e2N2

b

2π

∫ +∞

−∞
dw|Λ(w)|2[Re[Z11(w) + Z22(w)]− 2Re[Z12(w)cos(wτs)]]. (1.24)
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FIGURE 1.4: Two beam approaching the same cavity with a phase shift
(τs) of 1 ns. In particular beam 1 will enter the cavity 1 ns after beam 2.

1.4.3 Numeric computation of the two–beam power loss

The two beam power loss formula can be numerically computed given the following
approximation [19, 3]:

• Ratio L
s

small. In particular the length of the structure L where the impedance
is computed has to be at least one order of magnitude smaller than the distance
s from the IP. This means that the transit time in the cavity (i.e. the time the
bunch takes to pass trough the cavity) has to be at least one order of magnitude
smaller than the phase shift τs.

• Top-bottom or right-left transverse structure symmetry.

• The wakefield can be approximated as W (z, x, x0) = W 0(z) +W 1d(z)(x+ x0).

Given these approximation the formula can be written as [19]:

∆W (s) = (2eNbMf0)
2
∞∑
p=0

|Λ(pω0)|2
{

Re
[
Z0
||(pω0)

]
+

[∆y1(s) + ∆y2(s)] Re
[
Z1
||(pω0)

]}
(1− cos pω0τs) . (1.25)

1.5 Pillbox cavity

The pillbox cavity is a simple resonant cavity whose geometry is represented in Fig. 1.5.
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FIGURE 1.5: Pillbox resonant cavity. a is the radius of the cavity and h is
its length. Ez is the electric field along the z direction [36].

The modes of a pillbox cavity are expressed in cylindrical coordinates. In particu-
lar, TMmnp denotes an EM mode with only electrical component along the direction z
while TEmnp denotes an EM mode with only magnetic component along the direction
z [37]. The m,n, p notation is explained in the following. The fundamental mode of
such a cavity is the TM010 with a resonance frequency of a = 0.383λ [37].
The Q is given by:

Q =
a

δ
(1 +

a

h
)−1, (1.26)

with δ =
√

2
2πfrσµ

.
In Eq. (1.26), a is the radius of the cavity, h is its length, fr is the frequency of the

electromagnetic field, σ is the conductivity of the material of which the cavity is made
and µ is the magnetic permeability.

In Fig. 1.6 is represented the mode chart of a pillbox cavity. The only modes that
could couple with the beam are the TM modes due to their component of the electric
field in the z direction [38, 37] where the beam is circulating. For a pillbox cavity the
electric field along the z direction and the magnetic field along the φ direction can be
written as [37]:

Ez = Acos(
pπz

h
)e−i2πfrt, , (1.27)
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FIGURE 1.6: Pillbox mode chart [36]

Hφ = Bcos(
pπz

h
)e−i2πfrt, (1.28)

where only the dependence on z and t is explicit. In these equations, A and B are
constants with respect to z, h is the length of the cavity and p is an integer value. In
the TMmnp notation m is the number of variation of field of the azimuthal variable φ.
n is the number of nulls in Ez along the radial direction. p is the number of nodes of
Ez along the z-axis. In Fig. 1.7 the cases of m,n, p equal to zero and one are reported.

The power loss on the wall of the cavity for the modes TM0np is [38, 37]:

Pwall =
Rs

2

∫
wall

|Hφ|2, (1.29)

where Rs is the surface resistance of the wall defined as:

Rs =
1

δσ
.
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FIGURE 1.7: Representation of the mode indexes m,n, p of a pillbox cav-
ity [38, 37]

1.5.1 CST Studio Suite

CST Studio Suite R© is a 3D EM analysis software package for designing, analyzing
and optimizing electromagnetic (EM) components and systems [39]. It is widely used
in accelerator physics to perform EM simulations. In particular it can compute the
impedance of a device given the geometry and can also compute the power lost in
the walls of a lossy material.
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Chapter 2

Machine learning for heating detection

2.1 Overview

The vacuum monitoring system of the LHC is the largest in the world [26]: it consists
of more than 1200 vacuum gauges.

Heating to machine equipment can lead to an anomalous pressure increase, which
would be observed in a pressure measurement pattern [40]. A heating example is
represented in Fig 2.1: in the top plot the pressure increases from the middle of the
LHC fill without any correlation with the beam intensity, beam energy and bunch
length. In this specific case, heating was confirmed to be caused by beam induced
heating in injection protection collimator (TDI) [5]. Thanks to that observation, TDI
was completely redesigned for the current long shutdown LS2 [4].

Unfortunately, heating cases are usually not so easy to spot. In general the pres-
sure increase can happen anywhere along the LHC fill and it can last either a few
minutes or several hours. Moreover there can be noise during the acquisition pro-
cess or the cooling system cycle may induce a seasonality on the measurement thus
often an expert is required to identify signs of heating. For the LHC, most of the
pressure measurements do not indicate heating: among the 1200 vacuum gauge pro-
ducing data every fill of the LHC, usually only 3 or 4 of them present heating and
the gauges that present heating are not necessarily the same for every LHC fill. This
makes manual data identification extremely tedious, slow and prone to miss impor-
tant indications of heating. In this chapter the structure of the pressure measurement
data is first described, then the best evaluation metrics are discussed and finally the
ML techniques applied in this thesis are presented.
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FIGURE 2.1: Example of heating pattern a pressure measurement from
a run of the LHC of the 2011. The top plot shows the beam intensity
and the pressure measurement, in the bottom are represented the beam
energy and the average bunch length. Such a pressure increase is corre-
lated neither to the beam energy nor to variation of the bunch length and
has indicated presence of heating in the component. The vacuum gauge

is located close to the injection protection collimator (TDI).

2.2 Pressure measurements

Each pressure measurement is stored as a time series with a sampling period that
may vary between 1 and 5 minutes. The variability of the sampling period depends
on the year of data acquisition: LHC data older than 5 years are downsampled in
order to save storage.

The x-axis of the pressure measurements is a time axis. As commonly done for
time series [41], for simplicity the steps will be adopted as x-axis in the following. Each
step is an integer value representing the index of the corresponding pressure value in
each pressure measurement array. The total number of steps is equal to the total values
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sampled for each pressure measurement from the acquisition system. Doing so, the
time and date information is lost but it is not relevant for the classification purpose.

The total number of steps in time of each pressure measurement depends on the
sampling period and on the length of the LHC fill. The length of the LHC fill may
vary between 5 and 24 hours. The variability of the sampling rate together with the
variability of the LHC fill length make the various pressure measurement data differ-
ent between each other in terms of length.

2.3 Heating monitoring

Heating monitoring is an essential operation during machine runs. The heating has
to be kept under control both before and during operation with beam. Neglecting
abnormal heating indication may cause damage in components and degradation of
machine performance. Heating is a power loss measured in Watt. The power loss
can be measured either directly or indirectly in different ways. In the LHC, it can
be measured directly with temperature probes named PT100 [21] due to the 100 Ω

resistors that are used to estimate the temperature and with fiber optics in CMS [22].
Measuring the required cooling power to compensate the beam–induced power loss
(e.g. valve opening and coolant temperature for the LHC beam screen [23]) is an-
other direct method. The power loss can also be detected indirectly with the pressure
readings [24] giving a more qualitative estimation. The bunch length in the LHC is
measured by the beam quality monitor [42].

Heating of surrounding equipment can also be detected indirectly with pressure
measurements [24]. The idea is based on the outgassing phenomenon [25] produced
by the increase in temperature in a high-vacuum environment. The outgassing is
directly observed as pressure increase by means of vacuum gauges as for the case of
the injection protection device (TDI), during the 2012 LHC run [4].

With respect to the direct temperature monitoring, the vacuum-based indirect
measurement is more dense and systematic. However, analysing the pattern of each
pressure measurement is not a trivial task. Expert knowledge is needed to identify
heating from a pressure measurement. Moreover, due to the large amount of pres-
sure data retrieved after each fill of the LHC, classifying each pressure measurement
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as indicating heating or not is a tedious and time-consuming task. A fill is an LHC
operation cycle, starting with the gradual injection of the two counter-rotating beams,
their acceleration to collision energy and finishing with the beam dump. During the
LHC operation, each fill is injected in the LHC roughly 2 hours after the dump of
the previous one. In such a short time, all the 1200 pressure measurements cannot be
analysed manually in order to prevent heating that could cause damage during the
next fill.

2.3.1 Heating indication from pressure measurements

In the previous section it has been explained how heating can impact pressure mea-
surements through thermally induced outgassing. This section mostly focused in un-
derstanding how to visually detect heating from pressure measurements. The main
characteristics of a pressure measurement pattern indicating heating are:

• Either sudden or slow pressure increase occurs when the beam energy is con-
stant.

• Pressure increase can happen anytime during the fill.

• There is no defined threshold to determine if a pressure increase is heating.

• Pressure increase can last either few minutes or several hours.

A pressure measurement where the presence of beam induced heating is visible
has already been shown in Fig. 2.1. In such case, the pressure increase is smooth and
easily detectable by means of simple heuristic based algorithms that computes the
sign of the first derivatives.

Unfortunately most of the pressure measurements heating indication are not eas-
ily detected by simple heuristic based algorithms. An example is shown in Fig. 2.2.
This measurement is more noisy and better represents the most frequent heating pat-
tern observed in the LHC. In this plot there is a first broad increase correlated to the
energy ramp that is expected. Following the first broad peak there are several sharp
and noisy peaks that can be associated to beam losses or errors of the acquisition sys-
tem. Finally there is a step increase that stays up until the end of the fill. Only this
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FIGURE 2.2: Example of heating pattern a pressure measurement from a
run of the LHC of the 2015. The top plot shows the beam intensity and
the pressure measurement, in the bottom are represented the beam en-
ergy and the average bunch length. The pressure increase and decrease
around 07:00 related neither to the beam energy nor to variation of the
bunch length could indicate the presence of heating in the component.

The pressure measurement is noisy due to the acquisition system.

last increase could be due to beam-induced heating. In general there is no simple
rule to associate a pressure increase to beam-induced heating. Most of the time is ex-
pert knowledge based on previous experiences that helps in detecting beam induced
heating.

2.4 Machine learning for classification

Machine learning is the science of programming a computer to learn from data. The
question is, how can a computer learn something? A good answer to this question is:
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A computer is said to learn from Experience E with respect to some task T and some per-
formance measure P, if its performance on T, as measured by P, improves with experience
E. Tom Mitchell, 1997. There are several task that machine learning algorithm can
tackle. Firstly the algorithms can be either supervised or unsupervised. A supervised
algorithm is fed with labeled data (the outcome is known) while an unsupervised
algorithm is fed with unlabelled data (the outcome is not known). The unsupervised
algorithms are mostly used for clustering or dimensionality reduction of a dataset.
The supervised algorithm are mainly divided in two subcategories: regression and
classification. Regression consists in predicting an outcome that belongs to a con-
tinuous range of values while classification consists in predicting an outcome that
belongs to a discrete range of values. This thesis is focused on classification. The
goal of a classification is to determine to which class a certain element of the dataset
belongs. A class is simply a group or an identifier that has some specified character-
istics. A very common example is the spam classifier: given a dataset of e-mails the
algorithm should classify them in either spam or not spam. In this context the are are
only two classes: spam and not spam. The experience are the data. In general it is
desirable to have as much data as possible. The performance is a metric that allows to
estimate the goodness of the algorithm. The procedure, for which an algorithm itera-
tively updates its parameters in order to perform better predictions is called training.
The common way to train an algorithm is to define a function named loss function
that computes the goodness of the model given the output data of the prediction.
The training procedure iteratively updates the parameters aiming to minimise such
function.

2.4.1 Dataset

A Dataset is a collection of information used by the ML algorithms for training. It is
usually represented as am×n table wherem are the rows and n are the columns. The
rows are also named examples, instances or elements. The column are commonly
named features or predictors. Among the features in case of supervised learning,
there can be one or more columns that are named labels or targets. An ideal ML
model outputs the correct labels given the features as input for each instance in the
dataset. It is important when training a ML model to split the dataset in two sets: the
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training set and the test set. The training set is used for training the model while the
test set is used to evaluate the performance of the model. A model evaluated on the
training set can lead to an erroneous interpretation of its performance.

2.4.2 Evaluation metrics

When dealing with ML algorithms it is crucial to choose an evaluation metric prop-
erly. Numerous metrics exist in literature for classification problems [41]. The classi-
fication of pressure measurements is a binary classification problem: the outcome of
the prediction process could belong only to two classes: positive (i.e. the measure-
ment indicates heating) or negative (i.e. the measurement does not indicate heating).
Classification metrics classically relies on the definition of True Positive (TP), True
Negative (TN), False Positive (FP) and False Negative (FN) [41]:

• TP: an outcome where the model correctly predicts the positive class.

• TN: an outcome where the model correctly predicts the negative class

• FP: an outcome where the model incorrectly predicts the positive class.

• FN: an outcome where the model incorrectly predicts the negative class.

The metrics that will be used in this paper are accuracy, precision and recall de-
fined as follow:

Accuracy =
TP + TN

TP + TN + FP + FN
, (2.1)

Precision =
TP

TP + FP
, (2.2)

Recall =
TP

TP + FN
. (2.3)

The Accuracy is the ratio of number of correct responses to the total number of
input samples. Precision and Recall are a trade-off: reaching high precision requires
sacrificing recall and vice-versa. High recall is important when positive cases should
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not be missed while high precision is needed when the positive outcome of the model
should be always correct even if some positive cases are missed.

For the case of the classification of pressure measurements in LHC, high recall is
needed during LHC operation in order to maximize the chances of detecting heating
issues that could get worse and could lead to damage and long stop of LHC oper-
ation, even if this would mean to classify some negative cases as positive (i.e. low
precision). High precision is useful to search in the old LHC runs looking for unde-
tected heating case but acknowledging that some of them could be missed (i.e. low
recall).

2.4.3 Logistic Regression

The Logistic Regression [43] is a classification algorithm that computes probability.
The logistic function is defined as:

σ(t) =
1

1 + e−t
. (2.4)

The plot of Eq. 2.4 is represented in Fig. 2.3. The logistic function takes as input a
real number in the range ] −∞,+∞[ and outputs a real value in the range ]0, 1[. The
output of such function is interpreted as the probability of its input being positive.

FIGURE 2.3: Logistic function.
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The input t is defined as:

t = Θ0x0 + Θ1x1 + ...+ Θnxn,

where Θi is the i-th feature parameter of the algorithm and xi is the i-th feature of
the input vector x. The Logistic Regression model predicts 0 if σ(t) < 0.5 and 1 if
σ(t) ≥ 0.5. Training this algorithms means finding the values of Θ that best fit the
class label array y. The target is to tune Θ in order to have σ(t) < 0.5 if y = 0 and
σ(t) ≥ 0.5 if y = 1. This can be done by minimizing the following function also named
log loss:

J(Θ) = − 1

m

m∑
j=1

[yjlog(ŷj) + (1− yj)log(1− ŷj)]. (2.5)

Where yj and ŷj are respectively the class label and the model prediction of the
j-th element of the dataset. m is the total number of element in the dataset.

2.4.4 k-Nearest Neighbours

k-Nearest Neighbours (k-NN) [44] is a simple and effective classification algorithm.
Its prediction are instance-based rather than model-based. An example of a model-
based algorithm is Logistic Regression where the data are used to train the model (i.e.
finding the best Θ). In an instance-based model the prediction directly depends on
the data used during training.

Fig. 2.4 shows how k-NN performs prediction. In the example there is a two-
dimensional dataset (x1, x2) where the instances belongs to two classes: class A (yel-
low) and class B (purple). Given a new instance represented by a red star in the plot
and given a fixed value of k, the k-NN counts the k closest elements to the new in-
stance (red star) and predicts the new instance to belong to the most frequent class
within the k examples. In the plot can be observed that for k = 3 k-NN predicts the
new instance to belong to class B while for k = 6 predicts class A. This underlines the
main difficulty in training k-NN: the choice of k. There are no specified rule on how
to set k. In general several values of k are tried and the one that performs better on
the chosen metric is taken.
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FIGURE 2.4: k-Nearest Neighbours prediction example [45].

2.4.5 Decision Tree

Decision Trees [46, 47] are powerful algorithms that can tackle either classification
or regression tasks. As the name suggests, this model builds a tree by subsequent
splitting of the dataset according the feature values. In Fig. 2.5 is represented an
example of decision tree.

The nodes are the rectangles. In each node there is a feature of the dataset, The
root node is the one on the top containing the Weather feature. Each node is then split
according to the values of the features. According to the value of the node each node
can either lead to a prediction (Yes if Cloudy is chosen) or to a child node (Humidity
or Wind if Sunny or Rainy are chosen). The most widely used algorithm for training
decision tress is the Classification and Regression Tree (CART) [46]. It splits the train-
ing set into two subsets according to a feature and a threshold. Naming the feature k
and the threshold tk, the algorithm looks for the couple (k, tk) that minimises its cost
function defined as:
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FIGURE 2.5: Decision Tree example.

J(k, tk) = Gleft
mleft

m
+Gright

mright

m
, (2.6)

where mleft is the number of instances in the left split and mright is the number of
instances in the right split. G is the impunity function defined as:

G = 1−
n∑
k=1

p2k (2.7)

2.4.6 Random Forest

Random Forest [48] is an ensemble of Decision Trees. It builds many Decision Trees
(the number can be set by an hyperparameter) and then uses all of them for predic-
tion. The class predicted by the majority of the Decision Trees is the outcome of the
Random Forest prediction (Fig. 2.6).
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FIGURE 2.6: Random Forest example.

Each Tree is trained on a subset of the training set sampled with replacement. The
feature to perform the nodes split is sampled among a random subset of the features.
In general Random Forest performs better than Decision Tree and it is less prone to
overfitting due to various source of randomness in the algorithm [41].

2.4.7 Neural Network

Neural Networks are scalable, powerful and and versatile algorithms that have be-
come very popular in the last 10 years with the increase of computational power. The
elementary component of a neural network is a neuron. A single neuron network is
represented in Fig. 2.7.

x1...xi are the inputs while w1...wi are the weights. Each neuron may also have a
bias value b (i.e. a constant) that is not represented in the figure. In its most general
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FIGURE 2.7: Single neuron network.

form, a neuron computes:

y = f(
n∑
k=1

xkwk + b), (2.8)

where f is the activation function. The network just described has only 1 layer. In
general, networks have more layers and more neurons per layer. A network has two
layers if the output of the first set of neurons is fed to another layer. The neural
networks are unidirectional, by looking at Fig. 2.7 the inputs come from left and the
output goes directly in y or in another neuron if present. The activation function is
applied to each neuron to give the network non-linearity. Sometimes the activation
function may be omitted (i.e. there could be a neuron without activation function).
The two main activation function that one may find in a binary classification problem
are: Rectified Linear Unit (ReLu) and Sigmoid. The sigmoid has already been presented
and plotted in Fig. 2.3. The ReLu is represented in Fig. 2.8. It is a simple linear
function if the input is positive and zero otherwise. The ReLu is used in the hidden
layers, the layers, which output is fed into another layer. The sigmoid is used for
the output layer in binary classification task to output a probability. Training a neural
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FIGURE 2.8: Rectified Linear Unit (ReLu).

network means finding the weights matrix W that minimise the loss function defined
for the problem. For binary classification tasks, the loss function adopted is the binary
cross-entropy previously presented with its synonymous log loss in Eq. 2.5.

2.4.8 Convolutional Neural Network

A particular kind of Neural Network widely used for image recognition and signal
processing are the Convolutional Neural Networks (CNN) [49]. A CNN is a network
made of Convolutional Layers. In a convolutional layer the neurons of the input layer
are not connected with single elements of the input, but a subset of the input is pro-
cessed with a filter (also called kernel) that slides over the full input. The size of the
filter determine the size of the input that can be processed. In Fig. 2.9 is represented
an example of a CNN with a rectangular input and two convolutional layers.

A filter slides over the input and outputs an element that is fed into the first con-
volutional layer. A single element of the convolutional layer is not connected to the
full input but only to a subset of it. All the outputs of a single filter slid over the
full input form a feature map. The number of the feature maps is equal to the number
of filters defined. All the feature maps produced by several filters slid over a single
input produce a convolutional layer. When training a CNN the main parameters to
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FIGURE 2.9: CNN example [41]

specify are: filter size (kernel size), stride and the number of feature maps (number
of filters). It has to be noticed that the filter parameters are not specified and thus are
learned trough the training of the network. One has only to specify the filter size and
the number of filters. All the filters belonging to the same layer have the same size
even if they have different parameters and they produce different feature maps. The
stride is the amount of elements of the input that the filter has to skip while sliding
over it.

2.4.9 k-means

k-means [50] is an unsupervised clustering algorithm. It groups the input data by a
similarity criterion. It has not to be confused with k-NN previously described, which
is a supervised learning algorithm. The k-means algorithm takes as input the number
of clusters k and the data and works as follows:

[1] It randomly initializes k points in the feature space named centroids.

[2] It computes the distance between each element in the dataset and the centroids.

[3] It labels the closest elements to each centroid with the same class.
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[4] It recomputes the centroid position as the average position between the ele-
ments of each class.

[5] It repeats from point 2 to 4 until the the position of the centroids does not sig-
nificantly differ between 2 iterations: their new position is within a predefined
convergence distance with respect to their position at the previous iteration.

The most commonly used distance metric is the Euclidean distance defined as:

d(p,q) =

√√√√ n∑
i=1

(pi − qi)2 (2.9)

where p and q are two elements belonging to the feature space and n is the total num-
ber of features. The k-means algorithm can also be used as dimensionality reduction
technique proving that it can significantly improve classification accuracy when used
as preprocessing step [41].
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Part II

Methodology
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Chapter 3

Impedance of a synchrotron
component from beam-induced power
loss

3.1 Overview

For impedances modelled with the resonator formula, the quality factor and the res-
onance frequency need to be estimated in order to obtain the impedance. In addi-
tion, the shunt impedance (Rs) should be evaluated to fully obtain the value of the
impedance. However, once the other two parameters have been obtained, a sin-
gle power loss measurement is needed to assess Rs, by substituting Eq.(1.10) into
Eq.(1.19), and by solving for Rs. In this procedure, it is assumed also that different
beams could be produced where just one parameter is changed without varying any
of the other parameters and that fr is very close to one of the main lines of the spec-
trum. In particular, the number of bunches enters in the computation of the quality
factor while the bunch length enters in the computation of the resonance frequency.
This last assumption is not needed for the computation of the resonance frequency
but only for the estimation of the quality factor. Therefore one can first derive the
resonance frequency and then evaluate if the quality factor can be computed know-
ing the frequencies of the main lines of the power spectrum. It should be noted that
when the resonant frequency is close to one of the lines of the beam spectrum there
are both power loss and beam instabilities can also occur. Nevertheless, a resonance
for a single device in a large machine may be a perturbation on top of the impedance
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model and a large heat load on one device does not necessarily mean stability issues
as was observed for the case of the LHC synchrotron light monitor BSRT and injection
protection collimator TDI [4]. In addition, the main heat load spectrum lines are not
necessarily resonant lines involved in multibunch beam instabilities [51].

3.2 Computing the resonance frequency

As mentioned in Section 1.2.2, the position of the peak impedance represents the res-
onance frequency that is being estimated. The impedance does not depend on the
beam parameters; therefore, by varying any of these beam parameters, the power loss
changes without any variation of the impedance. This is analogous to circuit theory
where the impedance is independent from the current. Assuming that it is possible to
provide different beams to the machine, with different bunch lengths (but keeping the
other beam parameters unchanged), it can be observed that the change of the bunch
length modifies the shape of the power spectrum of the longitudinal time distribution
of the beam Fig. (3.1). Ideally, the time profile of each bunch is Gaussian [14]. In this
case, the power spectrum of the time distribution should also be Gaussian. However,
in practice, the bunch length τ is finite and hence, the power spectrum of the bunch
distribution will exhibit several lobes, separated by minima, lying at multiples of 1/τ ,
as shown in Fig. (3.2). As a result, a change in the bunch length will affect the position
of the first zero of the power spectrum, which will move towards higher values as the
bunch length decreases. Figure 3.1 shows the power spectra for different values of
the bunch length. It is therefore possible to choose a beam with a given bunch length,
such that the first zero lies at a pre-established position.

As can be seen from Eq. (1.19), the power loss is the product of the power spectrum
and the impedance. The result of this product decreases as the resonance frequency
approaches the minimum of the power spectrum. However, due to the second lobe
of the power spectrum, as the resonance frequency increases to values higher than
the frequency of the first minimum of the spectrum, the power loss increases again.
Therefore by observing the power loss versus the bunch length, the resonance fre-
quency can be identified as the position of the first relative minimum.
The magnitude of the second lobe of the power spectrum plays an important role. The
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FIGURE 3.1: Power spectra of fills with different bunch lengths. The
frequency of the first main line that goes to zero is related to the bunch

length. The shape of the bunches is Gaussian.

FIGURE 3.2: Measured power spectra of the LHC beam for the fill num-
ber 5979 of the (21-07-2017). The figure shows that during the energy flat
top the spectrum of the beam is evolving with time. Two lobes of the

spectra are visible due to the finite length of the bunches.
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accuracy of determining the minimum improves as the amplitude of the second lobe
increases. It would be preferable to have parabolic longitudinal bunch charge dis-
tributions as shown in Fig. 3.3, where the second lobe is clearly visible. A parabolic
shape of the bunch can be seen indeed as the product of a parabola with a time win-
dow that results in a parabola for the positive y-axis and zero elsewhere. Here again
the presence of the window leads to a sinc function in the Fourier domain and thus
again the second lobe. Because the cut in this case is less smooth due to the con-
cavity of the parabola, the second lobe is more visible. Parabolic bunch distributions
are present in the LHC after injection oscillations are damped [14]. The distribution
can also be tuned by adding some noise, in a procedure called bunch flattening in
LHC [52].

FIGURE 3.3: Power spectrum of a beam with parabolic longitudinal dis-
tribution compared with a Gaussian distribution, both with a bunch
length of 2 ns. The second lobe of the truncated Gaussian longitudinal

distribution is already not visible within −80 dB.

3.3 Computing the Q factor

Considering a resonator model impedance, with a fixed value of fr, the relation be-
tween beam–induced power loss and the number of bunches in a machine revolution
period can be extended to intermediate cases between narrow-band and broad-band
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FIGURE 3.4: Normalized power loss vs the number of bunches for vari-
ous values of Qr .

impedance, as
Ploss(M) ∝Mα (3.1)

where α = α(Qr) is a monotonic function of the the quality factor Qr, where α = 1 for
Qr → 0 and α = 2 for Qr → +∞ [14].
For a fixed value of Qr, when the trend of the power loss versus the number of
bunches is obtained by considering a normalized power loss, Pnorm(M), as

Pnorm(M) =
Ploss(M)

Ploss(Mmax)
, (3.2)

where Ploss(Mmax) is the power loss corresponding to Mmax bunches. The normalized
power loss is equivalent to Eq. (3.1) as

Pnorm(M) = c ·Mα (3.3)

where c is a constant that can be determined by observing from Eq. (3.2) that Pnorm(Mmax) =

1, to be,

c =
1

Mα
max

. (3.4)

Therefore, Eq.(3.3) becomes
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Pnorm(M) =

(
M

Mmax

)α
, (3.5)

where α is assessed by taking the natural logarithm of Eq.(3.5) as follows,

logPnorm(M) = log

(
M

Mmax

)α
= α log

(
M

Mmax

)
(3.6)

Finally, Eq.(3.5) is averaged over M , in order to get the best estimation of α over the
considered range of the bunch numbers

1

Mmax

Mmax∑
k=1

logPnorm(Mk) = α
1

Mmax

Mmax∑
k=1

log

(
Mk

Mmax

)
, (3.7)

where k is the number of the considered bunch M1, . . . ,MMmax.
It can be observed from Eq.(1.19) that α depends on Qr. By varying Qr, the band-

width of the impedance varies. Therefore, the product inside the sum leads to a dif-
ferent number of negligible terms. This means that the value of α giving the best
approximation of Eq. (1.19) with Eq. (3.1) also varies. Due to this dependence, it is
difficult to obtain a closed form for the α(Qr) function. For this reason, α(Qr) was
evaluated through numerical computation.
In order to determine the trend of the α(Qr) function, the value of α has to be com-
puted for several values of Qr. Before evaluating α, the quantity Pnorm has to be
computed as shown in Fig. (3.4), with M varying from 1 to 3564 that is the total num-
ber of slots available in the LHC.
This procedure requires several computations of the power loss with different num-
bers of bunches for each value of Qr.

For the numerical computation, the longitudinal distribution of the bunch in the
machine is usually assumed to have Gaussian, equally-spaced and identical bunches
(as in reference [53]) that are uniformly distributed along the accelerator.

In a more realistic scenario, the bunches are not identical to one another. In addi-
tion, they are not equally-spaced and their filling scheme (as defined in Section 1.3) is
not periodic.
In this work, the realistic scenario, considering a typical LHC fill patterns (as in
Fig. (4.8)) was considered.
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Power loss simulations

4.1 Overview

The power loss depends on numerous parameters. To understand the impact of each
parameter on the power loss, their effects have to be decoupled. This is done by
studying a cavity with a single resonating mode. Firstly the resonating cavity is de-
fined and its impedance is shown. Then the single beam power loss is presented in
this scenario, underlining how this cavity can help in studying the following two-
beam power analysis. Finally the two-beam power loss is simulated firstly under the
assumptions of Eq.(1.25) and then by observing how the power loss behaves outside
these assumptions with the help of the CST solver.

4.2 Pillbox cavity

To perform analysis on the power loss, firstly a cavity with just one resonating mode
was identified and modeled. To perform two-beam power loss studies, it is important
that the decay time of the wakefield in the cavity is long enough to ensure an EM
cross-talk between the bunches of the two beams. By looking at Eq. 1.26 the best
trade-off between the conductivity σ and the cavity length h has to be found. A too
low value of σ means that the wake field decays too fast, not allowing two bunches
of the same beam or even two bunches of two different beams to cross-talk. A cavity
with high σ, low Q and fr around 1GHz (needed to have just one mode in the cavity)
are quite demanding specs, since the required Q and σ lead to a very small value of
the cavity length h. This modelling issue can be solved considering that the cavity
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has to be linked to a beam pipe, therefore even having an higher value of h does not
lead to very high values of Q because some of the power flows into the beam pipe
lowering down the Q value. The beam pipes are 50 cm long per side meaning that the
bunch takes 1.6 ns to pass trough the pipe and reach the cavity where the power loss
is dissipated due to the lossy material.

A resonating mode at 1.10 GHz is obtained with a radius a =11.6 cm and a length
h = 1.0 cm with a beam pipe with radius r = 4.0 cm. The resulting model is shown in
Fig.. (4.1).

FIGURE 4.1: CST model of a cavity with: a=11.6 cm, h=1.0 cm,
σ=10 000 S/m and beam pipe with radius r=4.0 cm.

The cavity has a layer of lossy material with 0.5 cm of depth and σ = 104S/m. The
cavity was modeled on CST studio suite that allows computing the cavity impedance
and wakefields directly. The resulting impedance is shown in Fig. (4.2).

The second mode of the cavity is above 2 GHz. For the beams adopted in simula-
tions, only impedance below 1.5 GHz may significantly contribute to the power loss.
All the impedance computations were performed taking care that the wake potential
is decayed within 1% of its initial values as shown in Fig (4.3).

In order to speed-up the simulations that are very time demanding for the two
beam power loss case magnetic yz and xz planes were assumed for the simulation to
take advantage of the symmetry of the model.
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FIGURE 4.2: Real part of the longitudinal impedance of a pillbox cav-
ity with: a=11.6 cm, h=1.0 cm, σ=10 000 S/m and beam pipe with radius

r=4.0 cm.

FIGURE 4.3: Wake potential of the impedance of Fig. (4.2).

In Fig (4.4), it is shown that the presence of the symmetry planes do not change
the computated wake potential, as expected. On the other hand, the symmetry planes
reduce the simulation time significantly by reducing the simulated volume of a factor
4.
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FIGURE 4.4: Wake potential symmetry comparison of the impedance of
Fig. (4.2).

4.3 Single beam power loss

The single beam power loss was simulated in two main scenarios:

• Single bunch,

• Multi bunch.

4.3.1 Single bunch

The single bunch case is studied to observe the duration of the power loss in the
cavity. This is needed to be sure that the power loss lasts long enough to couple two
bunches entering the cavity with a phase shift τs. The bunch parameters are:

• Nb = 2.3 · 1011 protons per bunch.

• bunch length τ= 1.2 ns.

The bunch enters the simulation domain 25 ns after the beginning of the simulation
as represented in Fig. (4.5).

The case of two bunches spaced by 25 ns is shown in Fig. (4.6). Taking into account
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FIGURE 4.5: Longitudinal profile of a single bunch entering the simula-
tion domain 25 ns after the beginning of the simulation.

FIGURE 4.6: Longitudinal profile of two bunches entering the simulation
domain respectively 25 ns and 50 ns after the beginning of the simulation.

the length of the beam pipe of 50 cm the bunches in both cases will enter the cavity
with an additional delay of 1.67 ns.
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4.3.2 Multi bunch

The single beam power loss was also computed from CST and compared with Eq. (1.19)
in a simple case scenario. In Eq. (1.19), the impedance is computed with CST and the
single beam spectrum of one bunch represented in Fig (4.7) was used. To compute
the power loss, the fill 5979 of the Large Hadron Collider (LHC) in 2017 was chosen.
Its longitudinal distribution is plotted in Fig. (4.8).

FIGURE 4.7: Longitudinal time distribution of a single-bunch beam.

Such filling scheme has been used directly as input beam distribution in CST to
compute the power loss. CST indeed provides as output the instantaneous power
loss array p(nt0) along the duration of the fill T , where n is the length of the array
and t0 is the time between two consecutive points. Thus the power loss for the cavity
results to be:

Ploss =
1

T

T
t0∑
n=0

p(nt0). (4.1)

The computation of the power loss versus time of a multi-bunch beam like the
fill 5979 is very time-demanding. Looking at the longitudinal distribution of the con-
sidered fill in Fig. (4.8), it is possible to observe that it is a good approximation to
consider just a fifth of the longitudinal distribution to compute the power loss due to
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FIGURE 4.8: Longitudinal time distribution of the beam for LHC fill
number 5979 on 21-07-2017.

the quasi-periodicity of the filling scheme. It has to be underlined that such method
is a good approximation and not the exact computation of the power loss because
the first batch of 12 bunches that is needed for machine protection checks does not
repeat itself in the filling scheme, contrary to the following batches. An estimate of
the error produced by this approximation is given in the part of the thesis dedicated
to the Results.

4.4 Two beam power loss analysis

CST also allows computing the two-beam power loss with good precision [54]. The
simplified two-beam power loss equation Eq. (1.25) has been compared with the CST
results in the range of its validity and the the limits of such equation have been ex-
plored using CST. To compute the power loss with Eq. (1.25), the impedance com-
puted by CST for the previously defined pillbox cavity was used. Also for this case
in CST, the impedance is computed with a single beam made of a single bunch. The
procedure to perform two-beam power loss computations with CST is the same as
for the single-beam case described in the previous paragraph: the only difference is
that a second beam that circulates in the opposite direction to the first beam has to be
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defined. Computing simulations with two full beams is extremely time-demanding
for CST. It was therefore decided to first perform single bunch simulations for the
two-beam case. An analysis with two full beams was performed Eq. (1.25) and the
comparison with the formula is given in the results of the thesis. If not otherwise
specified, the following two-beam analysis are performed considering two counter-
rotating single-bunch beams. In all the simulations the two counter-rotating beams
have the same longitudinal distribution (i.e. same filling scheme).

4.4.1 Phase shift

The main parameter in the analysis of two-beam simulations is the phase shift τs
between the two beams. To simulate the phase shift with CST, the two beams were
chosen to enter the simulation domain at the same time, while the length of one of
the two beam pipes was adjusted: a longer pipe on one side of the cavity causes the
bunch to arrive later inside the cavity. This simulation setup is the one that mostly
resemble the real occurrences. In particular the phase shift is:

τs =
|l1 − l2|

c
,

where c is the speed of light, l1 and l2 are the length of the beam pipes connected
to the cavity. The two beams were assumed to circulate at the center of the cavity,
meaning that there is no transverse displacement between the two beams:

∆y1 = ∆y2 = 0

in Eq. (1.25). The first benchmark between Eq. 1.25 and CST is to observe the power
loss as function of the phase shift. This is done for the cavity presented in the previ-
ous section. With the same cavity parameters, a comparison between the two-beam
power loss and the single beam case is also presented. Together with the power loss
analysis, an impedance modes analysis was performed to understand which mode is
primarily contributing to the power loss. Then the analyses are focused on the case
of τs = 0, for which the center of the cavity is assumed to be the collision point of the
two beams.



4.4. Two beam power loss analysis 57

Cavity radius

The impact of the radius of the cavity was analysed by computing power losses both
with CST and Eq. (1.25) for several configurations. In particular, the cavity radius
was swept from 13 cm to 15 cm with a step of 0.5 cm, with a fixed length h = 1cm. For
each of these values the power loss as function of the phase shift was analysed.

Cavity length

The length of the cavity plays a major role in the analysis, in particular in the assump-
tions to derive Eq. (1.25) as shown in [3]. The limits of these assumptions are revealed
in disagreements between Eq. (1.25) and CST computations. Possible explanations of
this disagreement are also presented in Chapter 7. The power loss as function of the
phase shift τs was simulated fixing the radius to r =14.5 cm for cavity length values
h =1 cm, 2 cm and 10 cm. Then the case of h =30 cm is presented and discussed. Fi-
nally, a bigger sweep from h = 1cm to h = 100cm is analysed for the case of τs = 0,
focusing also on how this plot changes for radii values of 20 cm and 30 cm.

4.4.2 Multi–bunch analysis

Considering the LHC fill 5979, a two-beam multi-bunch analysis of the power loss
versus the phase shift τs was performed with the cavity parameters presented in the
previous section. Since the multi-bunch case is very time demanding in CST (a full
simulation of a single parameter can take up to 1 day), only a fifth of the beam was
simulated. The phase shift was varied from −0.2 ns to 1 ns taking six point in this
interval. Negative values of the phase shift means that the shifted beam (i.e. the beam
incoming from shorter or longer beam pipe) enters in the cavity before the other beam
while positive values means that the shifted beam arrives later. A comparison with
the single beam power loss is also presented.
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4.4.3 Horizontal offset between beams

When defining the two counter rotating beams, it is possible to specify a transverse
offset with respect to the center of the structure, to reproduce for instance the situ-
ation of accelerator components with common chambers away from the interaction
point in the LHC: there, both beams are offset transversely by design to avoid para-
sitic crossings between the two beams and reduce long range beam-beam effects [55].
Given the circular symmetry of the pillbox cavity, defining an offset only along the
x-axis is the same as defining it only along the y-axis. The offset was applied on the
x-axis as shown in Fig. (4.9).

FIGURE 4.9: Horizontal offset of two beams inside the cavity.

The target of this analysis is to understand the impact of the offset on the power
loss. In this specific case, two multi-bunch beams were used for the computation in
CST using the filling scheme 5979 of Fig. (4.8). By defining the distance between beam
1 and beam 2 as 2x0 the power loss was computed for the following value of x0: 1 mm,
2 mm, 3 mm and 4 mm.
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Chapter 5

Heating detection from pressure
measurements

5.1 Overview

In general, machine learning techniques are data-driven methods. In order to detect
heating from pressure measurements, a labelled dataset is needed to let the algorithm
learn from the measurements indicating heating. Labeling a dataset consists in asso-
ciating a value, the label, to each dataset element representing a particular class [56].
A labelled dataset on LHC heating issues observed by pressure measurement does
not exist in the literature. Therefore, it was needed to build it specifically. Then, to
this aim, a simple heuristic-based method was developed as baseline and several ML
techniques were exploited and compared.

5.2 Labeling the dataset

The dataset is labeled by analysing each record and associating an appropriate label
according to the particular class. Each pressure measurement has to be plotted and a
binary value belonging to {0, 1} has to be assigned, where 1 represents heating cases
and 0 the pressure measurements where no obvious heating can be hinted from the
data. Heating measurements are very rare with respect to the not-heating measure-
ments, therefore, the construction of a statistically representative dataset turns out
to be particularly tedious and time-consuming. On the other hand, it is possible to
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download a large amount of pressure measurements unlabeled data from the CERN
logging database.

The k-means [57] algorithm was exploited to find heating cases from the unlabeled
data. The k-means algorithm clusters the data according to their mutual distances.
Usually, the Euclidean distance metric is used. The underlying assumption is that
heating cases should be close to each other. In particular, the Euclidean distance be-
tween two heating cases should be smaller than the distance between a heating and
a not-heating case, so that the algorithm should be able to group them. By running
the k-means algorithm multiple times for different values of k, the closest pressure
measurements to the cluster centers were analysed after every run. In particular, the
goal was to look for the value of k, for which at least one of the closest pressure mea-
surements to one of the cluster centers is a heating example. The silhouette score [58]
as a function of k for the unlabeled dataset was computed in order to help with this
task and in order to minimise the k values, for which the cluster centers should be
investigated, . The silhouette score is the average of the silhouette coefficient [58].
The silhouette coefficient can vary between −1 and +1, a value close to +1 indicates
that a sample is situated inside its cluster. A value near 0 indicates that the sample
is very close to the decision boundary between two neighboring clusters. A negative
value indicates that the sample might have been assigned to the wrong cluster.

The silhouette score plot is represented in Fig 5.1. The points with higher silhou-
ette score were investigated. In particular, one heating example is the closest example
in the dataset to one of the cluster centers for k = 12. By plotting all the elements be-
longing to that cluster, 175 heating examples were found. The dataset was completed
by choosing 175 not-heating samples. Since finding samples without heating indica-
tion is easier, they were chosen in order to have a dataset that would be as represen-
tative as possible of all different shapes of the pressure measurements. At the end of
this process, a labeled and balanced dataset composed of 350 elements was obtained.

5.3 Preprocessing data

To perform ML classification each pressure measurement was interpolated on a fixed
amount of steps. The fixed amount of steps was chosen to be sufficiently big to avoid
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FIGURE 5.1: Silhouette score plot as function of the number of cluster k.

losing information during the interpolation (i.e 10% bigger than the longest pressure
measurement sampled). By defining the total number of measurements m = 350 and
the total steps as n = 3000, all the pressure measurements were stored row-wise in
a matrix X ∈ Rm×n. The labels were stored as a vector T ∈ 0, 1m×1, where the n-th
entry value of T is the label corresponding to the signal in the n-th row of X .

Taking into account the curse of dimensionality problem [59], this dataset could
not be suitable for ML algorithms without further preprocessing. Indeed, there are
too many features (i.e., the 3000 time steps of each pressure measurement during a
fill) with respect to the amount of data (i.e, the 350 labeled examples). To avoid or
alleviate this problem, several signal processing techniques were applied to reduce
the dimensionality of the feature space and to alleviate the noise coming from the
acquisition system while preserving the information useful for classification.
After several experimental investigations, the following preprocessing pipeline was
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defined:

[1] Max-pool filter [60].

[2] Median filter [61].

[3] Savitzky–Golay filter [62].

[4] Standardization.

[5] k-means transformation.

As it will be discussed in Section 5.4, the ML algorithms performance is evaluated
both when all the pipeline steps are applied, and when some of them are skipped,
with the aim to evaluate their impact on the performance of the ML algorithms .

Max pooling is done by applying a max filter (i.e. filter that samples the max value
in an array of values) to non-overlapping subregions of the initial representation of
the signal. The median filter [61] cleans the signals from Gaussian noise produced
by the measurement system. The Savitzky–Golay filter smoothens discontinuities if
present. The standardization consists in subtracting from each pressure measurement
its mean and dividing by its standard deviation. The k-means transformation goal is
to further reduce the input size by transforming each signal into the distance from its
closest cluster.

All these filters have hyperparameters that need to be tuned. A common tech-
nique in ML is to train the model with various combinations of the hyperparameters
and pick the values of the hyperparameters that result in the best performance score.
This technique is called hyperparameter search, and Grid Search [63] is a standard way
to perform it.

Because each ML model has also its own hyperparameters to be tuned, some of
these preprocessing hyperparameters were deliberately fixed to reduce the computa-
tional time. For the others hyperparameters, Grid-Search has been applied with the
goal to maximise the accuracy score.

In particular for the max-pool, a filter size equal to 15 was applied, thereby reduc-
ing the number of steps per pressure measurement to 220. The median filter size was
set to 11. The Savitzky–Golay filter order was set to 2. The filter size was set to 9. The
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size of the filters was chosen by taking the best trade-off between reducing the signal
size and noise while preserving heating indication.

The number of clusters k of the k-means algorithms used for the preprocessing
was tuned with a Grid-Search. The set of values for the hyperparameter k given
to the Grid-Search is (5, 10, 30, 50, 100). The best value of k resulting from the Grid-
Search depends on the algorithms that is following the k-means transformation. As
shortly discussed, k-means transformation is not applied to all the algorithms as pre-
processing step. When applied, a comparison between the performance of the algo-
rithms with and without the k-means is provided. The value of the best performing
k in terms of accuracy when k-means is applied is given in the following sections
together with the description of which preprocessing step was applied to each algo-
rithm. The impact of the filters and the k-means preprocessing on the ML algorithms
performance is discussed in the results.

5.4 Algorithms

A simple heuristic-based algorithm and several ML algorithms were applied to the
classification problem discussed so far, and compared. The selected ML algorithms
are: Logistic Regression (LR) [43], k-Nearest Neighbours (kNN) [44], Random Forest
(RF) [64] and 1-D Convolutional Neural Network (CNN) [49].

The impact of the preprocessing steps was analyzed by comparing the algorithms
in the following scenarios:

• Comparison of all the models when only the max-pooling and standardization
is applied.

• Comparison of LR, kNN and RF when max-pooling, standardization and k-
means preprocessing is applied (no median and no Savitzky–Golay filtering).

• Comparison of all the models when the full preprocessing pipeline (all the steps
presented in sec. 5.3) is applied to each model.

When the k-means transformation is applied the hyperparameter k is tuned with a
Grid-Search.
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The full preprocessing slightly differs for the heuristic-based algorithm and the
CNN. In particular for the heuristic-based algorithm, the full preprocessing consists
in all the preprocessing steps without the k-means transformation. For the CNN the
full preprocessing steps are:

[1] Max-pool filter.

[2] Median filter.

[3] Standardization.

The motivations for this choice are discussed in sections 5.4.1 and 5.4.5.

5.4.1 Heuristic-based algorithm

A simple heuristic-based algorithm was developed and used as baseline to identify
the heating patterns. The need of developing such an algorithm comes from the ab-
sence in the literature of approaches for this specific task.

The understanding of the pressure measurements patterns given by the numerous
examples retrieved with the k-means algorithm used to label the dataset helped in
developing a heuristic-based solution.

The idea behind is: if there is an increase in pressure that lasts at least a fixed
amount of steps and is not related to the the energy ramp at the beginning of the fill
(that usually induces peaks in the pressure measurement observed in Fig. 2.1) it has
to be considered as abnormal heating.

The k-means preprocessing step is not performed to preserve the similarity be-
tween the raw signals and the preprocessed ones. At the end of the preprocessing
procedure, each pressure measurement is a standardized signal of N = 220 steps. For
each of them the following steps are performed:

[1] The steps axis is divided in K bins.

[2] The average of the pressure is evaluated for each bin.

[3] If the pressure average of a bin is higher than the previous one (neglecting the
beam ramp peak as mentioned above) the measurement is marked as heating.
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[4] The value of K that reaches the best performance is tuned.

The heuristic-based model results are discussed in Chapter 8.

5.4.2 Logistic Regression

For Logistic Regression (LR) the number of clusters k for the k-means preprocessing
step (when applied) was tuned with a Grid Search. The value k resulting the best
accuracy score is 30. To alleviate overfitting [65], l2 regularization [66] was applied.

5.4.3 k-Nearest Neighbours

The main parameter of the k-Nearest Neighbours (kNN) algorithm is the number of
neighbours kn (different from the number of clusters k for the k-means algorithm).
With the help of a Grid Search both k (k-means) and kn (kNN) were tuned. kn was
varied in the range [3, 7] while k was varied in the set (5, 10, 30, 50, 100). The parame-
ters that resulted in the highest accuracy score are kn = 3 and k = 10.

5.4.4 Random Forest

Random Forest (RF) is a powerful algorithm that can be used either for regression or
classification task. The maximum number of leaf nodes and the number of estimators
are the RF specific hyperparameters, which were varied. Their values were chosen
with the help of a Grid Search . The first was searched in the interval [3, 10] while the
second in the set (50, 100, 150). The number of clusters k of the k-means preprocessing
(when applied) was varied in the set (5, 10, 30, 50, 100) as for the previously described
algorithm. The best performing combination of parameters resulted to be:

• Max leaf nodes = 4.

• Number of estimators = 100.

• k=30.
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5.4.5 Convolutional Neural Network

The last approach adopted is a 1D-CNN. The preprocessing adopted for this approach
slightly differs from the previously presented algorithms as mentioned above. In
particular, the full preprocessing pipeline is composed of three steps only: Max-pool
filter, Median filter and Standardization. The reason of such choice is that CNN net-
works are usually applied on input signals, which are poorly preprocessed insofar
as convolutional layers already act as a sort of feature extractor (see, for example,
reference [67]).

Layer Parameters
Conv1D filters: 10, kernel size=50, stride=1, activation= ReLu

MaxPooling kernel size=15, strides=15
Conv1D filters: 10, kernel size=50, stride=1, activation= ReLu

MaxPooling kernel size=15, strides=15
Dense units=1, activation=Sigmoid

TABLE 5.1: CNN layers.

The CNN model is summarised in table. 5.1. The first layer is a convolutional 1D
layer with 10 filters, kernelsize = 50x1, stride = 1, and ReLu activation function.
The kernel size is the width of the filter. This layer uses each filter to perform a
convolutional operation with the input. The stride represents how many steps, from
left to right, each filter has to move when sliding over the input signal. The ReLu is
the Rectified Linear Unit defined as max{0, x} where x is the input value. After the
first convolutional layer there is a max pooling layer, whose role is to reduce the size
of the input of factor 15 by sampling the max value in each window of size 15. As
last layer, a full-connected layer with only one output unit is applied, with sigmoid
activation function to compute the output of the output unit. The sigmoid function is
defined as

hθ(a) =
1

1 + e−a
,

where a is the activation of the output unit. The loss function used for training is the
binary cross-entropy [68]. The model training was limited to 300 epochs for compu-
tational reasons.
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For this network a Randomized Search [69] was used to tune the number of fil-
ters and layers to scan a wider range of hyperparameters. In this context a layer is
intended to be the pair Conv1D - MaxPooling.

5.4.6 Training

To evaluate the models described above a variant of Cross-Validation [70] named
Stratified Shuffle Split (SSS) [71] was applied. SSS is a variant of Shuffle &Split. Shuf-
fle & Split consists in generating a user-defined number of independent train/test
dataset splits. Samples are first shuffled and then split into a pair of train and test
sets. Each train and test set is sampled with replacement. SSS differs from Shuffle &
Split by returning stratified splits: it creates splits by preserving the same percentage
for each target class as in the complete set [71]. SSS was performed with 10 splits with
a test size of 33%. The heuristic-based algorithm does not need any training but in or-
der to compare it with the ML models it was tested on the same test splits of the other
models to provide an average of each score together with the confidence interval.
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Part III

Results
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Chapter 6

Results of impedance of a synchrotron
component from beam-induced power
loss

The methods for estimating the resonance frequency fr and the Q–factorQr described
in Chapter 3 have been applied to characterize an impedance inside the LHC. The
considered fill is the 5979.
It is assumed that fr is very close to the position of one of the main lines of the power
spectrum. Before going further, it is important to emphasize that the following results
are obtained numerically and some of the bunch lengths chosen for the computation
cannot be reached by the LHC RF cavities: since it is a 400 MHz system the bunch
length cannot exceed 5 ns. This practical constraint limits the minimum resonance
frequency that can be estimated with the method to 550 MHz for the LHC. Those
values have been chosen to make the example as clear as possible, in particular the
power spectrum main lines of the shortest bunches in the range of interest are not
visible with a linear scale.

The impedance chosen as test case for the method has fr = 400.78 MHz andQr = 5× 104.
As previously mentioned, the value of the shunt impedance Rs can always be ob-
tained by using Eq. (1.19) once fr and Qr are known, thus it will not be discussed in
this section. The power loss computed for the fill 5979 with this impedance is named
measured power loss.

First, the fr value is to be computed. As explained in Section 3.2, it is sufficient
to observe the power loss produced by the desired impedance as a function of the
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bunch length. By computing the power loss produced by the impedance with several
bunch lengths, from 1 ns to 8 ns, the plot in Fig. 6.1 is obtained. At a bunch length of
7 ns, there is the first relative minimum; therefore, to assess the value of the resonant
frequency fr of the impedance, it is necessary to observe the power spectrum of the
7 ns bunch length fill. The plot is shown in Fig. 6.2 where it is possible to observe that
the first minimum of the main lines is around 400 MHz, which is in good agreement
with the assumed fr = 400.78 MHz.
With the value of fr evaluated, it is possible to apply the method explained in Sec-
tion 3.3. In this case, the plot of Fig. 6.3 is obtained, which shows the value of Qr

corresponding to each value of α. To evaluate Qr from this plot, the value of α must
be estimated, and it can be obtained by evaluating the power loss as a function of the
number of bunches. The result of simulations of the power loss, obtained by varying
only the number of bunches for different α values, is shown in Fig. 6.4. The value of
α that best approximates the measured power loss results seems to be 1.75.
In particular, by computing the mean square error (MSE) between the functions f(α) =∝
Mα and the measured power loss for α in the range (1,2) (Fig. 6.5) the value of α that
minimise the MSE is found to be 1.74. The evaluation of Qr from this value of α in
Fig. 6.3 leads to Qr ≈ 5× 104, as expected.
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FIGURE 6.1: Logarithm of the power loss as a function of the bunch
length with all the other beam parameters kept constant
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FIGURE 6.2: Logarithm of the power spectrum of a beam with a bunch
length of 7 ns. It is important to observe that the first minimum is around

400MHz.

FIGURE 6.3: Assuming Ploss(M) ∝ Mα, α is plotted as a function of Qr
for fr = 400MHz.
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FIGURE 6.4: Power loss normalized to its maximum as a function of the
number of bunches M. The black dots correspond to various measure-
ments of the power loss produced by the impedance discussed in this
Section by varying only the number of bunches. The lines are the func-
tions ∝ Mα. The one that best fits that best fits the measurements is

f(M) ∝M1.75.
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FIGURE 6.5: MSE between the functions f(α) ∝ Mα and the measured
power loss for α in the range (1,2). The value of α that minimise the MSE

is found to be 1.74.
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Chapter 7

Results of power loss simulations

7.1 Single beam results

In Fig. (7.1), the power loss of a single beam with one bunch passing trough the cavity
of Fig. (4.1) is represented as a function of simulation time. In particular, the single

FIGURE 7.1: Instantaneous power loss dissipated inside the cavity as
function of time (in red) generated by a single bunch longitudinal distri-
bution passing through the cavity (in blue). The entry time in the beam
pipe and the entry time in the cavity are also represented respectively
as a vertical black dashed line and as a vertical dashed green line. The

reference is taken at the maximum of the longitudinal distribution.

bunch longitudinal profile is plotted together with the instantaneous power loss dis-
sipated in the cavity as a function of simulation time. In the plot are also represented
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the entry time in the beam pipe and the entry time in the cavity, the reference for
these lines being taken at the maximum of the longitudinal distribution. The peak of
the power loss corresponds to the entry time of the bunch in the cavity, 1.67 ns after
the entry in the pipe due to its 50 cm length . As already introduced in Chapter 4, the
bunch parameters are:

• Nb = 2.3 · 1011

• bunch length = 1.2 ns

Due to the conductivity of the cavity and its resonant mode, the instantaneous power
loss remains significant even 30 ns after the bunch has passed trough the cavity. The
instantaneous power loss reaches its maximum 1.67 ns after the bunch maximum has
entered the cavity and then it decays with an oscillation of 2fr where fr is resonant
frequency of the mode TM010 (i.e. the only mode activated in this cavity). In Fig. (7.2)

FIGURE 7.2: Instantaneous power loss dissipated inside the cavity as
function of simulated time (in red) generated by two bunches passing
through the cavity (longitudinal distribution in blue). The entry time in
the beam pipe and the entry time in the cavity are also represented for
each bunch respectively as a vertical black dashed line and as a verti-
cal dashed green lines. The reference is taken at the maximum of the

longitudinal distribution.

the same plot is shown with a beam with two bunches. Even if the two bunches are
identical, the instantaneous power loss experienced when the second bunch enters is
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overall lower. In fact, the power loss of the first bunch is not decayed completely yet
and the coupling of the EM fields does not allow the second bunch power loss to reach
the same value. This is due to the phase of the mode TM010 when the second bunch
enters the cavity. If the phase of the mode is in the same direction as the phase of the
mode imposed by the new bunch, the two fields will add up constructively. If the
phase is opposite, the field of the first bunch will be subtracted to the field imposed
by the new bunch, resulting in a lower instantaneous power loss, as is observed in
Fig. (7.2).

The instantaneous power loss of fill 5979 computed by CST is represented in
Fig. (7.3). The bunches of operational fills are all different due to the production
process in the injector chain (i.e. different bunch length and different Nb). Also in
this case, every time a bunch enters an empty cavity (i.e. the EM fields of the pre-
vious bunches are completely decayed) the instantaneous power loss reaches higher
values. The first bunch of every batch has indeed higher instantaneous power loss.

FIGURE 7.3: CST computation of the power loss for the first fifth of the
LHC fill number 5979 on 21-07-2017.

Only the first fifth of the fill was computed with CST to reduce the very long
computational time of the solver. By applying Eq. (4.1), the total power loss results to
be:

PCST = 8.05 W.

The same power loss was computed with the following parameters in Eq. (1.19):
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• Nb = 1.1 · 1011,

• M = 2556,

• |Λ|2 represented in Fig. (7.4),

• Re[Z] represented in Fig. (4.2).

FIGURE 7.4: Power spectrum of fill number 5979 of a LHC run of the
21-07-2017.

The total power results to be:

Pformula = 8.11 W.

Resulting in a ratio:
PCST
Pformula

= 0.99%,

thus a very good agreement between CST and the analytical formula. This bench-
mark gives confidence to use CST for power loss computations.



7.2. Two beams results 81

7.2 Two beams results

The two beam formula Eq. (1.25) has a strong dependence on the phase shift τs. In
particular the power loss is zero when pω0τs = 0, thus for τs = 0.

In Fig. (7.5), there is a comparison between Eq. (1.25) and CST for the cavity de-
scribed in Section 4.2 and a good agreement is found between the two approaches.

FIGURE 7.5: Two-beam power loss versus phase shift for the cavity in-
troduced in Section 4.2. The analytical results are represented as a red

line, while CST simulations are represented as blue dots.

Each of the CST simulated points is derived by the instantaneous power loss with
Eq. 4.1. The power loss as a function of simulated time computed by CST for the
specific cases of τs=0 ns and τs=0.4 ns is reported in Fig. (7.6). The first observation is
that the power loss is zero for τs=0 ns. The two bunches are approaching the cavity
at the same time and both of them are trying to activate the TM010 mode. Because
the bunches are identical but counter-rotating they are activating the mode with the
same H010

φ field constant along z (see Eq. 1.28 for p = 0) but with opposite sign. In
particular:

H010
φ = H010

φ1 +H010
φ2 = H010

φ1 −H010
φ1 = 0,

where H010
φ1 refers to the magnetic field along the φ direction activated by the first

bunch. Analogously H010
φ2 refers to the magnetic field along the φ direction activated
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FIGURE 7.6: Instantaneous power loss for the case of τs = 0 (in blue) and
τs = 0.4ns (in red) of Fig. (7.5). Also the single beam single bunch case is

shown for comparison in black.

by the second bunch. The two fields are canceling out thus the power loss is zero.
When the phase shift between the two beams differs from 0, the fields do not cancel
anymore. The power loss is observed to have an oscillating behaviour with the phase
shift (see Fig. 7.5). The period of the oscillation (time between two consecutive mini-
mum) is observed to be 1

fr
where fr is the resonance frequency of the mode TM010 in

the cavity. This correlation with fr will be presented in the next section for different
radii of the cavity (i.e. different fr). The fact that the frequency of the oscillation of
the power loss with phase shift is fr can be explained by the fact that Hφ has a period
of 1

fr
. Indeed, for a phase shift of 2

fr
the field H010

φ1 induced by the first bunch is at its
maximum amplitude with opposite sign and is therefore perfectly in phase with the
field H010

φ2 induced by a second bunch entering the cavity, leading to a maximum in
Fig. 7.5.

In Fig. 7.7, the two-beam and single beam cases are compared for the same impedance
(i.e. same cavity). While the single beam case does not depend on the phase shift
τs, the two-beam case presents a strong dependence with phase shift, varying from
zero to almost four times the single beam power loss. When the fields from the two
bunches fully add up constructively, one could expect that the power loss would be 4
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FIGURE 7.7: Comparison between single beam and two beam power
loss.

times the power loss caused by a single bunch. It can be noted here that the first max-
imum in power loss (at τs = 0.45ns) is slightly lower than four times the single beam
power loss. Since the field of the first bunch decays exponentially until the arrival
of the second bunch, when the second bunch enters the cavity its field is in phase
with the field left by the first bunch but the amplitude of the latter is smaller. The
large fields from the first bunch caused single beam power loss in the cavity before
the arrival of the second bunch that could not add up constructively with the fields of
the second bunch, and therefore the dissipated power of two bunches entering with
a non-zero phase delay cannot reach four times the power loss of a single bunch. The
second minimum (i.e. the minimum at τs = 0.9ns) is not zero because the first bunch
has already dissipated power for 0.9 ns before the arrival of the second bunch. More-
over, the fields left by the first bunch are decayed and do not cancel out with the field
of the second bunch even if they have the exact opposite phase. For this reason, it is
expected that the exact cancellation of fields and power loss only occurs when there
is no phase delay between the bunches.

It is important to note that these observations are valid only if the structure is sym-
metric with respect to the plane orthogonal to the direction of the counter-rotating
beams, and if the counter-rotating beams share the same longitudinal distribution.
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For standard operation of a collider, the phase shift between the two counter-
rotating beams at a given accelerator component depends only on its longitudinal
distance from the nearest interaction point. The knowledge of this distance to the
interaction point allows predicting the power loss of a resonating cavity with a single
TM010 mode. As a consequence, the positions that minimize the power loss to compo-
nents can be favoured for installation, depeding on the frequency of their resonating
modes.

7.2.1 Cavity radius

The cavity radius a is directly related to the first mode of the pillbox cavity, the TM010

mode. Considering two beams with only one bunch each, CST and Eq. (1.25) were
compared sweeping the cavity radius from 13 cm to 15 cm with a step of 0.5 cm while
the power loss versus the phase delay τs was computed (see Fig. 7.8). The agreement
is consistent for all radii.

FIGURE 7.8: Comparison between CST and Eq. (1.25) (named formula in
the plot) for different cavity radii. Two single-bunched beams have been

used.

By varying the cavity radius, the transit time of the bunches inside the cavity
does not vary. Thus the only impact on the power loss computation is given by the
activation of other mode frequencies under the beam spectrum. In Fig. 7.9, it is shown
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that all the impedances for the different radii have only one main mode (TM010) under
the beam spectrum, as designed.

FIGURE 7.9: Impedance for different radii overlapped with the power
spectrum.

As expected with the reasoning developed for the case with one radius, the period
of the power loss undulation with τs is found equal to the inverse of the resonance
frequency fr of the TM010 mode for each radius. This can be observed in Fig. 7.10.

7.2.2 Cavity length

The length h of the cavity impacts directly on the transit time of the bunches inside
the cavity: the bunches take more time to pass through a longer cavity. In Fig. (7.8)
the power loss versus τs is shown for various cavity lengths h. In this example, the
radius of the cavity was set to a = 14.5 cm. For h = 10 cm, one can observe that the
agreement between CST and Eq. (1.25) is not as good as for shorter lengths. Indeed,
the assumption used in the analytical formula that L

s
is small (see Section 1.4.3) is not

valid anymore.
If one increases the cavity length further to h =30 cm, the agreement between CST

and Eq. (1.25) is lost as it can be observed in Fig. (7.12).
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FIGURE 7.10: Period of the power loss undulation with τs versus the
inverse of the resonance frequency fr of the TM010 mode for each radius.

Also the function y=x is plotted for comparison.

FIGURE 7.11: Power loss versus the phase shift τs is shown for cavity
lengths h. The agreement between CST and Eq. (1.25) starts to break for

h=10 cm.

More importantly, for τs = 0 ns, one can observe that the simulated power loss is
not zero anymore. To analyse this feature further, h is varied from 2 cm to 100 cm with
step of 2 cm, keeping τs = 0 in Fig. (7.13).

This shows that the power loss for τs = 0 strongly depends on h, and that the
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FIGURE 7.12: Power loss versus phase shift τs for h=30 cm.

FIGURE 7.13: Power loss in two-beam case when h is varied from 2 cm
to 100 cm at step of 2 cm keeping the phase shift τs = 0.

situation described in the beginning of Section 1.25 where fields compensate for τs = 0

is no longer valid when the length of the cavity increases.
In Fig. (7.14), the power spectrum and the modes in the cavity are plotted for

some of the lengths considered in Fig. (7.13). When the length h is increased, the
mode TM011 is shown to contribute more to the power loss due to its larger shunt
impedance and in particular to its lower resonance frequency . In particular for h =

30cm the TM011 appears at 980 Mhz. In fact, one can see for τs = 0 in Fig. (7.12),
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FIGURE 7.14: Modes in the resonant cavity for a =14.5 cm at various
h. Also the power spectrum is represented in arbitrary unit.When the
length h is increased, the mode TM011 is shown to contribute more to
the power loss due to its larger shunt impedance and in particular to its

lower resonance frequency.

that the power loss with the two bunches is comparable with four times the single
beam power loss computed with only the TM011. It could be concluded from these
observations that the non-zero power loss for longer cavities is due to mode TM011.
Indeed, contrary to the case of the TM010 mode that has no zero crossing of the field
along the longitudinal direction, the TM011 mode has a zero crossing of the field.
Therefore, when the two bunches enter the cavity at the same time they can excite
constructively the TM011 with the same sign and direction. This creates an initial
condition in the cavity of:

H011
φ = H011

phi1 +H011
phi2 = 2H011

phi1

where H011
phi1 and H011

phi1 are the electric fields induced by beam 1 and beam 2 respec-
tively on the z-axis for the TM011 mode. Since at τs = 0, the field components of the
TM010 excited by the two bunches arriving in phase cancels out, the TM011 is the only
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mode contributing to the power loss at this phase shift. The power loss in the cavity
scales with |Hphi|2, explaining the factor four.

7.2.3 Beams horizontal offset

Considering two beam with the filling scheme 5979 represented in Fig. (4.8), the
power loss versus the horizontal offset was simulated. Computing the power loss
with CST the results are plotted in Fig. (7.15).

FIGURE 7.15: CST computation of the power loss for two beams with
filling scheme 5979 versus the horizontal offset. The two beams are in

phase (i.e. τs = 0.

Considering that the total power loss of the considered beam for the single beam
case is 8.11 W the impact of the offset can be considered negligible for the range of
considered offsets.

7.2.4 Multi-bunch phase shift

The comparison between CST and Eq. (1.25) for two multi-bunch beams is repre-
sented in Fig. (7.16). The two beams have the filling scheme of fill 5979 previously
presented (Fig. 4.8).

The cavity parameters were presented in Section 4.2. The agreement is therefore
found to be good also for the multi-bunch case. The negative values of the phase-shift
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FIGURE 7.16: Comparison between CST and Eq. (1.25). Two multi-bunch
beams have been used with filling scheme 5979.

τs indicate that the shifted beam is arriving earlier in the cavity, while positive values
indicates that it is arriving later in the cavity. Also in this case the two-beam power
loss can reach values up to almost four times the single beam power loss.
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Chapter 8

Results of heating detection from
pressure measurements in the CERN
Large Hadron Collider

The result of the filtering flow is summarised in Fig. 8.1 from top to bottom. The raw
signal (Fig. 8.1a) is given by the monitoring system and then it is processed by the
max filter. The output of the max filter (Fig. 8.1b) completely preserves the broad
pressure increase at the end of the signal by reducing the steps from 3000 to 220. It
is interesting to observe that the max filter preserves also the peaks at the beginning
of the fill. After the max filter, the signal is processed by a median filter (Fig. 8.1c),
which aim is to reduce the possibly still present noise. The median filter destroys
sharp peaks as the one at the beginning of the fill. According to the experts those
peaks are not relevant heating indication since thermal processes in this context are
very slow compared to the timescale of these sharp peaks. The length of the median
filter is chosen to suppress only the peaks that are too short and sharp to indicate
heating. Finally, the Savitzky–Golay output represented in Fig. 8.1d smoothens the
signal.

The k-means algorithm was applied to transform the pressure measurements into
their distances from the cluster center. When applied after the full preprocessing
pipeline, it is possible to observe that the k-means transformation is able to split the
heating cases from the not-heating ones quite well with already k = 2, as shown in
Fig. 8.2. This can be explained by the fact that, after the filtering and the normaliza-
tion, each signal shares the same scale and most of the outliers are removed. When
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(A)

(B)

(C)

(D)

FIGURE 8.1: Filtering of the input signal: (8.1a) raw input signal, (8.1b)
output of the max filter, (8.1c) output of the median filter and (8.1d) out-

put of the Savitzky-Golay filter [62].

the distance from each cluster is computed, all the heating measurements that usu-
ally present an increasing pressure pattern towards the end of the signal turn out to
have similar distance from the clusters centers and thus they are grouped together.
The same happens for the not-heating cases but with different distances with respect
to the heating ones. The difference in distances from the cluster centers results in the
split of the two classes into two different areas of the plot.

The models were compared in three scenarios by applying different steps of the
preprocessing techniques. The results are summarised in table where the average
performance and its standard deviation is reported Table 8.1 shows the performance
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FIGURE 8.2: k-means distances computed with two clusters (the x- and
y-axis represent the euclidean distance of each pressure measurement

from the first and the second cluster center, respectively.

of the algorithms when only the max-pooling to reduce the dimensionality and the
standardization is applied. From these first results it can be observed that Logistic
Regression and 1-D CNN already performs very well with minimal preprocessing.
The best performing model in this case is the 1-D CNN. It is also important to un-
derline that all the models outperform the baseline model (i.e. the analytical solution
built for comparison) both in accuracy and precision.

Table 8.2 shows the results when also the k-means transformation is applied as
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TABLE 8.1: Results summary with max pooling and standardization.

Model Accuracy Precision Recall
Heuristic-based Algorithm 0.78±0.03 0.72±0.02 0.93±0.03
Logistic Regression 0.94±0.02 0.94±0.03 0.93±0.03
kNN 0.93±0.02 0.91±0.02 0.95±0.03
Random Forest 0.90±0.03 0.88±0.04 0.92±0.04
1-D CNN 0.95±0.02 0.96±0.03 0.95±0.03

TABLE 8.2: Results summary with max pooling, k-means transformation
and standardization.

Model Accuracy Precision Recall
Logistic Regression 0.93±0.02 0.93±0.03 0.94±0.03
kNN 0.96±0.02 0.96±0.03 0.96±0.03
Random Forest 0.94±0.02 0.96±0.03 0.92±0.03

preprocessing step. Random Forest scores improve significantly by adding this pre-
processing step. Also kNN benefits from the k-means transformation. Logistic Re-
gression gains little improvement in recall but performs slightly worse in accuracy
and precision.

Table 8.3 summaries the best performance achieved by each model. Those scores
are achieved when the full preprocessing pipeline is applied to Logistic Regression,
kNN and Random Forest. The heuristic-based algorithm uses the full filtering prepro-
cessing without the k-means transformation. The 1-D CNN follows the preprocessing
described in Section 5.4.5.

In this case the heuristic-based model reaches very high recall (0.99) but with low
precision with respect to the other models. It is important to observe that all the ML
models outperform the heuristic-based model both in accuracy and precision, and

TABLE 8.3: Results summary with full preprocessing.

Model Accuracy Precision Recall
Heuristic-based Algorithm 0.77±0.02 0.69±0.02 0.99±0.01
Logistic Regression 0.96±0.02 0.96±0.02 0.95±0.03
kNN 0.96±0.01 0.97±0.02 0.95±0.03
Random Forest 0.95±0.02 0.97±0.02 0.92±0.03
1-D CNN 0.96±0.02 0.96±0.02 0.95±0.02
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that using all the preprocessing steps allows gaining performance with respect to
results in table 8.1. It is also interesting to see that the heuristic based model does not
gain much from the preprocessing, except from the recall point of view.

The 1D-CNN model has a very good precision/recall trade-off: its recall is compa-
rable to the other models with the advantage of lower standard deviation. Moreover
it does not need an elaborate preproccessing of the inputs to reach very good scores.
The 1D-CNN was trained on 300 epochs for each of the train and test split of SSS.
The train and test cross-entropy loss during training is shown in Fig. 8.3. The loss is
averaged on the split folds used during training and the standard deviation is also
reported as error bar. It is reasonable to assume that the performance of the 1D-CNN
would improve by increasing the training epochs that were limited to 300 for compu-
tational reason.

FIGURE 8.3: Binary cross-entropy loss for training and test sets. The
loss is averaged on the split folds used during training. The standard

deviation is also reported as error bar.

As discussed in Chapter 5, the best model to be chosen for the implementation
depends on the particular application of the detection tool. When it is crucial to not
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miss heating cases, the models with higher recalls should be preferred, even if a trade-
off with precision is needed. When the historical data has to be searched to look for
undetected heating cases then the model, which exhibits higher precision has to be
preferred.
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Conclusion

A method for a first-order estimation of the resonance frequency and the quality fac-
tor of the impedance of an accelerator component was proposed. A practical example
of the application of the method on an LHC component was reported. Pending spe-
cific practical issues that need to be solved for each machine, the results show that the
method is suitable to estimate the resonance frequency and the impedance Q-factor.

One of the crucial advantages of this method is the ability to predict impedance
characteristics without requiring components be disconnected from the machine: it
uses power loss measurements, acquired during several machine runs with various
specific filling schemes.

The method requires only two assumptions: 1) the bunch length of a given beam
can be changed in a wide range without varying any other beam parameter, and
2) the resonance frequency fr lies approximately over one of the main lines of the
beam spectrum. The latter assumption can be waived if the bunch spacing can be
also changed within a wide range. Nevertheless, further work will be dedicated to
remove this latter assumption that the resonant frequency fr needs to be close to one
of the main line of the beam spectrum.

The two-beam power loss was studied in a resonant cavity. It was shown that the
phase shift between the beams entering the cavity plays a major role on the power
loss. Indeed, the power loss of two beams in a cavity can vary from zero to four times
the power loss of a single beam. For the specific case of a given mode TM010, it is
possible to predict the location in the accelerator with respect to the interaction point
that minimizes the power loss in presence of two beams. As shown with an example,
the studies performed on two single-bunch beams also apply to two multi-bunch
beams.

Various machine learning techniques have been presented to detect abnormal
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heating from the many available pressure measurements in the CERN LHC. In partic-
ular, these ML models have been evaluated experimentally to investigate their ability
to automatically detect abnormal heating. It is important to note that all the selected
ML models outperform the heuristic-based model properly built for the task as base-
line. In particular, Logistic Regression, kNN and 1D-CNN exhibit the most promis-
ing performance. It has also been shown how customized preprocessing techniques
could improve the performance of all the ML models for this classification task. Hav-
ing such automatic tool to detect heating is expected to be of significant help for the
next LHC run. The tool has already been in use internally at CERN to study old heat-
ing effects and it is planned to be used during operation in the next LHC Run that
will start in 2021.
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Appendix A

Computing power loss with CST

CST Studio is widely used in accelerator physics to compute the beam impedance
of an accelerator component. Following an update of the software in 2018, it is now
possible to compute the power loss directly with CST. To properly compute the power
loss, it is important to set the charge parameter to the total beam charge in Fig. (A.1)
in the beam definition.

The total beam charge is computed as:

qbeam = NbqM. (A.1)

As already defined beforehand, Nb are the particle per bunch, M is the number of
bunch in the beam and q is the elementary charge of the proton (1, 602 · 10−19C). It is
then possible to run a power loss simulation by following these steps:

[1] Define a structure with a lossy material.

[2] Click on Setup Solver.

[3] Open the Specials... menu.

[4] Navigate into Material.

[5] Tick Time power metal losses (1D).

[6] Run the simulation.

For simplicity steps 3, 4 and 5 are shown in Fig. (A.2).
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FIGURE A.1: CST beam definition settings.
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FIGURE A.2: Setting to run a power loss simulation with CST.
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