
UNIVERSITY OF NAPLES
FEDERICO II

DEPARTMENT OF MATHEMATICS AND APPLICATIONS
"RENATO CACCIOPPOLI"

Ph.D. THESIS IN
"MATHEMATICS AND APPLICATIONS"

CYCLE XXXIII

Mathematical Modeling of Dry Anaerobic Digestion in
Plug-Flow Reactors

Daniele Bernardo Panaro



"Everything is relative. Take a centenarian that breaks a mirror. He will be happy to know he still has

seven years of misfortune."

Albert Einstein

i



Thesis Committee
Thesis Promoter

Prof. F. Capone
Full Professor

Department of Mathematics and Applications "Renato Caccioppoli"

University of Naples "Federico II", Naples, Italy

Thesis Supervisor

Dr. L. Frunzo
Assistant Professor

Department of Mathematics and Applications "Renato Caccioppoli"

University of Naples "Federico II", Naples, Italy

Thesis co-Supervisors

Dr. M.R. Mattei
Research fellow

Department of Mathematics and Applications "Renato Caccioppoli"

University of Naples "Federico II", Naples, Italy

Prof. G. Esposito
Associate Professor

Department of Civil, Architectural and Environmental Engineering

University of Naples "Federico II", Naples, Italy

Dr. J.P. Steyer
Director of Research

Laboratoire de Biotechnologie de l’Environnement

Institut national de recherche pour l’agriculture, l’alimentation et

l’environnement (INRAE) Narbonne, France.

Dr. R. Escudie
Director of Research

Laboratoire de Biotechnologie de l’Environnement

Institut national de recherche pour l’agriculture, l’alimentation et

l’environnement (INRAE) Narbonne, France.

ii



Table of Contents

1 Introduction 1

2 Calibration, Validation and Sensitivity Analysis of an anaerobic digestion Modified Surface-

Based Model 9

2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Mathematical modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Biochemical reaction rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Acid-base process rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.3 Gas-transfer process rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Experimental activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 AD bio-reactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.2 Analytical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Model application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.1 Initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.2 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.3 Model calibration and validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Results and discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6.1 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6.2 Model calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6.3 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.8 Petersen Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

iii



3 A modeling and simulation study of anaerobic digestion in plug-flow reactors 36

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Mathematical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1 Model equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.2 Boundary and initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.1 Model input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.2 Numerical results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.3 Application to a real case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Global Sensitivity Analysis and Uncertainty Quantification for a mathematical model of dry

anaerobic digestion in plug-flow reactors 67

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.1 Modeling of AD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2.2 Need for Uncertainty Quantification and Sensitivity Analysis . . . . . . . . . . . . 71

4.3 Model of plug-flow reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3.1 Model equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Sources of uncertainty, quantities of interest and data-bases . . . . . . . . . . . . . . . . 77

4.4.1 Quantity of Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4.2 Description of test case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.3 Experimental designs and databases . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.5 Surrogate-Based Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.5.1 Screening of influential parameters via Morris’ Scheme . . . . . . . . . . . . . . . 81

4.5.2 Surrogate Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5.3 Numerical implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.6.1 Morris screening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.6.2 A posteriori error estimation of the surrogate models . . . . . . . . . . . . . . . . 85

iv



4.6.3 Quantitative SA with Sobol’ indices . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.6.4 Uncertainty Quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5 High-solids anaerobic digestion in plug-flow reactors: model calibration and validation 92

5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3 Material and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3.1 Experimental design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3.2 Digester setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3.3 Digester feed and inoculum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3.4 Analytical measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3.5 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3.6 Model Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3.7 Model calibration and validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6 General discussion and recommendations 115

v



List of Figures

2.1 a) Biogas measurement system adopted. Characteristic dimension of the particles: b) 20

mm, c) 4 mm and d) < 1 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Absolute sensitivity referred to the produced methane concentration of: (a) Monod spe-

cific uptake rates and first order hydrolysis and disintegration constants; (b) half saturation

constants (logarithmic scale); (c) yield of biomass on substrate; (d) first order decay rate. . 26

2.3 Absolute sensitivity referred to the produced VFAs concentrations of: (a) Monod specific

uptake rates; (b) first order hydrolysis and disintegration constants. . . . . . . . . . . . . . 27

2.4 Absolute sensitivity referred to the produced VFAs concentrations of: (a) half saturation

constants; (b) yields of biomass on substrate. . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Absolute sensitivity referred to the produced VFAs concentrations of the first order decay

rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 Reactor A: measured and simulated concentration values of (a) Methane; (b) Acetic acid;

(c) Propionic acid; (d) Butyric acid; (e) Valeric acid. . . . . . . . . . . . . . . . . . . . . . 31

2.7 Reactor B: measured and simulated concentration values of (a) Methane; (b) Acetic acid;

(c) Propionic acid; (d) Butyric acid; (e) Valeric acid. . . . . . . . . . . . . . . . . . . . . . 32

2.8 Reactor C: measured and simulated concentration values of (a) Methane; (b) Acetic acid;

(c) Propionic acid; (d) Butyric acid; (e) Valeric acid. . . . . . . . . . . . . . . . . . . . . . 32

3.1 Control volume for the mass balance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Kinetic scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Bio-degradable VS X3 pz, τq (3a), acetic acid S1 pz, τq (3b), v pz, τq (3c), methane produc-

tion (3d) and microbial biomass X5 pz, τq (3e) trends for simulations set A, at τ � 60 d. . . 52

3.4 Bio-degradable VS X3 pz, tq (4a), acetic acid S1 pz, tq (4b) and microbial biomass X5 pz, tq

(4c) trends for simulations set A, case A-4. . . . . . . . . . . . . . . . . . . . . . . . . . 52

vi



3.5 Bio-degradable VS X3 pz, τq (5a), acetic acid S1 pz, τq (5b), v pz, τq (5c), methane produc-

tion (5d) and microbial biomass X5 pz, τq (5e) trends for simulations set B, at τ � 60 d. . . 54

3.6 Bio-degradable VS X3 pz, τq (6a), acetic acid S1 pz, τq (6b), vpzq (6c), methane production

(6d) and microbial biomass X5 pz, τq (6e) trends for simulations set C, at τ � 60 d. . . . . 55

3.7 Methane yield for simulations sets A (3.7a), B (3.7b) and C (3.7c) after τ � 60 d . . . . . 57

3.8 Bio-degradable VS X3 pz, τq (3.8a) and microbial biomass X5 pz, τq (3.8b) concentration

trends at different time of simulation τ when L � cost and v0 varies, simulations set C. . . 59

3.9 Acetic acid concentration S1 pz, τq (3.9a) and v pz, τq (3.9b) trends at different time of

simulation when L � cost and v0 varies, simulations set C. . . . . . . . . . . . . . . . . . 60

3.10 Bio-degradable VS X3 pz, τq (10a), acetic acid S1 pz, τq (10b), v pz, τq (10c), methane pro-

duction (10d) and microbial biomass X5 pz, τq (10e) trends for simulations set D, at τ � 60 d. 61

3.11 Daily and cumulative methane production in the experimental and simulated cases. . . . . 64

4.1 Kinetic scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 An ensemble of 40 different CH4 profiles extracted from the Morris’ algorithm sampling

database, with different values of θ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3 Morris algorithm applied with respect to y. . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4 Adequacy plots for the prediction of QoI y. For the Q2 test, we showed the results of several

maximum degrees p of LAR-based gPC algorithm. . . . . . . . . . . . . . . . . . . . . . 87

4.5 First-order and total Sobol’ indices (in logarithmic scale) associated with uncertain pa-

rameters θ and their effect on y. The three different tested algorithm are presented. For

GP, orange color stands for first-order Sobol’ indices; red colors stands for to total Sobol’

indices. For SLS-gPC, light blue colors represent first-order Sobol’ indices; dark blue col-

ors represent instead total Sobol’ indices. For LAR-gPC, gray colors stand for first-order

Sobol’ indices; dark gray colors stand for to total Sobol’ indices. . . . . . . . . . . . . . . 89

4.6 Probability density function for the quantity of interest y obtained with the GP metamodel. 90

5.1 Kinetic scheme of the model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2 Campaign A: experimental and simulated cumulative methane productions (a) and compar-

ison between the fit line and the line of perfect fit (b). . . . . . . . . . . . . . . . . . . . . 111

5.3 Campaign A: experimental and simulated daily methane productions (a) and experimental

and simulated methane weekly yields (b). . . . . . . . . . . . . . . . . . . . . . . . . . . 111

vii



5.4 Campaign A: Profiles of the simulated soluble acetic acid (a) and microbial biomass (b)

concentrations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.5 Campaign B: experimental and simulated cumulative methane productions (a) and compar-

ison between the fit line and the line of perfect fit (b). . . . . . . . . . . . . . . . . . . . . 113

5.6 Campaign B: experimental and simulated daily methane productions (a) and experimental

and simulated methane weekly yields (b). . . . . . . . . . . . . . . . . . . . . . . . . . . 113

viii



List of Tables

2.1 Substrate and inoculum characterization. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Potato waste composition in terms of carbohydrates, proteins, lipids and inert material. . . 20

2.3 Initial conditions for the state variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Calibrated parameters: ADM1 default values and Modified Surface-Based Model values. . 30

2.5 Performance indicators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6 Petersen Matrix, part a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.7 Petersen Matrix, part b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 Kinetic parameters used in model simulations. . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Initial and boundary conditions used in model simulations. . . . . . . . . . . . . . . . . . 49

3.3 Physical and operating parameters used during the four simulation sets A, B, C and D.

D̄ �Diffusion coefficient, v0 �Inlet flow rate velocity, L �Reactor length, HRT �Hydraulic

Retention Time and OLR �Organic Loading Rate. . . . . . . . . . . . . . . . . . . . . . 50

3.4 Substrate and Inoculum characteristics used during the experimental campaign of [95]. . . 62

3.5 OLRs, HRTs and Loading rates used in the experimental work of Patinvoh et al. and in the

simulations used to reproduce its results. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6 Experimental and Simulated methane yield. . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 Operating parameters of the test case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 Initial mixture and inlet substrate characterization. . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Initial conditions and inlet flow compound concentrations used in model simulations. . . . 80

4.4 Datasets DN of AD PFR model simulations used in this work whether for the sake of

performing Morris screening, or building surrogates (“training"), or for validating them

(“validation"). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

ix



4.5 Errors relative to built surrogates. For LAR-gPC and SLS-gPC, the best results for the

spanned values for P are reported. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.6 In the third column the complete list of Uniform marginal PDFs associated with vector θ is

reported. Note that Upa, bq stands for the uniform distribution with a the minimum value

of the parameter and b the maximum one. The last two columns show the ranking of the

parameters according to Morris’ preliminary screening test and Sobol’ Indices given by

metamodels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.7 Statistical moments for the PDF of the two QoI y. . . . . . . . . . . . . . . . . . . . . . 91

5.1 Campaign A: OLR and HRT referred to the substrate used during the experiment. . . . . . 97

5.2 Campaign B: OLR and HRT referred to the substrate used during the experiment. . . . . . 98

5.3 Characteristics of substrate and digestate used during the experiment (Standard deviation

based on triplicate measurements). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.4 Final characteristics of the feed used in the experimental campaigns A and B. . . . . . . . 99

5.5 Recirculated digestate characteristics of the experimental campaign A. . . . . . . . . . . . 106

5.6 Recirculated digestate characteristics of the experimental campaign B. . . . . . . . . . . . 107

5.7 Initial conditions used in the start-up phase of the experimental campaign A. . . . . . . . . 108

5.8 Kinetic parameters used in model simulations. . . . . . . . . . . . . . . . . . . . . . . . . 108

5.9 Performance indicators of the calibration and validation procedures. . . . . . . . . . . . . 110

x



Acknowledgements

I would like to thank the italian Ministry of University Education and Research that gave me the opportunity
to take part to this innovative formation program of the Industrial Ph.D in Mathematics and Applications,
through the Programma Operativo Nazionale FSE-FESR "Ricerca e Innovazione 2014-2020" .
In this context I would like to sincerely thank the Partners of this program: the University of Naples Fed-

erico II, the foreign partner "INRAE-LBE" and the Italian company Corradi e Ghisolfi Srl. I would like to
thank also the Gruppo Nazionale per la Fisica Matematica (GNFM).
Moreover, I would like to thank all the people who had an important role during these years of Ph.D.
First of all I would like to thank my promoters Florinda Capone and Luigi Frunzo for giving me the oppor-
tunity to work as a Ph.D student in the fantastic world of mathematical modeling and mathematical physics.
Thank you for helping me with important scientific discussions and suggestions, allowing me to develop a
critical view on several topics.
Dr. Luigi Frunzo in particular, has been a crucial figure for my personal and professional growth. Thank
you for treating me as a younger brother, when needed, and teaching me how to make research, how to
overcome obstacles, the most important secrets of doing a fruitful research and for teaching me so many
things about mathematical modeling.
Many thanks to the Coordinator of the Ph.D. Programme professor Gioconda Moscariello, for her impor-
tant activity of super visioning my Ph.D. progresses.
Thank you to my thesis co-supervisor Dr. Maria Rosaria Mattei, for the fundamental scientific (and not)
support activity, the discussions and all the efforts that she made to help me to obtain fantastic results in
terms of scientific growth.
Many thanks also to Professor Giovanni Esposito for helping me to understand the process dynamics from
an engineering point of view, thanks for all the comments, suggestions and discussions.
I would like to thank also Dr. Vincenzo Luongo and Dr. Andrea Trucchia for always giving me great
suggestions for my problems and for helping me in many situations.
Thank you to the supervisors during my research activities in Narbonne, Jean-Philippe Steyer and Renaud
Escudie. Working in your lab was a great opportunity and your contribution in broaden my knowledge
about modeling and interpretation of results from an engineering point of view has revealed very important
for my scientific growth.
To all the fantastic colleagues who shared with me this formation program: Alberto Tenore, Grazia Guer-

xi



riero and Fabiana Russo, thank you. Days went by so quickly and less heavily with you by my side. Who
has the fortune to share the Ph.D. experience with so amazing people? Thank you!
To all the members of my family, many thanks. My mother Teresa, ever proud of me, whatever step and
choice I made. My father Raffaele and my sister Alessandra, silent but important figures, accepting and
supporting me during my studies.
Lastly, I would like to thank my fantastic girlfriend Simona Pignata for being my anchor, my guide and my
precious advisor. If I overcame psychologically many situations I owe it to you, to your support. Please do
not stop to love me and to make me feel so fortunate to be by your side.

xii



Summary

In the framework of the project "XXXIII ciclo di dottorato, borsa di dottorato aggiuntiva del programma

operativo nazionale Ricerca e Innovazione 2014-2020, fondo sociale europeo, azione I.1 dottorati innova-

tivi con caratterizzazione industriale" the objective of this work of thesis is to present the main scientific
results achieved during this Ph.D course in applied mathematics. The project was aimed to develop a math-
ematical model describing the dry anaerobic digestion process in plug-flow reactors. Anaerobic digestion
is one of the most used technologies for the treatment of organic compounds contained in a great variety of
waste through which the production of a renewable energy is obtained, the biogas. Mathematical modeling
plays a key role in providing tools supporting the design and management of this kind of plants performing
this kind of process. The vast majority of mathematical models describing the anaerobic digestion process
focus their attention on systems in wet conditions and are formulated as non-linear systems of Ordinary
Differential Equations. Due to the reactor configuration and phenomena involved, dry anaerobic digestion
modeling requires the use of Partial Differential Equations to describe properly the dynamics of the process.

The lack of scientific literature on this topic and the desire to provide a contribute to the development
of sustainable technologies drove the interests and the efforts of these research activities, whose results are
summarized in the chapters of this work of thesis.

The development of the model required the study of the physical and bio-chemical processes governing
the considered system dynamics and made use of mathematical techniques typical of continuum mechanics.
The study of the bio-chemical transformations taking place in anaerobic digestion systems was performed in
a first work of calibration and validation of a mathematical model describing the anaerobic co-digestion of
the organic fraction of municipal solid waste and sewage sludge using a surface-based disintegration kinetic,
taking into account the influence of particle size on the disintegration process. A mathematical model
describing the dry anaerobic digestion in plug-flow reactors was derived from mass balance considerations
in the framework of continuum mechanics. The main assumptions, variables, boundary conditions and
equations have been described for a one-dimensional domain. A Global Sensitivity Analysis joint with
Uncertainty Quantification were performed to identify the main model parameters influencing the quantity
of interest represented by the main output of the model, the methane production. Model calibration and
validation, aimed to assess the capability of the model to describe and emulate real cases of dry anaerobic
digestion, were performed successfully, leading the way to a future application of the model to real scale
plants. A general discussion with suggestions for future developments close the work.
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Chapter 1

Introduction

1





Anaerobic digestion is a widely used technology for the treatment of the organic fraction of solid waste
and wastewater. Biogas, the main product of the anaerobic digestion, is generated through the conversion
processes of the organic compounds catalized by the activity, in an oxygen-free environment, of two fam-
ilies of microorganisms: bacteria and archaea [141]. Biogas is mainly composed of methane (between
50% and 75% [130]), which contributes to define the biogas calorific power (the lower calorific power is
between 15 and 30 MJ{Nm3 [118]), and carbon dioxide. A by-product of the whole process is the digestate
that is used as fertilizer in agriculture, due to its nutritional potential (it is very rich in ammonium and other
nutrients [111]). One of the environmental advantages coming from the utilization of anaerobic digestion is
represented by the fact that it contributes to the reduction of pollution trough a sustainable way of treating
the waste. Moreover, it contributes to the reduction of the greenhouse gases, due to the utilization of the
biogas as a bio-fuel for the vehicles and its utilization into natural gas grids [2]. Biogas is also burned into
co-generation units to produce heat and electricity used for improving the digestion process itself or, in the
case of those plants with a high biogas production efficiency, for its introduction in heating and electricity
lines.
Anaerobic digestion is realized by means of a chain of five main mechanisms which lead to the production
of biogas: disintegration, hydrolysis, acidogenesis, acetogenesis and methanogenesis. Disintegration in-
cludes different steps such as lysis, non-enzymatic decay, phase separation and physical breakdown, which
are phenomena occurring when the substrate to be treated presents complex composite particulate compo-
nents. Through the disintegration those components are converted in simpler particulate substrates such as
carbohydrates, proteins and lipids. These less complex substances are decomposed through the hydrolysis
step into soluble monomers that are used as substrate for the subsequent phase of acidogenesis, which pro-
duces fundamental intermediate products, such as volatile fatty acids. These acids consist in short chain
carboxylic acids having from 2 to 5 carbon atoms in the molecule and are among the essential intermediates
of the anaerobic digestion process. In the fourth step of acetogenesis, volatile fatty acids are metabolized
by hydrogen-producing microorganisms called acetogens to acetic acid with a yield of hydrogen and car-
bon dioxide. Moreover, in this phase, a small number of so called homo-acetogenic bacteria utilize carbon
dioxyde CO2 and hydrogen H2 as substrates to produce an additional amount of acetic acid. Finally, these
products are converted into methane by means of the strictly anaerobic activity of methanogenic archaea
[72, 81]. The produced methane and the other components in soluble form (mainly carbon dioxide, hydro-
gen, nitrogen, carbon monoxide and hydrogen sulphide) are in equilibrium with their gas-phase. Moreover,
association/dissociation of ionic species that are present in the environment where these bio-processes occur
determines the pH value of the system.

The various microbial groups taking part to the conversion process of particulate organic compounds
into methane, have different nutritional needs, sensitivity to the environment (pH, temperature etc.) and
life cycle that sometimes make difficult to keep the right conditions for allowing the growth of all of them
during a process of anaerobic digestion.
Anaerobic digestion classification is based on several operating conditions and reactor designs: total solids
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content, temperature regime, feeding conditions and number of stage [97].
The total solids content is a measure of all the suspended, colloidal and dissolved solids in a medium

and when the total solids content of the treated substrate is less or equal to 10% the anaerobic digestion
is classified as wet otherwise, if it is greater or equal to 20%, it is denoted as dry. Lastly, the anaerobic
digestion is denoted as semi-dry when the total solids content is between 10% and 20% [1]. Drawbacks
and advantages characterize both wet and dry systems. Generally, in wet systems the contact between the
dissolved substrates and microorganisms is facilitated thanks to the presence of a greater amount of water,
but this implies higher reactors sizes with respect to dry systems. Moreover, despite the fact that complete
mixing is not possible in dry systems due to the high viscosity of the medium, very high organic loading
rates can be used and higher volatile solids conversion efficiency with respect to wet systems are realized.
The organic loading rate indicates a measure of the amount of volatile solids per unit reactor volume fed
into an anaerobic digestion system in a given unit time period while volatile solids represents the portion of
the total solids content that is volatilized at 550 °C and gives an idea on the amount of the readily vaporizing
matter present in the solid fraction of a substrate. The degree of reduction of the volatile solids content is
an important parameter used for evaluating the efficiency of a biological treatment process [64, 90].

Based on temperature regime the anaerobic digestion is classified as psychrophilic (  20 °C), meso-

philic (20-40 °C) and thermophilic (50-65 °C). Process performances are improved at higher level of tem-
perature but the operating costs increase as it is necessary to heat-up the environment where the process is
performed.

Concerning the feeding conditions there is the main differentiation in batch and continuous systems.
In the former the time that elapses between one feeding and another depends on the needed time for the
complete degradation of the fed substrate while in the latter the input compounds are fed continuously,
allowing to maintain a constant methane production during the whole process. This improves methane
yield and the treatment capacity of reactors using this kind of configuration.

Lastly, in single-stage systems all the degrading processes are performed in a unique environment while
in multi-stage systems it is realized a physical separation between methanogenesis and the other conver-
sion processes. This allow to improve the performances of the methanogenesis process because it is not
influenced by the environmental conditions that are established when there is the coexistence with the other
processes. Indeed, the activity of the acidogenic microorganisms is faster with respect to the activity of
the microorganisms involved in the production of methane and this implies a faster development of envi-
ronmental conditions where an acidic pH value is determined, disturbing and inhibiting the activity of the
methanogenic microorganisms.

Basically, the reactor configuration depends on the wet or dry conditions established for the process
development. Wet anaerobic digestion is mainly performed in complete mixed systems while dry anaer-
obic digestion are is usually carried out in plug-flow reactors [79]. Complete mixed systems are mainly
represented by Continuous Stirred Tank Reactors (CSTRs). In a CSTR, the intermittent or continuous
mixing allow to maximize the contact between dissolved compounds and microorganisms with slight mass
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transfer resistance [84]. On the contrary, the Plug-Flow Reactor (PFR) is characterized by a tubular or par-
allelepiped shape in which the digester content is not completely mixed, but moves as a plug through the
reactor from the inlet to the outlet section [71], determining a profile in the concentration of the compounds
along the reactor. A portion of the effluent is typically recirculated to improve the process efficiency [73].
Several commercial solutions are available for PFRs, with some differences in the hydrodynamic configu-
ration adopted. For example in Dranco systems the vertical down-flow characterizes the movement of the
treated substrate, while an horizontal-flow is used in the Kompogas configuration. Lastly, the horizontal
plug-flow is circular in the Valorga configuration.

Mathematical modeling of the dynamics of CSTR and PFR configurations is based on mass balances
on the state variables represented by the concentration of the bio-components inside the reactor. It usually
consists of a system of non-linear Ordinary Differential Equations (ODE) and non-linear parabolic Partial
Differential Equations (PDE), respectively. Indeed, due to the complete mixing, the concentrations of the
compounds in a CSTR are considered homogeneous inside the reactor. For this reason the dynamics, in
this case, depends only on time. On the contrary, both time and space must be considered in the description
of the process development in PFR systems, due to the spatial variability of the state variables.

The process dynamics in completely mixed systems has been extensively studied for decades. The first
mathematical models focused only on the limiting-step of the whole process (e.g [56] and [40]) due to the
high number of processes and components to be considered. With the growth of the knowledge on the
kinetics involved in the anaerobic digestion process, scientific experts tried to incorporate different aspects
and species in their models. With the aim to create a generic model of anaerobic digestion, the IWA Task
Group for Mathematical Modeling of Anaerobic Digestion Processes developed the Anaerobic Digestion
Model No.1 (ADM1) [10]. ADM1 consists of a system of non-linear ODEs summarizing bio-chemical and
physico-chemical phenomena occurring during an anaerobic digestion process. It includes disintegration,
hydrolysis, acidogenesis, acetogenesis and methanogenesis as bio-chemical processes of transformation
of the organic compounds, acid-base equilibria and gas-transfer as physico-chemical phenomenon. The
model incorporate the co-existence of particulate, soluble and gaseous components and the main equations
describing substrates and bacterial groups dynamics can be written in general form as follows:

dVliqSi

dt
� VliqpγiρA,ipt,Sq � ρT,ipt,S,Sgasqq�

�Vliq

m̧

j�1

αi,jρjpt,S,Xq,

i � 1, ..., n1, t ¡ 0 (1.1)
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dVliqXi

dt
� Vliq

m̧

j�1

αi,jρjpt,S,Xq,

i � n1 � 1, ..., n2, t ¡ 0 (1.2)

dVgasSgas,i

dt
� �qgasSgas,i � VliqρT,ipt,S,Sgasq,

i � 1, ..., n1, t ¡ 0 (1.3)

where:

n1 denotes the number of soluble components,

n2 � n1 denotes the number of particulate components,

m denotes the number of biochemical processes taken into account,

αi,j is the stoichiometric coefficient of species i on biochemical process j,

γi is the stoichiometric coefficient for the acid base reaction involving the ith soluble component,

Si denotes the ith soluble component,

Xi denotes the ith particulate component,

Sgas,i denotes the ith gaseous component,

ρjpt,S,Xq represents the rate of the jth biochemical process,

ρA,ipt,Sq represents the acid base kinetic rate equation for the ith soluble component,

ρT,ipt,S,Sgasq represents the gas transfer rate for the ith soluble component;

Vliq is the volume of the environment where reactions occur;

Vgas is the volume of the head-space where the biogas is stored;

qgas is the volumetric gas-flow tapped from the head-space.

A charge balance consisting in an algebraic equation accounting for the ionic species concentrations is
needed to evaluate pH and initial conditions are prescribed to set a closed mathematical problem. ADM1
has been widely used in scientific works describing anaerobic digestion processes. Despite this, ADM1
neglects some processes as reduction of sulphate and nitrates, precipitation of solids, inhibitor phenomena
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and other aspects as the influence of particle size on the disintegration phenomenon. Various authors
proposed some modifications of it to take into account these aspects. For instance, Esposito et al. [44]
presented an ADM1-based model to analyse the effect of particle size on methane production during an
anaerobic digestion process. They used a surface-based kinetics for the disintegration process, depending
on both the type of substrate and the particle size.

Despite the high number of models for wet anaerobic digestion processes, there is a very limited formal
literature on dry anaerobic digestion in PFRs [11]. Some existing models apply simplifications to avoid the
resolution of a PDE system, such as the CSTR-in-series approximation [76]. The higher is the number of
CSTR considered to approximate the plug-flow the closer to the PFR behavior is the system development.
Examples of works adopting this approach are those of A. Donoso-Bravo et al. in [39], who solved the
ADM1 for each CSTR used to approximate an anaerobic PFR, and H. Benbelkacem et al. in [16] who pro-
posed a CSTR in series configuration to model the macro-mixing behavior of the liquid phase of laboratory
scale digester based on Valorga technology. However, this kind of approach fails when, to properly describe
the process dynamics in a PFR, is needed the knowledge of the concentration profiles of the compounds
along the reactor. Other existing models solve the PDE system describing the PFR dynamics [125, 127]
neglecting the mass variation along the reactor that takes place due to the conversion of solids in gaseous
compounds. This is a valid hypothesis in wet systems, where the mass and consequently the volume vari-
ation of the treated substrate can be neglected due to the small amount of solids involved. When the total
solids content increases, as in the case of dry anaerobic digestion in PFRs, the solids removal and the con-
sequent mass/volume reduction of the reactor content must be accounted. Moreover, since in these kind of
systems the process is performed maximizing the working reactor volume keeping constant the level of the
treated substrate along the reactor, a variation in the convective velocity of the system should balance the
loss in mass due to the conversion of solids along the reactor.

Another aspect of this topic that need deeper studies is the definition of an equation describing the
gas-transfer phenomenon characterized by point-wise equilibria at the liquid-gas interface.

During the modeling of processes carried out in PFRs involving convective-diffusive-reactive phenom-
ena, a critical aspect concerns also the boundary conditions to be prescribed. Several authors proposed
different kind of boundary conditions and different studies focused on the debate about mathematical and
physical justification to their application. For example, P.V. Danckwerts [34] proposed boundary conditions
(1.4)-(1.5) for flow reactors in steady state conditions, considering the diffusion phenomenon in the first
section of the PFR domain.

vCIN � vCp0q �D
dCp0q

dz
(1.4)

dCpLq

dz
� 0 (1.5)

On the contrary HM Hulburt [59] neglected any decomposition of the feed before it enters the reactor
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imposing equation (1.6) and agreed with Danckwerts that no concentration gradient due to diffusion can be
present in the outlet section.

CIN � Cp0q (1.6)

According to DJ Batstone [9] anaerobic digestion modeling is facing three main challenges that are
limiting its application in developing control systems: input substrate characterisation, physico-chemical
modeling and modeling of systems whose dynamics depends on space as well as on time. Solid phase and
semi-solid plug-flow systems can be strongly optimized with the aid of mathematical modeling, but there
is the need of efforts in developing models capable to describe these kinds of systems.

In this perspective is inserted this work of thesis. Particularly, research activities were aimed to the
development of a mathematical model describing the dynamics of the main compounds involved in a dry
anaerobic digestion process in plug-flow reactors. The thesis is divided in 6 chapters. In the present section
the main topic has been introduced. Chapter 2 presents the calibration and validation of the mentioned
ADM1-based model of Esposito et al. [44], based on the results of experimental campaigns using potato
waste whose particle size varied in a wide range as main substrate. The study of the original ADM1 and
ADM1-based models has revealed fundamental to understand all the bio-chemical aspects of the anaerobic
digestion process and it has been used as a training step for the following modeling activity. Chapter 3
describe the derived mathematical model of anaerobic digestion in plug-flow reactors: model equations
and hypothesis are presented and model consistency with experimental observations is shown through nu-
merical simulations. The model considers the variation of compounds concentrations in both space and
time and takes into account the mass/volume variation of the treated matrix along the reactor. Moreover,
a new equation describing the gas-transfer phenomenon is presented in this Chapter. A global sensitivity
analysis and uncertainty quantification for the model of dry anaerobic digestion in plug-flow reactors is
performed in Chapter 4. These activities revealed the most important model parameters influencing the
methane production, the main output of the model. In Chapter 5, based on the global sensitivity analysis
and uncertainty quantification results, model parameters have been calibrated and validated. Results of two
experimental campaigns of dry anaerobic digestion in a plug-flow reactor have been used to this purpose.
Lastly, in Chapter 6 a general discussion for future research developments is given.
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Chapter 2

Calibration, Validation and Sensitivity Analysis
of an anaerobic digestion Modified
Surface-Based Model*

*The results of this chapter will be submitted in the form of a manuscript entitled: Calibration, Validation and Sensitivity
Analysis of an anaerobic digestion Modified Surface-Based Model.
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2.1 Abstract

In this work a modified surface-based mathematical model for the anaerobic digestion of potato waste was
proposed. The model was calibrated and validated and a local sensitivity analysis to investigate the most
sensitive parameters was performed. The model consisted of a modified version of the Anaerobic Digestion
Model n.1, where the disintegration process was defined through a surface-based approach able to account
for the influence of the particle size on the process development. Ad-hoc experimental activities were car-
ried out to calibrate and validate the model with real data obtained at a laboratory scale. The calibration and
validation procedures accounted for the net methane production and organic acids concentration, obtained
with different sets of biochemical methane potential tests. The quality of fitting with lab scale data was
evaluated by the Modeling Efficiency method, the Index of Agreement method and the Root Mean Square
Error method, including its normalized form. The results confirmed the high accuracy of the model in
describing the bio-methane and organic by-products evolution during the anaerobic conversion of potato
waste.

2.2 Introduction

During the last decades, the Anaerobic Digestion (AD) process has been widely used for the stabilization
and the treatment of organic waste biomasses. Notable examples of AD application are the treatment of
the organic fraction of municipal solid wastes and the stabilization of the sewage sludge from municipal
wastewater treatment plants [35, 114, 54]. Due to the ability of specific microbial species involved in the
process, AD allows the simultaneous stabilization of wastes and production of a renewable energy source
in form of biogas [58, 30, 66]. The latter is characterized by a high methane content (40-75%) and can be
effectively used for clean heat and electricity generation.

The mathematical modeling of AD process has been a challenging topic for the scientific community
for about half a century. Indeed, the development of predictive mathematical models plays a key role for
the definition of management strategies and the designing of full scale bio-reactors. According to [133],
mathematical models of AD processes can be divided into four different categories: i) kinetic, ii) statistical,
iii) computational fluid dynamics (CFD) and iv) ADM1 based models. Kinetic models are able to account
for microbial growth and substrate consumption rates to describe the system evolution. Among them, some
models describe the AD process based on its limiting steps: these are usually simplified models describ-
ing the slower kinetics related to substrates and/or species involved in the process [4, 3, 67, 5]. Other
kinetic models are more complex and entirely describe the AD process without establishing a limiting step
[126, 6]. Statistical models are mainly focused on the link between some key parameters and the model
outputs. These models give information about the optimum set of initial conditions able to maximize the
specific process target. For instance, some of them try to find the best substrate composition by using a
polynomial regression which describes the relationship between the output and the substrate components
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[129]. CFD models numerically simulate physics phenomena occurring into bio-reactors. Given a specific
reactor configuration, they are able to predict many abiotic conditions, such as the velocity field, the turbu-
lence, the temperature distribution and the residence time. The main aim is to study the effect of mixing
conditions on the microbial population performing the AD process. Indeed, these information might be
very useful at a real scale to determine the contact time between the substrate and the microbial biomass
[139]. It is important to notice that CFD based models completely neglect the aspects related to the biolog-
ical reactions occurring in AD. To predict the evolution of the process, a separate biological compartment
constituted by a different system of equations is required. However, CFD models are computationally more
demanding than all the other models. In 2002, the International Water Association (IWA) Task Group
for Mathematical Modeling of Anaerobic Digestion Processes developed a comprehensive mathematical
model known as Anaerobic Digestion Model no.1 [10], which was based on experiences acquired over the
previous years in modeling and simulating the anaerobic digestion process.

Although some processes involved in the AD are neglected, ADM1 was the first real attempt to create a
common framework in the AD modeling field. From its publication in 2002, almost 2000 works have been
inspired on ADM1 structure. The model considers different biochemical (e.g. substrate decomposition,
biomass growth etc.) and physico-chemical (e.g. gas-transfer, acid-base equilibrium etc.) processes taking
place in an AD reactor. It is based on mass balance equations for different state variables (particulate,
soluble and gaseous substance concentrations) and it reproduces the conversion of complex organic matter
in a methane rich biogas. The ADM1 considers a continuous stirred tank reactor (CSTR) where a perfect
mixing is implemented. Hence, the derived mass balance equation represent a system of nonlinear ordinary
differential equations (ODE) where the state variables only depend on time and the non-linearity is due to
the source terms. The model schematizes the process in five main phases: disintegration, hydrolysis, acido-
genesis, acetogenesis and methanogenesis. In its first edition in 2002, ADM1 neglected crucial processes
involved in AD: reduction of sulphate and nitrates, oxidation of acetate, homoacetogenesis, precipitation
of solids, inhibition due to sulfide, nitrates, long chain fatty acids (LCFAs) and weak acids and bases. Over
the years, many modifications have been proposed to the original ADM1 to take into account some of these
processes overlooked by the model. For instance, in 2008 Esposito et al.[44] proposed a modified ADM1

model to study the effect of the solid particles size on the production of methane. The authors modeled the
disintegration process with a surface-based kinetic approach (SBK) and they introduced a kinetic constant
as a function of two terms: the specific disintegration rate (Ksbk), which is affected by the nature of the
substrate, and the overall surface area of the treated complex organic particles per unit mass (a�), which
is affected by the characteristic dimension of the particles. In particular they considered spherical shape
particles fed to the bio-reactor. In another work [43], the same authors calibrated and validated the model,
considering a small particle size range (0.5�2.5 mm) of the fed particles, and the calibration was performed
based on real AD experimental data.

In the present study, a modified version of ADM1 has been calibrated and validated for a wider range
of particle size. A local sensitivity analysis was performed to obtain information about the influence of all
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model parameters on the numerical output of the mathematical model. Moreover, the understanding of the
most sensitive parameters for the model output can give useful information for the correct management of
real scale AD plants. The calibration was based on experimental data of the cumulative methane production
and acidic byproducts concentrations achieved with lab scale bio-reactors. The experimental tests were
carried out by using potato waste as substrate with characteristic dimension of fed particles lower than one
millimeter (Figure 2.1 d). Finally, the validation of the model was carried out with other experimental
data-sets related to the anaerobic digestion of potato waste with characteristic dimension of 4 and 20 mm
respectively (Figure 2.1,b and c).

2.3 Mathematical modeling

The mathematical model analyzed in the present work is based on a modified version of ADM1 proposed
by Esposito et al. [44, 43]. The model accounts for the effect of particle size distribution during the
disintegration process by using a surface based kinetic. In addition, it removes the ADM1 discrepancies
in both carbon and nitrogen balances according to [21]. In particular, the use of a surface based kinetic
approach for the disintegration kinetic allows to contextually account for the mechanical and granulometric
characteristics of substrates. The equation governing the disintegration is defined as

dC

dt
� �Ksbka

�C, (2.1)

where Ksbk is the surface based kinetic constant and a� � a�pr0q is the specific surface area of the disinte-
grating substrate, which directly depends on the particle geometry (e.g. radius r0, height h0,.. etc). Notably,
Ksbk is independent from the granulometry of the waste, as it is a function of the mechanical characteristics
of the substrate (i.e. the physical resistance of the waste to disintegration). On the other hand, the specific
area a� only depends on the geometry of waste particles involved in the process. In particular, Ksbk is
experimentally determined based on the quality of the organic material, while a� can be derived from the
geometry of the waste.

Assuming cylindrical particles with radius r0 and height h � 2r0, a� can be calculated as

a� �
3

δr0
, (2.2)

where δ is the mass density of the waste material.
The model is based on mass conservation principles and it is formulated as a set of ordinary differ-

ential equations for soluble and particulate components. Based on the difference of the state variables,
the system of equations is organized in three different groups: i) soluble components in liquid phase Si,
including the compounds deriving from the hydrolysis of the complex organic matter; ii) particulate com-
ponents Xi, representing the concentration of the microbial groups involved in the biochemical reactions,
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the complex organic matter fed to the AD system, and the macromolecules deriving from the disintegration
step; iii) gas components Sgas,i (i.e. hydrogen, carbon dioxide, methane), which are in equilibrium with the
corresponding components in the liquid phase.

The differential equations governing soluble, particulate, and gas components involved in the AD pro-
cesses are defined as:

dVliqSi

dt
� VliqpγiρA,ipt,Sq � ρT,ipt,S,Sgasq � Vliq

m̧

j�1

αi,jρjpt,S,Xq, i � 1, ..., n1, t ¡ 0, (2.3)

dVliqXi

dt
� Vliq

m̧

j�1

αi,jρjpt,S,Xq, i � n1 � 1, ..., n2, t ¡ 0, (2.4)

dVgasSgas,i

dt
� �qgasSgas,i � VliqρT,ipt,S,Sgasq, i � 1, ..., n1, t ¡ 0, (2.5)

where n1 denotes the number of soluble components, n2�n1 denotes the number of particulate components,
m1 denotes the number of biochemical processes taken into account, αi,j is the stoichiometric coefficient
of the species i referred to the biochemical process j, γi is the stoichiometric coefficient for the acid base
reaction involving the ith soluble component, Si denotes the ith soluble component, Xi denotes the ith

particulate component, Sgas,i denotes the ith component in gas form, ρjpt,S,Xq represents the rate of
the jth biochemical process, ρA,ipt,Sq represents the acid base kinetic rate equation for the ith soluble
component, and ρT,ipt,S,Sgasq represents the gas transfer rate for the ith soluble component.

One of the main issues of AD bio-reactors is the accumulation of inhibiting byproducts, such as organic
acids, in the bio-reactor environment. This phenomenon typically leads to undesired pH levels, which
negatively affect the biological production of methane and the stabilization of the organic waste fed to the
AD units. To account for pH variations and control the AD process, a charge balance equation accounting
for all the dissolved ionic species has been considered:

p̧

i�1

Q�
i �

q̧

i�1

Q�
i � 0, p� q   n1, (2.6)

where:
p defines the number of cationic components, q defines the number of anionic components, Q�

i repre-
sents the cationic equivalent concentration of species ith, Q�

i represents the anionic equivalent concentra-
tion of species ith.

To solve the differential-algebraic equations system [2.3-2.6], suitable initial conditions have been pre-
scribed:

Sip0q � S0
i , i � 1, ..., n1, (2.7)
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Xip0q � X0
i , i � n1 � 1, ..., n2, (2.8)

Sgas,ip0q � S0
gas,i, i � 1, ..., n1. (2.9)

The detailed biochemical (ρjpt,S,Xq), acid/base (ρA,ipt,Sq) and gas transfer (ρT,ipt,S,Sgasq) reaction rates
adopted in the model are reported in the following sections. In Section (2.8) the model equations are shown
in the Petersen matrix form.

2.3.1 Biochemical reaction rates

During the anaerobic bio-conversion, many biological processes are contextually performed by different
microbial species, which can grow, proliferate, and decay at specific kinetic rates depending on the avail-
ability of substrates over time. According to the ADM1, the process can be considered as five main sub-
processes or degradation steps: i) the disintegration of complex organic matter XC in readily and slowly
degradable particulate organic macromolecules (Xch, Xpr, Xli, XI), with the contextual release of inor-
ganic carbon (XIC) and inorganic nitrogen (XIN ); ii) the hydrolysis of the particulate macromolecules in
soluble monomers (Ssu, Saa, Sfa); iii) the degradation of soluble monomers in organic volatile acids (Sva,
Spr, Sbu), this step is usually named acidogenesis; iv) the formation of the acetic acid (Sac) and hydrogen
gas (Sh2) from the degradation of volatile acids and partially from the hydrolysis of soluble monomers (i.e
acetogenesis); v) the formation of methane gas (Sch4) through acetoclastic and hydrogenotrophic methano-

genesis.
In ADM1, these sub-processes are performed by seven microbial groups: sugar degraders (Xsu), amino

acid degraders (Xaa), LCFA degraders (Xfa), valerate and buryrate degraders (Xc4), propionate degraders
(Xpro), acetate degraders (Xac), hydrogen degraders (Xh2), whose kinetics are usually described as con-
version rates equations defined as ρjpt,S,Xq. The rates describe all biological processes occurring in
AD, based on the availability of the required substrates. In the present work the kinetics rates have been
formulated as:

ρ1 � Ksbka
�XC , (2.10)

ρ2 � khyd,chXch, (2.11)

ρ3 � khyd,prXpr, (2.12)

ρ4 � khyd,liXli, (2.13)
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ρ5 � km,su
Ssu

Ks,su � Ssu

XsuI1, (2.14)

ρ6 � km,aa
Saa

Ks,aa � Saa

XaaI1, (2.15)

ρ7 � km,fa
Sfa

Ks,fa � Sfa

XfaI2,fa, (2.16)

ρ8 � km,c4
Sva

Ks,c4 � Sva

1

1� Sbu{Sva

Xc4I2,va, (2.17)

ρ9 � km,c4
Sbu

Ks,c4 � Sbu

1

1� Sva{Sbu

Xc4I2,bu, (2.18)

ρ10 � km,pro
Spro

Ks,pro � Spro

XproI2,pro, (2.19)

ρ11 � km,ac
Sac

Ks,ac � Sac

XacI3, (2.20)

ρ12 � km,h2
Sh2

Ks,h2 � Sh2

Xh2I1, (2.21)

ρ13 � kdec,allXsu, (2.22)

ρ14 � kdec,allXaa, (2.23)

ρ15 � kdec,allXfa, (2.24)

ρ16 � kdec,c4Xc4, (2.25)

ρ17 � kdec,proXpro, (2.26)

ρ18 � kdec,acXac, (2.27)

ρ19 � kdec,allXh2. (2.28)
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where khyd is the first order constant for the hydrolysis, km is the Monod maximum specific uptake rate
(km � µmax{Y ), Ks is the half-saturation constant, I is the inhibition function, kdec is the first order decay
rate, µmax is the Monod maximum specific growth rate and Y is the yield of biomass on substrate.

According to the ADM1, the inhibition terms in eqs.(2.14-2.21) allow for the inclusion of additional
environmental aspects influencing specific bacterial species during the anaerobic bio-conversion. The inhi-
bition factors included in the model are pH level, inorganic nitrogen concentration, hydrogen concentration,
and ammonia nitrogen concentration. Based on experimental evidences, specific microbial species involved
in AD process are strongly affected by these inhibiting factors, and the inclusion of inhibition functions is
required to properly describe the related kinetic rates. These functions assume the form:

I1 � IpHIIN,lim, (2.29)

I2,i � IpHIIN,limIH2,i, i � pfa, va, bu, proq, (2.30)

I3 � IpHIIN,limINH3, (2.31)

where:

IpH �

$&% exp

�
�3

�
pH�pHUL

pH�pHLL

	2


, pH   pHUL,

0, pH ¡ pHUL,
(2.32)

IIN,lim �
1

1�KS,IN{SIN

, (2.33)

IH2,i �
1

1� SH2{KI,H2,i

, i � pfa, va, bu, proq, (2.34)

INH3 �
1

1� SNH3{KI,NH3

. (2.35)

For mass balance conservation, it is important to notice that all decayed microbial species partially con-
stitute new composite materials, in terms of biodegradable substrates. Contextually, they can be differently
converted in inert materials depending on the considered species. In particular, for the microorganisms
involved in the degradation of butyric and valeric acids, propionic acid, and acetic acid a percentage of
20% of the dead biomass has been supposed to constitute new substrates in the present model. For all
other microbial species, the same percentage was fixed at 25%. Moreover, specific decay kinetic constants
were used for the bacterial groups acting the uptake of butyric, valeric, propionic and acetic acid (kdec,c4,
kdec,pro, kdec,ac), while the constant decay term (kdec,all) was used for all the other bacterial groups. This is
in contrast with the ADM1, where the decay kinetic constant assumes the same value for all the bacterial
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groups involved in the process. The present approach allows to consider the different nature of microbial
species involved in the process avoiding under{over estimation errors due to biomass decay quantification.

2.3.2 Acid-base process rate

To account for all different cationic and anionic species influencing the pH evolution (Eq.(2.6)), the model
includes acid-base equilibrium equations of all soluble compounds involved in the AD process. Soluble
compounds, such as organic acids, inorganic carbon and inorganic nitrogen, can be found in different ionic
forms depending on the specific pH level of the anaerobic environment. Kinetic rate equations regulate the
form of soluble compounds in AD bio-reactors. They can be expressed as:

ρA,va� � KA{B,vapSva�pSH�Ka,vaq �Ka,vaSvaq, (2.36)

ρA,bu� � KA{B,bupSbu�pSH�Ka,buq �Ka,buSbuq, (2.37)

ρA,pro� � KA{B,propSpro�pSH�Ka,proq �Ka,proSproq, (2.38)

ρA,ac� � KA{B,acpSac�pSH�Ka,acq �Ka,acSacq, (2.39)

ρA,hco3� � KA{B,co2pShco3�pSH�Ka,co2q �Ka,co2SICq, (2.40)

ρA,nh3 � KA{B,INpSnh3pSH�Ka,INq �Ka,INSINq. (2.41)

where KA{B,i and Ka,i are the acid-base kinetic parameter and the acid-base equilibrium coefficient for the
ith species, i � pva, bu, pro, ac, co2, INq, respectively.

The coefficient γi of equation (2.3) is equal to 1 when i � pva�, bu�, pro�, ac�, hco3�, nh3q. It
assumes the value of zero in all other cases.

2.3.3 Gas-transfer process rate

According to the ADM1, the liquid-gas transfer processes regulating the concentrations of hydrogen SH2,
methane SCH4, and inorganic carbon SIC in the liquid and gaseous phases have been considered. Based
on thermodynamic principles, these compounds can be found in two different forms due to concentration
gradients, which are generated between the liquid and gaseous phases of the AD reactors. The mass-transfer
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kinetic rates included in the present work are described as:

ρT,h2 � kLapSh2 � 16KH,h2pgas,h2q, (2.42)

ρT,ch4 � kLapSch4 � 64KH,ch4pgas,ch4q, (2.43)

ρT,IC � kLapSco2 �KH,co2pgas,co2q. (2.44)

where kLa is the gas-liquid transfer coefficient, KH is the Henry’s law coefficient and pgas,i, i � ph2, ch4,

co2q, is the steady-state gas-phase partial pressure of the ith component.

2.4 Experimental activities

2.4.1 AD bio-reactors

Ad-hoc AD experiments in semi-batch conditions were set-up to achieve the required data for model cali-
bration and validation. The reactors were constituted by a airtight 2000 mL transparent borosilicate glass
bottle (Simax, Czech Republic) with caps equipped with thin tubing on the top for sampling and gas ex-
traction. The produced biogas was forced to pass into a volumetric gas measurement system (Figure 2.1,a)
constituted by two different overturned bottles: the first was filled with a NaOH solution to trap the pro-
duced carbon dioxide before methane evaluation; the second bottle, filled with distilled water, allowed for
the determination of the produced methane volume from the AD process. The reactors were immersed in a
thermostatic bath at 33�1 °C to ensure mesophilic conditions. The initial substrate to inoculum ratio F {M

(Food{Microorganisms) was set at 0.5 to promote catabolic reactions. The substrate used during the exper-
iments (F ) was constituted by potato waste: it was pre-treated prior its feeding to reach different desired
sizes (Figure 2.1,b-d). However, it was possible to study the effect of the initial particles size distribution
on the disintegration process. Indeed, the same amount of potato waste of 10 kgCOD m�3 was fed twice
during 2 different experimental sets, named A, B, where the substrate particle size was fixed to ¤ 1, and 4

mm, respectively. An additional experimental set, bio-reactor C, was carried out by using a substrate par-
ticle size of 20 mm, fed twice with 8.5 and 11 kgCOD m�3, respectively. For each bio-reactor, the second
organic load was applied when the cumulative biological methane production reached constant value, after
16, 16 and 17 days respectively. Noteworthy, each reactor was fed twice to allow the microbial commu-
nity to acclimate to the specific substrate and to avoid lag phases and undesired byproducts accumulation.
The inoculum for AD tests (M ) was obtained from a full-scale AD reactor operating the bio-conversion of
buffalo manure to biogas. All the tests were carried out in triplicate.

The organic substrate and the anaerobic digestate were characterized in terms of Total Solids (TS) and
Volatile Solids (VS) to estimate their organic content prior to start the experiments. The results are shown

19



Water

Biogas 
input

NaOH
solution

CH4

CH4

Water

Graduate 
cylinder

a b c d

Figure 2.1: a) Biogas measurement system adopted. Characteristic dimension of the particles: b) 20 mm,
c) 4 mm and d) < 1 mm.

Organic biomass Total Solids Volatile Solids
% %

Potato waste 20.87 19.51
Inoculum 2.76 1.84

Table 2.1: Substrate and inoculum characterization.

in Table (2.1). In addition, potato waste was characterized in terms of carbohydrates, proteins, lipids and
inert material (Table (2.2)) to achieve information on the organic composition of the waste. These analysis
were required to set the ADM1 based mathematical model. All the reactors were operated at the same
working volume of 1500mL by adding the same amount of substrate, digestate, water and a buffer solution
to avoid inhibition effects due to acids accumulation.

2.4.2 Analytical methods

Total Solids (TS) and Volatile Solids (VS) were determined according to Standard Methods [7]. Carbohy-
drates, proteins and lipids, were quantified according to the Handbook of Food Analysis [91]. The daily
methane production was measured using the volumetric method described above. To control the efficiency
of the system in removing carbon dioxide, some gaseous samples were checked with a Varian Star 3400 gas
chromatograph equipped with ShinCarbon ST 80{100 column and a thermal conductivity detector. Only
methane was detected in the outflow biogas. Temperature and pH were monitored for at least once a day
with a WTW pH meter (WTW, Germany). The extracted liquid samples were characterized in terms of or-
ganic content: chemical oxygen demand (COD) concentration was obtained using a conversion factor from

Carbohydrates Proteins Lipids Inert
% % % %

75 10 0.1 14.9

Table 2.2: Potato waste composition in terms of carbohydrates, proteins, lipids and inert material.
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the VS content (� 1.5 gCODg
�1
V S); volatile fatty acid (VFA) concentrations were obtained by a solid phase

micro-extraction of the head space (HS-SPME) technique followed by a gas chromatographic coupled to
mass spectrometry (GC-MS) analysis with a Nukol (SUPELCO, USA) fused silica capillary column [93].
Total VFAs (TVFAs) were also evaluated by direct titration of the samples. Total nitrogen and ammonia
nitrogen were obtained with the total Kjeldahl nitrogen (TKN) technique according to the Standard Meth-
ods [7]. Total organic carbon (TOC) and total inorganic carbon (TIC) measurements were performed using
a Shimadzu 5000A TOC analyzer (Kyoto, Japan).

2.5 Model application

2.5.1 Initial conditions

A crucial step to use the ADM1 based mathematical model for the simulation of lab scale experiments was
to prescribe a reasonable initial condition for the complete set of equations. First, the initial concentration
of complex organic matter XC , in terms of kgCOD m�3, was derived from experimental measurements. It
was fixed at 10 kgCOD m�3 to reproduce bio-reactors A and B. The same amount of potato waste was
fed again after 16 days to the bio-reactor A and B. This was reproduced by numerical simulations where
the second organic load was considered at day 16. According to the experimental procedures, the initial
concentration of the complex organic matter XC was fixed to 8.5 kgCOD m�3 to simulate the bio methane
production of reactor C. After 17 days of simulation, the second organic load of 11 kgCOD m�3 was
applied. Similarly, the initial inorganic nitrogen SIN and inorganic carbon SIC were set in accordance with
experimental measurements.

In ADM1 based models, a number of microbial species is hypothesized to perform the biochemical
reactions for the conversion of organic matter into biogas. These species are usually categorized based on
their contribution on the anaerobic bio-conversion, instead of classifying their specific phylum or genera.
Initially, the conversion steps of AD lead to the production of VFAs, which depends on the concentration
of the microbial species in the inoculum. Noteworthy, different inocula are characterized by different
microbial species distribution, depending on the inoculum origin and the bioprocess performed at a real
scale. For these reasons, it is very complicated to set the initial conditions for microbial species distribution
in an ADM1 based model. In the present work, the initial condition for microbial species Xsu, Xaa, Xfa,
Xc4, Xpro, Xac, and Xh2, was set based on numerical experiments. The hypothesized initial microbial
concentrations and all the initial condition adopted for reactors A, B, and C, is resumed in Table 2.3. The
modified ADM1 model was implemented in an original software developed on Matlab platform.
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State Variable Unit Reactor A Reactor B Reactor C

XC kgCOD m�3 10 10 8.5
Xch kgCOD m�3 0.0 0.0 0.0
Xpr kgCOD m�3 0.0 0.0 0.0
Xli kgCOD m�3 0.0 0.0 0.0
Xi kgCOD m�3 0.0 0.0 0.0
Si kgCOD m�3 0.0 0.0 0.0
Ssu kgCOD m�3 0.0 0.0 0.0
Saa kgCOD m�3 0.0 0.0 0.0
Sfa kgCOD m�3 0.0 0.0 0.0
Sva kgCOD m�3 0.001 0.001 0.001
Sbu kgCOD m�3 0.001 0.001 0.001
Spro kgCOD m�3 0.0 0.0 0.0
Sac kgCOD m�3 0.0 0.0 0.0
SIC kmol m�3 0.055 0.055 0.055
SIN kmol m�3 0.05 0.05 0.05
Xsu kgCOD m�3 0.15 0.15 0.15
Xaa kgCOD m�3 0.10 0.10 0.10
Xfa kgCOD m�3 0.10 0.10 0.10
Xc4 kgCOD m�3 0.01 0.01 0.01
Xpro kgCOD m�3 0.033 0.033 0.033
Xac kgCOD m�3 0.10 0.10 0.10
Xh2 kgCOD m�3 0.10 0.10 0.10

Table 2.3: Initial conditions for the state variables.
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2.5.2 Sensitivity Analysis

Due to the consistent number of equation and parameters, a local sensitivity analysis (LSA) was carried out
to investigate the parameters influencing the model outputs the most. LSA is able to investigate the effect
of a single parameter variation on a specific model output [135, 27]. The influence of a varying parameter
is studied by computing the output variable first-order partial derivative over time with respect to the the
considered parameter [140] (Eq. (2.45)). For each parameter the maximum or the minimum value of the
obtained partial derivatives can be used as sensitivity index (SI), depending on which one is higher in
absolute terms (Eq. (2.46)).

Wi,j pt,C,uq �
BCi pt,C,uq

Buj

, (2.45)

SIi,j �

$'&'%
max
tPr0,τ s

Wi,j pt,C,uq if | max
tPr0,τ s

Wi,j pt,C,uq | ¥ | min
tPr0,τ s

Wi,j pt,C,uq |

min
tPr0,τ s

Wi,j pt,C,uq if | max
tPr0,τ s

Wi,j pt,C,uq |   | min
tPr0,τ s

Wi,j pt,C,uq |
, (2.46)

where SIi,j is the jth parameter sensitivity with respect to the ith output state variable at the instant time
t, Wi,j is the value of the partial derivative of the ith output state variable with respect to the jth parameter
at the instant time t, Ci is the ith chosen output state variable concentration; C is the vector of the state
variables concentration (in soluble, particle or gaseous phase), uj is the jth investigated parameter value, u
is the vector of the model parameters and τ is the final instant time.

It is important to notice that some sensitivity analysis results may depend on the initial condition as
some parameter could be characterized by a wide fluctuation range [140]. The cumulative methane produc-
tion and the VFAs concentration over time were set as model output for Equation (2.45) and the sensitivity
of three groups of biochemical parameters was evaluated: the first group included the kinetic parameters,
such as maximum specific uptake rates (km,su, km,aa, km,fa, km,c4, km,pro, km,ac, km,h2), half-saturation con-
stants (Ks,su, Ks,aa, Ks,fa, Ks,c4, Ks,pro, Ks,ac, Ks,h2), and first order decay rates (kdec,all, kdec,c4, kdec,pro,
kdec,ac); the second group was constituted by stoichiometric parameters, such as yields of microbial species
on substrates (Ysu, Yaa, Yfa, Yc4, Ypro, Yac, Yh2); the third group included hydrolysis/disintegration-related
parameters (khyd,ch, khyd,pr, khyd,li and Ksbk). All non-biochemical related parameters, e.g. inhibiting con-
stants, equilibrium constants for gas-transfer and acid-base reactions, were not investigated in the present
study as their uncertainty can be attributed to the experimental design and the reactor configuration [117].
The sensitivity was performed by simulating the process dynamics of reactor A and setting the initial con-
dition presented in Table (2.3). The initial values of the investigated parameters were set in accordance to
the original ADM1 [10]. The initial value for the introduced surface based kinetic constant Ksbk was set in
accordance to [108], where the same substrate and a similar equation were used. The Matlab tool sens_sys

[86] coupled with an ODE solver were used to perform the numerical analysis.
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2.5.3 Model calibration and validation

Based on the sensitivity analysis, a trial and error method was used to calibrate the model. This method is
highly recommended for the calibration of complex mathematical models with a high number of parameters
varying in a wide range [101]. Specifically, the selected parameters are calibrated individually. Once
the first parameter is calibrated another parameter is allowed to vary in its specific variation range. The
algorithm ends when a reasonable fitness with experimental data is reached [110]. The parameters with
higher sensitivity indexes where calibrated before other parameters. To compare model prediction with
experimental data during the calibration steps, the experimental cumulative methane production and VFAs
trends data in bio-reactor A were used. The performance of the calibration was evaluated by three different
methods [60]: the modeling efficiency (ME), the index of agreement (IoA), and the root mean square error
(RMSE) method, including its normalized form (NRMSE). These methods require the computation of four
different parameters (Eqs. (2.47)-(2.50)):

RMSE �

d°N
i�1 pPi �Oiq

2

N
(2.47)

NRMSE �
RMSE ppq

Ō
(2.48)

ME � 1�

°N
i�1 pPi �Oiq

2°N
i�1

�
Oi � Ō

�2 (2.49)

IoA � 1�

°N
i�1 pPi �Oiq

2°N
i�1

���Pi � Ō
��� ��Oi � Ō

���2 (2.50)

where: Pi is the ith model predicted value, Oi and Ō are the ith and the means observed value, and N is the
number of observations.

The model validation consisted in verifying the agreement between simulated values and experimental
data achieved from bio-reactors B and C, with particle sizes of 4 and 20 mm, respectively. The values of
all parameters were obtained from the calibration step. The performance of the validation procedure was
evaluated through the same parameters described above (Equations (2.47)-(2.50)).

2.6 Results and discussions

2.6.1 Sensitivity Analysis

The aim of AD is to maximize the production of methane from a given substrate with a stable biological
process. On the other hand, VFAs concentration during the anaerobic conversion may be a useful index
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to avoid bio-reactor acidification and decreased conversion efficiency. The cumulative methane production
was chosen as the model output to perform the sensitivity analysis. The results of the sensitivity indexes
for each investigated parameter are shown in Figure 2.2. The sensitivity analysis was also performed based
on VFAs concentration, and the results are reported in Figure 2.3, 2.4 and 2.5.

The results related to methane production, Figure 2.2a, showed that the most sensitive parameter was the
disintegration kinetic constant Ksbk, whose sensitivity index value was 0.339. This result is in accordance
with the sensitivity analysis performed in [31], where the ADM1 was applied to simulate biogas production
from a different organic substrate. Despite a different index was used, the most significant sensitivity
was referred to the kinetic constant of the disintegration process. Another relevant result is related to the
maximum specific uptake rate for acetic acid km,ac, which showed the higher SI than all the other parameters
grouped in Figure 2.2a (SI� 3.6 � 10�5). However, this value is not comparable with respect to the SI of
the disintegration constant Ksbk. This evidence is in contrast with the local sensitivity analysis reported in
[87], where ADM1 was used to model the effects of thermal pretreatment on an AD process of food waste.
In this study, the reported SI of km,ac showed the same magnitude of the disintegration constant SI. In the
present work, the sensitivity of km,ac increased when the acetic acid concentration was considered as the
model output of the sensitivity analysis (Figure 2.3a). However, it was lower than the sensitivity of Ksbk.

The SI of Ksbk showed the highest value also when using other VFAs concentration as output variables
Figure 2.3. This can be explained by the crucial role of the disintegration during the first steps of the anaer-
obic bio-conversion. Indeed, low values of Ksbk lead to low kinetic rates due to the reduced availability of
substrates. When high Ksbk values are applied, all the anaerobic kinetics are stimulated and the complexity
and the particle size distribution of the substrates are completely neglected.

The SIs of all half-saturation constants with respect to the cumulative methane production are reported
in Figure 2.2b in log-scale. The majority of the half-saturation constants showed SI values of around 10�3,
except for Ks,fa and Ks,h2. For these parameters the sensitivity reached the extreme values of 1.42 �

10�6 and 1.21, respectively. The assimilation of fatty acids, regulated by Ks,fa, has a relatively negligible
effect on methane production, while hydrogen kinetics strongly influences the final methane production.
A similar result was also obtained by using VFA concentrations as output variable Figure 2.4a; the most
sensitive half-saturation constant was Ks,h2 (SI � 102), and a negligible SI value was found for all the
other parameters. In particular, Ks,fa showed the lower SI value when valeric, propionic or acetic acid was
selected as model output, while Ks,ac showed the lowest sensitivity value in the case of butyric acid. The
crucial role of Ks,h2 is due to the importance of hydrogen dynamics during AD. Indeed, hydrogen is able to
affect the assimilation kinetic rates of fatty acids, valerate, butyrate and propionate (Equations 2.16-2.19).
A partial inhibition of these processes leads to a slower acetate production and consequent negative effects
on methane generation by acetoclastic methanogens (Eq. 2.20).

The SI values of yield coefficients with respect to the cumulative methane production (Figure 2.2c)
revealed a significant influence of sugar and acetic acid consuming microorganisms. The values of �0.007
and �0.005 were obtained for Ysu and Yac, respectively. The low sensitivity of the majority of half-
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Figure 2.2: Absolute sensitivity referred to the produced methane concentration of: (a) Monod specific
uptake rates and first order hydrolysis and disintegration constants; (b) half saturation constants (logarithmic
scale); (c) yield of biomass on substrate; (d) first order decay rate.

saturation constants and yield coefficients is in accordance with the results of the local sensitivity analysis
reported by [115]. In the case of VFAs used as sensitivity output (Figure 2.4b), the yields of valeric, bu-
tyric, propionic and acetic acid consuming species were relevant for the corresponding acid concentrations.
Specifically, the propionic acid concentration Spro resulted more sensitive to the yield Ypro than Ysu. Such
a result is in contrast with the sensitivity analysis performed by [8], where Ysu was one of the more influ-
encing parameter on the propionic acid concentration. In addition, the yield of propionic acid consuming
biomass was characterized by a very low sensitivity with respect to the same variable. This result can be due
to the different structure of the model presented in [8], accounting for sulphate reduction during propionate
uptake.

Finally, the SI values of all decay terms were reported in Figs. 2.2d and 2.5. Among them, the decay
term related to sugar, amino acids, fatty acids and hydrogen consuming species (kdec,all) showed the highest
effect on the cumulative methane production. In the case the VFAs, the more sensitive decay rate was
related to the microbial species involved in the degradation of each corresponding VFA.

2.6.2 Model calibration

Based on the results of the sensitivity analysis, the parameters Ksbk, khyd,ch, khyd,pr, khyd,li, km,pro, km,ac,
Ks,su, Ks,c4, Ks,ac, kdec,all, kdec,c4, kdec,pro, kdec,ac were selected for the calibration. Other sensitive param-
eters, such as Ks,h2 and all the yields coefficients, were set to the default ADM1 value as it was possible
to appropriately fit the experimental data in all the studied cases. Table 2.4 reports the calibrated values for
the investigated parameters compared to the ADM1 values.
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Figure 2.3: Absolute sensitivity referred to the produced VFAs concentrations of: (a) Monod specific
uptake rates; (b) first order hydrolysis and disintegration constants.

Figure 2.4: Absolute sensitivity referred to the produced VFAs concentrations of: (a) half saturation con-
stants; (b) yields of biomass on substrate.

27



Figure 2.5: Absolute sensitivity referred to the produced VFAs concentrations of the first order decay rates.

The calibrated value of the disintegration constant Ksbk is not comparable with any ADM1 parameter
as a different equation is assumed for the surface-based kinetic model. However, the Ksbk value has been
investigated in very few cases in literature and its wide variation range strongly depends on the specific
organic substrate converted. In the present case, the value of 0.72 kg m�2 d�1 for this parameter allowed
to achieve the best fit between experimental and simulated data. This value is higher with respect to 9.6 �

10�3, 10.8 � 10�3 and 12.0 � 10�3 kg m�2 d�1 used for a similar substrate by [108]. These authors
reproduced experimental data of AD batch reactors operated by using particulate starch obtained from
fresh potatoes as substrate. The specific particle size ranged from 45 and 125 µm. Conversely, the value of
Ksbk calibrated in the present study is lower than 12.96�103 kg m�2 d�1 reported in [43], where the authors
performed biomethane potential (BMP) experiments on synthetic organic waste with different particle size
distributions. These differences in Ksbk value allows to confirm that it directly depends on the nature and
characteristics of substrates.

Some differences with the ADM1 model have been observed with the maximum propionic and acetic
acid uptake rate constants km,pro and km,ac. These values were set to 60 d�1 and 27 d�1 in the modified
model, differently from [46], where the increase of km,pro and km,ac with respect their baseline values of
ADM1 was not required. In addition, Fatolahi et al. operated significant changes of the Monod maximum
specific uptake rates km,su and km,c4. In the present study, km,su and km,c4 were set according to the ADM1

model. Moreover, the values of the calibrated half-saturation constants Ks,su, Ks,c4 and Ks,ac were lower
than ADM1. To better fit experimental data, the half-saturation constants for valerate, butyrate and acetate
were reduced. A similar result was obtained in the calibration of a modified ADM1 used to reproduce starch
wastewater and synthetic substrate bio-conversion in a lab scale upflow anaerobic sludge blanket (UASB)
reactor [57].
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Similarly, the calibrated values related to the hydrolysis constants khyd,ch, khyd,pr and khyd,li, resulted
lower than the same values reported in [10]. These values are in accordance with [12], where the range
of 0.15 � 0.3 d�1 was reported for BMP tests of hydrolyzed sludge samples. Decreased values for the
hydrolysis parameters were also reported in [51]. The authors studied the disintegration and hydrolysis
kinetics during the AD of fruit and vegetable waste. The differences with ADM1 can be mainly ascribed
to the different substrate fed to the bioreactors: ADM1 was calibrated based on the AD of activated sludge,
which is generally constituted by an hydrolyzed semi-solid matrix containing slow biodegradable com-
pounds. On the other hand, potato waste needs to be hydrolyzed during AD, and its readily biodegradable
organic content is higher than activated sludge. This fraction is able to stimulate biological kinetics during
the bio-conversion and modify the kinetic constants.

The model was able to fit the experimental cumulative methane production data related to bio-reactor A
as it is shown in Figure 2.6a. The performance indicators are reported in Table 2.5. The VFAs production
(Figure 2.6b-e) accurately reproduced the experimental data except for butyric acid (Figure 2.6d). This can
be due to the coupled kinetic uptake rates related to valeric and butyric acid assimilation reported in Equa-
tion 2.17-2.18. In some cases, two separate microbial species operating the valeric acid Sva and the butyric
acid Sbu conversion separately were considered. In this study, a common microbial species was considered
for Sbu and Sva degradation according to the original ADM1. This choice leads to a relative overestimation
of butyric acid with respect to the experimental data, but it allows the possibility of comparing other ADM1

based works with the presented results.
Noteworthy, the calibration of the model was achieved by using the complete set of data related to the

bio-reactor A. Based on the experimental feeding procedure, it should be possible to divide the data-set,
and use the obtained partial set of data (from day 16 to the end of the experiment) to calibrate the model.
Usually this procedure avoid any calibration error due to microbial species adaptation to the specific fed
substrate, and it allows to obtain a more representative set of parameters. In the present case, this procedure
was not required as no differences were observed when using the complete or the partial data set.

2.6.3 Model validation

Numerical simulations were run to validate the model using the data-sets related to bio-reactors B and
C, where potato waste was fed at different particle sizes (4 and 20 mm) and comparable concentrations.
Of course, the values of the calibrated parameters were used for numerical simulations and the validation
results of the cumulative methane production and organic acids over time have been reported in Figures 2.7
and 2.8. Moreover, Table 2.5 shows the performance indicators values obtained during model calibration
and validation steps using the different data-set.

The values of ME, IoA, RMSE, and NRMSE confirmed that the model is able to properly predict the
cumulative methane production for a wide range of substrate particle size.

The VFA evolution curves were adequately fitted by model simulations, except for the butyric acid.
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Calibrated
parameter Units ADM1

default value
Modified Surface-Based

Model value

Ksbk kgCOD m�2 d�1 / 0.72
khyd,ch d�1 10 0.95
khyd,pr d�1 10 0.25
khyd,li d�1 10 0.25
km,pro d�1 13 60
km,ac d�1 8 27
kdec,all d�1 0.02 0.1
kdec,c4 d�1 / 0.05
kdec,pro d�1 / 0.02
kdec,ac d�1 / 0.02
Ks,su kgCOD m�3 0.5 0.05
Ks,c4 kgCOD m�3 0.2 0.1
Ks,ac kgCOD m�3 0.15 0.015

Table 2.4: Calibrated parameters: ADM1 default values and Modified Surface-Based Model values.

Performance measures
Type of parameter

analysis Reactor ME IoA RMSE NRMSE

(-) (-) (ml) (-)
Calibration A 0.99 0.998 209.51 0.039
Validation B 0.99 0.997 256.19 0.049
Validation C 0.92 0.979 710.15 0.157

Table 2.5: Performance indicators.
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Figure 2.6: Reactor A: measured and simulated concentration values of (a) Methane; (b) Acetic acid; (c)
Propionic acid; (d) Butyric acid; (e) Valeric acid.

As previously reported, the fitting with experimental data should be improved by uncoupling butyric and
valeric acid degradation kinetics.

2.7 Conclusions

The aim of the present work was to calibrate and validate a modified surface-based model of an anaerobic
digestion process of potato waste. The model consisted on a modified ADM1 model in which the disinte-
gration kinetic was able to take into account the particle size of the composite substratum. Modifications
concerning the kinetics parameters of the microbial species involved in the AD process have been discussed.
A local sensitivity analysis highlighted the importance of choosing the correct set of parameters to model
methane generation and volatile fatty acids concentrations in real AD bio-reactors. The introduced dis-
integration kinetic constant Ksbk presented the highest sensitivity among disintegration/hydrolysis related
parameters and Monod specific uptake rates. The model was successfully calibrated and validated with ad-
hoc AD experiments carried out using potato waste as organic substrate. The model properly predicted the
cumulative methane production and VFAs concentration profiles achieved during lab-scale experiments.
Finally, validation results showed the ability of the modified surface-based model to adequately describe
real processes where a wide range of particle size characterizes the substrate fed to AD reactors.
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Figure 2.7: Reactor B: measured and simulated concentration values of (a) Methane; (b) Acetic acid; (c)
Propionic acid; (d) Butyric acid; (e) Valeric acid.
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Figure 2.8: Reactor C: measured and simulated concentration values of (a) Methane; (b) Acetic acid; (c)
Propionic acid; (d) Butyric acid; (e) Valeric acid.

32



2.8 Petersen Matrix

33



C
om

po
ne

nt
s
Ñ

1
2

3
4

5
6

7
8

9
10

11
12

R
at

e
ρ
j

Pr
oc

es
s
Ó

S
s
u

S
a
a

S
f
a

S
v
a

S
b
u

S
p
r
o

S
a
c

S
H

2
S
C
H

4
S
I
C

S
I
N

S
I

rk
g
C
O
D
m
�

3
d
�

1

k
m

o
lm
�

3
d
�

1
s

1
D

is
in

te
gr

at
io

n
f x

i
,x

c
ρ
1

2
H

yd
ro

ly
si

s
of

C
ar

bo
hy

dr
at

es
1

ρ
2

3
H

yd
ro

ly
si

s
of

Pr
ot

ei
ns

1
ρ
3

4
H

yd
ro

ly
si

s
of

L
ip

id
s

1
�
f f

a
,l
i

f f
a
,l
i

ρ
4

5
U

pt
ak

e
of

Su
ga

rs
�
1

p1
�
Y
s
u
qf

b
u
,s
u
p1

�
Y
s
u
qf

p
r
o
,s
u
p1

�
Y
s
u
qf

a
c
,s
u
p1

�
Y
s
u
qf

H
2
,s
u

-
¸

i�
1
�
9
,1
1
�
2
4

C
iν

i,
5

�
Y
s
u
N

b
a
c

ρ
5

6
U

pt
ak

e
of

A
m

in
oA

ci
ds

�
1

p1
�
Y
a
a
qf

v
a
,a
a
p1

�
Y
a
a
qf

b
u
,a
a
p1

�
Y
a
a
qf

p
r
o
,a
a
p1

�
Y
a
a
qf

a
c
,a
a
p1

�
Y
a
a
qf

H
2
,a
a

-
¸

i�
1
�
9
,1
1
�
2
4

C
iν

i,
6

N
a
a
�
Y
s
u
N

b
a
c

ρ
6

7
U

pt
ak

e
of

L
C

FA
�
1

p1
�
Y
f
a
0.
7

p1
�
Y
f
a
0
.3

-
¸

i�
1
�
9
,1
1
�
2
4

C
iν

i,
7

�
Y
f
a
N

b
a
c

ρ
7

8
U

pt
ak

e
of

V
al

er
at

e
�
1

p1
�
Y
C
4
q0
.5
4

p1
�
Y
C
4
q0
.3
1

p1
�
Y
C
4
q0
.1
5

-
¸

i�
1
�
9
,1
1
�
2
4

C
iν

i,
8

�
Y
C
4
N

b
a
c

ρ
8

9
U

pt
ak

e
of

B
ut

yr
at

e
�
1

p1
�
Y
C
4
0.
8

p1
�
Y
C
4
0
.2

-
¸

i�
1
�
9
,1
1
�
2
4

C
iν

i,
9

�
Y
C
4
N

b
a
c

ρ
9

10
U

pt
ak

e
of

Pr
op

io
na

te
�
1

p1
�
Y
p
r
o
0.
57

p1
�
Y
p
r
o
0.
43

-
¸

i�
1
�
9
,1
1
�
2
4

C
iν

i,
1
0

�
Y
p
r
o
N

b
a
c

ρ
1
0

11
U

pt
ak

e
of

A
ce

ta
te

�
1

p1
�
Y
a
c
q

-
¸

i�
1
�
9
,1
1
�
2
4

C
iν

i,
1
1

�
Y
a
c
N

b
a
c

ρ
1
1

12
U

pt
ak

e
of

H
yd

ro
ge

n
�
1

p1
�
Y
a
c
q

-
¸

i�
1
�
9
,1
1
�
2
4

C
iν

i,
1
2

�
Y
H

2
N

b
a
c

ρ
1
2

13
D

ec
ay

of
X

s
u

-
¸

i�
1
�
9
,1
1
�
2
4

C
iν

i,
1
3

N
b
a
c
�
N

X
c

ρ
1
3

14
D

ec
ay

of
X

a
a

-
¸

i�
1
�
9
,1
1
�
2
4

C
iν

i,
1
4

N
b
a
c
�
N

X
c

ρ
1
4

15
D

ec
ay

of
X

f
a

-
¸

i�
1
�
9
,1
1
�
2
4

C
iν

i,
1
5

N
b
a
c
�
N

X
c

ρ
1
5

16
D

ec
ay

of
X

C
4

-
¸

i�
1
�
9
,1
1
�
2
4

C
iν

i,
1
6

N
b
a
c
�
N

X
c

ρ
1
6

17
D

ec
ay

of
X

p
r
o

-
¸

i�
1
�
9
,1
1
�
2
4

C
iν

i,
1
7

N
b
a
c
�
N

X
c

ρ
1
7

18
D

ec
ay

of
X

a
c

-
¸

i�
1
�
9
,1
1
�
2
4

C
iν

i,
1
8

N
b
a
c
�
N

X
c

ρ
1
8

19
D

ec
ay

of
X

H
2

-
¸

i�
1
�
9
,1
1
�
2
4

C
iν

i,
1
9

N
b
a
c
�
N

X
c

ρ
1
9

MonosaccarideskgCODm
�3

AminoAcidskgCODm
�3

LCFAkgCODm
�3

TotalValeratekgCODm
�3

TotalButyratekgCODm
�3

TotalPropionatekgCODm
�3

TotalAcetatekgCODm
�3

LiquidHydrogenkgCODm
�3

LiquidMethanekgCODm
�3

InorganicCarbonkmolCm
�3

InorganicNitrogenkmolNm
�3

SolubleInertskmolPm
�3

Ta
bl

e
2.

6:
Pe

te
rs

en
M

at
ri

x,
pa

rt
a.

34



C
om

po
ne

nt
s
Ñ

13
14

15
16

17
18

19
20

21
22

23
24

R
at

e
ρ
j

Pr
oc

es
s
Ó

X
C

X
c
h

X
p
r

X
li

X
s
u

X
a
a

X
f
a

X
c
4

X
p
r
o

X
a
c

X
h
2

X
I

rk
g
C
O
D
m
�

3
d
�

1

k
m

o
lm
�

3
d
�

1
s

1
D

is
in

te
gr

at
io

n
-1

f c
h
,x
c

f p
r,
x
c

f l
i,
x
c

f x
i
,x

c
ρ
1

2
H

yd
ro

ly
si

s
of

C
ar

bo
hy

dr
at

es
-1

ρ
2

3
H

yd
ro

ly
si

s
of

Pr
ot

ei
ns

-1
ρ
3

4
H

yd
ro

ly
si

s
of

L
ip

id
s

-1
ρ
4

5
U

pt
ak

e
of

Su
ga

rs
Y
s
u

ρ
5

6
U

pt
ak

e
of

A
m

in
oA

ci
ds

Y
a
a

ρ
6

7
U

pt
ak

e
of

L
C

FA
Y
f
a

ρ
7

8
U

pt
ak

e
of

V
al

er
at

e
Y
C
4

ρ
8

9
U

pt
ak

e
of

B
ut

yr
at

e
Y
C
4

ρ
9

10
U

pt
ak

e
of

Pr
op

io
na

te
Y
p
r
o

ρ
1
0

11
U

pt
ak

e
of

A
ce

ta
te

Y
a
c

ρ
1
1

12
U

pt
ak

e
of

H
yd

ro
ge

n
Y
H

2
ρ
1
2

13
D

ec
ay

of
X

s
u

0.
25

�
1

0.
75

ρ
1
3

14
D

ec
ay

of
X

a
a

0.
25

�
1

0.
75

ρ
1
4

15
D

ec
ay

of
X

f
a

0.
25

�
1

0
.7
5

ρ
1
5

16
D

ec
ay

of
X

C
4

0.
20

0
.8
0

ρ
1
6

17
D

ec
ay

of
X

p
r
o

0.
20

�
1

0
.8
0

ρ
1
7

18
D

ec
ay

of
X

a
c

0.
20

�
1

0
.8
0

ρ
1
8

19
D

ec
ay

of
X

h
2

0.
25

�
1

0.
75

ρ
1
9

CompositeskgCODm
�3

CarbohydrateskgCODm
�3

ProteinskgCODm
�3

LipidskgCODm
�3

SugardegraderskgCODm
�3

AminoacidsdegraderskgCODm
�3

LCFAdegraderskgCODm
�3

Valerateandbutyrate
degraderskgCODm

�3

PropionatedegraderskgCODm
�3

AcetatedegraderskgCODm
�3

HydrogendegraderskgCODm
�3

ParticulateInertskgCODm
�3

Ta
bl

e
2.

7:
Pe

te
rs

en
M

at
ri

x,
pa

rt
b.

35



Chapter 3

A modeling and simulation study of anaerobic
digestion in plug-flow reactors*

*The results of this chapter will be submitted in the form of a manuscript entitled: A modeling and simulation study of
anaerobic digestion in plug-flow reactors.
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3.1 Abstract

In this work a mathematical model for the anaerobic digestion process in plug-flow reactors is proposed on
the basis of mass balance considerations. The model consists of a system of non-linear parabolic partial
differential equations for the variables representing the concentrations of the bio-components constituting
the waste matrix and takes into account convective and diffusive phenomena. The plug-flow reactor is
modelled as a one-dimensional domain; the waste matrix moves in the direction of the reactor axis and un-
dergoes diffusive phenomena which reproduce the movement of the bio-components along the reactor axis
due to a gradient in concentration. The velocity characterizing the convection of the waste matrix moving
within the reactor is not fixed a priori but it is considered as an additional unknown of the mathematical
problem. The variation in the convective velocity allows to account the mass variation occurring along a
plug-flow reactor due to the conversion of solids, which is an aspect not much analysed in the literature of
dry anaerobic digestion in plug-flow reactors. The equation governing the convective velocity is derived
by considering the following hypothesis: the density of the waste matrix within the reactor is supposed
constant over time and the sum of the volume fractions of the bio-components constituting the waste matrix
are constrained to sum up to unity. The waste matrix undergoes biochemical transformations catalysed by
anaerobic microbial species which lead to the production of gaseous methane, the final product of the anaer-
obic digestion process. Biochemical processes are modelled using a simplified scheme and a differential
equation is used to describe the dynamics of the produced gaseous methane. A finite difference scheme is
used for the numerical integration. Lastly, the model consistency is showed through numerical simulations
which investigate the effect of the variation of some operating parameters on the process performance. The
model is then applied to a case of engineering interest. Simulations produce results in agreement with the
experimental observations. This highlights that the model can serve as a tool for the optimal management
and sizing of an anaerobic digestion plug-flow reactor.

3.2 Introduction

Nowadays, Anaerobic Digestion (AD) process is a technology widely used for the treatment of the Organic
Fraction of Municipal Solid Waste (OFMSW). The organic compounds are converted in biogas thanks to
the activity of various microbial groups operating in an oxygen-free environment. The biogas, due to its
high methane content, can be used to produce simultaneously heat and electricity through combined heat
and power systems or directly injected in the gas grid (after cleaning) and is considered as a renewable
energy. The residual substrate of the AD represents a by-product of the process, called digestate, which is
used as fertilizer in agriculture.

The AD process is usually classified based on the Total Solids (TS) content of the substrate to be treated,
where TS is the measure of all the suspended, colloidal and dissolved solids in a medium. If the TS content
is less or equal to 10% the AD is classified as Wet-AD (WAD) otherwise, if it is greater or equal to 20%, it
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is denoted as Dry-AD (DAD). Lastly, the AD is denoted as semi-dry AD (SDAD) when the TS content is
between 10% and 20%. Moisture content is essential to the AD process because it dissolves nutrients and
facilitates the contact between substrates and bacteria [68]. Compared to WAD, DAD has the advantage
to reduce the needed reactor volume, the energy needs as there is less water to heat up and, moreover, the
amount of by-product to be treated [136, 22]. However, DAD usually presents some drawbacks related to
inhibition, accumulation of Volatile Fatty Acids (VFA) and long Hydraulic Retention Time (HRT) [65].
VFAs are short chain carboxylic acids having from 2 to 5 carbon atoms in the molecule and are among the
essential intermediates of the AD process. HRT indicates the mean residence time of a certain substrate
within a biological reactor [102], determining the contact time between the substrate to be treated and the
microorganisms. One of the most used reactor configuration for DAD processes is the Plug-Flow Reac-
tor (PFR), constituted by a reactor having a tubular or parallelepiped shape. In a plug-flow reactor, the
waste movement along the digester is such that back-mixing is avoided [116] and a portion of the effluent
is typically recycled to inoculate the influent and improve the AD process [73]. The hydrodynamics of a
full-scale plug-flow reactor depends on the adopted configuration. For example Dranco systems work as
vertical downflow digesters, where the mixing occurs via recirculation of the waste extracted at the bottom
of the reactor; an horizontal flow is used in the Kompogas configuration, realized through slow rotation
mixers that ensure the homogenization in radial direction and the stripping of the biogas; the horizontal
plug-flow is circular in the Valorga configuration, where the mixing is realized injecting the biogas from
the bottom of the reactor [77].
Mathematical modeling of AD process represents a powerful tool to enhance process control and optimiza-
tion together with reactor sizing and plant management. The vast majority of models describing WAD
process refers to Continuous Stirred Tank Reactor (CSTR) configuration and follows the approach of the
Anaerobic Digestion Model No.1 (ADM1) [10, 50, 82]. ADM1 consists of a system of Ordinary Dif-
ferential Equations (ODEs) which simulate the main biochemical processes occurring during anaerobic
digestion. The latter can be classified into five main phases: disintegration, hydrolysis, acidogenesis, ace-
togenesis and methanogenesis. According to [9], one of the main limitations to mathematical modeling
of AD is related to the lack of reliable mathematical models capable to describe this kind of process in
PFRs. Contrary to CSTR, where the hypothesis of complete mixing of the compounds inside the reactor
is considered, in a PFR model the state variables are functions both of time and space. Moreover, perfect
mixing in radial direction is assumed, then reactant concentrations are uniform in any cross section and
vary only along the flow path. The system of PDEs describing the phenomenon, is represented by mass
balances on the state variables of the problem. In literature there exist a few number of works related to the
modeling of AD in PFRs due to the uncertainty linked to some aspects of the problem such as dispersion,
mixing, turbulence, variation of density and variation of the porosity of the medium. The existing PFR
models make some simplifications to describe the phenomenon. For example in [39] the authors approxi-
mate the PFR as a tank-in-series system, solving a sequence of CSTR-type reactors; in [125] Vavilin et al.
solved the convection-diffusion-reaction equation for a PFR using a constant convective velocity; Binxin
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Wu in [132] faced the problem using a two-stage computational fluid dynamics (CFD) where the physical
model, consisting of a system of PDEs, is solved under steady-state conditions while the biological model
is represented by a system of ODEs.

Other works focus on the discussion of the boundary conditions for the convection-diffusion-reaction
equations describing the PFR configuration. They mostly debate on the validity of the boundary conditions
postulated by P.V. Danckwerts in 1953 [34]. In his work Danckwerts argues that for a convection-diffusion-
reaction equation at the inlet section the flux continuity must be preserved while at the outlet the gradient
in concentration must be zero. Several authors successfully used the Danckwerts’ boundary conditions in
their works [19, 96, 122, 36]), others criticized some aspect of Danckwerts’ assertions, mostly claiming
that the state variables should preserve the continuity across the inlet boundary [131] or that the mass and
heat flux are not conserved if the contribution of dispersion to axial mass flow is important [37].
The aim of this work is to present a mathematical model capable to describe the DAD process of OFMSW in
a PFR. The model considers the process being governed by one-dimensional convection-diffusion-reaction
equations where the convective velocity is not a fixed value but it is considered as a function both of space
and time. In the existing models, the general approach consists in neglecting the system mass variation due
to the degradation processes that lead to the conversion of solids in gaseous compounds along the reactor. In
this new kind of approach it is considered that this loss in mass is balanced by the variation of the convective
velocity of the system, taking into account that these kind of processes are performed maximizing the
working reactor volume, keeping constant the level of the treated substrate along the reactor. The equation
governing the system velocity variation is derived through the hypothesis that the waste density is constant
in time and space and the sum of the volume fractions of the bio-components constituting the waste matrix
are constrained to sum up to unity. These statements imply that the mass of the waste mixture should
remain constant in time and space, hence the solids mass reduction due to the degradation processes along
the reactor, as aforementioned, has to be balanced by the variation of the convective velocity. Suitable
initial-boundary conditions are prescribed. Biochemical processes are modelled using a simplified kinetic
scheme where disintegration and methanogenesis are considered as the rate-limiting steps of the whole
digestion process. Equations are numerically integrated by using a finite difference scheme and numerical
simulations show different aspects that could be analysed during the management of an existing plant or the
designing of new plants. They investigate the roles of some operating and physical parameters on process
dynamics in terms of methane production, removal efficiency, bio-components constituting the waste matrix
concentration trends and convective velocity trend. The investigated physical and operating parameters are
the reactor length, the inlet convective velocity of the waste, the HRT and the diffusion coefficient. Finally,
the model is applied to the case of a lab-scale experiment reproducing the DAD process in a PFR for
different Organic Loading Rates (OLRs), where the OLR indicates a measure of the amount of organic
material per unit reactor volume subjected to an AD process in a given unit time period [52].
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3.3 Mathematical model

3.3.1 Model equations

Figure 3.1: Control volume for the mass balance.

The mathematical model is derived in the framework of continuum mechanics and is based on mass balance
considerations in one-dimensional case for n state variables Ci pz, tq , i � 1, ..., n, C � pC1, ..., Cnq which
represent the concentrations of the bio-components constituting the waste mixture. The state variables are
considered as functions of time t and space z, where z represents the spatial coordinate oriented along
the reactor axis and directed from the inlet to the outlet section. Let us consider a control volume Awdz as
represented in Figure 3.1, where Aw is the constant cross-sectional area of the reactor occupied by the waste.
Taking into account the mass flux per unit area gi pz, tq crossing the surface Aw and the source/consumption
term Fi pz, t,Cq, the mass balance on the ith compound gives:

Aw
B

Bt

» z2

z1

Ci pz, tq dz � Aw rgi pz1, tq � gi pz2, tqs � Aw

» z2

z1

Fi pz, t,Cq dz,

0   z   L, t ¡ 0, i � 1, ..., n, (3.1)

» z2

z1

BCi pz, tq

Bt
dz � �

» z2

z1

Bgi pz, tq

Bz
dz �

» z2

z1

Fi pz, t,Cq dz,

0   z   L, t ¡ 0, i � 1, ..., n. (3.2)

where:

- gi pz, tq � vi pz, tqCi pz, tq �Di
¯ pz, tq BCipz, tq{Bz, i � 1, ..., n ;

- Fi pz, t,Cq �
°k

j�1 αijrj pz, t,Cq , i � 1, ..., n;
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- k is the number of processes involved;

- αij is the stoichiometric coefficient of compound i on process j;

- rj pz, t,Cq is the kinetic rate of process j, j � 1, ..., k.

The convective flux of each compound of the waste matrix is characterized by a velocity vi pz, tq which is
supposed to be a function of both space and time but the same for each compound. The diffusion coefficient
Di
¯ is assumed constant along the z-direction and on time and equal for all the compounds:

vi � v, Di
¯ � D̄, i � 1, ..., n. (3.3)

Differentiating equation (3.2) with respect to z2 and considering z2 � z follows:

BCi pz, tq

Bt
�
B pv pz, tqCi pz, tqq

Bz
� D̄

B2Ci pz, tq

Bz2
� Fi pz, t,Cq ,

0   z   L, t ¡ 0, i � 1, ..., n. (3.4)

Equation (3.4) represents the well known convection-diffusion-reaction equation in conservative form in
one-dimensional case.

Now let us consider the composition of the waste matrix moving along the reactor. This matrix has a
density ρ pz, tq � ρ supposed to be constant with space and time and is constituted by water, particulate and
dissolved components. The particulate fraction is composed of inerts, volatile solids (VS) (divided in bio-
degradable and non bio-degradable material) and microbial biomass. VS represents the portion of the TS
content that is volatilized at 550 °C and gives an idea on the amount of the readily vaporizing matter present
in the solid fraction of a substrate. The sum of inerts and VS constitute the TS content of the waste. The
dissolved components are soluble acetic acid and soluble methane, which are anaerobically produced from
the degradation of VS performed by the microbial biomass. Their concentrations are usually expressed in
terms of Chemical Oxygen Demand (COD) which is a measure of the amount of oxygen that is needed for
the complete chemical oxidation of organic compounds of a medium. It is commonly expressed in mass of
oxygen consumed over volume of the medium sample used for its measurement.

The volume of the head-space above the waste matrix is considered constant and the gas occupying
this volume is composed only by gaseous methane, whose concentration is considered invariable along the
space.

The following notations will be used:

- X1 pz, tq is the water concentration within the reactor;

- X2 pz, tq is the inerts concentration within the reactor;
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- X3 pz, tq is the concentration of bio-degradable VS;

- X4 pz, tq is the concentration of non bio-degradable VS;

- X5 pz, tq is the microbial biomass concentration within the reactor expressed in terms of VS;

- S1 pz, tq is the soluble acetic acid concentration within the reactor expressed in terms of COD;

- S2 pz, tq is the soluble methane concentration within the reactor expressed in terms of COD;

- G ptq is the gaseous methane concentration within the head-space of the reactor expressed in terms of
COD;

- X � pX1, ..., X5q;

- S � pS1, S2q;

- FX,h pz, t,X,S, Gq , h � 1, ..., 5, is the source/consumption term of the particulate compound Xh;

- FS,l pz, t,X,S, Gq , l � 1, 2, is the source/consumption term of the dissolved compound Sl.

The kinetic scheme of the model is reported in the Figure 3.2. The conversion of the bio-degradable
VS X3 in soluble acetic acid S1, which takes place through different processes that are disintegration, hy-
drolysis, acidogenesis and acetogenesis, is summarized in a unique kinetic rate r1, considering only the
rate-limiting step that is the disintegration during AD of complex substrates [43, 49, 123]; from the degra-
dation of the acetic acid through the non linear Monod-type kinetic rate r2 are produced soluble methane
S2 and microbial biomass X5; the microbial biomass die according to the decay law whose kinetic rate
is indicated as r4 and produce new bio-degradable and non-biodegradable VS X4; lastly, the soluble and
gaseous methane (S2 and G), are in equilibrium according to the gas-transfer law expressed by the kinetic
rate r3.
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Figure 3.2: Kinetic scheme.

Applying equation (3.4) to the compounds Xh, h � 1, ..., 5, S1 and S2 the following non-linear system
of PDEs is obtained.

BXhpz, tq

Bt
�
Bpvpz, tqXhpz, tqq

Bz
� D̄

B2Xhpz, tq

Bz2
� FX,h pz, t,X,S, Gq ,

0   z   L, t ¡ 0, h � 1, ..., 5, (3.5)

BSlpz, tq

Bt
�
Bpvpz, tqSlpz, tqq

Bz
� D̄

B2Slpz, tq

Bz2
� FS,l pz, t,X,S, Gq ,

0   z   L, t ¡ 0, l � 1, 2, (3.6)

where:

• FX,1 pz, t,X,S, Gq � FX,2 pz, t,X,S, Gq � 0;

• FX,3 pz, t,X,S, Gq � fr4 � r1;

• FX,4 pz, t,X,S, Gq � p1� fqr4;

• FX,5 pz, t,X,S, Gq � Y r2 � r4;

• FS,1 pz, t,X,S, Gq � mpr1 � r2q;

• FS,2 pz, t,X,S, Gq � mp1� Y qr2 � r3;
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• r1 � k1X3;

• r2 � k2X5S1{ pK1 � S1q;

• r3 � k3pS2 �RTKHGq;

• r4 � k4X5;

• m is the conversion factor of VS in COD
�
gCOD g�1

V S

�
;

• Y is the yield of biomass on substrate;

• f is the fraction of dead microbial biomass becoming new bio-degradable substrate;

• k1 is the kinetic constant for the consumption of the volatile solids X3, having the dimension of
rT�1s;

• k2 is the Monod maximum specific uptake rate for the acetic acid rT�1s;

• K1 is the half saturation constant rM L�3s for the kinetics of consumption of the acetic acid;

• k3 is the gas-liquid transfer coefficient rT�1s;

• R is the gas law constant rL2 T�2 Θ�1s;

• T is the operating temperature rΘs;

• KH is the Henry’s law coefficient rL2 T�2s;

• k4 is the first order decay rate of the microbial biomass X6 rT�1s.

The velocity displacement of the waste matrix along the reactor axis constitutes an additional unknown
of the problem, and a further equation is needed to describe its variation in space and time. To this aim,
the following hypothesis is made: the sum of the volume fractions of the particulate components within the
reactor is constrained to sum up to unity, that is:$&%

°5
h�1Xh pz, tq {ρh � 1,

ρh � ρ, h � 1, ..., 5
ùñ

5̧

h�1

Xhpz, tq � ρ. (3.7)

Equation (3.7) implies that the mass of the mixture composed of water, inerts, VS and microbial biomass
is constant over time. As a consequence, the convective velocity of the waste matrix varies along the reactor
and its variation depends on the kinetics of the compounds constituting the mixture. In fact, the velocity
variation has to balance the consumption of the VS to keep the mass of this particular mixture constant.
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These considerations are used to derive the equation governing the velocity. Summing equation (3.5)
on h � 1, ..., 5 and taking into account equation (3.7) follows:

Bvpz, tq

Bz
�

°5
h�1 FX,h pz, t,X,S, Gq

ρ
, (3.8)

5̧

h�1

FX,h pz, t,X,S, Gq � Y r2 � r1. (3.9)

In addition, a differential equation is derived from the mass balance for the volume Vgas � AgasL of
the head-space where the biogas is stored. The dynamics of the gaseous methane G ptq is described (Eq.
(3.10)):

dGptq

dt
�

Aw

Vgas

» L

0

r3 pz, tq dz. (3.10)

This equation describes the fact that all the contributes to the gas-transfer in each point are summed to
define a unique gas-transfer rate. The ratio between the cross-section occupied by the waste and the volume
of gas is present to take into account the fact that the gas-transfer kinetic rate is waste volume-specific.

3.3.2 Boundary and initial conditions

With the aim to set a closed problem, initial-boundary conditions are prescribed. Firstly, the convective
velocity of compounds moving along the reactor at the boundary z � 0 is assumed equal to the incoming
flow velocity (Eq. (3.11)):

vp0, tq � v0, t ¥ 0. (3.11)

The value v0 can be obtained by fixing the HRT of waste moving along the reactor of length L:

v0 �
L

HRT
. (3.12)

For the PDEs (3.5) and (3.6) Danckwerts’ boundary conditions [34], which are Robin (Eqs. (3.13) and
(3.15)) and Neumann (Eqs. (3.14) and (3.16)) conditions, are used. These conditions allow to preserve
flux continuity in the first and last section of the reactor. Particularly, equations (3.13) and (3.15) indi-
cate that, considering each particulate or dissolved compound constituting the mixture, the difference in
concentration between the incoming flow rate and the first section of the reactor is linked to the diffusion
phenomenon. Moreover, equations (3.14) and (3.16) imply that the diffusive flux has to be null in the last
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section.

�D̄
BXhp0, tq

Bz
� v0pXh,IN �Xhp0, tqq, h � 1, ..., 5, t ¡ 0, (3.13)

BXhpL, tq

Bz
� 0, h � 1, ..., 5, t ¡ 0, (3.14)

�D̄
BSlp0, tq

Bz
� v0pSl,IN � Slp0, tqq, l � 1, 2, t ¡ 0, (3.15)

BSlpL, tq

Bz
� 0, l � 1, 2, t ¡ 0. (3.16)

In (3.13) and (3.15) Xh,IN and Sl,IN are the concentrations of each particulate and dissolved compound
in the incoming flow rate, respectively.

Lastly, the following initial conditions are considered (Eqs. (3.17), (3.18) (3.19)):

Xhpz, 0q � Xh,0, h � 1, ..., 5, 0 ¤ z ¤ L, (3.17)

Slpz, 0q � Sl,0, l � 1, 2 0 ¤ z ¤ L, (3.18)

Gp0q � G0. (3.19)

3.4 Numerical simulations

3.4.1 Model input

The numerical method used for the integration of the system of PDEs stated in Section 3.3.1 with bound-
ary and initial conditions presented in Section 3.3.2 follows the philosophy of the finite difference upwind
method [33]. The method is conditionally stable and was implemented through an original software devel-
oped using Matlab platform.
Four sets of simulations A, B, C and D are performed to show model consistency. The effects of some op-
erating and physical parameters on process performance are investigated in terms of methane production,
bio-degradable VS removal efficiency, acetic acid concentration trend, microbial biomass concentration
trend and convective velocity trend. The results are shown for a specific simulation time or, for one set (set
C), for different simulation times. The investigated physical and operating parameters are the reactor length
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L, the inlet convective velocity of the waste v0, the HRT and the diffusion coefficient D̄. In Table 3.1 are
reported the kinetic parameters used in all simulations. The values of k1 and k3 were defined in this study.
Particularly, the value of the gas-liquid transfer coefficient was decreased with respect to its value used in
the ADM1 [10] to take into account the limitation to the gas-liquid transfer due to the high solids content
[83, 1, 78]. Table 3.2 summarizes the initial and boundary conditions adopted for the various simulation
sets. Such conditions have been obtained by fixing the TS content of the substrate to 20% and considering
that the overall density of the treated substrate is equal to the density of water. Moverover, the VS content
on TS base has been set equal to 70% and it is 50% non bio-degradable. The bio-degradable VS and the
microbial biomass constitute the remaining 50% of the VS content. In all simulations the conversion coef-
ficient of VS in COD has been set equal to m � 1.5 gCOD g�1

V S . The fraction of decayed microbial biomass
becoming new bio-degradable substrate was set equal to f � 0.2.

Parameter Definition Unit Value Reference

k1
Kinetic constant for the consumption
of the volatile solids X3

d�1 0.10 This study

k2
Monod maximum specific uptake
rate for S1

d�1 8.00 [10]

k3 Gas-liquid transfer coefficient d�1 20.0 This study

k4
First order decay rate of the
microbial biomass

d�1 0.02 [10]

K1 Half saturation constant gCOD l�1 0.15 [10]

Y Yield of biomass on substrate - 0.05 [10]

KH Henry’s law coefficient Mbar�1 0.0011 [10]

Table 3.1: Kinetic parameters used in model simulations.
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Parameter Symbol Unit Value

Density of the waste ρ g l�1 1000.0

Initial H2O concentration X1,0 g l�1 800.0

Initial inert concentration X2,0 g l�1 60.0

Initial bio-degradable VS concentration X3,0 gV S l�1 69.3

Initial non-bio-degradable VS concentration X4,0 gV S l�1 70.0

Initial soluble acetic acid concentration S1,0 gCOD l�1 0.0

Initial soluble methane concentration S2,0 gCOD l�1 0.0

Initial microbial biomass concentration X5,0 gV S l�1 0.7

Initial gas-phase methane concentration G0 gCOD l�1 0.0

Inlet H2O concentration X1,IN g l�1 800.0

Inlet inert concentration X2,IN g l�1 60.0

Inlet bio-degradable VS concentration X3,IN gV S l�1 69.3

Inlet non-bio-degradable VS concentration X4,IN gV S l�1 70.0

Inlet soluble acetic acid concentration S1,IN gCOD l�1 0.0

Inlet soluble methane concentration S2,IN gCOD l�1 0.0

Inlet microbial biomass concentration X5,IN gV S l�1 0.7

Table 3.2: Initial and boundary conditions used in model simulations.

Moreover, Table 3.3 present the values of the physical and operating parameters used in the simulation
sets. The indicated HRT and OLR are referred to the inlet flow. In all simulations the cross section of the
reactors is assumed equal to 1m2 for simplicity. In the simulation set A, it is analysed the behaviour of
the system when the process is performed using a constant HRT in reactors having different length and, as
a consequence, a different inlet convective velocity of the waste v0. In set B, a constant value is assumed
for the inlet convective velocity of the waste v0 while the reactor length and the HRT change. In set C
the reactor length is constant but the inlet convective velocity of the waste, strictly related to the OLR, and
the HRT are variable. It has to be highlighted that, since the same inlet VS concentration is used in all the
simulations, when the HRT changes, the OLR changes too. Lastly, the value of the diffusion coefficient D̄
is considered constant among the simulation sets A, B and C, while set D investigates the effects of the
diffusion coefficient D̄ on reactor performances.

3.4.2 Numerical results and discussion

For each simulation set, the results are reported in terms of the bio-degradable VS concentration X3 pz, τq,
acetic acid concentration S1 pz, τq, microbial biomass concentration X5 pz, τq trends and v pz, τq profile
after τ � 60 days of simulation time. Furthermore, the methane production over time is shown. These
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trends are reported in Figures 3.3, 3.5 and 3.6 for simulation sets A, B and C respectively and in Figure
3.10 for set D.

Set A

Observing the results of the simulation set A (Figure 3.3), it can be noticed that, in this first case, a similar
process of consumption of the bio-degradable VS takes place whatever is the reactor length (Figure 3.3a).
This reveals that, treating a different substrate flow rate in reactors with different sizes keeping constant the
HRT and OLR can be obtained the same concentration of bio-degradable VS in the outlet flow.

Figure 3.3b show the acetic acid concentration profiles along z after 60 days of simulation. The acetic
acid profile presents a peak which is reached in a position very close to the inlet section for all the tested
L values. The acetic acid is then consumed, assuming very low concentration values in the remaining
part of the reactor. In this simulation set, where the HRT is kept constant, the values of the acetic acid
concentration corresponding to the peaks of the curves decrease as the reactor length decreases.

The function vpzq at simulation time τ � 60 d is plotted in Figure 3.3c. The function non-linearly
decreases with z according to equation (3.8) resulting in a 6.5% lower velocity value in the outlet section
for all the tested L values.

The concentrations of the microbial biomass for all the tested cases are reported in Figure 3.3e. A
similar pattern is observed in all cases: in close proximity to the inlet section the concentration of the micro-
organisms involved in the consumption of acetic acid is low. Then it increases, assuming its maximum
values in the second half of the reactor. Hence, it can be considered that a stratification along the reactor is
realized: the processes that lead to the production of acetic acid take place very close to the inlet section;
then, thanks to the availability of the nutrients useful for the growth of the micro-organisms acting the
uptake of the acetic acid, the acid is consumed and the soluble methane is produced.

Figure 3.3d shows the methane production in terms of liters in the head-space over time. The results
suggest that, for the same period of observation time and under the same HRT and OLR, the longer is the
reactor the higher is the methane production.

For the simulation set A are reported also the 3-D plots describing the dynamics of the variables
X3pz, tq, S1pz, tq and X5pz, tq over time and space in the simulation case A-4 (Figure 3.4). The con-
stant initial concentration of bio-degradable VS X3 along the reactor is reduced through the degradation
process until the profile reported in Figure 3.3a (case with L � 10m) is determined. Concerning the acetic
acid dynamics it can be observed that it takes place an acid accumulation along the reactor during the initial
days but then, with the growth of the concentration of the microbial biomass acting its uptake, the acid is
consumed.
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Figure 3.3: Bio-degradable VS X3 pz, τq (3a), acetic acid S1 pz, τq (3b), v pz, τq (3c), methane production
(3d) and microbial biomass X5 pz, τq (3e) trends for simulations set A, at τ � 60 d.

Figure 3.4: Bio-degradable VS X3 pz, tq (4a), acetic acid S1 pz, tq (4b) and microbial biomass X5 pz, tq
(4c) trends for simulations set A, case A-4.

Set B

The results of simulation set B are reported in Figure 3.5. In this case, the convective inlet velocity v0 of the
waste is supposed constant while the reactor length changes. This affects the values of both the HRT and
the OLR. First of all, it is possible to observe that all the profiles of the variables along the space are aligned
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on the same curve, except for the acetic acid. Concerning the bio-degradable VS conversion in acetic acid,
it is clear that the shorter is the reactor length the higher is the residual bio-degradable VS concentration
(Figure 3.5a). This is due to the fact that, feeding the waste inside the reactor with a constant inlet velocity,
the shorter is the reactor length the lower is the HRT and, using the same concentration of VS, the higher is
the OLR. Hence, a growing amount of bio-degradable compounds have less time to be degraded.

The acetic acid profiles show the same patterns established in the case of the simulation set A, with
peaks located in close proximity to the inlet section and small residues of acid along the remaining part of
the reactor. However, in this second case, the values corresponding to the peaks have a small decrease as
the reactor length increases.

Moreover, also in the case of the simulation set B the velocity function trends are non-linear with z and
it can be noticed a different percentage reduction in the velocity value between the inlet and outlet sections
depending on the value of L. In particular, the longer is the reactor the higher is this percentage reduction:
3.52%, 5.24%, 6.07% and 6.49% for the reactor length L � 2.5m, L � 5.0m, L � 7.5m and L � 10m

respectively.
The microbial biomass concentration profiles are similar to those observed for the simulation set A,

with the highest concentration values achieved in the second half of the reactor for each simulation (Figure
3.5e).

Concerning the liters of produced methane over time (Figure 3.5d), the results show that, similarly to set
A, the longer is the reactor the higher is the value of methane produced. This is mostly due to the different
consumption of the bio-degradable VS content that takes place among the different operating conditions of
the set B. Moreover, the initial mass of VS is higher the longer is the reactor, as a consequence of the initial
conditions, and this affects the value of the produced methane. Furthermore, if reactors of the same size of
the sets A and B are compared in terms of methane production, the investigated cases of the simulation set
B during the same period of simulation time show an higher maximum value of produced methane with
respect the cases of set A, except for the reactor length L � 10m where the operating conditions are the
same between the two sets. This reveals that, considering a fixed reactor size, the methane production in
absolute terms is improved when an higher volatile solids flow rate is fed into the reactor, even if a lower
HRT is adopted, until inhibition phenomena occurs.
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Figure 3.5: Bio-degradable VS X3 pz, τq (5a), acetic acid S1 pz, τq (5b), v pz, τq (5c), methane production
(5d) and microbial biomass X5 pz, τq (5e) trends for simulations set B, at τ � 60 d.

Set C

The results of simulation set C at simulation time τ � 60 d, as in the previous cases, are reported in the
Figure 3.6.

It can be observed that, for all simulations, the removal efficiency of the bio-degradable VS decreases
as the inlet convective velocity of the waste increases (Figure 3.6a). If one analyses the removal efficiency
of the bio-degradable VS in the three different simulation sets A, B and C at the simulation time τ � 60 d

important informations for the designing of new plants of DAD can be obtained: keeping constant the HRT
and considering a different reactor lengths and inlet velocities (simulation set A) the removal efficiency of
the bio-degradable VS does not change so much (92.5% ¤ η ¤ 94.8%); passing from a length of 10m
to a length of 2.5m (set B), keeping constant the inlet velocity of the waste, there is a reduction in the
removal efficiency of the bio-degradable VS from η � 94.8% to η � 50.7%; lastly, passing from an inlet
convective velocity of the waste of 20 cmd�1 to an inlet velocity of 50 cmd�1 (set C), keeping constant
the reactor length, there is a reduction in efficiency from η � 98.7% to η � 85.6%. In the latter two cases,
the reduction in efficiency means that if the reactor is not long enough or the inlet velocity is too high,
respectively, and the process is performed with the objective to reach a certain volatile solids removal, there
is the risk to fail.

In Figure 3.6b are reported the results referred to the acetic acid concentration profiles in the case of the
simulation set C. It can be noticed that the lower is the inlet velocity the lower is the corresponding peak
of the acetic acid concentration curve and the nearer to the inlet section this peak is reached. The residual
acetic acid concentration show that, also in this simulation set, the acid is completely consumed along the
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reactor.
The non-linearity characterizes the variation of the convective velocity along the reactor also in all

cases of the set C (Figure 3.6c). Moreover, the curves describing the concentration of the micro-organisms
involved in the consumption of acetic acid profile along the reactor length reported in Figure 3.6e present
a visible decreasing pattern developed in the second half of the reactor, mainly in the cases where the
inlet velocity is lower. These trends are the consequence of the differences in the convective transport
phenomena and the acetic acid consumption dynamics occurring among the analysed cases.

Concerning the liters of methane in the head-space over time (Figure 3.6d), results confirm that, once
fixed the reactor length, the higher is the adopted inlet velocity of waste fed into the reactor, which means
also an higher OLR, the higher is the maximum value of produced methane.
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Figure 3.6: Bio-degradable VS X3 pz, τq (6a), acetic acid S1 pz, τq (6b), vpzq (6c), methane production
(6d) and microbial biomass X5 pz, τq (6e) trends for simulations set C, at τ � 60 d.

However, the results of methane production of the three simulation sets A, B and C can be analysed
also monitoring the methane yields y, evaluated as the ratio between the value of the methane production
curve at the instant time τ � 60 d α rlCH4s over the added mass of VS β rgV S�s in the time interval r0, τ s
(Eq. (3.20)) and reported in Figure 3.7.

y �
αpτq

βpτq
(3.20)

It is possible to observe that in the case of simulation set A the yields are constant with the reactor length
(Figure 3.7a), while in the simulation set B the yield is about 2.5 times higher going from L � 2.5m

to L � 10.0m (Figure 3.7b). Moreover, comparing the methane yields of the simulation sets A and B

it can be concluded that, despite the absolute methane production increases when reactors of the same
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length are fed with an higher amount of volatile solids, the yield decreases. A similar result is observed in
simulation set C. Indeed, in this set is analysed the methane production of reactors having the same size
fed using an increasing inlet velocity of the waste and an increasing OLR and, contrary to the maximum
value of produced methane which increases as the adopted inlet velocity of waste increases, the methane
yield decreases (Figure 3.7c).
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Figure 3.7: Methane yield for simulations sets A (3.7a), B (3.7b) and C (3.7c) after τ � 60 d

Furthermore, for the simulation set C the bio-degradable VS concentration X3 pz, τq, microbial biomass
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concentration X5 pz, τq, acetic acid concentration S1 pz, τq trends and v pz, τq profile at simulations times
τ1 � 15 d, τ2 � 30 d, τ3 � 60 d and τ4 � 90 d are reported in Figures 3.8 and 3.9. Concerning the
dynamics of the bio-degradable VS and microbial biomass concentrations reported in Figures 3.8a and 3.8b
respectively, there are no differences between the 60th and 90th day, revealing that the process reached the
steady state in all the investigated cases. On the contrary, the acetic acid concentration and velocity profiles
along z appear to reach the steady state within the first 15 days (Figure 3.9a and 3.9b).
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(a) Bio-degradable VS X3 pz, τq concentration trend.
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Figure 3.8: Bio-degradable VS X3 pz, τq (3.8a) and microbial biomass X5 pz, τq (3.8b) concentration
trends at different time of simulation τ when L � cost and v0 varies, simulations set C.
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Figure 3.9: Acetic acid concentration S1 pz, τq (3.9a) and v pz, τq (3.9b) trends at different time of simula-
tion when L � cost and v0 varies, simulations set C.

Set D

Figure 3.10 shows the results of the simulation set D, where the effects of the diffusion coefficient D̄ are
investigated, keeping constant the other operating and physical parameters. Based on the simulation results,
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it is possible to state that the diffusion coefficient strongly affects the reactor performances. In fact, passing
from an order of magnitude of 10�5 to 10�3 it is clear that diffusion contributes to the homogenization of
the compounds along the reactor. Among the consequences there is the fact that, when the diffusion coeffi-
cient is higher, the velocity function assumes a linear trend with z, due to the constant concentrations along
the reactor axis of the variables on which it depends. Moreover, it can be noticed that the homogenization
of compounds inside the reactor explicitly show the difference between a CSTR and a PFR: there is a lower
average concentration of substrates inside the reactor when the homogenization is high (CSTR behaviour),
and this leads to have a lower uptaking rate for the substrates. As a consequence, the methane production
is maximized the lower is the diffusion coefficient value (Figure 3.10d).
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Figure 3.10: Bio-degradable VS X3 pz, τq (10a), acetic acid S1 pz, τq (10b), v pz, τq (10c), methane pro-
duction (10d) and microbial biomass X5 pz, τq (10e) trends for simulations set D, at τ � 60 d.

All these behaviours observed through the previous simulations are in accordance with the physics
of the phenomenon, showing that the model is capable to correctly represent process dynamics. These
informations could be used for the designing of anaerobic digestion in PFR plants. The optimal length or
inlet velocity could be chosen depending on the result to be maximized: for example, the choice of a longer
or shorter reactor depends on whether it is important to maximize the methane production or the OFMSW
removal using a fixed value of the HRT. Furthermore, monitoring the acid concentrations inside the reactor
could be crucial to avoid system failure. Lastly, the system velocity could be predicted gaining information
useful to establish the outlet flow in order to avoid reactor emptying, which could cause system locking.
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3.4.3 Application to a real case

To show model consistency with the bio-physics of a DAD process, the present model was used to sim-
ulate the dynamics of a laboratory scale digester. The reference experimental work is that presented by
Regina J. Patinvoh et al. [95], who performed a DAD process of untreated manure bedded with straw at
22% of TS content under different OLRs. The experimental campaign started with a process of AD in
batch conditions, established for reactor initialization. At this step, a mixture of inoculum and substrate in
a ratio of 2:1 in terms of volatile solids content, was used as reactor feeding. This batch phase lasted 40
days and later the reactor was fed continuously according to the feeding conditions of Table 3.5. Firstly,
the OLR � 2.8 g L�1 d�1 was used and then it was increased gradually to 4.2 and 6.0 g L�1 d�1. The
corresponding decreasing HRTs were of 60, 40 and 28 days. The feeding conditions were changed after
a time period equal to the HRTs. Using the characteristics of the substrate and of the inoculum, reported
in Table 3.4 and reproducing the feeding procedure of [95] results concerning daily methane production,
cumulative biogas production and VFA concentration path were reproduced. The used reactor is an hori-
zontal plug-flow with a total volume of 9.2 L; the temperature regime is set to 37 °C. The values of model
parameters used for reproducing experimental data are the same as reported in Table 3.1, except for the
kinetic constant for the consumption of the volatile solids k1, which was set equal to 0.035 d�1. The values
of the conversion coefficient of VS in COD m and the fraction of decayed microbial biomass becoming
new bio-degradable substrate f were set as in the previous simulations.

Since no informations were available concerning the initial microbial biomass concentration, prelimi-
nary simulations of the batch case were run to build the missing initial condition. Later, the batch conditions
of the experimental campaign were simulated, this time with the aim to reproduce the methane production
using the built initial condition on the microbial biomass concentration. The values of the simulated vari-
ables at the end of this period were used as initial conditions for the simulation of the feeding condition
1.

ND � not determined.

Symbol Unit Manure with straw Inoculum

Moisture f1 g{g 0.7772 0.9220
TS content p1� f1q gTS{g 0.2229 0.078
VS content on TS base f2 gV S{gTS 0.7044 0.4046
Ash p1� f2q g{gTS 0.2956 0.5954
CODcontent gCOD{gV S 0.73 ND
BMPtheoretical LCH4{gV S 0.290 ND

Table 3.4: Substrate and Inoculum characteristics used during the experimental campaign of [95].
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Parameter Unit Condition
1 2 3

OLR gV S L�1 d�1 2.8 4.2 6.0

HRT d 60 40 28

Loading rate gV S d�1 13.8 20.7 29.9

Table 3.5: OLRs, HRTs and Loading rates used in the experimental work of Patinvoh et al. and in the
simulations used to reproduce its results.

The resulting dynamics determined the initial conditions for the feeding conditions 2 and so on.
It is possible to observe that the model results reasonably follow the experimental data (Figure 3.11).

In order to compare the experimental and simulated methane productions the experimental cumulative
biogas production curve reported in [95] has been multiplied by the measured average methane content.
The experimental daily methane production curve is not reported here, but to show that the simulated daily
production well reproduces the experimental results, the simulated and experimental methane yields have
been compared.

Feeding condition Methane yield
�
LCH4 g

�1
V S

�

Experimental Simulated

OLR 1 0.16 0.16

OLR 2 0.17 0.14

OLR 3 0.14 0.12

Table 3.6: Experimental and Simulated methane yield.

Table 3.6 show that the model is very good in predicting the system evolution. Similarly to the experi-
mental case, the simulated daily methane production is decreasing during the development of the process in
batch conditions. In the continuous feeding condition cases the profiles are increasing until a certain maxi-
mum value and then remain constant. The VFA path is well followed by the model. As in the experimental
results, simulated acid concentration in the last section of the reactor is very low during all the simulation
time (data not shown).
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Figure 3.11: Daily and cumulative methane production in the experimental and simulated cases.

3.5 Conclusions

In this work a mathematical model for the dry anaerobic digestion process in PFRs based on the convection-
diffusion-reaction equation in one-dimensional case was presented. The model predicts substances concen-
tration along the reactor and it is also capable to describe the variation of the system velocity with time and
space. The equation governing the convective velocity is derived by considering the hypothesis that density
of the waste matrix within the reactor is constant over time and the sum of the volume fractions of the
bio-components constituting the waste matrix are constrained to sum up to unity. The system of PDEs was
integrated numerically. Results show model consistency with experimental evidence at laboratory scale
and highlight the importance to have a mathematical tool useful to manage, size and improve real plants.
For future development the kinetic model may be extended to the complete ADM1 framework. This will
allow to predict all species dynamics, such as volatile fatty acids concentration profiles that can be used
to predict the pH profile along the reactor and take into account inhibition processes on system dynamics.
Moreover the composition of the biogas could be characterized, allowing to determine its effective energy
power. Additionally, the equation describing methane concentration in the head-space may be modified by
introducing a loss term that reproduces a certain gas tapping from the head-space of the reactor, bringing
the model closer to the operative conditions of real plants. Another improvement of the model could consist
in considering a variable density of the treated matrix. Kinetic processes could be linked to diffusion and
the model could also be extended to 2D and 3D domains. This could allow to analyse other phenomena
occurring along directions different from the system movement direction that may affect the anaerobic di-
gestion process performance. Moreover, a sensitivity analysis is needed in order to investigate the most
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influencing parameters of the model and a qualitative analysis of the solutions is needed to prove existence,
uniqueness and stability of the solutions.

Nomenclature

HRT Hydraulic Retention Time pdq
OLR Organic Loading Rate pgV S l�1 d�1q

α Cumulative methane production value at a certain instant time plCH4q

β Added mass of volatile solids in a certain time interval pgV Sq

ρ Waste density pkg m�3q

τ Simulation time pdq
Aw Cross-section of the reactor volume occupied by waste pm2q

D̄ Diffusion coefficient pm2 s�1q

Fi Source/Consumption term of the ith component pkg m�3 s�1q

g Mass flux per unit area pkg m�2 s�1q

G Gaseous methane concentration pkgCOD m�3q

k1 Kinetic constant for the consumption of the volatile solids pd�1q

k2 Monod maximum specific uptake rate pd�1q

k3 Gas-liquid transfer coefficient pd�1q

k4 First order decay rate of the biomass pd�1q

K1 Half saturation constant pkgCOD m�3q

KH Henry’s law coefficient pMbar�1q

L Reactor length pmq
m Conversion factor of volatile solids in COD

�
kgCOD kg�1

V S

�
r1 Kinetic rate for the process of consumption of volatile solids pkgV S m�3 d�1q

r2 Methanogenesis kinetic rate pkgV S m�3 d�1q

r3 Gas-transfer kinetic rate pkgCOD m�3 d�1q

r4 Death rate of the microbial biomass pkgV S m�3 d�1q

R Gas law constant pbarM�1K�1q

S1 Soluble acetic acid concentration pkgCOD m�3q

S2 Soluble methane concentration pkgCOD m�3q

T Temperature pKq

v Velocity of the compounds moving along the reactor pm s�1q

v0 Waste inlet velocity pm s�1q

Vgas Head-space volume for the gas storage pm3q

X1 Water concentration pkg m�3q
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X2 Inert concentration pkg m�3q

X3 Bio-degradable VS concentration pkgV S m�3q

X4 Non Bio-degradable VS concentration pkgV S m�3q

X5 Microbial biomass acting the uptake of acetic acid concentration pkgV S m�3q

y Methane yield
�
lCH4 g

�1
V S

�
Y Yield of biomass on substrate p�q
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Chapter 4

Global Sensitivity Analysis and Uncertainty
Quantification for a mathematical model of dry
anaerobic digestion in plug-flow reactors*

*The results of this chapter will be submitted in the form of a manuscript entitled: Global Sensitivity Analysis and Uncertainty
Quantification for a mathematical model of dry anaerobic digestion in plug-flow reactors.

67





4.1 Abstract

In most applications, complex phenomena can be reproduced via models which depend on a (possibly)
large set of input parameters, whose effect on the model outputs can be of paramount importance. Model
calibration process is aimed at assessing the values of the model parameters in order to obtain the best fit
between simulated and experimental data. Great uncertainty affects this procedure and sensitivity analysis
and uncertainty quantification are used to estimate that uncertainty. Despite the significant number of ap-
plications of sensitivity analysis for models of wet anaerobic digestion, at the best of authors’ knowledge
there are no examples of global sensitivity analysis for mathematical modeling of dry anaerobic digestion
in plug-flow reactors. In this study global sensitivity analysis and uncertainty quantification for a model
of dry anaerobic digestion in plug-flow reactors have been performed. The selected model is the one pre-
sented in Chapter 3. There are very few works related to the modeling of this kind of process and the main
novelty of the analysed model is the fact that it accounts the mass/volume variation that takes place in these
systems because of the great amount of solids conversion in gaseous compounds. The convective velocity
of the system is considered as a further unknown to be determined and it depends on the kinetics of the
bio-components constituting the matrix of the treated substrate. Indeed, according to the model, the mass
variation along the reactor is balanced by a variation in velocity. The study of the model trough uncertainty
quantification and sensitivity analysis routines would be of great help for model calibration. A preliminary
screening of model parameters through the Morris’ method has been performed. A surrogate model (meta-
model) has also been constructed in order to investigate the relation between input parameter and output
without having to launch simulations from scratch. Sobol’ indices of the input parameters obtained via
surrogate model evaluations allowed to perform a quantitative global sensitivity analysis. Finally, uncer-
tainty quantification has been performed to obtain the probability density function of the defined quantity
of interest, by the means of the sampling of the metamodel.

4.2 Introduction

Anaerobic Digestion (AD) is a biological process applied to wastewater treatment sludge, that reduces
Chemical Oxygen Demand (COD) of complex organic substrate and converts it into a gas, which is mainly
composed by methane and carbon dioxide.

During such process organic matter is progressively converted into simpler and smaller-sized organic
compounds, until biogas and digestate are obtained as final products. The digestate contains nutrients
and microelements, therefore it can be employed in agricultural contexts [41, 42]. Since this practice is
characterized by an eviromental impact, there is a pressing urge to correctly manage bio-waste from the
generation stage to its ultimate disposal. For this purpose, AD can be adopted as biological treatment, since
it can fulfill the objectives of the Kyoto Protocol and the EU Policies concerning organic waste disposal
and renewable energy.
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Depending on the solid content of the influent bio-waste, AD can be considered dry, semidry and wet.
In dry AD (high-solids digestion), the feedstock to be digested has a Total Solids (TS) content higher than
15%, while in semidry AD the solid substrate to be digested has a TS content between 10% and 15%.
At last, wet AD (low-solids digestion) is characterized by diluted feedstock having a TS content lower
than 10% [70]. In the last decades, dry AD has got much attention since it features relevant advantages: a
smaller reactor volume, reduced amount of water addition, easier management of digested residues, reduced
nutrient loss [62] and simplified pre-treatments compared to wet systems. The only pre-treatment which is
necessary before feeding the waste into a dry AD reactor is the removal of coarse materials larger than 40
mm [124].

The most used reactor configurations in AD are those of the Continuously Stirred Tank Reactor (CSTR)
and Plug-Flow Reactor (PFR). In the ideal hydrodynamic model of CSTR the hypothesis of complete
mixing holds. Hence, in a CSTR, the concentration of each compound into the reactor is homogeneous.
This hypothesis is reproduced in real plants adopting the CSTR configuration by the continuous mixing
systems installed and the more efficient is the mixing system, the closer is the real CSTR to the ideal one.
The PFR is characterized by a continuous flow through the tubular shape of the reactor. There is a variation
in concentration of components in the axial direction while in the radial direction it is supposed a complete
mixing. For this reason the PFR could be interpreted as an infinite number of CSTR arrayed in series [39].

In real scale plants, CSTR configuration is mostly used for wet AD while PFR is preferred in dry AD
due to the higher viscosity of the medium [65] and the consequent difficulty in mixing. Even though plug
flow reactors are a simple and effective technical solution, to guarantee adequate inoculation and reduce
acidification problems a correct internal mixing should be ensured. The economical differences between the
implementation of wet and dry systems are small, both in terms of investment and operational costs. On the
other hand, the differences between those systems are more remarked speaking in terms of environmental
issues. While wet systems typically consume one m3 of fresh water per ton of treated Organic Fraction
of Municipal Solid Waste (OFMSW), the water consumption of dry AD reactors is about ten-fold less.
Because of that, the volume of wastewater to be discharged is several-fold less for dry systems [124].

4.2.1 Modeling of AD

Due to its complexity, acting control and optimization of an AD process needs tools capable to describe
its most important aspect. These tools are represented by mathematical models. One of the most used
model for the description of the dynamics of wet AD is the Anaerobic Digestion Model n. 1 (ADM1)
[10]. A great part of existing models of wet AD are based on ADM1 approach and try to take into account
other mechanisms that it neglects adopting some modifications. Because of the CSTR configuration and
its hypothesis, mathematical models of wet AD are based on systems of Ordinary Differential Equations
(ODE). In fact, state variables depends only on time because concentrations of components are the same
in each point of the reactor. On the other hand in a PFR model the mathematical problem consists in a
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Partial Differential Equations (PDE) problem, since the state variables are function both of space and time.
Because of the complexity of dry processes (turbulence, dispersion phenomena, accumulation of solids are
aspects of the process carachterized by a great uncertainty) modeling of dry AD in PFRs is a less explored
field and a few number of models have been developed. Some models try to avoid the PDE system by using
the approximation of the PFR configuration as n CSTR in series [39, 45, 89], considers a fixed velocity
inside the reactor [125] or couple Computational Fluid Dynamics analysis with steady state biological
model of ODE [132].

In Chapter 3 has been proposed a one-dimensional mathematical model of dry AD in PFR based on
mass balances on state variables resulting in a PDE system. The novelty of the model is the fact that the
convective velocity of the substrate moving along the reactor is considered as a further unknown variable
to take into account the mass/volume variation that takes place along the reactor. Indeed, in systems char-
acterized by an high solids content, the solids conversion in gaseous compounds causes a mass variation
that in wet systems is negligible due to the great quantity of water present in the system with respect to the
solids amount. In the model of Chapter 3 the variation law of the system velocity is obtained through two
main hypothesis: the density of the substrate matrix moving along the reactor is constant over time and the
volume fractions of the bio-components constituting the treated substrate matrix are constrained to sum up
to unity. These statements imply that the mass of the substrate mixture is constant along the reactor and,
as a consequence, the mass reduction of Volatile Solids (VS) due to the degradation processes is balanced
by a variation in velocity. The model is capable to describe the bio-physics of the phenomenon, predicting
process performances depending on the reactor dimensions, input substrate characteristics and other key
features that have a key role in determining the dynamics of the whole process.

4.2.2 Need for Uncertainty Quantification and Sensitivity Analysis

In models having an high number of equations and kinetic parameters, their selection is crucial to simulate
a certain dynamics. With the aim to calibrate the model parameters to better fit the experimental data,
Sensitivity Analysis (SA) studies are powerful tools used to obtain a screening of model parameters by
their relevance and eventually fix to nominal values the least influential ones.

Saltelli et al. in [105] expressed some good practices in modeling, highlighting the need for a reliable
Global Sensitivity Analysis (GSA). Saltelli pointed out that many works related to the uncertainty and sen-
sitivity analyses explore the input space moving only along one-dimensional corridors (i.e Local Sensitivity
analysis), leaving unexplored a great part of the space of parameters. In their literature review, Saltelli et al.
demonstrate that a great part of cited papers (42%, according to their report) do not satisfy the requirement
to properly explore the space of the input parameters. The result suggested that establishing good practices
in SA and Uncertainty Quantification (UQ) procedures is strongly needed.

Despite the high number of mathematical models of AD, there are very few works related to global
sensitivity analysis for them. The vast majority of available works are totally focused on local procedures,
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thus neglecting more exhaustive global techniques [38].
In literature can be found several examples of procedures related to local sensitivity analysis. For

example, Tartakovsky et al. (2008) [117] and Noykova and Gyllenberg (2000) [92] used relative sensitivity
functions in order to obtain the reduction of the number of model parameters of their ADM1-based model
for the waste water treatment through an Up-flow Anaerobic Sludge Blanket (UASB) reactor, the former,
and the model of anaerobic waste water treatment process with substrate inhibition, the latter; Bernard et al.,
2001 [18] performed a local sensitivity analysis for a model of waste water anaerobic digestion in an uplflow
Fixed Bed Reactor (FBR) using sensitivity coefficients evaluated for the chosen output variable; Vavilin et
al., 2003 performed local sensitivity analysis for their distributed model for the anaerobic digestion of
solid waste in both batch and continuous 1-D reactors [127] to identify the key parameters changing their
values by a certain percentage of their baseline values, as Lin and Wu (2011) [75] did, using the Least-
Square (LS) method in their model of anaerobic degradation of phenol. However those works are based
on analysis which overlook the effect of the possible interaction between parameters on the output of the
model.

Concerning Global Sensitivity Analysis of AD models, few works have been published for models of
wet AD using the CSTR configuration, none for models of dry AD in PFRs. Among those for the wet AD,
K. Solon et al. (2015) [113] performed a GSA on the ADM1 implemented in the context of the Benchmark
Simulation Model no. 2 (BSM2) using the methods of Standardized Regression Coefficients and Morris’
Screening’s Elementary Effects. They repeated the analysis at different temperature regimes and at different
Solid Retention Time (SRT) revealing that those two methods are good measures of sensitivity when AD is
performed at low SRT and mesophilic conditions. In the same context but in the open loop version of the
BSM2 L. Benedetti et al. (2008) [17] by means of Monte Carlo (MC) experiments and linear regression
of its results made a GSA study on the ADM1. They firstly focused on the discussion of the methods
applied to reduce computational cost in terms of time and then on the choice of the optimal number of
simulations that make the results of the sensitivity analysis acceptable. They revealed that it is useful to
perform a numerical solver optimization to reduce the time required for computation by a factor of 5 and
that the optimal number of simulations should be 50 times the number of parameters to be tested. Moving
to studies of GSA on modified versions of ADM1 model we have an example in the work of Z. Zonta et
al. (2012) [142]. The model considers new kinetics to describe the bio-physics of the inhibitory process
in the ADM1 framework and they used the Bayesian sensitivity analysis tool for evaluating variance-based
sensitivity analysis index. F. Carrera-Chapela et al. (2016) [29] developed a simplified mathematical model
for the anaerobic digestion process that takes into account hydrogen sulphide formation in order to use
the model also to assess the odor impact of the anaerobic digestion emissions. They carried out a GSA
using ANOVA decomposition with dynamic changes on the inlet flow and concentration, determining the
parameters having the highest sensitivity on the output. Among these parameters, they selected those whose
sensitivity profile were least influenced by the interaction with the other parameters through a Collinearity
Analysis.
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Here we reported some examples of GSA for wet AD models. Unfortunately, at the best of authors’to
knowledge there are no examples of GSA for mathematical modeling of dry AD in PFR. In this context,
the aim of this work is to perform a GSA on the model presented in Chapter 3. The screening of model pa-
rameters is a mandatory activity for the future model calibration and validation, which should be performed
having the purpose to apply the model to real cases. Moreover, through an analysis of this type, the aspects
of the model that the most influence the model output are identified and, based on these results, the need of
a deeper study of those aspects might be revealed.

The article structure is developed as follows: in Section 2, the model of dry anaerobic digestion in
plug-flow reactors object of the study is presented. In Section 3, the selection of model parameters and
the choice of the quantity of interest for the SA and UQ studies are introduced. Moreover, this Section
describes also the studied test case and the used databases for the simulations. In Section 4 are described
the adopted techniques for carrying out UQ and SA studies, i.e. the Morris’ screening and the Surrogate-
based SA technique. Section 5 recollect the main results of the study and their discussions and, lastly,
Section 6 contains remarks and future perspectives.

4.3 Model of plug-flow reactor

4.3.1 Model equations

The mathematical model is based on mass balances in one-dimensional case for the concentrations of the
components constituting the mixture of the substrate to be treated. These state variables are considered as
functions of time t and space z, where z represents the spatial coordinate oriented along the reactor axis
and directed from the inlet to the outlet section. The mass balances lead to define for each state variable
an equation known as convection-diffusion-reaction equation, describing the movement along the reac-
tor of each component due to convection and diffusion phenomena and their bio-chemical transformation.
The convective and diffusive flux are characterized by a velocity vpz, tq function of both space and time
and by a diffusion coefficient D considered invariable along the z direction and the same for each com-
pound, respectively. The model considers the substrate to be composed of water X1, particulate (inerts X2,
bio-degradable X3 and non bio-degradable X4 VS and microbial biomass X5) and dissolved compounds
(soluble acetic acid S1 and soluble methane S2). One of the hypothesis of the model is that the described
substrate matrix has a constant density within the reactor over time ρpz, tq � ρ.

Moreover, in the head-space of the reactor is stored the biogas, supposed to be composed only of
gaseous methane G.

The kinetic scheme describing the transformations occurring to the components of the substrate matrix
is reported in the Figure 4.1. The conversion of the bio-degradable VS X3 in soluble acetic acid S1,
is summarized through a unique kinetic rate r1, considering only the rate-limiting step of disintegration
among all the processes that lead to the production of acetic acid; the acetic acid is consumed through the
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Figure 4.1: Kinetic scheme.

non linear Monod-type kinetic rate r2 producing both soluble methane S2 and microbial biomass X5; the
microbial biomass die according to the decay law whose kinetic rate is indicated as r4 and produce new
bio-degradable and non-biodegradable VS X4; lastly, the soluble and gaseous methane (S2 and G), are in
equilibrium according to the gas-transfer law expressed by the kinetic rate r3.

The application of the convection-diffusion-reaction equation the each described compound lead to the
non-linear system of PDEs (4.1) and (4.2):

BXhpz, tq

Bt
�
Bpvpz, tqXhpz, tqq

Bz
�D

B2Xhpz, tq

Bz2
� FX,h pz, t,X,S, Gq ,

0   z   L, t ¡ 0, h � 1, ..., 5, (4.1)

BSlpz, tq

Bt
�
Bpvpz, tqSlpz, tqq

Bz
�D

B2Slpz, tq

Bz2
� FS,l pz, t,X,S, Gq ,

0   z   L, t ¡ 0, l � 1, 2, (4.2)

where:

• X � pX1, ..., X5q;

• S � pS1, S2q;

• FX,h pz, t,X,S, Gq , h � 1, ..., 5, is the source/consumption term of the compound Xh;

74



• FS,l pz, t,X,S, Gq , l � 1, 2, is the source/consumption term of the dissolved compound Sl.

• FX,1 pz, t,X,S, Gq � FX,2 pz, t,X,S, Gq � 0;

• FX,3 pz, t,X,S, Gq � fr4 � r1;

• FX,4 pz, t,X,S, Gq � p1� fqr4;

• FX,5 pz, t,X,S, Gq � Y r2 � r4;

• FS,1 pz, t,X,S, Gq � mpr1 � r2q;

• FS,2 pz, t,X,S, Gq � mp1� Y qr2 � r3;

• r1 � k1X3;

• r2 � k2X5S1{ pK1 � S1q;

• r3 � k3pS2 �RTKHGq;

• r4 � k4X5;

• m is the conversion factor of VS in COD
�
gCOD g�1

V S

�
;

• Y is the yield of biomass on substrate;

• f is the fraction of dead microbial biomass becoming new bio-degradable substrate;

• k1 is the kinetic constant for the consumption of the volatile solids X3, having the dimension of
rT�1s;

• k2 is the Monod maximum specific uptake rate for the acetic acid rT�1s;

• K1 is the half saturation constant rM L�3s for the kinetics of consumption of the acetic acid;

• k3 is the gas-liquid transfer coefficient rT�1s;

• R is the gas law constant rL2 T�2 Θ�1s;

• T is the operating temperature rΘs;

• KH is the Henry’s law coefficient rL2 T�2s;

• k4 is the first order decay rate of the microbial biomass X6 rT�1s.
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The velocity displacement of the bio-components along the reactor axis constitutes an additional un-
known of the problem, and the equation describing its variation in space and time is derived using the
following hypothesis: the sum of the volume fractions of the particulate components and water within the
reactor is constrained to sum up to unity, that is:$&%

°5
h�1Xh pz, tq {ρh � 1,

ρh � ρ, h � 1, ..., 5
ùñ

5̧

h�1

Xhpz, tq � ρ. (4.3)

Equation (4.3) implies that the mass of the mixture composed of water, inerts, VS and microbial biomass
is constant over time. As a consequence, the convective velocity varies along the reactor and its variation
depends on the kinetics of the compounds constituting the mixture. In fact, the velocity variation has to
balance the consumption of the VS to keep the mass of this particular mixture constant.

Summing equation (4.1) on h � 1, ..., 5 and taking into account equation (4.3) follows:

Bvpz, tq

Bz
�

Y r2 � r1
ρ

. (4.4)

In addition, the mass balance on the head-space volume Vgas � AgasL leads to a differential equation
describing the dynamics of the gaseous methane G ptq (Eq. (4.5)):

dGptq

dt
�

A

Vgas

» L

0

r3 pz, tq dz. (4.5)

where:

- A is the constant cross-sectional area occupied by the treated substrate.

The integral in the equation (4.5) describes the fact that all the contributes to the gas-transfer in each
point are summed to define a unique gas-transfer rate. The ratio between the cross-section occupied by the
treated substrate and the volume of gas is present to take into account the fact that the gas-transfer kinetic
rate is referred to the volume of the treated substrate.

Lastly, boundary and initial conditions are prescribed according to equations (4.6) to (4.13).

vp0, tq � v0, t ¥ 0. (4.6)

�D
BXhp0, tq

Bz
� v0pXh,IN �Xhp0, tqq, h � 1, ..., 5, t ¡ 0, (4.7)

BXhpL, tq

Bz
� 0, h � 1, ..., 5, t ¡ 0, (4.8)

�D
BSlp0, tq

Bz
� v0pSl,IN � Slp0, tqq, l � 1, 2, t ¡ 0, (4.9)
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BSlpL, tq

Bz
� 0, l � 1, 2, t ¡ 0. (4.10)

Xhpz, 0q � Xh,0, h � 1, ..., 5, 0 ¤ z ¤ L. (4.11)

Slpz, 0q � Sl,0, l � 1, 2 0 ¤ z ¤ L. (4.12)

Gp0q � G0. (4.13)

The value v0 in the (4.6) can be obtained by fixing the HRT of the components moving along the reactor
of length L:

v0 �
L

HRT
. (4.14)

In (4.7) and (4.8) Xh,IN and Sl,IN are the concentrations of water and each particulate and dissolved
compound in the incoming flow rate, respectively.

4.4 Sources of uncertainty, quantities of interest and data-bases

In the presented model, the state variables whose dynamics is described through the system of equations
(4.1), (4.2), (4.4) and (4.5) coupled with boundary conditions (4.6) to (4.10) and initial conditions (4.11) to
(4.13) depend on a set of parameters. Since it is a model recently introduced, knowledge about the response
of such model on variations of parameters is mandatory in order to calibrate the model with experimental
data. In this study 7 parameters have been selected: a group of parameters consisting in the first order
parameter for the conversion process of bio-degradable VS in acetic acid k1, the Monod maximum specific
uptake rate for acetic acid k2, the first order decay rate for the microbial biomass k4, the half-saturation
constant K1 and the yield of biomass on substrate Y linked to bio-chemical processes; a second group
including the gas-transfer coefficient k3 and the diffusion coefficient D, related to physics phenomena
occurring along the reactor.

Uniform distributions have been selected for the input parameters, reported in Table 4.6 (second col-
umn).

4.4.1 Quantity of Interest

The state of the PFR digestion model evolves in time t P p0, τq and space x P p0, Lq. It is characterized
through the state variables Xhpz, tq, h � 1, ..., 5, S1pz, tq, S2pz, tq and Gptq.

Since many of the latter set of variables are spatially distributed, it is mandatory to focus on a small set
of scalar outputs in order to better catch the relation between the uncertain inputs and the behaviour of the

77



PFR Model.
A single quantity of interest (QoI) has been considered in this study: we shall denote with y the time in-

tegral of the value of the liters of methane in the head-space in Normal Temperature and Pressure conditions
from time t � 0 to time t � τ .

y �

» τ

0

RT0

P0

Vgas
Gptq

64
dt rlCH4ds, (4.15)

where:

- G is the variable of the gaseous methane concentration expressed in gCOD l�1
gas;

- T0 and P0 are the values of the temperature and the pressure at Normal Temperature and Pressure
conditions;

- 64 are the grams of COD per moles of methane.

The choice of this QoI is linked to the main objective of this kind of process: the energy recovery
trough the methane production. Hence, the uncertainty related to the modeling of this output needs a strong
reduction.

4.4.2 Description of test case

With the purpose to run simulations to have useful datasets for the sensitivity analysis, a test case has been
considered. The selected test case is based on experimental procedures aimed to have informations on the
methane production from anaerobic digestion processes in dry conditions in PFRs. For example it can be
studied the variation of the methane production based on tests conducted in various temperature regime
or using different inlet conditions: growing Organic Loading Rates (OLRs), growing TS content, different
pretreatment on the substrate and so on. OLR represents a measure of the amount of VS fed into the reactor,
evaluated as the ratio between the concentration of VS in the inlet flow and the Hydraulic Retention Time
(HRT), which gives informations on the average time spent by a bio-component inside a reactor.

The reactor length L, the cross-sectional area occupied by the substrate being treated A, the head-
space volume Vgas, the HRT, the inlet convective velocity v0, the OLR and the temperature T used in
the simulations are reported in Table 4.1. The value of the conversion coefficient of VS in COD m was
fixed equal to 1.5 gCOD g�1

V S while the fraction of dead microbial biomass becoming new bio-degradable
substrate was set at f � 0.2. The characteristics of the initial and the entering substrate were chosen in such
a way to have very similar to lab-scale experiments values and are reported in Table 4.2. The considered
initial substrate consists of a mixture of digestate and inoculum. The initial compounds concentrations are
supposed constant along the reactor. Initial and boundary conditions used in the simulations are summarized
in Table 4.3. The simulation time was fixed equal to three times the HRT.
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Parameter Description Dimension Value

L Reactor length m 1.34
A Reactor cross-section m2 0.0224
Vgas Volume of the head-space l 10.0
HRT Hydraulic Retention Time d 40.0
v0 Incoming flow rate velocity cm d�1 3.35
OLR Organic Loading Rate gV S l�1 d�1 6.0
T Reactor temperature regime °C 37.0

Table 4.1: Operating parameters of the test case.

Parameter Dimension Initial mixture Inlet substrate

Total solids gTS g�1 0.15 0.30
Volatile solids gV S g�1

TS 0.80 0.80
Bio-degradable VS gV S g�1

V S 0.07 0.396
Non bio-degradable VS gV S g�1

V S 0.905 0.60
Microbial biomass gV S g�1

V S 0.025 0.004

Table 4.2: Initial mixture and inlet substrate characterization.

4.4.3 Experimental designs and databases

The space where the uncertain parameters vary (also known as the "hypercube") ZΘ P Rd (where d � 7

in this study) is discretized by the means of a design of experiments. In this way N realizations of the
parameters θi are defined and the PFR model is integrated as a "black-box" to obtain N functional outputs
y. These functional outputs are analysed and useful statistics are obtained. The ensemble is compiled into
a database DN :

DN �
!�

θplq,yplq
�
1¤l¤N

)
, (4.16)

where yplq � F
�
θplq

�
is the integration of the PFR model F obtained fixing the lth set of input parameters

θplq.
In the present work, the parameter set used to carry out the model parameters screening θMorris consisted

in a set composed of NM � 400 samples. The randomized algorithm proposed in [88] has been used to
generate it. For the sake of the surrogate-based study, quasi-Monte Carlo sampling methods have been se-
lected to compile two databases of size N � 210. A first database is generated using Halton’s sampling and
is used as a training set. Faure’s sampling has been used to generate the second database, the validation one.
This last database has been used to evaluate the accuracy of the different surrogate techniques. Table 4.4
summarizes the compiled databases.

It is remarked that that the considered digestion model features non-linearities for the QoI y when θ
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Parameter Symbol Unit Value

Density of the treated substrate ρ g l�1 1000.0

Initial H2O concentration X1,0 g l�1 850.0

Initial inert concentration X2,0 g l�1 30.0

Initial bio-degradable VS concentration X3,0 gV S l�1 8.4

Initial non bio-degradable VS concentration X4,0 gV S l�1 108.6

Initial soluble acetic acid concentration S1,0 gCOD l�1 0.0

Initial soluble methane concentration S2,0 gCOD l�1 0.0

Initial microbial biomass concentration X5,0 gV S l�1 3.0

Initial gas-phase methane concentration G0 gCOD l�1 0.0

Inlet H2O concentration X1,IN g l�1 700.0

Inlet inert concentration X2,IN g l�1 60.0

Inlet bio-degradable VS concentration X3,IN gV S l�1 95.04

Inlet non-bio-degradable VS concentration X4,IN gV S l�1 144.0

Inlet soluble acetic acid concentration S1,IN gCOD l�1 0.0

Inlet soluble methane concentration S2,IN gCOD l�1 0.0

Inlet microbial biomass concentration X5,IN gV S l�1 0.96

Table 4.3: Initial conditions and inlet flow compound concentrations used in model simulations.

varies in ZΘ. Figure 4.2 portrays 40 representative PFR snapshots sampled from Morris Database.

Sampling Strategy Purpose Sample size

Randomized algorithm of [88] Morris Screening 400
Halton’s sequence Surrogate Training 210

Faure’s sequence Surrogate Validation 210

Table 4.4: Datasets DN of AD PFR model simulations used in this work whether for the sake of performing
Morris screening, or building surrogates (“training"), or for validating them (“validation").

4.5 Surrogate-Based Sensitivity Analysis

The Sensitivity Analysis of the model presented in Section 4.3.1 consisted in a two phases study: on the
one hand, a faster preliminary screening analysis through the Elementary Effect Test (EET), proposed by
Morris in [88]; on the other hand, an exhaustive surrogate-based GSA (see Subsection 4.5.2), aimed to get
more accurate results.
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Figure 4.2: An ensemble of 40 different CH4 profiles extracted from the Morris’ algorithm sampling
database, with different values of θ.

4.5.1 Screening of influential parameters via Morris’ Scheme

According to Morris [88] a useful screening sensitivity measure used to identify the most important param-
eters of a model is the so called Elementary Effect (EE). The method proposed by Morris is based on the
computation for each parameter of incremental ratios (the EEs indeed), whose mean is used as a measure
of global sensitivity, determining the overall importance of each input parameter on the QoI. The analysis
is conducted adopting randomized One-At-Time (OAT) experiments. In the following, we assume that
input parameters are uniformly distributed in r0, 1s and then transformed from the unit hypercube to their
respective distribution.

For a given value of θi P θ, the associated elementary effect EEi is expressed as:

EEi �
ypθ�1 , . . . , θ

�
i � δi, . . . , θ

�
dq � ypθ�1 , . . . θ

�
i , . . . , θ

�
dq

δi
, (4.17)

where δ P
!

1
nl�1

, 1� 1
nl�1

)
, nl is the number of levels, θ� � pθ�1 , . . . , θ

�
dq is a random value in the

hypercube Zθ such that the point (θ� � eiδ) still maps to a point in Zθ for each i P 1, . . . , d and ei is a zero
valued vector except for its i-th component ei � 1.

For each input parameter θi is derived the empirical distribution of elementary effects EEi with a
random sampling of θ, s.t. EEi � Fi and its mean µi and standard deviation σi are used as sensitivity
measures.

In the following is adopted a correction to the µi, introduced by Campolongo and Saltelli in [25]. In
their alternative measure the absolute value of the EEs is adopted instead of the mean µi, in order to avoid
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that increments of different signs would cancel out. Their measure reads

Si � µ�Morris �
1

n

ņ

j�1

EEj �
1

n

ņ

j�1

�����ypθj1, . . . θji � δji , . . . , θ
j
dq � ypθj1, . . . θ

j
i , . . . , θ

j
dq

δji

����� ci (4.18)

To estimate these quantities without constructing large databases of experiments and/or simulations,
Morris suggested sampling r elementary effects from each Fi via an efficient design that constructs r

trajectories of pd� 1q points in the input parameter space, each one providing d elementary effects, one per
input factor. The total cost of the experimental set is thus rpd� 1q model evaluations.

Apart from the mean (and its eventual corrections) also standard deviation of the EEs provides useful
information. It may constitute a proxy of the level of interaction between the parameters and it allows to
understand if a certain factor has non-linear effects on the Quantity of Interest.

4.5.2 Surrogate Modeling

In this work, an emulator, (also known as metamodel, or surrogate model) of the PFR model described
in Section 4.3.1 is built adopting two distinct algorithms: generalized Polynomial Chaos (gPC) expansion
or Gaussian Process (GP) model. gPC-expansion and GP model are robust and widely spread techniques,
well described in literature. In particular, the mathematical setting is explained in detail when applied in
distinct Sensitivity Analysis of environmental models in the two recent paper of Trucchia and coauthors
[121],[120] and the previous work of Roy and coauthors [104] . Both approaches create a surrogate for the
quantity of interest y using a (finite) sum of basis functions:

y �
¸
αPA

γα Ψα. (4.19)

The Halton’s training database DN with N � 210 (see Section 4.4.3) is used to determine the coefficients
tγαuαPA and the basis functions tΨαuαPA of equation (4.19). The coefficients can be determined using
different methods.

In this work, three algorithms are tested: two variations of gPC expansion and an implementation of GP.
While performing a Polynomial Chaos, the basis functions of Equation (4.19) are multivariate orthonormal
polynomial functions (see e.g. [134]). The two implementations of gPC differ by the rule that determines
the finite sum of polynomial basis in Equation (4.19). One variant of gPC, referred to as Standard Least
Squares, used a linear truncation scheme to determine the choice of the polynomial basis, while the second
attempt employs a sparse strategy with for the truncation scheme, via Least Angle Regression [20].

The implementation of GP used as correlation kernel the squared exponential (also known as radial
basis function) [100].
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Workflow for gPC-expansion

The algorithm to compute a gPC-expansion can be resumed as follows:

1. choose the polynomial basis [121] [120] tΨαuαPA according to the prescribed input marginal PDFs
of the inputs θi P θ P Rd (d � 7);

2. choose the total polynomial order P according to the complexity of the digestion processes;

3. truncate the gPC-expansion to rlin terms using linear truncation according to the problem dimension
d and the total polynomial order P ;

4. if LAR sparse truncation is selected, compute a smaller set of indices for the orthonormal polynomi-
als, with cardinality r ¤ rlin. Otherwise, r � rlin;

5. compute the coefficients tγαuαPA with least-square minimization, using N � 210 snapshots from the
simulation database DN (the experimental design is based on Halton’s low-discrepancy sequence);

6. formulate the surrogate Fpc, which can be evaluated for any new vector of parameters θ� .

Workflow for GP surrogate

The scheme of the construction of the GP surrogate is summarized in the following:

1. choose the kernel function πα suitable for the input vector θ P Rd (d � 7) – we consider RBF in the
present study, see Eq. 31 of [121]

2. optimize the GP-hyperparameters tℓα, σα, τu associated with the kernel πα using maximum likeli-
hood;

3. formulate the surrogate Fgp, which can be evaluated for any new vector of parameters θ�.

4.5.3 Numerical implementation

From the implementation point of view, the computation of Morris Screening, gPC-expansion and GP-
model have been pursued thanks to the Python package OpenTURNS [14] (see www.openturns.org).

Moreover, the model equations (4.1), (4.2), (4.4) and (4.5) are integrated with the aid of the MATLAB
programming language through an original code based on the finite difference upwind method.

83



4.6 Results

4.6.1 Morris screening

In Figure 4.3 are reported the results of Morris’ screening procedure applied to the QoI y. The ranking
between parameters resulting from this analysis is reported in Table 4.6. Based on Morris’ screening results
we can divide the parameters in three groups in terms of importance. Firstly, it can be noticed that the most
important parameters in determining the value of the QoI are the kinetic constant of the conversion process
of the bio-degradable VS in acetic acid k1 and the Monod maximum uptake rate of acetic acid k2. This
was to be expected due to the fact that k1 affects the kinetics of the disintegration process, determining
the rate at which the substrate is available to be converted in the intermediate product, and k2 directly
affects the methane production rate. Moreover, this suggests that it could be more appropriate to model the
disintegration kinetics taking also into account the particle size of the bio-degradable components, when it
represents the bottleneck of the entire process, as during the degradation of complex particulate compounds.

A second group made of physical parameters k3 and D are in the middle in terms of importance in
determining the QoI value. The gas-transfer coefficient k3 determines the quantity of soluble methane
released in the gas-phase. When its value is very small, a small amount of soluble methane passes in the
gas-phase. When the value of k3 exceeds a certain threshold, all the methane is released in the gas-phase and
the value of the gas-transfer coefficient does not affect the QoI value anymore. The diffusion coefficient D
was not expected to be so less important with respect to kinetic parameters in determining the QoI value in a
process modelled considering convective-diffusive-reactive phenomena. These results suggests that, if one
wants to model also the effect of diffusion on the development of the process, the dependence of kinetics
on the diffusion coefficient must be incorporated. Indeed, it has been demonstrated that in dry anaerobic
digestion diffusion affects hydrolysis of complex material [128, 137], for example. Moreover, the fact that
the model is a one-dimensional model and that it is neglected a different value of diffusion along the other
directions influence the role of such a coefficient in determining the QoI value. In 2D and 3D models
could emerge the importance of the diffusion coefficient in determining the rate of conversion of substrate
in methane. Indeed, different diffusion processes in the other directions influencing acid distribution in the
reactor could be analysed.

The last qualitative information obtained through the Morris screening is that the group of parameters
consisting in the half-saturation constant K1, the microbial biomass decay rate k4 and the yield of biomass
on substrate Y present very small sensitivity. The roles of the half-saturation constant and the yield of
biomass on substrate are not emerging in the qualitative preliminary screening obtained through the Morris
method. Indeed, when the half-saturation constant assumes very small values the kinetic of consumption of
the acetic acid becomes linear, indicating that the process becomes faster and it is not limited by substrate
availability. The yield of biomass on substrate determines directly the amount of acetic acid that becomes
methane and, even if it varies among 0 and 1, it is expected to influence methane production. These aspects
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Figure 4.3: Morris algorithm applied with respect to y.

need to be investigated deeply with the quantitative variance based GSA.

4.6.2 A posteriori error estimation of the surrogate models

Since metamodels of the PFR will be used for UQ and SA, measuring their effectiveness in reproducing
the real model variability is mandatory. The construction of the surrogate model would in fact introduce an
approximation error, which can be computed in an a posteriori fashion as

ϵemp �
1

Nhalton

Nhalton¸
l�1

�
yplq � ypplq	 , (4.20)

where yplq is the lth element of the training set, ypplq is the corresponding prediction by the surrogate model
(gPC or GP), and N � 210 (see Table 4.4). However, this estimator for the metamodel error suffers from
overfitting issues and may thus severely underestimate the mean square error [20]. In addition, the GP-
model is interpolating the the training set points and therefore it will always achieve ϵemp � 0 (when noise
free kernel are adopted). In the following, for any tested surrogate model, algorithm and configuration, we
have ϵemp{y   4.0� 10�3, with y the empirical mean of the QoI over the Halton’s dataset.

To make up for the aforementioned shortcomings, the surrogates are validated using the so called Q2

predictive coefficient, that corresponds to a cross-validation error metric using the independent dataset
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based on Faure’s low discrepancy sequence (see Table 4.4). In formulas, this coefficient reads

Q2 � 1�

Nfaure¸
l�1

�
yplq � ypplq	2

Nfaure¸
l�1

�
yplq � y

�2 , (4.21)

with y the empirical mean over the Faure’s validation set (Nfaure � 210). Q2 predictor coefficient furnishes a
normalized estimate of the generalization error, that is, the surrogate error when considering points outside
of the Halton’s training set [85]. The target value for Q2 is 1: the closer the result to unity, the better is the
surrogate in reproducing the dynamical system of PFR.

The Q2 indicator performs thus the function of ranking the surrogates by their effectiveness in repro-
ducing the dynamics of the studied PFR model. In particular, when gPC techniques is applied, we consider
the results of the surrogate with total polynomial order P that gives the best results. In our study, P varied
from 1 to 7.

Figure 4.4, first panel, shows the adequacy plots, i.e. the plots of metamodel computed over points of
the DOE over actual forward model F runs. In the second panel, the robustness of LAR-gPC algorithm
with respect to the choice of P is given by the plots of Q2 values over the tested values for the maxi-
mum polynomial degree. When P ¡ 4, the dimensionality of the underlying statistical model hinders the
convercence. In Table 4.5, the different error estimators for the adopted surrogate techniques are tabulated.

Metamodel Q2 ϵemp{y

SLS-gPC pP � 4q 0.972 3.40e� 03
LAR-gPC pP � 4q 0.975 3.79e� 03
GP (RBF Kernel) 0.993 0.

Table 4.5: Errors relative to built surrogates. For LAR-gPC and SLS-gPC, the best results for the spanned
values for P are reported.

4.6.3 Quantitative SA with Sobol’ indices

Variance decomposition-based global sensitivity analysis is usually performed by means of Sobol’ in-
dices [112, 106]. These indices allow to quantify the weight of the uncertainty of a single input parameter,
considered as an independent variable with respect to the other parameters, on the variance of the quantity
of interest y. Indicating the variance of the output random variable y and the one linked to the variabil-
ity of the ith parameter as Vpyq and Vipyq, respectively, the first-order Sobol’ index Si referred to the ith
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Figure 4.4: Adequacy plots for the prediction of QoI y. For the Q2 test, we showed the results of several
maximum degrees p of LAR-based gPC algorithm.
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parameter of Θ is defined as:

Si �
VipY q

VpY q
. (4.22)

Si ranges then between 0 and 1. In order to include the interactions with the other parameters while defining
the measure of the contribution of the ith input parameter on the output variance, the total Sobol’ index STi

is introduced:

STi
�

¸
I�t1,...,du

IQi

SI . (4.23)

By definition, STi
¥ Si. The presence of interactions between input parameters in determining the output

variance is stated observing if the first-order and total indices differ. In the GP-surrogate approach, Sobol’
indices are estimated stochastically adopting Martinez’ formulation as a stable estimator [13]. For the LAR
gPC-expansion, the first-order and total Sobol’ indices are directly derived from the gPC-coefficients, for
instance the first-order Sobol index reads (see e.g. [121], [120]) :

Si,pc �
1

σ2
y

¸
αPA,

αi¡0 and αk�i�0

γ2
α, (4.24)

with σy the empirical output sample STD.
Figure 4.5 presents the first-order and total Sobol’ indices obtained with the three adopted algorithms.

However, since the best performing algorithm with respect to Q2 error has been GP surrogate, in the fol-
lowing we shall discuss only the SA and UQ results concerning this algorithm.

It is worth noting that first-order and total Sobol’ indices are not identical, implying that some interac-
tions take place between the factors.

Regarding CH4 production, Sobol’ indices analysis confirmed the results of the Morris screening con-
cerning the sensitivity of k2. Both the Sobol’ index and the Total Sobol’ index of the Monod maximum
uptake rate k2 are the highest between all the parameters. The kinetic constant k1 maintains its importance
while the half-saturation constant K1 and the yield of biomass on substrate Y gain positions with respect to
k3, k4 and D, as expected. Indeed, as said before, the half-saturation constant K1 and the yield of biomass
on substrate Y directly determines the maximum consumption rate of acetic acid and the amount of the
consumed acetic acid that becomes methane, respectively. The effects of the variation of these parameters
on the QoI were not appreciable with the Morris screening and have been highlighted by the quantitative
SA.

Lastly, the small sensitivity of the microbial decay rate kinetic constant k4 and the physical parameters
k3 and D is remarked by the quantitative SA with Sobol’ indices.
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Figure 4.5: First-order and total Sobol’ indices (in logarithmic scale) associated with uncertain parameters
θ and their effect on y. The three different tested algorithm are presented. For GP, orange color stands
for first-order Sobol’ indices; red colors stands for to total Sobol’ indices. For SLS-gPC, light blue colors
represent first-order Sobol’ indices; dark blue colors represent instead total Sobol’ indices. For LAR-gPC,
gray colors stand for first-order Sobol’ indices; dark gray colors stand for to total Sobol’ indices.

4.6.4 Uncertainty Quantification

For the sake of Uncertainty Quantification, we restrict the study at the surrogate that behaved best with
respect to the Q2 error estimator, that is Gaussian Process metamodel.

In order to obtain a statistical description of the Quantity of Interest (statistical moments and Probability
Density Function) a sampling of the uncertain input space ZΘ (with sample size of 10,000 members) is
performed, adopting a Monte Carlo random sampling and then evaluating the GP surrogate for all these
points.

Mean, standard deviation, skewness and kurtosis of the QoI computed from such Montecarlo sample
are given in Table 4.7.

Figure 4.6 presents the PDF of the QoI related to CH4 net production. Some information can be
deducted from the shape of such PDF (and more concretely from the higher order moments of its respective
distribution). There are two visible peaks indicating that, depending on the model parameters values and
the fixed initial and inlet conditions, there is an high probability to have a small amount of produced
methane (corresponding to a failure of the system) and a medium-high probability to succeed in having
an high methane production. This behaviour is mostly due to the fact that, if the input parameters vector
is characterized by unfavorable values, with the combination of constants that implies a small conversion
of the bio-degradable COD in acetic acid or a slow conversion of the acetic acid in methane, it is very
difficult to produce methane. On the other hand, if the vector of parameters exhibits a good combination
of input factors, more favorable to the reactor working conditions, there is a good chance to have methane
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Parameter Description Uniform distribution Morris rank (CH4) Sobol’ Indices rank (CH4)

k1 Kinetic constant for the consumption
of the volatile solids Up0.005, 0.5q 1 3

k2 Monod maximum specific uptake rate for the acetic acid Up0.08, 8.0q 2 1
k3 Gas-liquid transfer coefficient Up0.3, 300q 3 6
k4 First order decay rate of the microbial biomass Up0.001, 0.05q 6 5
K1 Half saturation constant Up0.015, 1.5q 7 2
D Diffusion coefficient Up1� 10�8, 1� 10�6q 4 7
Y Yield of biomass on substrate Up0.04, 0.1q 5 4

Table 4.6: In the third column the complete list of Uniform marginal PDFs associated with vector θ is
reported. Note that Upa, bq stands for the uniform distribution with a the minimum value of the parameter
and b the maximum one. The last two columns show the ranking of the parameters according to Morris’
preliminary screening test and Sobol’ Indices given by metamodels.
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Figure 4.6: Probability density function for the quantity of interest y obtained with the GP metamodel.

production. The fact that the PDF drops to zero after the value of approximately 1� 106 rlCH4 � ds it is due
to the fact that it is impossible to produce more than that quantity of methane in the considered period of
time with the used values of HRT , v0 and OLR.

4.7 Conclusions

In this paper, uncertainty quantification and global sensitivity analysis non-intrusive methods were applied
to a novel model for dry anaerobic digestion in plug-flow reactors for a test case of engineering relevance.
The model depends on a conspicuous set of input parameters of different nature and lacked up to now a
global sensitivity analysis and uncertainty quantification to help predicting the overall effect of uncertainty

90



Moment y (lCH4d)

Mean 398514.91
St. Deviation 353356
Skewness 0.275
Kurtosis 1.5638

Table 4.7: Statistical moments for the PDF of the two QoI y.

of the input parameters on the net CH4 production. The Morris screening test and the quantitative sensi-
tivity analysis with Sobol’ indices showed, with a good accordance, that the model output concentration of
methane in the head-space is mostly sensitive to the values of parameters linked to the kinetics describing
the conversion of the particulate bio-degradable volatile solids in acetic acid k1 and to the kinetics of uptake
of acetic acid, k2. The importance in determining the quantity of interest value of the half-saturation con-
stant K1 and the yield of biomass on substrate Y is highlighted only by means of the quantitative sensitivity
analysis through the Sobol’ indices. The values of the QoI are less sensitive to the values assumed by the
physical parameters. This result emerged from both the qualitative and quantitative studies of the Morris
preliminary screening and the variance decomposition-based global sensitivity analysis through the Sobol’
indices. In fact, the variations of the gas-transfer coefficient k3 beyond a fixed threshold have no effects on
the output as all the methane is released in the gas-phase. Moreover, according to the results of the study it
is possible to claim that in a 1-D model of this type, where the diffusion is not linked to kinetic processes,
the sensitivity of the diffusion coefficient on the model output is very low with respect to the sensitivity of
the kinetic parameters. Lastly, the first order decay rate of the biomass acting the uptake of the acetic acid
k4 determines indirectly the quantity of new bio-degradable substrate available to be converted in methane
but the uncertainty linked to this parameter does not affect model results in a considerable way.

In the end, this analysis revealed that during the calibration and validation of a complex plug-flow re-
actor model, characterized by a high number of interacting parameters, sensitivity analysis and uncertainty
quantification routines, that ranged from simple screening analysis to more complex, and computationally
demanding, variance-based metamodel analysis, constitute a robust asset for modellers and practitioners.
In the specific case of anaerobic digestion performance evaluation, the group of parameters it should be
paid most attention to are the ones linked to the kinetic processes, i.e. k1, k2, K1 and Y .
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Chapter 5

High-solids anaerobic digestion in plug-flow
reactors: model calibration and validation*

*The results of this chapter will be submitted in the form of a manuscript entitled: High-solids anaerobic digestion in plug-
flow reactors: model calibration and validation.
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5.1 Abstract

Mathematical modelling of high-solids anaerobic digestion in plug-flow reactors is a little explored field
in literature. Mathematical models constitute important tools to support managing, designing and optimiz-
ing real plants because they allow to predict methane production, substrate conversion, bio-components
concentration trends and other key parameters of the process. This paper focuses on the calibration and
validation of a mathematical model recently proposed by authors describing the high-solids anaerobic di-
gestion process in plug-flow reactors. The model is based on a system of partial differential equations and
tries to describe the convective-diffusive-reactive phenomena that rule the process. The most important
aspect of the model is the fact that the convective velocity of the substrate moving along the reactor is a
further unknown of the problem. The conversion of the bio-degradable fraction of the volatile solids into
methane is described through a simple biochemical scheme. A global sensitivity analysis revealed the most
important parameters affecting methane production, which is the final output of the model. These parame-
ters are the kinetic constant of the process describing the conversion of the bio-degradable solids in acetic
acid and three parameters linked to the uptake of the acetic acid: the Monod maximum specific uptake
rate, the half-saturation constant and the yield of biomass on substrate. Their calibration and validation
is mandatory for the model application to real-scale processes. Laboratory scale experiments on a 30L
plug-flow digester fed with cattle manure were carried out for more than 6 months by varying the applied
organic load, and thus the velocity of the material all along the experiment. These experiments were used
to calibrate model parameters. The calibration procedure showed a good agreement between simulated and
experimental methane production curves. Other experimental data were used to validate the model. The
study showed the capability of the model in predicting the output of the process.

5.2 Introduction

Anaerobic Digestion (AD) is an affirmed biological treatment process used to convert various kind of
organic waste (waste water sludge, organic fraction of municipal solid waste, agricultural and industrial
waste etc.) in energy, with a low environmental impact [26]. The biogas, which is a biologically produced
gas with an high methane content, is the main product of the AD process while the digestate is a by-
product that can be used for agronomic purposes. Based on the Total Solids (TS) content, where TS is
the measure of all the suspended, colloidal and dissolved solids in a medium, AD is classified as Wet AD
(WAD) (TS content   10%), Dry AD (DAD) (TS content ¡ 20%), also called High-solid or solid-state AD
and Semi-dry AD (SAD) (10% ¤ TS ¤ 20%). During the last decades, WAD and DAD are equally used
technologies for new plants performing the AD process [23]. AD in wet conditions is usually performed
in Continuous Stirred Tank Reactor (CSTR) configurations and implies the usage of a great amount of
water when substrate with high solids content is used with the subsequent need of wide reactor volume and
large amount of by-product to be treated. AD in dry conditions, performed mainly in Plug-Flow Reactors
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(PFR), requires lower pretreatment of feedstocks for the reduction of size or removal of inert materials,
usually performed to avoid the clogging of pumps or pipes [32]. DAD is characterized by less wastewater
production [22] and, furthermore, it is attractive for the opportunity to have very robust performances, less
energy needs for mixing and heating [61] and does not present problems of sedimentation of surface crust
[32]. Hence, economic savings for both public and private companies and greater environmental advantages
can be achieved preferring DAD to WAD in some cases, depending on the substrate to be treated. However,
optimization techniques are needed in order to overcome some difficulties that occur performing DAD, such
as inhibition due to acidification and high ammonia content [94, 63], great amount of inocula, dispersion
problems, mechanical problem linked to the high viscosity [15] and so on. Moreover, effort in developing
mathematical models capable to describe the dynamics of such a process must be done in order to improve
the designing and managing of plants of this type. At the best of authors’ knowledge, there are a few works
related to the mathematical modelling of DAD in PFRs. These works are based on some simplifications,
such as approximating the PFR as a chain of CSTR-in-series [39, 16] or consider a constant velocity along
the reactor [127, 125], neglecting the mass variation that takes place because of solids conversion in gaseous
compounds along the reactor.

The lack of scientific literature on the mathematical modelling of DAD in PFRs inspired authors to pro-
pose a new mathematical model (Chapter 3) based on mass balances on the state variables of the problem,
taking into account their variation in both space and time. The mass balances considerations lead to define
a system of Partial Differential Equations (PDEs), represented by convection-diffusion-reaction equations,
describing the bio-physics of the phenomenon. The novelty of the model is the fact that the convective
velocity of the bio-components constituting the matrix of the treated substrate is considered as an unknown
function. Indeed, thanks to the variation of the velocity the loss in mass of the treated substrate along the
reactor is accounted for. This aspect must be considered in systems treating a substrate having an high
solids content and the used approach reflects what happens during the management of real plants. Indeed,
since these kind of processes are performed maximizing the working reactor volume, keeping constant the
level of the treated substrate along the reactor, the velocity variation balances the described loss in mass.
The equation describing the velocity variation along the reactor is derived as a consequence of the principal
hypothesis of the model: the density of the treated substrate is constant in time and space and the sum of
the volume fractions of the bio-components constituting the matrix of the treated substrate are constrained
to sum up to unity. From these statements it follows that the mass of the treated mixture has to be constant
along the reactor and then the solids mass reduction due to the degradation processes has to be balanced
by the variation of the convective velocity. The bio-chemical scheme considers the conversion of the bio-
degradable fraction of Volatile Solids (VS) of the treated mixture in methane. VS represents the portion
of the TS content that is volatilized at 550 °C and gives an idea on the amount of the readily vaporizing
matter present in the solid fraction of a substrate and it corresponds to the organic matter. Such a conversion
is considered to occur through two main processes: a unique step of disintegration, that leads to the pro-
duction of acetic acid, followed by the methanogenesis process, whose result is the production of soluble
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methane and microbial biomass. The equilibrium between the soluble methane and the gaseous methane is
described by a gas-transfer law. Moreover, a differential equation describes the gaseous methane dynamics
and suitable boundary and initial conditions are prescribed to close the mathematical problem.

The Global Sensitivity Analysis (GSA) reported in Chapter 4 identified the parameters of the aforemen-
tioned model that affect the most methane production. According to the results of the GSA, the calibration
and validation of model parameters must focus on the values of the kinetic parameters describing the con-
version of the bio-degradable VS in acetic acid and the subsequent consumption of the produced acetic
acid. The calibration and validation of these parameters is a mandatory activity to set up a model that is
able to correctly describe the dynamics of AD processes in PFRs.

The aim of this study is to use results related to the methane production of a laboratory-scale plug-flow
digester treating cattle manure, to calibrate and validate the mentioned model parameters and to show that
the model is capable to emulate the performance of a real DAD process. To this purpose, two experimental
campaigns were carried out to compare modelling results with real data. The substrate used in the two
experimental campaigns was characterized by a TS content in total weight of 30% and 25%, respectively.
In the two campaigns the reactor was fed using increasing Organic Loading Rates (OLRs), where OLR is
a measure of the amount of organic material per unit reactor volume subjected to an AD process in a given
unit of time period [52]. The first campaign was used to calibrate the model. The second one was used
to validate it. The calibration procedure involved the maximization of an objective function related to the
difference between the simulated and experimental methane productions. This maximization was obtained
varying the chosen model parameters in a fixed range of variation and observing the model results. The
validation was performed evaluating some functions able to describe the quality of the accordance between
experimental and simulated data.

5.3 Material and methods

5.3.1 Experimental design

A DAD process was performed in a laboratory-scale horizontal plug-flow reactor. Two experimental cam-
paigns A and B were aimed to study the dependence of the methane production on the OLR. The PFR was
fed with cattle manure bedded with straw, mixed with water in order to set the TS content of the feeding at
30% in total weight for the campaign A and 25% for the campaign B. Inoculum was used in the start-up
phase of the campaign A and digestate recirculation was meant to adjust the pH in the initial sections of
the reactor adding ammonia and microbial biomass to the feeding. The campaign B was carried out after
a period of inactivity during which the reactor was not fed but just heated. The OLR referred to the sub-
strate was increased almost every week, following the scheme reported in the Table 5.1 and 5.2 for the two
campaigns A and B respectively. In such tables, for each feeding condition, are reported also the values of
the used Hydraulic Retention Time (HRT), which indicates the mean residence time of a certain substrate
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Time Progressive time OLR HRT
(d) (week) (gV S l�1 d�1) (d)

7 1 0.714 349.1
7 2 0.714 349.1
7 3 0.857 290.9
7 4 1.029 242.4
7 5 1.234 202.0
7 6 1.481 168.4
7 7 1.422 175.4
7 8 2.136 116.8
7 9 2.046 121.9
7 10 3.071 81.2
7 11 3.686 67.7
7 12 4.423 56.4
7 13 4.864 51.3
7 14 5.350 46.6
7 15 5.136 48.5
7 16 5.136 48.5
7 17 6.420 38.8
1 9.887 25.2
6 18 5.853 42.6
7 19 6.420 38.8
7 20 6.420 38.8
1 7.490 33.3
6 21 6.247 39.9
7 22 6.421 38.8
7 23 6.421 38.8
7 24 6.421 38.8
7 25 6.421 38.8
7 26 6.421 38.8

Table 5.1: Campaign A: OLR and HRT referred to the substrate used during the experiment.

within a biological reactor and it is obtained from the ratio between the the reactor volume and the vol-
umetric flow rate. Methane production was monitored during the whole duration of the experiment. The
minimum and maximum values of the used OLRs were 0.714 and 9.887 gV S l�1 d�1 and 1.029 and 6.421
gV S l�1 d�1 for the campaigns A and B respectively. A part of the digestate was analysed to establish the
Volatile Fatty Acids (VFA) concentration and pH. The process was performed in a temperature regime of
(37 °C).

5.3.2 Digester setup

Reactor configuration used in this study was an horizontal PFR, with a reactor length and volume of 1.34m
and 45 L, respectively. The total working volume was 30 L and head space volume was 15 L. This is
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Time Progressive time OLR HRT
(d) (week) (gV S l�1 d�1) (d)

7 1 1.029 241.4
7 2 1.543 115.4
7 3 2.007 103.8
7 4 1.927 74.0
7 5 2.893 46.0
7 6 4.343 33.3
7 7 6.421 22.5
7 8 6.421 22.5
7 9 6.421 22.5

Table 5.2: Campaign B: OLR and HRT referred to the substrate used during the experiment.

a double walled reactor made of stainless steel maintained at 37 °C by using regulated bath of calorific
liquid. Substrate was inserted into a tube separated from the digester by a hermetic system which consists
in a clamp. The reactor was equipped with a motor rotating paddle axel at a speed of 4 rpm which stirred
discontinuously (1 min every hour). The digestate was discharged using a vertical rod by pushing the
digestate downward into an airtight withdrawal box which was previously purged with N2. The reactor was
operated semi-continuously with a daily supply from Monday to Friday. Feeding was supplemented by the
recirculation of a part of the digestate in order to promote colonization of microorganisms on the newly
introduced substrate. Biogas produced in the reactor passed through a moisture trap and then measured
using a drum gas meter (RITTER ® TG05). The reactor was weighted every week in order to maintain
constant the reactor mass.

5.3.3 Digester feed and inoculum

The digester feed was collected from a cattle farm. Its size was reduced to approximately 1 cm size in
a Blik BB 230 crusher equipped with stainless steel rotating blades. Crushed cow manure was aliquoted
stored at �20 °C. Frozen substrate was transferred to 4 °C temperature 1 day prior to use. The TS content
and VS content were 46.21% and 38.39%, respectively. Tap water was used to reduce the TS content
before reactor feeding. The final TS content of the substrate fed into the reactor was fixed at 30% and
25% for the experimental campaign A and B, respectively. PFR was inoculated with a mixture of different
inocula: i) a granular sludge sampled from an UASB reactor treating a sugar industry wastewater, ii) a solid
digestate sampled from a pilot batch reactor treating chicken manure and straw. The inoculum mixture was
10 gV Sgranularsludge : 1 kgdigestate. The main characteristics of substrate and digestate used are listed in
Table 5.3. The final characteristics in terms of water, TS, VS and inert concentrations of the substrate used
in the experiments are reported in Table 5.4.
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Parameters Unit Manure with straw Digestate

Total solids % 46.21 � 0.57 15.73 � 0.21
Volatile solids-Wet basis % 38.40 � 1.30 8.83 � 0.40
Moisture % 53.79 � 0.57 84.27 �0.21
Ash – Wet basis % 7.82 � 0.77 6.90 � 0.41
pH 7.78 7.95
BMPexperimental lCH4 g

�1
V Sadded 0.218 � 0.01 0.048 � 0.001

Table 5.3: Characteristics of substrate and digestate used during the experiment (Standard deviation based
on triplicate measurements).

Parameters Unit Campaign A Campaign B

Total solids content - Wet basis gTS g�1 0.30 0.25
VS content on TS basis gV S g�1

TS 0.83 0.83
Water concentration g l�1 700.00 750.00

Total solids concentration gTS l�1 300.00 250.00
Volatile solids concentration gV S l�1 249.35 207.79

Inerts concentration g l�1 50.65 42.21

Table 5.4: Final characteristics of the feed used in the experimental campaigns A and B.

5.3.4 Analytical measurements

Volatile Fatty Acids and pH

pH was measured directly from the digestate using WTW pH electrode senlix 41 probe. Digestate was cen-
trifuged using Beckman Coulter brand centrifuge before measuring VFA. It was programmed for JA-25.50
mode at 20 °C under 15000 rpm for 12 minutes. VFA was measured using a gas chromatograph (CPG3900
VARIAN) equipped with a flame ionization detector and an automatic sampler (CP8400 VARIAN). The
column used was a semi-capillary FFAP (Alltech) column with 15m in length, 0.53 cm in diameter and
1.2 µm phase ECTM 1000 film, where temperature increased from 80 °C to 250 °C isothermally. The
carrier gas is N2. Sample was centrifuged again at 134 � 1000 rpm for 1 minute before analysis. The
temperature of the injector was 210 °C.

Methane production

Biogas produced in the reactor passed through a moisture trap and then measured using a drum gas meter
(RITTER ® TG05). Biogas composition was determined using a gas chromatograph (GC Perkin Clarus
580). The equipment consists of 2 different columns. The first column, RtU-Bond was filled with silica
gel which separates CO2 from other gases while the second column, Rt-Molsieve 5A was filled with argon
as the carrier gas which separates H2, O2, N2 and CH4. The length as the diameter of two columns were
30m and 0.32 cm respectively. The temperatures were 65 °C for the oven, 200 °C for the injector and
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the detector. The detection of gaseous compounds was done using a thermal conductivity detector. The
volume of biogas injected was 2mL. Gas measurements were done in triplicates. Methane production was
determined using biogas production and the biogas composition.

5.3.5 Mathematical Model

The mathematical model is based on 1-D mass balances for the state variables represented by the concentra-
tion of each bio-component considered in the model. The matrix of the substrate to be treated is supposed
to have a density ρ pz, tq � ρ constant with space and time. This matrix is supposed to be constituted by
water, particulate and dissolved compounds. The particulate compounds are inerts, VS (divided in bio-
degradable and non bio-degradable material) and microbial biomass. The dissolved compounds are soluble
acetic acid and soluble methane, anaerobically produced from the degradation of VS taking place within
the reactor. The gas occupying the head-space of the reactor is composed only by gaseous methane, whose
concentration is considered invariable along the space.

The following notations are used:

- XH2O pz, tq is the water concentration within the reactor;

- XI pz, tq is the inerts concentration within the reactor;

- XBV S pz, tq is the concentration of bio-degradable VS;

- XNBV S pz, tq is the concentration of non bio-degradable VS;

- Xac pz, tq is the microbial biomass concentration within the reactor expressed in terms of VS;

- Sac pz, tq is the soluble acetic acid concentration within the reactor expressed in terms of Chemical Oxy-
gen Demand (COD);

- SCH4 pz, tq is the soluble methane concentration within the reactor expressed in terms of COD;

- GCH4 ptq is the gaseous methane concentration within the head-space of the reactor expressed in terms of
COD;

COD is a measure of the amount of oxygen that is needed for the complete chemical oxidation of
organic compounds of a medium. It is commonly expressed in mass of oxygen consumed over volume of
the medium sample used for its measurement.

Figure 5.1 summarizes the kinetic scheme of the model. Disintegration, hydrolysis, acidogenesis and
acetogenesis which lead to the conversion of bio-degradable VS XBV S in soluble acetic acid Sac are summa-
rized in a unique kinetic rate rBV S , taking into account only the rate-limiting step of the whole conversion
process. This limiting step is represented by the disintegration process when the substrate to be treated is
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in particulate form [43]. Soluble methane SCH4 and microbial biomass Xac are produced from the degra-
dation of the acetic acid, which takes place through a process described by a non linear Monod-type kinetic
rate rac. The decay of the microbial biomass is described by the kinetic rate rdec and from this decay are
produced new bio-degradable and non-biodegradable VS; lastly, the soluble and gaseous methane (GCH4)
are in equilibrium according to the gas-transfer law expressed by the kinetic rate rCH4 .

Figure 5.1: Kinetic scheme of the model.

The model is constituted by a system of convection-diffusion-reaction equations (Eq. (5.1)-(5.7)), which
holds for 0   z   L, where L is the reactor length, and t ¡ 0. Moreover, the mass balance on the volume
of gas leads to a differential equation describing the gaseous methane dynamics (Eq. (5.8)).

BXH2Opz, tq

Bt
�
Bpvpz, tqXH2Opz, tqq

Bz
�D

B2XH2Opz, tq

Bz2
� 0, (5.1)

BXIpz, tq

Bt
�
Bpvpz, tqXIpz, tqq

Bz
�D

B2XIpz, tq

Bz2
� 0, (5.2)
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Bt
�
Bpvpz, tqXBV Spz, tqq
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�D

B2XBV Spz, tq

Bz2
� �rBV S � frdec, (5.3)
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�
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�D
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�D
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Bz2
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where:

• the diffusion coefficient D rL2 T�1s is assumed to be the same for each compound and invariable
along the z direction;

• the convective velocity of the system vpz, tq is the same for each compound and it is a furtner un-
known;

• rBV S � kBV SXBV S;

• rac � kacXacSac{ pKs,ac � Sacq;

• rdec � kdecXac;

• rch4 � kLa pSch4 �KHRTGCH4q;

• f is the fraction of dead microbial biomass becoming new bio-degradable substrate;

• m is the conversion factor of VS in COD
�
gCOD g�1

V S

�
;

• Yac is the yield of biomass on substrate;

• kBV S is the kinetic constant for the consumption of the bio-degradable volatile solids XBV S , having
the dimension of rT�1s;

• kac is the Monod maximum specific uptake rate for the acetic acid rT�1s;

• Ks,ac is the half saturation constant rM L�3s for the kinetics of consumption of the acetic acid;

• kdec is the first order decay rate of the microbial biomass Xac rT�1s;

• kLa is the gas-liquid transfer coefficient rT�1s;

• KH is the Henry’s law coefficient rL2 T�2s;

• R is the gas law constant rL2 T�2 Θ�1s;

• T is the operating temperature rΘs;

• Aw rL
2s is the constant cross-sectional area occupied by the substrate to be treated along the reactor;

• Vgas is the head-space volume where the gas is stored rL3s.
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In the equation (5.8) the contributes to the gas-transfer in each point are summed to define a unique
gas-transfer rate for the gaseous variable. Moreover, the gas-transfer kinetic rate rch4 is referred to the
volume occupied by the matrix of the treated substrate. Hence, to take into account the fact that the gaseous
variable must be gas-volume specific, the ratio between the cross-section occupied by the substrate to be
treated and the head-space volume is present.

A further equation is needed to describe the variation in space and time of the convective velocity. Such
equation is obtained considering that the volume fractions of the water and the particulate components
within the reactor is constrained to sum up to unity and that the densities of these components are equal to
the density of the whole matrix of substrate to be treated ρ, that is:$&%

XH2O
pz,tq

ρH2O
� XIpz,tq

ρI
� XBV Spz,tq

ρBV S
� XNBV Spz,tq

ρNBV S
� Xacpz,tq

ρac
� 1,

ρH2O � ρI � ρBV S � ρNBV S � ρac � ρ,
(5.9)

which leads us to consider that the sum of the concentrations of water and particulate components is
equal to the density ρ of the substrate to be treated (Equation (5.10)).

XH2O pz, tq �XI pz, tq �XBV S pz, tq �XNBV S pz, tq �Xac pz, tq � ρ. (5.10)

Equation (5.10) implies that the mass of the mixture composed of water, inerts, VS and microbial
biomass is constant over time. As a consequence, the convective velocity of the matrix of the treated
substrate varies along the reactor and its variation depends on the kinetics of the compounds constituting
the mixture. In fact, the velocity variation has to balance the consumption of the VS to keep the mass of
this particular mixture constant.

Now summing equations (5.1) to (5.4) and equation (5.6), remembering the (5.10), the equation gov-
erning the velocity is derived (Eq. (5.11)):

Bvpz, tq

Bz
�

Yacrac � rBV S

ρ
. (5.11)

Lastly, boundary and initial conditions (Eq. (5.12)-(5.19)) are prescribed to set a closed mathematical
problem

vp0, tq � v0, t ¥ 0, (5.12)

�D
BXip0, tq

Bz
� v0 pXi,IN �Xip0, tqq , t ¡ 0 i � 1, ..., n1, (5.13)

�D
BSip0, tq

Bz
� v0 pSi,IN � Sip0, tqq , t ¡ 0 i � n1 � 1, ..., n2, (5.14)
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BXipL, tq

Bz
� 0, t ¡ 0 i � 1, ..., n1, (5.15)

BSipL, tq

Bz
� 0, t ¡ 0 i � n1 � 1, ..., n2, (5.16)

Xipz, 0q � Xi,0, 0 ¤ z ¤ L, i � 1, ..., n1, (5.17)

Sipz, 0q � Si,0, 0 ¤ z ¤ L, i � n1 � 1, ..., n2, (5.18)

GCH4p0q � GCH4,0, (5.19)

where:

• v0 is the inlet flow velocity;

• n1 is the number of the particulate compounds plus water;

• n2 � n1 is the number of dissolved compounds;

• Xi,IN is the concentration of the ith particulate compound and water in the incoming flow rate;

• Si,IN is the concentration of the ith dissolved compound in the incoming flow rate;

• Xi,0, Si,0 and GCH4,0 are the initial concentrations of each particulate compound, dissolved compound
and gaseous methane, respectively.

5.3.6 Model Inputs

For the experimental campaign A, the reactor was initially filled with a mixed inoculum, containing mi-
croorganisms, low-degradable organic matter and inerts. Hence, the characteristics of the inoculum repre-
sented the initial conditions for the numerical simulations performed for model calibration (Table 5.7). No
stratification of substrates was observed at t � 0 and thus it is possible to assume that the initial concen-
trations of the compounds are homogeneous along the reactor. Biochemical Methane Potential (BMP) is
a measure of the portion of organic material which can be anaerobically converted to methane [103] and
is established through specific tests [48]. This parameter was used to evaluate the initial concentration of
bio-degradable VS of the inoculum while the initial microbial biomass concentration was obtained assum-
ing that the sum of the concentrations of the bio-degradable VS and the microbial biomass represented the
15% of the VS content of the inoculum. The start-up phase was simulated considering only diffusion as
transport phenomenon. The values of the compounds concentrations resulting from the simulation of this
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start-up phase (lasted for 3 days) represented the initial condition for the simulation of the process in con-
tinuous conditions. Indeed, starting from t � 4 days the reactor was continuously fed with fresh influent.
These boundary conditions were evaluated considering the weighted average between the characteristics of
the fed substrate (Table 5.4) and the recirculated digestate. In particular, it was assumed that no microbial
biomass is present in the fresh substrate while the 15% of the VS content of the digestate was assumed to
be constituted by a 2/3 of low-degradable substrate and 1/3 of microbial biomass. The characteristics of the
recirculated digestate in terms of TS and VS content are reported in Table 5.5 and 5.6 for campaigns A and
B, respectively.

The inactivity period between the two campaigns A and B (lasted for two months) was simulated using
a feeding condition characterized by a very small OLR (0.1 gV S l�1 d�1), with the diffusion as unique
transport phenomenon. The experimental campaign B was simulated in continuous feeding conditions,
using as initial conditions the concentration values resulting from the simulation of the period of inactivity
and as boundary conditions the values obtained as weighted average between the characteristics of the fed
substrate (Table 5.4) and the recirculated digestate (Table 5.6).

Some aspects of the experimental procedure needed an adaptation to the model structure. First of all,
during the experiments, for practical aspects, the feeding was performed in semi-continuous conditions.
Hence, it was necessary to reallocate the amount of the fed mixture to obtain a day-by-day reactor feeding.
Moreover, the flow rate of the recirculated digestate affects the OLR and HRT of the substrate alone. Hence,
depending on the amount of recirculated digestate, the OLR and HRT of the mixture composed of substrate
and digestate were evaluated and used in the simulations. Lastly, the value of the conversion factor m of
VS in COD used in model simulations for the fresh substrate was set to 1.50 gCOD g�1

V S [53] while for the
inoculum and the digestate it was set to 1.25 gCOD g�1

V S [74, 107]).

5.3.7 Model calibration and validation

According to the results of the GSA for the model reported in Chapter 4, a calibration procedure was applied
to find the best values of the most influencing parameters of the model which allow the model to achieve
the optimal fit between observed and simulated data of a certain output. The screening of model parameters
performed through the aforementioned GSA established that kBV S , kac, Ks,ac and Yac are the parameters
that the most affect the values of the quantity of interest. Despite this, it is feasible to consider the values of
Ks,ac and Yac equal to the values used in the Anaerobic Digestion Model n� 1 (ADM1) [10] in mesophilic
temperature regime. Indeed, the half-saturation constant Ks,ac, which recollects the influence of the acetic
acid concentration on its maximum uptake rate, and the yield of biomass on substrate Yac, which represents
the quantity of acetic acid that is converted in new microbial biomass, are two parameters that are basically
function of temperature and the kind of substrate they refer to [47, 55] (acetic acid in this case). Moreover,
the values of the other parameters that were not object of model calibration were set as in the ADM1 (Table
5.8), except for the value of the liquid-gas transfer coefficient kLa that was decreased to 2.0 d�1 respect to
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Time Progressive time TS content VS content on TS base
(d) (week) (gTS g�1) (gV S g�1

TS)

7 1 - -
7 2 - -
7 3 - -
1 - - -
6 4 0.145 0.579
1 - - -
6 5 0.144 0.569
1 - - -
6 6 0.143 0.579
1 - - -
6 7 0.147 0.578
1 - - -
6 8 0.148 0.610
1 - 0.148 0.610
1 - - -
5 9 0.145 0.592
1 - 0.158 0.570
1 - - -
5 10 0.158 0.570
1 - - -
6 11 0.159 0.570
1 - - -
6 12 0.165 0.584
1 - - -
6 13 0.168 0.617
1 - - -
6 14 0.170 0.608
1 - - -
6 15 0.177 0.614
1 - - -
6 16 0.178 0.636
1 - - -
6 17 0.185 0.639
1 - - -
2 - 0.183 0.667
4 18 - -
1 - - -
6 19 0.183 0.667
1 - - -
6 20 0.183 0.667
1 - - -
6 21 0.198 0.700
1 - - -
6 22 0.200 0.700
7 23 0.200 0.700
7 24 0.206 0.728
7 25 0.208 0.721
7 26 0.203 0.739

Table 5.5: Recirculated digestate characteristics of the experimental campaign A.
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Time Progressive time TS content VS content on TS base
(d) (week) (gTS g�1) (gV S g�1

TS)

1 - - -
6 1 0.189 0.708
7 2 0.190 0.769
7 3 - -
1 - - -
1 - 0.190 0.737
5 4 - -
3 - - -
1 - 0.190 0.737
3 5 - -
3 - 0.190 0.684
1 - - -
3 6 0.190 0.684
3 - 0.190 0.684
1 - - -
3 7 0.190 0.684
1 - - -
6 8 0.148 0.603
1 - - -
1 - 0.197 0.663
5 9 - -

Table 5.6: Recirculated digestate characteristics of the experimental campaign B.
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Variable Units Initial conditions

XH2O,0 g l�1 842.74
XI,0 g l�1 68.97
XBV S,0 gV S l�1 6.70
XNBV S,0 gV S l�1 79.46
Xac,0 gV S l�1 2.13
Sac,0 gCOD l�1 0.00
Sch4,0 gCOD l�1 0.00
Gch4,0 gCOD l�1 0.00

Table 5.7: Initial conditions used in the start-up phase of the experimental campaign A.

the ADM1 value (kLa � 200.0 d�1) to take into account mass transfer limitations due to the high-solids
content [83, 1, 78]. The diffusion coefficient was set equal to D � 1.0� 10�7 m2 s�1 according to [24].
Lastly, the value of the fraction of dead microbial biomass becoming new bio-degradable substrate f was
set equal to 0.2.

Parameter Definition Unit Value Reference

kdec First order decay rate of the biomass d�1 0.02 [10]

Yac Yield of biomass on substrate - 0.05 [10]

Ks,ac Half saturation constant gCOD l�1 0.15 [10]

kLa Gas-liquid transfer coefficient d�1 2.0 This study

KH Henry’s law coefficient Mbar�1 0.0011 [10]

Table 5.8: Kinetic parameters used in model simulations.

The experimental input substrate characteristics, feeding conditions and output results of the campaign
A were used to calibrate the model parameters while the data of the campaign B were used for the vali-
dation procedure. The calibration was performed by defining different range of variation of the selected
parameters, plotting the output of interest curves and choosing the values of parameters that optimize the
following functions [60]:

RMSE ppq �

d°N
i�1 pyi ppq � y1iq

2

N
(5.20)

NRMSE ppq �
RMSE ppq

y 1̄
(5.21)
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ME ppq � 1�

°N
i�1 pyi ppq � y1iq

2°N
i�1

�
y1i � y 1̄

�2 (5.22)

IoA ppq � 1�

°N
i�1 pyi ppq � y1iq

2°N
i�1

���yi ppq � y 1̄
��� ��y1i � y 1̄

���2 (5.23)

where:

• yi ppq are the predicted values of the chosen output while y1i and y 1̄ are its the observed and the average
of the observed values;

• p � rkBV S, kacs P Ω is the vector of the parameters being calibrated, where Ω � R2 is the set of
variation of the 2 parameters;

• N is the number of observed values;

• RMSE ppq and NRMSE ppq are the Root Mean Square Error and its normalized form;

• ME ppq is the Modeling Efficiency coefficient;

• IoA ppq is the index of agreement.

The optimization problem requires the functions RMSE ppq and NRMSE ppq to be minimized while
ME ppq and IoA ppq functions have to be maximized (ME ppq P r0, 1s , IoA ppq P r0, 1s) [69, 99, 109,
119, 138].

The methane production was chosen as output of interest and the function fmincon of the optimization
toolbox of the software MATLAB was used to minimize the function 1{ME ppq. The ranges of variation
of model parameters to be calibrated were chosen considering as upper bounds the corresponding values
of the disintegration constant and the Monod maximum specific uptake rate of the acetic acid reported in
the ADM1 in mesophilic conditions. The reason for this is that the ADM1 considers anaerobic digestion
in wet conditions which are more favourable with respect to dry ones. Obviously, the lower bounds of the
range of variation of model parameters were derived from the fact that these parameters cannot be negative.
Once evaluated model parameters values minimizing the function 1{ME ppq, the quality of the calibration
was verified by evaluating the values of the other calibration performance indicators.

The calibrated values of model parameters were then used for model validation. The agreement between
the simulated and the experimental methane production was verified by using the data of the experimental
campaign B and was evaluated through the values of the functions described by equations (5.20) to (5.23)
calculated by fixing the vector p as resulting from the calibration procedure.
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Index of Performances

Type of parameters
analysis Campaign ME IoA RMSE NRMSE

(-) (-) (l) (-)
Calibration A 0.995 0.999 84.0 0.058
Validation B 0.967 0.993 71.7 0.170

Table 5.9: Performance indicators of the calibration and validation procedures.

5.4 Results and discussion

The calibration procedure allowed to assess the values of the parameters kBV S and kac that determined
the best fit between experimental and simulated cumulative methane production curves. The resulting
values of kBV S � 0.2010 d�1 and kac � 8.0 d�1 minimize the function 1{ME ppq. The good quality of
the calibration is reported graphically in the Figures 5.2 and 5.3 and through the values of the indexes of
performance described in equations (5.20) to (5.23) and reported in Table 5.9. Particularly, Figure 5.2a
shows the experimental and simulated methane productions related to the campaign A while Figure 5.2b
display the line of perfect fit and the position of the points having as coordinates the experimental and
simulated data of the campaign A (fit line). The accordance between experimental and simulated methane
productions observed in the Figure 5.2a is confirmed by the small shift visible between the fit line and the
line of perfect fit (Figure 5.2b). Furthermore, in Figure 5.3a are reported the experimental and simulated
daily methane productions referred to the campaign A and Figure 5.3b shows the weekly simulated and
experimental methane yields. The weekly methane yields have been evaluated as the ratio between the
volume of methane produced in each week and the corresponding quantity of VS in grams added into
the reactor and it gives information about the reactor conversion efficiency of VS fed into the reactor in
methane. The experimental daily production trend is adequately followed by the simulated one. Moreover,
except for an overestimation in the first weeks, the simulated weekly methane yields curve indicates that
the modelled reactor performance accurately emulates what happened experimentally. Concerning the
performance indicators of Table 5.9, the values close to 1 of ME and IoA, the value of 84.0 l of RMSE
and a small value of the NRMSE in the calibration case, suggest that the minimization of the function
1{ME ppq lead to a good parameter estimation. Figure 5.4a shows the simulated concentration profile of
the soluble acetic acid Sac while in Figure 5.4b is reported the concentration profile of the microbial biomass
involved in the consumption of the acetic acid Xac. In such figures can be observed the spatialization of the
variables along the reactor. A little accumulation of the acetic acid in the first half of the reactor indicates
that methanogenesis is limiting at the beginning of the reactor and for this reason the microbial species are
mainly distributed in the middle and in the second part of the reactor.

The calibrated values of kBV S � 0.2010 d�1 and kac � 8.0 d�1 were validated using the measurements
of the methane production of the experimental campaign B as validation database. The results of the
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Figure 5.2: Campaign A: experimental and simulated cumulative methane productions (a) and comparison
between the fit line and the line of perfect fit (b).

0 20 40 60 80 100 120 140 160 180 200

t [d]

0

10

20

30

40

50

60

D
a
il

y
 m

et
h

a
n

e 
p

ro
d

u
ct

io
n

 [
l/

d
]

(a)

Simulated daily production

Experimental daily production

0 5 10 15 20 25 30

t [weeks]

0

0.1

0.2

0.3

0.4

0.5

C
H

4
 Y

ie
ld

s 
[l

C
H

4
/g

V
S
]

(b)

Simulated CH
4
 yield

Experimental CH
4
 yield

Figure 5.3: Campaign A: experimental and simulated daily methane productions (a) and experimental and
simulated methane weekly yields (b).
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Figure 5.4: Campaign A: Profiles of the simulated soluble acetic acid (a) and microbial biomass (b) con-
centrations.

validation are reported in Table 5.9 and graphically showed in the Figures 5.5 and 5.6. It can be noticed
that the values of all the performance indexes of Table 5.9 referred to the validation case are satisfying:
both ME index and the IoA are close to one and despite the higher value with respect to the calibration
case of the NRMSE, it is still a small value and it can be affirmed that the validation succeeded. The
simulated and experimental cumulative methane productions of the campaign B are reported in Figure 5.5a
while Figure 5.5b shows the comparison between the fit line and the line of perfect fit in this second case.
The simulated methane production curve underestimates the experimental one during the first 4 weeks.
During the subsequent period the experimental methane production is perfectly reproduced by the model, as
indicated also by the very small shift between the points of the fit line with respect to the points of the line of
perfect fit. The underestimation in the initial phase is due to the uncertainty on the reactor dynamics during
the period of inactivity. Moreover, Figure 5.6a and 5.6b show the simulated and experimental daily methane
production and weekly methane yields curves referred to the experimental campaign B and both figures
suggest that the chosen values of the unknown parameters are fully validated, with a few experimental
points not fitted by the simulation results. Also in this case, the differences between experimental and
simulated results are mainly developed during the initial phase of the experimental campaign B, affected by
a great uncertainty due to the suspension of the experimental activities. The calibrated and then validated
value of kac � 8.0 d�1, identical to the value reported in [10] in mesophilic conditions, suggests that,
according to the experimental results where no accumulation of acids was observed, the consumption of
acetic acid had no limitations in dry conditions with respect to the same process in wet conditions.
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Figure 5.5: Campaign B: experimental and simulated cumulative methane productions (a) and comparison
between the fit line and the line of perfect fit (b).
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Figure 5.6: Campaign B: experimental and simulated daily methane productions (a) and experimental and
simulated methane weekly yields (b).

5.5 Conclusions

This study focuses on the calibration and validation of the parameters of a model of dry anaerobic digestion
in plug-flow reactors. Based on the results of a previous study focused on the screening of model pa-
rameters, the kinetic constant of the process of conversion of the bio-degradable fraction of volatile solids
in acetic acid kBV S and the Monod maximum specific uptake rate for the acetic acid kac are selected for
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model calibration and validation. The methane production measurements of two experimental campaigns
of dry anaerobic digestion in an horizontal plug-flow reactor of cattle manure at total solids content of 30%
and 25%, were used as database of the calibration and validation procedures, whose quality was detected
through four methods of performance evaluation. The model calibration results showed the potential of the
model in predicting experimental results. This potential was confirmed by the validation success, suggest-
ing that the model is a powerful instrument to describe processes of this type and that can be used as a tool
to design and manage plants performing dry anaerobic digestion.
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Chapter 6

General discussion and recommendations
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The main objective of this research was to develop a mathematical model capable to describe the dy-
namics of dry anaerobic digestion processes in plug-flow reactors. The lack of scientific literature on the
topic negatively affects the development of mathematical tools capable to support and improve control
systems for this kind of process. The main difficulties in modeling dry anaerobic digestion processes in
plug-flow reactors is due to the kind of phenomenon that, depending on both space and time as physical
dimensions, requires the definition, implementation and analysis of non-linear PDEs. Moreover, the uncer-
tainty linked to some aspects such as turbulence, variation of mass, density and porosity along the reactor
and dispersion phenomena need a deeper analysis to be correctly incorporated.

The kinetic processes involved in anaerobic digestion systems have been widely studied experimen-
tally [84, 98, 28] and a significant amount of mathematical models have been proposed over the years to
describe the anaerobic digestion process in completely mixed environments [80, 38]. The most represen-
tative model of this class is the ADM1, which consists of a system of non-linear ODEs that condenses
the main bio-physico-chemical processes occurring in anaerobic digestion environments. However, ADM1
lacks of a thoughtful implementation of many physico-chemical processes and does not consider the dis-
integration process as affected by the particle size distribution which actually plays a crucial role in the
definition of substrate availability and methane production for the anaerobic digestion of complex partic-
ulate compounds. With this aim, Chapter 2 summarizes the main proposed approaches found in literature
to extend the ADM1 and essentially focuses on the mathematical modeling of the disintegration process
through a modified surface-based kinetic. A local sensitivity analysis was performed to investigate the
most influencing parameters of the model. Considering the produced methane or the volatile fatty acids
concentrations as quantity of interest, the parameters showed different weight on the output values. Despite
this, for both methane and volatile fatty acids concentrations, the disintegration kinetic constant presented
the highest sensitivity among disintegration/hydrolysis related parameters and Monod specific uptake rates,
confirming the role of the disintegration process in determining the methane production rate for the diges-
tion of complex particulate compounds. The model was successfully calibrated and validated with ad-hoc
anaerobic digestion experiments carried out using potato waste as organic substrate. The calibration was
operated on the disintegration constant and also on some key kinetic parameters of the ADM1, to take in
account the fact that the simulated process involved potato waste as main substrate, contrary to the original
ADM1 where activated sludge is usually considered as main substrate. The model properly predicted the
cumulative methane production and volatile fatty acids concentration profiles achieved during lab-scale ex-
periments. Finally, validation results showed the ability of the modified surface-based model to adequately
describe real processes where a wide range of particle size characterizes the substrate fed to anaerobic di-
gestion reactors. In Chapter 3 continuum mechanics principles were applied to derive the equations of a
mathematical model for the dry anaerobic digestion process of solid waste in plug-flow reactors. The model
is based on a system of convection-diffusion-reaction equations in one-dimensional case and is capable to
predict substances concentrations along the reactor. Moreover, the model describes the variation of the
system velocity with time and space, accounting for the mass variation along the reactor due to degrading

117



processes that convert solid components in gaseous ones. The equation governing the convective velocity
is derived by considering the hypothesis that the density of the treated waste matrix within the reactor is
constant over time and the sum of the volume fractions of the bio-components constituting the waste matrix
is constrained to unity. The obtained velocity variation law depends on the bio-components kinetics and
allows to balance the consumption of the volatile solids in order to keep constant the mass of the system
along the reactor, which is the main consequence of the two model hypothesis. The system of PDEs was
integrated numerically and numerical simulations were performed to show model consistency with experi-
mental evidence and highlight that such mathematical tool could be used to manage, size and optimize the
operation of real plants. Indeed, simulation results showed that the model is useful to investigate the ef-
fect of operating and physical parameters on process performance in terms of organic compounds removal
efficiency and methane production. Moreover, concentration trends of the intermediate products can be
monitored and this could help in detecting if the process develops correctly.

The new model derived in Chapter 3 depends on a set of parameters of different nature and Chapter 4
focused on the global sensitivity analysis and uncertainty quantification for the cited model. This study was
aimed to understand the overall effect of uncertainty of input parameters on the methane production. The
Morris screening test and the quantitative sensitivity analysis with Sobol’ indices showed, with a remarkable
accordance, that the kinetic parameters linked to the consumption of the bio-degradable volatile solids
and acetic acid mainly affects the model output. The quantity of interest are less sensitive to the values
assumed by the physical parameters describing the gas-transfer and diffusion phenomena. Methane is
rapidly released in the gas-phase and, except for very small values of the gas-transfer coefficient neglecting
the methane release, great variations of this parameter have no effect on the final output value. Moreover,
the sensitivity of the diffusion coefficient in a 1-D model of this type, where the diffusion is not linked to
kinetic processes, seemed relatively little with respect to the sensitivity of kinetic parameters. Lastly, the
other kinetic parameter describing the microbial biomass decay showed a small relevance in determining
the value of the model output and this suggested that their effective assessment becomes less important
during model calibration procedures.

Subsequently, in Chapter 5 the identified most influencing parameters of the model presented in Chapter
3 and discussed in Chaper 4 were calibrated and validated based on the experimental results of two cam-
paigns of dry anaerobic digestion in a horizontal plug-flow reactor. The reactor was fed with cattle manure
considering a total solids content of 30% and 25% for the two campaigns. The calibration and validation
results were screened through four different indexes, that is the coefficient of the Modelling Efficiency
(ME) method, the Index of Agreement (IoA), the Root Mean Square Error (RMSE) and its normalized
form (NRMSE). The model calibration allowed to assess the value of the kinetic constant describing the
conversion of bio-degradable compounds in acetic acid. The calibrated maximum specific uptake rate of
acetic acid resulted the same as ADM1 suggesting that the consumption of acetic acid had no limitations
in dry conditions with respect to the same process in wet conditions. The half-saturation constant and the
yield of biomass on substrate, after physico-chemical considerations have been set as in the ADM1. Also

118



the remaining kinetic parameters values come from ADM1, except for the gas-liquid transfer coefficient,
which was decreased with respect to its original ADM1 value to account for mass transfer limitations due
to the high-solids content. Furthermore, the value of the adopted operating parameters such as reactor
length, substrate inlet velocity, hydraulic retention time and organic loading rate reflected the experimental
conditions. Moreover, the diffusion coefficient value was selected from the literature. The values of the
indexes obtained through the validation procedure, suggest that the model is effectively able to reproduce
fundamental phenomena occurring during a dry anaerobic digestion process in plug-flow reactors and can
represent a powerful tool to design and manage plants performing dry anaerobic digestion.

A quantitative analysis of model equations through numerical simulations has been performed to verify
model consistency with experimental evidence. Future research activities may be devoted to the qualita-
tive analysis, including the study of existence and uniqueness of solutions, positivity properties and linear
and nonlinear stability. However, the developed model is meant to be an important starting point for the
modeling of such a complex process. Further improvements may be incorporated to enhance model capa-
bility. For instance, the kinetic model may be extended to the complete ADM1 framework. This will allow
to predict all species dynamics involved in an anaerobic digestion process, such as pH and volatile fatty
acids concentration profiles along the reactor and their acid-base equilibria within the semi-solid medium.
Moreover, the composition of the biogas could be better characterized with the aim to determine the exact
energetic power generated through the digestion process. Additionally, the differential equation describing
the methane concentration within the reactor head-space may be modified by introducing a loss term that
reproduces a certain gas tapping from the head-space of the reactor which is closer to the real operating
conditions of such systems. Another improvement of the model could come from considering a variable
density of the treated matrix along the reactor. Lastly, the diffusion could be considered affecting kinetic
processes and the model extension to 2D and 3D domains could help to analyse the effect of other phenom-
ena occurring along the directions different from the system movement direction on the anaerobic digestion
process performance.
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