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Abstract 
Geochemical (mineral element and Sr isotope ratio) and spectroscopical fingerprinting (Near Infrared 

Spectroscopy) were proposed to authenticate and track the two high-quality lemon fruits from the 

Campania region (Limone di Sorrento PGI and Limone Costa d’Amalfi PGI) to protect them from 

frauds. Considering the geochemical indicators, we built different chemometric discriminant models 

based on mineral profile and 87Sr/86Sr isotope ratio. These two techniques were applied to 

discriminate fruits from different territorial scales, small territorial scales (region scale), and large 

territorial scales. The results of different discriminant models applied on mineral profiles of lemon 

juices, both on a small and large territorially scale, showed good discrimination according to 

provenance, especially for non-essential elements as Rb, Ba, Sr, Ti, and Co. These same elements 

have shown a good correlation with cultivation soils and stability between the two production years. 

It is worth noting that although, the performance of the whole elemental profile gave a better result 

than the profile of the non-essential elements, the reliability of the two models, calculated as the ratio 

between the percentage of correctly validated and classification samples, was similar. In addition, the 

Sr isotope ratio had shown a clear differentiation among the fruits from the Campania region and 

extra-regional samples, and by analysis of 86Sr/87Sr of soils, it was clear that the strontium isotope 

ratio of lemon juices was closely related to that of the bioavailable fractions of the soil. Furthermore, 

combining both isotopic and mineral profiles in lemon juices by a low-level data fusion approach, 

the results showed a better clustering according to geographical origins than the two-determination 

taken separately, although on an explorative level. In addition, the spectroscopical data (NIR) on 

intact lemon fruits showed the strong influence of environmental growing conditions on the samples. 

For this, the application of Linear Discriminant Analysis (LDA) models suggested building the 

discrimination models according to origins (PGI and not PGI productions) based on one production 

year. In the same way, the application of MLR models, that showed a strong relationship between 

quality properties of lemon fruits and NIR spectra, suggested the applicability of this technique to 

build predictive models for the quality properties. In addition, on a part of the total samples collected 

only in 2019 (intact lemons and juices), have been successfully applied two different chemometrics 

models i.e., LDA and Partial Least Square Discriminant Analysis (PLS-DA). The results showed 

better provenance discrimination using the lemon juices than the intact lemons. Comparing the results 

obtained, of the two approaches used, the results of geochemical fingerprinting have shown more 

stability for discriminate lemon fruits derived from two different production years, especially for not 

essential elements. However, considering the various vantages of the application of NIR spectroscopy 

(non-destructive, rapid, and cheap) and the results obtained, this technique can be used for rapid 

screening of samples in order to verify the quality and origins of lemon fruits during the year. The 
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study of the pedoclimatic features was fundamental to understand the nature of discriminating 

variables, in both approaches. Additional research should be conducted to include a greater number 

of lemon farms (or sampling points) in the PGI area and to enlarge the existing database including 

lemon samples from other regions and validate the models built. These discriminant models based on 

geochemical and spectroscopical profiles of lemon fruits could substantially contribute to 

implementing a blockchain system for Campanian lemon traceability, providing real-time 

information not only to the final consumers but also to manufacturers, distributors, and retailers. 
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1. INTRODUCTION 

The local food is an important resource for the sustainability of territory and local communities. The 

link between food and sustainability can be explained in terms of benefits about the creation of rural 

communities and enhancing the local environment, economy, and culture, implementing local 

tourism. In a defined area, food,  can improve sustainable local tourism generating a multiplier effect, 

which would benefit the local economy, reducing the carbon footprint of the tourism industry by the 

“buying local” and increasing the attractiveness of the place (Sims, 2009). Moreover, according to the 

FAO guide for promoting quality linked to geographical origin and sustainable geographical 

indications (Arfini et al., 2010), the local food generates local identity as an interaction between 

natural resources and production system in a specific landscape. In this contest, the local products are 

defined for specific quality attributes that are linked to the territory where they are produced and 

associated with a geographical indication (GI) that identifies them. In fact, the GIs are a result of 

technical, social, and economic interactions, including local knowledge and cultural traditions 

(Belletti et al., 2017). All this represents not only a heritage to be preserved but also an important 

market value because the consumer becomes increasingly interested in quality linked to geographical 

origin, traditions, and typicity. Due to this, since 1992, the Council of the European Communities, 

defined as GI a product originating in a specific region,  place or country that possesses a specific 

quality, reputation attributable to that geographical origin and the production and/or processing of 

which take place in the defined geographical area (EEC No 2080/92, 1992; EEC No 2081/92, 1992). 

In addition to PGI (Protected Geographical Indication) products, this regulation defined another 

quality mark as POD (Protected Designation of Origin). For twenty years, this regulation has 

undergone not substantial changes and improvements. The first changes were introduced with 

regulations 509 and 510 of 2006 (ECC No 509/06, 2006; ECC No 510/06, 2006). The latter gave the 

possibility to third countries (non-EU) to register their products. In 2012, with the regulation EEC No 

1151/2012, another quality label as TSG (Traditional Speciality Guaranteed) and two optional quality 

terms i.e. “mountain products” and “product of island farming” were introduced, leaving the 

definition of Protected Geographical Indication (PGI) practically unchanged. These specifications 

give greater typicality to increase the value of products originating from disadvantaged areas such as 

mountain and island areas. As reported in the EU database for registration of food products (EC, 

2020), 748 PGIs have been registered so far. Thirty-four countries (27 EU and 7 extra EU) had their 

products awarded as PGI. The first three countries that have been awarded the major number of PGI 

products are France (19.2%), Italy (17.3%) and Spain (12.4%). The high typicality, the small 

productions, the small communities and the close link with the territories give PGI products a high 
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economic value especially because the consumers are willing to pay more for protected foods, for 

many reasons including hygiene, safety and food quality (Dias & Mendes, 2018). According to 

ISMEA (2019) the Italian PGI, PDO, and TSG products, in 2018, were worth €16.2 billion (+6.0% 

of 2017), with an export value of € 9.0 billion (+2.5% of 2017). Due to their high economic value, 

PGI products are often subjected to frauds. One of the most common fraudulent phenomena for Made 

in Italy is the Italian sounding. The Italian Sounding consists in the use (on labels and packaging) of 

denominations, geographical references, images, colour combinations and brands that evoke Italy and 

in particular, some of its most famous typical products, to promote the marketing of products 

(especially agri-food) leading deceptively into believing that they are authentic Italians (Carreño & 

Vergano, 2017). In 2019, in Italy, the frauds value was over 301 million euros with about 72 million 

kg goods seized (ICQRF, 2019). From this derives the need to give a defined authentication of a 

single product for distinguish it from other fraudulent products. However, the use of GI allows 

producers to obtain market recognition and often a higher price due to their typically. The false use 

of GI labels by unauthorised parties is detrimental to consumers and legitimate producers. For this, 

the use of analytical techniques for determining the geographical origin of products is a key point to 

protect consumers, agricultural farmers, retailers, and administrative authorities.     
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1.1 AUTHENTICATE TO TRACK 

Food authentication is defined as the process that verifies if the food complies with its label 

description. This may include origin, production method, or processing technologies (Danezis, et al., 

2016). The goal of food authentication, among others, is to fight the food frauds defined as “any 

deliberate action of businesses or individuals to deceive others in regard to the integrity of food to 

gain undue advantage. Types of food fraud include but not limited to adulteration, substitution, 

dilution, tampering, simulation, counterfeiting, and misrepresentation” (FAO, 2018). Different 

techniques can be used for authenticating food products and, on basis of their characteristics, to find 

the unique profile able to distinguish from products of different nature or provenance. This thesis will 

give special attention to the concept of food counterfeiting. The choice of the most suitable analytical 

technique for the determination of food origins can depend on the nature of the food to track. To 

demonstrate the link between food and territory of origin, there is a need to use appropriate 

parameters, namely traceability indicators (Lees, 2003). These traceability indicators can be 

associated with the type of technique used. Thus, the techniques can consider the relationship between 

food and environmental growing conditions of raw materials, including production methods 

(metabolomics, spectroscopy, volatile organic compounds, and sensory analyses) or the cultivation 

soil (isotope analyses, elemental profile) in order to link the food at its geographical provenance, 

defining a specific terroir of the products.
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Isotopic Analyses 

The use of stable isotope ratios as potential geochemical tracers in studies of traceability is generally 

based on two different groups of elements: the light element isotope ratios (2H/1H, 13C/12C, 15N/14N, 
18O/16O, and 34S/32S) and the heavy element isotope ratios (87Sr/86Sr, 143Nd/144Nd, 208Pb/204Pb, 
206Pb/204Pb, 207Pb/204Pb). The theory behind this approach is that the isotopes of a same element have 

similar chemical properties, because of the same number of protons and electrons, but different 

physical properties, due to the different mass. The ratio between two different isotopes of the same 

element can be affected by isotopic fractionation and radioactive decay. The isotope fractionation can 

be affected during physicochemical processes such as chemical reactions, diffusion, and 

transformation between the different state of matter (solid, liquid, and gaseous phases). The degree 

of fractionation is generally dependent on the relative difference in mass between the stable isotopes 

of a given element and the temperature at which the fractionation process occurs (Nakano, 2016). 

Light elements, participating of different natural or artificial biogeochemical phenomena, can be 

affected by large isotopic fractionations. For this, due to the large relative difference in mass between 

their various isotopes, this technique was one of the most used for both the establishment of 

geographic authenticity of foodstuffs and identification of food adulteration (Georgiou & Danezis, 

2017). Several papers reported this technique useful to detect the nature of water in pressed e tap 

water diluted fruit juices, for identification of adulteration (Koziet et al., 1993, 1995) or, again in 

fruits juices, for the establishment of geographic authenticity  due to different quality of the harvested 

fruits that they subjected to significant geographical and seasonal variations depending on growing 

environmental conditions of the production area (Bat et al., 2012; Rossmann, 2001). In contrast, for 

heavy element isotope ratios, such as the 87Sr/86Sr isotope ratio, the fractionation and the seasonal 

and annual variation are more or less negligible during the plant uptake (Zannella et al., 2017), and 

the bioavailable fraction in soils provides a direct link from soil to the plant. In particular the studies 

about the isotopes of heavy elements provided important results in several application fields 

(Georgiou & Danezis, 2017) as food traceability. This applications are based on the principle of 

radioactive decay and consequently relative abundance of daughter elements (the process of 

radioactive β decay of 87 Rb in 87 Sr was illustrated in (Georgiou & Danezis, 2017)). This means that 

the relative abundances of isotopes of Sr,  Nd (α decay), and Pb (α and β decay for 206Pb, 207Pb, and 
208Pb, respectively) within rocks and soil minerals are constant in the environmental systems on time 

scales of <104 years, but can vary significantly depending on their age of formation (Nakano, 2016). 

Consequently, products cultivated in soils of different age will have different isotope ratios. For 

determination of the isotopic ratios, various methods can be used. Isotope Ratio Mass Spectrometry 



11 

(Muccio & Jackson, 2009) (IRMS), Multi Collector – Inductively Coupled Plasma – Mass 

Spectrometry (Wieser et al., 2012) (MC-ICP-MS), and Thermal Ionization Mass Spectrometry 

(Heumann et al., 1995) (TIMS). For the determination of light isotopes ratios, the IRMS interfaced 

with Elemental Analyser, Pyrolysis, Equilibration devices, is used, while MC-ICP-MS and TIMS 

measure heavy isotopes. 

Multielement Fingerprinting 

Elemental fingerprinting can be applied to food authenticity and traceability as a potential 

geochemical tracer (Danezis, Tsagkaris, Camin, et al., 2016). In this case, traceability is based on the 

principle that the mineral composition of agri-food products reflects the bioavailable and mobile 

elements present in the cultivation soils (Anderson & Smith, 2005; Cheajesadagul et al., 2013; 

Gonzálvez et al., 2011; Kelly et al., 2002; Laursen et al., 2014; Simpkins et al., 2000). In particular, 

several papers show the direct relationship with cultivation soil (Oddone et al., 2009; Pepi et al., 2017; 

Podio et al., 2013; Shen et al., 2013; Zhao, Zhang, et al., 2017). Furthermore, the traceability of 

animal-derived food (meat, milk, cheese, honey) is based on the principle that their mineral 

composition is mostly related to the mineral content of fodder and vegetation the animals eat and 

water they drink (Batista et al., 2012; Erasmus et al., 2018; Franke et al., 2008; Park et al., 2018). 

Potentially, all chemical elements could be used to define the food's unique multi-element profile able 

to distinguish agri-products grown in different sites. The multi-element fingerprinting was 

successfully applied to determine the geographical origin of  Calabrian chili peppers (Naccarato et 

al., 2016), Tropea Red Onion (Furia et al., 2011), Clementine of Calabria (Benabdelkamel et al., 

2012), Italian virgin olive oils (Benincasa et al., 2007), Spanish PDO paprika (Palacios-morillo et al., 

2014), Welsh Onions (Riyama et al., 2004), orange juices (Simpkins et al., 2000), lemon juices 

(Pellerano et al., 2008), lemon pulps (Potortì et al., 2018), tea leaves (Zhao, Yu, et al., 2017; Zhao, 

Zhang, et al., 2017) and asparagus (Richter et al., 2019). In all these studies it was shown that about 

40% of all analysed elements discriminated against the samples according to geographical 

provenance. Among these elements 31% were considered essentials for plant growth as macro (K, 

Mg, P, Ca) and micronutrients (Cu, Fe, Mn, B, Zn) (Bean et al., 2011), 17% were considered 

beneficial (at low levels) ( Ni, Al, Na) (Kabata-Pendias, 2011; Kronzucker et al., 2013), 53% were 

not-essential (Tl, U, Li, Sr, Se, Sb, Rb, Pb, Ga, Cs, Cr, Co, Cd, Br, Be, Ba, As) and 15% were rare-

earths (Pr, Sc, Sm, Nd, Y, Ho, Gd, La, Eu, Dy, Ce). It is worth noting that the mineral composition 

of agri-food products is affected by several factors as plant species, agronomic management 

(fertilization, pest and weed control management), crop rotation, climate, and soil fertility (Rosen & 

Allan, 2007). In soil, several factors can influence the phytoavailability of elements such as pH, 
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organic matter, soil texture, and chemical form of the element (Kabata-Pendias, 2011). For this 

reason, the discrimination with macro and micronutrients and beneficial elements could be more 

affected by external factors such as agronomic management compared to not essential elements and 

rare-earths. In particular, the rare-earths have been recognized as  useful geochemical  tracers (Laveuf 

& Cornu, 2009) and their profiles applied successfully in several studies (Farmaki et al., 2012; Ma et 

al., 2016; Pisciotta et al., 2017; Spalla et al., 2009; Wyttenbach et al., 1998) due to their variation 

according to parent material history and weathering state of the soil. The elemental fingerprint of 

foods can be measured by different analytical techniques. Inductively Coupled Plasma- Mass 

Spectroscopy(Beauchemin, 2008) (ICP-MS) and Inductively Coupled Plasma- Atomic Emission 

Spectroscopy(Dean, 2005) (ICP-AES) are the most widely applied.  

Metabolomics Fingerprinting   

The food metabolome comprises a great variety of components that are very different from a chemical 

point of view, indeed belonging to a variety of chemical classes as sugars, organic acids, amines, 

amino acids, peptides, nucleic acids, steroids, or phenolic compounds (Castro-puyana & Herrero, 

2013). An accurate metabolomic analyses needs, for the variability of components, to involve a 

combination of different techniques, as separation techniques such as gas (GC) or liquid (LC) 

chromatography, and detection techniques such as Mass spectrometry (MS), Nuclear Magnetic 

Resonance (NMR),  Infra-Red Spectroscopy (IR), etc., followed by chemometric analysis of the 

multivariate data to extract relevant information (Lees, 2003). In this contest, the metabolomic 

approach can be divided into targeted (a specific group of metabolites), or untargeted determinations 

(fingerprinting). In this paragraph, we will consider only GC-MS, LC-MS, NMR, and PTR-MS while 

IR will be considered separately in the next sections. In food, the metabolite profile can be influenced 

by the environmental growing conditions and ripeness of raw materials as much as the food 

processing stages. This could be useful for the identification of a unique metabolomic profile of a 

product able to give a specific identity. This identity could be related to the provenance of the same 

product (geographical indication) or the distinctive of a specific food process. The metabolomic 

profile by NMR for geographical origin was successfully applied to Argentine citrus (Salazar et al., 

2018), red wine(Mazzei et al., 2010) and royal jelly(Mazzei et al., 2020) . The use of volatile and 

aromatic compounds (VOCs) Is based on the principle that characteristics of volatile fingerprinting 

of products (types and contents) could depend on environmental (climate growing condition, culture, 

and cultivar), genetic(Zhang et al., 2019) and nutritional treatments(Ghanbari et al., 2019).  The 

VOCs profile has been successfully applied for authentication of provenance of coffee(Yener et al., 

2014), saffron(Ghanbari et al., 2019), cheese (Boscaini et al., 2003) cocoa beans(Acierno et al., 2019), 
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olive oils (Araghipour et al., 2008), white truffle (Gioacchini et al., 2008) and South African 

lambs(Erasmus et al., 2017) by PTR-MS and GC-MS.  

Near Infrared Spectroscopy Fingerprinting  

The Near Infrared spectroscopy (NIR) is based on the principle that in normal conditions the 

vibrational states of nuclei in constant motion (bending and vibrating) can be altered in precise ways 

by absorption of radiation (Workman & Weyer, 2007). According to the quantum theory, only certain 

vibrational alterations are permitted (Downey, 2013). Therefore, the frequencies are characteristic of 

various bond types and they are dependent on the specific molecular environment in which a molecule 

is located. For this, the measure of the radiation absorption over the precise wavelength (or frequency) 

range can potentially provide very specific information about the types and numbers of molecules 

present in any given sample (Downey, 2013). This specific absorption follows the Beer–Lambert law 

i.e., the concentration of an absorber is proportional to the sample’s absorbance (for homogeneous 

and non-scattering liquid samples). The theoretical specific information is not so easy to be found for 

biological samples, as food, due to the nature and number of molecules that are highly variable. 

Therefore, spectra derived from biological matrixes contain information about the complete 

molecular composition present in each sample and can be a fingerprint of it. Furthermore, considering 

the complexity of matrices, in addition to the fundamental molecular absorptions there will also be 

other absorptions arising from combinations and overtones. The first one occurs when more than two 

fundamental vibrations are excited simultaneously, while the second is observed when a vibrational 

state is excited from  v=0  to  v=2 ( first overtone), or v=0 to v=3 (second overtone) (Holmes, 2020). 

Overtone and combination band absorbances are important in NIR spectra (ranges 12,820-4000 cm-

1) and are found at 5917–5698 cm-1 (first over- tone), 8873–8547 cm-1 (second overtone), and 11,834–

11,390 cm-1 (third overtone) (Workman & Weyer, 2007). The radiation of NIR spectroscopy ranges 

between 12820 and 4000 cm -1. It was discovered in 1800, and applied only around 1950s, when with 

the work of Norris revealed its potential use in food and agriculture fields (Downey, 2013). The major 

focus of this technique lies with the quantitative determination for authentication and quality 

parameters (sugar, acidity, pH etc..) of different agri-food products as bayberry fruit (Xie et al., 2011), 

mango (Jha et al., 2014; Saranwong et al., 2004), orange (Cavaco et al., 2018), pomegrate (Arendse 

et al., 2017), satsuma mandarin (Gòmez et al., 2006; Kawano et al., 1993; Miyamoto & Kitano, 2009), 

Arabica coffee (Ribeiro et al., 2011), safflower (Elfadl et al., 2010), Jeju citrus fruits (Lee et al., 

2004), wheat flour (Kahriman et al., 2011), tomatoes(Li et al., 2021), lemon (Reddy et al., 2016), fava 

beans (Wang et al., 2013), strawberry (Amodio et al., 2017), cherry and apricot (Carlini et al., 2000), 

apples (Gabioud et al., 2008) and Onions(Birth et al., 1985); however this technique can also be 
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applied for the determination of mineral content of agri-products as successfully done on  

forages(Clark et al., 1987), legumes(Cozzolino & Moron, 2004), red grape(Cozzolino et al., 2011a) 

and straw(Huang et al., 2009). According to Schmitt et al. (2014), the use of NIR spectroscopy for 

determination of the mineral composition of food is a good green alternative compared to the 

traditional determination by ICP techniques (use of acids and chemicals, time consuming, waste, 

etc..), although, for studies reported in this review, this determination remain in many cases at the 

academic level because they lack of a deep evaluation of their prediction capabilities. In addition, the 

use of NIR spectroscopy can give a unique molecular fingerprint able to discriminate samples of 

different nature or origin (Luykx & van Ruth, 2008). The use of NIR spectroscopy to determine the 

geographical origin of a food product, has been successfully applied on many agri-products such as 

honey (Latorre et al., 2013; Woodcock et al., 2009); dong quai or female ginseng (Woo et al., 2005); 

wheat (Zhao et al., 2013); wine (Cozzolino et al., 2011b; Iu et al., 2006); olive oil (Jiménez-carvelo 

et al., 2019; Hirri et al., 2016); sea cucumber (Guo et al., 2018), black tea (Ren et al., 2013), apple 

(Eisenstecken et al., 2019), Sorrento walnut (Amendola et al., 2020) and coffee (Monteiro et al., 

2018). The highlight of NIR spectroscopy is that it can be used as rapid screening techniques owing 

to its easy use and low cost, but above all for its on-line application in the food industry (Jha et al., 

2014). Usually, the NIR spectra are very similar, they are dominated by the water (overtone bands of 

the OH-bonds) (Polesello et al., 1981). For these reasons, the NIR spectra need multivariate statistical 

to extract useful information from spectra (Blanco & Villarroya, 2002). The pre-processing of NIR 

spectra is the necessary step before the chemometric analysis (Rinnan et al., 2009). As reported in 

Rinnan et al. (2009), pre-processing techniques can be divided into two categories. The first one, 

namely the scatter corrections, can be used to reduce the undesirable scatter effects. The most widely 

used are Multiplicative Scatter Correction (MSC), and Standard Normal Variate (SNV) (Roggo et al., 

2007; Blanco & Villarroya, 2002). The second one, namely the derivate correction, can be used for 

baseline correction, first derivate, and, both baseline correction and linear trend, second derivate. The 

derivate methods more broadly applied are Norris-Williams derivatives and Savitzky-Golay (SG) 

polynomial derivates (Rinnan et al., 2009). Both techniques can be used to decrease the detrimental 

effect on the signal-to-noise ratio to improve both the explorative analysis and the classification and 

discrimination models.
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1.2 CHEMOMETRICS TOOLS FOR TRACEABILITY 

The food could be intended as a complex matrix, due to different interactions with many constituent 

factors. The chemical and physical composition of vegetable food products could be dependent on 

cultivation soils, climatic conditions, and the physiological status of plants. The chemical and 

physical composition of animal food products (meats, milks, honey, fishes, and eggs) mostly related 

to the type of alimentation, farming condition, and animal health status. The chemical and physical 

composition of manufactured food products (cheese, cold meats, and beverages) could be depended 

on the nature of raw materials and processing. As even the simplest food is a complex matrix, the 

way to investigate its chemistry cannot be other than multivariate. The multivariate chemometrics 

approach, for traceability studies, is not only recommended but essential (Marini, 2013) due to a large 

number of variables to consider. The multivariate chemometrics approach of chemical and physical 

fingerprinting of food products can be divided in Explorative Analyses (EA), Discriminant 

Classification Methods (DCMs), and Class-Modelling Methods (CMMs). The aim of EA is to explore 

the tendency of natural groupings and eventual natural clusters of samples. One of the first definition 

of EA was proposed by Tukey (1962) as "Procedures for analysing data, techniques for interpreting 

the results of such procedures, ways of planning the gathering of data to make its analysis easier, 

more precise or more accurate, and all the machinery and results of (mathematical) statistics which 

apply to analysing data." Among the different techniques (Descriptive Statistics, Frequency 

Histograms, Box and Whisker Plots, and Cluster Analyses) used for EA certainly plays an important 

role the Principal Component Analysis (PCA) considered one of principal tools of exploratory 

multivariate data analysis. The PCA is a bilinear decomposition technique capable of reducing large 

variables into few principal components (PCs). This reduction is achieved by a linear transformation 

preserving data variance. Scatter plots in a Euclidean plane may represent the PCs. The PCs score 

plot can be used to detect sample differences and similarities whereas the loadings plot (weight of 

each original variable on the PCs) is useful to distinguish the variables that are major contributors to 

a PC and that lead to the natural clustering of groups (data not labeled, unsupervised method ) within 

the dataset (Li Vigni et al., 2013; Naccarato et al., 2016). Both DCMs and CMMs aim to build 

classification methods, based on the results of the explorative analysis, to define the groups according 

to determinate characteristics (provenance, species, etc...) and find the variables that better 

discriminate the groups of samples. Unlike the PCA, DCMs and CMMs are supervised methods. 

Linear discriminant analysis (LDA), first proposed by Fisher in 1936 (Fisher, 1936), is the oldest 

supervised classification method. It is a linear technique, where the decision boundaries separating 

the classes in the multidimensional space of the variables can be linear surfaces (hyperplanes). The 
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aim of LDA is to discriminate between classes (two or more) by maximizing the variance between 

classes (the distance between the centroids) and minimizing the variance within each class (the 

dispersion of the samples within the categories). LDA defines discriminant functions that are linear 

combinations of the original variables for optimizing the separation. The model creates a centroid 

that is the mean position of all points in all directions. The prediction result for the test set is obtained 

by the projection of the new samples according to the minimal distance to the centroid of each class 

(Gaiad et al., 2016). One of the principal assumptions of LDA is that the variance/covariance for the 

different categories are homogeneous. If this condition is met, then it is possible to combine the 

individual matrices. In case they are not homogeneous, it is necessary to extend the hyperplanes of 

LDA in a hyperquadrics space considering not the variance/covariance of the pooled matrix of LDA 

but the variance/covariance matrices of the individual categories (Quadratic discriminant analysis, 

QDA)(Marini, 2013). The ratio between samples/variables is important to avoid overfitting problems. 

As suggested in Lees (2003) the number of samples should be more than five times (no less than three 

times) the number of variables to be estimated. For LDA, which considers a pooled 

variance/covariance matrix, this means that the total number of objects should be at least five times 

the number of variables. Whereas the QDA computes a variance-covariance matrix for each category; 

this makes it a more powerful method than LDA, but this also means that each category should have 

a number of samples at least five times higher than the number of variables(Lees, 2003).  The LDA 

and QDA are based on matrices where the number of samples is larger than the number of variables. 

However, in many instrumental methods, as Infrared spectroscopy, the number of variables largely 

exceeds the number of analysed samples. For this, LDA and QDA cannot be applied to process these 

matrices. Alternatively, a reduction of variables by PCA can be useful for applying LDA and QDA 

on PCs scores (Canonical Variates Analysis, CVA). The problem of this approach is that not always 

the PCs extracted, based on the original variance, are relevant for discrimination. The Partial Least-

Squares  (PLS) algorithm can be useful to overcome this limitation reformulating the classification 

problem in terms of a regression equation (Barker & Rayens, 2003).The PLS Discriminant Analysis 

(PLS-DA) works on the introduction of a dummy dependent matrix Y (number of samples X number 

of class), which codifies for a class belonging of the samples. The variable importance in projection 

(VIP) scores and the regression coefficients can be used to estimate the contribution of each variable 

to the model in the PLS-DA. The VIP score is an index that has been specifically introduced to express 

whether a predictor is significant in the definition of the F latent vectors model for the prediction of 

a particular response (Marini, 2013). Unlike DCMs, the CMMs regards the individual categories 

rather than what makes one class different from the others (Marini, 2013). Wold & Sjöström, (1977) 

presented the first class-modelling method, namely Soft Independent Modelling Class Analogy 
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(SIMCA). The SIMCA works on the variability of each class, based on PCA, dividing the space into 

as many subspaces as categories, and each point belongs to one and only one category. For this the 

samples that will be predicted by such method must belong to one of the categories that have been 

used to build the models; if not, they will anyway be assigned to one of them (nearer). Different 

applications of SIMCA methods are described in Lees (2003). The mathematical foundations of all 

described statistical methods were summarized by (Georgiou & Danezis, 2017; Hair et al., 2014; 

Lees, 2003; Marini, 2013).  
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OBJECTIVES 

The focal point of this thesis was to study the food origin of high value agri-food products, 

specifically, the authentication and traceability of Limone di Sorrento PGI and Limone Costa 

d’Amalfi PGI. In this context, the main aim was to link the product to its territory of provenance using 

primary and secondary traceability indicators. Special attention was given to the relationship between 

fresh food products and the environmental (mainly pedoclimate) conditions of production areas, to 

define a unique character profile distinguishing the product origin using different analytical 

techniques.  

The investigation was conducted on eight orchards’ farms in a small territorial scale (regional scale). 

Three farms located in the Limone di Sorrento PGI area, three in the Limone Costa d’Amalfi PGI 

area and, two outside the PGI areas (specifically the experimental fields of the Agricultural Sciences 

Department of University of Naples Federico II, in Portici, Napoli, and the 

Regional experimental agricultural farm "Improsta", in Eboli, Salerno). were selected In addition, to 

compare the Campanian lemon fruits with lemons of other origin (large scale), other four groups of 

fruits were taken in Italian (Calabria region, Italy) and U.S. (Berkeley, California, U.S.) markets.  

In Chapter 1, we explored the possibility to build a chemometric discriminant model to authenticate 

and track Sorrento lemons by multi-element fingerprinting. The applied chemometric approach 

(explorative analysis on mineral profiles of lemon juices, correlations between soil and plant, annual-

based discriminant models, and discriminant model on two production years) showed the stability 

and reliability of the not-essential elements for discrimination of products provenance at a small 

geographical scale (regional scale).  

In Chapter 2, the Sorrento lemon discriminant model at regional scale was extended to Amalfi lemon 

juices (small scale) and to lemons of foreign origin (large scale). In addition to multi-element 

fingerprinting, the 87Sr/86Sr isotope signature was used for discriminating the samples of different 

provenance. The results confirmed the not-essential elements as good discriminants for lemon origin 

also at a large geographical scale and reinforced the relation between the 87Sr/86Sr isotope ratio in 

lemon and the bioavailable fractions of cultivation soil.  

In Chapter 3 we explored the potential use of Near Infrared Spectroscopy (NIR) on intact lemons to 

describe the annual variation of juice quality, due to different pedoclimatic conditions, the 

relationship between NIR spectra and quality properties of the juices, the possible discrimination both 

different cultivar of lemon and their geographical provenances 



 

In Chapter 4, we applied the Near Infrared Spectroscopy (NIR) on intact lemons and lemon juices 

to build different discrimination models according to geographical origins of samples



 

Chapter 1: Provenance discrimination of Sorrento lemon with 

Protected Geographical Indication (PGI) by multi-elemental 

fingerprinting 
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Abstract 

Multielement analysis and chemometric methods were proposed to discriminate the Sorrento lemon 

(PGI) juices according to geographical origin. In 2018 and 2019, 169 fruits from three farms in PGI 

area and two in not-PGI area were collected and analysed for essential and not-essential elements by 

ICP-MS. The PCA of multielement fingerprinting grouped lemon juices from PGI farms revealing a 

strong differentiation at small geographical scale. The S-LDA discriminated lemon juices for Mo, Ba, 

Rb, Mg, Co, Ca, Fe, Sr on the two production years, giving 97.7% correct classification, 98.5% 

accuracy and 93.8% external validation. The good correlation lemon juice vs cultivation soil and the 

soil discrimination by not-essential elements suggested the use of these elements as reliable indicators 

of lemon juices provenance. Despite lowering the number of variables, constituted by not-essential 

elements Ba, Rb, Ti, Co, the use of S-QDA discriminated the lemons juices with 87.5% accuracy and 

83.9% validation. 

 

Keywords: Limone di Sorrento PGI; Multielement traceability; Lemon juice; Soil; Multivariate 

analysis; not essential elements.
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1 Introduction 

In the last decades EU has seen a growth of trade in high value agri-foods and origin-based marketing 

strategies that have generated a strong need to protect the food with "Geographical Indication" 

labelling (GI). Protected Geographical Indication label (PGI), introduced by European Community 

Regulation (EC N° 510/2006; provided in Appendix A. Supplementary references), is a tool to protect 

resources and indigenous knowledge, increase the sustainability of production sites, and help the 

development of rural communities (Aprile et al., 2012). GIs identify food products that are the result 

of technical, social, and economic interactions of locally specific resources (Belletti et al., 2017). As 

reported in the EU database for registration of food products (DOOR, 2019; provided in Appendix 

A. Supplementary references), 748 PGIs have been registered so far. Thirty-four countries (27 EU 

and 7 Extra EU) have their products awarded as PGI. France (19.2%), Italy (17.3) and Spain (12.4) 

have been granted the highest number of PGI products. Because of their high economic value, PGI 

products are often subjected to fraud with products of different origins. This damages consumer trust 

and whole native agricultural sector and territory. Seven lemon fruits in the EU have been awarded 

PGI so far, out of which six are in Italy, the second-largest citrus fruit producer in Europe after Spain 

(Clever & Valverde, 2019). All six arise from the southern regions of Italy, i.e., Sicily, Calabria, 

Puglia, and Campania. The two PGI products from Campania are Limone di Sorrento and Limone 

Costa D’Amalfi. Limone di Sorrento PGI refers to the lemons of cultivar Femminello Ovale di 

Sorrento, produced in the Sorrento peninsula and the Capri Island. Only few studies report on lemon 

traceability, and in particular with the use of multi-element fingerprinting of lemon juice (Amenta et 

al., 2016; Gaiad et al., 2016; Pellerano et al., 2008; Potortì et al., 2018). Multielement fingerprinting 

is one of the most widely used technique to discriminate the geographical origin of food (Luykx & 

van Ruth, 2008). It takes advantage of the fact that mineral elements can be transferred from soil to 

agricultural products and thus any differences in elements distribution between different geographic 

regions are reflected in agro products. Nevertheless, the mineral composition of agri-food products 

depends not only on the mineral composition of cultivation soils but also on the environmental 

conditions (i.e.: climatic factors and agronomic management) influencing mineral element uptake by 

plants. Indeed, several papers report on multielement fingerprinting for estimation of the geographic 

origin of both animal-derived and plant-derived food (Anderson & Smith, 2005; Batista et al., 2012; 

Cheajesadagul et al., 2013; G. Di Bella et al., 2012, 2013, 2016; Franke et al., 2007; Gonzálvez et al., 

2011; Kelly et al., 2002; Potortì et al., 2017, 2020, 2021; Simpkins et al., 2000; Zhao et al., 2011 

provided in Appendix A. Supplementary references) and in all cases, the discriminant elements are 

suggested to be related to both soils and environmental conditions. Multielement data must be 



 

processed by chemometric tools to determine the geographical origin, among them unsupervised, 

principal component analysis and cluster analysis, and supervised, linear discriminant analysis and 

partial least squares discriminant analysis, methods can be used (Barbosa et al., 2014). The 

relationship of agro food multielement fingerprinting with cultivation soil can be investigated by the 

use of different chemometric tools, i.e.: t-test, and Pearson correlation analysis (Oddone et al., 2009; 

Pepi et al., 2017; Podio et al., 2013; Shen et al., 2013; Zhao et al., 2017b). The building of proper and 

reliable chemometric models can contribute towards development of information-sharing tools to 

track the food from farm to fork, such as blockchain (George et al., 2019). It can improve food 

authentication along food chain and consumer trust. The main aim of this work was to develop a 

discriminant model to authenticate and track the lemon juice of Limone di Sorrento PGI on a small 

geographical scale (regional scale) by multi-element fingerprinting to protect it from fraud. Out of 

five lemon orchards chosen for this study, three are in the PGI cultivation area of the Sorrento PGI 

lemon, with the remaining two at a short distance from the PGI area in the same region (Campania). 

The pseudo total and bioavailable contents of nineteen elements (Al, Ba, Cd, Co, Cr, Cu, Fe, K, Mg, 

Mn, Mo, Na, Ni, Pb, Rb, Sr, Ti, Zn, and Ca) in the cultivation soils were determined and their spatial 

variability was evaluated to explore relationships with lemon element fingerprinting. Multivariate 

statistics were used to explore the natural grouping and to select discriminating elements of lemon 

juices, while univariate statistic was applied to determine the significant difference between orchard 

soils. The results of multivariate analyses and of correlations between the multielement fingerprinting 

of lemon juices and cultivation soils were discussed with special emphasis on the discriminant ability 

of not-essential elements.



 

2 Materials and Methods  

2.1. Study area and sampling 

The Sorrento PGI lemon refers to the lemon ecotype Femminello Ovale di Sorrento (Citrus lemon L., 

Burms.), also known as Limone di Massa Lubrense or Massese. The PGI area is within the territory 

of the following municipalities of the Campania region: Vico Equense, Meta, Piano di Sorrento, 

Sant’Agnello, Sorrento, Massa Lubrense, Capri, and Anacapri. The production area extends around 

139 hectares with 265 registered producers (ISTAT 2017; provided in Appendix A. Supplementary 

references). Due to the geomorphological conformation of the territory, the size of lemon orchards 

ranges between 0.5-1.5 hectares. The cultivation method follows the typical and traditional method 

of production and the terraces are very common. The trees are cultivated with the "free vase" system 

and covered with the “pergolato sorrentino”, which is made of chestnut trellises and reed curtains 

known as “pagliarelle”. The Ovale di Sorrento is not the only ecotype growing in the PGI area, 

however, 15% of other varieties are allowed in PGI orchards as reported in the production 

specification (GU 2011; provided in Appendix A. Supplementary references). The other most 

diffused Femminello cultivars, are Zagara Bianca, Siracusano 2KR, Sfusato Amalfitano, Adamo and 

Cerza. In the Sorrento peninsula, the annual rainfall recorded in the last ten years ranges between 692 

and 1160 mm with the monthly maximum of 96 mm usually recorded in November, and the minimum 

of 19 mm in July-August. As generally for the Mediterranean coast and the geographical 

conformation of the territory, the amount of rainfall increases along the elevation gradient and toward 

more inland areas providing for different microclimates and habitats (Savo et al., 2016). As reported 

in Calcaterra & Santo, (2004) the Sorrento peninsula comprises of Mesozoic carbonates as 

limestones, dolomitic limestones, and dolostones, locally covered by discontinuous pyroclastic 

deposits with a thickness less than 1 m (Picarelli et al., 2008). In this setting, the coast is susceptible 

to landslides and consequently land degradation (Savo et al., 2016). In this geomorphological 

conformation, traditional agriculture, mostly on terraces, plays an important role and is a key element 

in maintaining soil stability and hydrogeological equilibrium (Lal, 2001). The peculiar soil and 

climatic features and the traditional terraced cultivations have contributed not only to produce high-

quality lemon fruit but also to protect the landscape.Lemon fruits, belonging to the most diffuse 

genotypes grown in Sorrento peninsula, were collected between March and April 2018 and 2019, 

from the same selected trees in both years, in four lemon orchard farms located in the Campania 

region; in 2019 another orchard farm was selected in PGI area (Fig. 1). Each farm had homogeneous 

morphology with sparse cover of spontaneous herbaceous plants under trees. The genotype Ovale di 



 

Sorrento was collected in all farms, while the other mentioned genotypes were collected based on 

availability in the farms. In each farm lemon trees and lemons (63 and 106 fruits in 2018 and 2019, 

respectively) were randomly selected to ensure the greatest variability among sampling areas. Only 

in some cases, due to the distribution of the different cultivars, lemon fruits were sampled from nearby 

trees. The three PGI farms were geopedologically in a quite homogeneous northern part of the 

Sorrento peninsula (ISPRA, 2015a; provided in Appendix A. Supplementary references) and all these 

farms were covered with the typical pergola culture of Limone di Sorrento and undergone the other 

requirements of production specifications (GU 2011; provided in Appendix A. Supplementary 

references). Farm locations, the total numbers and cultivars of collected lemons, in both production 

years are as follow: 

• MS-PGI (40°36’28’’N; 14°20’36’’E) in the municipality of Massa Lubrense, cv. 

Femminello Ovale di Sorrento, n° 31 fruits; 

• PZ-PGI (40°37’51’’N; 14°24’22’’E) in the municipality of Piano di Sorrento, cv. 

Femminello Ovale di Sorrento n°39 fruits, cv. Femminello Zagara Bianca n° 6 fruits, cv. 

Femminello Siracusano 2KR n° 6 fruits; 

• SR-PGI (40°36’59’’N; 14°23’10’’E), in the municipality of Sorrento, production only in the 

2019, cv. Femminello “Ovale di Sorrento” n°6 fruits, cv. Femminello Zagara Bianca n° 7 

fruits, cv. Femminello Siracusano 2KR n° 7 fruits; cv. Femminello Sfusato Amalfitano n°7 

fruits. 

The whole extension of these orchard farms was 3.2 hectares which represented 2.3% of all PGI farm 

area. Their soil characteristics, considering the similarity of geological substrates (ISPRA, 2015a 

provided in Appendix A. Supplementary references), can be considered representative of most of the 

PGI orchard farms, excluding Capri island where, however lemon production is scarce. Although all 

lemon orchard farms ware located in the north side of Sorrento peninsula, a certain degree of 

microclimate inhomogeneity cannot be excluded. The other two farms, fields hosting lemon 

germplasm collections, were located outside the Sorrento PGI area. As for PGI farms, they had 

homogeneous geomorphology and sparse cover of spontaneous herbaceous plants under trees, and 

trees were not covered. Their specifications are: 

• PR-NOPGI (40°48’54’’N; 14°20’49’’ E) in the municipality of Portici, Department of 

Agricultural Sciences, University of Naples Federico II; cv. Femminello Ovale di Sorrento 

n°12 fruits, cv. Femminello Sfusato Amalfitano n°12 fruits, cv. Femminello Adamo n° 6 fruits, 

and Femminello Cerza n° 6 fruits; 



 

• EB-NOPGI (40°33’21’’ N; 14°58’53’’E) in the municipality of Eboli, Improsta Campania 

region experimental farm; cv. Femminello Ovale di Sorrento n°12 fruits, cv. Femminello 

Sfusato Amalfitano n°12 fruits. 

In all orchard farms, around each selected tree or in some cases around two nearby trees, three soil 

samples (about 500g each) were collected at the depth of 0-20 cm and 40-50 cm (top-soil and sub-

soil, respectively). The three soil samples were then mixed to obtain composite top-soil and sub-soil 

samples reaching a total of 14 composite soil samples for each soil depth.  

2.2. Samples preparation  

After sampling lemon fruits were washed with tap water and then with deionized water for two times. 

Lemon fruits were cut with disposable plastic knives and squeezed with a plastic domestic juicer. 

Juices were centrifuged at 2000 g for 20 min to separate from pulps and stored at -20°C before the 

analyses. Whole soil samples were air-dried to constant weight, sieved at 2 mm, homogenized, and 

quartered in four subsamples. About 50 g of a subsample for each soil were pulverized in agata ball 

mill (PM 200, Retsch Gmbh, Haan, Germany) for the determination of pseudo total elements. 

2.3. Soil and fruit analysis 

All the reagents used were analytical grade or better. Ultrapure water with resistivity >18 Mcm 

(PURELAB, ELGA, Bucks, UK), 0.45 μm filtered (DigiFILTER, SCP Science, Champlain, NY, 

USA) was used for the analysis procedures with inductively coupled plasma spectrometers. The soil 

chemical and physical properties, i.e. pH (H2O), Cation Exchange Capacity (C.E.C), total Carbonates 

(tot. Carb.), Organic Carbon (O.C.), soil texture (sand, silt, and clay), were determined according to 

the Italian official methods of soil analysis (MiPAF 2000 provided in Appendix A. Supplementary 

references). The soil pseudo total elements Al, Ba, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Na, Ni, Pb, 

Rb, Sr, Ti, Zn, and Ca were determined digesting  pulverized soil (0.5 g) with aqua regia (7.5 mL of 

37% HCl and 2.5 mL of 65% HNO3) at 95°C for 2 hours in a block system (DIGIPREP, SCP Science, 

Champlain, NY, USA) equipped by polypropylene tubes (digiTUBES, SCP Science, Champlain, NY, 

USA). The soil bioavailable contents of the same elements were determined by EDTA 0.05 M 

extraction (Agrelli et al., 2017). The elements in the mineralized and EDTA solutions were 

determined by inductively coupled plasma-optical emission spectrometer (ICP-OES 5100 Agilent 

Technologies, Santa Clara, CA, USA) whose operating conditions are listed in Table S1 (provided in 

Appendix A. Supplementary materials). All the calibration solutions were prepared in the same acid 

matrix used for soil samples and measurements were in triplicate. Analytical quality control was 



 

periodically carried out in triplicate with certified reference materials: BCR 141R (calcareous loam 

soil) for pseudo total element following ISO 11466:1995, and BCR 700 (organic-rich soil) for 

bioavailable element (Rauret et al. 2001). For lemons, 5 g of juice were mineralized in a Teflon tube 

with 4 mL of ultrapure HNO3 65% and 2 mL of H2O2 30% using a microwave system (Mars 5 

Express, CEM) following power ramp to 1600W for 5-5-10 min at 100-150-200 °C, respectively. 

After cooling, the mixtures were completed to 50 mL final volume with ultrapure water and elements 

were determined by inductively coupled plasma-mass spectrometer (ICP-MS, 7800 Agilent 

Technologies, Santa Clara, CA, USA) whose operating conditions are listed in Table S2 (provided in 

Appendix A. Supplementary materials). A recovery test using a spike solution was performed for 

lemon juices. Blank samples were included in each procedure, and MDL (Method Detection Limit) 

for soil and lemon juice treatments was calculated as three times the standard deviation of six 

analytical blanks prepared and diluted in the same way of samples (Spalla et al., 2009).Triplicate 

analysis were performed on a randomly chosen 10% daily batch of samples and the average of their 

relative standard deviations was attributed to all samples of that batch. Plant essential elements (Fe, 

Mn, Cu, Zn, Mo, Ca, K, Mg, including Na, as ubiquitous beneficial element in high concentration in 

plants) and not-essential elements (Ti, Co, Rb, Sr and Ba) were chosen on the basis of detectability 

and reproducibility of the determinations. 

2.4. Statistical analysis 

The statistical analysis was performed using SPSS 23.0 statistical software (SPSS Inc., Chicago, IL) 

and XLSTAT version 2016.02.284551 (Addinsoft, NY, USA). The normal distribution of each 

variable was checked by the Shapiro-Wilk test (p<0.05). Univariate statistic by Kruskal–Wallis test 

with a post-hoc Dunn test, analysis of variance by ranks (Dunn, 1964), was performed on soil samples 

(p<0.05). Multivariate statistics were carried out on lemon juices. Before these, the dataset was 

variance scaled, mean-centred and normalized with log transformation. Principal Component 

Analysis (PCA) was carried out for exploring the natural grouping of the dataset according to 

geographical origins and to different cultivars. Before PCA, Kaiser-Meyer-Olkin sampling adequacy 

(KMO) and Bartlett’s sphericity tests were performed to evaluate the data matrix suitability 

(Pellerano et al., 2008). The discriminant supervised methods, Stepwise Linear Discriminant 

Analysis (S-LDA) and Stepwise Quadratic Discriminant Analysis (S-QDA), were carried out. LDA 

creates a linear combination of extracted functions to obtain maximal separation among groups and 

compactness inside groups (Pellerano et al., 2008), where the variance/covariance matrices for 

different groups are homogeneous. In QDA the different groups are hyperquadrics (multidimensional 

space) and the class separation based, like for LDA, on Wilks' lambda. Wilks' lambda values close to 



 

zero indicate that models can perfectly discriminate (Zhao et al., 2017a). The stepwise procedure 

selects only the best discriminant variables based on Wilks' lambda. The main differences between 

LDA and QDA are that the first works on a pooled variance-covariance matrix, the second on a 

variance-covariance inverse matrix for each group. Thus, for LDA the ratio between total sample 

number and their associated variables is suggested to be not lower than three, better if it overcomes 

five, for QDA that ratio has to be considered for each group, therefore QDA is more exigent and 

reliable than LDA (Lees, 2003; Marini, 2013). The goodness of discriminant models was evaluated 

by the percentage of correct classification and accuracy, by leave-one-out cross-validation and by 

external validation (Lees, 2003). To investigate the linear relationships between element contents in 

soil and lemon juices the Pearson Correlation analysis was applied. Since the number of lemon 

samples was higher than that of the corresponding sampled soils, the correlation analysis was carried 

out associating soils with corresponding lemon juices, randomly chosen, and reiterating this process 

five times in manner to consider all lemon juice samples at least one time. Each correlation coefficient 

was calculated as the mean of five coefficients, and it was evaluated for significance 

(p<0.05). The frequencies of significant coefficients from the five iterations were calculated as 

percentage. 

3. Results and Discussion 

3.1. Variability of mineral element composition of lemon juices 

The mean element contents of lemon juices according to provenance are shown in Table 1 and the 

validation parameters of element determinations are reported in Table S3 (provided in Appendix A. 

Supplementary references). Similar element profiles were observed in all lemon juices and element 

concentrations were in the following order: K>> Mg> Ca > Na > Rb >> Zn > Fe > Cu > Sr > Mn > 

Ba >> Mo > Ti > Co. The concentrations of Fe, Zn, Mn, Cu and Sr were in the same order of 

magnitude found in centrifuged cv. Femminello lemon juices from Sicily (Amenta et al., 2016) but 

all elements were slightly lower than those in no-centrifuged lemon juices and lemon pulps from 

Argentina and Sicily (Gaiad et al., 2016; Pellerano et al., 2008, and Potortì et al., 2018). An 

exploratory analysis by PCA on the 169 sampled lemon fruits was carried out for screening the natural 

grouping of samples. KMO test, giving a result of 0.718, and Bartlett sphericity test, showing p-value 

< 0.0001, indicated the adequacy of samples to apply the PCA (Li et al., 2018). The PCA showed that 

the first five extract factors (eigenvalues >1), PCs, explained 70.4% of the total variance, and the first 

three explained 27.6%, 17.1%, and 10.6%, giving a cumulate variance of 55.3%. The score plot of 

PCA showed that all cultivars from PGI area (MS-PGI, PZ-PGI, and SR-PGI) were closer to each 



 

other in the centre of the plot respect those from NO-PGI sites that arranged at the margins (Fig.2a), 

consequently the groupings for each cultivar of Femminello present in different areas were not 

evident (Fig. 2b). Similar results were obtained by Pellerano et al. (2008) by discriminant analysis, 

which showed the overlapping of different botanical varieties grouped in three different production 

Argentinian regions. This suggests that juice mineral composition did not depend strongly by 

cultivars, while the natural grouping of juices by provenance suggests that mainly the features of 

cultivation environments of Sorrento peninsula influenced the elemental profile of juices. 

Considering the first three PCs, the highest loading weight (elements) were on PC1 for Ca (15.3%), 

Cu (11.3%), Mg (11.2%), Rb (9.5%), Sr (8.3%), Co (7.9%) and Na (6.1%); on PC2 for Mo (20.4%), 

Ba (20.0%) and Ti (15.0%), and on PC3 for Fe (30.7%), Zn (14.8%), K (14.2%) and Mn (8.3%). It is 

worth noting that, among these elements, Ba, Na, K, Rb, Sr and Mg were also those discriminating 

cultivation soils (see paragraph 3.2). The results of the exploratory analysis suggested a possibility to 

build a supervised discriminant model dividing the data set in three groups according to provenance, 

i.e.: MS- PZ- SR-PGI (PGI area), PR-NOPGI and EB-NOPGI.  

3.2. Variability of the main properties and mineral element composition of 

cultivation soils 

The main physical and chemical properties, as mean values, for all soils sampled in each orchard, 

along with their standard deviations and the results of nonparametric Kruskal–Wallis test (p>0.05) 

between top-soil (0-20 cm) and sub-soil (40-50 cm) and among orchard farms, are reported in Table 

S4 (provided in Appendix A. Supplementary materials). In general, except for total carbonates, in 

each orchard soil layer, soil property variations, as standard deviations on mean values in percent, 

were not higher than 51%, (recorded for O.C. in MS-PGI top-soil), and the mean of property 

variations in each orchard soil layer was not higher than 21% (recorded in top-soil of SR-PGI). 

Considering all orchards soil layers overall the mean of propriety variations resulted higher for top-

soil (17%) than sub-soil (12%) indicating a higher homogeneity of the properties in sub-soils, i.e., the 

soil portion more explored by lemon tree roots (Castle and Krezdorn, 1975). The variation of 

carbonates was wider, between around 100% (for SR-PGI on average in top-soil and sub-soil), and 

7% (for PR-NOPGI on average in top-soil and sub-soil), however the mean of total carbonate 

variations in all orchards was no higher than 45% on overage in top and sub soil. These results suggest 

that the sampled lemon trees were experiencing quite similar soil agronomic properties during their 

growth. In each orchard farm, in most of the cases, O.C as well as C.E.C. were higher in top-soil 

respect to sub-soil while pH showed an opposite trend in agreement with the typical shallow minimum 

tillage and mowing of orchard soils preserving soil organic matter. Total carbonates varied 



 

differently, being higher in top-soil respect to sub-soil in MS-PGI and SR-PGI, showing opposite 

trend in PR-NOPGI and no significant differences in the other orchards. Regarding particle-size 

distribution, clay content was higher in sub-soils than in top-soils in PR-NOPGI and EB-NOPGI, the 

opposite was in PZ-PGI, and no differences were found in MS-PGI and SR-PGI. The other particle-

size fractions did not show differences with soil depth in all orchard farms suggesting a certain 

homogeneity of physical characteristics between the two soil layers in all orchard farms. In the 

orchards O.C. was generally sufficient and showed small differences (between 11 g kg-1 and 19 g kg-

1 in top-soils and 5 g kg-1 and 11 g kg-1 in sub soil). The top-soils had similar slight alkaline pH (on 

average 7.7), except in MS-PGI which showed a lower value (7.1). PGI sub-soils had similar slight 

alkaline pH (on average 7.6), whereas NOPGI sub-soils showed more alkaline pH (7.9 for EB-

NOPGI, 8.1 for PR-NOPGI). In top-soils C.E.C. was similar in all PGI orchards farms (on average 

23.5 cmol(+) kg–1), while the lowest value, although similar to MS-PGI, was in PR-NOPGI (12.5 

cmol(+) kg–1), the highest, similar to PZ-PGI and SR-PGI, in EB-NOPGI (27.3 cmol(+) kg–1). In the 

sub-soils of all orchard farms generally the same C.E.C. trend of top-soil was observed, except the 

significant difference between MS-PGI, and SR-PGI, however the mean C.E.C of PGI sub-soil (21.1 

cmol(+) kg–1) was lower than in top-soil. Top-soils and sub-soils of all orchard farms were generally 

poor in total carbonates (<25 g kg-1) and their content was not ever similar in both soil layers. The 

highest value was in SR-PGI top-soil (31.2 g kg-1). However, NOPGI orchard farms generally showed 

higher total carbonates than PGI farms in both layers. According to USDA (Soil Survey Laboratory 

Staff, 2004, provided in Appendix A. Supplementary references), top-soil and sub-soils had sandy 

loam texture in orchards of PGI area, sandy in PR-NOPGI and clay loam in EB-NOPGI. The recorded 

differences in soil agronomic properties, suggested that the availability of most mineral elements 

could be different among orchard farms, although all soils did not evidence problems for plant 

nutrition. In soils pseudo total elements (PTE) and bioavailable elements (BAE) were determined with 

relative standard deviations lower than 3% and 1%, as checked with BCR 141R and BCR 700 

certified reference materials, respectively (Tables S5 and S6, provided in Appendix A. Supplementary 

references). For most of elements, there were no significant differences between the contents of PTE 

in top-soil and sub-soil of all sites, with some exceptions as follows (Table S7, provided in Appendix 

A. Supplementary materials). In top-soil, Ca was higher in MS-PGI and PZ-PGI, and Cu in MS-PGI 

than in the others. The contents of Ti, Co, and Mg were lower in PZ-PGI, and Cd and Na in SR-PGI 

and PR-NOPGI, respectively. About bioavailable elements (BAE), generally, a considerable number 

of BAE was more bioavailable in top-soils than in sub-soils in all farms. The differences in PTE and 

BAE contents among orchards for both top-soil and sub-soil did not follow a similar trend for all 

elements and were generally diffused and not wide. Among PGI orchard farms the similarities 



 

regarded 37% and 42% of PTE-top-soil and PTE-sub-soil, respectively; and 63% and 53% of BAE-

top-soil and BAE-sub-soil. Appling the univariate statistic and grouping MS, PZ, SR element profiles 

as PGI area, the comparison of the multielement profile of PGI area with PR-NOPGI (Table 2) 

showed that the percentage for PTE with similar contents was 37% in top-soil and 53% in sub-soil, 

and for BAE 42% in top-soil and 74% in sub-soil, while with EB–PGI, for PTE 26% in top-soil and 

26% in sub-soil, and for BAE 26% in top-soil and 37% in sub-soil. Furthermore, the similarity 

between NO-PGI orchard farms was for PTE 16% top-soil and 26% sub-soil, and for BAE 53% top-

soil and 58% sub-soil. These results indicate that the similarities between orchard sites were generally 

higher for BAE than for PTE contents. Further, the similarity between PGI area and PR-NOPGI was 

quite high in some cases exceeding that found among orchard farms in PGI area. This finding is likely 

to derive from the fact that the Sorrento lemon PGI area and the site of PR-NOPGI orchard are not 

so distant and that both were affected in the past by deposition of volcanic materials from eruptions 

of Mount Vesuvius. Indeed, it is well known that volcanic materials deriving from old eruptions of 

Mt Vesuvius are widely spread in fertile soils of Campania region well known by ancient Roman 

time as Campania felix. In contrast, EB-NOPGI soil was more different, especially for PTE contents, 

respect to the soil of the other areas because in that site the soil is mainly derived by alluvial sediments 

(ISPRA, 2015a, b, and c; provided in Appendix A. Supplementary references). All this implied a low 

number of elements discriminating soils, especially between PGI area and PR-NOPGI, that for the 

three areas they were the PTE Ba, K, Na, Rb, and Sr in the top and sub-soil, and the BAE Ba, Cd and 

Mg in top-soil, and only Mg in sub-soil. 

3.3. Relationship between soil and lemon mineral element contents 

The relationships between the contents of 14 mineral elements (essential elements Fe, Mn, Cu, Zn, 

Mo, Ca, K, Mg, including Na, and not-essential elements Ti, Co, Rb, Sr and Ba) measured both in 

lemon juices and in the related top-soil and sub-soils (PTE and BAE) were investigated by Pearson 

correlation analysis. The elements showing significant (p < 0.05) mean correlation coefficients (on 

five iterated Pearson analysis) are given in Table 3 together with the frequencies (number of 

significant coefficients per number of iterations %) as an indication of correlation reliability. Only 

half of the 14 elements showed a significant correlation, namely Mo, Mn, Ba, Rb, Mg, Co, and Sr. 

Most macro and micronutrients, such as K, Ca, Na, Cu, Zn and Fe, did not significantly correlated or 

when correlating (Mg, Mn and Mo) showed low correlation or frequency values. This result could 

depend by a high variability of lemon nutritional status due to differences in environment and plant 

growing characteristics in orchards influencing specific nutrient uptake. The lowest number of 

correlating elements was found in BAE-top-soil dataset (Mn, Rb, Mg, Co). The same elements plus 



 

Sr were even better correlated in BAE-sub-soil. These results might be due to differences in the 

nutrient uptake of lemon trees from upper and deep soil layers. Changes in soil physical, chemical, 

or biological characteristics could affect not only the citrus distribution of roots, but also their growth 

and activity (Castle and Krezdorn, 1975). Deeper roots are generally more efficient in water uptake, 

but no clear relationship between soil depth and nutrient uptake has been shown (Castle, 1978). 

Movement of mobile elements from upper to deeper soil layers might also affect root uptake in 

different soil layers. The significant coefficients of correlations found in PTE datasets for Mn, Rb, 

Sr, Ba and Mo were quite similar for top-soil and sub-soil; this could depend on the diffused similarity 

of element contents in both layers (section 3.1) rather than on uptake from both soil layers. The 

correlations of Ba and Mo, two elements exhibiting low soil mobility (De Andrade et al., 2014; 

Williams & Thornton, 1973), suggested a contribution to lemon nutrition also of elements apparently 

not potentially available as assessed by EDTA extraction. In any case the correlation and frequency 

values with PTE were generally slightly lower than those with BAE. In PTE, Mn and Mo positively 

correlated, while Sr, Ba and Rb negatively correlated. Similar relationship between multi-element 

composition in tea leaves with provenance soils were shown by Zhao et al. (2017b). The negative 

correlations might suggest root ability to uptake elements not readily available from particular soil 

mineral component. 

3.4. Chemometric model for discriminating the provenance of lemon juices  

In order to discriminate the provenance of lemon juices, a stepwise linear discriminant analysis (S-

LDA, after log transformation) was applied. The 169 lemon juices samples were divided into two 

sets: the calibration set (CS) formed by 88 samples (52%), and the validation set (VS) formed by 81 

samples (47%) randomly chosen for no more than 50% of each cultivar in each orchard. The CS 

samples were represented as follows: PGI area (43%), PR-NOPGI (32%), and EB-NOPGI (25%). 

The chemometric model obtained by S-LDA showed a λWilks value proximal to zero (0.038) 

suggesting that group means were different (Pellerano et al., 2008). The S-LDA (probability of F to 

remove 0.10 and to enter 0.05) selected eight elements, Mo, Ba, Rb, Mg, Co, Ca, Fe and Sr, as 

discriminant variables on the two discriminant functions, for FD1 (76.7%): 0.870 Ca, -0.782 Sr, 0.710 

Ba, 0.684 Rb, -0.542 Fe, 0.487 Co, -0.451 Mo, -0.323 Mg, and for FD2 (23.2%): -1.160 Sr, 0.761 

Mg, 0.409 Mo, 0.366 Co, 0.297 Ca, 0.100 Ba, 0.083 Fe, 0.027 Rb. The sample scores of the two 

discriminant functions are shown in Fig. 3. The score plot explained a clear discrimination of EB-

NOPGI samples from those of the other two groups, while there was a slight overlapping between 

PR-NOPGI and PGI area samples. The results of S-LDA showed 97.7% correctly classified samples 

(100% for PGI area, 92.8% for PR-NOPGI, and 100% for EB-NOPGI) and 98.4% accuracy. The 



 

model was leave-one-out cross-validate obtaining 95.4% correctly validated samples (97.3% for PGI 

area, 89.3% for PR-NOPGI, and 100% for EB-NOPGI). Further, the external validation of the model 

with VS samples showed 93.8% correct validation (95.71% for MS-PZ-SR-PGI, 77.7% for PR-

NOPGI, and 100% for EB-NOPGI). Both validations agreed with the slight overlapping between 

lemon juices from PGI area and those from PR-NOPGI, and with the clear discrimination of lemon 

juices from EB-NOPGI. However, the S-LDA application on all samples of each sampling year, 2018 

and 2019 (63 and 106 for 2018 and 2019 year, respectively), although with less variability due to 

reduced and less homogeneous sampling, and lack of validation sets, gave λWilks values 0.012 and 

0.080, respectively, correct classifications 100% and 93.4% and leave-one-out cross-validations 

98.4% and 91.5%, quite similar to those seen with the samples of entire biennium. However, the lists 

of discriminating elements were different: for the 1st year they were Cu, Ba, Rb, Mg, Co, Ca, Na, Fe 

and Sr, while for the 2nd year they were Mo, Mn, Ba, Rb, Ca, Ti and Sr; thus, only Ca, Ba, Rb and Sr 

were discriminant elements in both years. The difference between the discriminant profiles could 

depend by the annual variations of environmental conditions (such as climate, pathogen and insect 

attacks, water availability, etc.) and cultivation practices in orchards influencing element uptake. It is 

worth noting that only one (Ca) of the nine determined essential elements discriminates and coincides 

in both years (11%), while well three (Ba, Sr and Rb) out the five not-essential elements do this 

(60%). It is likely that in cultivated soils the uptake of Ba, Sr and Rb, being generally in low amount 

in soil and consequently also low available (Kabata-Pendias, 2011), is more linear with their 

availability than competitive essential elements, e.g. Ca for Ba and Sr and K for Rb (El-Sheikh & 

Ulrich, 1970; Jackman, 1965; Rediske & Selders, 1953). In juices the cations, including not-essential 

elements, can be mainly related to the physiological role for osmotic regulation and salification rather 

than for biochemical processes such as in plant tissues. Thus, it is likely that essential and not-essential 

element composition of juices changes with lemon ripening stage. However, in our study, the 

processed lemons were all at the same ripening stage as proved by homogeneous pH, treatable acidity 

and soluble solid content of juices (data not shown). Therefore, the element composition of juices, 

especially the not-essential element composition, should be affected mainly by the possibility for 

these elements to be intercepted and uptaken by the roots of the plant, also, during maturation some 

translocation of not-essential elements to the fruits from other plant organs could be negligible respect 

to essential elements. Among the elements discriminating both soil and lemon juices, only four, Ba, 

Rb, Sr, and Mg, showed soil vs juices correlation but Mg did not discriminate lemon juice in the 2nd 

year while the not-essential elements Ba, Rb and Sr discriminated for each year. Among the other 

elements discriminating only for lemon juices, Ca and Fe did not show correlation, and Mo and Co 

did not discriminate soils. This suggested that essential elements, including Mg, ware less consistent 



 

than not-essential elements in discriminating geographical provenience of Sorrento PGI lemon juices. 

As suggested before, this might be explained assuming that the content of essential elements in juices 

depends more on annual environment variations and orchard managements compared to not-essential 

elements. Thus, the use of not-essential elements could be more consistent than essential ones to trace 

the geographical provenance of lemon juices. It is worth noting that reducing the number of variables 

to the five not-essential elements (Ba, Rb, Sr, Ti and Co), the ratio samples/variables for each group 

overcomes the limit of three suggested by Lees (2003) and Marini (2013), and the stepwise QDA, 

more restrictive than S-LDA, could be applied. The S-QDA showed a λWilks value of 0.173 

(p<0.0001), 87.5% correct classification and 83.9% external validation. The percentage of correct 

classification was lower than that obtained by S-LDA on total variables (97.7%). However, the ratio 

between the percentages of external validation and classification for both S-LDA and S-QDA were 

equal to 0.96, this would indicate that the reliability of the two models was similar. The not-essential 

elements, Ba, Rb and Sr, already found by S-LDA as discriminating elements for lemon juice 

geographical provenience, were confirmed also by S-QDA with the addition of the other not essential 

elements, Ti and Co, which affected the model more than Sr. It is worth noting that Ti and Co did not 

discriminate cultivation soils by univariate statistics (see paragraph 3.2) and that Ti discriminated 

lemon juices only in the 2nd year and Co only in the 1st year by S-LDA. 



 

4. Conclusions 

The results of this paper showed that multielement fingerprinting of lemon juices from Sorrento 

peninsula PGI area was an useful tool to discriminate lemon provenance on a small geographical 

scale (region scale), but it was not able to discriminate the PGI Femminello Ovale di Sorrento from 

the other Femminello cultivars (Zagara Bianca, Siracusano 2KR, Sfusato Amalfitano, Adamo and 

Cerza) growing in the same area. This indicates a prevalent influence of growing environment and of 

soil mineral element composition and availability on the element composition of lemon fruits. The 

correlations found between in lemon juices and in related soil (pseudo total and available) reinforce 

this conclusion. Eight elements (namely Mo, Ba, Rb, Mg, Co, Ca, Fe and Sr) among the 14 determined 

resulted to discriminate (by S-LDA) lemon juices of Sorrento peninsula PGI area from those of two 

NO-PGI areas, Portici and Eboli, located in the same region at no more than 60 km away from PGI 

area. Lemon juices were identified by S-LDA with 97.7% correct classification, 98.4% accuracy and 

93.8% external validation. However, a certain degree of annual variation in the content of essential 

elements discriminating lemon juices and the good correlation between the content of not-essential 

elements in lemon juices and in corresponding soils suggested the use of only not-essential elements 

(Ti, Co, Rb, Ba, and Sr) as stable fingerprinting to discriminate the geographical provenance of lemon 

juices. With only their use, despite the reduction of the number of variables, PGI lemon juices were 

identified by S-QDA with 87.5% correct classification and 83.9% validation. The use of a lower 

number of variables allows applying QDA to predict the origin of all samples without increasing the 

number of samples; this could be suitable for routine approach in quality protection and fraud 

repression. The traceability based on not-essential elements could be even more effective on large 

than on small geographical scale, considering that cultivated soils might differ more for content and 

availability of not-essential elements than for essential elements often supplied by fertilizations. 

While this pilot study was successful in achieving its aims, there are still limitations with respect to 

the coverage of natural pedoclimatic variability of the Limone di Sorrento PGI area. Additional 

research should be conducted to include a greater number of lemon farms (or sampling points) in the 

PGI area and to enlarge the existing database including lemon samples from other regions. In this 

way, the model for authenticating and protecting the Limone di Sorrento PGI lemon could 

substantially contribute to implement a blockchain information system for Sorrento lemon 

traceability, providing real-time information not only to the final consumers but also to 

manufacturers, distributors, and retailers. 
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Table 1. Mineral composition (Mean ± standard deviation, SD) of lemon juices according to provenance; MS-PGI, PZ-

PGI and SR-PGI from the “Sorrento PGI area”; PR-NOPGI from the germplasm field, Portici; EB-NOPGI from 

germplasm field, Eboli. n: total number of samples 

  PGI area   NO-PGI area   NO-PGI area 

Elements 
MS-PGI 

(n 31) 
 

PZ-PGI 

(n 51) 
 

SR-PGI  

(n 26) 
 

PR-NOPGI 

(n 37) 
 

EB-NOPGI 

(n 24) 

mg kg-1 Mean ±SD  Mean ±SD  Mean ±SD  Mean ±SD  Mean ±SD 

K 1393 161  1336 250  1263 111  1526 209  2147 1705 

Mg 65.7 9.3  58.9 4.5  57.8 6.4  79.1 14.8  70.4 9.7 

Ca 49.5 9.3  36.8 10.8  37.5 10.2  46.1 10.9  58.6 14.1 

Na 7.2 2.8  6.0 3.6  3.9 1.2  4.0 1.2  8.2 7.0 

μg kg-1               

Rb 1269 315  949.9 149.3  864.5 121.1  943.7 256.2  1810 576 

Zn 415.0 81.5  436.7 114.6  309.3 74.6  479.7 111.6  345.9 162.4 

Cu 268.9 59.6  219.7 67.5  241.4 59.6  299.8 97.4  261.5 93.1 

Fe 277.2 104.7  257.0 256.0  192.8 116.3  310.6 98.6  226.3 169.2 

Sr 210.5 59.3  133.6 45.9  161.3 46.2  129.8 45.3  136.5 49.5 

Mn 98.8 33.7  104.1 35.7  83.4 30.0  94.1 24.8  124.1 64.3 

Ba 55.9 18.2  46.3 24.2  68.3 18.0  27.2 16.8  87.7 23.2 

Mo 6.1 3.8  5.6 3.2  5.4 1.6  12.9 4.3  5.1 3.6 

Ti 8.0 3.8  5.5 4.7  3.2 1.1  10.8 5.3  4.5 2.4 

Co 0.6 0.3   0.4 0.2   0.6 0.4   0.7 0.2   1.2 0.6 



Table 2. Mean contents ± standard deviation (SD) of pseudo total (PTE) and bioavailable (BAE) elements in soils. A nonparametric multiple test (Kruskal–Wallis test) and Dunn’s 
comparison for post hoc were applied. Lowercase letters (a, b, c) and uppercase letters (A, B, C) were used to compare the mean ranks of distributions of EDTA and AR contents, 
respectively. n: total number of samples. 

Elements 

(mg/kg) 

depths 

(cm) 

PGI-area   NO-PGI area   NO-PGI area 

(MS; PZ;SR)-PGI (n 16)  PR-NOPGI (n 4)  EB-NOPGI (n 4) 

PTE  BAE  PTE  BAE  PTE  BAE 

Mean ±SD    Mean ±SD    Mean ±SD    Mean ±SD    Mean ±SD    Mean ±SD   

Al 
0-20 47310 6680 A  116.5 31.0 a  48019 3184 A  84.32 7.46 b  34672 4565 B  113.8 1.0 ab 

40-50 47640 7330 A  106.2 21.8 a  49507 2453 A  80.45 11.49 b  33515 776 B  96.41 5.58 ab 

Fe 
0-20 27078 2634 B  135.3 43.6 a  28310 2182 A  100.3 12.0 b  26595 1315 B  103.4 6.7 ab 

40-50 27509 2783 A  116.4 39.8 b  29222 1152 A  102.5 9.3 ab  26632 1265 A  76.63 3.77 a 

K 
0-20 16455 7061 B  1015 110 a  31972 3151 A  554.2 11.9 b  7154 8241 C  1030 226 a 

40-50 16502 7459 B  993.5 121.7 a  33405 1855 A  1313 822 a  4741 228 C  585.2 42.0 b 

Ca 
0-20 14468 5051 B  4914 2804 a  19482 697 A  4078 839 a  14487 3770 B  5823 1594 a 

40-50 13389 4410 B  4281 2483 a  19926 607 A  4084 804 a  15316 4655 AB  5325 1369 a 

Mg 
0-20 5442 825 B  238.1 71.2 b  8635 1734 A  150.7 12.7 c  6166 976 B  678.8 9.6 a 

40-50 5522 907 AB  244.1 69.7 b  8272 321 A  160.6 2.3 c  6043 865 B  554.3 66.7 a 

Na 
0-20 6285 3138 B  117.8 36.6 b  10760 592 A  158.0 33.4 a  1630 2860 C  136.1 1.5 a 

40-50 6377 3307 B  136.8 43.5 ab  11113 413 A  171.3 17.9 a  829 52 C  119.4 9.3 b 

Ti 
0-20 1671 171 A  6.49 2.03 a  1758 146 A  3.57 0.50 b  1056 224 B  4.80 0.08 b 

40-50 1687 208 A  6.05 1.92 a  1821 62 A  3.21 0.83 b  1003 54 B  3.63 0.12 b 

Mn 
0-20 869.0 79.6 B  40.1 29.6 b  647.5 38.5 C  25.84 7.26 b  1405 292 A  364.8 27.7 a 

40-50 880.3 76.5 B  44.39 31.20 b  662.0 30.9 C  24.12 9.06 b  1502 192 A  293.8 4.0 a 

Ba 
0-20 495.0 82.9 B  103.7 178.2 b  638.3 58.7 A  29.76 3.92 c  340.4 82.9 C  120.7 31.1 a 

40-50 499.3 91.9 B  243.8 325.7 a  657.4 37.5 A  29.34 4.20 b  321.1 20.0 C  65.29 4.15 a 



 

Cu 
0-20 161.8 127.3 A  77.68 28.59 a  104.0 8.0 A  35.72 5.92 b  41.28 21.30 B  20.49 3.56 b 

40-50 126.8 52.5 A  44.71 20.07 a  105.3 7.4 A  40.49 0.75 a  31.42 7.63 B  6.80 0.38 b 

Rb 
0-20 382.5 152.1 B  3.19 0.48 a  636.8 68.7 A  1.93 0.42 b  229.7 125.7 C  3.72 0.32 a 

40-50 384.8 159.9 B  3.07 0.72 b  666.8 48.8 A  3.38 1.64 ab  196.0 5.4 C  4.46 0.56 b 

Sr 
0-20 184.7 44.5 B  24.39 5.04 a  322.1 25.2 A  20.55 4.06 ab  77.81 73.13 C  19.57 2.04 b 

40-50 185.8 47.5 B  25.70 6.16 b  332.5 12.5 A  21.08 3.37 ab  57.59 4.94 C  15.89 2.02 b 

Zn 
0-20 118.0 25.1 A  19.99 6.10 a  90.67 7.00 B  5.25 0.36 b  63.46 8.32 B  5.71 1.96 b 

40-50 114.1 23.1 A  14.42 8.53 a  91.06 7.13 AB  5.83 0.34 ab  60.69 2.92 B  1.94 0.39 a 

Pb 
0-20 65.47 13.80 A  15.69 3.25 a  56.04 8.11 A  12.48 1.99 ab  43.17 6.75 B  9.87 0.44 b 

40-50 63.64 13.71 A  21.68 22.26 a  58.95 9.53 A  15.21 1.13 a  41.92 2.98 B  8.74 0.29 b 

Ni 
0-20 19.11 4.59 A  0.24 0.10 b  17.70 1.08 A  0.20 0.02 b  18.27 0.92 A  2.80 0.11 a 

40-50 19.67 4.63 A  0.23 0.18 b  18.32 0.61 A  0.36 0.22 ab  18.65 1.16 A  2.45 0.28 a 

Cr 
0-20 13.98 4.88 B  0.11 0.05 b  13.31 1.51 B  0.07 0.01 b  19.73 2.63 A  0.30 0.01 a 

40-50 14.15 4.81 B  0.08 0.05 b  12.95 0.71 B  0.32 0.28 ab  20.87 1.03 A  0.28 0.02 a 

Co 
0-20 13.83 1.62 B  0.16 0.12 b  15.74 1.34 A  0.08 0.04 b  17.20 1.45 A  4.64 0.37 a 

40-50 14.09 1.64 B  0.19 0.15 b  16.33 0.57 A  0.21 0.11 b  17.56 1.67 A  3.68 0.55 a 

Mo 
0-20 1.23 0.23 B  0.03 0.06 b  2.27 0.25 A  0.04 0.01 ab  1.23 0.35 B  0.20 0.03 a 

40-50 1.23 0.25 B  0.04 0.05 b  2.35 0.16 A  0.15 0.13 a  1.17 0.13 B  0.19 0.04 a 

Cd 
0-20 0.28 0.10 B  0.10 0.03 b  0.24 0.07 B  0.08 0.00 c  0.42 0.09 A  0.31 0.02 a 

40-50 0.28 0.09 B   0.07 0.02 b   0.21 0.04 B   0.20 0.16 ab   0.45 0.03 A   0.28 0.05 a 



 

Table 3. Significant correlation coefficients (different from 0 with a significance 

level α=0.05) between elements in lemon juices and pseudo-total (PTE) and 

bioavailable (BAE) elements in soils at two depths and frequencies in percent of 

significant coefficients from five iterations. ns: not significant. 

Depths  Elements    PTE 
Freq. 

% 
BAE  

Freq. 

% 

Top-soil   

(0-20 cm) 

Mg ns  0.350 80 

Rb -0.335 100 0.414 100 

Sr -0.381 60 ns  

Mn 0.387 60 0.457 80 

Ba -0.574 80 ns  

Mo 0.428 80 ns  

Co ns   0.410 60 

Sub-soil  
(40-50 cm) 

Mg ns  0.373 80 

Rb -0.392 80 0.446 100 

Sr -0.306 80 0.432 100 

Mn 0.429 60 0.478 80 

Ba -0.503 80 ns  

Mo 0.525 80 ns  

Co ns   0.395 60 



 

Figure 1. Location of orchards of soils and lemons sampling. 

 

 

Figure 2. Score plot of Principal Component Analysis (PCA) of lemon juices labelled according to: (a) orchard farms: 

MS-PGI, PZ-PGI, SR-PGI, PR-NOPGI and EB-NOPGI; (b) lemon cultivars: Ovale di Sorrento (OV), Sfusato Amalfitano 

(SF), Adamo (AD), Cerza (CE), Siracusano 2KR (2KR), Zagara Bianca (ZB). 
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Figure 3. S-LDA score plot for the three groups of production area (14 elements in 88 lemon juice samples). 
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Appendix A. Supplementary data 

Tab. S1. ICP-OES operating conditions.   

 

Instrument parameters Setting  

Read time (s) 15 

Replicates 3 

Sample uptake delay (s) 25 

Fast pump yes 

Stabilisation time (s) 15 

Pump speed (rpm) 12 

RF power (W) 1450 

Aux flow rate (L min-1) 1.00 

Plasma flow rate (L  min-

1) 

12.0 

Nebulizer flow rate (L 

min-1) 

0.70 

Elements (nm) Al (396.152)* – Ba (493.408)* – Ca(317.933) – Cd(228.802) – 

Co(228.615) – Cr(267.716) – Cu(327.395) – Fe(238.204)* – 

K(766.491)* – Mg(280.270)* – Mn(257.610)* – Mo(202.032) – 

Na(588.995) – Ni(231.604) – Pb(220.353) – Rb(780.026) – 

Sr(407.771) – Ti(334.941) – Zn(231.857) 

Viewing modes Axial, radial(*) 

Viewing height (mm) 8 

Background correction fitted 
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Tab. S2. ICP-MS operating conditions. 

Instrument parameters Settings  

RF Power (W)                                      1550 

Sampling Depth (mm) 8.0 

Plasma flow rate (L  min-1) 15.0 

Carrier Gas (L min-1) Ar: 1.05 

Dilution Gas (L min-1) Ar: 0.10 

Tune mode   Helium mode 

He flow (ml min-1) 4.0 

Peltier-cooler multipass 
condenser      

2°C 

Oxide/Doubly Charged Ratio 140Ce16O+/140Ce+: 0.3% 

 140Ce2+/140Ce: 2.3% 

Internal standards                             6Li, 45Sc, 72Ge, 89Y, 115In, 159Tb 

Selected isotopes    
47Ti, 56Fe, 55Mn, 59Co, 63Cu, 66Zn, 85Rb, 88Sr, 95Mo, 
137Ba, 43Ca, 44Ca, 39K, 24Mg, 23Na 
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Tab. S3. Validation parameters for the determinations of elements in lemon juices: method detection limits (MDL), 

dynamic range, dependent coefficient of calibration curves (R2), values of spike, recovery on spike, and relative standard 

deviation (RSD).  

 
MDL  

(μg/L) 

Dynamic 

range 

(μg/L) 

 R2 
Spike values 

(μg/L) 

Recovery  

(%) 

RSD 

(%) 

Ti 2.0 0 - 10 0.9992 1 106  3.7 3.5 
Fe 75 0 - 30 0.9989 10 103  12 12 
Mn 12 0 - 5 0.9996 1 105  7.2 6.9 
Co 0.2 0 - 1 0.9999 1 94  4.0 4.2 
Cu 16 0 - 30 1.0000 5 105  11 12 
Zn 220 0 - 30 0.9999 5 92  11 12 
Rb 2.1 0- 50 0.9993 5 100  12 12 
Sr 20.2 0 - 5 0.9999 5 110  2.6 2.4 
Mo 1.4 0 - 5 1.0000 1 112  6.4 5.8 
Ba 8.5 0 - 10 0.9999 5 109  4.5 5.0 
Ca 6×104 0 – 1x 104 0.9999 2×103 104  7.9 7.6 
K 1x105 0 - 2×105 1.0000 1x105 85  3.5 4.1 

Mg 6×104 0 - 104 0.9999 2×103 93  8.0 8.6 
Na 3×103 0 - 2×103 1.0000 2×103 106  7.3 6.9 
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Tab. S4. Means ± standard deviation (SD) of chemical and physical characteristics of soil at different depths (0-20 cm and 40-50 cm). Nonparametric multiple tests (p values of 

Kruskal–Wallis Test) was applied. Lowercase letters (a, b, c) and uppercase letters (A, B, C) were used to compare the mean ranks of distributions between two depths and among 

the five different orchards respectively. n° = number of top and sub soil samples 

 

Properties 
depths 

(cm) 

PGI-area   NO-PGI area   NO-PGI area 

MS-PGI (n°4)  PZ-PGI (n°10)  SR-PGI (n°6)  PR-NOPGI (n°4)  EB-NOPGI (n°4) 

Mean ±SD    Mean ±SD    Mean ±SD    Mean ±SD    Mean ±SD   

pH (H2O) 
0-20 7.13 0.08 b-B  7.61 0.23 a-A  7.66 0.20 a-A  7.73 0.17 b-A   7.67 0.08 b-A 

40-50 7.43 0.09 a-B  7.69 0.26 a-B  7.67 0.27 a-B  8.10 0.04 a-A  7.93 0.09 a-AB 

C.E.C (cmol(+) kg–1 ) 
0-20 21.02 1.47 a-BC  24.53 1.23 a-AB  25.00 4.84 a-AB  12.53 1.28 a-C  27.35 0.13 a-A 

40-50 16.73 0.93 b-BC  21.13 2.09 b-AB  25.50 3.65 a-A  9.96 3.21 a-C  23.80 0.13 b-A 

tot. Carb. (g  kg–1) 
0-20 5.56 0.60 a-BC  3.99 1.09 a-C  31.23 40.41 a-A  9.04 0.32 b-BC  19.64 6.25 a-AB 

40-50 4.21 0.26 b-BC  3.70 2.76 a-C  15.92 15.05 b-AB  14.74 1.56 a-AB  17.43 5.75 a-A 

O.C. (g kg–1) 
0-20 18.97 9.74 a-A  14.44 3.32 a-A  18.59 6.30 a-A  11.66 2.25 a-A  12.10 0.30 a-A 

40-50 5.73 0.17 b-C  11.52 2.23 b-A  10.18 1.19 b-AB  9.23 1.69 a-ABC  7.74 1.34 b-BC 

sand (g kg–1) 
0-20 675.21 25.12 a-BC  737.86 22.91 a-AB  619.06 94.35 a-BC  870.81 8.03 a-A  414.69 55.73 a-C 

40-50 657.30 25.12 a-BC  721.34 31.02 a-AB  591.90 52.20 a-C  847.10 42.66 a-A  416.95 29.76 a-C 

silt (g kg–1) 
0-20 164.66 45.12 a-BC  198.15 15.07 a-ABC 227.12 41.07 a-AB  125.44 5.93 a-C  271.30 39.35 a-A 

40-50 207.34 45.12 a-AB  202.27 28.75 a-AB  225.63 12.51 a-A  145.90 43.49 a-B  238.25 23.33 a-A 

clay (g kg–1) 

0-20 160.14 34.38 a-AB  63.99 18.24 a-BC  153.82 55.36 a-AB  3.75 2.09 b-C  314.01 16.37 b-A 

40-50 135.36 34.38 a-AB   76.39 8.41 b-BC   182.47 40.66 a-A   7.00 0.84 a-C   344.81 15.13 a-A 
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Tab. S5. Validation parameters for the determinations of pseudo total elements in soils: method detection limits (MDL), 
dynamic range, dependent coefficient of calibration curves (R2), certified reference material values (BCR 141R), recovery 
on certified soils, and relative standard deviation (RSD).  

 
MDL 

(mg/L) 

Dynamic 

range 

(mg/L) 

R2 
BCR 141R 

(mg/kg) 

Recovery 

 (%) 

RSD 

(%) 

Al 5.1 0-500 1.000    
Ba 0.04 0-5 1.000    
Ca 5.2 0-500 0.99999    
Cd 0.04 0-1.0 1.000 14.0  0.4 97  1.4 1.5 
Co 0.11 0-1.0 1.000 9.2  0.5 85  1.8 2.1 
Cr 0.05 0-1.0 1.000 138  5 80  0.5 1.5 
Cu 0.15 0-5.0 1.000 46.9  1.8 98  0.8 1.6 
Fe 0.24 0-500 1.0000    
K 7.6 0-500 0.99997    

Mg 0.31 0-500 1.0000    
Mn 0.01 0-40.0 0.99999 653  16 96  0.6 1.8 
Mo 0.14 0-1.0 1.0000    
Na 0.24 0-500 0.99999    
Ni 0.12 0-1.0 1.0000 94  5 85  0.5 1.3 
Pb 0.44 0-1.0 1.0000 51.3  2.0 89  0.6 1.6 
Rb 1.5 0-40.0 0.99807    
Sr 0.09 0-5.0 0.99983    
Ti 0.01 0-40.0 1.0000    
Zn 0.05 0-5.0 1.0000 270  8 96  0.6 1.6 
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Tab. S6. Validation parameters for the determinations of bioavailable elements in soils: method detection limits 
(MDL), dynamic range, dependent coefficient of calibration curves (R2), values of certified reference materials 
(BCR 700), recovery on certified soils and relative standard deviation (RSD).  

 
MDL 

(mg/L) 

Dynamic 

range 

(mg/L) 

R2 
 BCR 700 

(mg/kg) 

Recovery  

(%) 

RSD 

(%) 

Al 0.19 0-500 1.000    
Ba 0.0021 0-5 1.000    
Ca 0.047 0-500 1.000    
Cd 0.0021 0-1.0 1.000 65  4 95  0.6 0.6 
Co 0.0060 0-1.0 1.000    
Cr 0.011 0-1.0 1.000 10  1 94  0.5 0.6 
Cu 0.0050 0-5.0 1.000 89  3 93  0.6 0.6 
Fe 0.085 0-500 1.0000    
K 0.22 0-500 0.99997    

Mg 0.046 0-500 1.0000    
Mn 0.0021 0-40.0 0.99999    
Mo 0.012 0-1.0 1.0000    
Na 0.10 0-500 0.99999    
Ni 0.0090 0-1.0 1.0000 53  3 86  0.5 0.6 
Pb 0.019 0-1.0 1.0000 103  5 89  0.3 0.3 
Rb 0.002 0-40.0 0.99807    
Sr 0.0010 0-5.0 0.99983    
Ti 0.011 0-40.0 1.0000    
Zn 0.028 0-5.0 1.0000 510  17 88  0.5 0.6 
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Tab.S7. Means ± standard deviation (SD) of the contents of pseudo total elements (PTE) and bioavailable elements (BAE) in soils at different depths (0-20 cm and 40-50 cm). A nonparametric 
multiple test (p values of Kruskal–Wallis Test) was applied.  Lowercase letters (a, b, c) and uppercase letters (A, B, C) were used to compare the mean ranks of distributions of depths and 
different orchards, respectively. n°: number of top and subsoil samples 
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Chapter 2: Traceability of high-quality lemon juices by multielement 

composition and strontium isotope ratio analyses 
 

1 Introduction 

Local food is an important resource for the territorial sustainability and economic welfare of local 

communities (Sims, 2009). It generates local identity as an interaction between natural resources and 

production system in a specific landscape (Arfini et al., 2010). In this contest the local food can 

generate benefits as creation of rural communities and implementation of local tourism (Sims, 2009). 

The Sorrento Peninsula is one of the most successful destinations for international tourism, for many 

reasons, such as unique landscape of tuff cliffs, gentle climate, citrus orchards and olive grove 

(Agovino et al., 2021). A special place in increasing the local tourism in the area is occupied by the 

lemon cultivations well-known all over the world for their quality. Currently, in Campania, two high-

quality products have been certified and registered as Protected Geographical Indication (PGI) 

products, i.e. Limone di Sorrento (G.U.n°24, 2011) and Limone Costa D’Amalfi (G.U.n°178, 2001), 

both located in Sorrento Peninsula. These PGI products are specifically marketed for fresh 

consumption (intact lemon or squeezed lemon juice) or to produce typical liquor called "Limoncello". 

The lemon orchards follow a traditional cultivation system. They are cultivated on terraces and 

covered with “pergolato sorrentino”, a system made from vertical wooden canes that covers the whole 

lemon grove with reeds known as “pagliarelle” (Giare & Giuca, 2008). Due to geomorphological 

conformation of Sorrento peninsula, the traditional agriculture, mostly on terraces, contributes to the 

soil stability and hydrogeological equilibrium of slopes (Lal, 2001). Furthermore, this type of 

territorial geographical conformation, can produce different microclimates and habitats along the 

slopes (Savo et al., 2016). These peculiar environmental features contribute not only to produce high-

quality lemon fruits but also to protect the precious and fragile landscape. Apart from the higher 

economic costs associated with the laborious traditional production systems, the Sorrento and Amalfi 

PGI lemons also carry a story and tradition that is valued by consumers who are willing to pay a high 

price/premium for the product (Giare & Giuca, 2008). Given the difficulty of subjectively distinguish 

different valued lemons, it is vital to develop suitable techniques to detect frauds. Considering the 

strong link of this product with soil and climatic features the choice of authentication and traceability 

techniques naturally falls on geochemical tracers as the 87Sr/86Sr isotope ratio and multielement 

fingerprinting of lemons. The isotope ratio fingerprinting is based on the principle that the different 

isotopes of the same element have similar chemical properties, due to the same number of protons 

and electrons, but different physical properties, due to the different mass. Radiogenic isotopes, such 
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as 87Sr/86Sr, are invariant from biological fractionation and annual variation, during the plant uptake, 

compared to the isotopes of the light elements as C, H, N, O, and S (2H/1H, 13C/12C, 15N/14N, 18O/16O, 

and 34S/32S), because their measurements only record the variations due to a single factor: the 

radioactive decay of 87Rb into 87Sr (see methods). Given the very long time scale of this process,  the 
87Sr/86Sr ratio within rocks and soil minerals is constant in the environmental systems on time scales 

of <104 years (Nakano, 2016). Hence, the 87Sr/86Sr isotope ratio was successfully applied to 

discriminate different food products as a soil-derived traceability marker (Choi et al., 2008; Kawasaki 

et al., 2002; Petrini et al., 2015; Rummel et al., 2010; Vinciguerra et al., 2016; West et al., 2009). 

Moreover, several authors have shown that the 87Sr/86Sr ratio of plants closely reflects that of the soil 

solution in which they grow and therefore suggest measurement of the isotopic composition of Sr 

bioavailable fraction present in soil instead of total Sr (Brunner et al., 2010; Swoboda et al., 2008; 

Zannella et al., 2017).Some authors  (Bong et al., 2012; Trincherini et al., 2014) reported that in rare 

cases, the use of only the 87Sr/86Sr isotope ratio could be not sufficient to discriminate different areas 

showing similar geological features. Thus a multidisciplinary approach, as the addition of 

multielement profile, can be useful for improving the discrimination power of Sr isotopic signature 

(Bong et al., 2012; Epova et al., 2018; García-Ruiz et al., 2007; Hiraoka et al., 2016; Zampella et al., 

2011; Zannella et al., 2017). The multielement fingerprinting, as the Sr isotope signature, is 

considered a soil-derived geochemical tracer (Danezis et al., 2016). It is based on the principle that 

the mineral composition of food products reflects in a certain way the element arrays of cultivation 

soils (Anderson & Smith, 2005; Cheajesadagul et al., 2013; Gonzálvez et al., 2011; Kelly et al., 2002; 

Laursen et al., 2014; Simpkins et al., 2000). It is worth noting that the mineral composition of agri-

food products is affected by several factors as agronomic management (fertilization, pest and weed 

control management), crop rotation, climate, in addition to natural soil fertility (Rosen & Allan, 

2007). Moreover, in soil several factors can influence the bioavailability of elements such as pH, 

organic matter, texture, and chemical form of the elements (Kabata-Pendias, 2011). In a previous 

study (Chapter 1) we developed a chemometric discriminant model to track the juice of Sorrento PGI 

lemon on a small geographical scale (Campania regional scale) by multi-element fingerprinting. The 

results showed that the mineral profile of lemon juices was able to discriminate for the geographical 

origins despite the different cultivars, and with some elements (most of them not essential for plant) 

well correlating with cultivation soils. In this work we extend the previous model to a larger scale, 

adding samples gathered from local markets outside Campania (mainly from Calabria region) and in 

California, combining stable Sr isotope ratio and multi-element analysis of lemon juices and 

cultivation soils. 



 

72 

2. Materials and Methods  

2.1. The study area and samples details 

Eight lemon orchards were sampled in Campania, south Italy. Six orchards were located in the 

Limone di Sorrento and Limone Costa d’Amalfi PGI areas, respectively on the northern and southern 

slopes of the Sorrento Peninsula. The other two were located outside the PGI areas in the experimental 

fields of the Agricultural Sciences Department of University of Naples Federico II, in Portici (NA), 

and in the Regional experimental agricultural farm "Improsta", in Eboli (SA). In order to compare the 

Campanian lemon fruits with lemon of other origins (large scale), other four groups of fruits were 

taken from Italian and U.S. local markets. The Sorrento Peninsula is a headland located in south Italy 

that separates the Gulf of Naples to the north from the Gulf of Salerno to the south. Dominated by 

Lattari Mountains, the Sorrento Peninsula is mainly characterized by Mesozoic dolomite limestone, 

Triassic to Upper Cretaceous in age, with Quaternary pyroclastic deposits unevenly distributed over 

the area (Savo et al., 2014). These deposits are constituted by ash-flows and tuffs derived from the 

activity of the Phlegrean Fields, well preserved in the piedmont plain, and Somma-Vesuvius, 

preserved on mountain slopes (Apuzzo et al., 2013). The soils in the area mainly derive from the 

pyroclastic cover, characterized by the overlapping of different deposits among which pedogenic 

processes developed. Primary deposits prevail at the top of Mountains, whereas reworked sediments 

are essentially found at lower elevations, in concavities and in karstic depressions. Along the slopes, 

undifferentiated colluvium with volcanic and limestone fragments crops out, the soil profiles are 

frequently truncated or even totally removed, and due to the presence of low-grade crystallinity clays, 

the soils are characterized by thixotropic properties (Terribile et al., 2007). Traditionally, terraces are 

built on slopes to obtain arable land. The construction of these terraces modifies the landscape, the 

hydro-geological equilibrium and the vegetation patterns. Terraces are typically dried stone 

structures, sometimes, with minimum slopes, steps are made of earth and covered by grass. The 

experimental fields of Agricultural Sciences Department of Naples University are located in the Royal 

Park of Portici (NA) (latitude 40° 48.860’ N, longitude 14° 20.851’ E) at the south-western foothills 

of Mt. Vesuvius, between 20 and 90 m a.s.l. The soils of the Park, like those of all the Vesuvius area, 

derive from volcanic substrata such as lava flows, ash and lapilli, have moderate profile 

differentiation and moderately or weakly expressed Andic properties reflecting the activities of the 

primary vitreous materials (Di Gennaro, 2002; Di Gennaro & Terribile, 1999). The 

Regional experimental agricultural farm "Improsta", is located in the alluvial plain of Sele river.  The 

Eboli area is characterized by a sequence of alluvial clastic deposits outcropping along the southern 
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border of the Picentini Mountains called “conglomerati di Eboli” (Cinque et al., 1988). The soils in 

the area fall within the Cartographic Unit 3 of the Soil Map (scale 1: 50,000) of the right bank of the 

Sele river, realised by the SeSIRCA Department of Agriculture of Campania Region. UC3 has a 

considerable areal extension and is widespread mostly in the municipal area of Battipaglia and Eboli, 

downstream of the Tusciano river. It includes deep soils of areas with very modest slopes, between 1 

and 3%, with rectilinear or slightly undulating morphology, formed on fine alluvium-colluvial 

deposits, stratified by channel, with reworked cinerite contributions. According to the USDA they are 

classified as Typic Haploxerepts or Pachic Haploxerolls. In all sampling sites (Sorrento peninsula, 

Portici, Eboli), considering the relatively small scale and the vicinity to the sea, the climate features 

are typically Mediterranean with a cold wet season (October to March) and a hot dry season (April to 

September). In total, eighty-eight mature lemon fruits (Citrus limon (L.) Burm.) were randomly 

collected (5-7 lemons were collected per tree) in 2019 from the eight orchard farms located in 

Campania region. The details on sampling sites and samples are given in table 1. In each orchard, 

around the trees sampled for lemons, three soil samples (about 500g each) were collected at the depth 

of 40-50 cm. The single soil samples taken from each orchard were then mixed to obtain composite 

samples reaching a total of 8 composite soil samples. It is worth noting that the samples bought in the 

local markets (USA and CAL) did not have specific indications of provenance on the labels, except 

for CAL2 referring to Citrus limon (L.) Burm. Femminello comune Antico di Rocca Imperiale IGP 

cultivated on the Ionic coast of Calabria region.  

2.2. Determination soil elemental composition  

The composite soil samples were air-dried, sieved at 2 mm, homogenized, and quartered in four 

subsamples. About 50 g of a subsample for each soil were pulverized in agata ball mill (PM 200, 

Retsch Gmbh, Haan, Germany).  Soil powders were subjected to four different Sr-extraction 

procedures: for the determination of total Sr fraction, about 100 mg of sample was digested in a 

mixture of 2 ml of 38% Ultrapure HF + 1 ml 65% Ultrapur HNO3, left for 7 days on a hot-plate at 80 

°C, and daily subjected to ultrasonic bath to ensure complete dissolution of silicate fraction; for 

pseudototal Sr fraction, 200 mg of pulverized soils was digested in aqua regia (3 mL of 38% Ultrapure 

HCl and 1 mL of 65% Ultrapur HNO3), put on a hot plate at 95 °C for 2 hours and subjected to 

ultrasonic bath each half hour. In addition, soil potentially and readily bioavailable fractions were 

determined by EDTA 0.05 M and 1 M NH4NO3 extraction following procedure described in Agrelli 

et al. (2017). 
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2.3. Determination of lemon juice elemental composition 

Plant essential (Fe, Mn, Cu, Zn, Mo, Ca, K, Mg, including Na) and not-essential elements (Ti, Co, 

Rb, Sr and Ba) were determined in lemon juices. Five grams of juices were mineralized in a Teflon 

tube with 4 mL of HNO3 65% ultrapure and 2 mL of H2O2 30 % using a microwave system (Mars 5 

Express, CEM) following   power ramp to 1600W for 5-5-10 min with a temperature of 100-150-200 

°C, respectively. After cooling, the mixtures were completed to 50 mL final volume with ultrapure 

water and element were determined by inductively coupled plasma-mass spectrometer (ICP-MS, 

7800 Agilent Technologies, Santa Clara, CA, USA). More details about ICP-MS operating conditions 

and lemon juice sample preparation are reported in (Chapter 1). 

2.4. Determination of Sr isotopic ratio  

Twenty-three juice mineralized solutions (about 20% of all samples) were used for Sr isotopic 

analysis. The samples for Sr isotope analyses were randomly chosen inside the different provenance 

areas in order to explain the major variability inside each area i.e. 8 samples for SR, 5 for AM, 2 for 

EB, 2 for PR, 4 for CAL and 2 for USA. In addition, for eight selected soil samples, Sr isotopic 

analyses were performed on total Sr, pseudototal Sr fraction, as well as EDTA and NH4NO3 

extraction solution. The Sr isotopic analysis were performed using a ThermoFisher Neptune Plus 

MC-ICP-MS at the IGG-CNR of Pisa, in 2% HNO3 solution containing 20-200 ng*g-1 of analyte 

after Sr extraction from matrix with Sr-spec resin in class 100 clean room. The instrument was 

equipped with a combined cyclonic and Scott-type quartz spray chamber, Ni-cones and a MicroFlow 

PFA 100 µl/min self-aspiring nebulizer. To eliminate the possible interferences, due to the presence 

of other elements, in particular Ca and Rb, the Sr was separated using a specific Sr-spec resin 

(Eichrom Sr). 87Sr/86Sr isotope ratios were corrected for mass bias fractionation using the 88Sr/86Sr 

ratio (= 8.375209), thus discarding also any effect due to mass dependent isotope fractionation 

eventually occurring in natural processes, and for mass interference using the ratios 83Kr/84 Kr (= 

0.201750), 83Kr/86Kr (= 0.664740) and 85Rb/87Rb (= 2.592310). The results of four repeated analyses 

of 87Sr/86Sr of reference material NIST SRM 987 carried out along with unknown samples was 

0.710281 ± 4, samples were adjusted for a value of 0.710248.
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2.5. Statistical analysis 

The data analysis was carried out by SPSS 23.0 statistical software (SPSS Inc., Chicago, IL) and 

XLSTAT version 2016.02.284551 (Addinsoft, NY, USA). The Shapiro-Wilk test (p < 0.05) was 

applied to check the normal distribution of each variable. Multivariate statistic was used on mineral 

compositions of juices. Before the multivariate analysis, the whole dataset was variance scaled, mean-

cantered, and normalized with log transformation. The Principal Component Analysis (PCA) was 

used for exploring the natural grouping of samples. The PCA is a bilinear decomposition technique 

capable of reducing large variables into few principal components (PCs), preserving data variance. 

The PCs score plot can be used to detect sample differences and similarities whereas the loadings plot 

(weight of each original variable on the PCs) is useful to distinguish the variables that are major 

contributors to a PC and that lead to the natural clustering of groups (data not labelled, unsupervised 

method) within the dataset (Li Vigni et al., 2013). Before PCA, to measure sampling adequacy and 

evaluate the suitability of the data matrix, the Kaiser-Meyer-Olkin test (KMO test), and Bartlett’s test 

of sphericity were performed (Pellerano et al., 2008). Based on the results of PCA, the Stepwise 

Linear Discriminant Analysis (S-LDA) was carried out. LDA is a supervised (groups defined a priori) 

discriminant method that defines discriminant functions that are linear combinations of the original 

variables for optimizing the separation. The aim of LDA is to discriminate among groups by 

maximizing the variance between groups and minimizing the variance within each group (Gaiad et 

al., 2016). The results of LDA were evaluated based on Wilks' lambda. This value, close to zero 

indicates that the models can perfectly discriminate (Zhao et al., 2017). In addition,  the application 

of Stepwise procedure selects only the best discriminant variables based on F-statistic factor 

(Rencher, 2003). Before the LDA, whole dataset was randomly divided in calibration set (75% of all 

samples) and external validation set (25%). The rightness of LDA was evaluated by the percentage 

of correct classification (accuracy), and the percentage of correct external validation. The juice 
87Sr/86Sr isotope ratio matrix was combined whit the mineral profile of lemon juice by a low-level 

data fusion approach to investigate the contribution of each single analysis (87Sr/86Sr and mineral 

profile) in discriminating the samples according to provenances. The data low-level data fusion 

approach consists to create a single matrix combining data from different analytical techniques 

(Borràs et al., 2015). In our case, the matrix of Sr isotope ratio was unsuitable to build a discrimination 

model because the sizes of different provenance class were unbalanced. So we only applied an 

explorative PCA analysis. The use of this approach allowed to put in evidence the natural clustering 

of samples and the contribution of each variable.



 

76 

3. Results and Discussion 

3.1. Strontium isotope ratio in soils and lemon juices  

The 87Sr/86Sr isotopic ratios of total Sr (TotSr), pseudototal Sr (PTSr), EDTA extractable Sr 

(EDTASr), and NH4NO3 extractable Sr (NH4Sr) measured in soils and in lemon juices from the 

Campania region are given in Fig. 1. The isotopic ratio of TotSr in PR soil (0.70744) was the lowest 

among all orchards and within the interval of Campanian Plio-Quaternary volcanic rocks (0.7063-

0.7080) reported by Peccerillo (2005).  The highest ratio was found in EB (0.70861), likely attributed 

to the heterogeneity of  alluvial clastic sediments probably of silicate origin (Nisi, 1998) of Sele plain 

sediments. In Sorrento Peninsula, the values of 87Sr/86Sr isotopic ratio of TotSr ranging between 

0.70756 and 0.70822 are in good agreement with the values reported by Peccerillo (2005) for 

Campanian Plio-Quaternary volcanic rocks of Somma Vesuvius (0.7063-0.7080) and Phlegraean 

Fields (0.7065-0.7086). Considering the geological substrate of Sorrento peninsula mainly 

constituted by Dolomite carbonates of different age with 87Sr/86Sr values ranging between 0.707385 

and 0.7760 (0.70738-0.70739 for Amalfi side and 0.707471-0.70776 for Sorrento side) as recorded 

by Iannace et al. (2011) our results denote an overall predominance of volcanic materials deposited 

on the carbonate substrate (Calcaterra & Santo, 2004), in the  87Sr/86Sr isotopic ratios in the soils of 

Sorrento peninsula. The 87Sr/86Sr values for PTSr were in all cases lower than for TotSr. This can be 

explained with the occurrence of a high 87Sr component of the silicates fraction to TotSr (e.g. the 

aforementioned clastic sediments). The 87Sr/86Sr isotope ratio recorded in lemon juices, with the only 

exception of AM1, was always closer to that of the bioavailable soil fractions (EDTASr and NH4Sr) 

than to the total fractions (TotSr and PTSr). Indeed, in most cases, the NH4Sr values of soils were 

very close or, when considering the error bars, overlapping those of juices. This confirms once more 

that the Sr isotope ratio of the mobile Sr forms in soil is a better predictor of the 87Sr/86Sr ratio of 

lemon juices compared with the ratio of the soil total and pseudototal Sr (Brunner et al., 2010; 

Swoboda et al., 2008; Zannella et al., 2017). The only outliers are represented by juices AM2 and 

SR2, whose high Sr isotope ratio can be explained by the proximity of both orchards to the sea and 

thus by the contribution of marine spray (87Sr/86Sr ratio of 0.709202 ± 0.000003; Kuznetsov et al., 

2012) to juice ratio. The distribution of 87Sr/86Sr isotope ratios in lemon juices is reported in Fig. 2. 

Apart from these two outliers, the Campanian samples had ratios significantly lower than samples 

from other origins (CAL and USA). However, inside the Campanian group, there was a general 

overlapping among samples with 87Sr/86Sr values recorded in samples from EB (0.70768-0.70769) 

being significatively lower than those recorded in SR area (0.70776-0.70829) and PR (0.70785-



 

77 

0.70792), but slightly overlapping the values recorded in AM area (0.70769-0.70850). This 

observation could denote the large influence of carbonate deposits in both EB and AM, due to the 

occurrence in the two areas of  alluvial clastic deposits (ISPRA Foglio 486, 2015) and Mesozoic 

dolomite limestone (ISPRA Fogli 466-485, 2015), respectively. The lemon samples originating from 

Calabria region had 87Sr/86Sr ratio ranging between 0.70864 and 0.70891 in agreement with values 

found by Rummel et al. (2010) in orange juices (on average 87Sr/86Sr: 0.7090) and attributed to 

Calabria Cenozoic sediments consisting of a mixture of Mesozoic sediments and crystalline rocks. 

The high variability observed between the two lemon samples originating from California (87Sr/86Sr 

isotope ratio of 0.70902 for USA1 and 0.70831 for USA2), might be related to very heterogeneous 

geological and lithological conditions of South California state (San Joaquin Valley, Fresno, Kern, 

Tulare, Ventura, and Riverside) (Hall, 2007) where citrus fruit is mainly produced (Geisseler & 

Horwath, 2016). All above results confirm the Sr isotopic analysis as a powerful analytical tool to 

discriminate the geographical provenance of lemon juices, especially at large territorial scale. It is 

worth noting that for samples originating from not too far away areas (i.e. AM, SR and PR) the 

discrimination was not so clear due to the similarity in geological and soil features. Although the Sr 

isotope ratio in juices reflected not only that present in rocks but also in soils, the use of mineral 

profile could give more information on samples discrimination, not only for a small territorial scale, 

already demonstrated only for Limone di Sorrento PGI (Chapter 1)  but also on a large scale, due to 

the possible differences in the pool of elements in soils (different concentration, presence-absence). 

In fact, in the early stages of pedogenic processes, the concentration of elements in soils are close to 

that of parental materials; with time, the element content in soil will change due to pedogenic and 

anthropogenic processes (Kabata-Pendias, 2011). Although, in the same way, also the 87Sr/86Sr 

isotope ratio can be influenced by different factors as precipitation, soil parent material, and surface 

or groundwater (Capo et al., 1998), in soils located in a small-scale with similar geological feature 

and climatic condition, the variation of soil elemental composition is likely to be higher than the 

variation of 87Sr/86Sr isotope ratio. 
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3.2. Mineral composition of lemon juices 

The contents (mean ± standard deviation) of essential (K, Mg, Ca, Na, Zn, Fe, Cu, Mn, Mo) and not-

essential (Rb, Sr, Ba, Ti, Co) elements in lemon juices is shown in table 2. An exploratory analysis 

by PCA on the whole dataset (14 elements and 89 lemon juices) was carried out for screening the 

natural grouping of samples. The KMO test, giving a result of 0.671, greater than recommended value 

of 0.500 (Potortì et al., 2020), and the Bartlett sphericity test, showing p-value < 0.0001, indicated 

the adequacy of the matrix to apply the PCA (Li et al., 2018). PCA showed that the first six extract 

components, eigenvalues >1 (Kasier, 1960), explained 81.5% of the total variance. The score plot of 

the first two PCs (Fig.3a), explaining the 48.4% of the cumulate variance (33.5% and 14.9%), showed 

a general overlapping among the different groups according to provenance, although a slight 

differentiation was shown among Campanian (AM, SR, PR, EB), Californian (USA1 and USA2) and 

Calabrian samples (CAL1 and CAL2) on PC1 (pink and black labels, respectively). However, all 

Campania samples seem to be overlapped and only a slight trend of grouping was detected. In 

particular, the samples of PR and EB were differentiated on PC2, and both PGI areas (SR and AM) 

seem to be close to each other. According to the loadings, for PC1 they were Sr (16.2%), Co (16.1%), 

Mn (15.6%), Ca (12.8%), Mg (11.9%) and Ba (11.1%) and for PC2: Na (33.4%), K (23.9%) and Rb 

(22.1%). Two others explorative PCAs were carried, to explore the contribution of essential and not-

essential elements for discrimination of origins, on the same samples. The KMO test was 0.517 and 

0.658 for essential and not-essential elements, respectively, and the p-value of Bartlett sphericity in 

both cases was < 0.0001. For essential elements, five components (83.3% of total variance) were 

extracted. The score plots of the first two PCs (Fig.3b), explained the 49.3% of the total variance 

(29.7% and 19.7%) and showed, in the same way for the dataset with all elements, a general 

overlapping among the different sites of sampling, with a very slight differentiation among Campania, 

Calabrian and Californian samples. On the contrary, inside the Campanian groups, it seems to be no 

grouping between the two PGI areas (orange and red labels), but the differentiation between PR and 

EB seems to be clear. For not-essential elements, three components, with 84.2% of the total variance, 

were extracted. The score plots of the first two PCs (Fig.3c) explained 66.18% of the cumulative 

variance (45.2% and 21.0%), and showed a clear grouping, compared with the other two datasets, 

also for the groups of the Campania region with only a slight overlapping each other. It is worth 

noting that the two groups from the Calabria region, the two Californian groups and the two 

Campanian PGI groups, were clearly separated. These results suggested that the contribution of not 

essential elements was predominant in the discrimination of lemon juices samples, in particular way 

at small territorial scale, with the possibility to build supervised discriminant models (all elements, 
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essential and not-essential elements) dividing the data set according to provenance (AM, SR, PR, EB, 

CAL, and USA).  

3.3. Discriminant analyses 

Based on the results of different exploratory analyses, three different S-LDA on 75% of the samples 

(66 lemon juice samples) were built according to geographical provenance. The 25% remaining 

samples (23 lemon juice samples) were used for external validation. The calibration set was divided 

in AM (15), SR (17), PR (10), EB (9), CAL (9), USA (6). In all cases, the S-LDA models showed 

significant differences between groups with Wilks’ values near zero, namely 0.001, 0.012, 0.020 for 

all, essential and not-essential elements, respectively. The model based on all elements gave the 

98.45% of accuracy and the 90.9% of external samples correctly validated. The stepwise procedure 

selected the 78.5% of analysed elements as best discriminants. Among them there were all the 

analysed not-essential elements (Sr, Rb, Ba, Ti, and Co) and only 66.6% of the essential elements (K, 

Ca, Mg, Fe, Mn, and Mo). The model based on the essential elements gave the 86.3% of correct 

classification and the 72.7% of the samples correctly validated. The stepwise procedure selected 

77.7% of all considered elements (K, Mg, Na, Cu, Zn, Mn, Mo). The model based on not-essential 

elements gave the 92.4 % of samples correctly classified with 86.3% of correct validation. In this 

case, the stepwise procedure selected all not-essential elements as discriminants (Sr, Rb, Ba, Ti, and 

Co). Comparing the best discriminants selected in all models, it is worth noting that among essential 

elements only variables as K, Mg, Mn, and Mo were in common with the all-element model, with Fe 

and Ca selected only for the all-element model and Na, Cu, and Zn only for the essential-element 

model, while all not-essential elements were selected in both cases (the all-element and the not-

essential element models). All the above results suggest that the use of the all-element profile was the 

best way to discriminate the lemon juices of different geographical origin. However, the reliability of 

the not-essential element model, expressed as the ratio between the percentages of external validation 

and classification (Chapter 1), was more similar to that of the all-element model (0.92 and 0.93, 

respectively) than that of the essential element model (0.84). This would indicate that the contribution 

of not-essential elements was higher than that of essential elements in the all-element profiles for 

discrimination according to geographical origins. However, in the all-element profile, mainly 

depending on composition of cultivation soil, the contents of the not-essential elements could be more 

effective than the essential elements, because their contents in soils could be more affected by 

cultivation management, primarily through their addition by fertilization practices. It is worth noting 

that the uptake from the soil of not-essential elements as Ba, Sr, Rb is more linear than that of 

competitive essential elements, (Ba and Sr for Ca and Rb for K) (El-Sheikh & Ulrich, 1970; Jackman, 
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1965; Rediske & Selders, 1953), due to their low amount and consequently bioavailability in soil 

(Kabata-Pendias, 2011). In addition, in the juices, the role of all cations can be more related to osmotic 

regulation than to biochemical roles compared to what happens in plant tissues. Thus, the not-

essential element composition of juices should be more affected by the root uptake than the essential 

elements, also affected by translocation from other plant organs. 

3.4. Fusion of 87Sr/86Sr isotope ratio and mineral profile of lemon juices 

Based on the results of the discriminative models on lemon juice mineral profile and 86Sr/87Sr isotope 

signature, two exploratory data analysis using PCA were carried out considering only the twenty-

three samples analysed for the Sr isotope ratio. The first PCA was applied on the combined matrix 

(86Sr/87Sr + multielement profile), the second on the elemental profile matrix alone. Before the PCA, 

the KMO test was applied, giving 0.517 for the combined matrix and 0.657 for the elemental profile 

matrix. In both cases, the Bartlett sphericity test showed a p-value < 0.0001, and the first 4 PCs were 

extracted (eigenvalues >1) giving 74.59% and 74.46% of the cumulative variance for the combined 

and elemental profile matrix, respectively. The biplot (Fig.4a) of the first two PCs (55.55% of 

explained variance) of the lemon juice multielement profile showed a natural grouping similar to the 

one seen for the entire dataset (Fig.3a) with a slight differentiation among the samples from 

Campania, Calabria, and California. Also, Zn (13.2%), Sr (13.08%), Cu (10.8%), Mn (10.7%), Co 

(9.7%) and Ti (8.0%) showed high contribution on PC1 and K (26.8%), Na (21.16%), Mo (14.3%) 

Co (9.4%) and Rb (8.1%) on PC2. For the combined matrix, the biplot (Fig.4a) of the first two PCs, 

explaining the 54.6% of the variance, showed a clear clustering on the large territorial scale on PC2, 

with the highest contribution of 86Sr/87Sr (15.0%), and a slightly better differentiation of AM-PGI 

on PC1 compared with the biplot considering only the elemental profile, with the highest contribution 

of Sr (13.6%) and Co (10.33%). Comparing the two biplots (Fig.4), the data fusion approach showed 

a clearer grouping of samples compared to the mineral profile alone, especially on a large territorial 

scale.
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4. Conclusions 

The multi analytical approach applied in this paper based on 87Sr/86Sr isotopic signature and mineral 

composition of lemon juice was able to discriminate the samples of different geographical origin 

either at small and large territorial scale. The strontium isotope ratio of lemon juices was more closely 

related to that of the bioavailable fractions of soil and shown differences among samples from 

different provenances better at a large than at a small territorial scale. It is widely accepted that the 

Sr isotopic ratio of agri-products reflects the geological characteristics of the product provenience 

sites. Our results clearly show that the 87Sr/86Sr isotope ratio in lemon juices was closely related to 

the cultivation soils having values of 87Sr/86Sr ratio slightly different from that of the underlying 

geological substrates (mainly limestone), and this behavior was likely due to the occurrence in the 

study area of foreign contributions such as volcanic depositions. The results of exploratory analysis 

applied on all, only essential, and only not-essential element composition of lemon juices showed a 

potential ability to discriminate among samples of different origin. The S-LDA model based on the 

all-element profile gave the 98.45% of accuracy with the 90.9% of external samples correctly 

validated, indicating as best discriminant variables all not-essential elements (Sr, Rb, Ba, Ti, and Co) 

and only 66.6% of the analysed essential elements (K, Ca, Mg, Fe, Mn, and Mo). Thus, applying the 

same model on two groups of variables (essential and not-essential elements), we showed that the 

contribution of not-essential elements was more reliable than that of essential elements more affected 

by cultivation management. The combination of Sr isotope signature and multielement profile by 

PCA explorative analysis (data fusion approach) produced promising results in terms of 

discrimination of lemon juice geographical origin. Nevertheless, in this study, due to statistical limits 

(unbalanced groups), it was not possible to apply to the combined matrix, supervised discriminant 

models as LDA. This might be done in future increasing the number of samples analysed for Sr 

isotope ratio. The validity of the multi analytical approach proposed in this study deserves future 

research involving replication across growing seasons and a larger sample size to encompass the 

natural pedoclimatic variability of the study area.  
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Table 1. Details of samples and sampling sites. AM-PGI, Limone Costa D’Amalfi PGI area; Limone di Sorrento PGI area 

(SR-PGI), local markets in Calabria region, Italy (CAL-NOPGI) and local markets in Berkeley, California, U.S. (USA-

NOPGI) 

Labels Locations Citrus limon (L.) Burm cv. n° fruits 

 AM-PGI 

   
AM1 40°40'27''N,14°38'53''E Femminello Sfusato Amalfitano 6 

AM2 40°39'32''N,14°38'48''E Femminello Sfusato Amalfitano 7 

AM3 40°38'32''N,14°39'31''E Femminello Sfusato Amalfitano 6 

 SR-PGI 

  
 

SR1 40°36'28''N;14°20'36''E Femminello Ovale di Sorrento 8 

SR2 40°37'51''N;14°24'22''E Femminello Ovale di Sorrento 10 

SR3 40°36'59''N;14°23'10''E 
Femminello Ovale di Sorrento 4 

Femminello Sfusato Amalfitano 3 

   
 

 PR-NOPGI 40°48'54''N;14°20'49''E 
Femminello Ovale di Sorrento 6 

Femminello Sfusato Amalfitano 6 

   
 

 EB-NOPGI 40°33'21''N;14°58'53''E 
Femminello Ovale di Sorrento 6 

Femminello Sfusato Amalfitano 5 

   
 

 CAL-NOPGI 

  
 

CAL1  local market, Italy Femminello Siracusano 2KR 6 

CAL2 local market, Italy 
Femminello Comune Antico di 

Rocca Imperiale IGP  
5 

 USA-NOPGI 

  
 

USA1 local market, U.S. Lisbon 4 

USA2 local market, U.S. Eureka 6 
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Table 2. Mineral composition (mean ± standard deviation) of lemon juices according to provenance; AM1, AM2 and AM3 from the “Amalfi PGI area”; S1, S2 and S3 from the 

“Sorrento PGI area”; PR-NOPGI from the germplasm field, Portici (NA); EB-NOPGI from germplasm field, Eboli (SA); CAL1 and CAL2 from Italian markets in Calabria region 

(CAL-NOPGI); USA1 and USA2 from local markets in Berkeley, CA, U.S. n: total number of samples. 

Elements 

AM-PGI (n°19)   SR-PGI (n°25)   
EB-NOPGI 

(n°11) 

  
PR-NOPGI 

(n°12) 

  CAL-NOPGI (n°11)   USA-NOPGI (n°10) 

AM1 (n°6) AM2 (n°7) AM3 (n°6) 

 

S1 (n°8) S2 (n°10) S3 (n°7) 

 

 

 
CAL1 (n°6) CAL2 (n°5) 

 
USA1 (n°4) USA2 (n°6) 

mg kg-1 

                 
K 1381 ± 207 1352 ± 111 1125 ± 83 

 
1420 ± 222 1304 ± 136 1214 ± 113 

 
1482 ± 99 

 
1314 ± 121 

 
1219 ± 78 1086 ± 118 

 
1098 ± 67 1002 ± 41 

Mg 56.4 ± 5.0 62.1 ± 5.0 40.8 ± 6.0 
 

59.8 ± 8.2 60.1 ± 5.4 55.7 ± 8.1 
 

67.3 ± 5.5 
 

60.4 ± 3.3 
 

57.9 ± 7.0 63.4 ± 6.7 
 

74.4 ± 5.8 99.5 ± 3.8 

Ca 35.0 ± 9.0 44.8 ± 10.4 33.6 ± 5.2 
 

53.8 ± 12.0 32.7 ± 7.8 36.4 ± 13.4 
 

51.7 ± 10.8 
 

34.8 ± 5.0 
 

39 ± 6.6 66.5 ± 7.5 
 

72.9 ± 20.6 74.1 ± 6.9 

Na 5.9 ± 2.0 7.5 ± 3.0 5.8 ± 1.9 
 

7.1 ± 3.3 4.7 ± 1.2 3.5 ± 1.1 
 

8.8 ± 8.3 
 

3.0 ± 0.6 
 

2.5 ± 0.4 4.5 ± 1.4 
 

4.8 ± 1.6 2.9 ± 0.9 

μg kg-1 

                 
Zn 353.7 ± 32.8 363.2 ± 80.4 346.7 ± 119.6 

 
423.2 ± 71.4 476.2 ± 123.5 369.8 ± 59.2 

 
413.0 ± 207.5 481.6 ± 144.5 431.8 ± 83.9 437.4 ± 114.4 

 
590.1 ± 251.3 572.0 ± 164.9 

Cu 219.7 ± 46.8 219.9 ± 27.9 278.3 ± 40.7 
 

260.6 ± 52.5 208.4 ± 51.3 243.1 ± 34.0 
 

291.6 ± 109.1 205.6 ± 21.9 
 

315.3 ± 79.2 358.2 ± 116.5 
 

234.1 ± 31.3 341 ± 83.1 

Fe 277.5 ± 75.2 371 ± 105.7 539.1 ± 290.8 
 

345.3 ± 83.1 235.7 ± 123.8 249.9 ± 88.5 
 

346.1 ± 149.2 257.3 ± 44.8 
 

347.9 ± 306.5 181.3 ± 147.3 
 

255.8 ± 85.9 344.2 ± 111.9 

Mn 49.2 ± 7.6 41.8 ± 17.5 72.2 ± 19.3 
 

95.4 ± 17.3 84 ± 17.9 97.7 ± 26.7 
 

155.7 ± 78.2 
 

88.3 ± 13.9 
 

111.8 ± 29.1 130.7 ± 36.2 
 

130.7 ± 43.5 227.3 ± 36.7 

Mo 5.0 ± 2.3 2.8 ± 0.7 6.3 ± 2.1 
 

4.6 ± 1.4 5.3 ± 3.4 5.8 ± 1.9 
 

3.3 ± 0.9 
 

9.8 ± 2.7 
 

1.7 ± 0.7 2.8 ± 1.3 
 

8 ± 2.5 8.6 ± 2.5 

Rb 1145 ± 231 574 ± 79 853 ± 128 
 

1358 ± 354 960 ± 135 893 ± 79 
 

2035 ± 684 
 

792 ± 103 
 

366 ± 64 1026 ± 175 
 

1504 ± 548 871 ± 340 

Sr 30.1 ± 7.8 58.7 ± 16.6 64.2 ± 20.9 
 

206.6 ± 60.8 122 ± 36.7 173.5 ± 54.5 
 

123.0 ± 54.9 
 

89.8 ± 13.3 
 

132.5 ± 37.2 315.7 ± 76.4 
 

465.7 ± 211.0 474.3 ± 112.5 

Ba 71.0 ± 15.5 41.7 ± 9.6 31.7 ± 12.5 
 

52.7 ± 14.2 44.4 ± 14.8 73.6 ± 23.0 
 

87.9 ± 27.9 
 

24.7 ± 21.7 
 

40.1 ± 14.4 61.0± 16.4 
 

40.5 ± 23.4 902.8 ± 241.2 

Ti 10.9 ± 1.0 15.6 ± 4.1 17.5 ± 13.3 
 

4.8 ± 1.4 6.9 ± 7.9 2.7 ± 0.7 
 

3.2 ± 1.7 
 

7.9 ± 5.9 
 

6.0 ± 2.4 3.9 ± 1.4 
 

13.6 ± 5.4 11.4 ± 4.1 

Co 0.2 ± 0.1 0.4 ± 0.1 0.4 ± 0.2   0.6 ± 0.2 0.4 ± 0.2 0.8 ± 0.3   1.3 ± 0.9   0.7 ± 0.2   1.4 ± 0.3 2.5 ± 1.0   2.4 ± 0.4 3.2 ± 0.9 
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Figure 4 The distribution of 87Sr/86Sr isotopic ratios of total Sr (TotSr), pseudototal Sr (PTSr), EDTA extractable Sr 
(EDTASr), and NH4NO3 extractable Sr (NH4Sr) in soils and in juices from Campania 

 

 

Figure 5 The distributions of 87Sr/86Sr isotopic ratio in lemon juice according to provenance.
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Figure 6 Score plot of the exploratory Principal Component Analysis of lemon juices labelled according to origin: (a) all elements; (b) essential elements; (c) not-essential elements.
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Figure 7 Explorative PCA biplots. Biplot of lemon juice multielement profile (a); biplot of multielement profile and 87Sr/86Sr isotope ratio in lemon juice 
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Chapter 3: Potential use of Near-Infrared Spectroscopy on intact 
lemon fruits for authentication and traceability evaluated by 
chemometrics  
 

1 Introduction 

Lemon (Citrus limon L. Burm.), belong to the family Rutaceae, is one of the most worldwide 

cultivated citrus species mainly in tropical and subtropical areas (Sun et al. 2019; Shafqat et al. 2021). 

The lemon fruits are rich in nutrients, micronutrients, vitamins (as vitamin C), acids (mainly citric 

acid) and essential oils (Di Matteo et al., 2021; Sun et al., 2019). The quality of citrus fruits depends 

by different factors among which plant nutrition. About nutrient effects, nitrogen increased 

availability adversely affect fruit-keeping quality, while potassium is considered indispensable for 

good quality production and yields although its excess increases acid content (Ladaniya, 2010). Also 

the availability of water  has significant impact on organoleptic proprieties, its  shortage can increase 

total soluble solid and titratable acidity (García-Tejero et al., 2010). Globally the production of 

lemons, together limes (Citrus aurantiifolia), are around 23 MLN of tons per year with a harvest area 

of 1.4 MLN of ha. The European production represents 6% worldwide production concentrated for 

98% in the Mediterranean basin, where 51% refers to a European country (FAOSTAT, 2021). The 

geomorphological and climatic characteristics of the entire Mediterranean coastal area are suitable to 

produce excellent lemons which are prevalently devoted to fresh consumption (whole lemon and 

lemon juices), unlike those from other countries, such as Brazil and the United States, mostly used to 

produce concentrated juices (Giare and Giuca 2008). In this area the Italian lemon production, the 

second in Europe after Spain (Clever & Valverde, 2019), is concentrated mostly in the southern 

regions (Sicily, Calabria, Puglia, and Campania). Six lemon fruit from Italy were awarded Protected 

Geographical Indication (PGI) labels since 1992, in agreement with the European policies for the 

protection of geographical origin of high-quality products (EEC No 2080/92, 1992; EEC No 2081/92, 

1992). Among them, two arise from Sorrento peninsula in Campania region, the Limone di Sorrento 

IGP (cv. Femminello Ovale di Sorrento) from the northern slopes of the peninsula and Capri Island, 

and the Limone Costa d’Amalfi IGP (cv. Femminello Sfusato Amalfitano) from the southern slope. 

These PGI cultivations occupy around 260 hectares, mostly on terraces, with 550 producers registered 

(ISTAT, 2017), and play an important role for the production, but overall for territory stability 

guaranteed by traditional management, and tourism attractiveness due to suggestive landscapes  

(Savo et al., 2016). Ovale di Sorrento and, Sfusato Amalfitano, as all those widely cultivated in Italy 

of Feminello variety, produce fruit during the whole year usually called, in relation to the pickup 
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period. Primofiore (September-November), Limone, properly (December-May), Bianchetto (April-

June, and Verdello (May-July) (Ladaniya, 2010).  Such high value lemon productions need protection 

and enhancement forms, and these can be supported by the proposal of methods and protocols applied 

on lemon as such to evaluate product quality and provenance, they can be also useful to avoid frauds 

with lemons from other source. For this purpose, instrumental methods as Near Infrared Spectroscopy 

(NIRS) could be useful. It is a wide used technique for quality control in all production line of food 

industry. It is characterised by cheapness and applicability on materials as such (Jha et al., 2014; 

Luykx & van Ruth, 2008). NIR spectroscopy has been successfully applied for the determination of 

qualitative properties of different fruits (Xie et al., 2011; Jha et al., 2014; Saranwong et al., 2004; 

Ribeiro et al., 2011; Elfadl et al., 2010; Kahriman et al., 2011; Li et al., 2021; Wang et al., 2013; 

Amodio et al., 2017; Carlini et al., 2000; Gabioud et al., 2008; Birth et al., 1985), among which citrus 

fruits (Ana M. Cavaco et al., 2018; Arendse et al., 2017; Gòmez et al., 2006; Kawano et al., 1993; 

Miyamoto & Kitano, 2009; K. J. Lee et al., 2004), and, specifically lemon fruits (Reddy et al., 2016). 

In addition, it has been applied for the determination of the geographical origins of several agri-food 

products (Latorre et al., 2013; Woodcock et al., 2009; Woo et al., 2005; Zhao et al., 2013; Cozzolino 

et al., 2011; Iu et al., 2006; Jiménez-carvelo et al., 2019; Hirri et al., 2016; Guo et al., 2018; Ren et 

al., 2013; Eisenstecken et al., 2019; Amendola et al., 2020; Monteiro et al., 2018), and also of citrus 

fruits (Amenta et al., 2016; Fabroni et al., 2015). NIR spectroscopy investigates materials in the 

wavelengths region between 780 nm and 2500 nm (wavenumber between 12820 and 4000 cm-1), 

and the typical spectra obtained is characterised by absorption bands due to the overtone vibrational 

and rotational transitions of molecular bonds (Nicolaï et al., 2007). The NIR spectra of entire fruits 

are generally acquired in  diffuse reflectance more appropriate for opaque and thick samples for which 

IR ray transmission is very difficult, However, the fruit probing depth of light scattered in diffuse 

reflectance measurements remain questionable  (A. M. Cavaco et al., 2021). The NIR radiation 

decreases exponentially with the depth into fruit tissues (Arendse et al., 2018) and, especially for 

thick rind fruit such as citrus, pulp could be poorly explored by ray. Generally NIR spectra show low 

resolution and for sample of the same nature differences are difficult to appreciate (Polesello et al., 

1981). Thus, to compare and obtain information from NIR spectra, their treatment by multivariate 

statistic can be very effective (Blanco & Villarroya, 2002). Such chemometric analysis often require 

a pre-processing of spectra, typically, scatter correction, namely Multiplicative Scatter Correction 

(MSC) and Standard Normal Variate (SNV), and derivate correction, first and second derivate as 

Norris-Williams derivatives and Savitzky-Golay (SG) polynomial derivates (Rinnan et al., 2009). 

The aim of this work was to investigate the potential application of NIR spectroscopy on intact lemons 

for fruit quality and geographical origin assessment. For this purpose, lemons were collected in two 
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production years and in seven different orchards of the Campania PGI areas of Limone di Sorrento 

and Limone Costa d’Amalfi cultivations, and in two sites outside the PGI area but in the same region. 

Fruits were analysed for quality properties and their NIR spectra were acquired. The NIR 

spectroscopy reliability for quantitative analysis and traceability purposes was evaluated by 

multivariate statistical analyses. 

 

2 Materials and Methods  

 

2.1 Characteristics of sampling sites and soil analyses 

In Campania region (Italy) five orchards were chosen in the PGI area of Limone Costa d’Amalfi, on 

the southern slope of Sorrento peninsula overlooks the gulf of Salerno, and in PGI area of Limone di 

Sorrento, on northern slope of the peninsula overlook the gulf of Naples (Table 1). Geologically the 

Sorrento peninsula is essentially entirely constituted of Mesozoic carbonates covered by 

discontinuous layers (from less than 1 m to 2 m) of pyroclastic deposits mainly related to the air-fall 

products of the 79 AD Vesuvius eruption (Iannace et al., 2011; Picarelli et al., 2008). In both PGI 

areas the lemon cultivations are on terraces with “pagliarelle” coverings. Two further experimental 

orchards were chosen in Campania region, in Portici at the centre of Naples Gulf, that is characterised 

by typical volcanic soils being at the foot of Mt.Veuvius, and in Eboli, that is characterised by 

sedimentary soils being in the plain of Sele river flowing into Salerno gulf (Table 1). Further site 

characteristics are reported in Ruggiero et al., (2021). The climate of all sites is typically 

Mediterranean with dry summers and mild winter, the mean annual rainfall in a triennium 2016-18 

are reported in Table 1.  The temperature is available only for Portici and Eboli (13-22 °C on overage 

2017-2019), they should not be so different for the Sorrento peninsula given the proximity to the 

mentioned sites.Soil in all orchards were sampled at the 40-50 cm depth and the sieved soil fractions 

< 2 were analysed for pH (H2O), Cation Exchange Capacity (C.E.C), total Carbonates (tot. Carb.), 

Organic Carbon (O.C.), bioavailable K, Mg, Ca and Na, and soil texture (sand, silt, and clay) as 

reported in Ruggiero et al., (2021). On 2 mm sieved soils, also total nitrogen was determined by 

elemental analyser (Elementar UNICUBE, Germany) after sample pulverization in agate ball mill, 

and available phosphorus by colorimetric method (MiPAF, 2000); both determinations were carried 

out in triplicate.  
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2.2 Lemon sampling and lemon quality properties 

One hundred nineteen full ripened lemon fruits, Citrus limon (L.) Burm. Femminello, were collected 

from seven different orchards in March and first two weeks of April of 2018 and 2019 production 

years (Table 1). At least one lemon for tree from no less than three trees for orchard was randomly 

collected. In particular, in 2019, 19 fruits of cv Sfusato Amalfitano were collected from the three 

orchards in Limone Costa d’Amalfi PGI area and 11 fruits from the two germplasm fields in Portici 

and Eboli; 32 fruits of cv. Ovale di Sorrento were collected from the two orchards in the Limone di 

Sorrento PGI area, and 12 fruits from the germplasm fields in Portici and Eboli. In 2018, 11 fruits of 

cv Sfusato Amalfitano were collected from the germplasm fields in Portici and Eboli; 22 fruits of cv. 

Ovale di Sorrento were collected from the two orchards in Limone di Sorrento PGI area, and 12 fruits 

from the germplasm fields in Portici and Eboli. All lemons were collected with a  mean equatorial 

diameter of 66 mm (CV 32%) with the lowest diameter of 51 mm, thus above the minimum diameter 

(45 mm) for commercialization (EU 428/2019, 2019). Lemon fruits were washed with tap-water, then 

with deionized water, dried with a paper towel, weighted, and stored at 4 °C for no more than one 

week till analyses. Fruit chromaticity was determined by Minolta Chroma Meter CR-400 (Minolta 

Corp, Japan) in CIELAB colour space on four opposite spots along the equatorial circumference of 

lemon and L*, a* and b* mediated. The values L*, a* and b* describe a three-dimensional colour 

space, where L* corresponds to lightness/darkness (0 black, 100 white), a* represents the 

redness/greenness (-100 green, +100 red) and b* corresponds to yellowness/blueness (-100 blue, 

+100 yellow) (Roy Choudhury, 2015). After, NIR spectrum were acquired as described below, then 

lemon fruits were cut with a plastic knife along equatorial circumference and the pericarp thickness 

(THK) measured by handheld calliper in two opposite spots of a lemon section and mean thickness 

calculated. The lemon sections were squeezed with plastic juicer and the juice centrifugated at 2000 

g for 20 min, to separate it from suspended solid tissues. The residue pericarp was cut in raw pieces 

and on a fraction of them the water content (PW) was determined by lyophilization. The centrifuged 

juice volume (ml) was measured to calculate juice yield expressed in percent. Juices were analysed 

in duplicates for total soluble solid content (SSC) by digital refractometer (HI 96814, Hanna 

Instruments, RI, USA), titratable acidity (TA), expressed as citric acid, by 0.1M NaOH titration, and 

pH by pH-meter (pH 211 Hanna Instruments, RI, USA). The mineral composition (K, Ca, Na and 

Mg) of lemon juices was determined as reported in Ruggiero et al., (2021) and the molar 

concentration of positive charge from the cations (C+) was calculated. 
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2.3 Acquisition of NIR spectra 

NIR spectra were acquired by FT-IR/NIR spectrometer (Frontier, PerkinElmer, CT, USA) equipped 

with a reflectance accessory (NIRA, PerkinElmer, CT, USA), over the range 10000 cm-1 to 4000 cm-

1 (1000 nm to 2500 nm), with a resolution of 4 cm-1 and 64 scans for each spectrum (sample and 

background). Before analysis, the fruits were brought at room temperature of 20  1 °C and then 

placed in direct contact with detector window. For each lemon, along its equatorial circumference, 

eight NIRA spectra were acquired each at about one eighth of circumference to mediate 

inhomogeneity of exocarp and of scattering effects (Fig. S1 Appendix A supplementary material). In 

addition, on a lemon fruit, triplicate spectra, replacing on detector the sample each time, were acquired 

on a marked spot on the fruit equatorial circumference, on the total peel (flavedo + albedo) around 

the spot removed by thin blade, and separately on the flavedo and albedo obtained dividing 

transversally the removed total peel. The spectra of total peel and the flavedo and albedo parts were 

acquired taking care to hold their original curvature. Triplicate spectra of the juice (2 ml) from the 

same lemon were acquired into a glass petri dish (30 mm diameter and 10 mm depth) with trasfectance 

adaptor (Fig. S1 Appendix A supplementary material). These last spectra of a lemon fruit were pre-

processed with 1st derivate (Savitzky-Golay, 2nd order polynomial, 15 points) 

 

2.4 Statistical analysis 

Unscrambler X10.4 (Camo Software AS., Norway) and XLSTAT version 

2016.02.284551 (Addinsoft, NY, USA) were used for statistical analyses. A mean spectrum, 

calculated by PerkinElmer Spectrum software (Version 10.03.06, 2011, CT, USA), deriving from all 

eight spectra acquired for each lemon, was used for multivariate analysis by Principal Component 

Analysis (PCA). Before the application of PCA, the NIR spectra were mean centered. Multiple Linear 

Regression (MLR) were applied to investigating the relationship between spectra and quality 

properties of lemons by using all the extracted PCs from the PCA for reducing the high number of 

variables of NIR spectra (Cowe & McNicol, 1985; Eisenstecken et al., 2019). The performances of 

MLR models were evaluated by significance (α = 0.05) of regression coefficient (R2) and coefficient 

of variation (CV) calculated as a percentage of ratio Root Mean Square Error (RMSE) and mean of 

each quality property. The normal distribution of each lemon quality property was checked by the 

Shapiro-Wilk test (p≤0.05) and non-parametric Kruskal–Wallis and Dunn rank tests (Dunn, 1964) 

were performed for p ≤ 0.05. Spearman correlation analysis (rank-based correlation) was carried out 

on lemon quality properties to investigate the relationship among them. The Stepwise Linear 

Discriminant Analysis (S-LDA) was applied on quality properties according to provenances. For 
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application of Linear Discriminant Analysis (LDA) models, two spectra for sample (each as a mean 

of four spectra of the eight, acquired at about 90° among them respect equatorial axis), were used to 

include also some spectral variability of each lemon sample. Varius LDA models were built to 

discriminate grouping for cultivars, production years, and provenances. Each different group of 

lemon spectra was randomly divided in calibration set (not less than 70% of samples) and external 

validation set (not less than 20% of samples). The LDA models were evaluated based on accuracy, 

external validation accuracy, correct classification and validation percent. The ratios of accuracies 

(external validation/calibration) were used to compare the model performances (Ruggiero et al., 

2021). In general no spectrum pre-processing techniques (Rinnan et al., 2009) were used to optimize 

the various multivariate analyses, this was a choice for an homogeneous comparison of statistical 

results from spectroscopical data as such. 

  

3 Results and Discussion 

3.1 Management, soil, and climate of orchards  

All Limone Costa d' Amalfi PGI and Limone di Sorrento PGI orchards were managed in agreement 

to lemon production specifications, also not PGI orchards essentially observed such specifications 

but without  cover on lemon trees (Table 1) (G.U.n°178, 2001; G.U.n°24, 2011). All orchards did not 

show in-homogeneity. The main properties of orchard soils are reported in Table S1 (provided in 

Appendix A. Supplementary materials). All soils had a good level of available nutrients (N, K, Ca, 

Mg) except for phosphorus (lowest value for PR and EB), the pH ranged from alkaline to subalkaline 

(7.2-8.1 in A1 and PR, respectively). Total carbonate content ranged from 3.6 g/kg and 252 g/kg with 

values higher in the orchards of Limone Costa D’Amalfi PGI area than in the other farms, similar 

trend was observed also for O.C. and C.E.C  that were on average  27.4 g/kg and 29.7 cmol(+) kg–1 

, respectively in the above area respect the other orchards, in which they were no more than 11.7 g/kg 

(S2) and 23.8 cmol(+) kg–1 (EB). The soils had sandy loam texture in orchards of Limone di Sorrento 

PGI area, loamy sand in orchards of Limone Costa d’Amalfi PGI area, sandy in PR orchard and clay 

loam in EB orchard. The rainfall was very similar in all orchards areas given the proximity of the 

sites (Fig. S2a provided in Appendix A. Supplementary material). In the period of development of 

collected lemon fruits, i.e., from fruit setting, approximately in June, to colour break, approximately 

in January, in all considered orchard areas, a lower rainfall was recorded for 2018 production year 

(618 mm averaging on all areas), than for 2019 (724 mm).  In the same period the average temperature 

was quite similar for both production years, but there were monthly differences. In the period between 
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June to August of 2018 production, the temperatures were higher than of 2019 with a mean difference 

of less than 2 °C; an opposite trend was observed until December with even smaller mean difference; 

again, a higher temperature (of about 5 °C) was recorded in January for 2018 production than for 

2019 (Fig. S2b provided in Appendix A. Supplementary material). In the maturation period, about 

from February to the first two weeks of April, same differences were recorded between production 

year especially for raining that was higher for 2018 production (on overage 416 mm) than for 2019 

(on average 149 mm), while for temperature the mean differences in the period were negligible. It is 

worth noting that the climate trend of this last period should be less incisive on the ripening 

characteristics of lemons, at most it can influence the moment of reaching full maturation, than the 

previous period during fruit developing. In addition, climate characteristics in spring, that were 

different in the two production years (concerning more the rainfalls than the temperatures) may 

influence mainly flowering and fruit setting amount, thus essentially the fruit yields. (Spiegel-Roy & 

Goldschmidt, 1996). 

 

3.2 Lemon quality properties  

The lemon quality properties with univariate statistic results are reported in Table 2. The juice yields 

were in the range of 24% and 46% (34% on average. For all cultivars the highest values, often 

statistically significant, were observed in 2018 production year (42% in 2018 vs 29% in 2019 on 

average), and this behaviour was markedly evident in the comparison of annuity for each orchard 

with biennial harvesting. The values of pericarp thickness (THK) followed an opposite trend (3.6 mm 

in 2018, 6.9 mm in 2019 on average), with no substantial THK differences between cultivars in each 

year. This suggests that in 2019 a higher weight contribute of more thickness pericarp, also showing 

often tendentially higher water content (PW) than in 2018, to the entire lemon weights was the cause 

of juice lower yields in 2019. The brightness, L*, of all lemons showed little variation among all 

cultivars and orchards, as well as between production years for each orchard. The colour parameters 

a*, related to green colour component, and b*, related to yellow component, which increase with 

maturation, were widely variable among all cultivars and orchards, but frequently showed higher 

values, both or one of them, in 2018 than in 2019 for each orchard with biennial harvesting such as 

for OS-S1, OS-S2, OS–EB, and SA-EB. The values of a* and b* only showed an opposite trend for 

SA-PR or not significant difference for OS-PR. The SSC of all lemon juices from all cultivars and 

orchards (7.6 °Brix on overage) varied between 6.6 °Brix, for SA-A1-2019 and 8.7 °Brix, for OS-

EB-2018, and pH (2.3 on overage) between 2.2, for SA-PR, and 2.6, for OS-S2, both in 2019 with 

many similarities among orchards and cultivars. By the comparison of production years for each 
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orchard, the SSC were similar except for SA-PR, while pH showed occasional difference. The TA of 

all juices (57 g/L on average) showed lower variability among cultivars and orchards than the before 

mentioned properties, but frequently significant or trendily values higher in 2018 (74.2 g/L on 

average) than in 2019 (53.5 g/L on average) appeared, it was evident by the comparison by production 

years for each orchard. Further the TA in 2019 for SA-A1, SA-A2 and SA-A3 were below the level 

indicated in the production specifications for Limone Costa d’Amalfi PGI (≥3.5%) (G.U.n°178, 

2001). The cation charge concentrations (C+) in juices, that followed the trend of TA, showed some 

significant differences, more evident in the comparison between production years for each orchard, 

suggesting a higher influx of cations in lemon endocarp for pH homeostasis in 2018 than in 2019. 

However, except for the few cases of low juice yields and TA, all the lemon properties agreed with 

the required properties of the PGI production specifications of Limone di Sorrento PGI and Limone 

Costa d’Amalfi PGI. In general, the observed annual variations of quality properties appeared 

homogeneous among cultivars and orchards.  Such variations could be attributed mainly to climatic 

differences between the two production years, in particular regarding rainfall during lemon 

developing period (section 3.1) (Iglesias et al., 2007; Spiegel-Roy & Goldschmidt, 1996), rather than 

eventual soil and agronomical practices differences, also  taking into account the similarity of climate 

affecting orchards falling in restricted territory. During the development of fruits collected in 2019, 

the higher water availability and consequently also that of nutrients, such as N and K, could have 

caused the higher thickness of pericarp and the lower a* and b* than in 2018 (Fhatuwani 2001; Lee 

and Chapman 1988; Goldschmidt, 1988). In the production of 2018, the higher TA could depend by 

water shortage respect to 2019 as observed for citrus subject to summer water stress (Levy et al., 

1978; Spiegel-Roy & Goldschmidt, 1996). Further, the higher TA and salifying cations in 2018 

production were likely needed agreed to rise osmotic potential in fruits, which was probably mainly 

controlled by salt concentration rather than by SSC that remained similar in both the production years. 

The temperatures could also have influenced the maturation characteristics, such as TA, since gene 

expression related to citrate metabolism seems to be thermo regulated (Lin et al., 2016). However, 

the difference of temperatures between the two production years during the developing of fruit were 

little and with swinging trend. Further temperature trend in the production of 2019 was very similar 

to those of 2017 in PR area (data not shown) which yet showed the quality properties of fruits (Di 

Matteo et al., 2021) more similar to those of 2018 confirming a scarce importance of the yearly 

variations of temperatures. Instead, the rainfall data in PR area for production in 2017 (data not 

shown) were more similar during summer to those in 2018 than in 2019, supporting the influence of 

water availability on the observed differences of lemon properties. It is worth noting that for the 

productions of 2018 and 2019 the rainfall and some temperature annual differences from spring 
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flowering until fruit set phases, as well as during ripening period, from breaking colour and full 

ripening, although mainly affecting production levels, could have same consequence on the water 

and nutrient needs during fruit development, and full ripe characteristics. Also the winter climate in 

preceding years could have influenced successive fruit yields by flowering control and consequent 

plant needing for fruit maturation (Spiegel-Roy & Goldschmidt, 1996). In any case, a care was spent 

to pick lemons that appeared at full maturation level in the two-production years, on the other hand 

they were collected. In relative not so shorth period in both years. Thus, their different ripening 

characteristics could mainly be attributed to annual environmental variations. 

 

3.3 NIR spectroscopy of intact lemons 

The epicarp of citrus, the outer part of fruit pericarp is made by flavedo, and externally epidermis and 

hypodermis (henceforth simply called flavedo). The mesocarp, the inner part of pericarp, is made by 

albedo and inner hypodermis (henceforth simply called albedo). Epicarp is composed of several cell 

layers that become progressively thicker in the internal part and in epidermic layer also few stomata 

are present. Among the many types of epicarp cells there are oil-gland cells, containing essential oils, 

and chromoplasts. At maturation carotenoids (mostly xanthophylls) accumulate and chlorophylls 

essentially disappear in the chromoplasts. This hormonally controlled process determines the change 

of colour from green to yellow of fruits upon maturation. In addition to essential oils (mostly 

terpenoids) and pigments (carotenoids, chlorophylls), the pericarp contains paraffin waxes on surface, 

steroids, fatty acids, flavonoids, and enzymes, but it is mostly composed of cellulosic material and 

pectic substances. The albedo is essentially constituted of cells containing  abundant sugar within the 

vacuoles organized to form a spongy tissue rich in pectin and is separated by fruit endocarp by thick-

walled cells of  inner epidermis covered by a thin cuticle (Dimopoulou et al., 2019; Scott & Baker, 

1947; Spiegel-Roy & Goldschmidt, 1996). The NIR reflectance spectra of intact lemon (Fig.1a) were 

mainly representative of spectroscopic flavedo characteristics and less affected by albedo and still 

less by endocarp tissues as suggested by PCA score plot of spectra of lemon parts which showed 

closer groupings of intact lemon, flavedo and entire peel (4.5 mm) respect to the spectra of albedo 

and of juice which were markedly separated (Fig.1b). The dominating broad absorption bands of 

lemon spectra (Fig.1a) were at 5173 cm-1 and 6876 cm-1, the strongest, and at 5580 cm-1 attributable 

mainly to the 2nd and the 1st overtone and the combination absorptions, respectively, of free and 

trapped water, in agreement with the high PW in entire peel (about 80%). The absorption of alcoholic 

OH and C=O, mainly due to polysaccharides (cellulose, pectin, etc.), also contributed to same of 

those wavenumbers. The shoulder at higher wavenumbers of the band at 6876 cm-1 suggests an 
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overlapping of a peak at about 7300 cm-1 attributable to 1st overtone combination of CH, CH2 and 

CH3 groups. The band at 8332 cm-1 could be attributable to 2nd overtone of CH linkages arising from 

CH2 and CH groups, mainly in polysaccharides as well as in oils, waxes, etc. The shoulder to the 

previous band at 8583 cm-1 could be due to 2nd overtone band of CH3 groups mainly arising from 

methyl in alkyl chains and methoxy pectin groups. The PCA, performed on the raw spectra of all 

intact lemons of 2018 and 2019 productions, extracted seven components and the 98% of total 

variance was explained by the first two components (eigenvalues >1; PC1 90% and PC2 8%). The 

PCA score plot showed a tendency to separate lemons for production year (Fig. 2), the PR, S2 and 

S1 groups mainly separated along PC2 for, being the score distribution for the most part in the III and 

IV quadrants for 2018, and in I and II quadrants for 2019. In these last quadrants also the samples 

from Amalfi PGI area (A1, A2 and A3) of 2019 production were grouped. Instead, the two production 

years of EB samples mainly separated along PC1, being the score distribution for the most part in II 

and III quadrants for 2019 production and in the I and IV quadrants for 2018 production. The higher 

contributions (loadings) on PC1 were at the wavenumbers of 7266 cm-1 and 7412 cm-1 (Fig.3) which 

were around the band at 7300 cm-1 in lemon spectra attributed to methyl, methylene, methyl and 

methoxy absorptions. The further relevant loadings at 6069 cm-1 and at 6176 cm-1 were in the typical 

interval of 1st overtone of CH, also in unsaturated structure, these absorptions could be totally 

overlapped to the 6876 cm-1 wide band in lemon spectra. The minimum loadings were recorded for 

5164 cm-1and 6882 cm-1 wavenumbers quite corresponding to the wide 5173 cm-1 and 6876 cm-1 

bands attributed to peel water in lemon. This suggests that the main discriminating property of lemon 

spectra on PC1 depends by the difference in alkyl chains, like those of carotenoids, and methoxy 

groups, such as those of pectin. This agrees with the wide variability of the colour properties a* and 

b* of lemons (Tab. 2) indicating the variation of chlorophyll and carotenoid contents related to the 

maturation status to which also a variation of pectin methoxylation degree can correspond (Spiegel-

Roy & Goldschmidt, 1996). The loadings on PC2 were evident at the frequencies of 5223 cm-1 and 

6885 cm-1, and less marked at 5577 cm-1. All these loadings coincided with the relevant signal of 

lemon spectra attributed to the OH of water and polysaccharides. A variability of polysaccharide 

spectral characteristics could depend mainly to the extension of peel explored by NIR rays being the 

peel thickness among the properties of lemons with widest variability (Tab. 2). On this view the 

groupings of lemon NIR spectra by production year could depend mainly on accumulation of 

chromatic substances in agreement with the general annual differences of the chromatic properties a* 

and b* of lemons, particularly for OS-EB and SA-EB which differentiated mainly along PC1, and for 

water and carbohydrates variation due to annual peel thickness differences for lemons from the other 

orchards which differentiated mainly along PC1. This is supported by the S-LDAs of lemon quality 
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properties grouped by years for EB orchard and for the remaining orchards with biennial productions 

(Table S2, provided in Appendix A. Supplementary materials). For lemons from EB, b* was among 

the best S-LDA discriminating variables, followed also by a* (100% correct classification and cross 

validation), for the other orchards, THK was among the best (97% correct classification and 96% 

validation). The TA well discriminated in both the S-LDAs, in agreement with the observed 

significant differences by years for each orchard (Table 2), as well as the pH for the S-LDA for only 

the grouped orchards. These properties, however, should not be directly measured by NIR. These 

results indicate that the different maturation characteristics expressed in the two years are perceived 

by NIR spectra of intact lemon and that such differences could depend on combination of detected 

compositional and probably also morphological factors mainly of peels. However, the relative weight 

of factors, although concurrent, could be different, as suggested by the seasonal variation of the NIR 

spectra of lemons from EB respect to those from the other orchards. This suggests that although the 

different seasonal macro-climatic characteristics, quite homogeneous in all orchard areas, could have 

impress differences in maturation proprieties, they are expressed differently and perceived by NIR 

spectroscopical analysis. The expressions of this differences could depend by the whole environment, 

in addition to climate also plant nutrient uptake which depends by soil nutrient availability that could 

be more similar in the PGI areas and Portici respect to Eboli.   

3.4 Relationships between NIR spectra and quality properties 

The multiple linear regression between PCs from the NIR spectra of intact lemons and the quality 

properties were performed considering all lemons from the two production yeas, for each year and, 

with the same criterion, separating cultivars (Tab. 3). The regression significances could be negatively 

influenced by a reduced number of samples as resulted evident for SA of 2018 with the lowest number 

of samples (11) which implied frequent not significant correlations, although with higher R2. In the 

most part of the case the regressions with all samples of two production years did not improve, both 

in terms of R2 and CV, respect to the best result recorded for a single production year. The regression 

models could suggest consideration on the use of NIR spectra for predicting lemon properties. About 

chromatic parameters, the correlations of spectra were significant for b* in all cases examined, values 

of R2 between 0.985 and 0.387, and for a*, R2 between 0.662 and 0.308, except that of SA in 2018 

although with R2 0.910. This is in agreement with the ability of NIR spectroscopy on entire lemon to 

detect the epicarp contents of chloroplast/chromoplast pigments. The correlations with the brightness 

parameter L* were significant except for all cases related to 2018 production year. This may depend 

by roughness of rind surfaces which could have incongruously interfered on NIR and/or colorimeter 

measurements for the production of 2018 rather than on that of 2019. The roughness and thickening 

of rind have been suggested to be induced by high levels of endogenous GA3 and cytokinin, these 
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lasts could decrease in mild drought conditions (Cronjé et al., 2013; Nelissen et al., 2018) as for 2018 

lemon productions. For 2018 lemon productions THK significantly correlated with spectra, except 

for the SA although with quite high R2, while mainly for 2019 lemon productions THK did not 

correlate or expressed low R2, this could depend by inaccuracies in NIR measurement due to a high 

attenuation of IR ray through the thicker peels than those of 2018 lemons. The correlation trend of 

NIR spectra with PW quite recalled that with THK but often with higher R2. The evaluation of this 

intensive property could agree with NIR direct measurement of water content in peels and of related 

peel volume or an its proportional property such as THK. For PW, the not significant correlation for 

2019 OV lemons and the low R2 of all correlations including 2019 lemons could depend by less 

accurate measure in thicker peel as discussed before. All the percentage of juices were significantly 

correlated with NIR spectra, except for the SA in 2018 probably for the above mentioned low number 

of samples. Such successful correlations, also showing R2 values quite higher, could be due to a 

combination of significant correlations with different lemon measurable properties such as THK, as 

supported by Spearman significant correlation (R -0.755) between both properties (Tab. S3, provided 

in supplementary material), and other shape characteristics associated to the lemon volume that NIRA 

detector measured, as proved by correlations of NIR spectra with geometrical characteristics of some 

spherical and ellipsoidal objects of variable dimension placed on the detector (data not shown). This 

last is probably due to the ability to measure reflectance effects determined by the curvature angle of 

these objects respect the flat window of detector (Ø 14 mm). The pH showed only few significant 

correlations with NIR spectra and with low R2 values, this depends mainly by the poor detectability 

of hydronium ion (Chang et al., 2018) but also by the suggested NIR ray attenuation reaching pulp. 

The linear regression of NIR spectra with the SSC is generally significant and with quite high values 

of R2 except for OS and SA together in 2019 and for OS in 2019 (not considering the not significance 

for SA of 2018 attributable to the low number of samples), instead, the regression with TA was 

significant in 2019 but not or with low R2 in 2018. Such trend appeared incongruous since TA was 

the major contributor to SSC (Tab. 2). This could be explained by the fact that SSC and TA 

characteristics were not directly measured, due thick lemon peels, but indirectly from some property 

of peel, detectable by NIR, quite correlated, but not perfectly harmonized, with SSC and TA. The C+ 

concentrations significantly correlated except for the group of SA in 2018 and in the combined 

production years 2018-2019, they could only be indirectly measured being cations in solution not 

detectable by NIR.  The indirect NIR measurement of TA was supported by Spearman correlation 

analysis indicating a significant correlation of this property with the colour parameters measured by 

NIR, a* (R 0.601) and b* (R 0.393) (Tab. S3, supplementary material). At the same time SCC and 

C+, although it did not correlate with the colour parameters, were significantly correlated with TA 
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(R 0.361 and 0.367 respectively). In a certain measure also the occasional correlation of pH with NIR 

spectra could be justified bay and indirect measurement through the correlate properties TA (R -

0.442). and SCC (R -0.215). The best expected results for the prediction accuracy of quality properties 

evaluated using NIR spectra, evidenced by the CV values of regressions (Tab. 3), were for b* (CV  

8.3%), and SSC (CV  10.9%) although in some cases the regressions were not significant. For pH 

the CV values are still better (CV  7.6%) but the regressions were unreliable because not significant 

or with very low R2. The other properties showed CV no higher than 36.4% except for the highest 

value for a* that already recorded a high variability of the replicates of colorimetric measurements 

on each lemon. In general, the CV of the properties were quite similar considering each cultivar, OS 

or SA, and both together, OS and SA, rather the accuracy difference appeared to depend by the 

production years and in general for the production years together the CV was more similar to the 

worst CV recorded between the two-production year. For the most part of the properties the CV 

resulted better for the production of 2018 than of 2019 although with a higher number of samples. 

All this suggest the use of the annual calibrations with intact lemon NIR spectra for measurement of 

lemon quality properties rather than to implement a predictive calibration model with further data 

from other lemon production years. 

 

3.5 Discriminant models with NIR spectra 

Cultivar discrimination - The discrimination of cultivars SA and OS by LDA models with all NIR 

spectra of intact lemons (C1) showed the accuracies of calibration 69% and validation 63%, further 

their ratio was 0.92. The LDA cultivar discrimination carried out for single production year gave for 

2018 production (C2) the accuracies of calibration 85% and validation 66% with the ratio 0.78 and 

for 2019 (C3) calibration 78% and validation 63% with the ratio 0.81 (Table 4). The calibration 

accuracy of C1 model was lower than those of C2 and C3 models suggesting that on the biennial 

model the annual variation of lemon properties can have had a certain weight on detectable 

spectroscopical characteristics proper of the cultivars attenuating their discrimination. However, the 

validation accuracies and the accuracy ratios of all the models were not with the same trend of 

calibration accuracy probably caused by the inhomogeneous sizes of cultivar groups in models. It is 

worth noting that apparently the model grouping the different cultivars in different production years 

(C4) showed the best results in calibration and validation accuracies 90% and 72%, respectively 

(Table 4), but this was due to the amplification of the difference between cultivars arising from 

production year variations of spectral properties similarly influencing both cultivars,  as evidenced 

by PCA of spectra and  lemon quality properties, these last quite detectable by NIR spectroscopy. 
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This suggest that the discrimination of Ovale di Sorrento from Sfusato Amalfitano by NIR 

spectroscopy on the intact lemons could be not so effective due the high influence of growing 

conditions on the spectroscopical response which overcome those arising from the typicality of each 

cultivar. 

Provenance discrimination - To essay the ability of NIR spectra of intact lemons to discriminate 

provenance, LDA models was explored grouping lemons for production PGI area of Sfusato 

Amalfitano, SA-PGI, and Ovale di Sorrento, OS-PGI vs the outside grouped sites, EB and PR, in 

which each cultivar growth. The LDA for OS of the 2018 and 2019 productions correctly classified 

84% and validated 72% with 0.86 accuracy ratio (P1). Separating the OS groups by production years 

the LDA models, P2 for 2018 and P3 for 2019 production years gave both 100% correctly classified 

and 100% and 81% validation accuracy, with 1 and 0.81 accuracy ratios, respectively. Thus, the 

model based on lemons from the two production years was with lower performance than the models 

based on a single production year. Similarly, the LDA model for SA discriminate more efficiently in 

the single production year 2019, P5 100% calibration 74% validation accuracies, ratio 0.74, than 

considering the production years together, P4 84% calibration 44% validation accuracies, ratio 0.52, 

although this model lack of SA-PGI of 2018. As seen for cultivar discrimination, the observed NIR 

spectral differences due to annual environmental variations could have obscured the spectral 

differences determined by fruit properties arising from the cultivation areas. 

 

4 Conclusions 

The NIR spectroscopy with chemometric data treatment on intact lemons of two PGI lemons, Limone 

di Sorrento (cv Ovale di Sorrento) and Limone Costa D’Amalfi (cv Sfusato Amalfitano), evidenced 

it potential ability to explore the cultivar difference, and fruit provenance and quality properties, but 

some awareness in the use has to be recommended. The PCA of the intact lemon NIR spectra of both 

cultivars evidenced a natural clustering of samples according mainly to the production years, 2018 

and 2019. This was attributed to the annual variation of lemon properties caused by the differences 

of cultivation environment, mainly rainfall, that varied in the two years quite homogeneously for all 

production sites due to the restrict investigated production areas and influenced similarly the quality 

properties for both cultivars. This grouping indicated the ability of NIR spectroscopy to detect many 

of morphological and chemical properties of lemons. In particular, the NIR spectra represented 

mainly the properties related to peel since the NIR ray appeared to not penetrate beyond peel 

thickness, thus poorly detecting pulp properties. Relationship of spectra with lemon quality properties 

evaluated by MLR models with principal components extracted from NIR spectra of intact lemons 
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showed many significant correlations suggesting an applicability for also predicting the quality of 

juices. However, juice properties evaluated by NIR have to be considered as derived essentially from 

correlated NIR measurable lemon peel properties quite harmonized with juice composition. In this 

way, the best NIR prediction results were obtained with linear regression of lemon spectra from 

production years separately being more homogeneous the lemon spectroscopic properties influenced 

by ripening environment. Discrimination of the two Femminello cultivars with LDA models based 

on NIR spectra of intact lemons appeared to be strongly influenced by the growing environment 

which as evidenced before influence NIR response as much to reduce selectivity of cultivar difference 

detectable by NIR spectra. As for prediction use of NIR spectra, the differences in cultivars were 

more reliable if Ovale di Sorrento and Sfusato Amalfitano were compared in the same production 

year. Further, also LDA models based on NIR spectra of intact lemons of each cultivar according to 

provenances, PGI area vs relatively close not PGI sites, resulted better for single production year than 

for two production years together. Although the NIR spectroscopy on entire lemon fruit appeared a 

powerful analytical method, its use for prediction properties, for origin and cultivar discrimination 

need caution in the use and in the choice of sampling set for measurements because its ability to grasp 

many development characteristics of fruit depending by ripening environment can prevail on the 

result of measure that has set.
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Table 1 Sampling locations, annual rainfall, and number of the samples of Femminello lemons 1 
cv Ovale di Sorrento (OS) and cv Sfusato Amalfitano (SA) collected in 2018 and 2019. 2 

Orchard locations ID 
Rainfall+ 

(mm/year) 

2018 2019 

OS SA OS SA 

Massa Lubrense& 40°36'28''N, 14°20'36''E S1 517 10  - 13  - 

Piano di Sorrento & 40°37'51''N, 14°24'22''E S2 763 12  - 19  - 

Tramonti# 40°40'27''N, 14°38'53''E A1 1154  -  -  - 6 

Maiori# 40°39'32''N, 14°38'48''E A2 

905 

 -  -  - 7 

Maiori# 40°38'32''N, 14°39'31''E A3  -  -  - 6 

Portici* 40°48'54''N, 14°20'49''E PR 680 6 6 6 6 

Eboli§ 40°33'21''N, 14°58'53''E EB 804 6 5 6 5 

&Limone di Sorrento PGI area.  #Limone Costa d' Amalfi PGI area. 

*Experimental field Dept. of Agricultural Sciences, Univ. of Naples Federico II. §Regional 

experimental farm Improsta. 

+Annual mean rainfall 2016-2018 (available: http://centrofunzionale.regione.campania.it) 

 

3 
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Table 2. Chemical and physical properties of lemons according to different orchards, cultivars, and production years. Different letters indicate significative differences among the 4 

columns, while (*) the differences between the two production years using non-parametric Kruskal–Wallis and Dunn rank tests (p ≤ 0.05). Peel chromaticity (L*, a*, b*); thickness 5 

of pericarp (THK); peel water (PW); juice yield (Juices%); soluble solid content (SSC), titratable acidity (TA), molar concentration of positive charge from the cations (C+) 6 

 7 

8 
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 9 

 10 

 11 

Figure 8 The typical NIR reflectance spectrum of intact lemon (a). PCA score plot of the NIR spectra of different fruit parts (b). 12 

 13 
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 14 

Figure 9 PCA score plot of raw NIR spectra. cv Ovale di Sorrento (OS), cv Sfusato Amalfitano (SA).15 
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Table 3 Regression coefficient (R2) and CV% (values below) by MLR models between principal components of NIR spectra and quality properties. Values in 21 
bold (R2) are different from 0 at significance level α = 0.05 22 

 23 

  24 
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Table 4 Results of LDA of six different models. Number of spectra used for calibration and 25 
validation (Spectra); calibration and validation accuracy (Cal.Acc and Val.Acc); Accuracy ratio 26 
(Acc. Ratio) 27 

28 



Appendix A. Supplementary data 
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 29 

 30 

Figure S11. Schematic of NIR spectra acquisition of intact lemons and lemon parts. The numbers (upper figure) follow the order of acquisition. 31 



Appendix A. Supplementary data 
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 32 

Figure S12. Monthly rainfalls (a) and temperatures (b) in sampling areas for production years 2018 and 2019.33 



Appendix A. Supplementary data 
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Table. S1. Chemical and physical characteristics of soil at 40-50 cm depth. Mean values in the same row followed by different letters indicate significant differences 34 
(P < 0.05) using nonparametric multiple tests (p<0.05, Kruskal–Wallis and post-hoc Dunn Test). 35 

36 



Appendix A. Supplementary data 
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Table S2. Results of two S-LDA models applied on quality properties according to the production years for EB and 
among PR and the two lemon orchards of Sorrento PGI area.  

 

  
 Number of 

samples  λ 

Wilks 
p-value 

% 

Class 

%Cross

V 
 selected variables a 

  2018 2019 

EB 11 11 0,072 < 0.0001 100 100 b** TA** a* 

          

S1; S2; PR 34 44 0,220 < 0.0001 97 96 
TA*

* 

THK*

* 

pH

* 

a: Column from left to right by decreasing F values; ** p-value < 0.0001; * p-value < 0.001 

 

 

Table S3. Spearman correlation analysis among quality proprieties in lemon juices. Peel chromaticity (L*, a*, b*); thickness of pericarp 
(THK); peel water (PW); juice yield (Juices%); soluble solid content (SSC), titratable acidity (TA), the molar concentration of positive 
charge from the cations (C+). Values in bold (R) are different from 0 at significance level α = 0.05. 
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Chapter 4: Feasibility study of authentication PGI Italian lemon fruits 

by near-infrared (NIR) spectroscopy: the case study of Limone di 

Sorrento PGI. 
 

1 Introduction 

In Mediterranean countries, citrus production is particularly developed due to the favorable climatic 

conditions. The peculiarity of Mediterranean citrus is its prevalent propensity to be consumed fresh, 

unlike citrus production in other countries, such as Brazil and the United States, where the majority 

of the fruits are processed for the production of concentrated juice (Giare & Giuca, 2008). The 

cultivation of lemons is well-known and praised for its quality in southern Italy, mainly in Sicily, 

Calabria and Campania. In Campania, two high-quality products have been certified and registered 

as Protected Geographical Indication (PGI) products, i.e. Limone di Sorrento (Reg. CE n. 2446/2000) 

and Limone Costa D’Amalfi (Reg. CE n. 1356/2001). These PGI products are specifically marketed 

for fresh consumption (intact lemon) or consumption of the processed product (fresh juice). Limone 

di Sorrento refers to the Citrus lemon (L.) Burm.f. Femminello Ovale di Sorrento, also known as 

Limone di Massa Lubrense or Massese, and is produced in the area of the Sorrento Peninsula and 

Capri Island. However, this genotype is not the only genotype that grows in the mentioned PGI area. 

As reported on the product specification, 15% cultivation of other cultivars and genotypes are also 

allowed. In Sorrento Peninsula, the lemon orchards are covered with “pergolato sorrentino”, a system 

made by vertical wooden canes, preferably chestnut, covering the whole lemon grove with reeds 

known as “pagliarelle”. This traditional cultivation system is characteristic and unique to lemons 

produced in the Sorrento and Amalfi Penisula regions. Apart from the higher costs associated with 

the traditional production of lemons, the name also carries a story and tradition that is valued by 

consumers who are willing to pay a high price/premium for the product. Due to this higher selling 

point, there is a great economic incentive linked to the misuse and mislabelling of PGI lemons, where 

fraudsters mislead consumers through the sale of generic/cheaper lemons as PGI products. Given the 

difficulty of subjectively distinguish different valued lemons, it is vital to develop a suitable fraud 

detection and screening technique. Several analytical techniques have been used to authenticate citrus 

fruit. One of the most prevalent is the determination of the mineral composition of juices from orange 

fruits (Simpkins et al., 2000), clementine fruits (Benabdelkamel et al., 2012) and several lemon juices 

(Gaiad et al., 2016; Pellerano et al., 2008). Other methods have also been used for the authentication 

of citrus fruits, such as: the analysis of aroma-active compounds (volatiles) by Headspace Solid-Phase 
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Micro-Extraction coupled with Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS) 

(Zhang et al., 2019); metabolic profiling by Nuclear Magnetic Resonance (NMR) spectroscopy 

(Salazar et al., 2018); 3D-front-face fluorescence (Ammari et al., 2015) and the use of rapid and non-

destructive near-infrared (NIR) spectroscopy combined with other techniques as reported in Amenta 

et al. (2016). NIR spectroscopy can be used as rapid screening technique owing to its easy use and 

low cost, but above all for its on-line application in the food industry (Jha et al., 2014). The use of 

NIR spectroscopy to determine a food product’s geographical origin, has been successfully applied 

on many products such as honey (Latorre et al., 2013)(Woodcock et al., 2009); dong quai or female 

ginseng (Woo et al., 2005); wheat (Zhao et al., 2013); wine (Cozzolino et al., 2011), (Liu et al., 2006); 

olive oils (Jiménez-carvelo et al., 2019), (Hirri et al., 2016); sea cucumber (Guo et al., 2018). The 

success of this technique lies in the fact that the NIR spectra of each sample is unique and related to 

the vibrational frequency of functional groups present in the product. Ultimately, this vibrational 

frequency of all functionals groups produces a unique molecular ‘fingerprint’ that can be used to 

confirm the identity of a sample (Luykx & van Ruth, 2008). Typical NIR spectra (4000–10000 cm-1) 

are characterized by absorption bands that are combination bands (overtone) originated, in the 

infrared region, of vibrational and rotational transitions of molecular bonds (Nicolaï et al., 2007). The 

introduction of the Fourier-transform near-infrared technique (FT-IR) has increased the use of IR, 

due to measurements all of the infrared frequencies simultaneously, the technique allows very rapid 

screening of samples (Luykx & van Ruth, 2008).  Usually, the spectra are very similar, they are 

dominated by the water (overtone bands of the OH-bonds at 760, 970 and 1450nm) (Polesello, 

Giangiacomo, & Dull, 1981). For these reasons, the NIR spectroscopy spectra require multivariate 

statistical analyses to extract useful information from spectra (Blanco & Villarroya, 2002).This study 

aims to apply NIR spectroscopy as a rapid method to authenticate Limone di Sorrento (cultivar Ovale 

di Sorrento) intended for fresh consumption (intact lemon) and consumption as processed product 

(fresh juice). The study will seek to verify if the spectroscopic profile can be used to discriminate PGI 

lemons from Non-PGI lemons grown in areas geographically close to each other (Campania Region). 

It will thereby develop a tool that is fast and economic to verify the PGI origin of lemons and juices 

for the small farms within the large PGI area, and to distinguish PGI lemons from lemons of other 

origins.
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2 Materials and methods  

2.1  Collection of fruit samples and study area 

Fifty-six fully ripened lemon fruits of Citrus limon (L.) Burm.f. Femminello Ovale di Sorrento from 

five different sampling sites in southern Italy were collected. Forty-four of the collected lemons 

originate from three different farms of the Limone di Sorrento PGI area: 13 lemons from the 

municipality of Massa Lubrense (MS-PGI farm) (40°36’28’’ N; 14°20’36’’E); 26 lemons from the 

municipality of Piano di Sorrento (PZ-PGI farm) (40°37’51’’N; 14°24’22’’ E); and 6 lemons from 

the municipality of Sorrento (SR-PGI farm) (40°36’59’’N; 14°23’10’’E). The remaining 12 lemons 

originated from two Non-PGI farms located in the Limone di Sorrento PGI area: 6 lemons from the 

germplasm field of the Department of Agricultural Sciences, University of Naples Federico II (PR-

NOPGI farm) (40°48’54’’N; 14°20’49’’ E), and 6 lemons from the germplasm field of The 

Regional experimental agricultural farm "Improsta" at Eboli (EB-NOPGI farm), (40°33’21’’ N; 

14°58’53’’E). All lemons (samples) and trees, in each farm, were randomly selected, to ensure the 

greatest variability among the farms (inside). Within each farm, 5-7 lemons were collected per tree. 

After sampling, all lemon fruits were first cleaned in tap-water and then washed in deionized water. 

The fruits were stored for one week at 4°C during which the NIR spectra of the surface (i.e. peel) was 

obtained. The lemon fruits were then cut and squeezed to extract the juice using a domestic juicer. 

The extracted juices were centrifugated at 2000 g for 20 min to separate the liquid from the pulp to 

minimize the effect of light scatter caused by the suspended particles during the NIR spectra 

acquisition step (Rinnan et al., 2009). 

2.2 NIR spectrum acquisition 

Near-infrared (NIR) spectra were acquired by a PerkinElmer Fourier-transform near-infrared, FT-

IR/NIR spectrometer (FRONTIER) equipped with a NIRA accessory in reflectance mode, over the 

absorbance range 10000 to 4000 cm-1 (1000 to 2500 nm) with an interval of 4 cm-1 with a scan time 

of 64 scans (samples and background). The NIR spectra were acquired within one week after sample 

collection. During analysis, the fruits were stored in a refrigerator at a temperature of 4°C. For each 

lemon, along its equatorial circumference, at each eighth of a turn, a total of eight NIR spectra were 

acquired. The fruits were placed in direct contact with the detector. After the squeeze and centrifuge 

step, 2 ml lemon juice were transferred into a glass petri dish (diameter of 30 mm and depth of 10 
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mm) after which two spectra were acquired for each lemon juice sample. Samples were analysed in 

duplicate. All spectra were acquired at room temperature (20-25°C). 

2.3 Chemometric analysis 

The eight spectra of each intact lemon were randomly divided into two groups and mediated. For 

each lemon, two spectra (per intact lemon/peel and juice, respectively) were used for data analysis 

taking into account the analytical variability that is needed to minimize tissue heterogeneities, 

instrumental noise, ambient effects, and other sources of variability as reported in (Nicolaï et al., 

2007). The data analysis, spectra acquisition, and averaging was carried out by PerkinElmer Spectrum 

software (Version 10.03.06, 2011 PerkinElmer, Inc.). The Unscrambler X10.4 software (Camo 

Software AS., Oslo, Norway) was used to pre-process the spectral data and to perform multivariate 

data analysis. All spectra (n = 112) were divided into two groups: calibration set (n = 58) and 

validation set (n = 54). The spectra of the PGI lemons (total number = 88), were randomly divided 

into two groups: 34 as the calibration set and 54 as the validation set. Hence, the complete calibration 

set was composed of 24 Non-PGI lemons spectra (12 PR-NOPGI, 12 EB-NOPGI) and 34 PGI lemons 

spectra (10 MS-PGI, 18 PZ-PGI, 6 SR-PGI), while the validation set contained only the spectra of 54 

PGI lemons (16 MS-PGI, 32PZ-PGI, 6 SR-PGI). The pre-processing of NIR spectra is the necessary 

step before the chemometric analysis (Rinnan et al., 2009). Multiplicative Scatter Correction (MSC), 

Standard Normal Variate (SNV) and derivate correction (first and second derivate) are the three 

methods most widely used (Roggo et al., 2007; Blanco & Villarroya, 2002). The derivate methods 

broadly applied are Norris-Williams derivatives and Savitzky-Golay (SG) polynomial derivates 

(Rinnan et al., 2009). The pre-processing tecniques were applied to decrease the detrimental effect 

on the signal-to-noise ratio and improve both the explorative analysis and the classification models. 

For screening the natural grouping of samples, principal component analysis (PCA) was carried out, 

while partial least square discriminant analysis (PLS-DA) (±0.5 cutoff criteria), and three different 

methods of discriminant analysis: Linear Discriminant Analysis (LDA), Quadratic discriminant 

analysis (QDA) and Mahalanobis discriminant analysis MDA methods were used for classification 

of the selected samples.
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3 Results and discussion 

3.1 Description of NIR spectra 

All the acquired absorbance spectra for the lemon juice samples are shown in Fig.1a (raw spectra). 

The two highest absorptions were observed around 7200-6600 cm-1 (second overtone region) and 

5300-4800 cm-1 (first overtone region). The presence of the highest absorptions in these regions could 

justify not only the presence of water, showing strong adsorption and known as the major constituent 

of lemon juice but also of phenolic and aromatic compounds and carbohydrates. The regions with 

high absorptions for water is expected to dominate since fruit contains 80–90% water (Gòmez, He, 

& Annia Garcìa Pereira, 2006; (Miyamoto & Kitano, 2009). In the same way, the spectra of the intact 

lemons (where the surfaces/peels were scanned) (Fig.1b) are very similar to those shown in 

(Magwaza et al., 2014) for ‘Nules Clementine’ citrus. For both the juice and intact lemon, high 

absorptions were observed in the last part of the spectra, around 4000 cm-1 (combination band region), 

that coincides with the high presence of carbohydrates. As shown in Fig.1, the spectral dataset of 

intact lemons display an improved division (parting of spectra from different classes) for the spectra 

of PGI lemons (blue line) and Non-PGI lemons (red line) than that observed for the lemon juices. 

This lack of division of the juice samples could be due to their higher water content, and subsequent 

higher absorption bands, than the surface or peel of the intact lemons. 

3.2 Exploratory analysis 

To explore the grouping of the spectra in the calibration set, principal component analysis (PCA) was 

performed using the raw spectra and two different pre-processing techniques (SNV and SNV+ SG, 

first derivative, 2nd order polynomial, 15 points). The samples were visualized based on the selection 

of two different groups for the PCA to verify if the trend in sample grouping was due to the 

geographical origin of samples. The first group contained two groups: PGI and Non-PGI samples; 

and the second group three sub-groups: (MS+PZ+SR)-PGI, PR-NOPGI and EB-NOPGI. In Fig.2, 

the PCA score plots with raw spectra (Fig.2a), SNV (Fig.2b), SNV+ SG (Fig.2c) of lemon juices are 

shown. The score plots of the raw spectra (Fig.2a and 2a1 ) showed no distinct grouping of the samples 

for groups. The slight grouping could be related to undesired scatter effects, most probably for the 

strong presence of water, and that it could have caused a negative influence on the extracted 

information. The first four PCs explained 99% of the total variance (PC1 76%; PC2 22%; PC3 1%; 

PC4 1%). The score plots of SNV processed spectra (Fig.2b and Fig.2b1) showed an improved 

grouping than the raw spectra plot, better with two groups than three groups because there is no clear 
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difference between the Non-PGI groups. The first four PCs explained 99% of the total variance (PC1 

88%; PC2 9%; PC3 1%; PC4 1%). Fig.2c and 2c1 show the PCA score plots of the SNV+SG 

processed spectra. The first three PCs explained 20% of the total variance (PC1 10%; PC2 6%; PC3 

4%) and showed a clear grouping between the three different areas, PR-NOPGI; EB-NOPGI and 

(MS+PZ+SR)-PGI, but not between the PGI groups (data not shown) (Fig. S1, provided in Appendix 

A. Supplementary data). This lack of grouping, for single farms, could be due to the similar conditions 

of growing and soils, of the PGI samples (see Chapter 1). For the NIR spectra of the intact lemons, 

the same statistical analyses were applied. The first three PCs, of the PCA using the raw spectra, 

explained 100% of the total variance (PC1 95%; PC2 4%; PC3 1%). The score plots (Fig.3a and 3a1) 

showed a slight grouping trend according to the origin, better than the grouping of the score plots 

(four PCs with 99% of total variance) of the SNV processed spectra (Fig.3b and 3b1) and the score 

plots (five PCs with 94% of total variance) of the SNV+SG processed spectra; where distinct 

groupings were not apparent. The loadings line plots are shown in Fig. 2 (a2, b2, c2) for the lemon 

juice samples, and in Fig. 3 (a2, b2, c2) for the whole lemons. The loadings show the importance of 

variables (wavenumbers) on the natural grouping of samples. Overall the main variables correlated 

with the natural separation of samples (loadings ≠ 0) as absorption bands for both whole lemons and 

lemon juice samples were observed around 8800-8600 cm-1 (second overtone of C-H), 7300-7000 

cm-1 (first overtone C-H combination bands), 5300-5100 cm-1 (first overtone C-H combination bands) 

and 4000 cm-1 (combination bands region) for the first PC (the highest percentage value of variability 

explained).  

3.3 PGI and Non-PGI discrimination 

Based on the results of the exploratory analysis, the two groups of spectra, PGI and Non-PGI (intact 

fruits and lemon juices), were classified using three different methods of LDA, i.e. linear, quadratic, 

and Mahalanobis. The models were built as described in section 2.3. The validation test was 

performed only for PGI lemons, and these samples were randomly selected from the three different 

farms in the PGI areas. The same pre-processing techniques used before (sections 3.2) were applied. 

The results of the discriminant models are shown in Table 1. The LDA models were carried out using 

three principal components. The best LDA model for lemon juices was obtained with the quadratic 

method using SNV+SG pre-processed spectra (1st derivative, 2nd order polynomial, 15 points) 

(Table 1). The results show 98% accuracy, where 100% of the PGI samples and 96% of Non-PGI 

samples were correctly classified, while 98% of the validation set was correctly classified. Moreover, 

the best LDA model for intact lemon was obtained with the linear method using the raw spectra. The 

results show 83% correct classification for Non-PGI samples and 88% for PGI samples (86% of total 
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accuracy). The result of PGI validation was 89% correctly classified. Fig. S1 (provided in Appendix 

A. Supplementary data) shows the main variables correlated with the discrimination of samples. The 

water absorption bands, around 5150 cm-1  and 7000 cm-1 (Chen et al., 2009), seemed not to have a 

high influence on discrimination because it correlated with the 3rd PC in the set of lemon juices (Fig. 

S1a), and 2nd and 3rd PCs in the set of intact lemons (Fig.S1b). The most intensive bands, in both 

cases, correspond to overtones of the carbonyl group (-CH2 and –CH) possibly as a result of the 

presence of polyphenols, volatile acid and some aroma compounds (Chen et al., 2009), which are 

dominant compounds in lemons. These differences could also be explained by different climatic and 

cultivation conditions where traditional cultivation is practiced in the PGI area and not in the Non-

PGI area. 

3.4 Classification of geographical origin 

To understand the unique characteristics of lemons grown in the PGI area, it is necessary to evaluate 

not only the differences between PGI and Non-PGI samples (section 3.3) but also the differences 

between the different production farms inside the PGI areas: MS-PGI, PZ-PGI and Sr-PGI and the 

two farms Non-PGI: PR-PGI and EB-PGI taken separately. Although the farms investigated in this 

study are geographically close to one another, there could still be differences due to different growth 

conditions (soil and climatic condition) that could lead to unique profiles in lemon composition, i.e 

aroma as reported in Zhang et al., (2019). The PLS-DA was performed to discriminate the samples 

that came from different farms. The best PLS-DA was chosen with high R2 (Pearson determination 

coefficient), low SEC (standard error of calibration), low SEP (standard error of prediction), a high 

percentage of spectra correctly classified. The true number of regression factors were determined 

according to the minimum SEP as too many numbers of regression factors would result in overfitted 

models. Also, large differences between SEC and SEP would lead to modelling noise by affecting 

prediction (Gòmez et al., 2006; Shao et al., 2007). Modelling using PLS-DA was first evaluated with 

three groups: PGI (MS+PZ+SR-PGI), PR-NOPGI, EB-NOPGI and then with five groups (MS-PGI, 

PZ-PGI, SR-PGI, PR-NOPGI, EB-NOPGI). The PLS-DA results are shown in Table 2. Among all 

models tested, the best PLS-DA model was obtained with SNV+SG pre-processed spectra (1st 

derivative, 2nd order polynomial, 15 points) for both lemon juices and intact lemons. The models with 

three groups showed better results than the models with five groups. The best model for lemon juices 

(with three groups) produced 100% correct classification of samples in the calibration set and 91% 

correct classification of samples in the validation set. In the same way, the best model of intact lemons 

produced 74% correct classification of samples in the calibration set and 65% correct classification 

of samples in the validation set. Upon closer investigation, these models were able to discriminate 
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the PGI lemons from the two Non-PGI lemons, but it could not successfully separate the PGI lemon 

samples that originated from the three PGI farms. The major problem for the modelling was the 

overlap in the three PGI farms (Table S1 and S2, provided in Appendix A. Supplementary data). For 

lemon juices from MS-PGI, only 63% was correctly classified, PZ-PGI only 53%, and for SR-PGI 

no samples were correctly classified. Furthermore, a few samples for MS-PGI (7%) were classified 

as PR-NOPGI. In the same way, for intact lemons from MS-PGI, only 19%, in the PZ-PGI only 28% 

and for SR-PGI only 17% were correctly classified. Few samples for MS-PGI (31%) and PZ-PGI 

(9%) were classified as PR-NOPGI. The high percentage of misclassification could be due to the 

different cultivation and climatic condition of PGI lemons which make the product profile unique, 

but also complex. In the end, similar results, in terms of percent of correct classification, were found 

for black tea (Ren et al., 2013) with percent of accuracy to 94.3%; were found in Australian and 

Spanish Tempranillo wine (Liu et al., 2006) by PLS-DA (93.5%) and LDA (91.6%); and were found 

in Spanish wine vinegar (>90%) by PLS-DA (Ríos-Reina et al., 2018). 

4 Conclusions 

The use of the NIR spectral fingerprinting technique has shown satisfactory results to discriminate 

the PGI lemon samples from the Non-PGI lemon samples produced in two areas geographically close 

to one another (Campania Region). The results indicate that the LDA and PLS-DA classification, 

using the NIR spectra of the lemon juice samples, performed better (higher level of discrimination) 

than the models developed using the NIR spectra of intact lemon samples. The discrimination models, 

so built, could be subjected to misclassifications when they will be validated with samples of different 

years (different growing conditions) or with samples that came from other farms also in the PGI area. 

For this, it is necessary that these discrimination models must be implemented year to year with 

samples not only from the same orchards but also with samples that come from different orchards 

inside the PGI area. The results have shown that there are common characteristics among the farms 

in the Limone di Sorrento PGI area, different from the Non-PGI areas that could be related to the 

unique traditional cultivation methods of the PGI area. Future application with other techniques could 

provide more evidence to support this relationship (cultivation environment/products). Extending the 

database with further representative samples, and farms, in all PGI area is necessary to improve the 

statistical models to provide lower error rates for the authentication of lemon fruits. Considering the 

low price of the device, the non-destructive, fast and easy application (samples without or minimal 

preparation), ease of measurement, and flexibility of the measurement set-up, NIR spectroscopy 

could serve as a viable tool to distinguish the lemon fruits according to origin, and thereby also act 

as a technical control measure to help detect food fraud. 
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Figure 1 The raw NIR spectra (4000-10000 cm-1) for lemon juice (a) and intact lemon/peel samples (b), PGI: blue; NO-
PGI: red.
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Figure 2 Principal component analysis (PCA) scores plots of the (a) raw spectral data, (b) standard normal variate (SNV) pre-processed spectral data, and (c) SNV with Savitzky-
Golay (SG) first derivative (2nd order polynomial, 15 points) pre-processed spectral data for the different lemon juices of two groups (a; b; c), three groups (a1; b1; c1), and the 
loadings line plots of three groups (a2; b2; c2). PGI: blue; NO-PGI: red for two groups, and PGI: blue; PR-NOPGI: red; EB-NOPGI: green for three groups.
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Figure 3 Principal component analysis (PCA) scores plots of the (a) raw spectral data, (b) standard normal variate (SNV) pre-processed spectral data, and (c) SNV with Savitzky-
Golay (SG) first derivative (2nd order polynomial, 15 points) pre-processed spectral data for the different intact lemons/peels of two groups (a; b; c), three groups (a1; b1; c1), and 
the PC-1 loadings line plots of three groups (a2; b2; c2). PGI: blue; NOPGI: red for two groups, and PGI: blue; PR-NOPGI: red; EB-NOPGI: green for three groups. For interpretation 
of the colour, please refer to the online version of the paper.
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Table 1. Results of Discriminant Analyses using three different methods (Calibration set): linear (LDA), quadratic (QDA) 
and Mahalanobis (MDA). 

 Pre-processing Methods % Total Accuracy % Accuracy per groups 

    NO-PGI PGI 

Lemon Juices      

 Raw spectra     

  LDA 76 75 77 

  QDA 79 75 82 

  MDA 71 54 82 

 SNV     

  LDA 74 75 74 

  QDA 81 79 82 

  MDA 77 66 85 

 SNV+SG     

  LDA 97 91 100 

  QDA 98 95 100 

  MDA 98 91 100 

Intact Lemons      

 Raw spectra     

  LDA 86 83 88 

  QDA 84 83 85 

  MDA 86 79 91 

 SNV     

  LDA 69 66 71 

  QDA 78 75 79 

  MDA 74 66 79 

 SNV+SG     

  LDA 71 66 74 

  QDA 74 66 79 

  MDA 74 66 79 
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Table 2. Correct classification rates of the external validation set by Partial Least Squares Discriminant Analysis (PLS-
DA). 

Samples GROUP FACTOR R2 CAL SEC SEP % CAL % VAL 

Lemon juice 3 2 0.95 0.18 0.24 100% 91% 

5 2 0.88 0.45 0.67 65% 46% 

Intact lemon 3 4 0.69 0.44 0.51 74% 65% 

5 2 0.59 0.84 0.86 24% 23% 

(Group 3) PGI, PR-NOPGI, EB-NOPGI; (Group 5) MS-PGI, PZ-PGI, SR-PGI, PR-NOPGI, EB-NOPGI; (FACTOR) Number of factors 

used for the generation of the models; (R2 CAL) Pearson determination coefficient of the Calibration model; (SEC and SEP) Standard 

Error of the Calibration and Prediction (Validation) models; (%CAL and %VAL) Percentage of samples correctly classified in the 

Calibration and Validation set. 
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Appendix A. Supplementary data 

 

Fig. S1. Loading line plots for Principal Component (PC)1, PC2, and PC3 of the (a) lemon juices and (b) intact 

lemons/peels generated by Discriminant Analysis of the spectral data showing the wavelengths with the highest 

absorptions.
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Table S1 Confusion matrix of validation (% correctly validated) for the Partial Least Squares Discriminant Analysis 

(PLS-DA) model based on spectra of intact lemons pre-processed using Standard Normal Variate (SNV)and  Savitzky-

Golay (SG) polynomial derivate in the PGI area. 

% Correct  MS-PGI PZ-PGI SR-PGI 

MS-PGI* 19% 50% 0% 

PZ-PGI° 59% 28% 3% 

SR-PGI 0% 83% 17% 

*31% of samples were classified as PR-NOPGI; °9% of samples were classified as PR-NOPGI 

 

Table S2 Confusion matrix of validation (% correctly validated) for the Partial Least Squares Discriminant Analysis 

(PLS-DA) model based on spectra of lemon juices pre-processed using Standard Normal Variate (SNV) and  Savitzky-

Golay (SG) polynomial derivate in the PGI area. 

% Correct  MS-PGI PZ-PGI SR-PGI 

MS-PGI* 63% 31% 0% 

PZ-PGI 47% 53% 0% 

SR-PGI 33% 67% 0% 

*7% of samples were classified as PR-NOPGI. 
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GENERAL CONCUSION 

The main aim of my thesis work was to build different discrimination models able to authenticate and 

track high-quality lemon fruits such as the Limone di Sorrento PGI (cv. Femminello Ovale di 

Sorrento) and Limone Costa d'Amalfi PGI (cv. Femminello Sfusato Amalfitano) produced in the 

Campania region. For this purpose, lemons collected from orchards in different PGI and not PGI 

areas and in two consecutive production years (2018 and 2019) were analysed for their geochemical 

and spectroscopical fingerprinting. A special emphasis was given to the interaction of environmental 

cultivation conditions (pedoclimatic conditions) in defining the specific profile of lemon fruits. 

Among the most widely applied techniques for authentication and traceability of agri-food products, 

we selected soil-related indicators such as multielement fingerprinting and Sr isotope signature, along 

with spectroscopic fingerprinting by Near-Infrared Spectroscopy (NIR). Our results demonstrated 

that lemon fruit profiles (geochemical and spectroscopical profiles) were strongly related to the 

cultivation soil as well as to the climatic conditions of cultivation area.  

With regard to geochemical indicators, we built different chemometric discriminant models based on 

mineral element profile and 87Sr/86Sr isotope ratio of lemon juices both at small (regional) and large 

geographical scale. The latter was achieved by comparing Campania lemons with samples from 

Calabria region and from southern California. In both cases, foreign lemons were gathered in local 

markets.  

On a small geographical scale and taking into consideration the Limone di Sorrento PGI, the Stepwise 

Linear Discriminant model (S-LDA) classified correctly 97.7% of juice samples and validated 93.8% 

of juice samples (external to the model) according to provenance sites. In this case, for understanding 

the relationship between soil and lemon juices, Pearson correlation analysis and S-LDA were applied 

to different production years. Our conclusion was that the use of non-essential elements (Ba, Rb, and 

Sr) was more reliable than essential ones in discriminating the different provenance sites.  

The comparison of mineral element profiles and 87Sr/86Sr isotope ratio of lemon juices from different 

provenances (Limone di Sorrento PGI and Limone Costa d'Amalfi PGI both on a small and a large 

geographical scale) confirmed previous results giving for all elements 98.4% and 90.9% of juice 

samples correctly classified and validated, respectively, 86.3% and 72.7% for essential elements and 

92.4% and 86.3% for not-essential elements. It is worth noting that although the performance of the 

whole elemental profile gave a better result than the non-essential elements profile, the reliability of 

the two models, calculated as the ratio between the percentage of correctly validated and classified 

samples, was similar. The Sr isotope ratio showed a clear differentiation among the lemon fruits from 
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the Campania region and extra-regional samples. In addition, by analysing the 86Sr/87Sr ratio in 

cultivation soils, it was clear that the Sr isotope ratio of lemon juices was more closely related to that 

of the bioavailable fractions than to that of the total Sr in soil. Finally, combining on an explorative 

level (Principal Component Analysis, PCA) isotopic signature and mineral element profile of lemon 

juices by a low-level data fusion approach, the results showed a better clustering according to 

geographical origin than the two determinations taken separately. 

Application of NIR spectroscopy fingerprinting to intact lemons showed the strong influence of 

environmental growing conditions on the quality of lemon fruits. The explorative analysis based on 

raw NIR spectra showed natural clustering of samples according to production years. When the two 

years were considered separately, data were grouping by sites of origin better then by different 

cultivars. These results were confirmed by the application of six LDA models, all suggesting to build 

discrimination models according to origins (PGI and not PGI productions) on the base on one 

production year. The Multiple Linear Regression (MLR) between NIR spectra and lemon quality 

parameters highlighted a good relation between internal and external quality and the possibility to 

build predictive models. However, the results of MLR suggested to use NIR spectroscopy as quality 

predictive models on both cultivars only for single years rather than to implement datasets with fruits 

from different production year. In addition, on one part of the samples collected in 2019 (intact 

lemons and juices), were applied two different chemometrics models i.e., LDA and Partial Least 

Square Discriminant Analysis (PLS-DA). The results showed better provenance discrimination using 

the lemon juices than the intact lemons. 

The comparison between the results obtained applying the geochemical fingerprinting approach with 

those of NIR spectroscopy, highlighted a higher stability of the former in discriminating lemon fruits 

collected in two different production years, especially when not essential elements are considered. 

However, the numerous vantages of NIR spectroscopy application (non-destructive, rapid, and cheap) 

as well as the results obtained, make the technique useful to be used for rapid screening in order to 

verify the quality and geographical origin of lemon fruits during the year. In both approaches, the 

study of the pedoclimatic features was fundamental to understand the nature of discriminating 

variables.  

Discriminant models based on geochemical and spectroscopical profiles of lemon fruits could 

substantially contribute to implementing a blockchain system for Campanian lemon traceability, 

providing real-time information not only to the final consumers but also to manufacturers, 

distributors, and retailers. To improve their robustness and reliability in detecting frauds, additional 

research should be conducted to include a greater number of lemon farms (or sampling points) in the 
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PGI areas and to enlarge the existing database including lemon samples from other regions and 

validate the models built.  

 

 

 


