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Preface

Topological invariants are usually defined as quantities which are preserved under home-

omorphism transformations. This means that they are mathematical objects which do

not depend on the local form of the spacetime, but only relies on its global structure, the

topology. They are largely used in all physics branches, from gravitation up to complex

systems, due to their capability of reducing the complexity of the dynamics and leading to

exact solutions. This thesis is aimed at describing their applications in different contexts,

such as modified theories of gravity, standard electromagnetism and biological systems.

Regarding the former, it is well known that Einstein General Relativity is still considered

the best accepted theory describing the gravitational interaction, but several shortcom-

ings arise in the so called strong regimes. As a matter of facts, despite its success, General

Relativity presents many unsolved issues and puzzles at any scales. Such problems can be

partially solved by modified theories of gravity, which aim to extend the Einstein-Hilbert

action to a more general one including other geometric terms. These latter can mimick

the role of Dark Energy and Dark Matter, providing an effective energy-momentum tensor

of the gravitational field. Among all the possible modifications of the starting actions, in

this thesis modifications related to topological invariants are considered. Modified the-

ories of gravity, often lead to higher-order field equations which cannot be analytically

solved even in cosmological backgrounds. In this framework, reducing the order of the

field equations, topological invariants can be particularly useful in order to find out exact

solutions, well describing the today observations at the large scales. Moreover, as pointed

out in the second part of the thesis, topological invariants can be used to construct gauge-

invariant Lagrangians, which allow to fix the high-energy issues arising in the attempt

of merging the formalism of Quantum Mechanics with that of General Relativity. In the

second part of this work we will focus on a modified theory of gravity including a function

of the Gauss–Bonnet topological surface term, showing that suitable field equations allow

to find out exact solutions in a cosmological and in a spherically symmetric background.
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The starting action is selected by means of the Noether Symmetry approach, a selection

criterion aimed at finding theories containing symmetries. Modified f(G) gravity, with

G being the Gauss–Bonnet term, is studied in a D-dimensional spacetime, where higher-

order cosmological and black holes solutions are provided. The Gauss–Bonnet scalar is,

then, coupled to a dynamical scalar field, in order to make a comparison with the stan-

dard scalar-tensor theory of gravity. In all cases, General Relativity can be recovered as

a particular limit.

In the third part of the thesis, we consider the Chern–Simons theory in odd dimensions. It

is based on the Chern-Simons forms, whose exterior derivatives provide topological surface

terms. This property make the theory quasi-Gauge invariants, namely invariant under

gauge transformations up to a boundary term. We show that from very general and basic

theories such as classical and quantum theories of gravity, Chern–Simons theory can lead

to far beyond closely related fields to push concepts and applications to complex systems,

there including the interactions between biomolecules, such as nucleic acids and proteins.

Indeed, after providing cosmological and spherically symmetric solutions in D dimensions,

we show that the theory can be also applied to biological systems. While applications to

our Universe seems to be a straightforward consequence for a testbed of the theory itself,

the use of Chern–Simons theory in understanding complex systems might look unusual

and non-conventional.

Biological systems often exhibit complicated topological structures, such as nucleic acids

or proteins, since different parts of the same molecule may assume a complicated three-

dimensional shape (tertiary structure). When two or more tertiary structures interact, the

resulting system fold into a quaternary structure, whose schematization represents one of

the most controversial and discussed branch of science, due to the important implications

in biology, microbiology, medicine etc. As an example, from the spatial configuration

assumed by the DNA, it is possible to infer the place in which genomic mutations might

occur, as well as the difference among phenotypes.

The link between Chern–Simons theories and the dynamics/interactions of complex biomolecules
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is the topological nature of the former which can be essential to describe the complicated

physico-chemical and biological behavior of the latter, very much relying on their topology.

Basically, the main idea is to describe the DNA curvature by using the same formalism

adopted for the spacetime, treating the interactions among biological systems as driven

by the same general principles that govern the gravitational interaction.

By merging the schematization approach lying behind the Chern–Simons theory with

the more conventional ones coming from bioinformatic, it is possible to implement the

nowadays knowledge of the biological scenario. In particular, the deterministic aspect

of the former can be combined with bioinformatic techniques, which treat the biological

issues from a stochastic point of view.

As a final remark, in light of the above mentioned applications, it is worth pointing out

that this thesis can be understood as a first step towards the development of the so called

"Topological Invariant Approach". More precisely, we aim to show that topological invari-

ants can be considered in the framework of different fields to describe the corresponding

dynamics, ranging from cosmology, black holes, up to complex systems. Throughout the

history of physics it is possible to identify several approaches, developed to solve specific

issues, but which subsequently spread out in different fields, because of their general valid-

ity. This is the case e.g. of symmetries, which nowadays play a fundamental role in almost

all branches of science. Similarly, though topological invariants arose with the purpose of

addressing evidences provided by the gravitational interaction, the same structure can be

also applied to apparently unrelated fields. In particular, the vision on which topology,

geometry and topological invariants are based on, is the key point of the approach. In

this way, once addressing a configuration space to the given system, the evolution can be

described under the same formalism as the space-time, so that the research for topologi-

cal and geometrical features of the configuration space can provide information about the

related dynamics. Therefore, the link with the gravitational interaction appears natural

and straightforward, and the dynamical behavior of galaxies, stars and planets can be

addressed to other different models.
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To conclude, this thesis is organized as follows: in Chaps. 1 and 2 successes and shortcom-

ings of General Relativity are outlined, and the main classes of modified theories of gravity

are discussed. In Chaps. 3-8, different theories of gravity involving the Gauss–Bonnet

scalar are studied, as well as scalar-tensor theories and non-local theories. Specifically,

in Chap. 3, cosmological aspects such as energy conditions and slow–roll inflation are

discussed in the framework of f(G) gravity. The form of the starting action is selected by

symmetry considerations, namely using the Noether symmetry approach. The prescrip-

tion pursued to find out analytic cosmological solutions by Noether’s approach is based

on Ref. [47], while applications to early stages of the Universe and energy conditions on

Ref. [146]. In Chap. 5 we find out exact solutions for f(G) gravity in a spherically sym-

metric background, following Ref. [155]. In Chap. 6 we compare two classes of non-local

integral kernel theories of Gauss–Bonnet gravity, outlining the main results of Ref. [158].

In Chap. 7 the equivalence between metric and affine scalar-tensor theories is discussed,

remarking the differences and the common features. In particular, a function of the scalar

field f(φ) is coupled to the scalar curvature (Sec. 7.1), to the torsion scalar (Sec. 7.2) and

to the Gauss–Bonnet scalar (Sec. 7.3). For further details see Ref. [162]. The third part

is devoted to basic foundations and applications of Chern–Simons theory. After outlining

its main aspects in Chap. 9, in Chaps. 10 and 11 Chern–Simons gravity is applied to

cosmology and spherical symmetry [171]. Finally, in Chaps 12 and 13 the applications

to electromagnetism and biological system is respectively considered [218, 217]. With

regards to this latter, in Sec. 13.1.1 the theory is applied to KRAS human gene, in order

to study the effect of induced mutations to selected sequences. In Sec. 13.1.2 the same

analysis is performed to SARS-COV 2 virus.

Keywords: Topological Invariants; Modified Theories of Gravity; Complex Systems.
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Notation

We will set h̄ = c = 8πG = 1 unless otherwise indicated and we will use the following

notation:

1. For the indexes:

• Greek indexes {α, β, γ... = 0,1,2,3}→ label the four dimensional curved space-

time coordinates

• Latin indexes {a, b, c... = 0,1,2,3}→ label the four dimensional flat space-time

coordinates

• Middle indexes {i, j, k... = 1,2,3} → label the spatial coordinates

• Symmetrization over the indexes will be indicated by the curly bracket, while

anti-symmetrization by the square bracket

2. Let Aµ be a generic four-vector, we adopt the following:

• DνAµ = Aµ;ν is the covariant derivative in terms of the Levi-Civita connection

• ∂νAµ = Aµ,ν is the standard partial derivative

• Christoffel connection will be indicated equivalently by Γαβγ or gασ{σ, βγ}

• ∇νAµ → is the covariant derivative in terms of any connection except for the

Levi-Civita connection.

3. We use the symbol L for Lagrangian density, while the Lagrangian will be denoted

by L.

4. For the Einstein tensor we use the notation Gµν = Rµν − 1
2gµνR

5. The derivative with respect to the variable will be indicated by the subscript variable

or sometimes by the subscript variable in the partial derivative
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6. � stands for the four-dimensional D’Alembert operator � = gµν∇µ∇ν

7. X represents the generator of a certain symmetry, while X = X + η̇i∂q̇i is the

Noether vector

The metric signature adopted is (+,−,−,−).

We will introduce less important symbols during construction.
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1
Overview of General Relativity:

Successes and Shortcomings

1 The Hilbert-Einstein action, linear in the Ricci curvature scalar R, gives rise to the field

equations of General Relativity (GR), which is the theory of gravity capable of fitting

a huge amount of phenomena ranging from gravitational waves (GWs), astrophysical

compact objects, black holes up to cosmology. At the astrophysical scales, GR soon

obtained a great success after the observations of the light deflection, followed by the

Radar Echo Delay and the exact estimation of the precession of the perihelion of Mercury

in its orbit around the sun. The above mentioned successes come from the application of

the theory to a spherically symmetric space-time of the form

ds2 = P (r, t)2dt2 −Q(r, t)2dr2 − r2dΩ2, (1.1)

with Ω being the two-sphere defined as dΩ2 ≡ dθ2− sin2 θdφ2. Once replacing the interval

(1.1) in the Einstein field equations, it turns out that the only solution is

ds2 =
(

1− rS
r

)
dt2 −

(
1− rS

r

)−1
dr2 − r2(sin2θdφ2 + dθ2), (1.2)

which is static and contains two intrinsic singularities. One of them is an intrinsic diver-

gence occurring for r = 0, due to the curvature generated by the compact object, at the
1In this Chapter we restore the Newton constant GN , subsequently set to 1/8π.

2



1. Overview of General Relativity: Successes and Shortcomings

center of which any information is missed. The other singularity occurs when the radius

is equal to the so called "Schwarzschild radius" rS , defined as

rS = 2GNM , (1.3)

with GN being the Newton coupling constant and M the mass of the compact object.

It can be shown that this latter singularity is coordinate-dependent, and can be deleted

by means of an appropriate transformation (Kruskal-Szekeres coordinates). The plane

r = rS is the "Event Horizon" and can be interpreted as the boundary beyond which

events cannot affect an observer. The recent black hole image at the center of M87 galaxy,

showed that these theoretical predictions are consistent with experimental observations

[1].

The application of GR to homogeneous and isotropic space-times led to better understand

the cosmological evolution crossed by the Universe, from the Big Bang to the Dust Matter

Dominated Era. Using a cosmological perfect fluid with equation of state p = γρ, the

Einstein field equations provide the solution

a

a0
=
(
t

t0

) 2
3(γ+1)

ρ(t) =
[
6πGN (1 + γ2)t2

]−1
, (1.4)

where a spatially–flat Friedmann–Lemaitre–Robertson–Walker (FLRW) universe of the

form

ds2 = dt2 − a(t)2[dx2
1 + dx2

2 + dx2
3], (1.5)

must be considered to obtain Eq. (1.4). Depending on the value of γ, three different

epochs can be identified:

• γ = 1
3 → Radiation fluids

• γ = 1→ Stiff matter fluids

• γ = 0→ Dust matter fluids

Experimental observations confirm that the evolution of the Universe went through dif-
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1. Overview of General Relativity: Successes and Shortcomings

ferent epochs, predicted by GR cosmology with high precision.

At the astrophysical scales, linearized Einstein field equations show that GR admits the

presence of GWs propagating outward from their source at the speed of light. Specifically,

considering a small perturbation hµν of the Minkowski flat metric tensor

gµν = ηµν + hµν , |hµν | � 1 , (1.6)

a D’Alembert equation of the form

�hµν = −2
(
Tµν −

1
2δ

µ
νT
)

, (1.7)

2 can be obtained from the field equations, where T is the trace of the energy–momentum

tensor Tµν . In vacuum the above equation describes propagating waves at the speed of

light. Using the TT gauge condition, the general solution reads:

hµν = e+µνh+ + e×µνh× ,

e+µν =



0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0


e×µν =



0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0


. (1.8)

According to the standard model, GWs in GR are described by spin-2 massless particles,

with spin orientated in the same direction of motion.

For many years, GWs represented only a theoretical solution of field equations. In 2015,

the Laser Interferometer Gravitational-Wave Observatory (LIGO) revealed a GW event

(GW150914) and opened a new window in astrophysics and cosmology [2].

The GW production occurred during the merging of two black holes with masses of 29

M� and 36 M�. The merging process produced a black hole of 62 M�. The remaining (3

M�) mass-energy was released in form of gravitational radiation. The observation gave a
2The operator � is the D’Alembert operator defined as DµD

µ, with Dµ being the covariant derivative
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1. Overview of General Relativity: Successes and Shortcomings

double result: confirmed the existence of GWs and of stellar mass black holes.

After this first detection, several other events have been observed thanks to the LIGO-

VIRGO collaboration, and further detections are expected in the forthcoming years.

When the cosmological constant is considered and dominating, the vacuum solution of

the Einstein field equations in a FLRW space-time provides a scale factor of the form

a(t) = a0e

√
Λ
3 t, (1.9)

denoting an exponentially accelerated universe.

The cosmological constant was introduced to explain the today observed accelerated cos-

mic expansion, physically interpreted as a form of energy which should represent the 68%

of the Universe, called Dark Energy. The today accepted formulation of gravity, includes

the cosmological constant as a fundamental component in the Einstein field equations,

which therefore reads as:

Rµν −
1
2gµνR+ Λgµν = 8πGN Tµν , (1.10)

where Rµν is the Ricci tensor, R the Ricci scalar, gµν the metric tensor and Tµν the

energy–momentum tensor of matter fields.

Those mentioned above are only a few part of the results gained by GR during more

than one hundred years. In spite of all this, it also provided some results which disagree

with experiments. For instance GR is not able to predict the right correlation between

mass and radius of compact objects. Another example is given by the speed of the farest

stars orbiting around the center of a given galaxy, which is experimentally lower than

theoretically expected (see galaxy rotation curve problem [3]). To theoretically fix this

issue, the missing matter was addressed to a fluid with zero pressure, called Dark Matter.

It is supposed to represent the 26.8% of the Universe but has never been observed directly.
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1. Overview of General Relativity: Successes and Shortcomings

Figure 1: Energy–matter content in the Universe.

As the accelerated expansion cannot be predicted by GR without invoking the presence of

Dark Energy, the galaxy rotation curve cannot be fitted without Dark Matter; however,

even considering the cosmological constant, at the quantum level there is a discrepancy of

120 order of magnitude between the theoretically predicted value and the experimentally

calculated one.

On the other hand, the "local" formulation of GR seems completely in disagreement with

the intrinsic "non-locality" of quantum mechanics.

Quantum mechanics was the most revolutionary theory of the last century, which opened

the doors to a completely new vision of physics at the high energy. The determinism of

classical mechanics was replaced by a probabilistic interpretation of small-scale phenom-

ena, which seemed to be the only way to fit all the experimental results. As we gained

a theory capable of describing almost all the evidences provided by the quantum world,

we lost the capability to exactly predict the time evolution of the system. Soon after,

Quantum Field Theory (QFT) arose with the purpose to describe all the fundamental

interactions under the same standard. It was soon clear that this prescription could not
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1. Overview of General Relativity: Successes and Shortcomings

be applied to the gravitational interaction. Indeed, as quantum mechanics is probabilistic

by nature, gravity is in turn described by Einstein’s GR, where non-local interactions are

not allowed. So far, a theory capable of describing both the large-scale structure and the

Ultraviolet (UV) scale results is still missing. Moreover, neither QFT nor GR hold at

the Planck scale, where a new physics is probably needed. On the one hand, despite all

the experimental confirmations of quantum mechanics, we still miss its deep meaning; on

the other hand, although GR is mathematically consistent and well developed, it presents

some inconsistencies even at the large-scales. Any attempt to merge the formalism of

GR with that of QFT have failed. Even though QFT in curved space-time addressed

several evidences provided by the small-scales observations (such as Hawking Radiation,

Unruh effect or cosmic inflation) it suffers several shortcomings. Indeed, it turns out

that GR can be renormalized up to the second loop level [4], which means that incurable

divergences arise once adapting the same scheme as QFT to gravity. In addiction, unlike

the other fundamental interactions, GR cannot be treated under a Yang-Mills formalism,

due to the lack of a Hilbert space and a probabilistic interpretation of the wave function.

For these reasons, a coherent and self-consistent theory of quantum gravity is one of the

most studied topic nowadays [5, 6, 7, 8, 9, 10, 11]. In the last few years, the quantum

formalism was adapted to cosmology, where the dynamics can be reduced considering a

minisuperspace of the variables. It represents a "toy model" which does not claim to be

complete, but yields several important results in the understanding of the early-stage of

our Universe [12, 13, 14, 15, 16].
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2
Modified Theories of Gravity

Before introducing the main classes of modified theories of gravity it is useful to overview

the state of art of GR modifications and the reasons why extending gravity. As mentioned

above, while the electroweak and the strong interaction are Yang-Mills gauge theories, GR

is invariant under diffeomorphism transformations, which involve coordinates instead of

fields. Moreover, according to the geometric description of gravity, in view of a possible

quantum scheme, the space-time metric should represent both a dynamical field and the

background; this is not the case of other interactions, whose treatment is simplified by

the assumption that the space-time is supposed to be flat. In 1988 Lasenby, Doran and

Gull proposed to deal with the flat tangent space of the Riemannian manifold, treating

GR as a gauge theory with respect to the local Lorentz group [17]; in order to pass from

the curved to the flat space-time, a mathematical tool called tetrad fields is necessary,

which in turn becomes the fundamental dynamical field. The formalism adopted is the

so called Einstein–Cartan formalism [18, 19, 20, 21], where the connection is generally

independent of the metric and the two-form curvature must be found through Cartan’s

structure equations [18, 22]. This implies that curvature can be used along with torsion

to simultaneously label the space-time, so that the theory reduces to standard GR as

soon as anti-symmetric part of the connection vanishes. This approach is not aimed at

solving all the problems occurring in GR at the small scales regime, since even under

an Einstein-Cartan formalism, several shortcomings are still suffered. As an example,

neglecting the asymptotic safety scenario [23, 24, 25, 26], the theory can be renormalized

only up to the one-loop level. At the large scales, early and late-time Universe acceleration
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2. Modified Theories of Gravity

cannot be predicted without introducing Dark Energy, as well as the galaxy rotation curve

cannot be fitted without Dark Matter. In this framework, modified theories of gravity

arose with the purpose of solving such shortcomings, by taking into account alternatives

to the Hilbert–Einstein action. In the first instance, they can be distinguished in two

main categories: purely metric theories and metric-affine theories. The former (which

will be the main focus of this thesis) admits the metric tensor as the only fundamental

filed. The latter disentangles the contribution of the metric from the affine connection,

such that no relations between Γαµν and gµν occur. This prescription is usually called

"Palatini formalism" (see [27, 28, 29, 30] for basic foundations and applications). One of

the most famous extensions of GR is the f(R) gravity, which introduces into the action

a function of the scalar curvature. Similarly, the f(T ) gravity considers a function of

the so called torsion scalar into the action. However, the Hilbert–Einstein Lagrangian

can be extended in several ways, such as introducing the coupling between geometry and

scalar fields, higher-than-fourth order terms involving the D’Alembert operator �n, or

higher-order curvature invariants (as well as RµνRµν or RµνpσRµνpσ). All these theories

can be treated either with respect to the purely metric or to the Palatini formalism. In

this thesis, we assume the affine connection to be linked to the metric tensor, such that

the corresponding field equation solutions can be uniquely determined by knowing the

space-time line element. Specifically, we will focus on those modified theories of gravity

somehow related to topological invariants, such us modified Gauss–Bonnet gravity and

Chern–Simons gravity. An exhaustive treatment regarding other modified theories of

gravity can be found in [31]. For specific discussions see e.g. [32, 33, 34, 35, 36] for

f(R) gravity, [37, 38, 39, 40, 41, 42] for f(T ) gravity, [43, 44, 45, 46] for scalar-tensor

gravity, [47, 48, 49] for actions depending on second-order curvature scalars. Lagrangians

of most modified theories of gravity contain unknown functions which cannot be directly

constrained by experimental observations. Therefore, it comes natural wondering how to

select the shape of the function among all possible choices.

One possible remedy, largely considered in the literature (see App. B), is to use a selection
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2. Modified Theories of Gravity

criterion aimed at finding actions containing symmetries. It is called Noether Symmetry

Approach and will be particularly used in the second part of this work to select modified

Gauss–Bonnet theories with symmetries. Specifically, as better pointed out in App. B,

Noether theorem can be used as an approach to reduce the dynamics and find out exact

analytic solutions of the field equations in modified gravity.

2.1 Brief Introduction on Modified Theories of Grav-

ity

Modified theories of gravity, in some context, are capable of fixing GR inconsistencies, at

infrared (IR) and UV scales. GR can be modified in several ways, depending on the scale

and on the theoretical issues considered. As a matter of fact, GR does not account for the

most general classical theory of gravity, but it relies on several assumptions. Most of them

are motivated neither by experimental observations nor by strong theoretical reasons, but

was introduced with the aim to construct a suitable theory leading to analytic solutions. It

is beyond any discussion that the description of the gravitational interaction through the

space-time geometry was perhaps the greatest intuition of XX century, and the consequent

approval marked a turning point in the physical comprehension of phenomena. However,

in order to gain such a predictive power and to obtain analytic results, many hypothesis

was adopted; in what follows we analyze the main assumptions lying behind GR.

• Equivalence Principle and Symmetric Connection.

Let us first consider the assumption of symmetric connection, based on the requirement

for the validity of the Equivalence Principle. The Weak Equivalence Principle affirms

that there is no difference between gravitational field and accelerated systems, so that

a free falling reference frame is completely equivalent to a system with no gravitational

field. In other words, according to the weak Equivalence Principle, it is always possible

to locally link the curved space-time to a flat tangent Minkowski space-time. The equiva-

lence between the gravitational and the intertial mass is then automatically implied, and
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2. Modified Theories of Gravity

nowadays several experiments confirm such equivalence with a precision of 1 part over

1014. Despite this, it is just an assumption motivated by macroscopic observations, which

surely holds at large scales, though it is still unclear whether it keeps being valid at Planck

scales. In order to treat the gravitational interaction under the same standard as the other

fundamental interactions and to construct a coherent theory of quantum gravity, such a

precision of 10−14 makes a crucial difference, since admits the possibility that at higher

scales the ratio mg/mI might pull rapidly away from 1.

As usual in GR, the form of the Christoffel connection can be found by imposing the

"metricity condition" Dαgµν = 0, by means of which the following identity

Dαgµν +Dνgαµ −Dµgνα = 0, (2.1)

must hold. Considering the definition of the covariant derivative and assuming Γα[µν] = 0,

it turns out that the only possible connection in GR is the Levi–Civita connection, that

is:

Γαµν =
1
2g

αp (∂µgpν + ∂νgµp − ∂pgµν) . (2.2)

However, once the metricity condition and the hypothesis of symmetric connection are

relaxed, the same computation leads to a more general form of Γαµν , comprehending other

non-trivial terms. It reads [50, 51, 52]:

Γαµν = Γ̆αµν +
1
2g

αλ
(
Tµλν + Tνλµ + Tλµν

)
+

1
2g

αλ
(
−Qµνλ −Qνµλ +Qλµν

)
, (2.3)

where Γ̆αµν denotes the Levi-Civita connection and Qβµν , Tαµν are rank-three tensors

defined as:

Qβµν = ∇βgµν Tαµν = 2Γα[µν]. (2.4)

The formalism in which the metric is disentangled from the connection, so that this latter

is no longer "metric compatible", is known as Einstein-Cartan-Sciama-Kibble formalism.

Standard GR is recovered when Γαµν = Γ̆αµν , namely when both Tαµν and Qβµν vanish. In
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2. Modified Theories of Gravity

order to show that the Equivalence Principle implies the presence of symmetric connection

as the only possible connection, let us consider a generic covector Aµ and the rank-two

tensor DνAµ, namely the covariant derivative of Aµ. Requiring that Aµ can be recast as

the derivative of a scalar field φ, namely Aµ = ∂µφ, the quantity D[νAµ] reads as:

D[νAµ] = −Γα[µν]∂αφ. (2.5)

If the Equivalence Principle holds, than there exist a free falling reference frame where

the covariant derivative turns into the standard partial derivative, so that the LHS must

vanish. Being a rank-two tensor, the LHS must be null in all reference frames as well as the

antisymmetric part of the Christoffel connection Γα[µν]. On the contrary, this latter must be

taken into account in the general form of the connection, when the Equivalence Principle

is not assumed to hold. Nevertheless, field equations arising from general Christoffel

connections require other additional conditions to be solved. In this case the metric is

not enough to uniquely determine the dynamics of the system, which needs to be further

constrained by other external impositions. Reversing the argument, by choosing a metric

compatible connection, the metric tensor turns out to be the only fundamental field

needed to solve the field equations. The consequences of such an assumption do not have

to be addressed to the theoretical side only, since neglecting the antisymmetric part of

the connection is a strict ansatz also affecting the physical description of the space-time.

When the rank-3 tensor Tαµν is included in the general connection, torsion arises in the

geometric description of the space-time. For this reason, Tαµν is usually called Torsion

Tensor . According to GR, torsion is not admitted as a component of the space-time,

which is described by curvature only.

Similarly, by relaxing the metricity principle, according to which the covariant derivative of

the metric tensor must vanish, the rank-3 tensor Qαµν arises in the Christoffel connection.

As better pointed out in Sec. 2.5, this implies a space-time in which the norm of a vector

changes while parallel transported along a closed path.

Therefore, if all the three terms in Eq. (2.3) are considered at the same level, it is possible
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2. Modified Theories of Gravity

to construct theories where the space-time is ruled by torsion or non-metricity (or both).

The former theory is usually called Teleparallel Equivalent of General Relativity (TEGR),

while the latter is the Symmetric Teleparallel Equivalent of General Relativity (STEGR).

• Second-Order Field Equations

Another assumption which is based neither on strong theoretical foundations nor on ex-

perimental observations is that of second-order field equations, according to which the

Hilbert–Einstein action is chosen as linearly dependent on the scalar curvature. This

choice is historically motivated by the requirement for the equivalence between gravita-

tional and electromagnetic field equations. In principle, there are not strong theoretical

motivations which impose the gravitational field equations to be of the second–order with

respect to the metric. The only non-trivial four–dimensional action respecting the gen-

eral covariance and leading to second–order field equations must be linear in the scalar

curvature. It is the well known Hilbert–Einstein action, namely:

SH−E =
1
2

∫ √
−gR d4x. (2.6)

By relaxing this hypothesis, several extensions of GR can be developed, with actions

also involving higher-order geometric terms, like e.g. R2, RµνRµν or RµνpσRµνpσ. More

precisely, functions of such second–order curvature invariants can be generally considered,

as well as the coupling between geometry and scalar fields. As an example, the action

S =
∫ √
−gF (φ,R,�zR,RµνRµν ,RµνpσRµνpσ) z ∈ Z, (2.7)

depending on the scalar curvature R, on its D’Alembertian �zR, on the higher–order

terms RµνRµν , RµνpσRµνpσ and on a scalar field φ, leads generally to 2z + 4-th order

field equations. Moreover, a Klein–Gordon-like equation can be obtained by varying the

action with respect to the scalar field.

As pointed out in the previous section, though GR achieved several successes in the large

scales, it manifests some shortcomings which call its validity into question. Therefore, it
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comes natural wondering whether GR could be the low–energy limit of a grand unified

theory, which holds from the Planck scale up to the cosmological scale. Modified theories

of gravity might represent a good candidate towards a final comprehension of the gravi-

tational field, since most of them is capable of settling several puzzles at small and large

scales. In what follows we discuss the most known GR modifications, sketching their main

features and the most important results.

2.2 Curvature Extensions

The simplest extension of GR is the so called f(R) gravity, and includes a function of the

scalar curvature into the action:

S =
∫ √
−gf(R) d4x. (2.8)

By varying the action with respect to the metric, one gets:

Gµν =
1

fR(R)

{1
2gµν [f(R)−RfR(R)] + fR(R);µ;ν − gµν�fR(R)

}
, (2.9)

being Gµν the Einstein tensor Gµν = Rµν −
1
2gµνR and fR(R) the first derivative of f(R)

with respect to R. Notice that when fR = 1, Einstein field equations are recovered. By

comparing Eq. (2.9) with GR field equations in vacuum (1.10), it is possible to interpret

the quantity

T
GF
µν =

1
fR(R)

{1
2gµν [f(R)−RfR(R)] + fR(R);µ;ν − gµν�fR(R)

}
, (2.10)

as an effective energy–momentum tensor of the gravitational field, so that the f(R) field

equations take the form Gµν = T
GF
µν . In this way, the RHS can play the role of effective

energy density and pressure, violating the energy conditions and leading to an accelerated

expansion at the cosmological scales in the late-time. Therefore, as pointed out in the
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the second part of the thesis, Dark Matter and Dark Energy are mimicked by geometric

contributions, and no exotic matter is needed to fit the current astrometric data. In [53],

for instance, quintessence model is addressed to geometry provided by the modification

of the gravitational action.

Among the f(R) extensions, great success was gained by the Starobinsky model, firstly

treated in [54] and whose action is:

S =
1
2

∫ √
−g

(
R+ αR2

)
d4x. (2.11)

The above action was firstly considered in order to explain the evolution of the Universe

in its early stage, without invoking the presence of dynamical scalar fields non–minimally

coupled to gravity. Moreover, by means of the linearization of the metric tensor

gµν = ηµν + hµν hνµ � δνµ, (2.12)

it turns out that the constant α can be understood as the mass of the GW [55]. To be

more precise, by means of Eq. (2.12), the action (2.11) yields a D’Alembert equation of

the form (�+ α)hµν = 0, with � ≡ gµνD
µDν . As GR field equations are of the second

order, f(R) gravity leads generally to fourth–order field equations. However, extensions

introduce new degrees of freedom due to which, often, analytic solutions cannot be found.

Higher than fourth–order field equations can be obtained by further generalizing the action

(2.8), including higher derivatives of the scalar curvature, namely:

S =
∫ √
−g f(R,�R,�2R, ...�kR) d4x. (2.13)
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The variational principle (for k > 0) yields

Gµν =
1
M

{1
2g

µν(F −MR) + (gµλgνσ − gµνgλσ)M;λ;σ

+
1
2

k∑
i=1

i∑
j=1

(gµνgλσ + gµλgνσ)(�j−1R);σ

(
�i−j ∂F

∂�iR

)
;λ

−gµνgλσ
[
(�j−1R);σ

(
�i−j ∂F

∂�iR

)]
;λ

 , (2.14)

beingM defined as

M≡
k∑
j=0

(
�j ∂F

∂�jR

)
. (2.15)

The differential equations (2.14), which reduce to those of f(R) gravity when k = 0, are of

2k+ 4-th order. These theories are usually considered in order to provide a solution for the

renormalizability problem of gravity at IR scales. The coupling constants of higher–order

terms in the geometry, have non-negative mass dimensions, which make the corresponding

theory power-counting renormalizable. As a matter of facts, when the gravitational action

is expanded around a gaussian fixed point, the coupling constant mass dimensions suggests

whether the theory can be renormalized. In GR, the coupling constant turns out to have

a negative mass dimensions, though the asymptotic safety argument endows a possible

convergence at UV scales. Nonetheless, as mentioned at the beginning of this chapter,

GR cannot be recast as a gauge invariant theory with respect to unitary groups, like

other interactions. On the other hand, when k < 0, the D’Alembert operator turns into

a propagator and the action is said to be Non-Local [56, 57, 58, 59]. Non-Local actions,

give rise to renormalizable unitary theories also well fitting the cosmological predictions

[60, 61, 62, 63, 64, 65].

2.3 Coupling Gravity to Scalar Fields

In this section we consider an extension of the Hilbert–Einstein action, including the non-

minimal coupling between geometry and scalar fields. The first model was introduced by
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A. Linde and A. Guth in [66, 67] to address the evidences provided by the cosmological

data in the early time, when the inflationary phase was predominant. Inflation is usually

thought as generated by a scalar field φ, called inflaton, which is supposed to be the

responsible for the accelerated expansion of the Universe. According to this vision, inflaton

should be made by scalar field driving the cosmic acceleration between 10−34 and 10−35

seconds after the initial expansion, generating a isotropic and homogeneous universe.

The theory can also describe the production of particles after the early-time accelerated

expansion (Reheating) [68, 69, 70].

The most general action including the coupling f(φ), the kinetic term ω(φ) and the

potential V (φ) is:

S =
∫ √
−g

{
f(φ) R+

ω(φ)

2 gµνφ,µφ,ν − V (φ)
}
d4x. (2.16)

By varying the above action with respect to the metric one gets

f(φ)Gµν =
ω(φ)

4 gµν φ
,αφ,α −

ω(φ)

2 φ,µφν −
1
2V (φ)gµν − gµν�f(φ) + f(φ),µ,ν . (2.17)

In the limits ω(φ) = φ−1, f(φ) = φ, the so called Brans-Dicke gravity is recovered. It

is worth noticing that even in this case, by means of the definition

Tµν = −
1

2f(φ)

[
−ω(φ)2 gµν φ

,αφ,α + ω(φ)φ,µφν

+V (φ)gµν + 2gµν�f(φ)− 2f(φ),µ,ν

]
, (2.18)

the field equations can be recast as Gµν = T
GF
µν , with T

GF
µν being the effective energy–

momentum tensor provided by the dynamical scalar field and the geometry. The variation

of the action with respect to the scalar field φ provides the Klein-Gordon equation

2ω(φ)�φ− fφ(φ)R+ Vφ(φ) + ωφ(φ)∂
µφ∂µφ = 0. (2.19)
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Therefore, the scalar field can be intended as an effective space-time dependent Newton’s

constant, whose value depends on the space-time point considered. Coupling gravity to

a scalar field can also describe the evolution of the Universe across different epochs, from

the very early stage up to the late time.

Moreover, it can be shown that fourth–order theories provide the same dynamics as

second–order theories non–minimally coupled to a scalar field. In particular, the former

can be addressed to the latter (and vice versa) by means of conformal transformations.

2.4 Gravity as a Theory of Translation Group: Telepar-

allel Gravity

In the previous sections we discussed some possible modifications of GR, which extend the

Hilbert–Einstein action introducing functions of second–order curvature invariants. All

these theories, share the common feature of having the same structure as GR, maintaining

the general covariance and the invariance under diffeomorphism transformations. They

can be classified as extensions of GR and the Hilbert–Einstein action can be exactly

recovered under some limits. In this section we introduce the main aspects of a theory of

gravity which cannot be thought as an extension of GR, but describes the gravitational

interaction from a different point of view. At the beginning of this chapter we mentioned

the possibility of discarding the Levi–Civita and the non-metricity contributions in the

general Christoffel connection (2.3), giving rise to a theory which describes the space-time

through torsion instead of curvature, the so called TEGR.

Specifically, by means of the definitions

Kρ
µν ≡

1
2g

ρλ
(
Tµλν + Tνλµ + Tλµν

)
, (2.20)

Spµν ≡ Kµνp − gpνT σµσ + gpµT σνσ , (2.21)

T ≡ T pµνSpµν , (2.22)
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it turns out that the actions

SGR ≡
1
2

∫
d4x
√
−g R, (2.23)

STEGR ≡
1
2

∫
d4x
√
−g T , (2.24)

differ from each other only by a four-divergence. In this case the general connection

labeling the geometry is

Γαµν = Kα
µν , (2.25)

where Kα
µν is the Contorsion Tensor and Spµν the Superpotential.

The same result can be obtained by considering local translations in a flat space-time,

so that the gravitational interaction is understood as a gauge theory of translation group

in the locally flat tangent space-time. The flat and the curved space-times can be linked

by means of a mathematical tool called tetrad fields. They are rank-2 tensor with mixed

indexes, belonging to the anholonomic frame (flat space-time) and to the holonomic frame

(curved space-time), respectively. They can be easily introduced by considering a coordi-

nate transformation xµ → x̃µ, by means of which the metric tensor varies as:

gµν → g̃µν = ∂µx̃
α∂ν x̃

βgαβ. (2.26)

Imposing the transformed reference frame to be the Minkowski space-time, namely g̃µν =

ηab, the above transformation takes the form:

ηab = ∂ax̃
α∂bx̃

βgαβ (2.27)

and, equivalently

gµν = ∂µx̃
a∂ν x̃

bηab. (2.28)

By defining the tetrad fields as

eaµ = ∂µx̃
a, (2.29)
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the relations below naturally follow:

eaµe
µ
b = δab ; eaµe

ν
a = δνµ. (2.30)

Thanks to tetrad fields, any quantity in the Riemannian manifold can be projected into

the flat tangent space-time. Tetrad fields can be used to formally recast TEGR as a gauge

theory of translation group.

In the reference frame where the spin connection vanishes, it turns out that the torsion

tensor (2.4) can be written in terms of tetrad fields as:

T pµν = (Γpµν − Γpνµ) = (epa∂µe
a
ν − epa∂νeaµ). (2.31)

The TEGR connection (2.25), therefore, becomes:

Γαµν = eαa∂µe
a
ν (2.32)

and is called Weitzenbock connection. When the general Christoffel connection is cho-

sen such that the only contribution is provided by the contorsion tensor, the Riemann

curvature can be written as:

Rλpνµ = ∇νKλ
pµ −∇µKλ

pν +Kλ
σνK

σ
pµ −Kλ

σµK
σ
pν . (2.33)

More generally, when also the Levi–Civita connection is included, the total curvature

takes the form

Rλpνµ = R̆λpνµ +Rλpνµ, (2.34)

with R̆λpνµ being the standard Riemann tensor written in terms of the Levi–Civita connec-

tion Γ̆pµν . The teleparallel action can be constructed by means of the definitions (2.20),

(2.21), (2.22). When TEGR is thought as a gauge theory of translation group, the de-

terminant of tetrad fields e is comprehended into the action, so that this latter reads as:
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S =
1
2

∫
e T d4x. (2.35)

Moreover, from Eq. (2.34) it is possible to show that the standard scalar curvature and

the torsion scalar satisfy the relation

R̆− 2
e
∂µ(e T

νµ
ν) = −T , (2.36)

namely they only differ for a boundary term. For instance, in a cosmological spatially flat

background, the Torsion Scalar T reads as:

T = −6 ȧ
2

a2 . (2.37)

Therefore, the teleparallel action can be recast in terms of the Hilbert–Einstein action

SGR as:

STEGR = −SGR + 2
∫
∂µ(e T

νµ
ν) d

4x. (2.38)

This implies that STEGR and SGR formally yield the same equations of motion. In the first

order formalism, where the Lagrangian depends on the fields and on their first derivatives,

the Euler–Lagrange equations with respect to the tetrad fields, i.e.

∂LTEGR

∂eap
− ∂σ

∂LTEGR

∂(∂σeap)
= 0, (2.39)

yield in vacuum:
4
e
∂µ
(
e S µβ

a

)
− 4T σµaS βµ

σ − Teβa = 0. (2.40)

When the contorsion tensor is included as a fundamental part of the Christoffel connection,

the space-time turns out to be labeled by torsion. This means that when a vector is

parallel transported around a closed path, its final position will be shifted with respect

to the initial one. If also curvature is comprehended, the final vector results shifted and

rotated.
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The boundary term in Eq. (2.36) does not play any role in the dynamics provided by the

standard teleparallel action. However, extensions of TEGR consider the boundary term

as a fundamental degree of freedom which allows to exactly recover f(R) gravity (see e.g.

[71, 72]).

In this context, similarly to the extensions of GR, TEGR can be extended in several

ways, e.g. by including into the action a function of the torsion and of the boundary

term f(T ,B), non-local terms [73], non-minimally coupled scalar fields [45], second-order

torsion invariants [74], or higher-order terms [75].

2.5 Symmetric Teleparallel Equivalent of General Rel-

ativity

So far, we discussed modifications of Einstein GR including the anti symmetric part of

the Christoffel connection, or extra terms in the gravitational action. In this section we

overview the mathematical and physical aspects of theories not respecting the metricity

principle. We show that a theory described only by non-metricity, without torsion and

curvature, is formally equivalent to GR and TEGR at the level of equations. This theory

is the previously defined STEGR, in which the general connection (2.3) is reduced to

Γαµν =
1
2g

αλ
(
−Qµνλ −Qνµλ +Qλµν

)
≡ Lαµν , (2.41)

where Qβµν is defined as

Qβµν = ∇βgµν (2.42)
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and where the rank–three tensor Lαµν is called Disformation Tensor . By introducing the

quantities

Q ≡ −1
4Qαµν

[
−2Lαµν + gµν

(
Qα − Q̃α

)
− 1

2 (gαµQν + gανQµ)
]

,

Qµ ≡ Q λ
µ λ ,

Q̃µ ≡ Q α
αµ ,

it turns out that the action

SSTEGR ≡
1
2

∫
d4x
√
−g Q+ S(m) , (2.43)

leads to the same field equations as the GR and TEGR actions. This means that the

torsion scalar T , the non–metricity scalar Q and the Ricci scalar R differ from each other

for boundary terms. GR and STEGR can be straightforwardly compared by considering

the connection

Γαµν = Γ̆αµν + Lαµν , (2.44)

which comprehends the Levi–Civita connection and the Disformation tensor. Moreover,

the GR Ricci scalar R̆ and the non–metricity scalar can be linked through the relation

R̆ = −Q−∇α
(
Qα + Q̃α

)
. (2.45)

Further details about non-metric theories can be found e.g. in [76, 77, 78].

Notice that the same procedure as the previous section cannot be applied to STEGR,

which cannot be thought as a gauge theory in the locally flat tangent space-time. As

the torsion and the curvature are respectively the gauge fields associated to local trans-

lation and to Lorentz transformations, no gauge transformation can be associated to

non–metricity. This formally yields a fundamental difference among the three theories,

although they lead to the same equations of motion.
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2.6 The Geometric Trinity of Gravity

Taking into account the results achieved in previous sections, here we introduce the so

called trinity of gravity. We showed that TEGR and STEGR are totally equivalent to

GR up to a boundary term in the starting Lagrangian. They can be obtained from the

general Christoffel connection

Γρµν = Γ̆ρµν +Kρ
µν + Lρµν . (2.46)

Specifically:
GR→ Lρµν = Kρ

µν = 0 ,

TEGR→ Γ̆ρµν = Lρµν = 0 ,

STEGR→ Γ̆ρµν = Kρ
µν = 0 .

(2.47)

It follows that the most general form of the scalar curvature, written in terms of the

general connection (2.46) is

R = R̆+
(
Kρ

νµ + Lρνµ
) (
Kβ

βρ + Lββρ

)
gνµ +

−
(
Kρ

βµ + Lρβµ

) (
Kβ

νρ + Lβνρ
)
gνµ +

+∇β
[(
Kβ

νµ + Lβνµ
)
gνµ −

(
Kν

νµ + Lννµ
)
gνµ

]
, (2.48)

with R̆ being the standard Ricci scalar. When the space-time is labeled by the Levi–

Civita connection, the dynamics is ruled by the curvature, while torsion and non–metricity

vanish everywhere. In this case, the parallel transport of a given vector around a closed

path yields a vector with same norm but different orientation. An angular displacement

therefore occurs due to the curvature of the manifold, as showed in Fig. 2.
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Figure 2: Comparison between a closed path in the flat space-time and in the curved

space-time.

When only the contorsion tensor occurs in the general connection, the parallel trans-

port yields a shift of the vector after performing a closed path. The result is a radial

displacement between the starting and the final point.

Figure 3: Comparison between a closed path in the flat space-time and in a space-time

with torsion.

Finally, when both curvature and torsion vanish, non-metricity describes a space-time in

which a propagating vector continuously changes its modulus.
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Figure 4: Space-time with non-metricity: a propagating vector field maintains the same

direction but changes its length.

As pointed out in [79], non-metricity, torsion and curvature can be thought as a geomet-

ric Trinity of gravity, since all of them leads to totally equivalent theories by different

formalism. Despite this, f(R) gravity is quite different with respect to f(T ) and f(Q)

extensions, where the boundary terms BQ and BT play a non-trivial role in the dynamics.

In Fig. 5, a useful scheme of all possible non-extended theories with curvature, torsion

and non-metricity is outlined.
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Figure 5: Classification of alternative theories containing curvature, torsion or

non-metricity.

To conclude this chapter, several extended and alternative theories of gravity arose after

GR was formulated, and most of them is capable of providing solutions for GR shortcom-

ings at large scales (see e.g. [33, 80, 81, 82, 83, 84] for astrophysical scales, [71, 85, 86, 87]

for cosmological scales).

Many other approaches have been developed to address small scales problems, such as

String Theory [88, 89, 90, 91, 92], Kaluza-Klein Theory [93, 94], Loop Quantum Gravity

[95, 96, 97], Horava-Lifshitz Gravity [98, 99, 100, 101], Non-Local Gravity [102, 103, 104]

etc. While GR turns out to be non-renormalizable from the two-loop level, the above

mentioned theories are both renormalizable and unitary.

In this thesis, the introduction of modified theories of gravity represents a fundamental

step towards a full comprehension of Gauss–Bonnet (treated in Part II) and Chern–Simons

theories (treated in Part III). Both indeed are alternatives to GR, which aim to fix the low
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and high energy problems suffered by Einstein’s theory. The former considers a function

of a topological surface term into the action, while the latter is an odd-dimensional theory

based on gauge-invariant Lagrangians coming from topological invariants.
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Part II

MODIFIED GAUSS–BONNET

THEORY
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3
Introduction to Part II:

Gauss–Bonnet Theory

This chapter is devoted to the introduction of the Gauss–Bonnet theory of gravity, mainly

investigated throughout the second part of the thesis. In Chap. 2 we introduced modified

theories of gravity, outlining extensions and modifications of the gravitational action.

We mentioned that the assumption of second-order field equations can be relaxed, by

introducing other curvature invariants. GR assumes that the Riemann tensor must be

contracted with the metric tensor such that the starting action is

SH−E =
1
2

∫ √
−g gµpgνσRµνpσ d4x. (3.1)

In this way, several other curvature scalars are neglected, which in principle may contribute

to the dynamics at the same level as the scalar curvature. For instance, by means of the

definitions

P ≡ gµpRνσRµνpσ Q ≡ RµνpσRµνpσ, (3.2)

the general action

S =
∫ √
−g f(R,P ,Q) d4x, (3.3)
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3. Introduction to Part II: Gauss–Bonnet Theory

can be considered. The corresponding field equations read as:

fR(R,P ,Q)Gµν =
[1
2gµνf(R,P ,Q)−RfR(R,P ,Q)

]
− (gµν�−DµDν) fR(R,P ,Q)

− 2
[
fP (R,P ,Q)RαµRαν + fQ(R,P ,Q)RpσαµRpσαν

]
− gµνDpDσ [fP (R,P ,Q)Rpσ]−� [fP (R,P ,Q)Rµν ]

+ 2DσDp

[
fP (R,P ,Q)Rp{µ δ

σ
ν } + 2fQ(R,P ,Q)Rp σ

{µν}

]
, (3.4)

where {} stands for the anti-commutator and where fP and fQ denote the derivative of

f with respect to P and Q, respectively. When fP = fQ = 0, f(R) field equations in Eq.

(2.9) are restored. Among all the possible combinations of R, P and Q, the only action

leading to ghost-free modes is:

S =
∫ √
−g

(
R2 − 4P +Q

)
d4x. (3.5)

The quantity G ≡ R2− 4P +Q is called Gauss–Bonnet scalar and is of particular interest

in the context of modified theories of gravity. In four dimensions G is a topological surface

term which, according to the generalized Gauss–Bonnet theorem, integrated over the man-

ifold provides a topological invariant. Specifically, the four–dimensional representation of

the Gauss–Bonnet scalar is the Euler density, so that the identity

∫
M

√
−g G d4x = χ(M) (3.6)

holds, being χ(M) the Euler characteristic. Assuming gravity as a gauge theory of the

local Lorentz group on the tangent bundle, the Gauss–Bonnet term can be written as:

G = εa1,a2,a3....anR
a1,a2 ∧Ra3,a4 ∧ ea5 ∧ ...∧ ean , (3.7)

31



3. Introduction to Part II: Gauss–Bonnet Theory

being Rai,aj the two form curvature, ek the set of zero forms defining the basis and

εa1,a2,a3....an the Levi-Civita symbol. This Gauss–Bonnet term is part of theD-dimensional

Lovelock Lagrangian [105, 106] which, in four dimensions, can be expressed as:

L (4) = εabcd
[
α2R

ab ∧Rcd + α1R
ab ∧ ec ∧ ed + α0e

a ∧ ea ∧ eb ∧ ec ∧ ed
]

, (3.8)

where the first term is the Gauss–Bonnet invariant, the second is the Ricci scalar and the

third is the cosmological constant.

Despite the impossibility of dealing with the Gauss–Bonnet scalar in four dimensions,

considering any function f(G) 6= G can be mathematically and physically relevant, also

in 4D. In general, f(R,G) gravity is taken into account to recover GR, in a given limit,

often assuming a starting action of the form

S =
∫ √
−g

(1
2R+ f(G)

)
d4x. (3.9)

GR is thus safely recovered when f(G) = 0, so that the function plays the role of an

effective cosmological constant given by curvature. The above action has been extensively

studied. In [107], cosmologically viable models are considered by studying the stability

of a late-time de-Sitter solution and the existence of radiation and matter epochs. In

[108], possible power-law scaling solutions have been taken into account, by developing

the scalar-tensor equivalent of the above theory. In particular, in [109], authors show

that density perturbations cause instabilities. In [110], the author shows that the above

theory is ruled out as a possible explanation of the late-time acceleration by Solar System

tests. In [111], the Gauss–Bonnet term is added to a f(R) five-dimensional Lagrangian

and a static spherically symmetric solution is studied. In [112] the authors study the

energy bounds for Gauss–Bonnet gravity in an AdS7 background. Finally in [113], a

mimetic version of the above theory is considered and solutions that unify the inflation

era together with Dark Energy are provided. In addition, Dark Matter can be described

in the framework of this model. In [114], the Newtonian and Post-Newtonian (PN) limit
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of (3.9) is studied in detail.

For almost half a century, higher dimensional theories of gravity have been studied in

many different contexts in the literature [115]. The aforementioned puzzling phenomena

in gravity can sometimes be explained by invoking extra dimensions [116, 117, 118, 119].

Braneworlds and other higher dimensional modifications of Einstein’s theory, e.g. Love-

lock theory [120] have been considered as possible extensions in the hunt for a self-

consistent theory of gravity.

All of the above researches deal with a theory that safely recovers GR in the background

or in some limit. This means that if one switches off the effect of the Gauss–Bonnet

contribution, i.e. f(G)→ 0, then the action reduces to the Hilbert–Einstein one and GR

is recovered. This happens because GR has to be restored in view of observations and

experimental tests.

Observational and theoretical constraints have been obtained also for other forms of

f(R,G), but pure f(G) theories are not, in general, considered because GR seems ex-

cluded. However, it turns out that GR can be restored as a particular case of f(G)

gravity and the further degrees of freedom related to Rµν and Rαλµν can be neglected

with respect to R. This happens if particular symmetries are adopted like in homogeneous

and isotropic cosmology or in other specific cases. The action only containing a function of

G can be helpful in reducing the dynamics and analytically solve the equations of motion.

For instance, in some cosmological context, the second order curvature invariants P and

Q are comparable to R2, so that
√
G ∼

√
R2, up to a constant factor. Therefore, G and

R2 can be considered dynamically equivalent on the solutions (up to a constant factor) if

homogeneity and isotropy hold [47]. In a spherically symmetric configuration, as pointed

out in Chap. 5, exact solutions can be found in any dimensions.

Moreover, as showed in [55], the action (3.3) yields new polarization spin-2 modes in the

GWs, though the linearization of the metric tensor in the f(G) theory yields the same

dispersion relation as GR [121]. It means that the f(G) Gauss–Bonnet gravity is the only

modified action where no ghost modes occur, but only the spin-2 massless modes of GR
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and the scalar mode.

Therefore, the general Gauss–Bonnet gravity theory discussed in this part is given by the

action

S =
∫ √
|g|f(G) dd+1x , (3.10)

where d labels the spatial dimensions. The above action starts being topologically trivial

in three dimensions or less, so that f(G) gravity may represent a valuable alternative to

Einstein GR to address issues at small and large scales.

By varying Eq. (3.10) with respect to the metric, we get the field equations

−
(
2RRµν − 4RµpRpν + 2R pστ

µ Rνpστ − 4RαβRµανβ
)
fG(G)

+
(
2RDµDν + 4Gµν�− 4Rp{νDµ}Dp + 4gµνRpσDpDσ

−4RµανβDαDβ
)
fG(G) +

1
2gµνf(G) = 0 , (3.11)

where fG is the derivative of f with respect to G. It is worth considering also the trace of

Eq. (3.11), that is

(
d+ 1

2

)
f(G)− 2GfG(G)− 2(d− 2) (R�− 2RµνDµDν) fG(G) = 0 . (3.12)

This can be seen as the equation of motion for the new scalar degree of freedom introduced

in this theory.

As mentioned above, in four dimensions (i.e. d = 3), a linear term in G is trivial because,

as a topological invariant, it turns into a surface term and the related integral is null.

Despite this, cosmological and spherically symmetric solutions can be valid even in four

dimensions, if the Gauss–Bonnet coupling constant diverges when d = 3. This idea was

recently proposed e.g. in Refs. [122, 123], where the authors deal with a four–dimensional

theory in which the Gauss–Bonnet term contributes to the dynamics.

Nonetheless, as in four dimensions GR perfectly fits the current observations at Solar
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System scales, in more dimensions the Gauss–Bonnet term might provide a description

for a higher-dimensional universe.

This second part of the thesis is organized as follows: in Chap. 4 cosmological aspects

of modified Gauss–Bonnet gravity are treated and exact solutions are found for selected

models. The same function is used in Sec. 4.3 to study the energy conditions and the

slow–roll inflation. The application to a spherically symmetric background is investigated

in Chap. 5, where black hole solutions in higher dimensions are provided.

In Chap. 6 non-local Gauss–Bonnet theories of gravity are analyzed. Finally, in Chap. 7,

a comparison among metric and affine scalar-tensor theories of gravity is pursued. The

conclusive remarks of this part are finally relied to Chap. 8
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In this chapter we discuss the results provided by f(G) cosmology. To this purpose we

deal with the covariant representation of G, which is given by Eq. (3.5). More precisely,

we consider a general analytic function of G and the action

S =
∫ √
−gf(G) dd+1x+ Sm, (4.1)

with Sm being the matter action. By varying Eq. (4.1) with respect to the metric, we

find the following field equations

2RDµDνfG(G)− 2gµνR�fG(G)− 4RλµDλDνfG(G) + 4Rµν�fG(G)

+4gµνRpσDpDσfG(G) + 4RµνpσDpDσfG(G) +
1
2gµν [f(G)−GfG(G)] = Tµν ,(4.2)

where Tµν is the energy-momentum tensor of matter fields. In [114, 124, 125, 126], one

can found the generalization of this action to f(R,G) gravity in 4-dimensions.

In order to obtain the form of the Gauss–Bonnet scalar in cosmology, we have to calculate

the d+ 1-dimensional Riemann tensor, Ricci tensor and Ricci scalar in a cosmological

metric. We choose a spatially flat FLRW line element of the form

ds2 = dt2 − a(t)2δijdx
idxj , (4.3)

where the indexes i, j label all the spatial dimensions and run from 1 to d. The not-null
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curvature components are:

R00 = d
ä

a
, Rij =

[
(d− 1)ȧ2 + aä

]
δij ,

R = −2dä
a
− d(d− 1) ȧ

2

a2 , R0i0j = aäδij , Rijm` = a2ȧ2δimδj` .

(4.4)

By properly contracting the above quantities, the D-dimensional Gauss–Bonnet term

turns out to be

G =
p(d)

[
(d− 3)ȧ4 + 4aȧ2ä

]
a4 ≡ p(d)

[
(d− 3)ȧ4 + 4aȧ2ä

]
a4 , (4.5)

with p(d) = d(d− 1)(d− 2). As we can see, in less than four dimensions (i.e. d < 3) it

vanishes regardless of the value of the scale factor, while in 4-dimensions (d = 3) it turns

into a topological surface term of the form

G = 24 ȧ
2ä

a3 . (4.6)

Dynamics can be derived either starting from field equations (4.2) or from the Euler-

Lagrange equations provided by a point-like Lagrangian. Because of our further consider-

ations related to the Noether theorem, let us pursue the latter approach. Lagrangian can

be found thanks to the Lagrange multipliers method, with constraint (4.5), as follows:

S =
∫ √−gf(G)− λ

G − p(d)
[
(d− 3)ȧ4 + 4aȧ2ä

]
a4

+Lm

 dd+1x , (4.7)

being Lm the matter Lagrangian. Considering the cosmological volume element in d+ 1-

dimensions, the action can be written as

S = 2π2
∫ adf(G)− λ

G − p(d)
[
(d− 3)ȧ4 + 4aȧ2ä

]
a4

+Lm

 dd+1x . (4.8)
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By varying the action with respect to G, we can find the Lagrange multiplier λ:

δS =
∂S

∂G
δG = adfG(G)− λ = 0 λ = adfG(G) . (4.9)

Replacing the result in Eq. (4.8) and integrating out the second derivative, the Lagrangian

finally takes the form:

L =
1
3a

d−4
[
(3− d)p(d)ȧ4fG(G) + 3a4[f(G)−GfG(G)]− 4ap(d)ȧ3ĠfGG(G)

]
+Lm.

(4.10)

The dynamical system is given by the two Euler-Lagrange equations coming from La-

grangian (4.10), with respect to the scale factor a and the Gauss–Bonnet scalar G, respec-

tively. The system is completed by the energy condition EL =
(
ȧ∂ȧ + Ġ∂Ġ − 1

)
L = 0, so

that the final set of equations of motion consist in the following three partial differential

equations:



da4[f(G)−GfG(G)] + 4(d− 3)p(d)aȧ2[äfG(G) + ȧĠfG(G)]

+4a2p(d)ȧ[2ĠäfGG(G) + ȧG̈fGG(G) + ȧĠ2fGGG(G)] + (d− 3)(d− 4)p(d)ȧ4fG(G) = 0

G = p(d)

[
(d− 3)ȧ4 + 4aȧ2ä

]
a4

(3− d)p(d)ȧ4fG(G)− a4[f(G)−GfG(G)]− 4ap(d)ȧ3ĠfGG(G) = 0.
(4.11)

It is worth noticing that the equation for G provides exactly the cosmological constraint

on the Gauss–Bonnet scalar (4.5). However it is not possible to solve the above equations

without selecting the form of the f(G) function. In order to do this, we adopt the Noether

symmetry approach, by means of which one can select reliable models according to the

existence of symmetries. The approach is also physically motivated because symmetries

correspond to conservation laws, as pointed out in App. B. Specifically, we use Noether’s
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theorem as a selection criterion to find out viable models leading to exact solutions. This

allows to reduce the dynamics and analytically solve the equations of motion, as well as

to deal with the Hamiltonian formalism and obtain the wave function of the Universe.

4.1 Research For Symmetries and Exact Solutions in

d+1 Dimensions

We apply the first prolongation of Noether vector (B.3) to the Lagrangian (4.10), whose

generator takes the form:

X = ξ(a,G, t)∂t + α(a,G, t)∂a + β(a,G, t)∂G . (4.12)

In order to find symmetries, we consider the Noether identity (B.2) and set terms with

derivative powers of a and G equal to zero. Noether symmetry approach yields a system

of four differential equations plus the constraints on the infinitesimal generators α, β, ξ.

It reads:


d a2α(f −GfG)− 4p(d)ȧ2ĠfGG∂tα− a3
[
βf ′GG − (f −GfG)∂tξ

]
= 0

(d− 3) [fG∂tα+ afGG∂tβ] = 0

(d− 3)αfGG + aβfGGG + afGG (3∂aα+ ∂Gβ − 3∂tξ) = 0

(d− 3)(d− 4)αfG + (d− 3)aβfGG − (d− 3)afG (3∂tξ − 4∂aα) + 4a2fGG∂aβ = 0 ,
(4.13)

with ξ = ξ(t) ,α = α(a, t) , g = g0 . Here, we neglect a priori the possibility p(d) = 0.

Only three solutions satisfy the whole system; all of them provides the same dependence

of the infinitesimal generators on the variables, namely

α = α0a , β = β0G , ξ = ξ0t+ ξ1, (4.14)
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but different values of the constants α0, β0, ξ0. The final solutions with the corresponding

infinitesimal generators are:

1) : α = α0a , β = β0G , ξ = α0

(
d

3

)
t+ ξ1 , f(G) = f0G

2) : α = α0a , β = −4ξ0G , ξ = ξ0t+ ξ1 , f(G) = 4f0ξ0
α0d+ ξ0

G
α0d+ξ0

4ξ0

3) : α = 0 , β = β0G , ξ = 0 , f(G) = f0G + f1, (4.15)

where the exponent of the second function must be different from 1. The first and the

third solution are non-trivial only in more than 4 dimensions, while the second provides

contributions to the equations of motion even for d = 3. Without loss of generality, in

order to find the dynamics of the scale factor, we choose the function f(G) = f0Gk, where

we define
α0d+ ξ0

4ξ0
= k (4.16)

and incorporate the coefficient of Gk into f0. In this way, the point-like Lagrangian can

be written as

L = −1
3a

d−4Gk−2
[
3(k− 1)a4G2 + k(d− 3)Gp(d)ȧ4 + 4k(k− 1)ap(d)ȧ3Ġ

]
. (4.17)

The Euler-Lagrange equations (4.11) can now be exactly solved providing the following

solutions:

a(t) = a0e
qt , G(t) = (d+ 1)p(d) q4 , k =

d+ 1
4 (4.18)

a(t) = a0t
−4 (k−1)(4k−1)

4k−d−1 , G(t) = 256 [(k− 1) (4k− 1)]3 [4 + (d+ 1)(4k− 5)] p(d)
((d+ 1)t− 4kt)4 ,

(4.19)

with q constant. It is worth noticing that the de-Sitter-like expansion only holds in more

than 4 dimensions, unlike the power-law solutions which is valid even for d = 3. However,

the d = 3 case deserves a separate discussion. To this purpose, in the next section we
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will study the four-dimensional f(G) cosmology with matter fields. As a final remark, it

is interesting to observe that the function containing a linear Gauss–Bonnet term leads

to a vacuum exponential acceleration with several free parameters to be constrained by

experimental observations.

4.2 f(G) Cosmology in 4-Dimensions

Let us now specifically discuss the four-dimensional limit of the previously discussed

case; in particular, we will derive Noether symmetries coming from the 4-dimensional

Lagrangian, as well as the related cosmological solutions in presence of matter. Then,

the selected function will be studied in terms of energy conditions and slow–roll inflation.

To deal with a Lagrangian description, we introduce the matter Lagrangian through the

choice Lm = ρ0a−3w, where w represents the ratio between pressure and density p = w ρ,

that is the Equation of State of a perfect fluid. For w = 0, we have dust matter, while

for w = 1
3 , we have radiation. The case w = −1, in turn, corresponds to the cosmological

constant. Therefore, being p(3) = 6, the Lagrangian (4.10), in 4-dimensions, is

L(4) = a3[f(G)−GfG(G)]− 8ȧ3fGG(G)Ġ + ρ0a
−3w . (4.20)

The Euler-Lagrange equations of the above Lagrangian read as:



d

dt

∂L
∂Ġ

=
∂L
∂G

→ G = 24 ȧ
2ä

a3

d

dt

∂L
∂ȧ

=
∂L
∂a

→ a2[f(G)−GfG(G)] + 16ȧäĠfGG(G) + 8ȧ2[fGG(G)G̈ + fGGG(G)Ġ2]

+3ρ0wa−3w−1 .
(4.21)

Notice that, by construction, the first equation is the Lagrange multiplier in 4-dimensions.

The above set of partial differential equations must be integrated with the energy condition
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EL = ȧ
∂L
∂ȧ

+ Ġ ∂L
∂Ġ
− L = 0 , (4.22)

which gives

a3[f(G)−GfG(G)] + 24ȧ3fGG(G)Ġ + ρ0a
−3w = 0 . (4.23)

Applying the Noether condition (B.2) to the Lagrangian (4.20), we get a system of two

differential equations. With respect to theD-dimensional case, we have two less equations.

This is due to the fact that the second equation of (4.13) vanishes identically for d = 3,

while the fourth trivially reduces to ∂aβ = 0. Thus the system takes the form:



3αa2[f(G)−GfG(G)−wρ0a
−3(w+1)]− βa3GfGG(G) + ∂tξa

3[f(G)−GfG(G)] = 0

3∂aαfGG(G) + βfGGG(G)− 3∂tξ fGG(G) + ∂Gβ fGG(G) = 0

ξ = ξ(t) , α = α(a) , β = β(G) g = g0.
(4.24)

The presence of the matter Lagrangian does not cause any changes in the system resolu-

tion, so that the function and the infinitesimal generators turn out to be the same as Eq.

(4.15) with d = 3, namely


α = α0a , ξ0t+ ξ1 , β = −4ξ0G , g = g0

f(G) = f0Gk

k
, k 6= 0, 1 .

(4.25)

By using the above solutions and incorporating the constant k into f0, we can rewrite the

point-like Lagrangian as

L = −f0(k− 1)Gka3 − 8f0k(k− 1)Gk−2ȧ3Ġ − ρ0a
−3w . (4.26)
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Euler-Lagrange equations and energy condition coming from (4.26) lead to the system



G = 24 ȧ
2ä

a3

−8f0k(k− 1)(k− 2)ȧ2Gk−3Ġ2 − 8f0k(k− 1)ȧGk−2
(
2äĠ + ȧG̈

)
+f0(k− 1)a2Gk − ρ0wa−3w−1 = 0

−24f0k(k− 1)ȧ3Gk−2Ġ + f0(k− 1)a3Gk + ρ0a
−3w = 0.

(4.27)

There are two kind of solutions of the above system; the first can be obtained neglecting

the matter Lagrangian. In this case, when geometric contributions are greater than matter

ones, the only solution reads

a(t) = a0t
1−4k G(t) = −96k(1− 4k)3t−4 ≡ G0t

−4 , (4.28)

which is a power-law expansion and, as expected, it is contained into (4.19). Without

neglecting Lm, we find another set of solutions, namely:



a(t) = a0t1−4k G(t) = −96k(1− 4k)3t−4 ≡ G0t−4 , w = 0

a(t) = ent G(t) = 24m4 w = −1.

(4.29)

The former is the solution for dust matter, while the latter describes a Dark-Energy dom-

inated universe. Moreover, from Eq. (4.28), we can distinguish the cosmological epochs
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crossed by the Universe even in vacuum, as depending on the geometrical contributions

k =
1
8 → a(t) ∼ t

1
2 G = −3

2t
−4 → Radiation

k =
1
6 → a(t) ∼ t

1
3 G = −16

27t
−4 → Stiff matter

k =
1
12 → a(t) ∼ t

2
3 G = −64

27t
−4 → Dust matter

(4.30)

Cosmological solutions (4.28) are, therefore, in agreement with the FLRW solutions of

GR but are recovered without imposing the Ricci scalar in the gravitational action. It

is worth noticing that in all cases the Gauss–Bonnet term turns out to be negative, so

that the function f(G) = f0Gk may lead to some problems for fractional values of k.

To avoid these kind of singularities, we want to stress that the function f(G) is still a

solution of Noether’s system even including the modulus of the Gauss–Bonnet term, i.e.

f(G) = f0|G|k. The same happens in several other modified theories; for example, in

f(R) gravity, the Noether approach provides f(R) ∼ R3/2 [127], whose time power-law

solution a(t) ∼ tp leads to a complex function for p < 0 and p > 1/2. Hence, without

loss of generality and in agreement with Noether’s approach, we can always require the

function into the action to be positive. However, as shown in [128] for f(R) ∼ |R|3/2,

some exact solutions can imply transitions from decelerated/accelerated behaviors, that

is dust/Dark Energy behaviors, according to the values of the solution parameters. In

the present case, however, we are discussing only exact solutions emerging from Noether’s

symmetries, where there is no change of concavity in the evolution of the scale factor and

then no transitions from decelerated to accelerated universes (and vice versa).

4.2.1 Quantum Cosmology and the Wave Function of the Uni-

verse

Taking into account the function selected by symmetry considerations, here we use the

Wheeler–DeWtt (WDW) equation to find out the wave function of the Universe and the

corresponding classical trajectories. Basic foundations, applications and interpretations
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of the wave functions are discussed in App. C. The results of the previous section allow

to suitably develop the quantum cosmology for the minisuperspace TS ≡ {a, ȧ,G, Ġ}.

Starting from Lagrangian (4.26), we can calculate the related Hamiltonian as a function

of momenta:

H =
f0
k
Gka3 + πa

(
− πG8f0

G2−k
) 1

3
, (4.31)

where πa = ∂L
∂ȧ and πG = ∂L

∂Ġ , according to the Legendre transformations.

In this form, the Hamiltonian cannot be quantized due to the presence of the fractional

exponent. Nonetheless, thanks to the Noether symmetries, we can insert a cyclic variable

into Eq. (4.31), which allows to fully quantize the theory. Specifically, from Eq. (4.28),

it is easy to see that the quantity ȧ

Gk
is a constant of motion. Therefore, by defining

ȧ3

G3k = Σ0 , (4.32)

the momentum πG can be rewritten in terms of Σ0 as:

πG = −8f0Σ0G4k−2 . (4.33)

Replacing this result into Eq. (4.31), the new Hamiltonian written in the tangent mi-

nusuperspace TS ′ = {a, πa,G}, reads

H =
f0
k
Gka3 + πa

(
Σ0G3k

) 1
3 . (4.34)

Now, thanks to the quantization rules coming from the Arnowitt-Deser-Misner (ADM)
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formalism (see App. C), it is possible to recast the conjugate momenta as operators:



πG = −i
∂

∂G

πa = −i
∂

∂a

Hψ = 0 .

(4.35)

The third equation is the WDW equation and ψ is the wave function of the Universe.

Being πG = −8f0Σ0G4k−2, it follows that the quantity πGG2−4k is a constant of motion.

More precisely, the quantized equation of momentum can be written as:

i
∂

∂G
ψ(a,G) = 8f0Σ0G4k−2ψ(a,G), (4.36)

and together with the WDW equation yields


πGψ = −i ∂

∂G
ψ → ψ(a,G) = A(a) exp

{
i

8f0Σ0G4k−1

1− 4k

}

Hψ = 0 → f0
k
(Σ0)

− 1
3 a3A(a)− i∂A(a)

∂a
= 0 .

(4.37)

The latter equation can be solved with respect to A(a) and the result can be replaced in

the former one. After some computations, the wave function turns out to be

ψ(a,G) = ψ0 exp
{
i

[
− f0

4k (Σ0)
− 1

3 a4 +
8f0Σ0G4k−1

1− 4k

]}
. (4.38)

According to the Hartle criterion, an oscillating wave function means correlations among

variables and then the possibility to find classical trajectories (i.e. observable universes).

In fact, considering the Wentzel-Kramers-Brillouin (WKB) approximation, the wave func-

tion can be recast as ψ(a,G) ∼ eiS (where S is the action), so that in the f(G) model the
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action we can be identified with the quantity:

S = − f0
4k (Σ0)

− 1
3 a4 +

8f0Σ0
1− 4kG

4k−1. (4.39)

Hamilton-Jacobi equation with respect to the scale factor provides the third equation of

motion in (4.27), namely:

∂S

∂a
= πa → Gka3 = 24Gk−2ȧ3Ġ . (4.40)

The second Hamilton-Jacobi equation
(
∂S

∂G
= πG

)
instead, is nothing but the identity

πG = Σ0. The energy condition is trivially recovered as a linear combination of the two,

so that observable universes are selected by Noether’s approach.

As reported in App. C, oscillatory behaviors of the wave function of the Universe are

related to conserved quantities; therefore, if the number of symmetries is equal to the

variables of minisuperspace, the dynamical system is fully integrable and the wave function

fully oscillating.

4.2.2 The case f(G) = f0Gn+ f1Gk

As pointed out in the previous section, no exponential solutions occur in vacuum when

f(G) = f0Gk cosmology is considered. On the other hand, here we show that a starting

action of the form

S =
∫ √
−g

(
Gn + Gk

)
d4x, (4.41)

leads to a de Sitter-like expansion without cosmological constant. Even though the action

(4.41) is not directly a solution of the Noether system, it could be very relevant for several

reasons. At the beginning of this chapter we affirmed that in some epochs GR can be

recovered from f(G) gravity by the choice f(G) =
√
G, when a cosmological background
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is considered. Therefore the function

f(G) = f0G
1
2 + f1Gn , (4.42)

can be easily compared to the case f(R,G) = R+ f(G), often discussed in literature in

view to recover GR in suitable limits [129, 130].

In order not to lose generality, we extend Eq. (4.42) to a function of the form f(G) =

f0Gn + f1Gk, so that Eq. (4.42) is recovered when n = 1/2. The Lagrangian is a

particular case of that in Eq. (4.20) and reads:

L = −a3
[
f0(n− 1)Gn + f1(k− 1)Gk

]
− 8

[
f0n(n− 1)Gn−2 + f1k(k− 1)Gk−2

]
ȧ3Ġ .

(4.43)

The Euler-Lagrange equations and the energy condition are:

d

dt

∂L
∂Ġ

=
∂L
∂G

→ G = 24 ȧ
2ä

a3

d

dt

∂L
∂ȧ

=
∂L
∂a

→ 3a2
[
f0(n− 1)Gn + f1(k− 1)Gk

]
−24ȧ

[
f0n

(
n2 − 3n+ 2

)
ȧGn−3Ġ2+

+f1k
(
k2 − 3k+ 2

)
ȧGk−3Ġ2

+f0n(n− 1)Gn−2
(
2äĠ + ȧG̈

)
+

+f1k(k− 1)Gk−2
(
2äĠ + ȧG̈

)]
= 0

ȧ
∂L
∂ȧ

+ Ġ ∂L
∂Ġ
− L = 0 → a3

[
f0(n− 1)Gn + f1(k− 1)Gk

]
−24ȧ3Ġ

[
f0n(n− 1)Gn−2 + f1k(k− 1)Gk−2

]
= 0.

(4.44)

The system admits the following de Sitter solution:

a(t) = a0e
mt G(t) = 24m4 with m =

[
−24n−k f0

f1

(
n− 1
k− 1

)] 1
4(k−n)

. (4.45)
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This means that Dark Energy [129] and inflation [131] can be easily recovered in this

framework.

4.3 Energy Conditions

As it is well known, in GR the energy conditions only rely to the energy-momentum

tensor of matter, which automatically satisfies all the four inequalities on the pressure

and the energy density. The energy conditions are also required in order to demonstrate

several important theorems, such as the no hair theorem [132] or the laws of black hole

thermodynamics [133]. Specifically, the energy conditions in natural units read as:

Null Energy Condition (NEC)→ ρ+ p ≥ 0

Weak Energy Condition (WEC)→ ρ ≥ 0 ; ρ+ p ≥ 0

Dominant Energy Condition (DEC)→ ρ− |p| ≥ 0

Strong Energy Condition (SEC)→ ρ+ p ≥ 0 ; ρ+ 3p ≥ 0 ,

(4.46)

where ρ is the energy density and p the pressure of the fluid. The last relation implies

that gravity must be attractive, while the others require the pressure and the energy to

be non-negative. In GR, where the only energy momentum tensor is that of the standard

matter, all the energy conditions are identically satisfied.

On the other hand, in extended gravity, the field equations can be written as

FGµν = T (Grav F ield)
µν + T (Matter)

µν , (4.47)

where F is a generic function depending on the particular theory considered and T (Grav F ield)
µν

is the so called energy-momentum tensor of the gravitational field. A complete discussion

on this topic can be found in [31, 85, 134].

From a cosmological point of view, energy conditions can be used to test the validity of the

theory by means of the cosmographic parameters. The approach is straightforwardly dis-
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cussed for some extended theories of gravity, e.g. in Refs. [135, 136, 137, 138]. In particu-

lar, in Ref. [138], the authors start from an action of the form S =
∫ √
−g (R+ f(G)) d4x,

recovering therefore the Einstein tensor in the field equations. By a similar procedure, in

Sect. 4.3 we show that the energy conditions for the gravitational field can be written

for an action only containing the function f(G), without assuming the GR limit as a

requirement when f(G) vanishes. Subsequently we compare the result with R + f(G)

gravity. In both cases, the Einstein tensor can be isolated, so that the effective energy

density and the effective pressure can be written in terms of geometry. Specifically, we

consider the function f(G) = f0Gk in a FLRW metric and write the energy conditions in

terms of the cosmographic parameters.

Moreover, the effective energy density and pressure of the gravitational field can be used

in order to find out the slow–roll parameters and then to check whether the theory admits

a cosmological inflation in the early time.

Inflationary model was introduced by A. Linde and A. Guth [66, 67] to address the evi-

dences provided by the cosmological data. Inflation is usually thought as generated by a

scalar field φ, called inflaton, which is supposed to be the responsible for the accelerated

expansion of the Universe. Soon after, the Starobinsky model [139] showed that the addi-

tional geometric contributions occurring in modified theories of gravity can be intended as

an effective scalar potential capable of driving the inflation. Therefore, nowadays inflation

can be realized in several ways [140, 141, 142, 143, 144].

In Sect. 4.3.1.1 we consider the so called new inflation or slow–roll inflation, according

to which inflation is driven by a scalar field rolling down a potential energy hill. Inflation

occurs as soon as the scalar field rolling is slow with respect to the Universe expansion.

By using the energy conditions, we require the slow–roll parameters to be small during

inflation. This allows to put some constraint to the f(G) function, selecting those which

predict an inflationary universe.
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4.3.1 f(G) Cosmology

Once we introduced the main features of the energy conditions in extended theories of

gravity, in this section we write the energy conditions for the f(G) cosmology, constraining

the theory by the cosmographic parameters. Let us begin by considering the f(G) action

S =
∫ √
−g f(G) d4x+ S(m) , (4.48)

with S(m) being the matter action. The corresponding field equations (4.2) can be rewrit-

ten by isolating Einstein tensor Gµν in all terms in which it appears, recasting Eq. (4.2)

as:

Gµν(2R− 4�)fG(G) = Tµν −
[ (
R2 − 4RµpRpν + 2R pστ

µ Rνpστ

− 4RαβRµανβ
)
fG(G)−

(
2RDµDν − 4Rp{νDµ}Dp + 4gµνRpσDpDσ

− 4RµανβDαDβ
)
fG(G)−

1
2gµνf(G)

]
. (4.49)

Notice that the term in the square bracket of the RHS can be intended as the effective

energy-momentum tensor of the gravitational field, introduced in Eq. (4.47), while (2R−

4�)fG(G) accounts for the function F . Therefore, the components of the Einstein tensor

can be interpreted as the analogue of energy density and pressure, namely

G0
0 =

1
(2R− 4�)fG(G)

(
ρGravF ield + ρ0

)
(4.50)

Gij = −
δij

(2R− 4�)fG(G)
(
pGravF ield + p0

)
, (4.51)

where ρ0 and p0 are the matter density and pressure respectively. In a spatially flat

cosmological universe of the form

ds2 = dt2 − a(t)2dx2, (4.52)
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the field equations of f(G) = f0Gk gravity can be written as:

G0
0 =

1
(2R− 4�)fG(G)

{
ρ0 +

f0
2 G

k−3
[
−24k(k− 1)H2

(
GG̈ + (k− 2)Ġ2

)
−72kG2H4 − 48kGH2

(
2G(Ḣ +H2) + (k− 1)HĠ

)
+ G3

]}
,

(4.53)

G1
1 = − 1

(2R− 4�)fG(G)

{
p0 +

f0
2 G

k−3
[
16k(k− 1)(Ḣ +H2)

(
GG̈ + (k− 2)Ġ2

)
+24kG2H4 + 16kG(Ḣ +H2)

(
3G(Ḣ +H2) + 2(k− 1)HĠ

)
+24kGH2

(
4G(Ḣ +H2) + (k− 1)HĠ

)
−G3

]}
, (4.54)

with H being the Hubble constant H ≡ ȧ/a. The second term in the RHS of Eq. (4.53)

is the cosmological density of gravitational field ρ(GF ), as the same term in Eq. (4.54) is

the pressure. Specifically:

ρ(GF ) =
f0
2 G

k−3
[
−24k(k− 1)H2

(
GG̈ + (k− 2)Ġ2

)
−72kG2H4 − 48kGH2

(
2G(Ḣ +H2) + (k− 1)HĠ

)
+ G3

]
,

(4.55)

p(GF ) =
f0
2 G

k−3
[
16k(k− 1)(Ḣ +H2)

(
GG̈ + (k− 2)Ġ2

)
+ 24kG2H4

+16kG(Ḣ +H2)
(
3G(Ḣ +H2) + 2(k− 1)HĠ

)
+24kGH2

(
4G(Ḣ +H2) + (k− 1)HĠ

)
−G3

]
, (4.56)
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so that each energy condition can be split in two contributions, namely

NEC→ ρ0 + ρ(GF ) + p0 + p(GF ) ≥ 0

WEC→ ρ0 + ρ(GF ) ≥ 0 ; ρ0 + ρ(GF ) + p0 + p(GF ) ≥ 0

DEC→ ρ0 + ρ(GF ) − |p0| −
∣∣∣p(GF )∣∣∣ ≥ 0

SEC→ ρ0 + ρ(GF ) + p0 + p(GF ) ≥ 0 ; ρ0 + ρ(GF ) + 3p0 + 3p(GF ) ≥ 0 .

(4.57)

Starting from the above inequalities, in what follows we focus on a particular subcase,

requiring that the standard matter and the gravitational field must respect the energy

conditions separately. Assuming that the ordinary matter automatically satisfies all the

energy conditions, the only constraints capable of providing the validity range of the

parameter k are:

NEC→ ρ(GF ) + p(GF ) ≥ 0

WEC→ ρ(GF ) ≥ 0 ; ρ(GF ) + p(GF ) ≥ 0

DEC→ ρ(GF ) − |p(GF )| ≥ 0

SEC→ ρ(GF ) + p(GF ) ≥ 0 ; ρ(GF ) + 3p(GF ) ≥ 0 .

(4.58)

Replacing Eqs. (4.55) and (4.56) into the system (4.58), the energy conditions yield

NEC → 4f0kGk−3
[
(k− 1)G

(
2G̈Ḣ −H2G̈ + 4HĠḢ +H3Ġ

)
−(k− 1)(k− 2)Ġ2

(
H2 − 2Ḣ

)
+ 6G2Ḣ

(
Ḣ + 2H2

)]
≥ 0

4f0kGk−3
[
(k− 1)G

(
2G̈Ḣ −H2G̈ + 4HĠḢ +H3Ġ

)
−(k− 1)(k− 2)Ġ2

(
H2 − 2Ḣ

)
+ 6G2Ḣ

(
Ḣ + 2H2

)]
≥ 0

WEC ↗
↘ and

f0
2 G

k−3
[
−24k(k− 1)H2

(
GG̈ + (k− 2)Ġ2

)
− 72kG2H4

−48kGH2
(
2G(Ḣ +H2) + (k− 1)HĠ

)
+ G3

]
≥ 0
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4f0kGk−3
[
(k− 1)G

(
2G̈Ḣ −H2G̈ + 4HĠḢ +H3Ġ

)
−(k− 1)(k− 2)Ġ2

(
H2 − 2Ḣ

)
+ 6G2Ḣ

(
Ḣ + 2H2

)]
≥ 0 if p < 0

DEC ↗
↘ and

f0Gk−3
[
−4k(k− 1)(k− 2)Ġ2

(
2Ḣ + 5H2

)
−24kG2

(
6H2Ḣ + Ḣ2 + 7H4

)
−4k(k− 1)G

(
2G̈Ḣ + 5H2G̈ + 4HĠḢ + 13H3Ġ

)
+ G3

]
≥ 0 if p ≥ 0

4f0kGk−3
[
(k− 1)G

(
2G̈Ḣ −H2G̈ + 4HĠḢ +H3Ġ

)
−(k− 1)(k− 2)Ġ2

(
H2 − 2Ḣ

)
+ 6G2Ḣ

(
Ḣ + 2H2

)]
≥ 0

SEC ↗
↘ and

f0Gk−3
[
12k(k− 1)(k− 2)Ġ2

(
2Ḣ +H2

)
+24kG2

(
10H2Ḣ + 3Ḣ2 + 7H4

)
+12k(k− 1)G

(
2G̈Ḣ +H2G̈ + 4HĠḢ + 5H3Ġ

)
−G3

]
≥ 0 .

With the aim to study the validity and the violation of the energy conditions, we introduce

the cosmographic parameters j (jerk), q (deceleration) and s (snap), defined as:

q = −1− Ḣ

H2 j = 1+ Ḧ + 3ḢH
H3 s = 1+

...
H + 3

...
HH + 3Ḣ2 + 6H2Ḣ +HḦ

H4 ; (4.59)

in particular, we can use the experimental values of q, j, s in order to study the behavior of

the energy conditions as a function of k. First, notice that the cosmological expression of

the Gauss–Bonnet scalar G = 24H2(H2 + Ḣ) can be recast in terms of the cosmographic

parameters as:

G = −24qH4 Ġ = 24(3q+ 2q2 + j)H5 G̈ = 24(s− 12q− 15q2− 2q3− 6j− 6jq)H6 .

(4.60)
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Therefore, the pressure and the energy density become:

ρGF =
f023k−13k

(
−H4q

)k
q3

{
2j(k− 1)kq[k(2q+ 3)− q− 4]

+j2k(k− 1)(k− 2) + q[k3q(2q+ 3)2 − k2(10q3 + 25q2 + 21q+ s)

+k(6q3 + 9q2 + 15q+ s) + q2]
}

pGF =
f023k−13k−1

(
−H4q

)k
q2

{
2j2k(k− 1)(k− 2) + jk(k− 1)[4(2k− 1)q2

+4(3k− 4)q+ 3] + 2k3q2(2q+ 3)2 − k2q(20q3 + 50q2 + 36q+ 2s− 9)

+2kq(6q3 + 10q2 + 15q+ s− 6)− 3q2]
}

,

respectively. Though the value of the term
(
−qH4

)k
depends on the specific k considered,

it is a total factor that multiplies all the rest of the inequality. Moreover, the numerical

value of the deceleration parameter is usually negative, so that such total term can be

neglected in the computation of the energy conditions. First we choose f0 > 0, in order

to recover the GR coupling as soon as k = 1/2. Considering Eqs. (4.59) and (4.60), and

using the experimental values of j, k, s provided in [145] (q = −0.81, j = 2.16, s = −0.22),

the energy conditions are satisfied for:

NEC→ k ≤ 0 ∨ 1.457 ≤ k ≤ 2.977

WEC→ k ≤ 0

DEC→ k ≤ 0

SEC→ 1.457 ≤ k ≤ 2.977.

(4.61)

It is worth remarking that the above result holds regardless of the value of the Hubble

constant H, since it multiplies all the energy conditions as a total factor with an even

power. As we can see, no values of k simultaneously satisfy all the energy conditions when
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f0 > 0. Considering f0 < 0, the energy conditions provide

NEC→ 0 ≤ k ≤ 1.457 ∨ k ≥ 2.977

WEC→ 0.093 ≤ k ≤ 1.457 ∨ k ≥ 2.977

DEC→ 0.113 ≤ k ≤ 1.457 ∨ k ≥ 2.977

SEC→ 0 ≤ k ≤ 0.189,

(4.62)

and are simultaneously satisfied for k comprehended in the range

0.113 < k < 0.189. (4.63)

By considering the vacuum solution of the field equations in f(G) cosmology (4.28), we

notice that also the scale factor is constrained by the energy conditions. According to the

values of k selected when f0 < 0, the scale factor (4.28) respects the energy conditions if

a(t) = a0t
n with 0.24 ≤ n ≤ 0.55. (4.64)

Nevertheless, the energy conditions validity for other values of k and n might occur in a

different epoch, where the behavior of the gravitational interaction was different than the

current one. In this case, the function labeling the theory might assume the form given

by Eq. (4.41), i.e.

f(G) = f0Gk1 + f1Gk2 . (4.65)

For weakly time-depending coupling constants, the possibility that at some epochs the

contribution of f1 (f0) was predominant with respect to that of f0 (f1), can be taken into

account.

4.3.1.1 Slow–Roll Inflation

When the Big Bang model was largely affirmed as the best candidate to describe the initial

phase of our Universe, it was soon evident that this prescription was not in agreement with
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standard GR. The nowadays observed spatial flatness of the Universe cannot be explained

by Einstein’s gravity, as well as the reason why photons of the CMB coming from opposite

directions today have the same temperature, while the size of causally connected regions at

the last scattering is at most one degree. When the Hilbert–Einstein action is considered,

these problems can be solved only by imposing ad hoc initial conditions. The nowadays

accepted vision of the inflation considers a minimal coupling between geometry and a

scalar field φ, so that the starting action is:

S =
1
2

∫ √
−g

[
R+

1
2∂µφ∂

µφ− V (φ)
]
d4x. (4.66)

In this way, the field equations together with the Klein-Gordon equation, can be written

in a cosmological background as:



ȧ2

a2 =
1
6

[
φ̇2

2 + V (φ)

]
− 1
a2

ä

a
= −1

6
[
φ̇2 − V (φ)

]
φ̈+ 3 ȧ

a
φ̇+ ∂φV (φ) = 0.

(4.67)

Slow-roll inflation, mentioned at the beginning of this section, can be also realized in

modified theories of gravity, imposing the magnitude of the slow–roll parameters ε and η

to be small, namely

|ε| ≡
∣∣∣∣∣− Ḣ

H2

∣∣∣∣∣� 1 |η| ≡
∣∣∣∣∣− Ḧ

2HḢ

∣∣∣∣∣� 1. (4.68)

The first condition comes from the requirement for an accelerated expansion of the Uni-

verse through the relation

ä

a
= H2

(
1 + Ḣ

H2

)
= H2 (1− ε) > 0. (4.69)
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With regards to the second condition, inflation occurs when the potential energy is pre-

dominant with respect to the other terms. Then, the potential should have a minimum

at the end of the inflation. In the slow–roll approximation, where the scalar field is ex-

pected to roll slowly, the field equations together with the Klein–Gordon equation yield

the condition

− φ̈

Hφ̇
= − Ḧ

2HḢ
� 1. (4.70)

Inflation ends when the potential starts decreasing towards its minimum, so that the

velocity of the scalar field cannot be neglected if compared to the Universe expansion.

Therefore, the scalar field approaches the minimum of the potential and starts oscillat-

ing around the equilibrium position. Such an oscillations yields particles creation, which

dissipate the energy of the scalar field raising the temperature of the Universe. This

thermalization is called reheating, a phenomenon which has dropped during the inflation-

ary expansion. This superluminal expansion of the early Universe is able to solve both

the flatness problem and the temperature of photons coming from CMB. All the cosmic

structures began to grow after the end of the inflationary and radiation epochs. Mathe-

matically speaking, the end of inflation occurs when the slow-roll parameters become of

order unity.

Similarly, in modified theories of gravity, the extra geometric terms can play the role

of kinetic energy and potential of some time–depending scalar field, naturally providing

inflation without any minimal coupling.

Here we use the previously written energy conditions, in order to find out the expression

of the slow–roll parameters ε and η in terms of k. To this purpose, we rewrite the first

two components of the field equations (4.49) as:

H2 =
1

3(2R− 4�)fG(G)

{
f0
2 G

k−3
[
−24k(k− 1)H2

(
GG̈ + (k− 2)Ġ2

)
−72kG2H4 − 48kGH2

(
2G(Ḣ +H2) + (k− 1)HĠ

)
+ G3

]}
,
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Ḣ = −3
2H

2 − 1
2(2R− 4�)fG(G)

{
f0
2 G

k−3
[
16k(k− 1)(Ḣ +H2)

(
GG̈ + (k− 2)Ġ2

)
+24kG2H4 + 16kG(Ḣ +H2)

(
3G(Ḣ +H2) + 2(k− 1)HĠ

)
+24kGH2

(
4G(Ḣ +H2) + (k− 1)HĠ

)
−G3

]}
.

Replacing the vacuum solution of f(G) gravity (4.28) in the above equations and consid-

ering the explicit expression of the Gauss–Bonnet term

G = 24H2(H2 + Ḣ), (4.71)

the magnitude of the slow–roll parameters turns out to be

|ε| = |η| =
∣∣∣∣ 1
1− 4k

∣∣∣∣ . (4.72)

The conditions for the inflation

|ε| � 1 |η| � 1, (4.73)

provide the constraint

k � 0 ∨ k � 1
2. (4.74)

This means that cosmological inflation in f(G) gravity occurs only when k is strictly

negative or when it is much higher than 1/2. Interestingly notice that the value k = 1/2

is the limit in which f(G) = Gk gravity behaves like Einstein GR in a cosmological

spatially flat background. As before, we also notice that the deceleration parameters can

be written in terms of k as:

q = −1 + 1
4k− 1, (4.75)

so that when k � 0 ∨ k � 1/2, q turns out to be negative as we expect. The negative
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value of q corresponds to an accelerated expansion of the Universe, in agreement with

the result provided by Eq. (4.74). Slow–roll conditions are not sufficient to establish

whether the theory is able to fit the cosmological data, and a further study is necessary.

Nevertheless, it is a first step aimed at verifying whether the theory might be a good

candidate for the inflationary model.

4.3.2 Energy Conditions in R+ f(G) Cosmology

With the aim to compare f(G) with R+ f(G) gravity, we study the energy conditions

for this latter theory. Therefore, we consider a starting action of the form

S =
∫ √
−g

(
R

2 + f0Gk
)
d4x (4.76)

and study the energy conditions by using cosmographic parameters. For general k, the

field equations can be written as

Gµν = Tµν +
f0
2 G

kgµν − kf0
(
2RRµν − 4RµpRpν + 2R pστ

µ Rνpστ

−4RαβRµανβ
)
Gk−1 + kf0

(
2RDµDν + 4Gµν�− 4Rp{νDµ}Dp

+4gµνRpσDpDσ − 4RµανβDαDβ
)
Gk−1 , (4.77)

so that the RHS can be intended as an effective energy-momentum tensor, which vanishes

as soon as f0 = 0. In a cosmological spatially flat space-time, the not null components of

the field equations read

G0
0 = ρ0 +

f0
2 G

k−2
{

24kH2
[
(k− 1)HĠ − G(Ḣ +H2)

]
+ 1

}
(4.78)

G1
1 = −

{
p0 −

f0
2 G

k−3
[
−24H2kG2

(
H2 + Ḣ

)
+ G3+

+8H(k− 1)k
(
2G
(
H2 + Ḣ

)
Ġ +H

(
GG̈ + (k− 2)Ġ2

))]}
.

(4.79)
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As before, the second terms in the RHS of the above equations can be intended as effective

energy densities and pressures of the gravitational field. In this way, Eqs. (4.78) and (4.79)

can be written in terms of the cosmographic parameters (4.59) as:

ρGF =
23k−13kf0(−H4q)k

q2 (k− 1)[jk− q2 + kq(3 + 2q)] (4.80)

pGF =
23k−13k−1f0(−H4q)k

q3 (k− 1)[j2k(k− 2) + 2jkq(−3 + 3k+ 2kq)

+3q3 + k2q2(3 + 2q)2 − kq(6q+ 3q2 + 2q3 + s)],

(4.81)

where we used the form of G given by Eq. (4.60). As we did in the previous section, we

assume that the density and the pressure of matter must satisfy the energy conditions

separately, and use the same values of the cosmographic parameters. In this way, when

f0 > 0 the energy conditions are satisfied for:

NEC→ k ≤ 0 ∨ 1 ≤ k ≤ 4.371

WEC→ k ≤ 0 ∨ 1 ≤ k ≤ 4.371

DEC→ −1.866 ≤ k ≤ 0 ∨ 1.573 ≤ k ≤ 4.371

SEC→ k ≤ −0.313 ∨ 1 ≤ k ≤ 3.129 .

(4.82)

The above inequalities admit a common solution, that is

−1.866 ≤ k ≤ −0.313 ∨ 1.573 ≤ k ≤ 3.129. (4.83)

Moreover, as showed in Ref. [146], vacuum solutions of the field equations yield an

exponential scale factor when k 6= 1/2, namely

a(t) = a0 exp


[

24kf0(1− k)
3

] 1
2−4k

 . (4.84)
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In the first range of Eq. (4.83), that is −1.866 ≤ k ≤ −0.313, the argument of the

exponential function is positive and the scale factor describes an exponentially accelerated

universe. In the second range, when 1.573 ≤ k ≤ 3.129, the argument turns out to be

negative, leading to a bouncing cosmological model. When k = 1/2 another solution

occurs, that is

a(t)± = a0t

4f2
0+3±

√
3
√

16f2
0+3

2(3−2f2
0) . (4.85)

In this case, the scale factor a(t)+ describes an accelerating universe when

−
√

3
2 < f0 <

√
3
2. (4.86)

On the contrary, when a−(t) is considered, the power of t is always negative regardless

of the value of f0. Since k = 1/2 violates all the inequalities (4.82), when f0 > 0 and

k = 1/2 a power-law universe acceleration occurs and energy conditions are violated.

Interestingly notice that Eq. (4.86) provides the same range as Eq. (4.92). This means

that only an energy condition violation may lead to an inflationary universe.

Assuming now a negative coupling constant, namely f0 < 0, the energy conditions yield

the constraints

NEC→ k ≤ 0 ∨ 1 ≤ k ≤ 4.371

WEC→ 0.630 < k < 1

DEC→ @k ∈ R

SEC→ 0 ≤ k ≤ 1 ∨ k ≥ 4.371

(4.87)

and cannot be simultaneously satisfied for any real value of k. However, it is worth

noticing that all those k comprehended in the range 1 < k < 4.371 violate the SEC,

which means that the geometric contributions in R+ f(G) gravity can act as a repulsive

source of gravitational field.
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4.3.2.1 Slow–Roll Inflation

Here we show that inflation can be realized also by including the scalar curvature into the

action. Therefore, we start from the action (4.76), namely

S =
∫ √
−g

(
R

2 + f0Gk
)
d4x, (4.88)

in order to write the corresponding field equations in a cosmological spatially flat back-

ground. With the aim to constrain the value of the coupling constant f0 admitting

slow-roll inflation, we consider the vacuum field equations of R+ f0
√
G gravity, namely

H2 =
f0
6 G
− 3

2

{
12H2

[
−1

2HĠ − G(Ḣ +H2)
]
+ 1

}
(4.89)

Ḣ = −3
2H

2 +
f0
4 G
− 5

2
[
−12H2G2

(
H2 + Ḣ

)
+ G3+

−2H
(

2G
(
H2 + Ḣ

)
Ġ +H

(
GG̈ − 3

2 Ġ
2
))]

,

(4.90)

whose only power-law solution is

a±(t) = a0 t

4f2
0+3±

√
3
√

16f2
0+3

2(3−2f2
0) . (4.91)

Replacing a+1 in the field equations (4.89) and considering the conditions for the inflation

in Eq. (4.68), it turns out that slow-roll inflation is admitted by R + f0
√
G theory of

gravity when

f0 ∼ ±
√

3
2. (4.92)

In particular, the more f0 approaches the values ±
√

3/2, the faster the scalar field rolls

down the potential hill. These values are in agreement with the range provided by the
1No coupling constants are selected by a−(t)
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energy conditions in Eq. (4.86).

64



5
Modified Gauss–Bonnet Black Holes

Here we adopt Noether symmetry approach for f(G) gravity in a d + 1 dimensional

spherically symmetric background, with the aim to find out suitable black holes solutions.

Let us consider now a static and spherically symmetric ansatz for the metric, that reads

ds2 = P (r)2dt2 −Q(r)2dr2 − r2dΩ2
d−1 , (5.1)

where dΩ2
d−1 =

∑d−1
j=1 dθ

2
j + sin2 θjdφ2 is the metric element of the (d− 1)-sphere, for

a space-time labeled by coordinates xµ = (t, r, θ1, θ2, ..., θd−2,φ). Before proceeding, an

important comment is necessary here; we assume that the metric (5.1) is not dynamical,

which means that Birkhoff’s theorem should be valid for these models. This is not proven

and we take it for granted in theories such as (3.10). However, there are a lot of references

in the literature claiming to have found cases where a generalization of Birkhoff’s theorem

could exist [147, 148, 149, 150, 151, 152].

Starting from the metric (5.1), the not-null components of the D-dimensional Riemann
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tensor, Ricci tensor and Ricci scalar are:

R0101 = P

(
P ′Q′

Q
− P ′′

)
R0i0j = −

rP ′P

Q2 δij

∣∣∣∣∣
i,j≥2

R1i1j = −
rQ′

Q
δij

∣∣∣∣∣
i,j≥2

Rikj` = −r2
(

1− 1
Q2

)
δijδk`

∣∣∣∣∣
i,j,k,`≥2

R00 = −P [rP ′Q′ − (d− 1)QP ′ − rQP ′′]
rQ3 R11 =

(d− 1)PQ′ + r(P ′Q′ −QP ′′)
rPQ

Rij = d− 2− (d− 2)P + rP ′

PQ2 +
rQ′

Q3 δij

∣∣∣∣∣
i,j≥2

R =
2r {Q [(d− 1)P ′ + rP ′′]− rP ′Q′}+ (1− d)P

[
(d− 2)Q3 + (2− d)Q+ 2rQ′

]
r2PQ3 ,

(5.2)

so that the Gauss–Bonnet term in arbitrary (d+ 1) dimensions takes the form

G(d+1) =
(d− 2)(d− 1)

r4PQ5

{
(d− 3)P

(
Q2 − 1

) [
(d− 4)Q3 − (d− 4)Q+ 4rQ′

]
−4r

[
(d− 3)Q3P ′ + rQ3P ′′ − (d− 3)QP ′ − rQP ′′

−rQ2P ′Q′ + 3rP ′Q′
]}

, (5.3)

where the prime denotes the derivative with respect to the radial coordinate and we set

for simplicity θj = π/2. Note that for d ≤ 2 (i.e in less than four dimensions), the above

scalar vanishes identically, while for d = 3, it becomes a topological surface term, as it

happens in the cosmological case.

In order to calculate the point-like Lagrangian of the theory with respect to the line

element (5.1), we introduce a Lagrange multiplier as [74, 153, 154]

S =
∫
dd+1x rd−1PQ

[
f(G)− λ

(
G − G̃

)]
, (5.4)

with G̃ being the Gauss–Bonnet term in spherical symmetry (5.3) and λ the Lagrange
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multiplier given by varying the action with respect to G, i.e. λ = ∂Gf . Substituting G̃

and integrating out the second derivatives, we obtain

L (r,P ,Q,G) =rd−1PQ [f −GfG ]

+
(d− 1)(d− 2)rd−5(Q2 − 1)

Q4

{
(d− 3)PfG

[
(d− 4)Q(Q2 − 1) + 4rQ′

]
+4r2QP ′G′fGG

}
. (5.5)

This is the point-like canonical Lagrangian of our theory in a static and spherically sym-

metric space-time. Its configuration space is S = {P ,Q,G}, and the tangent space

T S = {P ,P ′,Q,Q′,G,G′}.

5.1 Research for Symmetries

The generator of the point transformations (B.9), in our case, is given by

X = ξ(r,G,P ,Q)∂r + ηG(r,G,P ,Q)∂G + ηP (r,G,P ,Q)∂P + ηQ(r,G,P ,Q)∂Q , (5.6)

where ξ and ηi, with i = {G,P ,Q}, are components of the vector X. By applying the

Noether theorem in Eq. (B.7), we obtain a system of twelve equations, which are not all

independent. The resolution of the system provides only two different non-trivial solutions

for the f(G) function, that we outline below (see [155] for details).

• Case 1: In more than three dimensions, we have f(G) = f0Gk with k 6= 1. The

symmetry generator for this model is given by

X = c1r∂r − 4c1G∂G + (4k− d)c1P∂P (5.7)

and g = c2, with c1 and c2 being constants. The invariant quantity (B.19), related
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to the above symmetry (5.7), is

I =
1
Q3 c1f0r

d−4Gk−2

(1− k)r4G2PQ4+

− 4k(k− 1)(d− 2)(d− 1)r
(
Q2 − 1

) (
rP ′ + (d− 4k)P

)
G′+

− (d− 2)(d− 1)kG
(
Q2 − 1

) [
16(k− 1)rP ′ − (d− 4)(d− 3)P

(
Q2 − 1

) ]− c2 .

(5.8)

It is interesting to point out that the form of f(G) selected by symmetries is a

power-law functions, as well as Chap. 4.

• Case 2: In five dimensions (d = 4) there is also the possibility to have a linear

model of the form f(G) = f0G. Its Noether symmetry reads

X = c1r∂r + c2∂P , (5.9)

and g = c3− 8f0c2(3Q2−1)
Q3 , with c1, c2 and c3 being constants. The preserved quantity

related to the generator (5.9) is

I = −8f0
Q3

6r
(
Q2 − 3

)
(c1rP ′ − c2)Q′

Q
+ c2

(
3Q2 − 5

)− c3 . (5.10)

5.1.1 Spherically Symmetric solutions

From the Noether theorem (B.7), we can build the following Lagrange system

dt

ξ
=
dqi

ηi
=

dq̇i

η[1],i
, (5.11)
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which, with the help of Eq. (5.7), yields the zero and first order invariants

W [0],G(r,G) = dr

c1r
− dG
−4c1G

= Gr4 , (5.12)

W [0],P (r,P ) = dr

c1r
− dP

(4k− d)c1P
= Prd−4k , (5.13)

W [1],G(r,G) = dr

c1r
− dG
−4c1G

− dG′

−5c1G′
= G′r5 , (5.14)

W [1],P (r,P ) = dr

c1r
− dP

(4k− d)c1P
− dP ′

(4k− d− 1)c1P ′
= P ′r1+d−4k , (5.15)

by means of which the equations of motion can be reduced from the second to the first

order, providing analytic solutions. The Lagrangian (5.5) for the Case 1, i.e. f = f0Gk,

becomes

L =
f0rd−5Gk−2

Q4

GPQ
[
(d− 4)(d− 3)(d− 2)(d− 1)k

(
Q4 − 2Q2 + 1

)
−G(k− 1)Q4r4

]

+ 4(d− 1)(d− 2)k
(
Q2 − 1

)
r
[
(d− 3)GPQ′ + (k− 1)rQG′P ′

]
(5.16)
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and the associated Euler-Lagrange equations ∂L
∂qi

=
d

dr

∂L

∂q′i
are

P : (k− 1)r4Q5 +
{

4(d− 3)(d− 2)(d− 1)k(k− 1)rQ(Q2 − 1)G′G−2

+ 4(d− 2)(d− 1)(k− 2)(k− 1)kr2Q(Q2 − 1)G′2G−3

+ 8(d− 2)(d− 1)(k− 1)kr2Q2Q′G′G−2

− 12(d− 2)(d− 1)(k− 1)kr2(Q2 − 1)Q′G′G−2

− (d− 3)(d− 2)(d− 1)k(Q2 − 1)
[
(d− 4)Q(Q2 − 1) + 4rQ′

]
G−1

+ 4(d− 2)(d− 1)(k− 1)kr2Q(Q2 − 1)G′′G−2 = 0, (5.17)

Q : (k− 1)r4G2PQ4

− (d− 3)(d− 2)(d− 1)kG(Q2 − 1)
[
(d− 4)P (Q2 − 1)− 4rP ′

]
+ 4(d− 2)(d− 1)(k− 1)krG′

[
(d− 5)P (Q2 − 1) + r(Q2 − 3)P ′

]
= 0 , (5.18)

G : G(r) = G̃(r), (5.19)

for P , Q and G, respectively.

Solving Eq. (5.19) with respect to G(r), we recover the spherically symmetric expression

of the Gauss–Bonnet scalar G(r) = G̃, given by Eq. (5.3). Moreover, Eq. (5.17) and

Eq. (5.18) can be further simplified by setting Q(r) = 1/P (r), so that the system of

differential equations ends up with one equation of the form

(d− 1)(d− 2)G̃k
(d− 3)(P 2 − 1)

[
(d− 4)(P 2 − 1)− 4(k− 2)rPP ′

]
−

− 4(k− 1)r2
[
(P 2 − 1)PP ′′ + (3P 2 − 1)P ′2

] = 0 .

(5.20)

Notice that the ansatz Q(r) = 1/P (r) is needed to find the dynamics of D-dimensional

f(G) gravity in spherical symmetry. Moreover, it allows to recover the Schwarzschild
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solution as a particular limit.

Obviously, for d = 1, 2 Eq. (5.20) is automatically satisfied. The rest of the equation

accepts three solutions which read

P (r)2 = 1 + e−2k2
√
k1 − 4r r

3
2−

d
2 and G(r) = 0 k 6= 1 d ≥ 3, (5.21)

P (r)2 = P 2
0

(
1− k3

r
d
2−2

)
and G(r) = 0 k = 1 d ≥ 4 , (5.22)

P (r)2 = 1± r2−d2

√√√√ 4k1d

120(d+1
d−4)

± r2
√√√√G0(d− 3)

120(d+1
d−4)

and G(r) = G0, f(G) = f0G
d+1

4 d ≥ 4 ,

(5.23)

with k1, k2, k3,P0,G0 constants. These are general black hole solutions for the theory

(3.10) with f(G) = f0Gk; in particular, the first one is valid in arbitrary d dimensions

with d ≥ 3, while the others hold in more than four dimensions. Solution (5.23), which

is the (A)dS equivalent of f(G) gravity, holds for any k =
d+ 1

4 , in agreement with the

trace equation (3.12). In any case, the asymptotic flatness is always recovered in more

than five dimensions, as well as the presence of horizons. Specifically, solutions (5.22) and

(5.21) admit as horizon rS ∼ (GM)
2
d−4 .

Let us now see some more specific solutions of the system (5.17)-(5.19), analyzing the

boundary cases d = 3 and d = 4. In d = 3 we have the following solution for any P (r)

Q(r) =
1
3

(
A(r)− eq0P ′(r) +

e2q0

A(r)
P ′(r)2

)
, (5.24)

with

A(r) =

(
27eq0

2 P ′(r)− e3q0P ′(r)3 +
3eq0

2 P ′(r)
√

81− 12e2q0P ′(r)2
)1/3

.

q0 is an integration constant and the Gauss–Bonnet term vanishes in this case. As an
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example, by introducing the relation Q(r) = P (r)n, we find that the field equations are

satisfied by any P (r) solving the equation

k(P 2n − 3)P ′2 − P (P 2n − 1)P ′′ = 0. (5.25)

The limit n = −1 provides back solution (5.21); an interesting analytic solution of Eq.

(5.25) occurs for n = −1/3, where the components of the interval are:

P (r)2 = −2c1
[
(r+ c2)

(
6r

M(r)
+ 1

)]
+

3
8

[
M(r)2 + 9
M(r)

+ 3
]

,

with

M(r) = 3
√

128c21r2 + 16 (16c1c2 − 9) c1r+

+64
√
c31 (c2 + r) 3 (4c1r+ 4c2c1 − 1)+

+128c22c21 − 144c2c1 + 27.

(5.26)

Moreover, in d = 4 we only get the following solutions for constant G

P (r)2 = −1
2 exp

tanh−1

√G0
30
r2

2

√4− G0r4

30 and Q(r)−2 = 1 +
√
G0r2

2
√

30
for k = 5/4 ,

(5.27)

P (r)2 = 1 = Q(r)2 , for G0 = 0 and ∀k . (5.28)

If we Taylor expand P (r)2 in Eq. (5.27), we find that P (r)2 = Q(r)−2, which is an

AdS-like solution, where
√
G0

2
√

30
can be considered as the bulk cosmological constant. To

conclude, in Table I we outline the spherically symmetric solutions provided in this chap-

ter.
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Table I: Exact static and spherically symmetric solutions in f(G) gravity, with

f(G) = f0Gk, in arbitrary d+ 1 dimensions.
P(r)2 Q(r)2 d k

1 + e−2c2
√
c1 − 4rr

3
2−

d
2 1/P (r)2 d ≥ 3 k > 0, 6= 1

P 2
0

(
1− k3

r
d
2−2

)
1/P (r)2 d > 3 k = 1

1± r2−d2

√√√√ 4k1d

120(d+1
d−4)

± r2
√√√√G0(d− 3)

120(d+1
d−4)

1/P (r)2 d > 3 k = d+1
4

∀P (r) 1
3

(
A(r)− eq0P ′(r) +

e2q0

A(r)
P ′(r)2

)
d = 3 k > 0

−1
2 exp

tanh−1

√G0
30
r2

2

√4− G0r4

30 1 +
√
G0r2

2
√

30
d = 4 k = 5/4

1 1 d = 4 ∀k
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6
Non–Local Theories

Before considering non-local functions of the Gauss–Bonnet term, let us review the basic

aspects of non-local theories of gravity. First of all, they can be divided into two main

categories: Infinite Derivative Theories of Gravity (IDGs) and Integral Kernel Theories

of Gravity (IKGs). The former are used to be exponential functions of the D’Alembert

operator 1 and to overcome UV shortcomings by means of a short-range non-locality.

The latter mainly involve the inverse of the D’Alembert operator 2 �−1 and, by means

of long-range non-locality, they are capable of fixing, in principle, the IR problems of

GR. The models treated in this paper involve functions of the operator �−1, which will

be applied to the Ricci scalar R and the Gauss–Bonnet invariant G. For this reason, we

outline only the properties of IKGs.

In general, the local corrections come from an expansion around the value s = 0 of a

Schwinger proper time, so that they are valid for small times only, providing UV correc-

tions. On the other hand, IR corrections are represented by the expansion around s→∞,

where the proper time integration becomes divergent. This problem can be solved by

considering a non-perturbative approach to calculate the Schwinger proper time integral

which allows to capture both the effects of local UV contributions (s = 0) and of non-local

IR corrections (s→∞).
1In general, they can be also trascendental functions of differential operators.
2They can involve integral kernels of differential operators
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The corresponding quantum effective action in curved space-time reads [156]:

W0 = −
∫
d4x
√
−g

[
V (x) + V (x)(�− V )−1V (x)

]
+

1
6 Σ , (6.1)

where V (x) is the potential and Σ a surface term defined as

Σ =
∫
d4x
√
−g

{
R−Rµν �−1Gµν2−1R

(
�−1Rµν

)
�−1Rµν

−Rµν
(
�−1Rµν

)
�−1R

(
�−1Rαβ

)(
Dα�−1R

)
Dβ �

−1R

− 2
(
Dµ�−1Rνα

)(
Dν �−1Rµα

)
�−1R

− 2
(
�−1Rµν

)(
Dµ�−1Rαβ

)
Dν �−1Rαβ +O

[
R 4
µν

]}
.

(6.2)

The integral operator �−1 is the responsible for quantum corrections to GR. A simple

action containing such an operator was proposed by Deser andWoodard in Ref. [61], where

they presented a non-local modified effective theory of gravity capable of explaining the

current late-time cosmic acceleration as a mechanism driven by the integral kernel of some

differential operator; the corresponding action reads:

S =
∫
d4x
√
−g

[
R

2 + F
(
�−1R

)]
+ S(m) , (6.3)

where F
(
�−1R

)
is an arbitrary function of �−1R. The field equations associated to the

effective theory (6.3) are

Gµν + ∆Gµν = T (m)
µν , (6.4)

where

∆Gµν =
(
Gµν + gµν �−DµDν

){
F +�−1

[
RF�−1R

]}

+

[
δ (ρ
µ δ σ)

ν − 1
2 gµνg

ρσ

]
∂ρ

(
�−1R

)
∂σ

(
�−1

[
RF�−1R

])
,

(6.5)
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with the definitions F ≡ F
(
�−1R

)
and F�−1R ≡

∂F

∂
(
�−1R

) . It is straightforward to

show that the intrinsic nature of operator �−1 is able to predict naturally the late-time

cosmological expansion of the Universe. In this regards, considering a power-law form of

the scale factor given by the standard cosmological model

a(t) ∼ tq =⇒ R(t) ∼ 6q(1− 2q) t−2 , (6.6)

it is possible to approximately evaluate the quantity
(
�−1R

)
(t0) at the present time.

Indicating with t0 ∼ 1010 y the current time and with teq ∼ 105 y the time when the CMB

radiation originated, the non-local causal effects acting within the interval [teq, t0] are:

(
�−1R

)
(t0) =

∫ t0

teq
dt′

1
a3(t′)

∫ t′

teq
dt′′a3(t′′)R(t′′) =

=
6q(2q− 1)
(3q− 1)

log
(
t0
teq

)
− 1

3q− 1 +
1

3q− 1

(
teq
t0

)3q−1.
(6.7)

Taking into account a standard matter dominated universe with q = 2/3, we have

(
�−1R

)
(t0)

∣∣∣
q= 2

3
∼ 14.0 . (6.8)

The above result suggests that the non-local term leads to the order required by the

current cosmic acceleration and avoids the fine tuning of parameters. Furthermore, these

corrections occur only at late-times, since during the radiation dominated era the non-local

effects are null while, after the onset of matter dominance, the logarithmic dependence

make them negligible.

6.1 Non-local Gauss–Bonnet Cosmology

With the above considerations in mind, let us see if the form of the non-local action

containing the operator �−1 applied to the Gauss–Bonnet scalar G can be selected by
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the Noether symmetry approach. Let us start by considering the following non-local

Gauss–Bonnet action in vacuum

S =
∫ √
−gf(G,�−1h(G))d4x . (6.9)

Starting from this, we want to derive the cosmological point-like Lagrangian and then

search for Noether symmetries according to the lines sketched in App. B. The first issue

is to define a suitable localization of the non-local field. We can define:

�−1h(G) := φ → h(G) = �φ , (6.10)

where φ is an auxiliary scalar field. Let us now focus on a spatially-flat FLRW cosmological

background, with metric ds2 = dt2− a(t)2dx2. In this perspective, we must consider also

the dependence of the scalar field on the cosmic time, that is φ = φ(t). According to Eq.

(4.6) the Gauss–Bonnet scalar can be expressed as a function of the scale factor, so that

the cosmological expression of G can be used as a constraint in the Lagrange multipliers

method. Therefore, considering also the localization (6.10), as in [60, 157], we can define

the further scalar field ε(t) such that action (6.9) can be written as

S =
∫ √
−g {f(G,φ) + ε(t)(�φ− h(G))} d4x , (6.11)

where φ and G have to be treated as separated fields. Using the Lagrange Multipliers

method, action (6.11) becomes

S =
∫ {

a3f(G,φ) + a3ε(t)
[
φ̈+ 3 ȧ

a
φ̇− h(G)

]
− λ

(
G − 24 ȧ

2ä

a3

)}
dt . (6.12)
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The variation of the action with respect to the Gauss–Bonnet term allows to find the

Lagrange Multiplier λ:

δS

δG
=
∫ {

a3fG(G,φ)− a3ε(t)hG(G)− λ
}
dt = 0 → λ = a3 [fG(G,φ)− ε(t)hG(G)] .

(6.13)

Furthermore, from Eq. (6.11), it is easy to verify that once varying the action with respect

to ε(t), one recovers the definition �φ− h(G) = 0. From the variation with respect to

the scalar field φ, we get:

δS

δφ
=

∫ √
−g

{
fφ(G,φ)− δ

δφ
[ε(t)(�φ− h(G))]

}
d4x

=
∫ √
−g

{
fφ(G,φ)− δ

δφ

[
ε(t)�(φ−�−1h(G))

]}
d4x . (6.14)

Using the divergence theorem, the last term of Eq. (6.14) can be written as:

∫ √
−g

{
δ

δφ

[
ε(t)�(φ−�−1h(G))

]}
d4x =

δ

δφ

∫ √
−g�ε(t)(φ−�−1h(G))d4x

=
∫ √
−g �ε(t) δ

δφ
(φ−�−1h(G))d4x =

∫ √
−g �ε(t)d4x , (6.15)

so the variation with respect to the scalar field φ provides the following Klein-Gordon

equation:
δS

δφ
= 0 → �ε(t) = fφ(G,φ) . (6.16)

After introducing the Lagrange multipliers and integrating out the higher derivatives, the

point-like Lagrangian can be written as:

L = a3 [f(G,φ)−GfG(G,φ)− εh(G) + εGhG(G)]− a3φ̇ε̇− 8ȧ3ĠfGG(G,φ)

+ 8ȧ3ε̇hG(G) + 8εȧ3ĠhGG(G)− 8ȧ3φ̇fGφ(G,φ) . (6.17)

78



6. Non–Local Theories

The corresponding Euler–Lagrange equations and the energy condition are, respectively:



a : 8ȧ
[
2ä
(
−ĠfGG(G,φ)− φ̇fGφ(G,φ) + εĠhGG(G)

)
+ ȧ

(
−G̈fGG(G,φ)

−2Ġφ̇fGGφ(G,φ)− Ġ2fGGG(G,φ)− φ̈fGφ(G,φ)− φ̇2fGφφ(G,φ) + ε̈hG(G)

+εG̈hGG(G) + εĠ2hGGG(G)
)
+ 2ε̇

(
ähG(G) + ȧĠhGG(G)

)]
+a2

[
GfG(G,φ)− f(G,φ) + ε̇φ̇+ ε (h(G)−GhG(G))

]
= 0

φ : �ε = fφ(G,φ)

G : G = 24 ȧ
2ä

a3

ε : �φ = h(G)

EC : a3
(
f(G,φ)− εh(G) + εGhG(G) + φ̇ε̇−GfG(G,φ)

)
−24ȧ3

(
ε̇hG(G) + εĠhGG(G)− φ̇fGφ(G,φ)− ĠfGG(G,φ)

)
= 0 .

Once the forms of the functions h(G) and f(G,φ) are specified, the above system can

provide exact cosmological solutions.

Also here, the Noether theorem can be applied to the Lagrangian (6.17). In such a case

the minisuperspace is defined on the configuration space S ≡ {a,φ,G, ε}, so that the

symmetry generator takes the explicit form:

X = ξ(t, a,φ,G, ε)∂t + α(t, a,φ,G, ε)∂a + β(t, a,φ,G, ε)∂φ

+ γ(t, a,φ,G, ε)∂G + δ(t, a,φ,G, ε)∂ε . (6.18)

The system of differential equations coming from the above generator is made of 37

equations but, after deleting all the linear combinations, it reduces to a system of five
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equations plus the conditions on the generator coefficients [158]. The system admits five

different solutions: in two of them the non-local function f(G,φ) is given by a sum of

a function of φ and a function of G, i.e. f(G,φ) = f1(G) + f2(φ). In the other three,

solutions are products between the two functions, namely f(G,φ) = g1(G)g2(φ). The

entire set of solutions with the corresponding generators read:



I : X = (ξ0t+ ξ1)∂t + α0a∂a + (β0φ+ β1)∂φ − 4ξ0G∂G + δ0ε∂ε ,

h(G) = h0G
1
2+

n
k , f(G,φ) = f0Gn + f1G + f2 (β0φ+ β1)

k ;

II : X = (ξ0t+ ξ1)∂t + α0a∂a + (β0φ+ β1)∂φ − 4ξ0G∂G + (δ0ε+ δ1)∂ε ,

h(G) = h0G , f(G,φ) = f0Gn + f1G + f2(β0φ+ β1)2n;

III : X = (ξ0t+ ξ1)∂t + α0a∂a + (β0φ+ β1)∂φ − 4ξ0G∂G + δ0ε∂ε ,

h(G) = h0Gz , f(G,φ) = f0Gn(β0φ+ β1)k;

IV : X = (ξ0t+ ξ1)∂t + α0a∂a + (β0φ+ β1)∂φ − 4ξ0G∂G + (δ0ε+ δ1)∂ε ,

h(G) = h0G , f(G,φ) = f0Gn(β0φ+ β1)k;

V : X = (ξ0t+ ξ1)∂t + α0a∂a + β1∂φ − 4ξ0G∂G + δ0ε∂ε ,

h(G) = h0
√
G , f(G,φ) = f0Gnekφ, k ≡ δ0+4nξ0

β1
,

(6.19)

where ξ0, ξ1, α0, β0, β1, δ0, h0, f0, f1, f2, n, k are integration constants.

It may seem that the theory is over determined by the large amount of free parameters.

However, after solving the equations of motion, the functions will be further constrained

to those in agreement with the cosmological solutions. Specifically, it turns out that not

all the functions contained in the system (6.19) admit cosmological solutions for the scale
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factor. As a matter of fact, while the second and the fourth do not admit any cosmological

solution, the first and the third can be analytically solved by setting β1 = 0. The fifth

admits solutions only after constraining the mutual dependence among the parameters.

Let us start by analyzing the Lagrangians corresponding to the functions I and III. They

read, respectively:

LI = a3
[
f0(1− n)Gn − h0

(
n

k
− 1

2

)
εG

n
k+

1
2 + ε̇φ̇

]
− 8h0

(
n

k
+

1
2

)
ȧ3ε̇G

n
k−

1
2

+8f0n(n− 1)ȧ3ĠĠn−2 − 8h0

(
n2

k2 −
1
4

)
εȧ3ĠG

n
k−

3
2 + 8f1kȧ

3φ̇φk−1 (6.20)

and

LIII = a3
[
f0(1− n)Gnφk + h0(z − 1)εGz

]
+ 8h0zȧ

3ε̇Gz−1 + 8h0z(z − 1)εȧ3ĠGz−2

−8f0n(n− 1)ȧ3ĠGn−2φk − 8f0knȧ
3φ̇Gn−1φk−1 − a3ε̇φ̇ . (6.21)

From the former Lagrangian, the Euler–Lagrange equations and the energy condition

provide a solution given by a time power-law of a(t), namely:

a(t) ∼ t
2
3 (2n+2kz−k) , G(t) ∼ t−4 , φ(t) ∼ t2−4z , ε(t) ∼ t2k(1−2z) , (6.22)

f(G,�−1h(G)) = f2Gn(�−1Gz)k . (6.23)

In this case, though exponential solutions do not occur in vacuum, the parameters are

not fixed by the equations of motion, so that they might be constrained by observations.

On the other hand, the Lagrangian (6.20) gives exact de Sitter-like solutions of the form:

a(t) ∼ eqt , G(t) ∼ Const , φ(t) ∼ t , ε(t) ∼ t , k = 1, n =
1
2 , (6.24)

f(G,�−1h(G)) = f0
√
G + f1G + f2�−1G + f3 . (6.25)

Therefore, concerning this latter case, the only solution such that the Euler–Lagrange

equations, the energy condition, and the Noether system are satisfied, constrains all the

81



6. Non–Local Theories

free parameters occurring in the second function. Since G is a topological invariant, the

linear term in G does not contribute to dynamics so the relevant terms are the square

root and the linear non-local terms in G. From a cosmological point of view, this action

is equivalent to action (6.3), so the same considerations in [61] hold. In other words,

a Dark Energy-like behavior, due to non-local terms, can be achieved both in R and G

descriptions of cosmological dynamics.

Finally, the point-like Lagrangian corresponding to the last solution is:

LV = 2ȧ3
[
2G−

1
2 ε̇− εG−

3
2 Ġ − 4f0n(n− 1)Gn−2Ġekφ − 4f0knGn−1ekφφ̇

]
−1

2G
2a3

[
2ε̇φ̇+ ε

√
G + 2f0(n− 1)Gnekφ

]
(6.26)

and the Euler–Lagrange equations. (6.18) can be analytically solved providing two differ-

ent forms of the scale factor; the first reads as:

a(t) ∼ eq t , φ(t) ∼ t , ε(t) ∼ e

√
8
3kq t , (6.27)

f(G,�−1√G) = f0G
12
√

6
4k−
√

6 ekφ , h(G) =
√
G . (6.28)

By comparing the function in Eq. (6.28) with the fifth of Eq. (6.19), we notice that a

relation between the free parameters n and k occurs, namely:

n =
12
√

6
4k−

√
6

. (6.29)

Furthermore, we also find power law solutions, namely:

a(t) ∼ tq , φ(t) ∼ ln[(1− 3q)t] , G(t) ∼ 1
t4

, ε(t) ∼ t2−4n+ 2k
√

6q3(q−1)
3q−1 . (6.30)

The second solution, coming from the Lagrangian (6.26), introduces a relation among the

parameters n, q and k enlarging the possibility to compare these cosmological behaviors

with observational data.

82



6. Non–Local Theories

6.1.1 General Relativity plus Non-local Gauss–Bonnet Cosmol-

ogy

To conclude this discussion, let us treat the case of GR corrected with non-local Gauss–

Bonnet terms, considered e.g. in [157, 159]. The action is:

S =
∫ √
−g

[
R

2 + f(G,�−1h(G)
]
d4x , (6.31)

that is Eq. (6.9) with the addition of the Hilbert–Einstein term. Let us make use of the

Lagrange multipliers method to find the cosmological Lagrangian and, therefore, to apply

the Noether symmetry approach. The only difference with respect to the case given by

Eq. (6.17) is due to the cosmological form of R, so that the Lagrangian reads as:

L = a3 [f(G,φ)−GfG(G,φ)− εh(G) + εGhG(G)]− a3φ̇ε̇− 8ȧ3ĠfGG(G,φ)

+8ȧ3ε̇hG(G) + 8εȧ3ĠhGG(G)− 8ȧ3φ̇fGφ(G,φ) + 3aȧ2 , (6.32)

and the only different Euler–Lagrange equation is that related to the scale factor which,

in this case, takes the form:

8ȧ
[
2ä
(
−ĠfGG(G,φ)− φ̇fGφ(G,φ) + εĠhGG(G)

)
+ȧ

(
−G̈fGG(G,φ)− 2Ġφ̇fGGφ(G,φ)− Ġ2fGGG(G,φ)− φ̈fGφ(G,φ)

−φ̇2fGφφ(G,φ) + ε̈hG(G) + εG̈hGG(G) + εĠ2hGGG(G)
)

+2ε̇
(
ähG(G) + ȧĠhGG(G)

)]
+ 3(ȧ2 + 2aä)

+a2
[
GfG(G,φ)− f(G,φ) + ε̇φ̇+ ε (h(G)−GhG(G))

]
= 0 . (6.33)

The minisuperspace dimension is the same as the previous case, since the scalar curvature

does not introduce any new dynamical variables. By replacing R(t) with its cosmological

expression, the Noether system turns out to be the same as the previous section, except
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for the addition of a further condition on the Noether vector, that is:

α− a∂tξ + 2a∂aα = 0 . (6.34)

This new link between α and ξ, provided by Eq. (6.34), yields an important implication

for the solutions of Noether’s system, since it uniquely fixes the value of n and the relation

between n and k. We obtain five different generators (with corresponding functions) of

the form:


I : X = (3α0t+ ξ1)∂t + α0a∂a + (β0φ+ β1)∂φ − 12α0G∂G + δ0ε∂ε ,

h(G) = h0G
1
2+

1
2k , f(G,φ) = f0G

1
2 + f1G + f2 (β0φ+ β1)

k ;

II : X = (3α0t+ ξ1)∂t + α0a∂a + (β0φ+ β1)∂φ − 12α0G∂G + (δ0ε+ δ1)∂ε ,

h(G) = h0G , f(G,φ) = f0G
1
2 + f1G + f2(β0φ+ β1);

III : X = (3α0t+ ξ1)∂t + α0a∂a + (β0φ+ β1)∂φ − 12α0G∂G + δ0ε∂ε ,

h(G) = h0G
1−2n

2k , f(G,φ) = f0Gn(β0φ+ β1)k;

IV : X = (3α0t+ ξ1)∂t + α0a∂a + (β0φ+ β1)∂φ − 12α0G∂G + (δ0ε+ δ1)∂ε ,

h(G) = h0G , f(G,φ) = f0Gn(β0φ+ β1)1−2n;

V : X = (3α0t+ ξ1)∂t + α0a∂a + β1∂φ − 12α0G∂G ,

h(G) = h0
√
G , f(G,φ) = f0Gnekφ.

(6.35)

By comparing Eqs. (6.19) with Eqs. (6.35), we notice that, with regards to the first two

solutions, the introduction of R leads to the further constraint n = 1/2. Moreover,

in the third and in the fourth cases, the further relations z = 1−2n
2k and k = 1 − 2n
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occur respectively. According to these considerations, it is clear that action (6.31) is fully

consistent with (6.9) and then it is not necessary introduce by hand the Hilbert–Einstein

term to recover GR in this context.
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7
Metric, Affine and Topological

Theories Non–Minimally Coupled to

a Scalar Field

Despite the need of extending/modifying GR, self-interaction potentials, couplings and

kinetic terms give rise to infinite choices which can lead to a frustrating indetermination

in fitting observations and addressing conceptual problems. One can adjust models and

parameters to match single datasets and phenomena but a theory in agreement with the

whole phenomenology seems far to be achieved. In other words, any single theory loses its

general predictive power and cannot be used to reproduce a self-consistent cosmic history,

starting from UV to IR scales. Therefore, some selection criteria, based on physical

requirements, are needed to discriminate among the plethora of modified scalar-tensor

gravities. These criteria can be based e.g. on symmetries, conservation laws and on

general physical motivations.

Here, we want to consider scalar fields non-minimally coupled with different geometric

invariants, in particular the Ricci scalar R, the torsion scalar T , and the Gauss–Bonnet

scalar G. The aim is to demonstrate that all these non-minimally coupled invariants

can give rise to similar cosmological dynamics once we know how to transform each-

other. Furthermore, these scalar-tensor theories can be dealt with under the standard of

Noether symmetry approach which allows to fix couplings, potentials and kinetic terms
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requiring the existence of symmetries and related conserved quantities. In other words,

the purpose is to compare, by the Noether symmetries, the dynamics of three different

actions, pointing out the equivalence of the three representations of gravity.

Below, we will discuss non-minimal coupling with R, T , and G scalars showing that ana-

logue (or identical) features emerge if couplings, kinetic terms, and potentials are selected

by Noether symmetries. The final result of this study is that all the above mentioned

theories provides the same dynamics and the same solutions. This is a further proof of

the equivalence between the Gauss–Bonnet models and f(R) gravity, there including GR

as a particular limit.

A general scalar-tensor action, written in terms of the scalar curvature, reads as:

S =
∫ √
−g {F (φ) R+ ω(φ)gµνφ;µφ;ν − V (φ)} d4x, (7.1)

where F (φ) is the coupling, ω(φ) the coefficient of the kinetic term and V (φ) the potential.

The variation of the action with respect to the metric tensor gµν , provides the field

equations [160]

RµνF (φ)−
1
2gµν [RF (φ) + ω(φ)φ;αφ

;α − V (φ)]

−F (φ);µ;ν + gµν�F (φ) + ω(φ)φ;µφ;ν = 0 , (7.2)

that clearly reduce to the Einstein equations when F (φ) = const. and V (φ) = ω(φ) = 0.

Action (7.1) is the paradigm for a very large class of theories. For example, f(R) gravity

in metric formalism can be easily recovered from (7.1) if ω(φ) is set to zero and (see

[31, 161] for details)

V (φ) =
1
2
f(R)−RfR

[fR]2
. (7.3)

In general, it turns out that a second–order theory of gravity non-minimally coupled

to a scalar field can always be recast as a fourth–order theory. Cosmological solutions

considered in this chapter, therefore, can be addressed to f(R), f(T ) and f(G) cosmology,
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respectively.

7.1 Non-Minimally Coupled Curvature Scalar

Let us start our analysis considering the action (7.1), where the form of unknown functions

will be fixed by Noether symmetries. After selecting these functions, we will find out

analytic cosmological solutions thanks to the reduction of dynamics.

From the variation of the action with respect to the scalar field φ, we get the Klein-Gordon

equation

ωφ(φ)φ
;αφ;α + 2ω(φ)�φ−RFφ(φ) + Vφ(φ) = 0, (7.4)

where the subscript φ denotes the derivative with respect to φ. Together with Eq. (7.2),

it completes the set of equations of motion.

The action can be simplified by focusing on a spatially-flat FLRW metric and integrating

over the 3-D surface term, so we get

S = 2π2
∫
a3
[
RF (φ) + ω(φ)φ̇2 − V (φ)

]
dt. (7.5)

Finally, replacing the cosmological expression of the Ricci scalar into the action and

integrating out second order derivatives, we get the cosmological point-like Lagrangian

L = 6F (φ)aȧ2 + 6Fφ(φ)a2ȧφ̇+ a3ω(φ)φ̇2 − a3V (φ). (7.6)

As standard when the Lagrangian approach is considered, field equations and Klein-

Gordon equation result in the Euler-Lagrange equations along with the energy condition
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EL = 0, that is the 00 equation. Therefore the dynamical system turns out to be:



a : 2F ȧ2 + 4a (Fφȧ+ F ä) + a2
(
V − ωφ̇2 + 2Fφφφ̇2 + 2Fφφ̈

)
= 0

φ : 6ȧ2Fφ + 6aωȧφ̇+ a
[
6Fφä+ a

(
Vφ + φ̇2wφ + 2wφ̈

)]
= 0

EL = 0 : 6F ȧ2 + 6aFφφ̇ȧ+ a2
(
V +wφ̇2

)
= 0

(7.7)

and can be solved after the three functions of φ are selected through Noether symmetries.

The approach can be developed in the two-dimensional minisuperspace S = {a,φ} whose

corresponding symmetry generator is

X = ξ(a,φ, t)∂t + α(a,φ, t)∂a + β(a,φ, t)∂φ . (7.8)

After equating to zero terms containing same time derivatives of variables, the applica-

tion of Noether’s identity (B.2) to Lagrangian (7.6) provides a system of 10 differential

equations. Nevertheless, by imposing a priori the condition ξ = ξ(t) (holding for La-

grangians in canonical forms) and neglecting redundant equations, the system reduces to

4 differential equations plus the condition on the infinitesimal generators. Such a system

is clearly over determined and cannot provide any explicit form without imposing some

constraint. Since we want to investigate functions with physical meaning for cosmology,

we replace into the system both power-law and exponential potentials, so that it provides
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the following solutions [162]



X = (ξ0t+ ξ1) ∂t −
ξ0
3 a

(
k+ c

k− c

)
∂a +

2ξ0
k− c

φ∂φ

F (φ) = F0φ
k ω(φ) = ω0φ

k−2 V (φ) = V0φ
c k 6= c

X =
kα0

3 a−
1
5∂a + α0a

− 6
5∂φ

F (φ) = F0φ
k ω(φ) = ω0φ

k−2 V (φ) = V0φ
k k = ±

√
2ω0
3F0

X = (ξ0t+ ξ1) ∂t −
ξ0
3 a

(
k+ c

k− c

)
∂a +

2ξ0
k− c

∂φ

F (φ) = F0e
kφ ω(φ) = ω0e

kφ V (φ) = V0e
cφ k 6= c

X = −kα0
3 a−

1
5 e
− kω0φ
F0k2+ω0 ∂a + α0a

− 6
5 e
− kω0φ
F0k2+ω0 ∂φ

F (φ) = F0e
kφ ω(φ) = ω0e

kφ V (φ) = V0e
kφ k = ±

√
2ω0
3F0

.

(7.9)

Furthermore, there is one further solution for constant coefficient of the kinetic term

(ω(φ) = 1), namely

X = −2(s+ 1)
2s+ 3 β0a

s+1φ
2s2+4s

2s+3 ∂a + β0a
sφ

2s2+6s+3
2s+3 ∂φ ,

F (φ) = `(s)φ2 , V (φ) = V0φ
6(s+1)
2s+3 `(s) =

(2s+ 3)2

48(s+ 1)(s+ 2) , (7.10)

with α0, β0, ξ0, k, c, s,ω0,F0,V0 real constants. We neglect trivial solutions, such as con-

stant couplings or vanishing potentials. Inserting the above functions into the dynamics,

the latter is reduced and the equations of motion can be analytically solved.

Starting from the two main sets of functions selected above, we are going to obtain

exact cosmological solutions. It is worth noticing that the choice of exponential potential

also leads to exponential coupling and exponential kinetic term, like in string-dilaton

90



7. Metric, Affine and Topological Theories Non–Minimally Coupled to a Scalar Field

cosmology [163, 164, 165]. This means that the string-dilaton Lagrangian can be naturally

obtained from Noether symmetries [166]. From this point of view, solutions occurring in

Eq. (7.9) can be considered more general than those provided in [164], since both the

solutions outlined there by the authors are contained in the last two of Eq. (7.9). In

particular, the exponential potential of string-dilaton cosmology is recovered for k = −2

and arbitrary c, while the constant potential is recovered for for k = −2 and c = 0.

With these considerations in mind, let us solve the Euler-Lagrange equations (7.7) for

those cases corresponding to the first and the third solution of Eq. (7.9). In the former

case, the Lagrangian (7.6) is:

L = 6F0φ
kaȧ2 + 6F0kφ

k−1a2ȧφ̇+ a3ω0φ
k−2φ̇2 − a3V0φ

c (7.11)

and the corresponding equations of motion can be analytically solved with the constraint

k = c = 2, providing a de Sitter-like expansion of the form:

a(t) = a0e
qt , φ(t) = φ0 exp

1
2

−3q±
√
−48F0q2 − 4V0 + 9q2ω0

ω0

 t
 , q, a0,φ0 ∈ R.

(7.12)

Considering the third case of (7.9), the point-like Lagrangian (7.6) can be written as

L = 6F0e
kφaȧ2 + 6F0ke

kφa2ȧφ̇+ a3ω0e
kφφ̇2 − a3V0e

cφ (7.13)

and, even in this case, the equations of motion set the value of the parameter k and c,

introducing the further constraint k = c. Therefore, discarding the solutions with minimal

coupling, we find

a(t) = a0e
qt , φ(t) =

3F0kq±
√
(3F0kq)2 − 6F0ω0q2 − V0ω0

ω0
, q ∈ R. (7.14)

The values of the constants F0,ω0,V0 can be fixed according to cosmological observations

[167]. In summary, deSitter-like expansions are provided by symmetries, and will be
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compared with those of the next sections in order to point out the equivalence among

three (apparently) different scalar-tensor theories.

7.2 Non-Minimally Coupled Torsion Scalar

In this section we develop similar considerations for non-minimally coupled TEGR. We

will show that dynamics and solutions, derived from Noether symmetries, are equivalent

to those obtained in Sec. 7.1. In this sense, symmetries can be a criterion capable of

comparing theories coming from different representations of gravity.

Let us consider the teleparallel equivalent of action (7.1), i.e.:

S =
∫
e [TF (φ) + ω(φ)φ;αφ

;α − V (φ)] d4x, (7.15)

whose Klein-Gordon equation reads as

ωφ(φ)φ
;αφ;α + 2ω(φ)�φ− TFφ(φ) + Vφ(φ) = 0. (7.16)

Here e takes the place of √−g and stands for the determinant of tetrad fields. Unlike the

previous case, the cosmological expression of torsion does not contain second derivatives

which must be integrated out; therefore, the point-like Lagrangian can be easily found

only by replacing the relation (2.37) into the action and integrating the three-dimensional

surface:

L = −6aF (φ)ȧ2 + a3ω(φ)φ̇2 − a3V (φ). (7.17)

Note that this Lagrangian is already canonical and the equations of motion are simplified
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with respect to Eqs. (7.7). They are:



a : −2F ȧ2 + a2(V − ωφ̇2)− 4a(Fφȧφ̇+ F ä) = 0

φ : 6ȧ2Fφ + 6aωȧφ̇+ a2(Vφ + ωφφ̇
2 + 2ωφ̈) = 0

EL = 0 : −6aF ȧ2 + a3(V + ωφ̇2) = 0.

(7.18)

The minisuperspace considered is two-dimensional as in the previous case (S = {a,φ})

and the generator of the symmetry is in turn

X = ξ(t)∂t + α(a,φ, t)∂a + β(a,φ, t)∂φ. (7.19)

Notice that, being the Lagrangian in a canonical form, the condition ξ = ξ(t) immediately

holds. The application of the extended Noether vector to the point-like Lagrangian (7.17)

provides a system of 12 equations, which can be reduced to four equations with the

constraints on the infinitesimal generators, that is [162]



6F∂φα− 2ωa2∂aβ = 0

αF + βaFφ + aF∂tξ − 2aF∂aα = 0

3αV + βaVφ − aV ∂tξ = 0

3αω + βaωφ − aω∂tξ + 2aω∂φβ = 0

α = α(a,φ) β = β(a,φ) ξ = ξ(t).

(7.20)

After some manipulations, the system can be recast in two differential equations contain-

ing the three functions F (φ),ω(φ),V (φ) and two unknown infinitesimal generators. It

is therefore clear that the system cannot provide a unique solution, and an initial choice

must be adopted in order to fix the related dynamics. Therefore, we replace in (7.20)

power-law and exponential potentials, which are of cosmological interest. The assump-

tion is not too much strict, since only the form of the potential is needed in order to

exactly solve the system. Solutions containing power-law and exponential potentials are:
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

X = (ξ0t+ ξ1) ∂t −
ξ0
3 a

(
k+ c

k− c

)
∂a +

2ξ0
k− c

φ∂φ

F (φ) = F0φ
k ω(φ) = ω0φ

k−2 V (φ) = V0φ
c k 6= c

X = (ξ0t+ ξ1) ∂t −
ξ0
3 a

(
k+ c

k− c

)
∂a +

2ξ0
k− c

∂φ

F (φ) = F0e
kφ ω(φ) = ω0e

kφ V (φ) = V0e
cφ k 6= c

X = −k3aβ(φ)∂a + β(φ)∂φ

F (φ) = F0e
kφ ω(φ) = ω0e

kφ V (φ) = V0e
kφ.

(7.21)

Another viable choice is ω(φ) = Const., which allows to recover Brans-Dicke gravity as

a limit. In this case, the system (7.20) yields



X = − 2β0
2s+ 3a

s+1φ−
2s

2s+3∂a + β0a
sφ

3
2s+3∂φ

F (φ) =
(2s+ 3)2

48 φ2 V (φ) = V0φ
6

2s+3

X = −2
3a

1
4 (c2 + 2c3φ)∂a + a−

3
4 (c1 + c2φ+ c3φ

2)∂φ

F (φ) =
3

64c3
(c1 + c2φ+ c3φ

2) V (φ) = V0(c1 + c2φ+ c3φ
2)2.

(7.22)

Also in this case, the exponential solutions of Noether system allow us to find out the

teleparallel equivalent of string-dilaton cosmology, namely the string-dilaton action with

torsion instead of curvature.

Let us now solve the Euler-Lagrange equations (7.18) for two different set of couplings,

potentials and kinetic terms. We choose the most general solutions among those in (7.21),

namely the first and the second. In the former case the Lagrangian (7.17) turns out to

be:

L = −6F0aφ
kȧ2 + ω0a

3φk−2φ̇2 − V0a
3φc . (7.23)
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Assuming the condition k = c and the de Sitter-like expansion for the scale factor, we

have:

a(t) = a0e
qt , φ(t) = φ0 exp

±
√

6F0q2 − V0
ω0

t

 , q =

√
V0ω0

6F0ω0 − 4k2F 2
0

. (7.24)

By taking into account the second set of functions, the Lagrangian takes the form

L = −6F0ae
kφȧ2 + ω0a

3ekφφ̇2 − V0a
3ecφ, (7.25)

leading to the exponential solutions constrained by the relation k = c:

a(t) = a0e
qt , φ(t) = ±

√
6F0q2 − V0

ω0
t , q =

√
V0ω0

6F0ω0 − 4k2F 2
0

. (7.26)

It is worth stressing the difference between the scalar field coupled to the curvature scalar

and to the torsion scalars. The Noether approach performed in Sec. 7.1 allows to find

exact expressions for the scalar field and for the scale factor, but the analytic relations

between the free parameters cannot be obtained analytically. In the case treated here,

instead, such a relation can be analytically found, so that an exact solution of Euler-

Lagrange equations (7.18) occurs. This is due to the cosmological expression of T which,

not containing second derivatives, leads immediately to a canonical Lagrangian.

Similar results occur considering the Gauss–Bonnet topological term non minimally cou-

pled to a scalar field, as we are going to discuss in the forthcoming section.

7.3 Non-Minimally Coupled Gauss–Bonnet Scalar

Here, we will consider functions of G non-minimally coupled to a scalar field, in order

to discuss solutions analogue to the above non-minimally coupled curvature and torsion
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cases. Let us start by considering the action

S =
∫ √
−g [GnF (φ) + ω(φ)φ;αφ

;α − V (φ)] d4x , with n ∈ R, (7.27)

whose Klein-Gordon equation and field equations read, respectively

ωφ(φ)φ
;αφ;α + 2ω(φ)�φ−GnFφ(φ) + Vφ(φ) = 0, (7.28)

1
2gµνG

nF (φ)− 2nF (φ)
(
RRµν − 2RµαRαν +Rµ

αβγRναβγ − 2RαβRµανβ
)
Gn−1

+ nF (φ) [2RDµDν + 4Gµν�− 4(RρνDµ +RρµDν)Dρ + 4gµνRρσDρDσ

−4RµανβDαDβ
]
Gn−1 − 1

2gµνω(φ)φ;αφ
;α − F (φ);µ;ν + gµν�F (φ)

+ ω(φ)φ;µφ;ν +
1
2gµνV (φ) = 0. (7.29)

Note that, with respect to Secs. 7.1 and 7.2, we introduced into the action a new degree of

freedom, hence the minisuperspace in no longer two-dimensional, but it contains one more

variable, that is S = {a,φ,G}. This is linked to the term Gn, which cannot be treated at

the same level as R and T due to the power n. By replacing the cosmological expression of

G into the action, we obtain second order derivatives which cannot be eliminated through

a simple integration. In order to find out the point-like Lagrangian, we have to define

a further Lagrange multiplier λ which must be introduced into the action through the

constraint (4.6), i.e.

G = 24 ȧ
2ä

a3 . (7.30)

After integrating the surface term, the action turns out to be:

S = 2π2
∫
a3
{[
F (φ)Gn + ω(φ)φ̇2 − V (φ)

]
− λ

(
G − 24 ȧ

2ä

a3

)}
dt. (7.31)
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The Lagrange multiplier can be found by varying the action with respect to the Gauss–

Bonnet invariant. It is:

δS

δG
= 0 → λ = a3nGn−1F (φ). (7.32)

Replacing now the result into the action and integrating out the second derivatives, the

point-like Lagrangian becomes

L = (1−n)a3GnF (φ)−8nȧ3φ̇Fφ(φ)Gn−1 +a3ω(φ)φ̇2−a3V (φ)−8n(n−1)Gn−2ȧ3ĠF (φ).

(7.33)

Clearly the Gauss–Bonnet contribution does not disappear for n = 1, since the the surface

term can be addressed to the scalar field, providing a non-trivial dynamics.

In this case we have three Euler–Lagrange equations and the energy condition; the further

equation is the one for G, which provides the cosmological expression of the Gauss–Bonnet

surface term by construction. The equations of motion therefore read



a : 3a2
[
(n− 1)FGn + V − ωφ̇2

]
− 24nG[t]n−3ȧ

{
(n− 1)F

[
2GĠä+ (n− 2)ȧĠ2 + ȧGG̈

]
+2G2Fφφ̇ä+ ȧG

[
Gφ̇2Fφφ + 2Fφ(n− 1)Ġφ̇+ GFφφ̈

]}
= 0

φ : 6a2ωȧφ̇− 24nGn−1ȧ2Fφä+ a3
[
(n− 1)GnFφ + Vφ + ωφφ̇

2 + 2ωφ̈
]
= 0

G : a3G − 24ȧ2ä = 0

EL = 0 : −8nGn−2ȧ3
[
2(n− 1)F Ġ + 3GFφφ̇

]
+ a3

[
(n− 1)FGn + V + ωφ̇2

]
= 0.

(7.34)

The generator of the symmetry in the three-dimensional minisuperspace contains one

further infinitesimal generator related to G:

X = ξ(a,φ,G, t)∂t + α(a,φ,G, t)∂a + β(a,φ,G, t)∂φ + γ(t, a,φ,G)∂G , (7.35)

so that the application of X [1] to Lagrangian (7.33) provides the following system of 4
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differential equations [162]



(n− 1) (γFφ + F∂φγ) + βGFφφ + FφG (−3∂tξ + ∂φβ + 3∂aα) = 0

βGFφ + F [(n− 2)γ + G (−3∂tξ + ∂Gγ + 3∂aα)] = 0

3αω + a [βωφ − ω(∂tξ − 2∂φβ)] = 0

3αG [(n− 1)FGn + V ] + a(n− 1)FGn (nγ + G∂tξ) + aGβ [(n− 1)GnFφ + Vφ] + aGV ∂tξ = 0

α = α(a) β = β(φ) γ = γ(a,φ,G) ξ = ξ(t).
(7.36)

As in the previous cases, the system is overdetermined and admits an infinite class of

solutions depending on the form of the unknown coupling, namely

α = α0a β = −(3α0 + ξ0 − 4nξ0)F (φ)

Fφ(φ)
γ = −4ξ0G ξ = ξ0t+ ξ1

ω =
F (φ)

−3α0+(8n−3)ξ0
3α0+ξ0−4nξ0 Fφ(φ)

2

(3α0 + ξ0 − 4nξ0)2 V = V0F (φ)
3α0+ξ0

3α0+ξ0−4nξ0 . (7.37)

Therefore, by choosing exponential and power-law couplings, Eq. (7.37) can be split in

two different solutions:

α = α0a β = −3α0 + ξ0 − 4nξ0
k

γ = −4ξ0G ξ = ξ0t+ ξ1

ω =
k2

(3α0 + ξ0 − 4nξ0)2 e
k(3α0−ξ0)φ

3α0+ξ0−4nξ0 V = V0F
3α0+ξ0

3α0+ξ0−4nξ0
0 e

k(3α0+ξ0)φ
3α0+ξ0−4nξ0 (7.38)

F (φ) = F0e
kφ

α = α0a β = −
(

3α0 + ξ0 − 4nξ0
k

)
φ γ = −4ξ0G ξ = ξ0t+ ξ1

ω =
k2

(3α0 + ξ0 − 4nξ0)2φ
k(3α0−ξ0)

3α0+ξ0−4nξ0
−2

V = V0F
3α0+ξ0

3α0+ξ0−4nξ0
0 φ

k(3α0+ξ0)
3α0+ξ0−4nξ0

F (φ) = F0φ
k. (7.39)
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The above hold as long as n 6= 1; otherwise we obtain the following:

α = 0 β =
3ξ0
k
φ ξ = ξ0t+ ξ1

F (φ) = − 1
3V 2

0
φk V (φ) = V0φ

−k3 ω(φ) = ω0φ
k
3−2 (7.40)

α = 0 β =
3ξ0
k
φ ξ = ξ0t+ ξ1

F (φ) =
1
k
ekφ V (φ) = V0e

−k3φ ω(φ) = ω0e
k
3φ, (7.41)

where, as before, ξ0,α0, β0, γ0, k,n are real constants. The n = 1 limit is topologically

trivial only when k = 1, where the contribution of the geometry in the corresponding

action turns into a topological surface term. For this reason, there is no interest in

investigating cosmological solutions occurring for k = n = 1 and, in what follows, we will

only focus on the n = 1/2 case, which represents the Gauss–Bonnet equivalent to GR in

the cosmological framework.

Now we derive cosmological solutions for the Noether symmetry (7.37). We will solve the

Euler-Lagrange equations (7.34) for n = 1/2 in order to compare the results with the

above curvature and torsion cases. For f(G) = G1/2, Noether’s solutions (7.39) can be

written as:

α =
`

6(z + k)a β = −` γ = −2`(z − k)G ξ =
`

2(z − k)t+ ξ1

ω(φ) =
1
`2
ekφ V (φ) = Ṽ0e

zφ F (φ) = F0e
kφ (7.42)

α =
`

6(z + k)a β = −`φ γ = −2`(z − k)G ξ =
`

2(z − k)t+ ξ1

ω(φ) =
1
`2
φk−2 V (φ) = Ṽ0φ

z F (φ) = F0φ
k, (7.43)
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where we have defined

` ≡ 3α0 − ξ0
k

V0F
1+ 2ξ0

k`
0 ≡ Ṽ0 z ≡ k

(
3α0 + ξ0
3α0 − ξ0

)
. (7.44)

Let us start by analyzing the action containing a power-law coupling, namely:

S =
∫ √
−g

[
F0
√
Gφk + 1

`2
φ̇2φk−2 + Ṽ0φ

z
]
d4x, (7.45)

corresponding to the solution of Eq. (7.39). After solving the system (7.34), we obtain a

de Sitter-like solution which fixes the values of k and z to k = z =

√
6

2`2F0
. It reads as:

a(t) = a0e
−
√
−6Ṽ0

2`F0
t , φ(t) = φ0e

`
√
−Ṽ0t , G(t) = 54Ṽ 2

0
`4F 4

0
. (7.46)

This means that, by merging the result provided by the Euler-Lagrange equations with

those coming from the Noether approach, the only generator associated to this case is:

X =
1√

6`F0
a∂a − `φ∂φ, (7.47)

which describes an internal gauge symmetry. Let us now analyze the second solution with

exponential coupling, potential and kinetic term; the corresponding action takes the form:

S =
∫ √
−g

[
F0
√
Gekφ + 1

`2
φ̇2ekφ + Ṽ0e

zφ
]
d4x. (7.48)

By replacing Eq. (7.42) into the equations of motion (7.34), it turns out that these latter

can be analytically solved by imposing the constraint k = z, so that the scale factor and

the scalar field behave like

a(t) = a0 exp
{
k`

3

√
Ṽ0(1 +

√
2) t

}
, φ(t) = −`

√
Ṽ0t ,

G(t) = 8k4`4

27 Ṽ 2
0 (1 +

√
2)4 , k =

3
`2

√√√√ 1
F0
√

21− 12
√

2
. (7.49)
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As final remark, it is worth noticing that the non-minimal couplings with the invariants

R, T , and G all admit de Sitter solutions which can be easily compared each-other. It is

important to point out that the Gauss–Bonnet topological invariant can be defined also

in the case of teleparallel gravity [74, 168] so that the above representations of gravity can

be made totally equivalent also at this level. This is due to the fact that in a cosmological

context, the explicit expression of the Gauss–Bonnet term turns out to be the same as

that of the teleparallel equivalent.

7.4 Equivalence of Hamiltonian Dynamics

We want to show now that for internal symmetries, namely for ξ(t) = 0, the Noether

approach provides transformation laws allowing to introduce cyclic variables into the

point-like cosmological Lagrangian. In order to get internal symmetries, we have to set

the infinitesimal generator related to the time variation equal to zero. In the case of Ricci

scalar coupled to the scalar field, the only solution containing symmetries which, after

setting ξ(t) = 0, does not lead to trivial results, is that written in Eq. (7.10). With regards

to the teleparallel equivalent, the only compatible solutions are listed in (7.22). For the

Gauss–Bonnet term, both solutions can be equivalently considered. It is worth noticing

that the generator in Eq. (7.10), the first in Eq. (7.22) and that in Eq. (7.43), under

appropriate conditions, are equivalent. For this reason, only the Hamiltonian dynamics

provided by the following generators will be investigated:

R :→


X = −2(s+ 1)

2s+ 3 β0a
s+1φ

2s2+4s
2s+3 ∂a + β0a

sφ
2s2+6s+3

2s+3 ∂φ

F (φ) =
(2s+ 3)2

48(s+ 1)(s+ 2)φ
2 V (φ) = V0φ

6(s+1)
2s+3 ,

(7.50)

T :→


X = − 2β0

2s+ 3a
s+1φ−

2s
2s+3∂a + β0a

sφ
3

2s+3∂φ

F (φ) =
(2s+ 3)2

48 φ2 V (φ) = V0φ
6

2s+3 ,
(7.51)

101



7. Metric, Affine and Topological Theories Non–Minimally Coupled to a Scalar Field

G :→


X =

k`

3 a∂a − `φ∂φ

F (φ) = F0φ
k V = V0φ

k ω(φ) =
1
`2
φk−2 .

(7.52)

In the last solution, to obtain the condition ξ = 0, we set k = z, ξ1 = 0. With the aim to

compare the three solutions, we set the coefficient of the kinetic term in the Gauss–Bonnet

case (7.52) to be constant, as naturally provided by the Noether approach in the other

two cases (7.50) and (7.51). Therefore, by setting s = 0 and k = 2, (7.50), (7.51) and

(7.52) become

R :→


X = −2

3β0a∂a + β0φ∂φ

F (φ) =
3
32φ

2 V (φ) = V0φ
2,

(7.53)

T :→


X = −2β0

3 a∂a + β0φ∂φ

F (φ) =
3
16φ

2 V (φ) = V0φ
2,

(7.54)

G :→


X =

2`
3 a∂a − `φ∂φ

F (φ) = F0φ
2 V = V0φ

2.
(7.55)

The above suggest that the symmetries fix the equivalence among the three representations

of gravity when a scalar field is coupled with R, T , and
√
G, respectively.

To finalize the approach, let us firstly consider the generator (7.50). Thanks to the

system (B.26) in App. B, we can perform the change of variables induced by the Noether

symmetry which allows to introduce a cyclic variable into the Lagrangian. The system

(B.26) takes the form:


X z = 2β0

3 a∂az − β0φ∂φz = 1

Xu =
2
3a∂au− φ∂φu = 0,

(7.56)
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where z represents the cyclic variable and the minisuperspace of configurations is trans-

formed from S = {a,φ} to S ′ = {z,u}. A possible solution of the above system is


z = − 1

β0
lnφ

u = a
3
2φ

→


φ = e−β0z

a = u
2
3 e

2β0
3 z.

(7.57)

Replacing the new variables u, z into the Lagrangian (7.6), we get

LR = −V0u
2 +

1
2`

2u2ż2 − 1
4`uu̇ż +

1
4 u̇

2, (7.58)

where we set ` ≡ β0 in order to conform the notation to the other examples. Clearly this

form of LR is cyclic with respect to z. After finding the time-derivatives of the variables

as functions of the conjugate momenta, we can easily get the Hamiltonian:

HR = π2
u +

4
7`2

π2
z

u2 + V0u
2. (7.59)

Classical trajectories (7.12) can be recovered by means of the Hamilton–Jacobi equations

after going back to the old variables (7.57). It is worth noticing that, in order to provide a

comparison among the three equivalent cases, the Hamiltonian dynamics has been studied

for the solution (7.50) only; however, the change of variables coming from the Noether

approach can be also found for the other solutions of Noether system.

The next case is the torsion non-minimally coupled to the scalar field, whose Noether’s

solution is provided by Eq. (7.51) with s = 0. With this assumption, the system providing

the suitable change of variables is:



−2β0
3 a∂az + β0φ∂φz = 1

−2
3a∂au+ φ∂φu = 0 ,

(7.60)
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and a possible solution is the same as before, namely


z = − 1

β0
lnφ

u = a
3
2φ

→


φ = e−β0z

a = u
2
3 e

2β0
3 z.

(7.61)

Setting β0 ≡ `, the new Lagrangian reads

LT = −1
8
u̇2

u
+

1
2`u̇ż +

1
2`

2uż2 − V0u . (7.62)

Also here, z is the cyclic variable which permits to write the Hamiltonian as

HT =
π2
z

2w + 2πzπu +
3
16uπ

2
u + V0w, (7.63)

where πz, πu are the conjugate momenta.

Finally, in the Gauss–Bonnet equivalent case, we consider the symmetry generator in Eq.

(7.43) to find out Hamiltonian dynamics when the geometry is coupled to the scalar field

through the function F (G) =
√
G. For k = 2, where we have a constant kinetic term, the

Lagrangian can be written as:

L = −V0a
3φ2 +

1
2F0a

3√Gφ2 + 2F0φ
2ȧ3Ġ)G−

3
2 − 8F0φȧ

3φ̇G−
1
2 +

1
`2
a3φ̇2. (7.64)

The condition (B.26) permits to change the minisuperspace variables from S = {a,φ,G}

to S ′ = {z,u,G} and gives rise to the same system of differential equations as Eq. (7.56)

and Eq. (7.60), i.e 
X z = 2`

3 a∂az − `∂φz = 1

Xu =
2
3a∂au− ∂φu = 0,

(7.65)
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with z being the cyclic variable. One possible solution is


z = −1

`
lnφ

u = a
3
2φ

→


φ = e−`z

a = u
2
3 e

2`
3 z.

(7.66)

Replacing the new variables u, z into the Lagrangian (7.64), we get

LG =
G− 3

2

54u

[
27F0G2u3 − 54G

3
2u3(V0 − `2ż2) + 32F0Ġ(`uż + u̇)3 + 128F0`Gż(`uż + u̇)3

]
(7.67)

where, as expected, z is cyclic. By a straightforward Legendre transformation, we find

the Hamiltonian

HG =
1

4u2

[
16G2π2

G + 8uGπGπu − 2F0
√
Gu4 + u2π2

u

+4V0u
4 + 3 · 2

2
3u

G 3
2uπG
F0`3


1
3

(πz + `πu)
]
. (7.68)

As final remark, we can state that the three scalar–tensor models analyzed in this chapter

are dynamically equivalent, both at the level of equations of motion and of Hamiltonian

dynamics. This means that R, T and G selected by Noether’s theorem, leads to the same

field equations solutions when they are non–minimally coupled to a dynamical scalar field.
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In this part of the thesis, we discussed modifications of the Hilbert–Einstein action in-

cluding the Gauss–Bonnet topological surface term. First we started by f(G) cosmology,

using Noether symmetry approach to find out suitable functions leading to exact cosmo-

logical solutions. The existence of symmetries selects the power-law form f(G) = f0Gk

and, in 4-dimensions, interesting dynamics can be obtained even in presence of matter

fields. We pointed out that GR can be recovered from the Gauss–Bonnet invariant by

considering the square root of G into the action. This is due to the definition of G,

namely G = R2 − 4RµνRµν +RµνpσRµνpσ, which in a spatially flat FLRW cosmology is

comparable with R2 only, under some limits. From this point of view, GR can be seen

as a particular case of f(G) theory, without imposing to recover the scalar curvature as

a requirement. Moreover, f(G) function can also mimic the role of Dark Energy, since

yields exponential and power-law cosmological solutions also in presence of standard mat-

ter. The former can be recovered only in five dimensions or more, while the latter can

be found even in four dimensions. However, In four dimensions, de Sitter solutions are

possible only adding an extra term Lm ∼ e−3w with w = −1. Nonetheless, when the sum

f(G) = f0Gn + f1Gk is considered, exponential scale factors naturally arise as solutions

of the corresponding field equations. Notice that in this latter case, by setting k = 1/2,

the theory is dynamically equivalent to f(R,G) = R+ f0Gn gravity.

Quantum cosmological models was analyzed for the minisuperspace related to the vari-

ables a and G. Also in this case, symmetries have a key role for the interpretation of the

wave function of the Universe, since allow to find out oscillatory behaviors and then the
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possibility to apply the Hartle criterion, which states that oscillations mean correlations

between variables. This implies the possibility to achieve classical trajectories, that is

observables universes.

To address evidences provided by experimental observations in the very early and late

time, we also studied the energy conditions for f(G) and R+ f(G) gravity, with f(G) se-

lected by Noether’s approach. The requirement of energy conditions validity can be useful

in extended gravity cosmology in order to check whether the extra geometric contributions

can play the role of Dark Energy, but a good choice of cosmographic parameters j,s,q is

very worth. We showed that when a function of G is considered, the energy conditions

select a strict validity range of k. Nonetheless, we verified that cosmological slow–roll

inflation occurs for several values of k. When the scalar curvature is included in the

action, energy conditions suggest that R+ f0Gk cosmology can describe an accelerated

expansion for some values of k. In this latter case, also the value of the coupling constant

f0 must be taken into account. It turns out that when k = 1/2, all the energy condi-

tions are violated and power-law inflation occurs for a coupling constant f0 approaching

the values f0 ∼ ±
√

3/2. However, studying the energy conditions in modified theories

of gravity is useful to completely discard many theories and to show that the validity

of the energy conditions is not as trivial as in GR. In the late-time, modified theories

of gravity can explain the anomalous acceleration of the Universe as a curvature effect,

which can be intended as a fluid with negative pressure, playing the role of Dark Energy.

For this reason, the energy conditions violation in modified theories of gravity does not

have to be intended in the same way as GR. While in GR the ordinary matter is the

only component in the RHS of the field equations, modified theories of gravity exhibit

effective energy density and pressure of the gravitational field. As the ordinary matter

must satisfy all the energy conditions identically, some of them can be violated by the

effective energy-momentum tensor of the gravitational field.

f(G) gravity was also investigated in a spherically symmetric higher-dimensional back-

ground, where Noether symmetry approach selects the same shape of the function pro-
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vided by the cosmological case. With this choice, analytic static and spherically symmetric

solutions can be found, as well as the corresponding horizons and physical singularities.

Subsequently, the application of non–local operators of the form�−1 to the Gauss–Bonnet

invariant was considered, pointing out the differences between f(�−1G) and R+ f(�−1G)

gravity. The non-local functions was thus selected by Noether’s approach, which once

again allows to simplify the dynamics. Power–law and exponential scale factors occur as

solutions of the field equations when the former action is considered. In the latter case, in-

stead, no solution can be analytically found. This confirm that the additive contribution of

the Ricci scalar uselessly complicates the dynamics. In this perspective, considering gravi-

tational actions involving the topological invariant G seems extremely useful to cure and fix

problems that arise from taking into account other curvature invariants. Most of the cos-

mological solutions found are in agreement with the statement by Deser and Woodard [61]

that non-local cosmology can reproduce Dark Energy behavior at IR scales. Among the

classes of considered models, the action S =
∫ √
−gf [G,�−1h(G)]d4x presents an inter-

esting phenomenology because generalizes the analogue S =
∫ √
−gf [R,�−1h(R)]d4x

and admits also the possibility to recover GR, corrected with non-local terms.

Finally, we analyzed non-minimal coupling between a scalar field and gravity, taking

into account different geometric invariants, namely curvature, torsion, and Gauss–Bonnet

scalars respectively. In all cases, the starting action contains three functions of the scalar

field, namely the coupling, the kinetic term and the potential. We showed that, by the

Noether symmetry approach, it is possible to fix the form of the above functions and ex-

actly solve the dynamics. Furthermore, we demonstrated that if the symmetries coincide,

cosmologies coming from curvature, torsion and Gauss–Bonnet gravity are equivalent. In

particular, this statement holds as soon as exponential and power–law expansions of the

scale factor of the Universe are derived as exact solutions. Interestingly, GR can be re-

covered in all representations as soon as R = −T +B and f(G) =
√
G. According to this

result, different theories showing the same symmetries are dynamically equivalent, also if

coming from different conceptual foundations.
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As a final remark, considering extended Gauss–Bonnet gravity can result useful from

several points of view, in particular, for avoiding ghost modes [55] and other pathologies

present in GR and in other modified gravity theories. Beside this fact, it seems a natural

approach towards the description of quantum fields in curved spaces and, finally, towards

quantum gravity.
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9
Chern–Simons Theory: An Overview

A fundamental step in the development of a quantum theory for the gravitational inter-

action is to merge the formalism of the standard model with the geometric description

of the gravitational field. To this purpose, gravity must be treated as a gauge theory.

In the covariant formalism, GR can be considered as a diffeomorphism invariant gauge

theory, but such an invariance can be recast as a Lorentz invariance in the locally flat

tangent space-time. We showed that a similar procedure permits to describe TEGR as

a gauge invariant theory with respect to the local translation group. Unfortunately, nei-

ther translations nor Lorentz invariance are internal symmetry, and this does not allow

to address gravity in a Yang-Mills scheme. Moreover, a theory which well satisfies these

requirements at the high energy, must also fit the large–scales results provided by GR in

the low energy limit. In this chapter we overview the main features of gauge theories of

gravity, finding the corresponding gauge Lagrangians in the flat space-time and showing

that no unitary renormalizable Yang–Mills theories of gravity occur in four dimensions.

Let us begin by considering a local Lorentz transformation of the form Λ = e
i
2ω

abJab ,

with ωab being the one-form Lorentz connection. In this case, the covariant derivative of

a generic n-form P provides the n+ 1 form

DP = dP − i

2ω
abJabP , (9.1)

so that

D ∧DP = − i2R
abJabP with Rab = dωab + ωac ∧ ωcb . (9.2)
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Rab is called Two-Form Curvature and the second equation of (9.2) is the so called first

Cartan structure equation. Similarly, thanks to the vielbein1 postulation, the Contorsion

Tensor can be defined as:

D[µe
a
ν] = ∂[µe

a
ν] + ωa[µν] = Ka

µν . (9.3)

Notice that the above defined Ka
µν is a generalization of the contorsion Tensor (2.20),

including the spin connection. The definition of the Two Form Torsion by means of the

veielbein postulation, provides the second Cartan structure Equation:

T a = Dea = dea + ωab ∧ eb . (9.4)

This formalism manifestly shows that as torsion is the gauge field associated to local

translations, curvature is the gauge field related to Lorentz transformations. In those ref-

erence frames with vanishing spin connection, the two-form curvature identically vanishes

and the space-time structure is described by TEGR. On the other hand, by imposing

Tα = 0 a torsionless theory ruled by curvature arises.

In Chap. 2 we stressed the equivalence among GR, TEGR and STEGR, showing that the

corresponding Lagrangians are formally equivalent among each other in the description

of gravity. More precisely they only differ for a boundary term, which does not change

the equations of motion. However, as Rab and T a are the gauge fields linked to Lorentz

transformation and translation, respectively, no gauge fields associated to STEGR can be

defined.

Therefore, in the development of a gauge theory of gravity, the contribution of non-

metricity can be neglected. In the flat tangent space-time, the action must be constructed

by means of curvature, torsion, Levi-Civita Tensor and Minkowski metric, which are all

invariants with respect to SO(1,D− 1). The most general torsionless action containing

all these terms and leading to second order field equations is the so called Lovelock Action,
1Generalization of tetrad fields in higher dimensions.
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which reads as [169, 170, 171]:

S = κ
∫
M

D
2∑
i=0

αiL
(D,i), (9.5)

with κ dimensionless constant and where L (D,i) is the Lovelock Lagrangian, defined as:

L (D,i) = εa1,a2...aDR
a1a2 ∧Ra3a4 ∧ ...∧Ra2i−1a2i ∧ ea2i+1 ∧ ea2i+2 ∧ ...∧ eaD . (9.6)

In four dimensions, the Lovelock action turns out to be:

SL = κ
∫
M

2∑
i=0

αiL
(4,i) = (9.7)

= κ
∫
εabcd

(
α0e

a ∧ eb ∧ ec ∧ ed + α1R
ab ∧ ec ∧ ed + α2R

ab ∧Rcd
)

.

The action can be equivalently expressed in a covariant form as

S = κ
∫ √
−g (α0 + α1R+ α2G) d4x, (9.8)

namely the Hilbert–Einstein action with cosmological constant plus the Gauss–Bonnet

term. Being G a topological surface term, in four dimensions the Lovelock Lagrangian

yields the same field equations as GR. Starting from Eq. (9.6), the free parameters αi
can be suitably set in order to select Lagrangians which are invariant under some gauge

transformation. Given the general form of Eq. (9.6), several combinations which yield

gauge invariant actions can be found. Nevertheless, this procedure lacks a formal structure

and several combinations are missed when proceeding by trial and error.

A straightforward way to overcome this issue is to construct gauge Langrangians by topo-

logical invariants. Thus, let E be a n−form characteristic class which, by construction, is

invariant under local gauge transformations, i.e. δE = 0. If there exists a D− 1 form L

such that dL = E, then L is invariant under gauge transformations up to a boundary

term. The proof of this statement is straightforward: being E invariant under gauge
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transformations, the relation

δE = δ(dL ) = d(δL ) = 0, (9.9)

holds. The above suggests that the quantity δL can be written as the exterior derivative

of a D− 2 form B, namely

d(δL ) = 0 → δL = dB. (9.10)

This finally shows that L is invariant up to a total derivative. As L can be used as a

Lagrangian of a topological field theory, E represents a topological surface term which can

be found from the condition E = dL. Reversing the argument, gauge Lagrangian can be

constructed starting from topological surface terms, whose integration over the space-time

provides non-trivial topological invariants. Consequently, the Lagrangian will be invariant

up to a boundary term, namely quasi-gauge invariant. In general, D−dimensional topo-

logical surface terms permit to construct D − 1 dimensional Lagrangians; however, the

lack of non-trivial topological surface terms in odd dimensions, yields the impossibility of

constructing non-trivial gauge Lagrangians in even dimensions. Such odd-dimensional La-

grangians are called Chern-Simons Lagrangians or Chern-Simons forms. Chern–Simons

theories was firstly introduced by S.S. Chern and J.H. Simons in 1974 [172], with the aim

to develop a topological field theory capable of describing all fundamental interactions

as Yang–Mills theories. Basic foundations of Chern–Simons theory can be found e.g. in

Refs. [170, 173, 174, 175, 176, 177, 178] and applications in Refs. [171, 179, 180, 181, 182].

For example, the Chern-Simons 3-form coming from the Pontryagin density RabRab is:

CSP(3) = ωab dω
b
a +

2
3ω

a
bω

b
cω

c
a . (9.11)
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Another example is given by the four-dimensional Euler density

E4 = εabc

(
Rab ∧ T c + 1

3l2 e
a ∧ eb ∧ T c

)
,

which turns out to be the exterior derivative of the Chern–Simons Lagrangian invariant

with respect to the AdS group:

L AdS
3 = εabc

(
Rab ∧ ec + 1

3l2 e
a ∧ eb ∧ ec

)
, (9.12)

where T c is the torsion defined in Eq. (9.4). Note that the presence of torsion in the Euler

density does not contradict Lovelock’s hypothesis of torsionless Lagrangians. Torsion dis-

appears after performing the exterior derivative, so that the corresponding Chern–Simons

form turns out to respect Lovelock assumptions. In general, the 2D − 1-dimensional

AdS-invariant Lagrangian reads:

L AdS
2D−1 =

D−1∑
i=0

α̃iL
(2D−1,i) , α̃i =

(±1)i+1`2i−D

D− 2i

(
D− 1
i

)
, (9.13)

and the exterior derivative yields the 2D-dimensional Euler density E2D. In Chaps. 10

and 11 we mainly focus on the five-dimensional Lovelock Lagrangian, with particular

interest in those coupling constants yielding the invariance under the local AdS group.

The five-dimensional Chern–Simons form is

L AdS
5 =

1
`
εabcde

(
Rab ∧Rcd ∧ ee + 2

3`2R
ab ∧ ec ∧ ed ∧ ee + 1

5`4 e
a ∧ eb ∧ ec ∧ ed ∧ ee

)
,

(9.14)

whose exterior derivative provides the following 6-D Euler density [183]:

E6 = 2RabcdRcdefRefab + 8RabcdRcebfRdfae + 24RabcdRcdbeRea + 3RRabcdRabcd

+24RabcdRacRbd + 16RabRbcRca − 12RRabRab +R3 . (9.15)

Notice that the Lagrangian in Eq. (9.14), is contained in the general five-dimensional
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Lovelock Lagrangian

L L
5 = εabcde

(
α0 e

a ∧ eb ∧ ec ∧ ed ∧ ee + α1R
ab ∧ ec ∧ ed ∧ ee + α2R

ab ∧Rcd ∧ ee
)

,

(9.16)

with α0, α1, α2 defined according to the relation (9.13). It is worth remarking that from

Eq. (9.6), it is possible to consider several other kind of gauge Lagrangians, belonging to

different gauge groups. Most of them are mainly studied due to the results provided in

supersymmetry and String Theory [170, 176, 184, 185, 186].

Finally, the four-dimensional Pontryagin density P4 = dAdA, yields the U(1) invariant

three-dimensional Lagrangian

L = AdA, (9.17)

where A is the one-form connection. Similarly, from the SU(4) Pontryagin density it is

possible to construct the SU(N) invariant 3D Lagrangian, namely

L = Tr
(
A∧ dA+

2
3A∧A∧A

)
, (9.18)

which is of particular interest in quantum gravity.

In the next chapters, we start from Eq. (9.14) and Eq. (9.16) and find out exact solutions of

the field equations in a cosmological and spherically symmetric space-time. Subsequently,

the action (9.17) will be used in Chap. 12 with the aim to construct a three-dimensional

massive theory of the electromagnetic interaction. Finally, in Chap. 13, we consider Eq.

(9.18) in order to apply the Chern–Simons formalism to biological systems.
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In more than four dimensions, the FLRW metric can be extended by including diagonal

time-dependent terms. These terms account for new scales factors which, in general, are

different than that related to the standard spatial dimensions. We start by assuming that

the five-dimensional space-time is not isotropic, extending the FLRW metric to:

ds2 = dx2
0 − a2(t)

[
dx2

1 + dx2
2 + dx2

3
]
− b2(t)dx2

4 , (10.1)

where x4 is the fifth dimension, labeled by the scale factor b(t). In order find a solution

for the field equations in the extended FLRW interval, we use the first Cartan structure

equation to firstly get the two-form curvature. Considering the line element in Eq. (10.1),

the set of basis can be chosen as:

e0 = dx0 , e1 = −a(t)dx1 , e2 = −a(t)dx2 , e3 = −a(t)dx3 , e4 = −b(t)dx4 ,

(10.2)

with a set of tetrad fields of the form

eaµ = diag (1,−a(t),−a(t),−a(t),−b(t)) . (10.3)
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The exterior derivatives of the set of independent vectors are:

de0 = 0,

de1 = ∂0(e
1) ∧ dx0 = −ȧ(t)dx1 ∧ dx0 =

ȧ

a
e1 ∧ e0,

de2 = ∂0(e
2) ∧ dx0 = −ȧ(t)dx2 ∧ dx0 =

ȧ

a
e2 ∧ e0 ,

de3 = ∂0(e
3) ∧ dx0 = −ȧ(t)dx3 ∧ dx0 =

ȧ

a
e3 ∧ e0 ,

de4 = ∂0(e
4) ∧ dx0 = −ḃ(t)dx4 ∧ dx0 =

ḃ

b
e4 ∧ e0 . (10.4)

Assuming the absence of torsion and of extra bosonic fields, the second Cartan structure

equation (9.4) permits to find the Lorentz connection

ω1
0 =

ȧ

a
e1 , ω2

0 =
ȧ

a
e2 , ω3

0 =
ȧ

a
e3 , ω4

0 =
ḃ

b
e4 , ω0

i = ωi0 , (10.5)

and its exterior derivatives

dω1
0 = e1d

(
ȧ

a

)
+
ȧ

a
de1 =

[(
ä

a
− ȧ2

a2

)
+
ȧ2

a2

]
e1 ∧ e0 =

ä

a
e1 ∧ e0 ,

dω2
0 =

ä

a
e2 ∧ e0 , dω3

0 =
ä

a
e3 ∧ e0 , dω4

0 =
b̈

b
e4 ∧ e0 . (10.6)
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Using Eq. (9.4), we finally get curvature two-form Rab:

Rab =



0 ä
ae

0 ∧ e1 ä
ae

0 ∧ e2 ä
ae

0 ∧ e3 b̈
be

0 ∧ e4

− äae
0 ∧ e1 0 ȧ2

a2 e
1 ∧ e2 ȧ2

a2 e
1 ∧ e3 ȧḃ

abe
1 ∧ e4

− äae
0 ∧ e2 − ȧ

2

a2 e
1 ∧ e2 0 ȧ2

a2 e
2 ∧ e3 ȧḃ

abe
2 ∧ e4

− äae
0 ∧ e3 − ȧ

2

a2 e
1 ∧ e3 − ȧ

2

a2 e
2 ∧ e3 0 ȧḃ

abe
3 ∧ e4

− b̈be
0 ∧ e4 − ȧḃabe

1 ∧ e4 − ȧḃabe
2 ∧ e4 − ȧḃabe

3 ∧ e4 0



. (10.7)

Let us now focus on the five-dimensional limit of the Lovelock action (9.5), namely

S = κ
∫
εabcde

(
α0e

a ∧ eb ∧ ec ∧ ed ∧ ee + α1R
ab ∧ ec ∧ ed ∧ ee + α2R

ab ∧Rcd ∧ ee
)

.

(10.8)

By means of the two-form curvature components in Eq. (10.7), we obtain:

εabcdeR
ab ∧Rcd ∧ ee =

[
24 ȧ

2ä

a3 + 48 äȧ
a2
ḃ

b
+ 24 ȧ

2

a2
b̈

b
+ 24 ȧ

3

a3
ḃ

b

]
e0 ∧ e1 ∧ e2 ∧ e3 ∧ e4

≡ [G(5)] e0 ∧ e1 ∧ e2 ∧ e3 ∧ e4 (10.9)

and

εabcdeR
ab ∧ ec ∧ ed ∧ ee = −

[
6
(
ä

a
+
ȧ2

a2

)
+ 2 b̈

b
+ 6 ȧ

a

ḃ

b

]
e0 ∧ e1 ∧ e2 ∧ e3 ∧ e4

≡ [R(5)] e0 ∧ e1 ∧ e2 ∧ e3 ∧ e4 . (10.10)

While Eq. (10.9) is the five-dimensional extension of the Gauss–Bonnet scalar, Eq. (10.10)

represents the five-dimensional expression of the Ricci scalar. Note that the former is not

a topological term in five dimensions; however, once considering a four-dimensional space-
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time, it reduces to

εabcdR
ab ∧Rcd = 24 äȧ

2

a3 , (10.11)

which is nothing but G(5) in the limit b = 0. Replacing Eqs. (10.9) and (10.10) in

Eq. (10.8), the action can be written as:

S = κ
∫ {

α2

[
24 ȧ

2ä

a3 + 48 äȧ
a2
ḃ

b
+ 24 ȧ

2

a2
b̈

b
+ 24 ȧ

3

a3
ḃ

b

]

−α1

[
6
(
ä

a
+
ȧ2

a2

)
+ 2 b̈

b
+ 6 ȧ

a

ḃ

b

]
+ α0

}
e0 ∧ e1 ∧ e2 ∧ e3 ∧ e4 . (10.12)

Equivalently, by means of the relation occurring between the wedge product of vielbein

fields and the fifth-dimensional volume, the above action takes the form:

S = κ
∫
|e|

{
α2

[
24 ȧ

2ä

a3 + 48 äȧ
a2
ḃ

b
+ 24 ȧ

2

a2
b̈

b
+ 24 ȧ

3

a3
ḃ

b

]

−α1

[
6
(
ä

a
+
ȧ2

a2

)
+ 2 b̈

b
+ 6 ȧ

a

ḃ

b

]
+ α0

}
d5x

=
∫
a3b

{
α0 + α1R(5) + α2G(5)

}
d5x . (10.13)

After integrating by parts the terms containing second derivatives, the point-like cosmo-

logical Lagrangian turns out to be:

L = α0a
3b+ 6α1

(
abȧ2 + a2ȧḃ

)
− 8α2ȧ

3ḃ . (10.14)

The Euler–Lagrange equations and the energy condition, are given by

d

dt

∂L
∂ȧ

=
∂L
∂a
→ 4α1a(ȧḃ+ bä)− a2(α0b− 2α1b̈) + 2ȧ(α1bȧ− 8α2ḃä− 4α2ȧb̈) = 0 ,

d

dt

∂L
∂ḃ

=
∂L
∂b
→ α0a

3 − 6α1aȧ
2 − 6α1a

2ä+ 24α2ȧ
2ä = 0 ,

ȧ
∂L
∂ȧ

+ ḃ
∂L
∂ḃ
−L = 0→ α0a

3b− 6α1abȧ
2 − 6α1a

2ȧḃ+ 24α2ȧ
3ḃ = 0 , (10.15)
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respectively and yield the following exponential scale factors:

a(t) = a0 exp

±
√√√√ α0

±2
√

9α2
1 − 6α0α2 + 6α1

t

 ,

b(t) = b0 exp

±
√√√√ α0

±2
√

9α2
1 − 6α0α2 + 6α1

t

 , (10.16)

with a0 and b0 being arbitrary constants. Notice that the only exponential solution

admitted by the equations of motion, imposes the relation a(t) ∼ b(t). The limit α0 = 0,

that is the sum between the scalar curvature and the Gauss–Bonnet term, provides two

solutions:

a(t) ∼ b(t) ∼ Const. (10.17)

a(t) = a0e
±
√

α1
2α2

t
∼ b(t). (10.18)

The former can be obtained as the limit of Eq. (10.16), after taking the positive sign

inside the square root. On the contrary, the latter cannot be recovered and must be

computed by assuming a vanishing cosmological constant from the beginning. This is due

to the fact that the solution with negative sign in Eq. (10.16) for α0 = 0 turns out to

be indeterminate. Five-dimensional GR can be obtained by setting α2 = 0 and the field

equations provide

a(t) = a0e
±
√

α0
12α1

t
∼ b(t). (10.19)

The similarity between Eqs. (10.18) and (10.19) suggests that in the former case the

Gauss–Bonnet scalar plays the role of an effective cosmological constant. When the

contribution of the scalar curvature vanishes, namely when α1 = 0, the Euler–Lagrange

equations yield

a(t) = a0e
±
(

α0
−24α2

)1/4
t ∼ b(t). (10.20)

According to Eqs. (9.13) and (9.14), to get the Chern–Simons five-dimensional Lagrangian
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we must set

α0 =
1

5l4 , α1 =
2

3l2 , α2 = 1 , (10.21)

so that the scale factors (10.16) become:

a(t) = a0 exp

±1
l

√√√√√1
6

1±
√

7
10

 t

 , b(t) = b0 exp

±1
l

√√√√√1
6

1±
√

7
10

 t

 .

(10.22)

Note that the three free parameters occurring in the definition of the general Lovelock

Lagrangian, are not constrained by the field equations solution and can be arbitrarily

chosen. Thus both an exponential expansion and a bouncing evolution are admitted,

depending on the values of the constants αi. On the other hand, imposing the relations

(10.21), the cosmological solution (10.22) suggests that only an accelerated expansion (or

contraction) is allowed by the Chern–Simons cosmology.

10.1 Generalization to d+1 Dimensions

Let us consider the extension of Lovelock gravity to d+ 1 dimensions. In light of the result

obtained in the previous section, we set b(t) = a(t) from the beginning, and we restore

the spatial curvature k. The assumption of a unique scale factor a(t) is needed to obtain

suitable field equations, capable of providing analytic solutions in higher dimensions. The

line element therefore takes the form

ds2 = dt2 − a(t)2

1− kr2dr
2 − r2dΩ2

d−1, (10.23)

where Ωd−1 is the d− 1 sphere, previously defined in Eq. (5.1) as dΩ2
d−1 =

∑d−2
j=1 dθ

2
j +

sin2 θjdφ2. We only consider the first three terms in the Lovelock d + 1 dimensional

Lagrangian, neglecting all those terms arising in more than five dimensions. This means

that the coupling constants αi, with i ≥ 3, will be set to zero. Consequently, the only non-

vanishing terms in the action (9.5) are the d+ 1 dimensional scalar curvature R(d+1) and
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the Gauss–Bonnet scalar G(d+1). The action, therefore, is comprehended in the general

Lovelock action (9.5), with a Lagrangian which generalizes Lagrangian (10.14). Using the

d+ 1 dimensional expression of the Ricci scalar and of the Gauss–Bonnet term, namely

R(d+1) = −d
[
2 ä
a
+ (d− 1)

(
ȧ2 + k

a2

)]
, (10.24)

G(d+1) = d(d− 1)(d− 2)
[
(d− 3)

(
ȧ4

a4 + 2k ȧ
2

a4 +
k2

a4

)
+

4
3a3

d

dt

(
ȧ3
)
+ 4k ä

a3

]
,

(10.25)

and considering a starting action of the form

S = κ
∫
|e|
[
α0 + α1R(d+1) + α2G(d+1)

]
dd+1x , (10.26)

the Lagrangian can be written as:

L =
rd−2ad−4

3
√

1− kr2

{
3a2[a2α0 + α1d(d− 1)(ȧ2 − k)]

−α2d(d− 1)(d− 2)(d− 3)(ȧ4 + 6kȧ2 − 3k2)
}

. (10.27)

The Gauss–Bonnet term, as confirmed by the above Lagrangian, does not contribute to

the equations of motion in less than 3 + 1 dimensions, where only the scalar curvature

plays a role in the dynamics. Let us first consider the case k 6= 0, where no solutions

occur if all the coupling constants are simultaneously non-zero. Setting α2 = 0, the theory

reduces to the higher-dimensional GR with cosmological constant, in a spatially non-flat

universe. The scale factor which solves the equations of motion, in this case turns out to

be

a(t) = ±

√√√√√√ α1k d(d− 1)

α0 − α0 coth2
[√

α0

(
c1 +

t√
α1(d−1)d

)] , (10.28)
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which holds as long as α0 6= 0. When setting α0 = 0 from the beginning, the only solution

is

a(t) =
√
−k t. (10.29)

Another analytical solution occurs for α1 = α0 = 0, where the Euler–Lagrange equations

and the energy condition yield the scale factor

a(t) =
√
−k t, (10.30)

which is exactly the same as (10.29). Finally, when α1 6= 0, α2 6= 0 and α0 = 0, the only

solution is

a(t) = ±
√
−α2k(d− 3)(d− 2)

α1
sinh

√α1

 t√
α2(d− 3)(d− 2)

+ c1

 . (10.31)

Comparing Eq. (10.31) with Eq. (10.28), we notice that the Gauss–Bonnet term can play

the role of an effective cosmological constant.

Let us now focus on a spatially flat FLRW space-time in higher dimensions. When k = 0,

the Lagrangian (10.27) reduces to:

L =
rd−2ad−4

3
{

3a2[a2α0 + α1d(d− 1)ȧ2]− α2d(d− 1)(d− 2)(d− 3)ȧ4
}

. (10.32)

The general solution of the related Euler–Lagrange equations can be analytically found

only for exponential scale factors of the form

a(t) = a0 exp

±
√√√√ 2α0

±
√
(d− 1)d [α2

1(d− 1)d− 4α0α2(d− 3)(d− 2)] + α1d(d− 1)
t

 .

(10.33)

Notice that in the five-dimensional limit, the scale factor reduces to (10.16), namely

a(5)(t) = a0 exp

±
√√√√ α0

±2
√

9α2
1 − 6α0α2 + 6α1

t

 . (10.34)
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Let us now separately analyze the subcases not covered by the solution (10.33), namely

those cases in which (at least) one of the constants αi vanishes. In the limit α2 = 0,

Lagrangian (10.32) turns into the high-dimensional Hilbert–Einstein Lagrangian with

cosmological constant, providing the well known Einstein–de Sitter solution

a(t) = a0e
±
√

α0
α1d(d−1) t , (10.35)

which is the spatially flat limit of Eq. (10.28).

The case α1 = 0 (analyzed in depth in Chap. 4) yields the following non-trivial solution:

a(t) = a0 exp

±
[
−α0
α2

(
1

d(d− 1)(d− 2)(d− 3)

)]1/4
t

 . (10.36)

Finally, by setting α0 = 0, a de Sitter-like scale factor of the form

a(t) = a0e
±
√

α1
α2(d−2)(d−3) t , (10.37)

solves the field equations. This subcase cannot be directly recovered from Eq. (10.33),

whose α0 = 0 limit provides an indeterminate scale factor. Also here, the values assumed

by the coupling constants can determine either an exponential expansion or an oscillating

solution. Moreover, Eq. (10.37) is the k = 0 limit of Eq. (10.31).

Notice that no solutions occur in vacuum when two coupling constants are simultaneously

null; therefore, those cases analyzed here are all the possible subcases that can be obtained

from Lagrangian (10.32). This can be also inferred from Eqs. (10.29) and (10.30), whose

k = 0 limits provide a(t) = 0.
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Chern–Simons Black Holes

We now study a spherically symmetric background in Lovelock gravity. As we did in the

previous chapter, the five-dimensional case is firstly analyzed. Subsequently, we generalize

the treatment to d+ 1 dimensions, where all the coupling constants αi, with i > 2, are

neglected. In this way, only the higher-dimensional generalization of the scalar curvature

and of the Gauss–Bonnet term are considered into the action. This ansatz allows to

solve the field equations analytically. For the same reasons mentioned in the previous

chapter, we pay main attention to the five-dimensional limit, which needs to be treated

separately. On the one hand, for particular combinations of the coupling constants, the

five-dimensional Lovelock Lagrangian reduces to the Chern–Simons Lagrangian, invariant

under the local AdS group. On the other hand, while in d+ 1 dimensions analytic solutions

can be found only under the assumption P (r) = Q(r)−1, in five dimensions exact solutions

occur without adopting any extra ansatz. Let us then consider the metric:

ds2 = P (r)2dt2 −Q(r)2dr2 − r2dθ2 − r2 sin2(θ)dφ2 − r2 sin2 θ sin2 φ dψ2 , (11.1)

where dθ2 + sin2(θ)dφ2 + sin2 θ sin2 φdψ2 ≡ dΩ3 is the three-sphere. By choosing the

following set of basis

e0 = P (r)dt , e1 = −Q(r)dr , e2 = −rdθ ,

e3 = −r sin(θ)dφ , e4 = −r sin(θ) sin(φ)dψ , (11.2)
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11. Chern–Simons Black Holes

the same computations as the previous chapter yield the expressions of the Gauss–Bonnet

term and of the Ricci scalar in the spherically symmetric background

G(5) = − 24P ′′(r)
r2P (r)Q(r)2 +

24P ′′(r)
r2P (r)Q(r)4 +

24P ′(r)Q′(r)
r2P (r)Q(r)3 −

72P ′(r)Q′(r)
r2P (r)Q(r)5

− 24P ′(r)
r3P (r)Q(r)2 +

24P ′(r)
r3P (r)Q(r)4 +

24Q′(r)
r3Q(r)3 −

24Q′(r)
r3Q(r)5 , (11.3)

R(5) =
2P ′′(r)

P (r)Q(r)2 −
2P ′(r)Q′(r)
P (r)Q(r)3 +

6P ′(r)
rP (r)Q(r)2 −

6Q′(r)
rQ(r)3 +

6
r2Q(r)2 −

6
r2 ,

(11.4)

where we set θ = φ = π/2. The Lovelock Lagrangian therefore can be written as:

L(5) = α0r
3P (r)Q(r)− α1

(
6r2P (r)Q′(r)

Q(r)2 + 6rP (r)Q(r)− 6rP (r)
Q(r)

)

+ α2

(
24P (r)Q′(r)

Q(r)2 − 24P (r)Q′(r)
Q(r)4

)
. (11.5)

Since the values of the coupling constants play a fundamental role in the treatment, in

the next subsection we analyze the contribution of each term separately, to finally provide

the spherically symmetric solution of the field equations for Chern–Simons and Lovelock

gravity.

5D Einstein Gravity
Let us start by setting α2 = 0, so that the Lagrangian reduces to the 4 + 1 dimensional

Hilbert–Einstein Lagrangian with cosmological constant α0, namely

L = α0r
3P (r)Q(r)− α1

(
6r2P (r)Q′(r)

Q(r)2 + 6rP (r)Q(r)− 6rP (r)
Q(r)

)
. (11.6)
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The Euler–Lagrange equations

d

dr

∂L
∂P ′(r)

=
∂L

∂P (r)
→ α0r

3Q(r) = 6rα1

(
rQ′(r)

Q(r)2 +Q(r)− 1
Q(r)

)
,

d

dr

∂L
∂Q′(r)

=
∂L

∂Q(r)
→ α0r

3P (r) = 6rα1

(
P (r)− P (r)

Q(r)2 −
rP ′(r)

Q(r)2

)
,

provide the solution

P (r)2 = 1 + c1
r2 −

α0
12α1

r2 , Q(r)2 =
1

1 + c1
r2 − α0

12α1
r2 , (11.7)

where c1 is an integration constant. The above solution is the five-dimensional extension

of an Einstein–de Sitter space-time [187]. Notice that P (r) vanishes when

r = rH ≡

√√√√2
√

3α1(3α1 + α0c1)

α0
+

6α1
α0

. (11.8)

Moreover, setting α0 = 0, the horizon turns out to be rH =
√
−c1 . This means that

the quantity −c1 can be intended as a mass term in five dimensions. Therefore, the

Bekenstein–Hawking entropy S, in the Einstein–de Sitter five-dimensional space-time, is

S =
8
3π

2r3
H ∼M

3
4 , (11.9)

which is exactly the same dependence exhibited by the entropy of a four-dimensional

conformal field theory (CFT) [188, 189], because of the AdS/CFT correspondence. The

same result is not provided by the five-dimensional Einstein gravity with α0 = 0, where

the entropy behaves like

S ∼M
3
2 . (11.10)

An accurate analysis is relied to Sec. 11.1, where the discussion is extended to d+ 1

dimensions.
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Pure Gauss–Bonnet gravity
Let us now consider the case α1 = 0, in which the Lagrangian is only made of the

Gauss–Bonnet term and the cosmological constant. The only terms which survive in the

Lagrangian after integrating the second derivatives are:

L = α0P (r)Q(r)r
3 + α2

(
24P (r)Q′(r)

Q(r)2 − 24P (r)Q′(r)
Q(r)4

)
(11.11)

and the Euler–Lagrange equations read

d

dr

∂L
∂P ′(r)

=
∂L

∂P (r)
→ 24α2

(
Q(r)2 − 1

)
Q′(r) = α0r

3Q(r)5 ,

d

dr

∂L
∂Q′(r)

=
∂L

∂Q(r)
→ 24α2

(
Q(r)2 − 1

)
P ′(r) = α0r

3P (r)Q(r)4 .
(11.12)

There are two classes of solutions coming from the above equations. The first arises by

imposing P (r) = 1/Q(r) between the metric components P (r) and Q(r). It reads:

P (r)2 = 1±
√

1 + c1 −
α0

24α2
r4 ,

Q(r) =
1

P (r)
,

(11.13)

and the horizon sits at

rH =
(24α2 c1

α0

)1/4
. (11.14)

As we can see from Eq. (11.13), by setting α0 = 0 only trivial solutions occur. This

means that, under the assumption P (r) = 1/Q(r), the only non-trivial contribution in

five dimensions is provided by the cosmological constant. Moreover, by using the horizon

(11.14), the entropy turns out to be

S =
8
3π

2
(24α2
α0

)3/4
M3/4 (11.15)

and the AdS/CFT correspondence is recovered.
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Another line element which solves Eqs. (11.12) in five dimensions, can be found without

imposing any relation between P (r) and Q(r). In this case, the solution is:

P 2(r) = P 2
0

√
48α2 (2c1 + 1)∓ 4

√
6
√
α2 (24α2 + 96α2c1 − α0r4)− α0r4 ,

(11.16)

Q2(r) =
2
(
12α2 ±

√
6
√
α2 (24α2 + 96α2c1 − α0r4)

)
α0r4 − 96α2c1

, (11.17)

where P0 is an integration constant. The horizon can be found by setting P (r) = 0.

Four mathematical solutions follow from this imposition, but the only one with physical

meaning is

rH = 2
(6α2 c1

α0

)1/4
. (11.18)

Notice that Q(rH) automatically diverges, though the ansatz P (r) = 1/Q(r) is not

imposed from the beginning. Also, after redefining the constant c1, this horizon turns out

to be the same as (11.14). This is expected since the solution in Eq. (11.13), coming from

the imposition P (r) = Q(r)−1, is a particular subcase of Eq. (11.16).

As an example, a more suitable form can be obtained by setting c1 = −1/4, where

Eqs. (11.16) and (11.17) reduce to:

P 2(r) = P 2
0

√
24α2 ∓ 4

√
6
√
−α2α0r4 − α0r4 , (11.19)

Q2(r) =
24α2 ± 2

√
6
√
−α2α0r4

α0r4 + 24α2
. (11.20)

In any case, the metric turns out to be trivially constant when the cosmological constant

α0 is not considered. Moreover, in the limit r →∞ the asymptotic flatness is not recov-

ered for P (r). However, as we will point out in Sec. 11.1, in higher dimensions the flatness

for large radius and the presence of the horizon can be obtained for some combinations

of the coupling constants.

Lovelock and Chern–Simons Gravity
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To conclude the research for exact solutions in the five-dimensional space-time, we find

Euler-Lagrange equations solutions in the most general case, where no coupling constants

are neglected in the action (11.5). The equations of motion are:

d

dr

∂L
∂P ′(r)

=
∂L

∂P (r)
→ Q(r)

(
α0r

3 − 6α1r
)
−

6
(
α1r2 − 4α2

)
Q′(r)

Q(r)2 +
6α1r

Q(r)

−24α2Q′(r)

Q(r)4 = 0 ,

d

dr

∂L
∂Q′(r)

=
∂L

∂Q(r)
→ 6P ′(r)

{
Q(r)2

[
−α1r

2 + 4α2
]
− 4α2

}
−rP (r)Q(r)2

[
Q(r)2

(
α0r

2 − 6α1
)
+ 6α1

]
= 0 . (11.21)

Here, the imposition P (r) = 1/Q(r) is not required to solve the equations of motion. As

a matter of fact, the general solution of the Euler–Lagrange equations is:

P (r)2 = P 2
0

√
α0r4 − 12α1r2 − 4c1

3
√
r4uw+ 2ux+

√
3
(
α0x+ r2w(3α1 − z)

)
−6α1 + α0r2 + 2z

y/2

×
[

6α1 − α0r2 + 2z
3
√
r4vw+ 2vx+

√
3 (r2w(z + 3α1) + α0x)

]s/2
, (11.22)

Q(r)2 =
−3α1r2 + 12α2 ±

√
3
√

8c1α2 − 2α0α2r4 + 3α2
1r

4 + 48α2
2

α0
2 r

4 − 6α1r2 − 2c1
, (11.23)

where all the new constants arising in P (r)2 are defined in App. E. By setting P (r) = 0
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five horizons occur, namely:

rH =

√√√√±2
√
c1α0 + 9α2

1
α0

+ 6α1
α0

,

rH =

±
√

3
√
−6u2wx+ 18α2

1uw
2x+ 2uw2xz2 − 12α1uw2xz + α2

0uwx
2

3uw− 9α2
1w

2 −w2z2 + 6α1w2z

− α0wxz

3uw− 9α2
1w

2 −w2z2 + 6α1w2z
+

3α0α1wx

3uw− 9α2
1w

2 −w2z2 + 6α1w2z

]1/2
,

rH =

√
−2z + 6α1

α0
. (11.24)

They can be obtained by imposing the first, second and third term in Eq. (11.22) to be

equal to zero, respectively. Notice that Q(r) diverges only for the first couple of horizons,

that is:

Q(rH)→∞ where rH =

√√√√±2
√
c1α0 + 9α2

1
α0

+ 6α1
α0

, (11.25)

with a bekenstein–Hawking entropy of the form

S =
8
3π

2

±2
√
Mα0 + 9α2

1
α0

+ 6α1
α0

3/2

, (11.26)

which scales as that of a CFT. It is worth discussing the behavior of the general solution
in Eq. (11.22) for some particular values of the coupling constants αi. By setting α2 = 0,
the standard five-dimensional Einstein gravity with cosmological constant is recovered,
while in the limit α1 = 0 Eqs. (11.22) and (11.23) reduce to Eqs. (11.16) and (11.17)
(with a proper rescaling of the integration constant c1). By neglecting the cosmological
constant (i.e. setting α0 = 0), the result can be simplified and two different solutions can
be analytically found. They read

P−(r)
2 = P 2

0

√√√√√√ (2c1 + α1r2)2 [
√

16α2(α2 + c1) + α2
1r

4 + α1r2]

8α2
2 + 2α2

(√
16α2(α2 + c1) + α2

1r
4 + 4c1

)
+ c1

(√
16α2(α2 + c1) + α2

1r
4 − α1r2

) ,

(11.27)
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P+(r)
2 = P 2

0

√√√√√√8α2
2 + 2α2

(√
16α2(α2 + c1) + α2

1r
4 + 4c1

)
+ c1

(√
16α2(α2 + c1) + α2

1r
4 − α1r2

)
√

16α2(α2 + c1) + α2
1r

4 + α1r2

(11.28)

Q±(r)
2 =
−4α2 ±

√
16α2(α2 + c1) + α2

1r
4 + α1r2

4c1 + 2α1r2 . (11.29)

Both solutions share the same horizon, namely

rH =

√
−2c1
α1

, (11.30)

so that the corresponding Bekenstein–Hawking entropy is

S =
16
3 π

2
√

2
α3

1
M

3
2 , (11.31)

which behaves differently than that of a CFT, having neglected the cosmological constant

α0.

In the former case, the asymptotic flatness cannot be recovered, independently of the

value of the integration constant P0. In the latter case, the flatness for large radius occurs

by means of the choice P 2
0 = (α2)−1/2.

The five dimensional Chern–Simons gravity, invariant under the local AdS group, can be

found as a limit of Eqs. (11.27) and (11.29), imposing α2 = 1, α1 =
2

3l2 , α0 =
1

5l4 . In

such a case, the point-like spherically symmetric Lagrangian reads:

L(5−AdS)CS =
κ

l

[
− 2

3l2

(
6r2P (r)Q′(r)

Q(r)2 + 6rP (r)Q(r)− 6rP (r)
Q(r)

)

+

(
24P (r)Q′(r)

Q(r)2 − 24P (r)Q′(r)
Q(r)4

)
+

1
5l4 r

3P (r)Q(r)

]
, (11.32)
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and the Euler–Lagrange equations yield

P (r)2 = P 2
0

√
−4c1 +

r4

5l4 −
8r2

l2


√

3
(
x

5l4 − r
2w

(
− 2
l2 + z

))
+ 3

√
u (r4w+ 2x)

r2
5l4 −

4
l2 + 2z


y/2

×

 − r2

5l4 +
4
l2 + 2z

√
3
(
x

5l4 + r2w
(
z + 2

l2

))
+ 3

√
v (r4w+ 2x)


s/2

, (11.33)

Q(r)2 =

√
24c1 + 14r4

5l4 + 144− 2r2

l2 + 12
−2c1 + r4

10l4 −
4r2
l2

. (11.34)

The form of P (r) is formally the same as the case of Lovelock gravity, with different

values of the integration constants (see App. E). Also the horizons are formally the same

as those in Eq. (11.24). They read:

rH = l
√

20± 2
√

100 + 5c1 ,

rH =

[
±
√

3
√
−150l8u2wx+ 50l8uw2xz2 − 200l6uw2xz + 200l4uw2x+ uwx2

5 (3l4uw− l4w2z2 − 4l2w2z − 4w2)

+
2wx

5l2 (3l4uw− l4w2z2 + 4l2w2z − 4w2)
− wxz

5 (3l4uw− l4w2z2 + 4l2w2z − 4w2)

]1/2
,

rH = l2
√

10
√
l2z + 2 . (11.35)

The limit of large radius does not provide a flat Minkowski space-time, since the cos-

mological constant cannot be assumed to vanish. However, it is worth noticing that, for

large value of `, the pure Gauss–Bonnet gravity is restored, while for ` � 1 we get an

Einstein–de Sitter space-time.

As mentioned above, from Eqs. (11.21), another subclass of solutions occurs, constrained

by the imposition P (r) = 1/Q(r). This particular five–dimensional solution has already
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been found and studied in Ref. [190] and reads as:

P (r)2 = 1− α1r2

4α2
±

√
3r4 (3α2

1 − 2α0α2) + 6α2c1

12α2
,

Q(r) = 1/P (r) . (11.36)

The two horizons, by means of an appropriate redefinition of the integration constant

c1, are exactly the same as the first couple of Eqs. (11.24). Without the cosmological

constant, solution (11.36) takes the form

P (r)2 = 1− α1r2

4α2
±

√
9α2

1r
4 + 6α2c1

12α2
. (11.37)

The Chern–Simons solution can be recovered as a particular limit of Eq. (11.36), namely:

P (r)2 = 1− r2

6l2 ±
√

7r4

360l4 +
c1
24 , (11.38)

with horizons sitting at

rH = l
√

20±
√

5c1 + 280 . (11.39)

Notice that the solution (11.36) and, hence, also the limit of Chern–Simons gravity, do

not admit the asymptotic flatness for large r.

11.1 Generalization to d+ 1 Dimensions

We now extend the previous results to d+ 1 dimensions, finding out analytical solutions

under the assumption P (r) = 1/Q(r). In this way, not all the solutions provided by

Eq. (11.21) can be recovered under given limits. As a starting point, the five-dimensional

line element (11.1) can be extended to:

ds2 = P (r)2dt2 −Q(r)2dr2 − r2dΩ2
d−1 . (11.40)
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By means of this choice, the Ricci scalar and the Gauss–Bonnet term can be recast in

terms of P and Q, as previously written in Eq. (5.3), namely:

G(d+1) =
(d− 2)(d− 1)

r4PQ5

{
(d− 3)P

(
Q2 − 1

) [
(d− 4)Q3 − (d− 4)Q+ 4rQ′

]
−4r

[
(d− 3)Q3P ′ + rQ3P ′′ − (d− 3)QP ′ − rQP ′′

−rQ2P ′Q′ + 3rP ′Q′
]}

, (11.41)

R(d+1) =
2r {Q [(d− 1)P ′ + rP ′′]− rP ′Q′}+ (1− d)P

[
(d− 2)Q3 + (2− d)Q+ 2rQ′

]
r2PQ3 .

(11.42)

Lovelock’s point-like Lagrangian can be obtained by integrating out the second derivatives.

After some basic computations it takes the form:

L(d+1) =
rd−5P

Q4

{
α0r

4Q5 − α1(d− 1)r2Q2[(d− 2)Q(Q2 − 1) + 2rQ′]

+α2(d− 3)(d− 2)(d− 1)(Q2 − 1)[(d− 4)Q(Q2 − 1) + 4rQ′]
}

.

(11.43)

The general solution of the corresponding Euler–Lagrange equations can be found ana-

lytically by imposing P (r) = Q(r)−1. Under this assumption, the spherically symmetric

solution for P (r) and Q(r) reads as

P (r)2 = 1± 1
rd/2−2

√√√√√√ c1

6α2(
d−1
d−4)

+ rd

 α2
1

16α2
2(
d−2
d−4)

2 −
α0

24α2(
d
d−4)

− α1

4α2(
d−2
d−4)

r2 ,

Q(r) =
1

P (r)
, (11.44)
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so that when α0 = 0 it reduces to

P (r)2 = 1± 1
rd/2−2

√√√√√ c1

6α2(
d−1
d−4)

+
α2

1

16α2
2(
d−2
d−4)

2 r
d − α1

4α2(
d−2
d−4)

r2 . (11.45)

In these cases, the horizon cannot be found analytically for any value of the integration

constant c1. However, it can be found after expanding the metric up to the first order.

By means of the definitions

c̃1 ≡
c1

6α2(
d−1
d−4)

α ≡

 α2
1

16α2
2(
d−2
d−4)

2 −
α0

24α2(
d
d−4)

 Λ ≡ − α1

4α2(
d−2
d−4)

, (11.46)

Eq. (11.44) can be rewritten as

P (r)2 = 1± 1
rd/2−2

√
c̃1 + αrd + Λ r2 , (11.47)

so that under the assumption αrd � c̃1, P (r)2 becomes

P (r)2 = 1− r2−d2
√
c1

(
1 + α

2c̃1
rd
)
+ Λr2 = Λ

 r
d
2−2

Λ −
√
c1

Λ

(
1 + α

2c̃1
rd
)
+ r

d
2

r
d
2−2

 . (11.48)

When Λ� r
d
2−2, the horizon can be computed analytically, providing

rH =
[ 2
α
(−c̃1)

(
1 + dd/2

)]1/d
=

[
8α2d(d− 1)(d− 2)2(d− 3)2

α2
1d(d− 1)− 4α0α2(d− 2)(d− 3) (−c1)

(
1 + dd/2

)]1/d

.

(11.49)

Considering that the ratio α2/α2
1 must be dimensionless, the constant c1 must have a

mass dimension and the horizon is proportional to

rH ∼M1/d . (11.50)

137



11. Chern–Simons Black Holes

The Bekenstein–Hawking entropy S, therefore, can be written in terms of rH as:

S = rd−1
H =

2π d+1
2

Γ(d+1
2 )

[
8α2d(d− 1)(d− 2)2(d− 3)2

α2
1d(d− 1)− 4α0α2(d− 2)(d− 3)

(
1 + dd/2

)]d−1
d

M
d−1
d , (11.51)

where Γ is the Euler Gamma function. Comparing Eq. (11.51) with the entropy of a CFT

in d+ 1 dimensions, namely [188, 189]

SCFT ∼M
d
d+1 , (11.52)

we see that a D dimensional CFT behaves like a D+ 1 dimensional AdS-invariant theory,

in terms of entropy scaling. This is directly liked to the AdS/CFT correspondence and

does not hold when α0 = 0. Following the same prescription, now we find exact solutions

when α2 = 0, α1 = 0 and show that the entropy scales as that of a CFT only when

α0 6= 0.

The α2 = 0 limit must be found separately and provides the well known high-dimensional

Schwarzschild–de Sitter solution

P (r)2 =
1

Q(r)2 = 1 + c1
rd−2 −

α0
α1d(d− 1)r

2 , (11.53)

with a proper redefinition of the constant c1. The horizon can be found under the as-

sumption α0r2 � 1, where the element P (r)2 can be approximated to

P (r)2 = 1 + c1
rd−2 −

α0
α1d(d− 1)r

2 =
α0

α1d(d− 1)

 α1d(d−1)
α0

rd

r2 +
α1d(d−1)

α0
c1 − rd

rd−2


∼ α0
α1d(d− 1)

 α1d(d−1)
α0

c1 − rd

rd−2

 , (11.54)

so that the horizon is

rH ∼
(
c1α1d(d− 1)

α0

)1/d

. (11.55)
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Setting α0 = 0, the d + 1 dimensional generalization of Schwarzschild radius can be

computed without approximations and turns out to be

rH = (−c1)
1
d−2 . (11.56)

Identifying the constant c1 with−M , as previously discussed, we notice that the Bekenstein–

Hawking entropy S scales as

S ∼ 2π d+1
2

Γ(d+1
2 )

(
α1d(d− 1)

α0

)d−1
d

M
d−1
d , (11.57)

for α 6= 0 and as

S =
2π d+1

2

Γ(d+1
2 )

M
d−1
d−2 , (11.58)

for α0 = 0. This means that the AdS/CFT correspondence holds as long as α0 6= 0, as

expected.

Finally, assuming α1 = 0, the Lagrangian reduces to a sum of the Gauss–Bonnet term

and the cosmological constant, providing [155]:

P (r)2 = 1± 1
rd/2−2

√√√√ c1

6α2(
d−1
d−4)

− rd α0

24α2(
d
d−4)

.

It is worth stressing out that the above solution turns out to be trivial in less than five

dimensions, as expected from the topological nature of G. Moreover, it only holds for

α0 6= 0. Under the same approximations as Lovelock case, the first-order expansion of

P (r)2 yields the horizon:

rH ∼
( 2
α0

)1/d
(−c1)1/d , (11.59)

which means that the Bekenstein–Hawking entropy is proportional to

S ∼ 2π d+1
2

Γ(d+1
2 )

( 2
α0

)d−1
d

M
d−1
d . (11.60)
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Also here, the AdS/CFT correspondence is recovered, unlike the case of Gauss–Bonnet

gravity with α0 = 0. As a matter of fact, when assuming α0 = 0 from the beginning, the

equations of motion yield

P (r)2 =
1

Q(r)2 =

(
1 + c1

r
d
2−2

)
, (11.61)

admitting an horizon at

rH = (−c1)
2
d−4 , (11.62)

whose corresponding entropy scales as

S =
2π d+1

2

Γ(d+1
2 )

M
2d−2
d−4 . (11.63)

Notice that Eq. (11.44), together with the corresponding subcases above discussed, is the

generalization of Eq. (11.36) to d+ 1 dimensions.
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Application of Chern–Simons

Theory to Electromagnetism

In this chapter we outline two famous theories of massive electromagnetism, namely the

Proca theory and the Chern-Simons three-dimensional theory, pointing out the differences

and the common aspects. Comparing the two theories is particularly interesting, since

both yield a wave equations describing massive photons. As the former holds in four

dimensions, the latter can be obtained in odd dimensions only. However, adding an extra

term in the Proca Lagrangian breaks the conformal invariance of the electromagnetic the-

ory. This does not happen when the three–dimensional Chern–Simons form is considered

as a starting Lagrangian, where U(1) gauge invariance is provided. It is worth mention-

ing that Chern–Simons theory arose as a gauge-invariant theory for the electromagnetic

interaction, and only at a later time it was applied to gravity [191, 192]. Let us start by

considering the free massless electromagnetic action:

S =
∫

dAdA, (12.1)

where dA represents the exterior derivative of the one-form connection A. The U(1)

invariant abelian Lagrangian coming from the above action, written in coordinates repre-

sentation, is:

L = − 1
4µ0

FµνFµν . (12.2)
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By varying Eq. (12.2) with respect to the potential Aµ, one gets the equation �Aβ = 0,

with � = ∂µ∂
µ. One of the most important properties of the electromagnetic Lagrangian

is the gauge invariance under U(1) transformations. As a matter of facts, under the gauge

transformation

δAµ = ∂µΘ, (12.3)

the transformed Lagrangian δL reads as:

δL = (∂µ∂ν − ∂ν∂µ)Θ(∂µ∂ν − ∂ν∂µ)Θ = 0. (12.4)

Several attempts aim to extend the Lagrangian (12.2) to a more general one describing

a massive interaction. One of the most famous is the Proca Lagrangian, in which the

introduction of a new term breaks the gauge symmetry and leads to a massive Klein-

Gordon equation for the vector field Aµ. The corresponding action is [193]:

S =
∫ (
−1

4F
µνFµν +

1
2m

2AµAµ

)
d4x. (12.5)

By varying the action (12.5) with respect to the gauge potential one gets

δAS =
∫ (
−1

2F
µνδAFµν +m2AµδAAµ

)
d4x =

∫ (
∂µF

µν +m2Aν
)
δAAνd

4x (12.6)

and in the Lorentz gauge, where ∂µAµ = 0, the above equation becomes:

(�+m2)Aβ = 0, (12.7)

so that m can be intended as a mass term. However, as a new massive particle arises, the

theory loses the gauge invariance and this yields some shortcomings at the quantum level.

Another extension is the odd-dimensional U(1) invariant Chern-Simons theory [194]. Gen-

erally, the D−dimensional Chern-Simons Lagrangians can be constructed by means of the

Chern-Simons D−forms, whose exterior derivatives provide a D+ 1-dimensional topolog-
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ical invariant. This makes the theory quasi-invariant under gauge transformations, as

showed in Chap. 9. In order to get the three-dimensional Chern-Simons field equations

for the electromagnetic theory, we start from the three-dimensional U(1) invariant Chern-

Simons action

S =
∫
AdA, (12.8)

whose exterior derivative provides the four-dimensional Pontryagin density P4 = F ∧F,

with F being the curvature two-form. By computing the exterior derivative dA, the action

can be written as:

∫
AdA =

∫
(∂µAν − ∂νAµ)Ap dxµ ∧ dxν ∧ dxp =

∫
εµνpFµνAp d

3x. (12.9)

By introducing the Chern-Simons form (12.9) in the free electromagnetic Lagrangian

(12.2), this latter turns out to be

L = −1
4F

µνFµν +
1
2mεµνpFµνAp . (12.10)

Notice that under gauge transformations, the Lagrangian only changes by a total deriva-

tive. In fact, under the transformation

δAµ → ∂µΘ, (12.11)

the Lagrangian variation is:

δL = −1
2Fµν(∂

µ∂ν − ∂ν∂µ)Θ +
1
2mεµνp[Fµν∂pΘ +Ap(∂µ∂ν − ∂ν∂µ)Θ]

= ∂p

(1
2mεµνpFµνΘ

)
. (12.12)

The last equality is motivated by the identity ∂p(εµνpFµν) = 0, coming from the field

equations of the theory. The field equations can be obtained by varying the action with
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respect to the gauge connection, namely:

δAS =
∫ {
−1

4δA (FµνFµν) +
1
2mεµνpδA(FµνAp)

}
d3x

=
∫ {

∂µF
µν +

1
2mεµpνFµp

}
δAν d

3x, (12.13)

so that they read

∂µF
µν +

1
2mεµpνFµp = 0. (12.14)

Using the identity ∂µ∂νF
µν = 0, and taking the three-dimensional divergence of Eq.

(12.10) we get:

∂ν (mεµpνFµp) = 0, (12.15)

which finally provides the result used to obtain Eq. (12.12). After demonstrating the

U(1) invariance of the Chern-Simons Lagrangian, by means of Eq. (12.14) it is possible

to show that the field equations can be manifestly recast as a Klein-Gordon equation for

massive fields. Multiplying Eq. (12.14) by the Levi-Civita symbol, we have

εστν∂µF
µν +

1
2mεστνε

µpνFµp = εστν∂µF
µν +

1
2m(δµσδ

p
τ − δpσδµτ )Fµp

= εστν∂µF
µν +mFστ = 0. (12.16)

Let us evaluate the first term (εστν∂µFµν):

εστν∂µF
µν =

1
2εστν∂µ [F

µν − F νµ] =
1
2εστν∂µ

[
δµαδ

ν
βF

αβ − δµβδ
ν
αF

αβ
]

=
1
2εστνε

µνλεαβλ∂µF
αβ = −1

2
[
δµσδ

λ
τ − δµτ δλσ

]
εαβλ∂µF

αβ

= −1
2εαβ[τ∂σ]F

αβ. (12.17)

Replacing Eq. (12.17) into Eq. (12.16), the field equations take the form:

−1
2εαβ[τ∂σ]F

αβ +mFστ = 0. (12.18)
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Taking the divergence and using Eq. (12.14) and Eq. (12.15), field equations finally read:

(�+m2)
(
εαβτF

αβ
)
= 0. (12.19)

Eq. (12.19) is a Klein-Gordon equation for the vector field εαβτFαβ, which finally demon-

strates the capability of the Chern-Simons three-dimensional theory to describe massive

particles without breaking the symmetry.
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Application of Chern–Simons

Theory to Biological Systems

Genomic strings schematization methods represent one of the most controversial and dis-

cussed branches of science. In this scenario, the application of those methods to DNA

alignment is still not fully uncover. Several approaches aim to exhaustively predict the

evolution of macro molecules, in order to get information regarding their spatial configura-

tion [195, 196, 197, 198]. However, a complete theory capable of predicting the interactions

that occur among macro molecules and the corresponding biological implications is still

missing.

Macro molecules often interact such that the resulting biological system exhibit a non-

trivial topological structure, thus elements which seem to be close to each other might be

located even in different chromosomes [199].

Schematization approaches study the interactions among different parts of the same bio-

logical system and can be also helpful to predict the probability for the system to evolve

towards certain mutations. An example is given by the interaction between proteins and

virus genome which, if well described, can lead to a comprehension of the correspond-

ing infection evolution. Standard modeling techniques are mostly based on probability

considerations, aimed at outlining the many body interactions by means of statistical

mechanics [200, 201, 202].

In this Chapter we test an innovative method for the schematization of biomolecule config-

urations, based on the topological Chern-Simons theory. It mainly relies on the curvature
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assumed by biological systems, using the numerical value of the Chern-Simons current,

namely the expectation value of the Wilson loop.

Although the application of Chern-Simons gravity to complex systems seems to be un-

usual, topological field theories are deeply studied in several branches of physics, besides

the application to gravitational interaction.

For instance, by means of the Chern-Simons formalism, some stimulating problems of

biology have been addressed, such as the presence of knotted DNAs and their interactions

with proteins [203]. Yet, in [204] the interactions of unknotted RNAs with knotted proteins

have been analyzed in the process of codon and correction of RNA in methil transfer, as

well as a general equation to solve the dynamics of knotted proteins has been proposed

by Lin and Zewail [205], based on the Wilson loop operator for gene expression with a

boundary phase condition.

Here we start from the SU(N)-invariant three-dimensional Chern-Simons Lagrangian

L
(3)
CS = tr

[
AdA+

2
3AAA

]
, (13.1)

whose exterior derivative yields the SU(4) Pontryagin density P (4) = tr [F ∧ F ].

The basic foundations lying behind such an application can be found in [206] and [207],

where some of the authors of this paper develop the formal structure of the theory, by

applying it to unveil the mechanism of DNA-RNA transcriptions and providing some in-

sights to specifically describe the junk area within the DNA sequence [206]. In [206] the

theory is applied to study the docking mechanism of biological macro-molecules, such as

the configurational dynamics occurring in protein-protein. Without claiming complete-

ness, in Sec. 13.1 we outline the main properties of the theory, with the aim to test its

validity by considering DNA sequences and introducing known mutations. The introduc-

tion of a mutation yields a change in the point-like curvature of the given sequence, which

may give important information regarding the biological impact that such mutation may

have. From the mutated sequence it is possible to infer the frequency/probability of the

mutation to occur, as well as to predict the evolution of the system towards a given con-
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figuration. In Secs. 13.1.1 and 13.1.2 the formalism is then applied to different strings of

KRAS human gene and to COVID-19 virus sequences. In the former case, we apply the

model to analyze the mutations of a few region of the KRAS human gene, a gene that

acts as on/off switch in cell signaling and, among its functions, controls cell prolifera-

tion. When KRAS is mutated, negative signaling is disrupted, with the consequence that

cells can continuously proliferate, often degenerating into tumors [208]. In our analysis

KRAS sequences with mutations are thus compared with reference sequences, with the

aim to use Chern–Simons theory to infer predictions of biological interest. In the latter

case we compare sequences of single filament RNA SARS CoV-2 viruses coming from

different countries, using Chern-Simons currents to potentially explain the reason why

SARS-CoV-2 variants seem to exhibit a higher incidence during the 2020/2021 pandemic.

13.1 Chern-Simons Theory in DNA System

In this section we review the application of Chern-Simons theory to DNA/RNA systems,

outlining the main results obtained in [206]. The first step is to use quaternion fields to

define a set of Nitrogen Bases over the DNA or RNA; such quaternion fields have unitary

norm and belong to SU(1) ⊂H. They read:



ADNA := e
π
2 iβn ARNA := e

π
2 jαn

TDNA := i e−
π
2 iβn URNA := i e−

π
2 jαn

CDNA := j eiπβn CRNA := j ejπαn

GDNA := k e2πiβn GRNA := k e2πjαn ,

(13.2)

being [h] ∈ H: [h] = a+ b i+ c j + d k and a, b, c, d ∈ R. The connection A can be

thought as a state of the above written nitrogen bases, namely A ∈ {A,T/U ,C,G}). It

is a one-form connection with values in SU(2), defined over the three-dimensional space

of all possible amino acids (formed by three nitrogen bases). Consequently the DNA

148
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curvature in the configuration space of nitrogen bases is represented by the two-form

curvature F = dA, which in coordinates representation can be written as:

Fµν = ∂[µAν] +A[µAν]. (13.3)

Therefore, taking into account the SU(2)-invariant Chern-Simons three-dimensional ac-

tion

SSU(2) =
∫

Tr
[
AdA+

2
3AAA

]
, (13.4)

it is possible to define the Chern-Simons current as the measurable, gauge invariant

quantity that can be obtained from the expectation value of the Wilson loop

J =< [W (A)] >=

∫
DAeiSΠnW (An)∫

DAeiS
. (13.5)

Wilson loop is the trace of a path-ordered exponential of the gauge connection and rep-

resents the only gauge invariant observable quantity of the theory:

W (A) = tr
[
exp

{
P
∮
A
}]

. (13.6)

They can be obtained from the holonomy of the gauge connection around a given loop and

are mainly used in gauge lattice theories and quantum chromodynamics [209, 210, 211,

212]. They have been formerly introduced to address a nonperturbative formulation of

quantum chromodynamics [213] but nowadays play an important role in the formulation

of loop quantum gravity, particle physics and String Theory.

The choice of the three-dimensional action is the key point of the method: standard

biology suggests that nitrogen bases combine each other in triplets, and therefore form

a three-dimensional discrete space of configurations that can be described by means of

the Chern-Simons three forms. Any point of the space is thus labeled by a given triplet.

Sixty-four possible combinations arise after combining the four nitrogen bases in triplets,

and correspond to the combinations occurring in the genetic code.
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13. Application of Chern–Simons Theory to Biological Systems

By means of Eq. (13.2), it is possible to define a discrete superstate of configurations,

in which the nitrogen bases represent the dynamical variables, so that the genetic code

is labeled by the Chern-Simons currents only. After some calculations the curvature

spectrum of the genetic can be obtained [206], as reported in Table II.
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Table II: Value of Chern-Simons current for the triplets of the genetic code.
Amino acid CS Current Amino acid CS Current Amino acid CS Current Amino acid CS Current

Phe (UUU) 0.7071 Ser (UCU) 0.0534 Tyr (UAU) 0.0214 Cys (UGU) 0.0122

Phe (UUC) 0.5000 Ser (UCC) 0.0495 Tyr (UAC) 0.0205 Cys (UGC) 0.0118

Leu (UUA) 0.3717 Ser (UCA) 0.0460 Sto (UAA) 0.0197 Sto (UGA) 0.0115

Leu (UUG) 0.2887 Ser (UCG) 0.0429 Sto (UAG) 0.0189 Trp (UGG) 0.0112

Leu (CUU) 0.2319 Pro (CCU) 0.0402 His (CAU) 0.0182 Arg (CGU) 0.0109

Leu (CUC) 0.1913 Pro (CCC) 0.0377 His (CAC) 0.0175 Arg (CGC) 0.0106

Leu (CUA) 0.1612 Pro (CCA) 0.0354 Gin (CAA) 0.0169 Arg (CGA) 0.0103

Leu (CUG) 0.1382 Pro (CCG) 0.0334 Gin (CAG) 0.0163 Arg (CGG) 0.0010

Ile (AUU) 0.1201 Thr (ACU) 0.0316 Asn (AAU) 0.0157 Ser (AGU) 0.0098

Ile (AUC) 0.1057 Thr (ACC) 0.0299 Asn (AAC) 0.0152 Ser (AGC) 0.0096

Ile (AUA) 0.0939 Thr (ACA) 0.0284 Lys (AAA) 0.0147 Arg (AGA) 0.0093

Met (AUG) 0.0841 Thr (ACG) 0.0270 Lys (AAG) 0.0142 Arg (AGG) 0.0091

Val (GUU) 0.0759 Ala (GCU) 0.0257 Asp (GAU) 0.0138 Gly (GGU) 0.0089

Val (GUC) 0.0690 Ala (GCC) 0.0245 Asp (GAC) 0.0134 Gly (GGC) 0.0087

Val (GUA) 0.0630 Ala (GCA) 0.0234 Glu (GAA) 0.0129 Gly (GGA) 0.0085

Val (GUG) 0.0579 Ala (GCG) 0.0224 Glu (GAG) 0.0126 Gly (GGG) 0.0083

The same analysis can be also pursued by considering the amino acids, so that the genetic

code is equivalently described by 21 different Chern-Simons currents. The simplest way

to construct a curvature spectrum with respect to amino acids, is to take the average

values of the Chern-Simons currents which refer to triplets coding for the same amino

acid. Chern-Simons currents for the amino acids are listed in Table III.

Table III: Value of Chern-Simons current for the amino acids.
Amino acid CS Current Amino acid CS Current Amino acid CS Current Amino acid CS Current

Phe (F) 0.60355 Ser (S) 0.0352 His (H) 0.01785 Giu (E) 0.01275

Leu (L) 0.2305 Pro (P) 0.036675 Gin (Q) 0.0166 Cys (C) 0.012

Ile (I) 0.106567 Thr (T) 0.029225 Asn (N) 0.01545 Trp (W) 0.0112

Met (M) 0.0841 Ala (A) 0.024 Lys (K) 0.01445 Arg (R) 0.01005

Val (V) 0.06645 Tyr (Y) 0.02095 Asp (D) 0.0136 Gly (G) 0.0086

In summary, the theory deals with a discrete configuration space made of all possible

amino acids, namely all possible ways in which triplets can combine each other (64 ways).

To a given point of the space, it corresponds only one amino acid, so that the nitrogen

bases represent the coordinates of the given point. Hence, an observable quantity can be

assigned to this latter, so that its curvature can be numerically quantified. For a better

visualization, Fig. 6. shows that different points in the linear structure of the config-
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uration space have different curvature, which can be used to infer the position toward

which the system is most likely to evolve, as well as the attractors in the docking between

proteins.

Figure 6: Visual representation of the configuration space curvature. Circles in the two

sequences represent amino acids, each of which have a proper curvature provided by the

Chern-Simons current. Points belonging to the left sequence can be attracted to points of

the right sequence (or vice versa), depending on the point-like curvature.

Notice that the formalism permits to assign a numerical value to each component of the

genetic code, finding a point by point correspondence between triplets and curvature. Such

a curvature of the DNA is the key parameter of our approach, as it may provide several

predictions about the docking between two different parts of DNA or between DNA and

RNA. The genomic curvature can be also used to find out those positions having highest

probability to exhibit a mutation. The introduction of the mutation, indeed, leads to

a local variation of the curvature, whose value might suggest the clinic importance and

the impact of the corresponding disease. Moreover, the curvature spectrum can provide

important insights regarding the evolution of the genomic strings: those points with

highest curvature are the best candidates to evolve towards a more stable configuration,

making the entire sequence more uniform in the configuration space of all the possible
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triplets.

13.1.1 Chern-Simons Current in Mutated KRAS Human Gene

The first application of the above described method, is focused on the comparison be-

tween mutated DNA and standard DNA sequences. In particular, first we consider the

KRAS human gene, whose details are reported in App. A. It is located in the 12th chro-

mosome, from the base 25,205,246 to 25,250,929 and represents one of the most mutated

human genes [214, 215, 216]. Then we introduce some known mutations into the original

sequence, yielding a change in the Chern-Simons current. Being the current linked to

the curvature of the DNA, the configuration space made of nitrogen bases changes the

point-like curvature whereas a mutation is introduced.

By means of physical considerations, we theoretically expect the mutation to level out the

graph, providing slighter variations of the current with respect to the original sequence. In

analogy with other physical systems, the curved point is surrounded by a non-equilibrium

region, which in turn tends to mutate in order to reach a minimum free energy state.

Moreover, this prescription is in agreement with the general criterion which governs ther-

modynamic transformations, according to which any spontaneous transformations must

minimize the Gibbs free energy. This statement can be simply proved by considering the

definition of the Gibbs free energy G, that is

G = U − TS + pV , (13.7)

with p being the pressure, V the volume, T the temperature, S the entropy and U the free

energy. Neglecting the contribution of p and setting T = const. (as standard for biological

systems), it turns out that for the system to undergo a spontaneous transformation, the

entropy must increase as the free energy must decrease. This latter can be thought as

the expectation value of the Hamiltonian of the system, which includes potential and

kinetic energies. Therefore, requiring the Gibbs free energy to decrease spontaneously is
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equivalent to require the gravitational potential to decrease spontaneously. This means

that as the system evolves toward a configuration with ∆G < 0, the potential energy

decreases. By applying these considerations to the formalism developed in Sec. 13.1, a

spontaneous transformation must yield an evolution of the system toward a flat regions

in the configuration space.

For these reasons, mutations of DNA/RNA sequences occur to render the graph slighter

and to bring the general state toward an equilibrium configuration. Reversing the argu-

ment, those mutations which make the sequence more peaked than the original one, are

supposed to occur less frequently, since they lead to a higher free energy configuration.

Therefore, significant variation should not occur in flat regions of the curvature spectrum,

which are closer to an equilibrium state. The result of the analysis in KRAS human gene

via Chern-Simons current method is reported in Fig. 7a [217, 218].

Figure 7: Chern-Simons current in KRAS human gene. Figure 7a shows the comparison

between the original sequence (black dashed line) and the mutated one (red solid line),

while Figure 7b shows the Chern-Simons current variation, obtained comparing the

point-like differences between contiguous points of the original and mutated sequences.

The region considered is 25,245,274 - 25,245,384 of the 12th chromosome.

Most significant mutations occur in the regions comprised between the 5th and the 15th

amino acid, and between the 30th and the 35th. Further details are reported in App. A.

As expected by the free energy minimization argument, the mutations occur whereas the

curvature is most peaked, providing a smoother general trend, with respect to the original

one. Notice, however, that mutations are not directly correlated to peaks, but rather to
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curvature gradients, namely they are mostly located near those points whose curvature

is very much higher (or lower) with respect to a contiguous point. By computing the

differences between contiguous points, it is possible to associate mutations to peaks, as

reported in Fig. 7b.

In the same region of the twelfth chromosome, another set of mutations occurs.

Figure 8: Chern-Simons current in KRAS human gene. Figure 8a shows the comparison

between the original sequence (black dashed line) and the mutated one (red solid line),

while Figure 8b shows the Chern-Simons current variation, obtained comparing the

point-like differences between contiguous points of the original and mutated sequences.

The region considered is 25,245,274 - 25,245,384 of the 12th chromosome.

Fig. 7 and Fig. 8 refer to the same region of KRAS, though different mutations are

introduced in the two cases. More precisely, mutations occurring in these selected regions

are split in two different sets, in order to facilitate reading and visualizing the curvature

spectrum. It is worth noticing that even in this case, a mutation corresponds to each

peak, as theoretically inferred. Moreover, the mutated sequence makes the overall trend

smoother than the original one, in agreement with theoretical predictions. To confirm this

result, two other different regions of human KRAS are analyzed in Figs. 9-10, where the

original sequences are again compared with the corresponding mutated. As we did before,

this latter can be obtained by replacing nitrogen bases (or amino acids) in the original

sequence. These replacements are carefully chosen according to the database BioMuta.

Also in this case, further details can be found in App. A.
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Figure 9: Chern-Simons current in KRAS human gene. Figure 9a shows the comparison

between the original sequence (black dashed line) and the mutated one (red solid line),

while Figure 9b shows the Chern-Simons current variation, obtained comparing the

point-like differences between contiguous points of the original and mutated sequences.

The region considered is 25,215,468 - 25,215,560 of the 12th chromosome.

The last region analyzed, corresponding to the region 25,227,263-25,227,379 of the 12th

chromosome, yields the graph in Fig. 10.

Figure 10: Chern-Simons current in KRAS human gene. Figure 10a shows the

comparison between the original sequence (black dashed line) and the mutated one (red

solid line), while Figure 10b shows the Chern-Simons current variation, obtained

comparing the point-like differences between contiguous points of the original and

mutated sequences. The region considered is 25,227,263-25,227,379 of the 12th

chromosome.

Notice that in both cases the mutations occur where the sequence is peaked, in agreement
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with theoretical predictions. This is particularly evident in the former case (Fig. 9), where

almost all peaks correspond to a mutation. Moreover, the introduction of the mutations

has the effect to avoid abrupt differences in the overall trend of the curvature spectrum.

On the contrary, well known mutations may occur also in flat regions of sequences with

no peak in the Chern-Simons current values. This nay be due to other factors that induce

mutations, not taken into account in our model at the moment, where we basically rely

on an argument based on the curvature gradient variation and free energy minimization.

13.1.2 Chern-Simons Current in Mutated COVID-19 Sequences

In this subsection we discuss the results provided by the applications of Chern-Simons

formalism to different variants of SARS-CoV-2 virus. The S glycoprotein is a Class I

fusion protein, composed by two subunits (S1,S2) [219]; the S1 subunit contains the

receptor binding domain (RBD), directly binding to the main receptor human angiotensin-

converting enzyme 2 (hACE2) and determinant for both host range and cellular tropism

[220]; the S2 subunit is directly involved in membrane fusion and virus endocytosis [221,

222]. Receptor binding triggers conformational changes; specifically, host proteases (such

as furin) will mediate its functional transition by cleaving the interface between the two

subunits (S1, S2). Additionally, the RBDs of SARS-CoV and SARS-CoV-2 are highly

similar, despite few key residues, appearing to enhance the transmissibility of the novel

CoV [223, 224]. The spike glycoprotein is the main inducer for neutralizing antibodies

[225]; unwillingly, it shows the highest mutation rate among SARS-CoV-2 proteins [226,

227], and a variable glycosylation can create novel CTL epitopes, possibly altering hACE2

binding and accessibility to proteases and neutralizing antibodies [221, 228].

The purpose here is to find a correlation in terms of Chern-Simons current among the

mutations of the sequences, a correlation that could possibly give insights aiming at

localizing and predicting mutation sites in the new variants of the virus. We analyze eleven

strings, which underwent mutations with respect to the original sequence of SARS-CoV-2,

firstly detected in Wuhan at the end of 2019. They all correspond to the same RNA region
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and was selected according to Fig. 11. In particular, we compare the difference of Chern-

Simons currents, considering variants from Asia, Europe, Oceania and North America.

Specifically, sequence 19A is the first one which arose in Wuhan and have been spreading

during the initial 2020 outbreak; 19B is the first detected variant in China; 20A dominated

mostly in Europe from march 2020, to subsequently spreading out globally; 20B and 20C

are variants of 20A which mainly spread in the early 2020; finally, 20D, 20E, 20F, 20G,

20H, 20I occurred on summer 2020 as variants of 20B, 20C and 20A. Among them, 20I

and 20H are English and south-African variants. To be more precise, we used the tool

Nextclade, yielding the graph of Fig. 11. This figure shows the aforementioned evolution

of the sequences (https://github.com/nextstrain/ncov/blob/master/defaults/clades.tsv).

Figure 11: Evolution of the first-detected Wuhan sequence (19A) to other variants which

spread out during the 2020 pandemic.

Mutations of the triplets which caused the occurrence of variants are reported in App.

A. In our analysis, because of the large amount of nitrogen bases, we only compute the

difference of Chern-Simons currents between the original sequence and the mutated one.
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Specifically, we consider the slope of the current for each mutation, namely the number

Slope = Mutated Seq.−Original Seq.
Original Seq. . (13.8)

In the absence of a curvature spectrum, the slope provides a numerical value aimed at

confirming the results obtained in the previous section. Specifically, high values of the

slope represents a large discrepancy between the original sequence and the mutated one in

the curvature spectrum, while lower values account for small differences. Even though the

general trend is inevitably missing, the approach may provide significant results regarding

the one-to-one correspondence between different couples of strings. We perform the one-

to-one comparison between contiguous sequences (showed in Fig. 11), with the aim to

find out a correlation between slopes and mutations. Each variant is compared with the

corresponding predecessor, so that no comparison is carried on between sequences which

are not directly evolving from one another, according to Fig. 11. For example, sequence

19A is not compared with 20I, as well as 20D is not compared with 20H.

The analysis shows that mutations occur with highest probability where the slope (as

defined in Eq. (13.8)) of Chern–Simons current assumes extreme values, namely when its

modulus is extremely high or extremely low1.

This means that even those mutations which do not cause significant current variations

can support variants. In particular, the one-to-one comparison between the original and

the corresponding mutated sequences shows that 60% of mutations corresponds to extreme

values of current. Such percentage increases up to 80% if we consider only those mutations

which will effectively spread out (denoted in italic bold and highlighted in light yellow),

as showed in App. A, Figs. 13-23. Consequently, this statistic can be used to point

out which occurred mutation of the sequence can be more likely to evolve in a real,

spread out variant of the virus. To be more precise, once we know the position of a given
1As reported at the beginning of App. A, we define current variations as "low" if they are comprehended

in the range [-11%,11%], and as "high" if they are > 100% or < - 100%. Also notice that there is no
upper limit to the modulus of the current variation, since it represents the percentage of current increase
with respect to surrounding points
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mutation, Chern–Simons currents can allow to predict which type of triplets will arise

from such mutation. In particular, as suggested by the analysis, the mutated sequences

should exhibit mutations whose related Chern-Simons currents provide extremely high

or extremely low percentage variations, with respect to the original ones. Therefore, we

do not expect the sequence to evolve such that mutations cause intermediate values of

current variations; rather, if the position of the mutation is known, we expect the triplet

to mutate towards those possible configurations whose Chern-Simons current is either

very close or very far from the initial one (in terms of percentage). This means that from

a given triplet we can select a set of possible mutations, namely those which cause either

high or low current variations.

The above results constitute a part of the analysis of SARS-Cov-2 virus, which mainly

relies on the evolution of given sequences towards mutated configurations. As mentioned

above, this first part turns out to be useful to restrict all possible mutations within a

given range, but can provide suitable information only if the position of the mutation is

known a priori. From this point of view, no information regarding the mutation position

can be provided. Now, in the next part, we use Chern-Simons formalism to select regions

where mutations are most likely to occur.

With the aim to link the currents with the probability to exhibit mutations, we separately

analyzed only those sequences which generate variants, i.e. 19A, 20A, 20B and 20C.

Specifically, as we can infer from Fig. 11, 19A generates 19B and 20A; 20A generates

20B, 20C and 20E; 20C generates 20H and 20C. Similarly to the previous analysis of

KRAS human gene, we aim to relate the curvature spectrum with the likelihood to find

out mutations. To this purpose, we calculated the Chern–Simons currents of 19A, 20A,

20B and 20C sequences and computed the current variations in those points affected by

known mutations. Specifically, let n be the position of a given mutation along the sequence

and jn the corresponding Chern–Simons current. The normalized current variations are
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computed according to the formulas:

Variation (%)1 =
jn+1 − jn

jn
(13.9)

and

Variation (%)2 =
jn − jn−1
jn−1

. (13.10)

This means that we are investigating the current variations where the mutations occur,

with respect to the previous and the subsequent points, respectively. The comparison

between these values calculated for the triplets affected by mutations and the surrounding

points can be used to relate the current variation with RNA mutations.

This prescription is suggested by the analysis performed on human KRAS regions, where

it turns out that points far from the equilibrium state in the curvature spectrum are

the best candidates to provide mutations. Here, given the large amount of amino acids,

the curvature spectrum cannot be compute entirely. For this reason, we only focused on

noticeable mutations, namely preferred points which exhibit known triplet variations.

The analysis again shows that mutations mostly occur where the current variation, as

calculated in Eqs. (13.9) and (13.9), is high-valued. More precisely, in a set of 125 total

mutations, 59% of them (74/125, see Tables X-XIII) are are located in points where

the curvature undergoes abrupt variations. This percentage increases up to 69%, if only

noticeable mutations which had more impact in the development of the corresponding

variants are considered. Indeed, among 25 mutations with the greatest impact in gen-

erating the variants, 17 exhibit high percentage variations of current with respect to

surroundings points. These results are reported in App. A, Tables X-XIII.

This result can be explained based on the achievements of the previous section, where non-

equilibrium points turned out to be best candidates to provide nitrogen bases mutations.

More precisely, large values of the current variations account for peaked regions, which

tend to evolve to a lower curvature, that is a lower current. Reversing the argument, large

variations of current are exhibited by points which are far from the minimum of energy,
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which is supposed to occur where the trend is constant.

In this framework, the application of Chern-Simons theory to DNA/RNA systems such

as SARS-CoV-2 or KRAS, can give important information about the positions where the

mutation is more likely to manifest. The consequent biological impact naturally follows,

since this prediction can be used to prevent the occurrence of variants or to know in

advance the probability for the sequence to evolve towards another configuration.

Taking into account these results, let us evaluate the spike region of SARS-CoV-2 virus

only, with the aim to analyze the tertiary structure. In particular, we rely on the interac-

tion points reported Ref. [229], according to which the amino acids of the spike protein

are interact as reported in Fig. 12 2.

Figure 12: Tertiary structure of the spike protein of SARS-CoV-2 virus. Green, orange

and pink colors refer to the oligomannose content. Specifically, glycan sites labeled in

green contain 80-100% of oligommannose, those labeled in orange 30-79% and those

labeled in pink 0-29%. Light blue denotes ACE2 binding sites.

In light of the results provided by Ref. [229], we analyze 11 contact points, namely 22

corresponding amino acids. The features of these latter, such as position, current or

percentage variation with respect to the surrounding triplets are reported in Table XIV.
2Numbers refer to the positions on the spike protein only
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We considered 22 sites and calculated the Chern-Simons current variation of each amino

acid with respect to the surrounding points in the linear structure. Beside the first amino

acid (position 19), none of them is affected by known mutations. As a first remark, it is

interesting to observe that the percentage of large variations in those sites which are not

affected by mutations is 7/21, namely 33%. Note that such a percentage is quite lower

than the previously discussed one, which is of the order of 72%. This confirms that Chern-

Simons current variations is high-valued whereas mutations occur. Moreover, these seven

sites which undergo large percentage variations are oligomannose-type, as pointed out in

Ref. [229]. This, in principle, could be the reason of such large values. For instance, the

high value of current variation in position 234 might be due to the proximity of the site

with ACE-2, or to the high percentage of glycosylation occurring in such amino acid.

As a secondary result, we also considered the Chern-Simons current variations of surround-

ing points with respect to the tertiary structure. Details of the analysis are reported in

Table XV. Notice that the docking points have same or similar values of current, which

means low percentage variation. This is expected from a physical point of view, since those

points with same curvature tend to interact in order to reach a stabler configuration. Also

here, the analogy with gravitational interaction is simply understood. Reversing the ar-

gument, Chern-Simons current can be used, in future works, to investigate the tertiary

structure of a given protein. In particular, those points with same or similar current are

most likely to interact each other. This application can prove to be profitable in biology

and bioinformatics, where the shape of the molecule is needed to extrapolate information

regarding the evolution of a given system.
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Conclusion of Part III

In the first chapters of this part we applied the formalism of the Chern–Simons theory

to cosmology and spherical symmetry. Specifically, we showed that the five-dimensional

Lovelock gravity admits exact cosmological solutions, with exponential scale factors. De-

pending on the values of the coupling constants, both de Sitter-like solutions and bouncing

space-times are allows by Lovelock cosmology. The restriction to Chern–Simons gravity

sets the values of the coupling constants such that exponential scale factors with complex

exponents are forbidden. Then we generalized the prescription by including the spatial

curvature k in the starting line element. We found the solutions of the corresponding

equations of motion and showed that in the limit k = 0, only exponential solutions occur.

In Table IV the cosmological solutions are outlined.

On the other hand, the study of Lovelock gravity in a spherically symmetric background,

showed that several space-times can be obtained from the general d+ 1-dimensional La-

grangian (11.43). In five dimensions, analytic solutions can be found without imposing

any relation between the components of the line element P (r) and Q(r). Similarly to

the cosmological case, Ads-invariant Chern–Simons gravity can be obtained through an

appropriate choice of the coupling constants. We extended the treatment to d+ 1 dimen-

sions, and after imposing P (r) = 1/Q(r) we found exact solutions. It is worth remarking

that not all the solutions are physically relevant and, often, a careful selection of the free

parameters is necessary. On the other hand, in some other cases, physical solutions cannot

be recovered regardless of the values assumed by the integration constants. Spherically

symmetric solutions are outlined in Table V.
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The main purpose is to show that most of the theories coming from the general Lovelock

action can be perfectly suitable theories in more than four dimensions. This is worth

e.g. in view of the AdS/CFT correspondence, according to which the (d+1)-dimensional

AdS-invariant Lovelock action should be equal to a d-dimensional CFT. Although in four

dimensions GR perfectly fits the current observations at Solar System scales, in more

dimensions there are several other candidates capable of describing a higher-dimensional

universe.

In the final chapters, we showed that Chern–Simons theory can be also applied to elec-

tromagnetic theory and biological systems. The former application provides a massive

wave equations, while the latter is based on a newly proposed theory which aims to treat

DNA/RNA systems under the formalism of a topological theory.

Therefore, we tested the validity of the Chern-Simons theory as a method to schematize

the DNA and RNA sequences. After briefly overviewing the general formalism, we studied

the KRAS human gene, introducing some known mutations with the aim to compare the

reference sequence with the mutated one. To develop the formalism, the nitrogen bases

can be recast as quaternion fields, which combine in triplets as suggested by standard

biology. These triplets form a three-dimensional space of configurations that can be

described by means of the Chern-Simons three form. The expectation value of the only

observable of the theory, the Wilson Loop, provides the so called Chern-Simons current.

This latter gives a point-like information of the curvature of the genetic code, and can be

used in order to compute the curvature spectrum of a given string. If some triplet of the

initial sequence undergoes a change due e.g. to the replacement of a nitrogen basis, the

point-like curvature changes accordingly. Therefore, the introduction of some mutations,

yields a variation in the Chern-Simons current. The difference between the original and

the mutated sequence can be used to infer where DNA-DNA (or DNA-RNA) interactions

take place, or to predict the evolution probability towards a given configuration.

The result of the analysis of four different regions showed that common features are shared

by all strings. Specifically, in almost all cases, to any peaked regions it corresponds a
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known mutation, which often yields a new slighter curvature spectrum with respect to

the reference one. This can be theoretically motivated by physical considerations: the

most peaked regions represent non-equilibrium points, which tend to evolve towards a

stabler configuration of minimum energy. Consequently, it follows that the variations in

the curvature spectrum must occur in those regions with higher curvature, and the effect

of the variation must provide an alignment of curved points with the rest of the graph.

This means that mutations avoid abrupt variations in the overall trend, making neighbors

point to have similar values of current. As mentioned above, this happens for the best part

of cases; however, DNA and RNA evolution can also depend on other extrinsic factors that

cannot be taken into account by this method. The application of Chern–Simons theory to

DNA system, indeed, only relies on the intrinsic curvature assumed by biological systems

in the configuration space made of nitrogen bases.

The same prescription is then applied for more than 20K bases of COVID-19 virus, coming

from different countries. Due to intrinsic peculiarities of RNA viruses, mutation, recom-

bination, and re-assortment events are likely to occur, furtherly complicating genomic

analyses, with divergence and recombination. Using a genome wide approach, Bobay et

al. examined SARS-CoV-2 RNA, observing that recombination events account for ap-

proximately 40% of the polymorphisms, and gene exchange occurs only within strains

of the same subgenus (Sarbecovirus). Moreover, frequent mutations tend to increase the

likelihood of convergent mutations, in regions exposed to a major positive selection, caus-

ing sequences analogies that could be misinterpreted as recombination, and introduce

new diversifying mutations which might accumulate, masking past recombination events.

[230]. Genomic sequences of various SARS-CoV-2 strains from all the world are available

on specific platforms (eg. GISAID) and increasingly monitored to timely track SARS-

CoV-2 variants [231]; as large databases and systematic sequencing are required, irregular

sampling in time and space represents a crucial limitation. Genetic diversity observed in

SARS-CoV-2 populations across distinct geographic areas suggests independent events of

SARS-CoV-2 introduction occurred, with few exceptions including China, being the orig-
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inal source, and, to a lesser extent, the early-involved Italy [232]. Quantitatively, amino

acid mutations were found to be significantly higher in SARS-CoV-2 genomes in Europe

(43.07%) than in Asia (38.08%) and North America (29.64%) [231].

Unfortunately, due to the large amount of amino acids, it is not possible to compute the

overall trend of the curvature spectrum, which is necessary in order to adopt the same

considerations as KRAS human gene. However, the analysis shows that most mutations

occur where the slope of the Chern–Simons current takes extremely high values, which

accounts for peaked regions in the curvature spectrum. This result can be explained

considering the principle of minimum energy, according to which peaked points tend to

evolve towards a stabler configuration. On the other hand, we note that a few mutations

are also exhibited in correspondence of low current values. This may happen because some

regions with low current values, namely having a small curvature and being rather flat,

often are the border with areas with steep gradients of the current value denoting high

curvature. Then, in some cases even regions with very small curvature may be affected

by a close instability due to the presence of a current gradient nearby and this cause the

occurrence of a mutation. By comparing low current variations listed in Figs. 13-23

with Tables X-XIII, it turns out that 47% of points which exhibit low current variations

between mutated and original sequences, are unstable due to the presence of a current

gradient nearby.

As a final remark, the importance of the applications here discussed is twofold. On

the one hand, this method represents a first step aimed at comparing the Chern-Simons

theory with other known DNA schematization methods. On the other hand, it tests the

capability of a topological theory in schematizing DNA interactions/mutations.
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Table IV: Cosmological solutions in Lovelock and Chern–Simons gravity.
Case α0 α1 α2 k Scale Factor Dimension

Einstein–de Sitter 6= 0 6= 0 0 6= 0 a(t) = ±

√√√√√√ α1k d(d− 1)

α0 − α0 coth2
[√
α0

(
c1 +

t√
α1(d−1)d

)] Any

0 a(t) = a0e
±
√

α0
α1d(d−1) t

a(t) = a0e
±
√

α0
12α1

t
5

Pure Gauss–Bonnet 6= 0 0 6= 0 0 a(t) = a0 exp
{
± 4

√
−α0

d(d− 1)(d− 2)(d− 3)α2
t

}
a(t) = b(t) Any

a(t) = a0 exp
{
± 4

√
−α0
24α2

t

}
5

0 0 6= 0 6= 0 a(t) =
√
−k t Any

0 a(t) ∼ Const.

a(t) ∼ Const. 5

Lovelock 6= 0 6= 0 6= 0 0 a(t) = a0 exp

±
√√√√ 2α0

±
√
(d− 1)d [α2

1(d− 1)d− 4α0α2(d− 3)(d− 2)] + α1d(d− 1)
t

 Any

a(t) = a0 exp

±
√√√√ α0

±2
√

9α2
1 − 6α0α2 + 6α1

t

 5

0 6= 0 6= 0 6= 0 a(t) = ±
√
−α2k(d− 3)(d− 2)

α1
sinh

√α1

 t√
α2(d− 3)(d− 2)

+ c1

 Any

0 a(t) = a0 exp
{
±
√

α1
α2 (d− 2) (d− 3) t

}

a(t) = a0 exp
{
±
√
α1
2α2

t

}
5

Chern–Simons 1
5l4

2
3l2 1 0 a(t) = a0 exp

{
±1
l

√
1
6

(
1±

√
7
10

)
t

}
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Table V: Spherically symmetric solutions in Lovelock and Chern–Simons gravity.
Case α0 α1 α2 P (r)2, Q2(r) Dimension

Einstein–de Sitter 6= 0 6= 0 0 P (r)2 = 1/Q(r)2 = 1 + c1
rd−2 −

α0
α1d(d− 1)r

2 Any

P (r)2 = 1/Q(r)2 = 1 + c1
r2 −

α0
12α1

r2 5

Pure Gauss–Bonnet 6= 0 0 6= 0 P (r)2 = 1/Q(r)2 = 1± 1
rd/2−2

√√√√ c1

6α2(
d−1
d−4)

− rd α0

24α2(
d
d−4)

Any

P (r)2 = 1/Q(r)2 = 1±
√

1 + c1 −
α0

24α2
r4 5

P 2(r) = P 2
0

√
48α2 (2c1 + 1)∓ 4

√
6
√
α2 (24α2 + 96α2c1 − α0r4)− α0r4 Q2(r) =

2
(
12α2 ±

√
6
√
α2 (24α2 + 96α2c1 − α0r4)

)
α0r4 − 96α2c1

0 0 6= 0 P (r)2 = 1/Q(r)2 = 1 + c1

r
d
2−2

Any

Const. 5

Lovelock 6= 0 6= 0 6= 0 P (r)2 = 1/Q(r)2 = 1± 1
rd/2−2

√√√√√√ c1

6α2(
d−1
d−4)

+ rd

 α2
1

16α2
2(
d−2
d−4)

2 −
α0

24α2(
d
d−4)

− α1

4α2(
d−2
d−4)

r2 Any

P (r)2 = 1/Q(r)2 = 1− α1r2

4α2
±

√
3r4 (3α2

1 − 2α0α2) + 6α2c1

12α2
5

P (r)2 = P 2
0

√
−4c1 + α0r4 − 12α1r2

3
√
r4uw+ 2ux+

√
3
(
α0x− r2w(−3α1 + z)

)
−6α1 + α0r2 + 2z

y/2 [
6α1 − α0r2 + 2z

3
√
r4vw+ 2vx+

√
3 (r2w(z + 3α1) + α0x)

]s/2

Q(r)2 =
−3α1r2 + 12α2 ±

√
3
√

8c1α2 − 2α0α2r4 + 3α2
1r

4 + 48α2
2

α0
2 r

4 − 6α1r2 − 2c1

0 6= 0 6= 0 P (r)2 = 1/Q(r)2 = 1± 1
rd/2−2

√√√√√ c1

6α2(
d−1
d−4)

+
α2

1

16α2
2(
d−2
d−4)

2 r
d − α1

4α2(
d−2
d−4)

r2 Any

P (r)2 = 1/Q(r)2 = 1− α1r2

4α2
±

√
9α2

1r
4 + 6α2c1

12α2
5

P (r)2 = P 2
0
(
2c1 + α1r

2
)√√√√√√

√
16α2(α2 + c1) + α2

1r
4 + α1r2

8α2
2 + 2α2

(√
16α2(α2 + c1) + α2

1r
4 + 4c1

)
+ c1

(√
16α2(α2 + c1) + α2

1r
4 − α1r2

) ,

Q(r)2 =
−4α2 −

√
16α2(α2 + c1) + α2

1r
4 + α1r2

4c1 + 2α1r2

P (r)2 = P 2
0

√√√√√√8α2
2 + 2α2

(√
16α2(α2 + c1) + α2

1r
4 + 4c1

)
+ c1

(√
16α2(α2 + c1) + α2

1r
4 − α1r2

)
√

16α2(α2 + c1) + α2
1r

4 + α1r2

Q(r)2 =
−4α2 +

√
16α2(α2 + c1) + α2

1r
4 + α1r2

4c1 + 2α1r2

Chern–Simons 1
5l4

2
3l2 1 P (r)2 = 1/Q(r)2 = 1− r2

6l2 ±
√

7r4

360l4 +
c1
24

P (r)2 = P 2
0

√
−4c1 +

r4

5l4 −
8r2

l2


√

3
(
x

5l4 − r
2w

(
− 2
l2 + z

))
+ 3

√
u (r4w+ 2x)

r2
5l4 −

4
l2 + 2z


y/2  − r2

5l4 +
4
l2 + 2z

√
3
(
x

5l4 + r2w
(
z + 2

l2

))
+ 3

√
v (r4w+ 2x)


s/2

Q(r)2 =

√
24c1 + 14r4

5l4 + 144− 2r2

l2 + 12
−2c1 + r4

10l4 −
4r2
l2
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In this thesis we investigate applications of topological invariants in physics, with par-

ticular attention to gravity and biological systems. As the former is more standard and

straightforward, the latter represents an interesting task which deserves to be further de-

veloped in forthcoming works. Summing up, we first considered cosmological and spher-

ically symmetric applications of the Gauss–Bonnet topological invariants, starting from

f(G) gravity up to non-local and scalar-tensor theories. In the second part of this work

we dealt with Chern–Simons theory, finding out exact higher dimensional black holes and

cosmological solutions. Then we showed that Chern–Simons theories can be also consid-

ered in the framework of other fundamental interactions, such as electromagnetic theory

in odd dimensions. Specifically, a massive wave equation arises form this latter application

and the gauge invariance is preserved. Finally, we discussed an unconventional applica-

tion, that is the application to biological systems. Relying on previous works [206, 207],

we applied the formalism of such topological field theory to DNA/RNA systems. First

we studied the KRAS human gene, comparing original sequences with mutated ones.

Mutations with higher impact was then selected in the database BioMuta. The analysis

showed that mutations occur in correspondence of peaked regions of the curvature spec-

trum. In particular, mutations aim to avoid abrupt variations of the curvature, and the

overall spectrum goes towards a state of higher equilibrium. From this point of view,

the analogy with gravitational interaction (and, in general, with all physics branches) is

straightforward. Then we considered the application to SARS-CoV-2 strings, comparing

variants of COVID-19 coming from different countries. The sequencing of more than 20K

bases showed that most of mutations occur where the slope of the Chern–Simons current

takes extremely high values, which accounts for peaked regions in the curvature spectrum.

This result can be explained considering the principle of minimum energy, according to

which peaked points tend to evolve towards a stabler configuration. On the other hand,

note that few mutations are exhibited in correspondence of low currents. This is due to

the influence of neighbors points with higher curvature, which influence their surround-

ings and cause the mutation. Predictions inferred in the study of KRAS human gene are
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confirmed even in this case.

Generally, in this work we set out to show that the features of topological invariants can

be used in several contexts and can provide important results in different frameworks.

Relying on the topology of the system, regardless of the point-like geometry, topological

invariants are of particular interest for all those systems which manifest a non-trivial

structure. This is the case e.g. of modified theories of gravity, which often exhibit

hardly solvable field equations. Though exact solutions often cannot be found analytically,

topological theories can be helpful to settle issues suffered by GR in high regimes.

In future works we aim to consider astrometric and cosmological data provided by ex-

periments, in order to constraint the free parameters occurring in Gauss–Bonnet and

Chern-Simons gravity. This can be pursued by comparing exact solutions coming from

the above theories, with e.g. the fundamental plane of galaxies, Plank data of the early

Universe evolution, Mass-Radius correlation of neutron stars, late-time Universe expan-

sion and so on. Furthermore, other topological terms can be investigated in this context,

as well as Kretschmann scalar or Pontryagin density. The main purpose is to test whether

the applications to modified gravity can reduce the complexity of the equations of motion.

Regarding Chern–Simons gravity, other extensions can be considered, including torsion

or higher order terms. The application to biological system, finally, must be further de-

veloped by focusing on other DNA regions. From this point of view, another perspective

is to compare the point by point curvature of sequences in order to study the docking

among biological large molecules. Docking might occur in those regions having similar

values of curvature, that is Chern–Simons current.

In order to corroborate this method and to study other possible implications, we aim to

make a comparison with some standard modeling techniques, based on a probabilistic

vision of the biomolecules interaction. The intrinsic probabilistic aspect of these tech-

niques is necessary in order to handle systems made of a huge amount of particles. As

the evolution of a particle can be well described by quantum or classical mechanics,

many-bodies interactions are not such straightforward. Therefore, a statistical view of
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the biomolecule configurations is needed to infer the evolution of the system. Merging

the two different approaches (the one lying behind Chern–Simons Current with the more

conventional ones coming from bioinformatic), can implement the nowadays knowledge

of the biological scenario. On the one hand, using topological field theories to describe

DNA configuration can provide the exact position in which the mutation takes place. On

the other hand, once the position of the mutation is identified, bioinformatics can predict

the probabilistic evolution and the clinical impact of such mutation. Moreover, also the

docking between macro-molecules can be further developed, since the probabilistic vision

provided by bioinformatic techniques can be combined with the prediction given by topo-

logical field theories. In this regard, the final purpose is to develop a coherent scheme

capable of predicting where and when a disease could manifest.
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A
Sequences used in Chap. 13

A.1 Mutations in KRAS Sequence

KRAS HUMAN

SOURCE FOR THE SEQUENCES: Genome Browser

SOURCE FOR THE MUTATIONS: BioMuta

ORIGINAL SEQUENCE 1: Chr12: 25,245,274 - 25,245,384

CUCUAUUGUUGGAUCAUAUUCGUCCACAAAAUGAUUCUGAAUUAGCUG

UAUCGUCAAGGCACUCUUGCCUACGCCACCAGCUCCAACUACCACAAG

UUUAUAUUCAGUCAU

First set of mutations (Fig. 7)

Table VI: Comparison between reference triplet and mutated one in KRAS, Chr12:

25,245,274 - 25,245,384.
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CUCUAAUGUUGGAUCAUAUUGGUCCACAAAAUGAUUCUGAUUUAGCUG

UAUCGUCAAGACACUCUUGCUUACGCCAACAGCUCCAACUACCCCAAG

AUUAUAUUCAGUCAU

Second set of mutations (Fig. 8)

Table VII: Comparison between reference triplet and mutated one in KRAS, Chr12:

25,245,274 - 25,245,384.

CUCUAUUGUUGGAUCAUAUUGGUCCACAAAAUGAUUCUGAUUUAGCUU

UAUCGUCAAGACACUCCUGCCUACGCCAACAGCUCCAACUACCCCAAG

GUUAUAUUUAGUCAU

ORIGINAL SEQUENCE 2: Chr12: 25,215,468 - 25,215,560

CACACAGCCAGGAGUCUUUUCUUCUUUGCUGAUUUUUUUCAAUCUGUA

UUGUCGGAUCUCCCUCACCAAUGUAUAAAAAGCAUCCUCCACUCU
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Third set of mutations (Fig. 9)

Table VIII: Comparison between reference triplet and mutated one in KRAS, Chr12:

25,215,468 - 25,215,560.

CACACAGCCAGGAGUCUGUUCUUCUUUGCUGAUGUUUUUCAAUCUGUA

UUGUUGGAUCUCCUUCACCAAUGCAUAAAAAUCAUCCUCCACUGU

ORIGINAL SEQUENCE 3: Chr12: 25,227,263-25,227,379

AGUAUUAUUUAUGGCAAAUACACAAAGAAAGCCCUCCCCAGUCCUCAU

GUACUGGUCCCUCAUUGCACUGUACUCCUCUUGACCUGCUGUGUCGAG

AAUAUCCAAGAGACAGGUUUC

Fourth set of mutations (Fig. 10)

Table IX: Comparison between reference triplet and mutated one in KRAS, Chr12:

25,227,263-25,227,379.
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AGUAUUAUUCAUGGCAAAUACACAAAGAAAGCCCUCCCCAGUCAUCAU

GCACUGGCCCAUCAUUGCACUGUGCUCAUCGUGACCUGCUGUGUUGAG

AAUAUCCAAGAGACGGGUUUC

Mutations in SARS-CoV-2 Sequences

Comparison Between Original Sequences and Mutated Ones

The pie graphs of Figs. 13-23 show the percentage of large and small values of current

variations; large variations (> 100%∨ < −100%) are labeled by light blue squares, small

variations ([-11%;11%]) by solid red, other intermediate values by grey lines.

Figure 13: Comparison between 19A and 19B sequences, with related Chern-Simons

current and percentage variation.

Figure 14: Comparison between 19A and 20A sequences, with related Chern-Simons

current and percentage variation.
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Figure 15: Comparison between 20A and 20B sequences, with related Chern-Simons

current and percentage variation.

Figure 16: Comparison between 20A and 20C sequences, with related Chern-Simons

current and percentage variation.

Figure 17: Comparison between 20A and 20E sequences, with related Chern-Simons

current and percentage variation.
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Figure 18: Comparison between 20B and 20D sequences, with related Chern-Simons

current and percentage variation.

Figure 19: Comparison between 20B and 20F sequences, with related Chern-Simons

current and percentage variation.

Figure 20: Comparison between 20B and 20I sequences, with related Chern-Simons

current and percentage variation.
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Figure 21: Comparison between 20C and 20G sequences, with related Chern-Simons

current and percentage variation.

Figure 22: Comparison between 20C and 20H sequences, with related Chern-Simons

current and percentage variation.
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Figure 23: Details of the whole set of mutations occurring in all sequences.
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Chern-Simons Current Variations in the Surroundings of Ex-

pected Mutations

Table X: Chern-Simons currents and their corresponding percentage variations (with

respect to the surrounding points) in 19A sequence of SARS-CoV-2 virus.

Large values are highlighted in red.
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Table XI: Chern-Simons currents and their corresponding percentage variations (with

respect to the surrounding points) in 20A sequence of SARS-CoV-2 virus.

Large values are highlighted in red.
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Table XII: Chern-Simons currents and their corresponding percentage variations (with

respect to the surrounding points) in 20B sequence of SARS-CoV-2 virus.

Large values are highlighted in red.
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Table XIII: Chern-Simons currents and their corresponding percentage variations (with

respect to the surrounding points) in 20C sequence of SARS-CoV-2 virus.

Large values are highlighted in red.
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Table XIV: List of amino acids of 19A sequence in the spike protein, with corresponding

positions, Chern-Simons currents and their variations with respect to surrounding

positions. Listed amino acid are those involved in forming the tertiary structure,

according to Ref. [229].
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Table XV: Interaction between surrounding amino acids with respect to the tertiary

structure, with corresponding Chern-Simons currents and percentage variations.
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B
Noether Symmetry Approach

The Noether symmetry approach is widely used to deal with cosmologies coming from

different theories of gravity. For example, in [153, 233, 234, 235, 236, 237, 238], the

approach is applied to f(R) gravity. In [239, 240, 241, 242, 243, 244], extended f(T )

TEGR models have been discussed in cosmology and spherical symmetry. In [74, 245],

the Noether theorem has been used to study f(R,G) dynamics. Scalar-tensor actions

have been studied in [167, 246, 247, 248, 249], where the coupling and the potential are

found by symmetry considerations. The basic formulation of the Noether theorem for

dynamical systems is in turn presented in [250, 251, 252], where the foundations of the

approach are outlined.

Noether symmetries are a subclass of Lie point symmetries, applied to dynamical systems

described by a Lagrangian density. Noether’s theorem affirms that if

X = ξ∂t + ηi∂qi , (B.1)

is a generator of infinitesimal point transformations, then the Lagrangian density is in-

variant under X if and only if

X [1]L+ ξ̇L = ġ , (B.2)

with g being a function of the affine parameter t and the generalized coordinates qi and
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X [1] is the first prolongation of Noehter’s vector, defined as:

X [1] = ξ
∂

∂t
+ ηi

∂

∂qi
+ ηi [1]

∂

∂q̇i
= ξ

∂

∂t
+ ηi

∂

∂qi
+ (η̇i − q̇iξ̇) ∂

∂q̇i
. (B.3)

Generally, for Lagrangian involving higer-order derivatives, it is possible to use the n-

prolongation of the Noether vector, which has the form

X [n] = ξ
∂

∂t
+ ηi

∂

∂qi
+ ηi [1]

∂

∂q̇i
+ ... + ηi [n]

∂

∂ d
nqi

dtn

, (B.4)

with

ηi [n] =
dηi [n−1]

dt
− ξ̇ d

nqi

dtn
. (B.5)

Here the parameter t represents any affine parameter and it is chosen depending on the

symmetry of the space-time.

It is easy to extend Eqs. (B.2) and (B.3) to a general Lagrangian density L that depends

on xµ parameters, such as the space-time coordinates. Specifically, the prolongation (B.3)

becomes

X [1] = ξµ∂µ + ηi
∂

∂qi
+ (∂µη

i − ∂µqi∂νξν)
∂

∂(∂µqi)
(B.6)

and Noether’s theorem (B.2)

X [1]L + ∂µξ
µL = ∂µg

µ . (B.7)

In more details, let us consider the following transformation

L (xµ, qi, ∂µqi)→ L (x̃µ, q̃i, ∂µq̃i) , (B.8)

where transformation of xµ and qi are given by:


x̃µ = xµ + εξµ(xµ, qi) +O(ε2) ,

q̃i = qi + εηi(xµ, qi) +O(ε2) .
(B.9)

190



B. Noether Symmetry Approach

The derivatives of the generalized coordinates qi transform as

dq̃i

dx̃µ
=

dqi + εdηi

dxµ + εdξµ
=

(
dqi

dxµ
+ ε

dηi

dxµ

)(
1 + ε

dξν

dxν

)−1
∼
(
dqi

dxµ
+ ε

dηi

dxµ

)(
1− ε dξ

ν

dxν

)
,

(B.10)

which at the first order in ε have the form

dq̃i

dx̃µ
=

dqi

dxµ
+ ε

(
dηi

dxµ
− dqi

dxµ
dξν

dxν

)
+O(ε2) = ∂µq

i + ε
(
∂µη

i − ∂µqi∂νξν
)
+O(ε2) .

(B.11)

From Eq. (B.9) and Eq. (B.11) we can construct the generator of these transformations,

that reads

X = ξµ∂µ + ηi
∂

∂qi
. (B.12)

Now, if the transformations (B.9) and (B.11) hold, the equations of motion, i.e. the

Euler-Lagrange equations, are invariant, and thus there exists a function gµ = gµ(xµ, qi)

such that the following condition holds

dx̃µ

dxµ
L̃ = L + ε∂µg

µ . (B.13)

The derivative of Eq. (B.13) with respect to ε provides

L̃
∂

∂ε

dx̃µ

dxµ
+
dx̃µ

dxµ
∂L̃

∂ε
= ∂µg

µ , (B.14)

and can be explicitly calculated by means of the relation (B.9), which yields

dx̃µ

dxµ
=
∂x̃µ

∂xµ
+
∂x̃µ

∂qi
∂µq

i = 1 + ε
∂ξµ

∂qi
∂µq

i , (B.15)

∂

∂ε

dx̃µ

dxµ
=

d

dxµ

(
∂x̃µ

∂ε

)
= ∂µξ

µ , (B.16)

∂L̃

∂ε
=
∂L̃

∂x̃µ
∂x̃µ

∂ε
+
∂L̃

∂q̃i
∂q̃i

∂ε
+

∂L̃

∂(∂µq̃i)

∂(∂µq̃i)

∂ε
. (B.17)

With the help of Eq. (B.11), we can replace Eqs. (B.15), (B.16) and (B.17) into Eq.
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(B.14) and obtain

[
ξµ∂µ + ηi

∂

∂qi
+ (∂µη

i − ∂µqi∂νξν)
∂

∂(∂µqi)
+ ∂µξ

µ

]
L = ∂µg

µ , (B.18)

that is nothing else but (B.7). It is worth noticing that the associated Noether integral,

which is the conserved quantity, is given by

jµ = − ∂L

∂(∂µqi)
ηi +

∂L

∂(∂µqi)
∂νq

i ξν −L ξµ + gµ . (B.19)

In particular, for spherical symmetry, where the metric only depends on r, Eqs. (B.7)

and (B.6) acquire the form:

X [1] = ξ(r, qi)∂r + ηi(r, qi) ∂
∂qi

+ [∂rη
i(r, qi)− ∂rqi∂rξ(r, qi)]

∂

∂(∂rqi)
, (B.20)

X [1]L + ∂rξ(r, qi)L = ∂rg(r, qi) , (B.21)

while in cosmology they reduce to Eqs. (B.3) and (B.2). It is worth analyzing a par-

ticular subcase of Noether’s theorem, by means of which it is possible to select internal

symmetries. To this purpose, let us focus on the specific condition (B.2), only involving

the affine parameter t. By setting ξ = g = 0, we get the non-extended Noether vector X,

which provides symmetries not depending on the coordinates transformation. In such a

case, Eq. (B.2) and the corresponding conserved quantity can be rewritten as:

[
ηi

∂

∂qi
+ η̇i

∂

∂q̇i

]
L = 0 → J = ηi

∂L
∂q̇i

. (B.22)

The former equation can be recast in terms of Lie derivative as

LXL = 0 . (B.23)

It means that the Lie derivative of the Lagrangian along the flux of vector X, vanishes
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identically if such a Lagrangian contains symmetries. Thus the vector field X can be

used to introduce a cyclic variable into the system, by means of a methodical procedure.

Indeed, by considering the transformation

qi → Qi(qj) , (B.24)

and the inner derivative of the new variables Qi

iXdQ
i ≡ δqj

∂Qi

∂qj
, (B.25)

the non-extended Noether vector can be written in terms of the variables Qi as

X ′ = (iXdQ
k)

∂

∂Qk
+
∂(iXdQ

k)

∂t

∂

∂Q̇k
.

Imposing

iXdQ
1 = 1 , and iXdQ

i = 0 , i 6= 1, (B.26)

the infinitesimal generator of the variable Q1 is constant and the conserved quantity is

J = ∂Q̇iL = πQ1 , (B.27)

where πQ1 is the conserved momentum. In this way, the conjugate momentum related

to Q1 is a constant of motion and, therefore, Q1 is a cyclic variable. Summing up, the

relations (B.26) allow to replace a variable with the corresponding integral of motion.
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Canonical Quantization of Gravity

A quantum description of gravity needs to be developed under the Hamiltonian point of

view, as a first step. In this way, in analogy to quantum mechanics, one can impose the

commutation relations to the quantized Hamiltonian and find the wave function of the

Universe. It cannot be intended as a standard wave function with the same meaning as any

other QFT. The main reason is due to the standard probabilistic interpretation of the wave

function as a probability amplitude, whose squared modulus integrated over the space

provides the probability to get a certain configuration. Such an interpretation requires

many copies of the same system to make sense, otherwise the concept of probability itself

stops being valid. This cannot be applied to gravity and cosmology, since we do not have

a final theory of quantum gravity and a self-consistent interpretation of probability for the

space-time. Nevertheless, although the meaning of the wave function is still unclear, many

interpretations have been given over the years. For instance, according to the so called

Many World Interpretation, the wave function comes from quantum measurements that

are simultaneously realized in different universes without, therefore, showing any collapse

of the wave function as in standard quantum mechanics [253]. Another interpretation was

provided by Hawking, according to whom the wave function is supposed to be related to

the probability for the early Universe to develop towards our classical Universe [12, 13,

254].

In this scheme of interpretation, J. B. Hartle proposed a criterion to gain information

from the wave function, based on its trend in the late-time. Specifically, according to

the Hartle Criterion, the wave function must have an oscillating behavior in the classi-
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cally permitted area, namely whereas it describes our classical Universe [12]. In principle,

thanks to the Hartle Criterion and in the WKB approximation, it is possible to write

the wave function in terms of the classical action S0 as ψ ∼ eiS0 . In this way, thanks

to the Hamilton–Jacobi equations, we recover the same equations of motion provided by

the cosmological Lagrangian and, therefore, the same trajectories. These results make

quantum cosmology an important connection point between classical and quantum grav-

ity; while waiting for a complete theory of quantum gravity, the particular application

to cosmology represents a sort of interpretative model capable of reducing the infinite-

dimensional superspace coming from the ADM formalism to minisuperspaces where the

equations of motion can be interpreted and, eventually, integrated. However, quantum

cosmology does not aim to provide UV and IR quantum corrections, since cannot settle

e.g. the renormalizability problem or the lack of a Yang-Mills description. Therefore, the

canonical quantization of gravity is not a complete theory, but only aims to solve part of

the high-energy issues arising in standard GR. Without the claim of completeness, let us

discuss the basic foundations of the ADM formalism, whose main features can be found

in Refs. [255, 256, 257].

In the general form, the Hilbert–Einstein action includes the extrinsic curvature tensor

of the three-dimensional spatial surface Kij , the cosmological constant Λ and the four-

dimensional scalar curvature R. It reads as [258, 259]:

S =
1
2

∫
V

√
−g[R− 2Λ]d4x+

∫
∂V

√
hK dx3 . (C.1)

Here V represents the manifold considered and ∂V the three-dimensional spatial surface,

while the scalar K is defined through the extrinsic curvature tensor Kij as K = hijKij ,

where hij is the spatial metric. Dealing with the three-dimensional surface is important in

sight of the (3+1) decomposition of the metric gµν , so that the spatial coordinates account

for the dynamical degrees of freedom evolving in the time-line. According to the foliament

method, a coordinates transformation Xα → X ′α can be seen as a transformation of

hypersurfaces with local coordinates xi. To any coordinate x0 it corresponds a space-like
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C. Canonical Quantization of Gravity

hypersurface x0 = k, and the variation of x0 provides the foliament required. Moreover,

to any point of the hypersurface, it corresponds a three-dimensional vectors basis Xα
i ,

tangent to the surface and perpendicular to the normal surface vector nν . In light of

these considerations, the following relations hold:

gµνX
µ
i n

ν = 0 , gµνn
µnν = −1 . (C.2)

The first equation establishes the orthonormality between the vector nν and the set of

coordinates Xα, while the second is nothing but the parallelism condition between two

unitary vectors nν and nµ. The Deformation Tensor can be defined as the time derivative

of the coordinates Xα:

Nα = Ẋα = ∂0X
α(x0,xi) , (C.3)

and can be decomposed in the basis of tangent and orthonormal vectors by means of the

Lapse Function N i and the Shift Function N :

Nα = Nnα +N iXα
i . (C.4)

With these definitions in mind, the metric tensor can be written in terms of N and N i

as:

gµν =

−(N2 −NiN i) Nj

Nj hij

 . (C.5)

Neglecting the cosmological constant Λ and the integral over the three-dimensional sur-

face, the Lagrangian becomes:

L =
1
2
√
hN

(
KijKij −K2 + (3)R

)
+ t.d. , (C.6)

where (3)R stands for the intrinsic three-dimensional curvature and h is the determinant

of the three-dimensional metric hij . Given the Lagrangian of the theory and considering

that the dynamical degrees of freedom are N , N i and hij , the conjugate momenta can be
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written as:

π ≡ δL

δṄ
= 0 , πi ≡ δL

δṄi
= 0 ,

πij ≡ δL

δḣij
=

√
h

2
(
Khij −Kij

)
, (C.7)

so that, by Legendre transforming the Lagrangian (C.6), the Hamiltonian density turns

out to be

H = πij ḣij −L , (C.8)

satisfying the constraints


π̇ = −{H, π} = δH

δN
= 0 ,

π̇i = −{H, πi} = δH
δNi

= 0 ,
(C.9)

where H =
∫

H d3x .

As usual method to quantize the theory, the first step consists in transforming the dy-

namical variables into operators and the Poisson brackets in commutators. Therefore, by

rewriting the momenta definitions (C.7) as

π̂ = −i δ
δN

, π̂i = −i δ

δNi
, π̂ij = −i δ

δhij
, (C.10)

the following commutation relations hold:



[ĥij(x), π̂kl(x′)] = i δklij δ
3(x− x′) ,

δklij =
1
2(δ

k
i δ
l
j + δliδ

k
j ) ,

[ĥij , ĥkl] = 0 ,

[π̂ij , π̂kl] = 0 .

(C.11)
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Finally, the first relation of Eq. (C.9), in the canonical quantization scheme, becomes

Ĥ|ψ >= 0 . (C.12)

The above equations, after considering the form of the Hamiltonian as a function of

dynamical variables and momenta, leads to a Schroedinger-like equation of the form

(
D2 − 1

4
√
h (3)R

)
|ψ >= 0 , (C.13)

called WDW equation. In Eq. (C.13), ψ is the wave function of the Universe, which

depends on the spatial metric hij and describing the evolution of the gravitational field.

The operator D2, is defined as

D2 =
1√
h
(hikhjl + hilhjk − hijhkl)

δ

δhij

δ

δhkl
. (C.14)

In non-relativistic quantum mechanics, the scalar product
∫
ψ∗ψ dx3 is everywhere posi-

tive, so that an infinite-dimensional Hilbert space can be defined. The main problem re-

lated to the wave function of the Universe is that it is not possible to define an everywhere

positive scalar product, due to the hyperbolic nature of Eq.(C.13). As a consequence, no

probabilistic meanings can be assigned to the wave function.

Nevertheless, the wave function may represent an important quantity capable of giving

information about the early stages of the Universe and of explaining the nowadays cosmic

evolution. Regarding the latter point, the oscillating wave function in the minisuperspaces

allows to recover the Hartle Criterion.
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D
Gauge-Invariance and Field

Equations of the Chern–Simons

SU(N)-Invariant Action

We show how to perform the variation of the SU(N) invariant Chern-Simons action. It

turns out that only a two-dimensional boundary term survives after varying the action

with respect to the gauge connection, thus proving the gauge-invariance of the theory.

The Chern–Simons SU(N)-invariant three-dimensional action

S =
∫
Tr

[
AdA+

2
3AAA

]
, (D.1)

can be equivalently written in coordinates representation as

S = Tr
[∫

εijk
(
Ai∂jAk +

2
3AiAjAk

)
d3x

]
. (D.2)

The second term is the so called Wess-Zumino-Witten term, whose variation is:

δ
(
εijkAiAjAk

)
= 3εijkδAiAjAk. (D.3)

Action (D.1) is holographically dual to the 2-dimensional Wess-Zumino-Witten model,

which describes propagating strings on the given group. Furthermore, considering the
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relation

εijkAjAk = −εijk∂jAk, (D.4)

and replacing Eq. (D.4) into Eq. (D.3), this latter yields:

δ
(
εijkAiAjAk

)
= 3εijkδAi∂jAk. (D.5)

On the other hand, the variation of the first term of Eq. (D.1) can be recast as:

δSAdA = Tr
[∫ (

εijkδAi∂jAk + εijkAi∂jδAk
)
d3x

]
. (D.6)

Integrating the quantity εijkAi∂jδAk, two contributions arise, which can be understood

as a boundary and a bulk term, respectively. Therefore Eq. (D.6) takes the form:

δSAdA = Tr
[∫

εijkδAi∂jAk d
3x+

∫
B
eikAiδAk d

2x−
∫
εijk∂jAiδAkd

3x
]

. (D.7)

By using the anti-symmetric property of the Levi-Civita tensor, the action becomes

δSAdA = Tr
[
2
∫
εijkδAi∂jAk d

3x+
∫
B
eikAiδAk d

2x
]

. (D.8)

Merging Eq. (D.5) and Eq. (D.8), it turns out that the final variation only yields the

term on the boundary:

δS = Tr
[∫
B
eikAiδAk d

2x
]

, (D.9)

which makes the action quasi-gauge Invariant. In order to find the field equations on

SU(N), the action must be varied with respect to the gauge connection A. First, notice

that this latter can be generally written in terms of the group element g as

Ai = g−1∂ig. (D.10)
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Thus, the variation of the connection with respect to g reads

δAi = −g−1δg Ai + g−1∂iδg. (D.11)

The variation of the Chern-Simons action can be split in two contributions, namely

δS = δSAdA + δSAAA, (D.12)

that will be separately evaluated in what follows.

1) Term A dA

In coordinates representation, the first term of Eq. (D.12) can be written as

δSAdA = Tr
[∫

εijkδAi∂jAk d
3x+

∫
εijkAi∂jδAk d

3x
]

. (D.13)

It can be easily showed that the first term of the RHS in Eq. (D.13) vanishes identically.

To this purpose, notice that the identity (D.11) yields

∫
εijkδAi∂jAk d

3x =
∫
εijk

(
−g−1Ai∂jAk δg + g−1∂jAk∂iδg

)
d3x. (D.14)

Integrating out the pure boundary ∂iδg and using again the relation (D.10), the above

variation provides:

∫
εijkδAi∂jAk d

3x =
∫
εijk

(
−g−1Ai∂jAk + g−1∂igg

−1∂jAk
)
δg d3x =

=
∫
εijk

(
−g−1Ai∂jAk + g−1Ai∂jAk

)
δg d3x = 0.

(D.15)

Therefore, the only term surviving in Eq. (D.13) is:

δSAdA = Tr
[∫

εijkAi∂jδAk d
3x
]

, (D.16)
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which can be made explicit by means of the relation (D.16), providing

∫
εijkAi∂jδAk d

3x =

=
∫
εijkAig

−1
(
∂jg g

−1Akδg− ∂jAkδg−Ak∂jδg− ∂jg g−1∂kδg
)
d3x.

(D.17)

Using Eqs. (D.10) and (D.4), it turns out that the last two terms in the above equation

cancel out, so that we finally have

δSAdA = Tr
[∫

εijkAi∂jδAk d
3x
]
= Tr

[
−2

∫
εijkg−1Ak∂iAj δg d

3x
]

. (D.18)

2) Term AAA

In order to show that the variation of the Wess-Zumino-Witten term yields a boundary

term, let us consider Eq. (D.3), by means of which the quantity δSAAA takes the form:

δSAAA = Tr
[
2
∫
εijkδAiAjAk d

3x
]

. (D.19)

The above equation can be equivalently written in terms of the element g, as

δSAAA = Tr
[
2
∫
εijkg−1 (−Aiδg+ ∂iδg)AjAk d

3x
]

. (D.20)

Integrating by parts and neglecting the boundary term, the variation of the action yields

δSAAA = Tr
[
2
∫
εijk

(
−g−1AiAjAk − ∂i(g−1AjAk)

)
δg d3x

]
=

= Tr
[
2
∫
εijkg−1 (−AiAjAk +AiAjAk − ∂iAjAk − ∂iAkAj) δg d3x

]
,

(D.21)

which vanishes due to the anti-symmetric property of the Levi-Civita symbol. Merging

Eqs. (D.18) and (D.21), the variation of the total Chern-Simons three-dimensional action
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finally reads

δSCS = Tr
[
−2

∫
εijkg−1Ak∂iAj δg d

3x
]
= 0. (D.22)
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E
Values of Constants in Chap. 11

Table XVI: Definitions of the parameters occurring in the

general five-dimensional solutions of Lovelock and Chern–Simons gravity.
Lovelock Gravity Chern–Simons Gravity

w 3α2
1 − 2α0α2

14
15l4

z
√
c1α0 + 9α2

1

√
20 + c1

5l4

u
√
c1α0α2

1 + 6α2
1w− 2α1z w+ 4α2

0α
2
2

2
15

√
149 + 5c1 − 14

√
5
√

20 + c1
l8

y
(−zα1 +w)

u

7−
√

5
√

20 + c1√
149 + 5c1 − 14

√
5
√

20 + c1

s −z α1 +w

v

−7−
√

5
√

20 + c1√
149 + 5c1 + 14

√
5
√

20 + c1

v
√
c1α0α2

1 + 6α2
1w+ 2α1z w+ 4α2

0α
2
2

2
15

√
149 + 5c1 + 14

√
5
√

20 + c1
l8

x 4α2(c1 + 6α2) 4(c1 + 6)
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