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Introduction

Within the cosmos of group theory, the class of Abelian groups has always

been archetypal. As a matter of fact, renouncing commutativity, which we

are all accustomed to from the early stages of our mathematical education,

often demands a signi�cant increase of sophistication in the arguments used.

I believe it is fair to say that the possibility of a deeper and more complete

description of the structure of Abelian groups derives from two, among oth-

ers, of their astounding features: the existence of the torsion subgroup and

the fact that all subgroups are normal. As a matter of fact, the former makes

distinguishing the study of periodic groups and torsion-free groups a feasible

approach: if one is interested in the theory of in�nite groups with an atten-

tion to �niteness conditions, this is especially interesting when considered

together with the fact that periodic Abelian groups are locally �nite.

On the other hand, the latter is what really enables, on a more abstract

level, to approach studying groups with a divide et impera philosophy, which

is what often ought to be done if the structure of the group is to be de-

scribed. In other words, while studying the structure of a group G, one can

expect to recover some information about G from what is known about one

of its normal subgroups H and the quotient G/H. That is why, for example,

groups that have no proper non-trivial normal subgroup, i.e. simple groups,

are often conceptualized as atoms in group theory. This is not necessarily

intended in the sense that they are building blocks for any other groups,

but, in the original etymology sense of the word, as groups that cannot be

described by further breaking them down into smaller pieces.

I believe it is amazing how often it happens in group theory, that some kind

of obstruction to the mathematician's line of reasoning can be localized to a
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subgroup H of the studied group G: the argument can then be put forward

in the quotient G/H of the group modulo that subgroup, with the hope of

then being able to somehow recover information about G itself. With this

idea in mind, it is reasonable to expect that groups that are rich in normal

subgroups have a structure which is easier to describe.

A branch of group theory has had the class A of abelian groups as its

archetype in this sense: for classes of groups that are, in some sense, con-

ceptually close to abelianity, how many of the usual arguments for abelian

groups can be adapted? Which properties are preserved?

It is, in fact, fairly early in the history of group theory that non-Abelian

groups with all subgroups normal were �rst considered. They were studied

in the �nite case by Richard Dedekind, culminating in ( [7], 1897), and then

in the in�nite case by Reinhold Baer, with ( [3], 1933). In honor of the for-

mer, they are nowadays often called Dedekind groups.

The easieast and smallest example of a non-Abelian Dedekind group is the

quaternion group, and that is why non-Abelian Dedekind groups are often

referred to as Hamiltonian groups, to honor the work of Hamilton in the con-

text of quaternions. The structure of these groups were completely described

in the aforementioned papers. In all truth, they were shown to be extremely

close, in some conceptual sense, to being Abelian, since in any Hamiltonian

group G it is always possible to identify a normal subgroup Q isomorphic to

the quaternion group, Q is a direct factor in the group and the quotient G/Q

is Abelian.

As a matter of fact, at the beginning of their famous 1903 article on minimal-

non-Abelian (�nite) groups, i.e. non Abelian (�nite) groups whose proper

subgroups are Abelian, Miller and Moreno (see [40]) write

�Several years ago Dedekind and others investigated the groups in which

every subgroup is invariant, and found that the theory of these groups

presents remarkably few di�culties except such as are involved in Abelian

groups".

What Dedekind had done was a small step outside the class of Abelian groups,

but, as Miller and Moreno immediately recognized pointing out Dedekind's
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work, it was an absolutely crucial step into understanding which ideas from

Abelian group theory could be brought outside in the relatively unknown

panorama (but not completely, of course, and the de�nitions of ideas like

the commutator subgroup and solubility were already around earlier) of non-

Abelian groups. These steps were, among others, at the start a large journey

in group theory, investigating what can be said about groups that are not

far from being Abelian, in the sense that they share with Abelian groups the

property of having a subgroup lattice that is rich in normal subgroups, in

some broad sense to be speci�ed from time to time.

Even the abovementioned concept of minimal-non-Abelian groups, which es-

pecially in �nite group theory are also often called Miller-Moreno groups to

honor the authors, was an important step in this direction. In fact, a com-

monality between the two articles that was pointed out by Miller and Moreno

themselves is that both Dedekind groups and minimal-non-Abelian (�nite)

groups are solvable.

In 1966, then, Romalis and Sesekin introduced and studied metahamiltonian

groups, i.e. groups whose non-normal subgroups are Abelian (see [47]). This

uni�ed the e�orts of Dedekind and Miller and Moreno, because of course

this class of groups was large enough to include all hamiltonian groups but

also all minimal-non-Abelian groups. They studied these groups in the �nite

and in�nite case and immediately they understood that not all metahamil-

tonian groups are solvable. As a matter of fact, in more modern terms, we

know that a counteraxample to the above statement is given by the so-called

Tarski monsters, i.e. simple in�nite groups all of whose proper non-trivial

subgroups are cyclic of order p, for a given prime p. The existence of these

groups was conjectured by the polish matematician Alfred Tarski and then

they were actually constructed, with choice of a large enough prime p, by

Alexander Yu. Olshanskii in 1979 (see [42]). These groups are of course

metahamiltonian and not solvable. Romalis and Sesekin's workaround was

to consider locally solvable metahamiltonian groups and within that class of

groups they were able to prove solubility and �niteness of the commutator

subgroup.

This class of groups proved itself able to capture the attention of many group
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theorists in the following decades, as it inspired the birth of many similarly

de�ned concepts and papers on related topics, further generalizing meta-

hamiltonianity from many points of view. It is the strange matrimony of two

di�erent conditions on subgroups, because in a metahamiltonian group every

subgroup is either normal, which is an embedding property of subgroups,

or Abelian, which is an absolute property of groups. Many new classes of

groups were de�ned with the same idea, of studying a group in which all

subgroups either have some kind of good embedding property or some kind

of good absolute property. In this text, in the �rst chapter we will present

many similarly inspired group classes that have been introduced in the last

decades and have a fame of their own (and, still, we will only be able to

discuss a small part of them), before moving on to an attempt to abstract,

generalize and adapt some of the techniques used to a whole collection of

group classes de�ned with the same idea: non-normal subgroups satisfy a

property X.

Of course, if a group G has the property that all non-normal subgroups sat-

isfy a group-theoretical property X, then the same idea can also be expressed

in a logically equivalent way by stating that non-X-subgroups of G are nor-

mal. This opens the door to a di�erent way of generalizing metahamiltonian

groups: that is, by substituting the concept of normality in their de�nition

with some weaker embedding property imposed to the non-abelian subgroups.

In the second chapter of this text we will explore a couple of ways that this

has been done in the past, by restricting the numerosity (resp. the index)

of the normalizers of non-abelian groups or and then we will retrace a path

similar to the one traced in chapter one, discussing the arguments that can

be abstracted, generalized and adapted to deal with groups whose non-X

subgroups have some restrictions of normalizers.

Among other things, this thesis collects results from two of my published

articles (see [22], [23]) together with a couple of unpublished results at the

very end, in the last two sections.



Chapter 1

Groups with restrictions on

non-normal subgroups

De�nition and key properties of metahamiltonian groups

G. M. Romalis and N. F. Sesekin introduced and intensively studied meta-

hamiltonian groups in a series of three articles in 1966, 1968 and 1969

(see [47], [48] and [49]). A group G is called metahamiltonian if every non-

normal subgroup H of G is Abelian. In symbols, if we denote the class of all

Abelian groups with the letter A of the Gothic font we can write that G is a

metahamiltonian group if and only if

∀H ≤ G,H 6 G⇒ H ∈ A.

While a trivial exercise in basic logic, we also state the contrapositive state-

ment, i.e. �G is metahamiltonian if and only if every non-Abelian subgroup

H of G is normal� as the two di�erent ways of stating it inspired independent

generalizations of the concept later in the mathematical literature.

We will denote the class of all metahamiltonian groups by the letter H. Of

course, any subgroup or homomorphic image of a metahamiltonian group is

still a metahamiltonian group: in other words the class is closed with respect

to the group class operators S and H, but it is far from being closed with re-

spect to extensions. As a matter of fact, even the direct product G = H1×H2

9
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of two copies H1, H2 of the symmetric group S3 in three elements, which is

obviosuly a �nite metahamiltonian group, is not a metahamiltonian group.

The class of metahamiltonian groups contains all Abelian, minimal-non-

Abelian and hamiltonian groups but we could also say, in some sense, it is

fairly larger than those and the dihedral group D12 of order 12 is the small-

est example of a metahamiltonian group that is not minimal-non-Abelian or

hamiltonian.

A natural question leading the investigation into metahamiltonian groups

might be, in naive terms, �How far is a metahamiltonian group from being

Abelian?�. This question might take the speci�c form of an inquiry of the

solubility (or generalized solubility) of metahamiltonian groups.

Of course it is not even the case that all minimal-non-Abelian groups are

soluble, as shown by the consideration of Tarski monsters, simple in�nite

p-groups whose proper subgroups are cyclic of order p, for a �xed prime p.

These groups are trivially metahamiltonian but far from being soluble.

They are also 2-generator groups, though, hence they are not even locally

soluble. For this reason, some extra assumption when trying to prove solu-

bility for metahamiltonian groups is necessary. What Romalis and Sesekin

did at the time was to restrict their study to locally soluble metahamilto-

nian groups, which is of course enough to exclude Tarski monsters from the

discussion. For any group G in this class they were able to prove that G is

soluble with derived length at most 3 and that the commutator subgroup is

�nite of prime power order.

In an article from 1971 (see [6]), �ernikov was able to reach the exact same

conclusions working within the larger universe of locally graded metahamil-

tonian groups. Here, a group G is said to be locally graded if every �nitely

generated non-trivial subgroup has a proper subgroup of �nite index: this is

a relatively weak property shared by locally soluble groups and many other

classes of groups de�ned by a generalized solubility property.

Here, though, we refer to a simpli�ed proof of these results, contained in an

article by De Giovanni and De Mari from 2005. However, a couple of lemmas

of their own interest are �rst needed.

Lemma 1.1. Let G be a locally graded metahamiltonian group with �nite
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commutator subgroup. Then the order of G′ is a prime power.

Proof. As the commutator subgroup G′ is �nite, it is generated by �nitely

many commutators, so that we can �nd a �nitely generated subgroup E of

G such that the commutator subgroup of E is the same as G′. Moreover the

factor E/Z(E) of E over its center is �nite. This is because E is a �nitely

generated FC-group. So it is possible to �nd a subgroup A that is torsion

free and it is of �nite index inside Z(E).

Since G′ = E ′ ' E′A
A

we can replace G by E/A in continuing our argument

and so we can assume without loss of generality that the group G is itself

�nite. If we take X to be any Sylow p-subgroup of G, by hypothesis we know

that X is either normal in G or abelian.

If X is abelian we have that NG(X) = CG(X) and G is p-nilpotent (see for

instance 10.1.8 in [46]).

It follows that in both cases G contains a normal non-trivial Sylow subgroup

P , and by the Schur-Zassenhaus Theorem there exists a subgroup Q of G

such that G is the semi-direct product of P and Q. If the subgroup P is

abelian, than the commutator subgroup G′ is contained in Q and hence by

induction on the order of G we would have that G′ has prime-power order.

If, instead, the subgroup P is not abelian then we know that P is a normal

subgroup and G/P and G/Q are both Dedekind groups so that G′ has order

at most 4, so that is is necessarily of prime power order, concluding the proof

of the lemma.

Lemma 1.2. Let G be a locally graded metahamiltonian group, and let A be

a �nitely generated torsion-free Abelian normal subgroup of G. Then A is

contained in the center Z(G) of G.

Proof. Let us assume by contradiction that A is not contained in the center

of G. This means that there exists an element x of G such that the commu-

tator [A, x] is not trivial. We will now divide the proof in two cases based on

the intersection A ∩ 〈x〉.
If A ∩ 〈x〉 = {1}, as A is torsion-free by hypothesis, it is possible to �nd an

odd prime number p such that [Ap
n
, x] 6= {1} for all positive integers n. This

means that for each positive integer n the subgroup Ap
n〈x〉 is not abelian and
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hence is normal in G. Moreover G/Ap
n
is a Dedekind group for any positive

integer n.

As p > 2, it follows that [A, x] ≤ Ap
n〈x〉 and so also in 〈x〉, for all positive in-

tegers n. It would follow that [A, x] = {1}, which is of course a contradiction

showing that

A ∩ 〈x〉 = 〈xm〉 6= {1}

necessarily holds instead, for some choice of a positive integer m ≥ 1.

Let
A

A ∩ 〈x〉
=

E

A ∩ 〈x〉
× B

A ∩ 〈x〉

where E
A∩〈x〉 is �nite and

B
A∩〈x〉 is torsion-free. As A is abelian, all elements in

A∩ 〈x〉 commute with elements in A and in 〈x〉 so that A∩ 〈x〉 is contained
in Z(〈x,A〉).
Now, 〈E,x〉

A∩〈x〉 is a �nite group so that 〈E, x〉 is a group that is �nite over its

center and by Schur's theorem it follows that [E, x] is a �nite subgroup of A

(see Theorem 4.12 in Part 1 of [45]).

On the other hand, we know A is a torsion-free group so that [E, x] is neces-

sarily trivial. As A/E is a torsion-free abelian normal subgroup of 〈x,A〉
E

and

〈xE〉 ∩ A
E

= {1}, we can repeat the argument in the �rst part of the proof to

conclude that [A, x] ≤ E, so that [A, x, x] = {1}.
It follows

[A, x]m = [A, xm] = {1},

proving that [A, x] is a bounded subgroup of a torsion-free group and so,

again, [A, x] is necessarily trivial, which is of course a contradiction, com-

pleting the proof of the lemma.

With the use of the above lemmas, we can �nally prove some properties

of metahamiltonian groups that are central to our discussion.

Theorem 1.3 (�ernikov. 1971, [6] - or - de Giovanni, De Mari, 2005, [13]).

Let G be a locally graded metahamiltonian group. Then G is soluble, its

derived length is at most 3 and the commutator subgroup G′ of G is �nite

and of prime power order.
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Proof. We �rst prove thatG is soluble. Let F be the family of all non-Abelian

subgroups of G and put

X =
⋂
F∈F

F.

Clearly each element F of F is normal in G hence X / G.

Moreover, the quotient group G/F is Dedekind, since the class of all Abelian

groups is closed under subgroups. For this reason G′′ ≤ F for every F ∈ F
hence

G′′ ≤ X.

As X is the intersection of all non-Abelian subgroups, X is either Abelian

or minimal-non-Abelian, since all of its proper subgroups are necessarily

Abelian.

Also, X inherits the property of being locally graded by G, so it is either an

Abelian group or a locally graded minimal-non-Abelian group. Since locally

graded minimal-non-Abelian groups are necessarily �nite, in either case G is

soluble-by-�nite.

Let R be the largest soluble normal subgroup of G. If R is contained in the

center, then G is �nite over its center. This implies, by Schur's Theorem,

that G′ is �nite. It follows by Lemma 1.1 that G′ is of prime-power order,

hence soluble.

If the subgroup R is not contained in the center, then there exists an element

x ∈ G such that [R, x] 6= 1, hence the soluble subgroup R〈x〉 is not Abelian.
Since G is metahamiltonian, this means R〈x〉 is a normal subgroup of G.

As R is the largest soluble normal subgroup of G this means that x ∈ R

necessarily, hence R itself is not Abelian. It follows that R is normal and

that G/R is Dedekind, so that G is soluble also in this case.

We have proved that, whatever condition holds for R, G is soluble hence, a

posteriori, R = G.

In order to prove that G′ is �nite, it can be assumed by induction on the de-

rived length of G that G′′ is �nite. By replacing G by G/G′′ in our line of rea-

soning, we may also suppose without loss of generality that G is metabelian.

Of course the statement of the theorem is absolutely trivial if G is Abelian,
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hence assume G is not Abelian and let E be a �nitely generated non-Abelian

subgroup of G. Then E is normal in G and G/E is a Dedekind group. E is

a �nitely generated metabelian group and so it is residually �nite (see [45],

Part 2, Theorem 9.51).

We claim now that E is either Abelian-by-�nite or nilpotent. As a matter

of fact, if E is not Abelian-by-�nite, then all of its subgroups H of �nite in-

dex are normal and the quotients E/H are Dedekind. For this reason γ3(E)

is contained in the �nite residual of E, which is trivial, proving that E is

nilpotent. Either way, E satis�es the maximal condition on subgroup and

is metabelian, hence it is polycyclic. For this reason G′ is �nitely generated

and we can then assume, without loss of generality, that G itself is �nitely

generated and so even polycyclic.

With the same reasoning as for E, we prove that G is either Abelian-by-�nite

or nilpotent and hence it has a torsion-free nilpotent normal subgroup N of

�nite index.

Let A be a maximal Abelian normal subgroup of N , so that CN(A) = A; on

the other hand, A is contained in Z(N) by Lemma 1.2 and hence N = A

is Abelian. It follows again from Lemma 1.2 that N lies in Z(G), so that

G/Z(G) is �nite and hence, by Schur's Theorem, G′ is �nite.

Once one knows G′ is �nite, it is of prime power order by Lemma 1.1.

In [6], �ernikov was actually able to prove solubility also for locally graded

in�nite groups satisfying what he called IH property, i.e. groups such that

every in�nite non-Abelian subgroup is normal. Of course all �nite groups

satisfy this property, so that one cannot hope to prove solubility or the fact

that the commutator is a p-group for some p for all locally graded IH. Even

restricting to locally graded in�nite groups with IH, �ernikov showed with

examples that the commutator is not necessarily �nite and not necessarily

a p-group for some prime number p, but he was able to show that locally

graded IH-groups with in�nite commutator subgroup are (what we now call)

�ernikov groups.

As for locally graded metahamiltonian groups, a number of results restrict-

ing even further the commutator subgroup were produced in the following
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years. As condensation of a series of articles (see [31�37]), Kuzennyi and

Levishchenko were able to prove the following result:

Theorem 1.4 (Kuzennyi and Levishchenko, 1989). Let G be a non-Abelian

locally graduated metahamiltonian group. Then its commutator subgroup G′

is contained in each non-Abelian subgroup of G and one of the following is

true:

1. G is a nilpotent metahamiltonian group and if |G| = pm for some prime

number p and 1 < m ∈ N, then the Sylow p-subgroups of G have

bounded exponents;

2. G is a non-nilpotent metahamiltonian group of the form G = G′ × H
and one of the following subcases holds true:

2.1. H is a cyclic extension of a central subgroup of G or

2.2. G′ is a minimal normal subgroup that is the commutator subgroup

of each non-Abelian subgroup of G.

3. G is a non-nilpotent periodic metahamiltonian group of the form G =

G′ ×H and

3.1. H is a cyclic extension of a central subgroup of G

3.2. G′ is a non-Abelian Sylow p-subgroup of order p3 and if it is not

a quaternion group, then it has exponent p.

3.3. G′ is a direct factor of each Schmidt1 subgroup of G.

In particular, it follows that for a soluble group G, one can say that G is

metahamiltonian if and only if the commutator subgroup G′ of G is contained

in every non-Abelian subgroup of G.

An extremely useful property of the class of metahamiltonian groups is that

it is local. In other words, the following theorem holds

1A subgroup H of a group G is called a Schmidt subgroup if H is not nilpotent but

every proper subgroup of H is nilpotent.
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Theorem 1.5. Let G be locally graded a group such that all of its �nitely gen-

erated subgroups are metahamiltonian. Then G is itself a metahamiltonian

group.

Proof. Let X be any non-Abelian subgroup of G and let us consider the

family WX of �nitely generated non-Abelian subgroups of X, which is non-

empty because Abelian groups form a local class. For any Y ∈ WX and

g ∈ G, the group Y is a non-Abelian subgroup of the metahamiltonian group

〈Y, g〉, hence g normalizes Y for every g ∈ G and so Y is normal in G. For

every element x of X there is a �nitely generated non-Abelian subgroup Yx
of X containing x, hence

〈Y |Y ∈ WX〉 = X

and so X is normal in G as it is the join of a family of subgroups that are

normal in G. In conclusion, G is metahamiltonian.

This property of the class of metahamiltonian groups is often useful when

stated in the following way: if G is a locally graded group that is not a

metahamiltonian group, then it also has a �nitely generated subgroup H

that is not a metahamiltonian group.
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Some classes of generalized metahamiltonian groups

The number of articles and de�nitions that metahamiltonianity inspired is

immeasurable and it is not the scope of this section to list them all. Rather, it

will contain a few ideas that generalize metahamiltonianity in a way that will

be useful to the narrative plot of the thesis, in ways that will be understood

in the next sections. Most of them are to be found in [11], an article by

De Falco, de Giovanni and Musella from 2013. They looked at groups that

were rich in metahamiltonian subgroups or metahamiltonian homomorphic

images for many di�erent interpretations of the word rich.

What is perhaps the most natural start for this investigation is to look at

groups whose proper subgroups are all metahamiltonian. The authors in [11]

proved that locally graded groups with such property are either �nite or

metahamiltonian. In other words, they proved the following theorem

Theorem 1.6 (De Falco, de Giovanni and Musella, 2013). Let G be an

in�nite locally graded group whose proper subgroups are metahamiltonian.

Then G is metahamiltonian.

Proof. Assume for a contradiction that G is not metahamiltonian, so that G

must be �nitely generated since the class of metahamiltonian groups is local

by Theorem 1.5.

Thus G contains a proper subgroup K of �nite index such that K is a �nitely

generated metahamiltonian group, hence polycyclic by Theorem 1.3. It fol-

lows that G is polycyclic-by-�nite. Let X be a subgroup of G which neither

is Abelian nor normal. Then X is contained in a non-normal subgroup H

of G of �nite index, and H contains a normal subgroup N of G such that

G/N is �nite and H/N is not Abelian as if this were not the case then H

would be Abelian. In particular, the group G/N has a subgroup H/N which

is non-Abelian non-normal, hence it is not metahamiltonian. As G is in�-

nite, it is known that the Frattini factor group G/Φ(G) is likewise in�nite

(see [38]) and hence there exists a maximal subgroup M of G such that N is
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not contained in M . But then G = MN and

G/N 'M/M ∩N

would be a metahamiltonian group. This contradiction proves the statement.

Finite minimal non-metahamiltonian groups need not be soluble, as the sim-

ple example of A5 shows. However, something else of interest can be said

about minimal-non-metahamiltonian groups

Theorem 1.7 (Atlihan, de Giovanni, 2017). Let G be a minimal-non-hamiltonian

group. Then G is generated by at most three elements.

Proof. As G is not metahamiltonian, it contains a subgroup X which neither

is Abelian nor normal. For each non-central element x of X, choose an

element y(x) of X such that [x, y(x)] = 1. Since X is not normal in G and

X = 〈X \ Z(X)〉 = 〈x, y(x) | x ∈ X \ Z(X)〉,

there exist elements x of X \ Z(X) and g of G such that

〈x, y(x)〉g 6= 〈x, y(x)〉.

It follows that the subgroup 〈x, y(x), g〉 is not metahamiltonian, and so

G = 〈x, y(x), g〉

is a 3-generator group.

The abovementioned example of the alternating group on �ve elements is

a peculiar one, as the group satis�es the property that all non-normal sub-

groups are either Abelian or minimal-non-Abelian. This class of groups was

object of study in the article [2] by de Giovanni and Atlihan. They named

this class of groups the class of parahamiltonian groups. The authors were

able to prove
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Theorem 1.8 (Atlihan, de Giovanni, 2017). Let G be a locally graded para-

hamiltonian group. Then G′ is �nite, and its order is divisible by at most

three prime numbers.

Of course A5 is an example of a locally graded parahamiltonian group whose

commutator subgroup has order divided by precisely three prime numbers.

Moreover, the same authors proved that

Theorem 1.9 (Atlihan, de Giovanni, 2017). Let G be a locally graded insol-

uble parahamiltonian group. Then G is �nite and π(G′) = {2, 3, 5}

A di�erent possible interpretation for a "group with many metahamiltonian

subgroups" might be looking at groups whose proper subgroups of in�nite

rank are metahamiltonian. In this investigation, a recent result by M.R.

Dixon, M. Evans and H. Smith, contained in [20] is very useful. As a matter

of fact, the authors proved that if G is a locally (soluble-by-�nite) group

whose proper subgroups of in�nite rank have �nite commutator subgroup,

then either G has �nite rank or its commutator subgroup G′ is �nite. This

can be used to prove the following theorem.

Theorem 1.10. Let G be a locally (soluble-by-�nite) group of in�nite rank

whose proper subgroups of in�nite rank are metahamiltonian. Then G is

metahamiltonian.

Proof. It follows from Theorem 1.3 that every proper subgroup of G either

is �nite-by-Abelian or has �nite rank, and hence the commutator subgroup

G′ of G must have �nite rank (see [20]).

Let X be any subgroup of G of �nite rank. Then the product XG′ has

likewise �nite rank, and so the Abelian factor group G/XG′ has in�nite

rank. It follows that XG′ is contained in a proper subgroup of G of in�nite

rank, and hence X is metahamiltonian.

Then G itself is a metahamiltonian group by Theorem 1.6.

In [9], the authors dealt with locally graded groups that satisfy the minimal

condition on non-metahamiltonian subgroups, i.e. such that there is not any
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strictly descending sequence of non-metahamiltonian subgroups.

It is proved in the abovementioned paper that within the universe of locally

graded groups the minimal condition on non-metahamiltonian subgroups can

occur only in the extreme cases. To understand the proof we need a couple

of lemmas we omit the proof of. The �rst one is due to Zaicev (see [51]).

Lemma 1.11. Let G be a locally soluble group, and let Γ be a �nite group

of automorphisms of G. If G is not a �ernikov group, then it contains an

abelian subgroup A such that AΓ = A and A does not satisfy the minimal

condition on subgroups.

This second lemma can be found as Lemma 4.4 in [9].

Lemma 1.12. Let G be a locally �nite group whose proper subgroups either

are metahamiltonian or �ernikov groups. Then G is soluble-by-�nite.

We now have the tools required to approach the study of groups satisfying

the minimal condition on non-metahamiltonian subgroups, as said above.

Theorem 1.13. Let G be a locally graded group satisfying the minimal con-

dition on subgroups which are not metahamiltonian. Then G is either meta-

hamiltonian or a Cernikov group.

Proof. Let us start by considering the case of G not being periodic and let

us assume for a contradiction that G is not metahamiltonian. As the class

of metahamiltonian groups is local, this means there is a �nitely generated

subgroup E that is not metahamiltonian.

Since G is not periodic, we can �nd a non-periodic element a in G so that,

by substituting E for 〈E, a〉, we can also assume without loss of generality

that E is in�nite. Again, replacing G by E, we can also assume without

loss of generality that G is �nitely generated. As it is also locally graded,

we can construct an in�nite descending series consisting of subgroups of �-

nite index, and hence by hypothesis, there must be one of those, say H,

which is a metahamiltonian subgroup of �nite index of G. By Theorem 1.3,

we know that H ′ is �nite and so G is �nite-by-abelian-by-�nite and so also

abelian-by-�nite. As G is �nitely generated, let A be a torsion-free abelian
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normal subgroup of G such that G/A is �nite. Since G satis�es the minimal

condition on non-metahamiltonian subgroups, it contains a minimal-non-

metahamiltonian subgroup L, and by Theorem 1.6, we know that L is a

�nite subgroup. In particular L ∩ A is a �nite subgroup of a torsion-free

group so that it is necessarily trivial.

From this it follows that LA2n+1
is properly contained in LA2n and so an

in�nite strictly descending sequence of subgroups of G is formed. By our

hypotheses, this means there must be a positive integer k such that LA2k is

metahamiltonian, but this is in contradiction with L not being metahamil-

tonian, so that we have reached a contradiction and G is necessarily meta-

hamiltonian in this case.

Let us now consider the case of a periodic group G. We wish to start by

showing that it is also locally �nite. As a matter of fact, if one considers

a �nitely generated subgroup E of G then, as G is locally graded, we can

construct an in�nite chain

E = E0 > E1 > · · · > En > En+1 > · · ·

of subgroups of E such that the index |E : En| is �nite for each non-negative

integer n. Thus there must be a non-negative integer k such that Ek is meta-

hamiltonian and so E is a periodic, �nitely generated and soluble-by-�nite

group, hence �nite.

Now, assume that the statement is false, so that G is neither metahamilto-

nian nor �ernikov. This means the set M of all subgroups of G which are

neither metahamiltonian nor �ernikov is not empty. By hypothesis,M has

necessarily a minimal element M . By replacing G with M , we can assume

without loss of generality that G is a group whose proper subgroups are

metahamiltonian or �ernikov, so that we can use Lemma 1.12 to conclude

that G is soluble-by-�nite. Again, as the class of metahamiltonian is a local

class, we can �nd a �nitely generated subgroup X of G which is not meta-

hamiltonian. As we said G is locally �nite, X is a �nite subgroup. We can

now apply Lemma 1.11 to conclude that there exists an abelian subgroup B

of G such that BX = B and B does not satisfy the minimal condition on
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subgroups. The socle S of B is obviously in�nite, and contains X-invariant

subgroups H and K such that K < H, H ∩X = {1}, and the index |S : K|
is �nite. Then XK is a proper subgroup of G which is neither metahamilto-

nian nor �ernikov, which is in contradiction with our assumption that every

proper subgroup of G had one of the two properties. This last contradiction

completes the proof of the theorem.

The above theorem can be applied to the case of groups in which non -

metahamitonian subgroups fall into �nitely many conjugacy classes. In fact,

a group G with this latter property locally satis�es the maximal condition

on subgroups, so that a result of D.I. Zaicev shows that if X is any subgroup

of G such that Xg ≤ X for some element g of G, then Xg = X (see for

instance [1], Lemma 4.6.3), and hence G satis�es the minimal condition on

non-metahamiltonian subgroups.

Theorem 1.14. Let G be an in�nite locally graded group with �nitely many

conjugacy classes of non-metahamiltonian subgroups. Then G is itself a

metahamiltonian group.

We now move to considering groups which have, in some sense, many meta-

hamiltonian homomorphic images. Let us start by noticing that argument

contained in the proof of Theorem 1.6 also shows that every polycyclic non -

metahamiltonian group has a �nite homomorphic image which is not meta-

hamiltonian. In other words in a polycyclic group, metahamiltonianity is,

in some sense, controlled by the �nite homomorphic images. This kind of

result, often even under weaker hypotheses than the assumption of dealing

with a polycyclic group, is a leitmotiv that is often reoccurring in group

theory. For example, it is known that �nitely generated hyper-(Abelian or

�nite) groups such that all of their �nite homomorphic images are nilpotent

are themselves nilpotent. Here a group G is said to be hyper-(Abelian or

�nite) if there is a (not necessarily �nite) series of subgroups (here, by series,

even without speci�cation of the attribute "normal", we mean a sequence of

subgroups such that any two consecutive terms are one normal in the other)

starting from the trivial subgroup {1} and ending at the group G and having
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all Abelian or �nite factors.

A similar result can be obtained also for metahamiltonian groups, as stated

in the following theorem.

Theorem 1.15 (De Falco, de Giovanni and Musella, 2013). Let G be a

�nitely generated hyper-(Abelian or �nite) group whose �nite homomorphic

images are metahamiltonian. Then G is metahamiltonian.

Proof. Assume for a contradiction that G is not metahamiltonian.

Since �nitely generated locally graded metahamiltonian groups are poly-

cyclic, with a classical argument due to R. Bear and Zorn's Lemma it follows

that G contains a normal subgroup M which is maximal with respect to

the condition that G/M is not metahamiltonian. Replacing G by the factor

group G/M , it can be assumed without loss of generality that all proper

homomorphic images of G are metahamiltonian. On the other hand, by hy-

pothesis there exists a non-trivial normal subgroup N of G which is either

�nite or Abelian; as G/N is metahamiltonian, we obtain that G is soluble-

by-�nite and so even soluble. Let A be the smallest nontrivial term of the

derived series of G. Then G/A is a �nitely generated metahamiltonian group,

hence a �nitely generated FC-group and so it is central-by-�nite. In partic-

ular, G is �nitely generated metabelian-by-�nite and so also residually �nite

(see [45], Part 2, Theorem 9.51).

We now wish to prove that every subgroup of �nite index in G is either nor-

mal or Abelian. Let X be a non-normal subgroup of G such that the index

|G : X| is �nite.
As the core XG of X has likewise �nite index in G, there exists a collection

{Ni}i∈I of normal subgroups of �nite index of G such that Ni ≤ X for each

i and ⋂
i∈I

Ni = {1}

Then X/Ni is a non-normal subgroup of the metahamiltonian group G/Ni,

and hence X/Ni is Abelian for each i. Therefore, the subgroup X satis�es

X ≤ N ′i , so X ′ ≤ {1} and hence is itself Abelian. Now we know that

every subgroup of �nite index in G is either Abelian or normal. If G is



24CHAPTER 1. GPSWITH RESTRICTIONS ON NON-NORMAL SBGPS

not an Abelian-by-�nite group, then all of its subgroups of �nite index are

normal, hence all of it subgroups of �nite index are nilpotent. In either

case, G is polycyclic, so that the statement of the theorem is known to be

true. Nonetheless one might reinforce the conclusion constructively in this

way: if X is a non-Abelian subgroup of G, as it is the intersection of the

subgroups of �nite index that contain X, it is the intersection of normal

subgroups. For this reason any non-Abelian subgroup of G is normal and G

is metahamiltonian.
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Some classes with restrictions on non-normal subgroups

The mathematical literature is abundant in group classes de�ned by restrict-

ing non-normal subgroups. This section is a small survey citing a few of

the major results concerning group classes which have some relevance to the

topics here addressed.

A group G is said to be an FC-group (FC stands for �nite conjugacy classes)

if every element has �nitely many conjugates, which is easily seen to be equiv-

alent to the following property∣∣∣∣ G

CG(〈x〉G)

∣∣∣∣ < +∞ ∀g ∈ G.

FC-groups form a class of groups that is closed under subgroups, homomor-

phic images and direct products, but not extensions and it is not a local class.

All �nite-by-Abelian and central-by-�nite groups are FC-groups and, in fact,

in the opposite direction, �nitely generated FC-groups can be shown to be

necessarily central-by-�nite. Moreover B.H. Neumann studied the following

stronger property, called BFC (boundedly �nite conjugacy classes),

∃k ∈ N :

∣∣∣∣ G

CG(〈x〉G)

∣∣∣∣ < k ∀g ∈ G,

showing that BFC-groups are precisely �nite-by-Abelian groups and that

there are functions bounding the order of the commutator subgroup in terms

of the smallest such k and viceversa. This means every metahamiltonian

group is, in fact, also a BFC-group.

On the other hand, the direct product of all the �nite dihedral groupsD2n, for

example, is an FC-group whose commutator subgroup is not even bounded,

so that it is of course not a BFC-group or, more so, a metahamiltonian

group.

In reality, even if the commutator subgroup of any FC-group can be shown

to be locally �nite, metahamiltonian groups occupy in some sense a very

small part of the class of all FC-groups.

In the next section, we will deal with groups in which non-normal subgroups
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are metahamiltonian. It is interesting, then, to cite here what is known of

the much larger class of groups whose non-normal subgroups are FC-groups,

studied recently in [28].

The �rst result we quote tells something of the structure non-nilpotent groups

with this property that have a Chernikov commutator subgroup.

Theorem 1.16 (Kurdachenko, Otal, Russo and Vincenzi, 2004). Let G be

a non-nilpotent group with Chernikov commutator subgroup K, and let D

be the divisible part of K. If every non-FC-subgroup of G is normal and

CG(D) 6= G, then G = DL, where L is a �nite-by-Abelian subgroup of G and

D∩L is a �nite G-invariant subgroup. Moreover, every non-normal subgroup

of G has �nite commutator subgroup.

The second result specializes to the case of almost FC-groups (or, in other

words, FC-by-�nite groups) i.e. groups that have an FC-subgroup of �nite

index, having the abovementioned property. If they are not FC-groups, their

commutator subgroup can be strongly restricted.

Theorem 1.17. Let G be an almost FC-group. If every non-normal sub-

group of G is an FC-group, then G either is an FC-group or its commutator

subgroup is a Chernikov group.

A few years later, De Falco, de Giovanni and Musella in [8] elaborated on a

smaller class, consisting of groups whose non-normal subgroups have a �nite

commutator subgroup (i.e. BFC-groups). We start by mentioning two of

their lemmas, that have an interest of their own.

Lemma 1.18. Let G be a locally graded group whose non-normal subgroups

have a locally �nite commutator subgroup. Then the commutator subgroup

G′ of G is locally �nite.

Lemma 1.19. Let G be a locally graded group whose non-normal subgroups

have a �nite commutator subgroup. Then either G is soluble or the subgroup

G(3) is �nite

The above two lemmas converge in the following theorem, regarding

groups whose non-normal subgroups have a uniform bound on the size of

their commutator subgroups.
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Theorem 1.20. Let k be a positive integer, and let G be a locally graded

group whose non-normal subgroups have a �nite commutator subgroup of or-

der at most k. Then the commutator subgroup G′ of G is �nite.
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Classes de�ned recursively restricting non-normal sub-

groups

What is contained in this section is a further contribution to the topic ob-

tained by looking at metahamiltonian groups in the general framework of

group classes that can be obtained by iterating a restriction on non-normal

subgroups. With this intent, we give de�nitions in the most general fashion,

later specializing to Abelianity. Let X be any class of groups. We will put

X1 = X, and suppose by induction that a group class Xk has been de�ned

for some positive integer k.

We then say that a group G belongs to the class Xk+1 if and only if every

non-normal subgroup H of G belongs to Xk, or in symbols:

∀H ≤ G, H 6 G⇒ H ∈ Xk.

Of course metahamiltonianity is what is obtained if X = A and k = 2.

In general, a group class X is not necessarily contained in X2, as shown by

the example of the class of simple groups, but this is certainly the case if X

is a group class that is closed with respect to forming subgroups.

However, Xk is closed with respect to forming subgroup for each positive

integer k > 1 even if X is not and the following equality trivially holds by

de�nition

Xk+1 = (Xk)2.

It follows that if X is closed with respect to forming subgroups then {Xk}k∈N is
an increasing sequence of group classes. In that case, it might me interesting

to look at the union of all the classes, hence we de�ne

X∞ =
+∞⋃
k=1

Xk.

Members of the class Ak will be called k-hamiltonian groups (for any k).

Thus the 1-hamiltonian and 2-hamiltonian groups are precisely the Abelian

and the metahamiltonian groups, respectively and here we will also inves-
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tigate the structure of k-hamiltonian locally graded groups for k ≥ 3. We

will also refer to groups in A∞ as ∞-hamiltonian groups. In the universe of

locally graded groups, we will show that∞-hamiltonian groups are precisely

the �nite-by-Abelian groups.

The following is a simple example showing that, with the choice X = A we

get, in fact, a strictly increasing sequence of group classes.

Let k be any positive integer, and let p1, . . . , pk be pairwise distinct odd prime

numbers. If A is a cyclic group of order p1 · · · pk and x is the automorphism

of A which inverts all elements, the semidirect product 〈x〉oA is a (k + 1)-

hamiltonian group which is not k-hamiltonian.

It is also clear that Xk ≤ Yk for all k, whenever X and Y are arbitrary group

classes such that X ≤ Y. Notice also that if D is the class of Dedekind

groups, then the classes A2 and D2 do not coincide, as shown by the direct

product of two copies of the quaternion group Q8.

It is worth noticing also that if X is a group class which is closed with respect

to homomorphic images, the same property obviously holds also for every Xk.

What we will now show is that if X is a local class, then the same can be

said of Xk for any positive integer k.

Recall that a group class X is local if a group G whose �nite subsets are

always contained in an X-subgroup is itself an X-group. Clearly, a subgroup

closed group class X is local if and only if it contains all groups whose �nitely

generated subgroups belong to X.

Lemma 1.21. Let X be a local group class. Then, for each positive integer

k, the class Xk is also local.

Proof. Since X1 = X, the statement is obvious if k = 1. We want to prove

the stamente by induction on k. Suppose now that the class Xk is local for

some positive integer k. As Xk+1 is subgroup closed, it is enough to prove

that a group G belongs to Xk+1 provided that all its �nitely generated sub-

groups are Xk+1-groups. Let X be any subgroup of G which is not in Xk,

and let WX be the set of all �nitely generated subgroups of X which are not

contained in an Xk-subgroup of G. ThenWX is not empty, because the class
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Xk is local.

If g is any element of G and U ∈ WX the subgroup 〈g, U〉 belongs to Xk+1,

whence U g = U . It follows that all elements of WX are normal in G. More-

over,

〈x, U〉 ∈ WX

for all x ∈ X, and so

X = 〈V |V ∈ WX〉

is likewise normal in G.

Therefore G belongs to Xk+1, and hence Xk+1 is a local class.

Since the class of Abelian groups is obviously local, the choice X = A in the

above statement gives the following interesting special case, which generalises

the well-known Theorem 1.5 for metahamiltonian groups.

Corollary 1.22. For each positive integer k, the class Ak of k-hamiltonian

groups is local.

Let X be a group class. A subgroup X of a group G is said to be com-

pressed by X if it contains a normal subgroup N of G such that G/N is an

X-group; in this case, such a subgroup N will be called an X-compressor for

X in G. Of course, if the class X is closed with respect to homomorphic

images, the core XG of an X-compressed subgroup X is an X-compressor for

X in G.

It is also clear that in any group the class of �nite groups compresses all

subgroups of �nite index. With regard to this de�nition, we may prove a

useful lemma

Lemma 1.23. Let X be a group class, and let X and Y be subgroups of a

group G such that X is not normal in G and Y ≤ X. If Y is compressed

in G by the class Xk for some integer k > 1, then Y is compressed in X by

Xk−1.

Proof. Let N be an Xk-compressor for Y in G. Then X/N is a non-normal

subgroup of the Xk-group G/N , and hence it belongs to Xk−1, which means

that Y is compressed by Xk−1 in X.
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Let X be any subgroup closed group class such that every �nitely generated

hyper-(Abelian or �nite) group whose subgroup of �nite index are compressed

by X, belongs to X and it is polycyclic-by-�nite: we will call such a class a

Robinson class. Of course if X is also closed under homomorphic images then

the de�nition of a Robinson class can be stated in a simpler way. If so, indeed,

a group class X is a Robinson class if and only if every �nitely generated

hyper-(Abelian or �nite) group G whose �nite homomorphic images lie in

X is itself a polycyclic-by-�nite X-group. With Theorem 1.15, De Falco, de

Giovanni and Musella have proven that the class of metahamiltonian groups,

or A2, with our new notation, is a Robinson class. The concept of a Robinson

class arises from abstraction of a series of results that have been produced in

the history of group theory, and owes its name to a result by Robinson (see,

for example, [45]) proving that the class N of nilpotent groups is a Robinson

class. As a matter of fact, for every natural number c, his argument can be

easily adapted to proving that Nc is a Robinson class, where by Nc we mean

the class consisting of all nilpotent groups whose nilpotency class at most

c. Further corollary of that, even though provable in other ways, is the fact

that the class A of Abelian groups is a Robinson class. Consequence of the

next theorem, stated in a more general form, is the fact that k-hamiltonian

groups form a Robinson class Ak for any choice of the natural number k,

extending the abovementioned result from [11].

Theorem 1.24. Let X be a Robinson class of groups. For any positive integer

k, the class Xk is also a Robinson class.

Proof. The statement is obvious if k = 1. Suppose now by induction on k

that Xk is a Robinson class for some positive integer k, and let G be any

�nitely generated hyper- (Abelian or �nite) group in which all subgroups of

�nite index are compressed by Xk+1.

If X is any non-normal subgroup of �nite index of G, it follows from Lemma

1.23 that every subgroup of �nite index ofX is compressed inX by the Robin-

son class Xk; then the �nitely generated hyper-(Abelian or �nite) group X

belongs to Xk, and in particular it is polycyclic-by-�nite. On the other hand,
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if all subgroups of �nite index of G are normal, then every �nite homomor-

phic image of G is nilpotent, and so it follows from Robinson's theorem that

G itself is nilpotent and hence also polycyclic. Therefore G is polycyclic-by-

�nite in any case. Let H be any non-normal subgroup of G. Since H is the

intersection of a collection of subgroups of �nite index of G, it is contained

in a subgroup K of �nite index which is not normal in G. Thus K belongs

to Xk and so H is an Xk-group, because Xk is subgroup closed. Therefore G

belongs to Xk+1 and hence Xk+1 is a Robinson class.

Let X be any class of groups. Recall that a minimal-non-X group G is a group

that does not belong to the class X but such that all of its proper subgroups

do. We will say that a class X is accessible if any locally graded group whose

proper subgroups belong to X is either an X-group or a �nite group. In other

words X is an accessible class if every locally graded minimal-non-X is �nite.

Of course if X is a class of groups containing the class of �nite groups, this

would mean that X is an accessible class whenever examples of locally graded

minimal-non-X groups do not exists.

We have already mentioned the fact that Abelian groups form an accessible

class and proved with Theorem 1.6 that the same can be said for metahamil-

tonian groups. The following is a lemma that we prove with the intent of

generalizing the above result, i.e. to prove that k-hamiltonian groups for an

accessible class Ak for any choice of the natural number k.

Lemma 1.25. Let X be a subgroup closed group class and let G be a group in

the class Xk for some integer k > 1. Then all proper subgroups of G′′ belong

to Xk−1.

Proof. Let X be any subgroup of G which is not in Xk−1. Then all subgroups

of G containing X are normal, so that G/X is a Dedekind group and hence

G′′ ≤ X. For this reason, G′′ is contained in the intersection of all non-Xk−1

subgroups of G. It follows, then, that all proper subgroups of G′′ belong to

group class Xk−1.

As stated above, a consequence of the following theorem, which will be stated
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in a more general form, is the fact that k-hamiltonian groups for an accessible

class Ak for any choice of the natural number k.

Theorem 1.26. Let X be a Robinson class consisting of soluble-by-�nite

groups, which is local and closed with respect to homomorphic images. If X

is accessible, then for each positive integer k the class Xk is also accessible.

Proof. Assume for a contradiction that the statement is false and let k be

the smallest positive integer such that there exists an in�nite locally graded

group G which is not an Xk group while all its proper subgroups belong to

Xk.

Clearly, k > 1 since X is accessible by hypothesis. Moreover, G is �nitely

generated because Xk is a local class by Lemma 1.21, and so G contains a

proper subgroup X of �nite index.

By an iterated application of Lemma 1.25, there is a positive integer n such

that the subgroup X(n) either is minimal-non-Xh for some h < k or belongs

to X. In the �rst case X(n) is �nite by the minimal assumption on k and so

it follows that the subgroup X is soluble-by-�nite in any case, implying that

the group G itself is soluble-by-�nite.

Since Xk is a Robinson class by Theorem 1.24, the group G contains a normal

subgroup N of �nite index such that G/N is not in Xk. On the other hand,

the Frattini factor group G/Φ(G) is in�nite by a result of Lennox (see [38]),

and so there exists a maximal subgroup M of G such that G = MN . It

follows that

G/N 'M/M ∩N

is an Xk-group, and this contradiction completes the proof of the theorem.

Our next point is to show that locally graded k-hamiltonian groups are always

soluble-by-�nite, for any choice of the natural number k. We will obtain such

a result as corollary of a more general statement, i.e. the fact that for any

k the property of being a subclass of the class of soluble-by-�nite groups is

inherited from X to Xk for any natural number k in the case of an accessible

class X.
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Lemma 1.27. Let X be a subgroup closed group class such that Xk is ac-

cessible for each positive integer k. If X consists of soluble-by-�nite groups,

then all groups in X∞ are soluble-by-�nite.

Proof. Assume for a contradiction that the statement is false and let k be

the smallest positive integer such that the class Xk contains a group G which

is not soluble-by-�nite.

Then k > 1 and it follows from Lemma 1.25 that all proper subgroups of G′′

belong to Xk−1. As the class Xk−1 is accessible, G′′ either is �nite or belongs

to Xk−1. Either way, G′′ is soluble-by-�nite, which is of course a contradiction

proving the statement of the theorem.

Corollary 1.28. Let k be a positive integer and let G be a locally graded

k-hamiltonian group. Then G is soluble-by-�nite.

Proof. Of course by the Theorem 1.26 we know that the group class Ak is

accessible for each positive integer k and it follows from Lemma 1.27 that all

groups in A∞ are soluble-by-�nite. Hence the statement is proved.

In section 1 we said that locally graded metahamiltonian groups have �nite

commutator subgroup, are soluble of derived length at most 3 and that the

commutator subgroup is of prime power order. We will deal with the �rst

of these three properties later, but for now let us look at the last two, which

fail for locally graded k-hamiltonian groups whenever k > 2. Of course,

since the class of 3-hamiltonian groups contains the class of parahamiltonian

groups, we already know of the example of A5 as a perfect group that is

3-hamiltonian. But even when one considers soluble 3-hamiltonian groups,

it is not true that their derived length is at most 3 and their commutator

subgroup is of prime-power order.

The simplest example to show this is the group G = GL(2, 3), the general

linear group of two-by-two matrices with non-zero determinant over the �eld

with three elements. In this case G is a group of order 48 = 24 × 3 which

is soluble of derived length 4 and it has commutator subgroup isomorphic to

the special linear group SL(2, 3) of order 24 = 23 × 3, hence not a p-group
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for any prime p. However, G is easily proven a 3-hamiltonian group even

without knowing well the structure of the general linear group, because any

subgroup H of G that is not normal in G must have as its order |H| a divisor
of 48 smaller than 24, i.e. |H| ≤ 16. It is trivial to see, in turn, that H is

necessarily metahamiltonian, as a non-normal subgroup of H has order at

most 4.

What we want to show now is that soluble k-hamiltonian groups have a

bound on the derived length, but again we will obtain this result as corollary

of a slightly more general statement about (An)k where by An we mean the

class of soluble groups whose derived length does not exceed n.

Lemma 1.29. Let G be a soluble group in the class (An)k, where n and k

are positive integers. Then G has derived length at most n+ 3(k − 1).

Proof. In proving the result by the induction principle, it can obviously be

assumed that k > 1.

Then it follows from Lemma 1.25 that all proper subgroups of G′′ belong

to the class (An)k−1 and hence by induction G′′′ has derived length at most

n + 3(k − 2). Therefore the derived length of G is at most n + 3(k − 2) + 3

= n+ 3(k − 1) and the result is proved.

Corollary 1.30. Let k be a positive integer, and let G be a k-hamiltonian

locally soluble group. Then G is soluble of derived length at most 3k − 2.

Proof. Of course ifG is a k-hamiltonian locally soluble group, then by Lemma

1.29 there is a bound on the derived length of any of its �nitely generated

subgroups, hence the same bound on the derived length holds for the group

itself.

The above corollary is not expected to give an optimal bound to the derived

lenght of a k-hamiltonian group and in fact it does not even give the known

optimal bound for the derived length of metahamiltonian groups, with choice

of k = 2.

We can now prove the main theorem of this section, showing that locally

graded k-hamiltonian groups, as k ranges in the set of natural numbers,

exhaust the class of �nite-by-Abelian groups.
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Theorem 1.31. A locally graded group G has a �nite commutator subgroup

if and only if it belongs to the class A∞.

Proof. Let us start by proving that every A∞ group that is locally graded has

�nite commutator subgroup: we will do so by contradiction. Assume there is

a Ak group G that does not have �nite commutator subgroup and that k is

the smallest integer for which such a group exists. Of course k > 1 and, as a

matter of fact, we even know k > 2 because of the theory of metahamiltonian

groups. Since G is a locally graded k-hamiltonian group, it is soluble-by-�nite

by Lemma 1.27. Also, since the class of (k− 1)-hamiltonian groups is a local

class a G is not a (k−1)-hamiltonian group, there must be a �nitely generated

subgroup E of G that is not (k − 1)-hamiltonian. This means E is normal

in G and G/E is a Dedekind group, so that(
G

E

)′
' G′

G′ ∩ E

is �nite. E is a �nitely generated (k − 1)-hamiltonian group, so that it is

nilpotent-by-�nite for the argument in Theorem 1.24. For this reason, E is

a group satisfying the maximal condition on subgroups and hence G′ is a

�nitely generated subgroup. Now, let us consider the largest locally �nite

normal subgroup T of G. Since G′ is �nitely generated but in�nite, this

means that (
G

T

)′
' G′T

T

is in�nite, so that G/T is still a counterexample to the thesis of the Theo-

rem and so we can assume, without loss of generality, that G does not have

non-trivial locally �nite normal subgroups.

Now, for Lemma 1.25, all proper subgroups of G′′ belong to Ak−1 so that

G′′ is either �nite or (k − 1)-hamiltonian. For this reason G′′′ is in any case

�nite. But G is free of non-trivial locally �nite normal subgroups, so that

G′′′ has to be trivial and G′′ is an Abelian subgroup. But, again, G′′ is not

locally �nite, so that it has to be torsion-free Abelian.

Let X be any non-normal subgroup of G′. Then X belongs to Ak−1, which
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means X ′ is a �nite subgroup of G′′ which, again, in turn, means it is nec-

essarily trivial. So any non-normal subgroup of G′ is Abelian. It follows

that G′ is a metahamiltonian group and so G′′ is �nite, which implies that

G′′ is trivial. This has the same consequence as before on G′, which is then

a torsion-free Abelian subgroup of G and for this reason, if one chooses a

non-normal subgroup Y of G, since it is Ak−1, it satis�es Y ′ = {1}, as it is
a �nite subgroup of the torsion-free Abelian subgroup G′. This would imply

that G is itself a metahamiltonian group. This is a contradiction because, as

we know by Theorem 1.3, metahamiltonian groups have �nite commutator

subgroup and G′ is in�nite. This contradiction shows that all locally graded

k-hamiltonian groups have a �nite commutator subgroup.

Let us now show the converse is also true. Assume that G is a group such

that G′ is �nite and let m be the number of (not necessarily distinct) prime

numbers in the prime decomposition of the order of G′.

Consider an arbitrary �nite non-normal chain of G, i.e. a sequence of

subgroups {Gi}i≤t of G such that

G1 6 G2 6 . . . 6 Gt,

so that obviously

G1 � G2 � . . . � Gt.

For any 0 ≤ i ≤ j ≤ t, if we have

Gi ∩G′ = Gj ∩G′

then we would have

[Gi, Gj] ≤ Gj ∩G′ ≤ Gi ∩G′ ≤ Gi

which would mean Gi / Gj, so that i = j,

For this reason

G1 ∩G′ � G2 ∩G′ � . . . � Gt ∩G′.

This means that t ≤ m, because m is of course a bound on the lenght of any
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chain of subgroups in the subgroup lattice of G′.

So we have proved that G is a subgroup in which any non-normal chain of

subgroup has length at most m. We will now prove by induction on m that

a group with such a bound is necessarily (m + 1)-hamiltonian. Of course

this is true for m = 1, because a group whose subgroups are all normal is

a Dedekind group, hence a metahamiltonian group. Assume this is true for

a natural number m and consider a group G in which non-normal chains

have a bound of m + 1 on the length. This means that any non-normal

subgroup of G has a bound of m on the length of non-normal chains, hence

it is a (m+ 1)-hamiltonian group by induction hypothesis. This proves G is

a (m + 2)-hamiltonian group, completing the proof by induction and hence

the whole theorem, as it shows that any group such that G′ is �nite is in the

class A∞.



Chapter 2

Groups with restrictions on

normalizers

Groups with few normalizers of non-Abelian subgroups

In every metahamiltonian groupG, of course, the normalizerNG(H) of a non-

Abelian subgroup H is G as the subgroup H is normal in G by de�nition of

metahamiltonianity. For this reason, in a metahamiltonian group G, the set

{NG(H) : H ≤ G,H 6∈ A}

is trivially the singleton of G.

In [14], the authors studied groups in which the set of normalizers of non-

Abelian subgroups is �nite, i.e.

|{NG(H) : H ≤ G,H 6∈ A}| < +∞.

Notice that this does not at all automatically imply that there is �nitely many

non-Abelian non-normal subgroups of G or that non-Abelian subgroups are

in some sense close to being normal. It can be interpreted, though, as a

restriction on the set of non-Abelian subgroups as a whole, making it close

to being a set of normal subgroups.

They proved the following result, extending part of Theorem 1.3 to this larger

39
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class of groups

Theorem 2.1. Let G be a locally graded group such that

|{NG(H) : H ≤ G,H 6∈ A}| < +∞.

Then the commutator subgroup G′ of G is �nite.

To show the proof of this Theorem we need a few lemmas, dealing more

generally with the case of a locally graded group such that

|{NG(H) : H ≤ G,H 6∈ A, H in�nite}| < +∞.

The following lemma proves the existence of a subgroup of �nite index in

which every in�nite non-Abelian subgroup is subnormal of defect at most 2.

Lemma 2.2. Let G be a group with �nitely many normalizers of in�nite

non-Abelian subgroups. Then G contains a characteristic subgroup of �nite

index M such that NM(X) is normal in M for each in�nite non-Abelian

subgroup X of M .

Using this lemma, we show we are actually working within the universe

of soluble-by-�nite and locally max groups.

Lemma 2.3. Let G be a locally graded group with �nitely many normalizers

of in�nite non-Abelian subgroups. Then G is soluble-by-�nite and locally

satis�es the maximal condition on subgroups.

Proof. By Lemma 2.2, the group G contains a characteristic subgroup of

�nite index M in which all normalizers of in�nite non-Abelian subgroups

are normal. Let X be any in�nite non-Abelian subgroup of M . Then every

subgroup of M containing X is subnormal with defect at most 2, so that

both groups

NM(X)/X and M/NM(X)

are nilpotent of class at most 3 (see [39], Theorem 1); in particular, M (6) is

contained in X, and hence every proper subgroup of M (6) either is �nite or
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Abelian.

ThusM (6) either is soluble or �nite (see [6], Theorem 1.1) and so G is soluble-

by-�nite.

In order to prove that G locally satis�es the maximal condition on subgroups,

we may obviously suppose that G is �nitely generated, so that also M is

�nitely generated. If every subgroup of �nite index of M is subnormal, the

group M is nilpotent (see [45] Part 2, Theorem 10.51) and G satis�es the

maximal condition.

Assume now thatM contains a non-subnormal subgroup of �nite index H. It

follows from the de�nition ofM that H either is �nite or Abelian, so that also

in this case M is �nitely generated and Abelian-by-�nite. This means that

M satis�es the maximal condition on subgroups and hence G also satis�es

the maximal condition on subgroups.

The following lemma, of which we omit the technical proof, shows that

Abelian torsion-free normal subgroups of groups satisfying our property are

also necessarily central

Lemma 2.4. Let G be a group with �nitely many normalizers of in�nite

non-Abelian subgroups, and let A be an Abelian torsion-free normal subgroup

of G. Then A is contained in the centre of G.

Lemma 2.5. Let G be a torsion-free locally graded group with �nitely many

normalizers of non-Abelian subgroups. Then G is Abelian.

The above lemmas are useful in proving the commutator subgroup is

periodic

Lemma 2.6. Let G be a locally graded group with �nitely many normalizers

of in�nite non-Abelian subgroups. Then the commutator subgroup G′ of G is

periodic.

Proof. We will start by proving that a group G satisfying our hypothesis has

a torsion subgroup containing all of its periodic elements.

With the aim of proving that the elements of �nite order of G form a sub-

group, we may obviously suppose that G = 〈x, y〉 , where x and y are periodic
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elements.

It follows from Lemma 2.3 that G satis�es the maximal condition on sub-

groups and contains a soluble normal subgroup of �nite index L. Moreover,

if N is the largest periodic normal subgroup of G, replacing G by the factor

group G/N , it is possible to assume, without loss of generality, that G does

not have periodic non-trivial normal subgroups.

Now, let A be the smallest non-trivial term of the derived series of L. The

subgroup A is a torsion-free abelian normal subgroup of G, and hence it is

contained in the center Z(G) of G by Lemma 2.4.

By induction on the derived length of L, we have that G/A is �nite, so that

G is �nite over its center and hence G′ is �nite by Schur's theorem,

From this it follows that G = 〈x, y〉 itself is �nite and we have �nally proved

that the set T of all elements of �nite order of G is actually a subgroup and

the factor group G/T is Abelian by Lemma 2.5. Therefore G′ is periodic.

Proof of Theorem 2.1. The group G is soluble-by-�nite by Lemma 2.3. Of

course the thesis of the Theorem is immediately proved if G is metahamil-

tonian so that, in what follows, it can be assumed that G is not metahamil-

tonian. Let NG(X1), . . . , NG(Xk) be the proper normalizers of non-Abelian

subgroups of G. We will divide the proof in two cases according to whether

they cover the group G or not. Suppose �rst that the set

NG(X1) ∪ . . . ∪NG(Xk)

is properly contained in G. Let x be an element of

G \ (NG(X1) ∪ . . . ∪NG(Xk)).

Then each subgroup of G containing x either is Abelian or normal. Clearly,

the element x cannot be in the center of G so that xg 6= gx for some g ∈ G.
This implies that 〈x, g〉 is normal in G and G/〈x, g〉 is a metahamiltonian

group. It follows that

G′〈x, g〉/〈x, g〉
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is �nite, so that G′ is �nitely generated. Now, G′ is a soluble-by-�nite group

that is �nitely generated and periodic by Lemma 2.6 so that G′ is necessarily

�nite, reaching the conclusion of the proof of the theorem in this case.

Suppose now that

G = NG(X1) ∪ . . . ∪NG(Xk).

Then it follows from a result of B.H. Neumann that we can omit from the

union any subgroup of in�nite index (see [45] Part 1, Lemma 4.17), and hence

G = NG(Xi1) ∪ . . . ∪NG(Xit),

where the index |G : NG(Xij)| is �nite for all j = 1, . . . , t.

In this case, we will prove the result by induction on the number k of proper

normalizers of non-Abelian subgroups, knowing the result is true for k = 0

by 1.3.

Clearly, each NG(Xij) has less than k proper normalizers of non-Abelian

subgroups, and so by induction it can be assumed that NG(Xij)
′ is �nite. By

Dietzmann's Lemma also the normal closure

E = 〈NG(Xi1)
′, ..., NG(Xit)

′〉G

is �nite, and the factor group G/E has a �nite covering consisting of Abelian

subgroups.

Therefore G/E is central-by-�nite (see [45] Part 1, Theorem 4.16). Again,

a famous theorem from Schur allows to deduce that G′ is �nite, concluding

the proof of the theorem.

Of course, this theorem gains relevance if we show that there exists non-

metahamiltonian groups that satisfy its hypotheses. To give an example of

such a group, consider the dihedral group

D = 〈a, x | a8 = x2 = 1, ax = xa−1〉

of order 16 and an in�nite extraspecial 2-group E, i.e. a 2-group whose

center is cyclic of order 2 and such that the quotient of E over its center
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is a non-trivial elementary Abelian 2-group. Let G be the direct product

of D and E in which the two subgroups 〈a4〉 and E ′ = Z(E) of order 2

are identi�ed, and let X be any non-Abelian subgroup of G. Then it can

be shown that X ∩ G′ 6= {1}, so that a4 ∈ X and hence E is contained in

the normalizer NG(X). Therefore G has �nitely many normalizers of non-

Abelian subgroups, because it has at most as many as there are subgroups

of D, but of course G is not metahamiltonian, as the subgroup

F := 〈x,E〉

shows. As a matter of fact, F is not Abelian because it contains the non-

Abelian group E and it is non-normal because 〈x〉 is not normal in D.
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Classes of groups with few normalizers

Exactly as metahamiltonianity was a source of inspiration to de�ne some

new group classes with the position that subgroups that do not satisfy some

(absolute or relative) group-theoretical property θ are all normal, something

similar has been done by replacing normality with this weaker condition: we

may ask that the set of normalizers of non-θ subgroups is �nite. Let us notice

that this is a condition imposed on the whole collection of non-θ subgroups.

In other words, we are not asking that a large portion of them is normal

nor that they have large normalizers, but that the collection of all of their

normalizers is small.

Before trying to discuss a general approach to studying similarly de�ned

group classes, let us present a few of the key results regarding some notable

examples of group classes de�ned in a similar fashion in the mathematical

literature. Most of those can now be found in surveys (see [23] or [13]).

Of course, if a group G satis�es some property θ that is inherited by sub-

groups, or if G is a group in which the set of normalizers of all of its sub-

groups is �nite, then these are of course two "extreme" cases of groups in

which non-θ subgroups have �nitely many normalizers. A strong property

of groups in which the set of normalizers of all subgroups is �nite is that

the factor G/Z(G) of G over its center is �nite. In fact, in 1980, Polovicki�i

proved that if the set of normalizers of abelian subgroups is �nite, then G is

�nite over its center (see [43]).

The kind of theorem we might expect to see, then, if we are to be inspired

from these two extreme cases is something along the lines of: "A group G

such that subgroups not satisfying θ have �nitely many normalizers is either

a group in which all subgroups satisfy θ or a group that is �nite over the

center/has �nite commutator subgroup".

An interesting generalization of the class of groups whose non-abelian sub-

groups have �nitely many normalizers can be obtained by replacing abelianity

with (local) nilpotency. This has been done in [17] (see also [4] by B. Bruno

and R. E. Phillips regarding groups in which non-normal subgroups are lo-

cally nilpotent).
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Their work was within the universe ofW-groups, so let us give the de�nition

of this group class. Here a group G is said to belong to the class W if all

of its �nitely generated non-nilpotent subgroup have a �nite non-nilpotent

homomorphic image. Of course this class trivially contains locally nilpotent

groups, but it can also be shown to contain all locally (soluble-by-�nite)

groups (see [45], part 2, Theorem 10.51) and all linear groups (see [50]).

In [17], the authors proved

Theorem 2.7. Let G be a W-group with �nitely many normalizers of non-

(locally nilpotent) subgroups. Then either G is locally nilpotent or its com-

mutator subgroup G′ is �nite.

Of course, as all �nite groups satisfy the hypotheses of the above theorem,

we cannot expect to give a bound for the derived length for the soluble ones,

as it can be done for metahamiltonian groups, for instance. We remark that

if G is �nite-by-abelian, is locally nilpotent subgroups are actually nilpotent,

so that the above theorem has an interesting corollary.

Corollary 2.8. Let G be a W-group with �nitely many normalizers of non-

(locally nilpotent) subgroups. If G is not locally nilpotent, then it has �nitely

many normalizers of non-nilpotent subgroups.

Moreover, the same authors proved

Theorem 2.9. Let G be aW-group with �nitely many normalizers of in�nite

non- (locally nilpotent) subgroups. If G is not locally nilpotent, then either it

is a �ernikov group or its commutator subgroup G′ is �nite.

By considering the non-abelian extension of a Prüfer p-group with a group

of order 2 we have an example of a group that is not locally nilpotent nor

�nite-by-abelian, but it satis�es the hypotheses of the theorem, showing that

the option of G being a �ernikov group cannot be removed from the state-

ment of the theorem.

Another idea was to consider nilpotency of bounded class instead of local

nilpotency. This has been done by F. de Giovanni, M. Trombetti and me

in [23]. To show the proof of the theorem, we cite a lemma whose proof can

be found in [19].
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Lemma 2.10. Let c be a positive integer, and let G be a locally graded

group whose non-normal subgroups are nilpotent of class at most c. Then the

subgroup γc+1(G) is �nite.

Theorem 2.11. Let c be a positive integer, and let G be a locally graded

group such that the set of normalizers of subgroups which are not nilpotent

of class at most c is �nite. Then the subgroup γc+1(G) is �nite.

Proof. By Lemma 2.10, we may assume that G contains subgroups which

neither are normal nor nilpotent of class at most c, otherwise the thesis is

easily reached. Let

NG(X1), . . . , NG(Xt)

be all the normalizers of subgroups of G which are neither normal nor nilpo-

tent of class at most c. For each i = 1, . . . , t, the group NG(Xi) has less

than t normalizers of subgroups that are not nilpotent of class at most c, and

hence, if we argue by induction on the number t of normalizers of subgroups

that are not nilpotent of class at most c, we may suppose that the subgroup

γc+1(NG(Xi)) is �nite. Clearly, the subgroup NG(Xi) has only �nitely many

conjugates in G, and so the index

|G : NG(NG(Xi))| <∞.

As

γc+1(NG(Xi)) / NG(NG(Xi))

it follows that also the subgroup γc+1(NG(Xi)) has �nitely many conjugates

in G, and hence its normal closure γc+1(NG(Xi))
G is �nite by Dietzmann's

Lemma.

Thus

L = 〈γc+1(NG(X1)), . . . , γc+1(NG(Xt))〉G

is a �nite normal subgroup of G.

Now, if we take X/L to be a subgroup of the factor group G/L which is not

nilpotent of class at most c, we have that X cannot be contained in NG(Xi)

for any i = 1, ..., t, because NG(Xi)L/L is nilpotent of class at most c, and
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hence

X / G.

In other words, all non-normal subgroups of G/L are nilpotent of class at

most c, so that we are in the hypotheses of Lemma 2.10 and so γc+1(G)/L. As

L is also �nite, we conclude γc+1(G) is �nite, and the statement is proved.

Other results with similar spirit were also obtained in [23]. For instance,

we studied groups in which cyclic subgroups have �nitely many normalizers,

which are in some sense conceptually close to having all cyclic subgroups

normal (i.e. Dedekind groups).

Theorem 2.12. Let G be a group such that the set of normalizers of cyclic

subgroups is �nite. Then the factor group G/Z(G) of G over its center is

�nite.

Proof. As the statement is obvious when all subgroups of G are normal, we

may suppose that G contains at least one cyclic non-normal subgroup. Let

NG(〈x1〉), . . . , NG(〈x1〉)

be all proper normalizers of cyclic subgroups of G. If g is any element of the

set

G \ [NG(〈x1〉) ∪ . . . ∪NG(〈x1〉)]

the normalizer NG(〈g〉) cannot be a proper subgroup of G, so that 〈g〉 is a
normal subgroup of G and in particular g belongs to the FC-centre F of G,

that is the set of elements with �nitely many conjugates. Thus

G = F ∪ [NG(〈x1〉) ∪ . . . ∪NG(〈x1〉)] .

Then it follows from a result of B.H. Neumann that we can omit from the

union any subgroup of in�nite index (see [45] Part 1, Lemma 4.17). To avoid

complicating the notation, let us assume without loss of generality that all

of the sets in the above union are subgroups of �nite index in G.

Now, if we take 〈x〉 to be any cyclic non-normal subgroup of G, of course the
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groupNG(〈x〉) has at least one less proper normalizer of cyclic subgroups than

G. In other words, it has strictly less than t, so that by arguing by induction

on the number t of proper normalizers of cyclic subgroups, we can conclude

NG(〈x〉) is �nite over its center. By combining what we know, NG(〈x〉) is a
central-by-�nite subgroup of �nite index in G, so that it is contained in its

FC-center F , hence

G = F ∪ [NG(〈x1〉) ∪ . . . ∪NG(〈x1〉)] = F

and G is an FC-group.

This, in turn, means all of the normalizers of cyclic subgroups have �nite

index. Since the proper normalizers of cyclic subgroups are also central-by-

�nite, it follows G is abelian-by-�nite, therefore G, being an FC-group, is

also central-by-�nite (see, for instance, [5]).

A nice consequence of the theorem above is that if G is a group having

�nitely many normalizers of cyclic subgroups, then even the set of normaliz-

ers of all subgroups of G is �nite.

Moving to another example, non-periodic groups whose non-periodic sub-

groups have �nitely many normalizers have been studied in [10] by M. De

Falco, F. de Giovanni and C. Musella, proving the following theorem.

Theorem 2.13. Let G be a group with �nitely many normalizers of non-

periodic subgroups. Then either G is periodic or the factor group G/Z(G) is

�nite.

In particular, a group satisfying the hypotheses of the above theorem, has

always G′ periodic.

Yet another example is given by groups whose non-T -subgroups have �nitely

many normalizers. Here a T -group is a group in which normality is a tran-

sitive relation, or, in symbols

K / H / G⇒ K / G.

The class of T -groups is a peculiar one as it contains all Dedekind groups,

which are rich in normal subgroup and all simple groups, which have none.
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A technical di�culty of the class of T -groups is that subgroups of T -groups

are not necessarily T -groups, as A4 is an example of a group that is not a

T -group, but any group can be embedded into a simple group, and simple

groups are T -groups. For this reason, when studying T -groups, one also

introduces the class of T -groups which is the class of groups such that all of

their subgroups are T -groups. Regarding T -groups see also [27] and [44]

The following theorem was proven in [18] (see also [23]) about groups in

which non-T -subgroups have �nitely many normalizers.

Theorem 2.14. Let G be a soluble group with �nitely many normalizers of

subgroups that do not have the T -property. Then either G is a T -group or

its commutator subgroup G′ is �nite.

The last two examples we cite are a little di�erent in nature, as they

deals with groups in which subnormal (resp. non-subnormal) subgroups have

�nitely many normalizers. Here the collection of subgroups whose normaliz-

ers we put a restriction on is a collection of subgroups having (resp. failing)

an embedding property. We cite it here as it in strong connection to T -

groups.

To understand the result we cite, proved in [15], we recall the de�nition of

the Wielandt subgroup. The Wielandt subgroup ω(G) of a group G is de-

�ned as the intersection of all normalizers of subnormal subgroups of G. In

other words, every subnormal subgroup H of G that is contained in ω(G) is

normal in it. Clearly, ω(G) has the G-property, and indeed G is a T -group

if and only if it coincides with its Wielandt subgroup. For this reason the

"size" (meaning �nite vs in�nite) of G/ω(G) can be considered as a measure

of conceptually how far is the group G from enjoying the T property. Some

results con�rm this naive intuition is useful.

For instance, it is known that if G is a group satisfying the minimal condi-

tion on subnormal subgroups, then G/ω(G) is �nite (see [45] Part 1, Theorem

5.49, and also [21] for a recent generalization of this result). The next result

reported here was proved in [15], and shows that periodic soluble groups with

�nitely many normalizers of subnormal subgroups are not too far from being

T -groups.
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Theorem 2.15. Let G be a periodic soluble group with �nitely many nor-

malizers of in�nite subnormal subgroups. Then the factor group G/ω(G) is

�nite

On the other hand, on a dual topic, in [16] the authors proved

Theorem 2.16. Let G be a group with �nitely many normalizers of subgroups

that are not subnormal. Then every non-subnormal subgroup of G has only

�nitely many conjugates.

We will now discuss a general approach to the study of group classes de-

�ned in the aforementioned fashion and then apply it to the case of groups

with �nitely many normalizers of non-k-hamiltonian subgroups: in particu-

lar we will obtain as corollary that groups whose non-metahamiltonian sub-

groups have �nitely many normalizers have �nite commutator subgroup.

Let X be a class of groups and let us de�ne a new class X2 by saying a group

G is in the class X2 if and only if the set of normalizers of non-X subgroups

of G is �nite.

We can iterate this idea and, upon de�ning

X1 := X

and assuming Xk is already de�ned, we can de�ne the class Xk+1 by stating

that a group G is in the class if and only if the following holds:

|{NG(H) : H ≤ G, H 6∈ Xk}| < +∞.

Of course, we would have that, using the notation introduced in Chapter 1

for k-hamiltonian groups,

Xk ⊆ Xk.

Lemma 2.17. If X is an accessible class of soluble-by-�nite groups, then

groups in X2 are also soluble-by-�nite. If, additionally, X is a class of groups

locally satisfying the maximal condition on subgroups, then the same can be

said for groups in the class X2.
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Proof. Consider a non-X subgroup H of G and de�ne:

M(H) =
⋂

α∈Aut(G)

NG(NG(H))α

As the normalizers of non-X are �nite in number, they have �nitely many

conjugates and so NG(NG(H)) and all of its images under automorphisms

have �nite index in G.

M(H) is then a �nite intersection of subgroups of �nite index and so it is a

characteristic subgroup of G of �nite index.

Starting from H1 and H2 such that NG(H1) and NG(H2) coincide gives rise

to the same subgroup M(H1) = M(H2) hence

M =
⋂

G≥H 6∈X

M(H)

is still a characteristic subgroup of �nite index in G.

M has the property that if H is a non-X subgroup ofM , then it is subnormal

of defect at most 2 in M . That is because M contains the normalizer of its

normalizer. So if you take any non-X subgroup H of G both M/NM(X) and

NM(X)/X have all subgroups subnormal of defect at most 2 and so they are

soluble of derived length at most 3. This means that M (6) has all proper

subgroups in X and so it is either X or �nite, proving G soluble-by-�nite.

To prove the second part of the stament of the lemma, assume that G is

�nitely generated, so that M is a �nitely generated soluble-by-�nite group.

If all of its subgroups of �nite index are subnormal, then this means it is

nilpotent and hence polycyclic, showing that M satis�es the maximal con-

dition on subgroups and so the same can be said of G. If, instead, M has a

non-subnormal subgroup of �nite index, by de�nition of M this means that

M is X-by-�nite and, again, it satis�es the maximal condition on subgroups

because of our hypothesis on the class X, which again implies the condition

holds also in G, which is a �nite extension of M . This concludes the proof

of the lemma.

Now, it would possible to prove with similar methods that for any ac-
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cessible, local and Robinson class X that is contained in the class of �nite-

by-abelian groups, also the classes Xk are classes of �nite-by-abelian groups.

This result would apply, for example, to the class Nc of nilpotent groups

of nilpotency class bounded by c so that, in particular, it applies to the

class of all abelian groups. It also applies to the class of all k-hamiltonian

groups for any integer k, generalizing a result from the previous section. As

a consequence, a group with �nitely many normalizers of non-k-hamiltonian

subgroups has �nite commutator subgroup. This means such a group is also

h-hamiltonian for some h in light of our main theorem from [22]: this is ac-

tually logically equivalent to having �nite commutator subgroup for locally

graded groups. The arguments for proving this are very similar to what has

been done in [22], so that, for the sake of variety, what we now show is a

di�erent way to directly prove the relation between having �nitely many nor-

malizers of non-k-hamiltonian subgroups and being h-hamiltonian for some

h.

Theorem 2.18. Let k be a positive integer, and let G be a group which has

only �nitely many normalizers of subgroups that are not k-hamiltonian. Then

G is h-hamiltonian for some positive integer h.

Proof. Of course, it can be assumed that G is not (k + 1)-hamiltonian, so

that it contains a subgroup which neither is normal nor k-hamiltonian. Let

NG(X1), . . . , NG(Xt)

be all normalizers of subgroups ofG which neither are normal nor k-hamiltonian.

We will prove the statement of the theorem by induction on the number t

of such normalizers. Our assumption that G is not (k + 1)-hamiltonian is

equivalent to having dealt with the case t = 0.

For each index i = 1, . . . , t, the group NG(Xi) has obviously less than t proper

normalizers of subgroups that are not k-hamiltonian, and so by induction on

t we may suppose that it is hi-hamiltonian for some positive integer hi. Put

h = max{k, h1, . . . , ht},
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and let X by any subgroup of G which neither is normal nor k-hamiltonian.

Then

X ≤ NG(X) = NG(Xi)

for some i ≤ t, and soX is an hi-hamiltonian group. Therefore all non-normal

subgroups of G are h-hamiltonian, and hence G is (h+1)-hamiltonian, hence

concluding the proof of the theorem.

This theorem has, as a corollary, the abovementioned property of �nite-

ness of the commutator subgroup.

Corollary 2.19. Let k be a positive integer, and let G be a locally graded

group which has only �nitely many normalizers of subgroups that are not

k-hamiltonian. Then the commutator subgroup G′ of G is �nite.



CLASSES OF GROUPSWITHMANYALMOST NORMAL SUBGROUPS55

Classes of groups with many almost normal subgroups

A subgroup H of a group G is said to be almost normal in G if H has only a

�nite number of conjugates in G. Since there is an obvious bijection between

the conjugacy class of H in G and the cosets of the normalizer NG(H) in

G, we can state almost-normality as a condition on the normalizer of H. In

fact, H is almost normal in G if the normalizer NG(H) of H has �nite index

in G.

A well known result of B. H. Neumann [41] states

Theorem 2.20. Let G be a group. The factor group G/Z(G) of G over its

center is �nite if and only if all of its subgroups are almost normal, i.e.

∀H ≤ G, |G : NG(H)| <∞,

This also has the peculiar consequence that if

∀H ≤ G, |G : NG(H)| <∞

holds, then there is also a positive integer k such that

∀H ≤ G, |G : NG(H)| < k

also holds. In other words groups in which subgroups have �nite conjugacy

classes are the same as groups in which subgroups have boundedly �nite con-

jugacy classes, which is di�erent from what happens by imposing �niteness

of the conjugacy classes of elements.

This same thesis was also obtained by L. A. Kurdachenko and V. V. Py-

laev [29] for groups with the minimal condition on subgroups which are not

almost normal:

Theorem 2.21. Let G be a group with the minimal condition on non almost

normal subgroups. Then the factor group G/Z(G) of G over its center is

�nite.

Moreover, it is clear that FC-groups (i.e. groups with �nite conjugacy
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classes of elements) are precisely those groups whose �nitely generated sub-

groups are almost normal. Groups in which in�nitely generated subgroups

are almost normal were named, for this reason, anti-FC groups and studied

in [26]. In the same paper, also groups whose non-cyclic subgroups are al-

most normal were studied and completely classi�ed.

We now turn to a general discussion of groups in which the set of normalizers

of subgroups not satisfying a given property is �nite.

Let X be any class of groups that is closed under considering subgroups

and homomorphic images (an SH-closed class of groups, using terminology

from [45]) and d a natural number.

We de�ne

Xd,1 := X

while for any natural number k > 1 we say that a group G belongs to the

class Xd,k i�

∀H ≤ G,H 6∈ Xd,k−1 ⇒ |G : NG(H)| ≤ d.

Of course we have Xd1,k ⊆ Xd2,k whenever d1 < d2 and Xd,k is again an SH-

closed class for any d and k.

If X = A and d = 1, we get the classes of k-hamiltonian groups. In general,

with d = 1 we obtain classes of groups in which non-X subgroups are normal,

which we have already studied in a previous section.

Our �rst result is to prove that locality of a class of groups X is inherited by

all classes of groups Xd,k.

Lemma 2.22. Let X be a local class of groups. Then, for any d and k natural

numbers, Xd,k is a local class of groups.

Proof. We will prove the result (i.e Xd,k = LXd,k ∀d ) by induction on k. The

statement is trivial for k = 1, so that we can assume it to be true for k and

try to prove it for k + 1, so let us consider a group G all of whose �nitely

generated subgroups are Xd,k+1.

Let H ≤ G, H 6∈ Xd,k and �nitely generated. Our �rst step is to prove that

H has �nitely many conjugates in G and to do so we start with noticing

that, under our hypothesis, for any �nitely generated subgroup K of G that
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contains H we have that H has at most d conjugate subgroups in K.

Now, if H had d+ 1 di�erent conjugate subgroups

Hg1 , . . . , Hgd+1

in G, one could consider the �nitely generated subgroup

F = 〈H,Hg1 , . . . , Hgd+1 , g1, . . . , gd+1〉

and H would have more than d conjugate subgroups in F , which is a con-

tradiction. So we have |G : NG(H)| < d for all �nitely generated non-Xd,k

subgroups of G.

Take any non-Xd,k subgroup K of G whose smallest set of generators has in�-

nite cardinality κ. By trans�nite induction on κ, we can assume all non-Xd,k

subgroups which are generated by strictly less than κ elements have at most

d conjugates.

Since Xd,k is local by induction hypothesis, K can be seen as the union of

a family of non-Xd,k subgroups Kα, indexed in the set of ordinals α strictly

smaller than κ and having a generating set of cardinality smaller than κ.

Consider any set

{g1, . . . , gd+1}

of d+ 1 elements in G and the subgroups

Kg1
α , . . . , K

gd+1
α .

For any �xed α, these d + 1 subgroups cannot all be distinct and so there

will be two indices i, j ∈ {1, . . . , d+ 1} such that

Kgi
α = Kgj

α

for a set A of indices α with cardinality κ.

This implies Kgi = Kgj so that K cannot have any more than d di�erent

conjugates.

As K is any non-Xd,k subgroup, we have proven that G ∈ Xd,k+1.
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We now want to prove that if X is a Robinson class (i.e. �nitely generated

hyper(abelian-or-�nite) groups with all �nite homomorphic images in X are

polycyclic-by-�nite and X), then the same can be said for Xd,k for all d and

k.

To do so, we will need the following lemma, proving in particular that the

class of groups with a bound on the size of conjugacy classes of subgroups is

a Robinson class.

Lemma 2.23. Let G be a polycyclic-by-�nite group and H be a subgroup of

G such that every subgroup of �nite index of G containing H has at most d

conjugates. Then H has at most d conjugates.

In particular, the class of all groups with a given bound on the size of conju-

gacy classes of subgroups is a Robinson class.

Proof. Let us consider d+ 1 conjugates of H,

H1, . . . , Hd+1.

This means that, if F is the set of normal subgroups of G having �nite index,

for any F ∈ F we have HiF = HjF for some i 6= j, with i, j ∈ {1, . . . , d+1}.
We can then consider a �nite covering {Fij}i,j≤n of F , where Fij is the set

of subgroups F in F such that HiF = HjF .

We now want to prove that one of the Fij has the property that for every

A ∈ F there exists B ∈ Fij such that B ≤ A.

Assume by contradiction that this is not the case. Then, for each choice

of i and j we have a subgroup Aij ∈ F such that no subgroups of Fij are
contained in it. Now consider

A =
⋂
i,j

Aij.

Since it is a �nite intersection, it still is a normal subgroup of �nite index,

hence it belongs to one of the Fij, which is of course a contradiction, because

Fij 3 A ≤ Aij.
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This means there is a choice of i∗ and j∗ in {1, . . . , d+ 1} such that Fi∗j∗ has
the desired property.

Now, notice that

K ⊆
⋂

F∈Fi∗j∗

KF ⊆
⋂

K≤L/G,|G/L|<+∞

L = K

The second inclusion holds because of the proved property for Fi∗j∗ .
In particular

Hi∗ =
⋂

F∈Fi∗j∗

Hi∗F =
⋂

F∈Fi∗j∗

Hj∗F = Hj∗

which means that H has at most d conjugates.

Lemma 2.24. Let X be a Robinson class. Then Xd,k is a Robinson class.

Proof. Let us prove the result for all d by induction on k, the result being

trivial for k = 1.

Let us consider a group G that is �nitely generated, hyper(abelian-or-�nite)

and with all �nite homomorphic images in Xd,k+1.

If there is a subgroup H of �nite index with more than d + 1 conjugates,

then, for any subgroup K of �nite index in H, we have that

G/(HG ∩KG)

is a Xd,k+1 group in which

H/(HG ∩KG)

has more than d conjugates, so that

H/(HG ∩KG) ∈ Xd,k.

By induction hypothesis, since H is a �nitely generated, hyper(abelian-or-

�nite) group whose �nite homomorphic images are Xd,k, H is polycyclic-by-

�nite and Xd,k, showing that also G is polycyclic-by-�nite.

On the other hand, if there is no subgroup H of �nite index with more than

d + 1 conjugates, then Gd! (which is �nitely generated because it has �nite
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index in G, given our hypotheses on G) normalizes all of its subgroups of

�nite index, hence being nilpotent, proving G to be polycylic-by-�nite.

Let us also observe that we have in fact proved that subgroups of �nite index

of G are either Xd,k or they have at most d conjugates.

In conclusion, either way, G is polycyclic-by-�nite. Now consider any sub-

group H of G. It can be seen as the intersection of the subgroups of �nite

index in G that contain it. If H is not Xd,k, then all subgroups of �nite index

containing H have at most d conjugates, so that we are in the hypotheses of

the previous lemma and H has at most d conjugates, proving G ∈ Xd,k+1.

Lemma 2.25. Let X be an SH-closed, local and accessible Robinson class

of soluble-by-�nite groups. For any choice of natural numbers k and d, also

Xd,k is an accessible class of soluble-by-�nite groups.

Proof. Let us prove the result by induction on k. Consider a locally graded

group G that is minimal-non-Xd,k+1, so that it must be �nitely generated

and hence there must be a proper normal subgroup X of �nite index in G.

X is of course Xd,k+1.

If X is also Xd,k we already know the group G is soluble-by-�nite, so, tem-

porarily, with the aim of showing that G is soluble-by-�nite we can assume

without loss of generality that X and even X ′ are not Xd,k. This means that

there is a subgroupH ≤ X ′ that is �nitely generated and not belonging to the

class Xd,k. Now, X/HX is a group in which all subgroups have boundedly

�nite conjugacy classes, so that it has �nite commutator subgroup. Since

H ≤ X ′, we have that HX ≤ X ′ and so(
X

HX

)′
=
X ′HX

HX
=

X ′

HX
is �nite.

Since HX is generated by �nitely many conjugates of H, which is a �nitely

generated subgroup, then HX is also a �nitely generated subgroup and the

same can be said of X ′.

Moreover X ′HX/HX is �nite of order smaller than f(d) for any non-Xd,k

subgroup H of X ′, so that (X ′)[f(d)]! is contained in the intersection of all

non-Xd,k-subgroups of X ′, hence (X ′)[f(d)]! is either Xd,k or minimal-non-Xd,k:
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either way, (X ′)[f(d)]! is soluble-by-�nite.

Since (X ′)/(X ′)[f(d)]! is a �nitely generated locally graded ("locally graded"

is inherited to quotients over a soluble-by-�nite group) bounded group, it is

�nite so that X ′ and hence G are soluble-by-�nite in any case.

Since Xd,k+1 is a Robinson class, G has a �nite homomorphic image G/N

which is not Xd,k+1. Assume by contradiction G is in�nite.

A result by Lennox shows that G/Φ(G) is in�nite, so that some maximal

subgroupM of G not containing N must exist and G = MN , so that G/N =

MN/N = M/(M ∩N) is Xd,k+1 which is absurd.

What we want to prove now is that if X is a local subclass of FA, then

the same can be said of Xd,k for any d and k.

To do so, we �rst need to observe that, with such a choice of X any �nitely

generated soluble-by-�nite group in Xd,k is minimax.

As P. Kropholler proved, for a �nitely generated soluble group to be mini-

max it is necessary and su�cient to not have any sections isomorphic to the

standard wreath product of a cyclic group of prime order with an in�nite

cyclic group.

So, the next lemma is what is needed.

Lemma 2.26. Let X be a local subclass of the class of �nite-by-abelian groups.

The standard wreath product G = 〈a〉 o 〈b〉 of a cyclic group of prime order

with an in�nite cyclic group does not belong to Xd,k for any positive integers

d and k.

Proof. If G = 〈a〉 o 〈b〉 with o(a) = p and o(b) = ∞, then H = 〈a, bp〉 is a
self-normalizing subgroup of in�nite index that is isomorphic to the whole

group G.

Arguing by contradiction, assume G to be Xd,k. Then H would have to be

Xd,k−1 and so the same could be said for G. This would allow to inductively

prove G ∈ X ⊆ FA, which is absurd.

Theorem 2.27. Let X be a SH-closed, local and accessible Robinson class

of �nite-by-abelian groups, i.e. X ⊆ FA, and let d and k be positive integers

and G be a locally graded group in Xd,k. Then G is in the class FA of �nite-

by-abelian groups.
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Proof. We will prove the result for all d by induction on k.

The statement is trivial for k = 1, so we assume for it to be true for k and

prove it for k + 1.

Part 1: It is not restrictive to assume G �nitely generated.

If G′ is Xd,k−1, we know by induction hypothesis that G′′ is �nite and so, in

this case, we reason modulo G′′ and assume that G is metabelian and G′ is

abelian.

For any �nitely generated non-Xd,k subgroup K of G we have that KG is

�nitely generated and X = G′KG is soluble and �nitely generated. This is

because G/KG has all subgroups almost normal and so it has �nite commu-

tator subgroup. Of course, then, by the previous lemma, X (and hence G′)

is minimax. For this reason, there is a �nitely generated subgroup A such

that G′/A is periodic and so such a subgroup K can be chosen with A ≤ K ′,

hence

A ≤ X ′ ≤ G′ ≤ X.

Since G′/X ′ is �nite, there exists a �nitely generated subgroup

L/X ′ ≤ X/X ′

such that L′ = G′, therefore E = XL is a �nitely generated subgroup of G

such that E ′ = G′.

If G′ is not Xd,k such a subgroup K can be chosen inside G′ by locality of

the class Xd,k and so X = G′KG = G′ is �nitely generated.

We have proved that in any case, it is not restrictive to assume G is �nitely

generated with the purpose of proving G′ �nite.

Part 2: Conclusion. Of course Gm, where m = d!, normalizes all non-

Xd,k subgroups. This mean Gm is a group in which non-Xd,k subgroups are

normal. Now, remember Xd,k is a SH-closed, local, accessible Robinson class

of �nite-by-abelian groups by induction.

Now, if Y is such a class, then locally graded groups in which non-normal

subgroups are Y have �nite commutator subgroup, so that (Gm)′ is �nite.

G/Gm is bounded and locally graded (because this property is inherited from

the whole group by quotients over �nite-by-abelian normal subgroups) so that
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it is �nite.

Our group G is then �nite-by-abelian-by-�nite and �nitely generated, hence

it is abelian-by-�nite. Let us choose a torsion-free abelian normal subgroup

A of �nite index.

Assume, by contradiction, the statement is false so thatG is �nitely generated

with in�nite commutator subgroup and it has an element x that is not an FC-

element. As 〈A, x〉 would still be a counteraxample, we rename G = 〈A, x〉.
As [An, x] is in�nite for any n, 〈An, x〉 is, by induction hypothesis, not a Xd,k

subgroup and hence it is normalized by Am, m ≤ n.

Now
〈x〉

A ∩ 〈x〉
=
⋂ 〈x,An〉

A ∩ 〈x〉
=

⋂
〈x,An〉
A ∩ 〈x〉

/
〈x,Am〉
A ∩ 〈x〉

which is absurd, because it would imply 〈x〉 to be normal in a subgroup of

�nite index in G and so x to be an FC-element. This proves G is �nite-by-

abelian.

Groups whose non-X-subgroups are subnormal of bounded

defect

Throughout all of this section, let X be an SH-closed class of groups and let

d be a positive integer. We de�ne a new class of groups, Xd by saying that a

group G belongs to Xd if

∀H ≤ G, H 6∈ X⇒ H sn
≤d
G

where by H sn
≤d
G we mean that H is a subnormal subgroup of G of defect at

most d.

It is easy to see that also Xd is a SH-closed class of groups.

Lemma 2.28. If X is a Robinson class, then the same can be said of Xd for

all positive integers.

Proof. Let G be a �nitely generated hyper(abelian-or-�nite) group whose

�nite homomorphic images all lie in Xd. If it has a X-subgroup of �nite
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index X, then X is polycyclic-by-�nite and so is G. If it does not have such

a subgroup, then all of its �nite homomorphic images are groups such that

all of their subgroups are subnormal of bounded defect. For a Theorem by

Roseblade, this means they are nilpotent of bounded class. Since nilpotency

is a Robinson class, this means that G is nilpotent. Either way, we concluded

G is polycyclic-by-�nite.

Now, let H be a subgroup of G. For a famous result by Malcev, it is the

intersection of subgroups of �nite index containing it. If it is contained in a

X-group, since X is S-closed, then also H is a X-group. Otherwise, it is the

intersection of a family of subnormal subgroups whose defect is bounded and

hence the same can be said of H, proving that G is a Xd-group.

Lemma 2.29. Let G be a Xd-group. Then G has a normal subgroup X that

is either X or minimal-non-X and such that G/X is soluble of derived length

bounded in terms of d.

Proof. Let H be any subgroup of G that is not an X-group. Since every

subgroup that contains HG is not a X-group, G/HG is a group in which

every subgroups is subnormal of bounded defect d, hence γρ(d)(G) ≤ HG,

where ρ is the function in the famous Roseblade Theorem and hence also

the term of the derived series G(ρ(d)) ≤ HG. Now, de�ne X1 to be the

intersection of HG as H varies in the set all of non-X subgroups of G. Of

course X1 is a normal subgroup of G and the factor G(ρ(d)) ≤ X1. Now,

consider any subgroup H1 ≤ X1 that is not a X-group. Since H1 sn
≤d−1

HG
1 , we

have also that H1 sn
≤d−1

X1. This means X1 is a Xd−1-group. From here on,

we can repeat the construction inside it to �nd a subgroup X2 which is Xd−2

and it contains X(ρ(d−1))
1 , so it also contains G(ρ(d)+ρ(d−1)). If we repeat this

construction d−1 times we reach the de�nition of Xd−1, which is a X1-group,

i.e. a group in which non-X-subgroups are normal. By intersecting all of its

non-X subgroups one last time, we �nd a minimal-non-X-group Xd. Hence

the subgroup X = G

(
d∑

i=1
ρ(i)

)
is such that the factor of G over it is soluble

of derived length bounded in terms of d and it is contained (not necessarily

strictly) in a minimal-non-X group, concluding the proof.
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As a consequence, if X is an accessible class of soluble-by-�nite groups, e.g.

the class of metahamiltonian groups, then Xd groups are soluble-by-�nite.
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