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Summary

This thesis stands as one of the first attempt to connect the statistical object oriented data
analysis (OODA) methodologies with the industry field. Indeed, the aim of this thesis is to
develop statistical methods to tackle industrial problems through the paradigm of the OODA.
The new framework of Industry 4.0 requires factories that are equipped with sensor and
advanced acquisition systems that acquire data with a high degree of complexity. OODA can
be particularly suitable to deal with this increasing complexity as it considers each statistical
unit as an atom or a data object assumed to be a point in a well-defined mathematical
space. This idea allows one to deal with complex data structure by changing the resolution
of the analysis. Indeed, from standard methods where the atom is represented by vector
of numbers, the focus now is on methodologies where the objects of the analysis are whole
complex objects. In particular, this thesis focuses on functional data analysis (FDA), a
branch of OODA that considers as the atom of the analysis functions defined on compact
domains.

The cross-fertilization of FDA methods to industrial applications is developed into three
parts in this dissertation. The first part presents methodologies developed to solve specific
applicative problems. In particular, a first consistent portion of this part is focused on
profile monitoring methods applied to ship CO2 emissions. A second portion deals with the
problem of predicting the mechanical properties of an additively manufactured artifact given
the particle size distribution of the powder used for its production. And, a third portion
copes with the cluster analysis for the quality assessment of metal sheet spot welds in the
automotive industry based on observations of dynamic resistance curve.

Stimulated by these challenges, the second part of this dissertation turns towards a
more methodological line that addresses the notion of interpretability for functional data.
In particular, two new interpretable estimators of the coefficient function of the function-
on-function linear regression model are proposed, which are named S-LASSO and AdaSS,
respectively. Moreover, a new method, referred to as SaS-Funclust, is presented for sparse
clustering of functional data that aims to classify a sample of curves into homogeneous
groups while jointly detecting the most informative portions of domain.

In the last part, two ongoing researches on FDA methods for industrial application are
presented. In particular, the first one regards the definition of a new robust nonparametric
functional ANOVA method (Ro-FANOVA) to test differences among group functional means
by being robust against the presence of outliers with an application to additive manufacturing.
The second one sketches a new methodological framework for the real-time profile monitoring.
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Introduction

Nowadays, new technologies allow gathering massive amount of data as never before. Terms
as big data and artificial intelligence have become of common use, and much more interest
has been drawn by academic disciplines as computer science, statistic and machine learning.
In this scenario, emphasis is usually placed on the size of the data. Indeed, the term
big data is now mainstream (Secchi, 2018; Dunson, 2018). However, parallelly data are
also becoming more complex. The notion of complexity has appeared only recently in the
statistical literature, where most of the approaches are designed for datasets where each
observation is either a number or a vector. On the contrary, nowadays, datasets are composed
of very complex objects such as curves, images and shapes. The increasing data complexity
has motivated the birth and development of a branch of statistics which is referred to as
Object Oriented Data Analysis (OODA) (Wang et al., 2007; Marron and Alonso, 2014). The
idea of OODA is to consider each statistical unit as an atom or a data object assumed to be
a point in a well-defined mathematical space. This idea allows dealing with complex objects
by changing the resolution of the analysis.

The industry is not immune from this revolution. The new paradigm of Industry
4.0 requires that factories are equipped with sensor and advanced acquisition systems
to increase automation, improve communication and monitor the processes (Xu et al.,
2018). However, the acquired datasets are often complex and require the use of new
advanced statistical methodologies, as OODA methods, to provide valuable results. Indeed,
in industrial applications, the standard practice to deal with complex datasets is to restore
the vector representation of the data through some pre-processing operations, as averaging
or discretization. With this approach the risk is discarding valuable information and, thus,
reducing the effectiveness of the analysis.

This thesis stands as one of the first attempt to connect the statistical OODA method-
ologies with the industry. The aim of this thesis is to develop statistical methods to tackle
modern industrial problems through the new OODA paradigm. In particular, this thesis
focuses on functional data analysis (FDA), a branch of OODA that considers as the atom of
the analysis functions defined on compact domains (Ramsay and Silverman, 2005; Kokoszka
and Reimherr, 2017). Most of the datasets collected in the modern industry bring information
about curves or surfaces that are apt to be modelled as functional data. FDA has been
obtaining increasing attention in the literature since the first appearance of the seminal book
by Ramsay and Silverman (2005). The term FDA was coined by Ramsay (1982) and Ramsay
and Dalzell (1991), even though the history of this area is much older and dates back to
Grenander (1950) and Rao (1958). The greatest issue of FDA is that functions, differently
from vectors, are intrinsically infinite dimensional, i.e., infinite parameters are needed to
represent them. This poses challenges under both the theoretical and computational points
of view. On the other hand, the intrinsic functional data complexity, if utilised properly,
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Introduction

could be the basis for more effective and successful data analyses. In this scenario, FDA
extends and adapts multivariate methods, specifically designed for either vectors or numbers,
to the case where the atoms of the analysis are functions. For instance, the principal
component analysis (Jolliffe, 2011), as dimension reduction tool for multivariate data, has
been extended to functional data and termed functional principal component analysis (Shang,
2014); functional regression stands as the counterpart of the multivariate regression analysis
where either the response responses or the covariates or both are functional objects (Morris,
2015); clustering analysis has also been proposed for functional data with the aim of grouping
functions in such a way that objects in the same group are more similar to each other than
to those in other groups (Jacques and Preda, 2014).

In this thesis, the cross-fertilization of FDA methods with industrial applications is
developed in three parts. The first part presents methodologies developed to solve specific
applicative problems. In particular, a consistent portion is focused on statistical process
control (SPC) (Montgomery, 2007) methods for functional data which are also known as
profile monitoring (Noorossana et al., 2012). The aim of SPC is to monitor and control the
stability over time of a quality characteristic and to trigger a signal when assignable sources
of variations (i.e., special causes) act on the process. When this happens, the process is said
to be out-of-control (OC). On the contrary, the process is said to be in-control (IC) when only
normal sources of variation (i.e., common causes) apply. We here develop a very transparent
set of steps for monitoring profiles in real-world case studies, based on three main steps: (i)
data smoothing, where the raw observations are converted to functional data; (ii) functional
principal component analysis, where the infinite dimensional problem is reduced to a finite
dimensional one by means of an optimal functional data approximation; (iii) monitoring
procedure, where the principal component scores are used as input to build appropriate
control charts. The effectiveness of this procedure is shown through a real-case study from
the maritime field to monitor CO2 emissions during the navigation phase of a roll-on/roll-off
passenger (Ro-Pax) cruise ship, i.e., a ship designed to carry both passengers and wheeled
vehicles. In practice, there are situations where the quality characteristic is influenced by
one or more functional covariates. In this scenario, if one of these covariates manifests itself
with an extreme realization, the quality characteristic may wrongly be judged to be OC.
Otherwise, there may be situations where the covariates are not extreme and the quality
characteristic may wrongly appear IC. As well as, the quality characteristic may wrongly
appear IC because the variance explained by the covariates is overlooked. To address this
issue, the functional regression control chart (FRCC) framework is presented. The basic
idea behind this chart is to consider the quality characteristic after being adjusted for the
effects of the covariates, that is, monitoring the residuals of the regression of the quality
characteristic on the covariates. Also in this case, the application is in the shipping industry,
where the FRCC is used to identify reductions of cumulative fuel consumption, and thus
CO2 emissions (which are stoichiometrically related to it) after that an energy efficiency
initiative was performed off-line on a Ro-Pax ship. Moreover, the potential of the FRCC
is also assessed to monitor ship CO2 emissions throughout each voyage in order to identify
special causes, at given values of the functional covariates.

As already introduced before, functional regression is particularly relevant in FDA (Morris,
2015), where the aim is to model the relationship between a quality characteristic (referred
to as response) and one or more independent variables (referred to as covariates), in which
at least one of them is apt to be modelled as a function. Particularly significant is the
setting where both the response and covariate are functions and the relationship between
them is assumed to be linear, that is usually referred to as function-on-function (FoF) linear
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regression model (Ramsay and Silverman, 2005). In order to show the practical applicability
and to highlight the benefits of it, the FoF linear regression model is applied to a real-life case
study in the additive manufacturing (AM) field. The impact of many characteristics of raw
materials on the final properties of the produced parts is in fact still an open research issue
and hampers the industrialization of additive technologies (Khajavi et al., 2018; Mani et al.,
2017), which are, on the other hand, also very costly. Specifically, the aim is to predict the
mechanical properties, summarized into stress–strain curves, of an additively manufactured
artefact, given the particle size distribution (PSD) of the powder used for its production. In
this setting, practitioners classically settle the analyses by extracting scalar features from
both the sample PSD and the observed stress–strain curve. The application of the FoF
linear regression allows instead the estimation and prediction of the full stress–strain curve
of produced part (i.e., the functional response) given the powder PSD (i.e., the functional
covariate).

In industry, another paramount issue constantly faced by practitioners is related to the
need of identifying homogeneous groups of observations in a specific dataset. This problem
is referred to as cluster analysis in the statistical literature (Everitt et al., 2011). Also in this
case, the most common practice is to base cluster analysis on one or a few scalar features
extracted from acquired dataset, even though feature extraction is known to be problem-
specific, arbitrary, and with the risk to compress useful information. On the contrary, FDA
approaches stands as a possible way of minimizing the loss of information. This idea could
be successfully applied in the modern automotive Industry 4.0 framework, where automatic
acquisition systems allow a control through the continuous record of a large volume of
process parameters. In this setting, resistance spot welding (RSW) is the most common
technique employed in joining metal sheets during body-in-white assembly of automobiles
(Ighodaro et al., 2016) and their quality is routinely controlled in order to guarantee the
structural integrity and solidity of welded assemblies in each vehicle. In particular, the
so-called dynamic resistance curve (DRC) is the most important process parameter acquired
on-line that is recognized as the full technological signature of the metallurgical development
of a spot weld (Dickinson et al., 1980). In this scenario, it is important to identify clusters
of spot welds based on DRC observations, with a convenient interpretation in terms of
mechanical and metallurgical properties especially since the difficulty in matching each DRC
with a quantitative measure of the final quality of the corresponding spot welds.

Part II of this dissertation turns towards a more methodological line. Sometimes,
literature FDA methods are in fact not able to straightforwardly address problems that arise
in industrial applications. The increasing complexity, brought by the Industry 4.0 revolution,
stimulates new challenges and calls for totally new statistical techniques. In addition, most
of industrial applications require methods that are able to enhance the understanding of the
process under study. This idea is related to the broad notion of interpretability. There is
no mathematical definition of interpretability. A (non-mathematical) definition by Miller
(2019) is: Interpretability is the degree to which a human can understand the cause of a
decision. The higher the interpretability, the easier it is for someone to comprehend why
certain decisions have been made. This idea translates directly to FDA, where new methods
could be developed to improve the degree to which a human can understand the process
under study.

In the FoF linear regression model, the functional predictor contributes linearly to the
response through the coefficient function, which works as a continuous weight function.
Sparse coefficient functions have a great practical interest because allow identifying domain
regions where the predictor has not influence on the response. Methods that are able to
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recover the sparse nature of the coefficient function are referred to as sparse or interpretable
ones (James et al., 2009), because they facilitate the interpretation of the relationship
between the covariate and the response, and, thus, improve interpretability. In the literature,
no effort has been made to obtain an interpretable estimator for the FoF linear regression
model. We here introduce the sparse S-LASSO (Smooth plus LASSO) estimator of the
coefficient function of the FoF linear regression model. The property of sparseness of the
S-LASSO estimator is provided by a the functional LASSO penalty, which is the functional
generalization of the classical Least Absolute Shrinkage and Selection Operator (LASSO)
(Tibshirani, 1996). Sparse estimators are not the only ones able to enhance interpretability in
the FoF linear regression setting. Indeed, in this setting, a higher degree of interpretability is
reflected by a higher accuracy in the estimation of the coefficient function. If the coefficient
function is sparse then sparse estimators are needed, otherwise the sparseness property is
not essential. Most of the estimation methods for the FoF linear regression model rely on
penalty terms that reduce the complexity by constraining the coefficient function to own a
certain degree of smoothness (Ramsay and Silverman, 2005). However, such penalties fail
to accommodate the local behaviour of coefficient function because they uniformly apply
penalization throughout the domain. To solve this problem, we here present the adaptive
smoothing spline (AdaSS) estimator that considers two adaptive roughness penalties that are
able to produce different amount of penalty over the domain. The idea of adaptive penalties
is not new in the statistical literature (Ruppert and Carroll, 2000), indeed, it is very popular
and well established in the field of nonparametric regression (Wahba, 1990). On the contrary,
in the FoF linear regression setting, the AdaSS estimator is the first attempt to improve the
estimation accuracy of the coefficient function through the use of adaptive penalties.

Cluster analysis is another branch of statistics, where interpretability could have a
prominent role. Also in this case, interpretability could be reflected in the notion of
sparsity. Sparse clustering methods are capable of selecting informative features, i.e., the
features in which respect the clusters differ the most, and eliminating the remaining ones,
referred to as noninformative. In the multivariate context, sparse clustering methods have
received increasing attention in the statistical literature (Pan and Shen, 2007), however
only recently, the notion of sparsity has been translated into a functional data clustering
framework (Floriello and Vitelli, 2017). Specifically, sparse functional clustering methods
aim to cluster a bunch of curves while jointly detecting the most informative portion of
domain to the clustering in order to improve both the accuracy and the interpretability of
the analysis. In this dissertation, we introduce the sparse and smooth functional clustering
(SaS-Funclust) method, where the basic idea is to provide accurate and interpretable cluster
analysis. Differently from the methods already present in the literature (Floriello and Vitelli,
2017; Vitelli, 2019), the SaS-Funclust method is able to detect portions of domain that
are noninformative pairwise, i.e., for at least a specific cluster pair, and it owns the great
flexibility of the model-based procedures.

In the Part III of this dissertation, two ongoing researches on FDA methods for industrial
application are presented. The first one tackles the problem of identifying the presence of
significant differences, in terms of functional mean, among groups of a functional data, is
treated. This problem is the functional extension of the classical analysis of variance, that
is, the functional analysis of variance (FANOVA) (Ramsay and Silverman, 2005). However,
when dealing with real data, the functional sample under study is usually contaminated by
some outliers, which can strongly bias the analysis results (Hubert et al., 2015). In order to
take into account the possible presence of anomalous functional observations, a new robust
nonparametric functional ANOVA method (Ro-FANOVA) is presented that is able to test
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differences among group functional means by reducing the influence of anomalous observations.
The last work presented in this dissertation sketches the main elements of a new method
for real-time monitoring of functional data. Most of the profile monitoring methods aim to
assess the stability of the functional quality characteristic completely observed (Centofanti
et al., 2020b; Capezza et al., 2020). However, in some applications, the interest relies in
understanding if the process is working properly before its completion. For this reason, a new
method, referred to as functional real-time monitoring control chart (FRTMCC), is going
to be developed for the real-time monitoring of a quality characteristic profile. It is based
on the idea of real-time alignment and simultaneously monitoring of phase and amplitude
variations.

The dissertation is developed in seven chapters, whose structure is briefly summarized
hereinafter.

Part I

Chapter 1: A Functional Data Analysis Approach for the Monitoring of Ship CO2
Emissions
The objective of the present chapter is to provide the reader with a very transparent
set of steps for the SPM of functional data in real-world case studies: i) identifying
a finite dimensional model for the functional data, based on functional principal
component analysis; ii) estimating the unknown parameters; iii) designing control
charts on the estimated parameters, in a nonparametric framework. The proposed
SPM procedure is applied to a real-case study from the maritime field in monitoring
CO2 emissions from real navigation data of a roll-on/roll-off passenger cruise ship, i.e.,
a ship designed to carry both passengers and wheeled vehicles that are driven on and
off the ship on their own wheels.

The results here presented are illustrated in
• Capezza, C., Centofanti, F., Lepore, A., Palumbo, B., (2021), ‘A Functional

Data Analysis Approach for the Monitoring of Ship CO2 Emissions’. To appear
in Gestão & Produção.

Chapter 2: Functional Regression Control Chart
In this chapter, we present a new framework for monitoring a functional quality
characteristic when functional covariates are available. In particular, the Phase
II monitoring is considered, where the unknown parameters and control limits are
estimated using a set of IC data (Phase I). This framework is henceforth referred
to as functional regression control chart (FRCC). Specifically, we consider the case
when the model which links the functional response and functional covariates is linear
and, and we monitor residuals by using a profile monitoring approach based on the
simultaneous application of the Hotelling’s T 2 and the squared prediction error (SPE)
control charts.

The results here presented are illustrated in
• Centofanti, F., Lepore, A., Menafoglio, A., Palumbo, B., Vantini, S. (2020).

‘Functional regression control chart’. Technometrics, 1-14.
Chapter 3: Functional Regression Control Chart for Monitoring Ship CO2 Emissions
In this chapter, we show an application of the FRCC with the ultimate goal of
answering, at the end of each ship voyage, the question: given the value of the
covariates, is the observed CO2 emission profile as expected?. To this aim, the FRCC
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focuses on the monitoring of residuals obtained from a multivariate functional linear
regression of the CO2 emission profiles on the functional covariates. The applicability
of the FRCC is demonstrated through a real-case study of a Ro-Pax ship operating in
the Mediterranean Sea.

The results here presented are illustrated in
• Centofanti, F., Lepore, A., Menafoglio, A., Palumbo, B., Vantini, S. (2020).

‘Functional regression control chart for monitoring ship CO2 emissions’. To
appear in Quality and Reliability Engineering International.

Chapter 4: Function-on-function regression for assessing production quality in
industrial manufacturing
In order to show its practical applicability and to highlight the benefits of a functional
data approach, in this chapter, the function-on-function linear regression model is
applied to a real-life case study in the additive manufacturing (AM) field. In particular,
the potential of the proposed method is demonstrated by applying it to a real-case
study in powder bed fusion AM for metals to predict the mechanical properties of an
additively manufactured artefact given the particle size distribution of the powder
used for its production.

The results here presented are illustrated in
• Palumbo, B., Centofanti, F., Del Re, F. (2020). ‘Function-on-function regres-

sion for assessing production quality in industrial manufacturing’. Quality and
Reliability Engineering International, 36(8), 2738-2753.

Chapter 5: Functional clustering methods for resistance spot welding process data in
the automotive industry
The present chapter means to show the potentiality and the practical applicability
of clustering methods for functional data, which avoid the need for arbitrary and
often controversial feature extraction. The aim is to find out homogeneous groups
of dynamic resistance curves (DRC), which is recognized as the full technological
signature of the spot weld, produced in joining metal sheets in the automotive industry.
Homogeneous groups of DRCs likely pertain to spot welds sharing common mechanical
and metallurgical properties. Moreover, an essential hands-on overview of the most
promising functional clustering methods is provided.

The results here presented are illustrated in
• Capezza, C., Centofanti, F., Lepore, A., Palumbo, B. (2021+). ‘Functional

clustering methods for resistance spot welding process data in the automotive
industry’. Submitted to Applied Stochastic Models in Business and Industry
awaiting for final decision.

Part II

Chapter 6: Smooth LASSO Estimator for the Function-on-Function Linear Regres-
sion Model
In this chapter, a new estimator, named S-LASSO, is presented for the coefficient
function of the function-on-function linear regression model. The S-LASSO estimator
is shown to be able to increase the interpretability of the model, by better locating
regions where the coefficient function is zero, and to smoothly estimate non-zero values
of the coefficient function. The sparsity of the estimator is ensured by a functional
LASSO penalty, which pointwise shrinks toward zero the coefficient function, while
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the smoothness is provided by two roughness penalties that penalize the curvature of
the final estimator.

The results here presented are illustrated in
• Centofanti, F., Fontana, M., Lepore, A., Vantini, S. (2020). ‘Smooth Lasso

Estimator for the Function-on-Function Linear Regression Model’. arXiv preprint
arXiv:2007.00529.

Chapter 7: Adaptive Smoothing Spline Estimator for the Function-on-Function
Linear Regression Model
In this chapter, we present an adaptive smoothing spline (AdaSS) estimator for
the function-on-function linear regression model where each value of the response,
at any domain point, depends on the full trajectory of the predictor. The AdaSS
estimator is obtained by the optimization of an objective function with two spatially
adaptive penalties, based on initial estimates of the partial derivatives of the regression
coefficient function. This allows the proposed estimator to adapt more easily to the
true coefficient function over regions of large curvature and not to be undersmoothed
over the remaining part of the domain.

The results here presented are illustrated in
• Centofanti, F., Lepore, A., Menafoglio, A., Palumbo, B., Vantini, S. (2020).

‘Adaptive Smoothing Spline Estimator for the Function-on-Function Linear Re-
gression Model’. arXiv preprint arXiv:2011.12036.

Chapter 8: Sparse and Smooth Functional Data Clustering
In this chapter, a new model-based procedure is developed for sparse clustering of
functional data that aims to classify a sample of curves into homogeneous groups while
jointly detecting the most informative portions of domain. The proposed method
is referred to as sparse and smooth functional clustering (SaS-Funclust) and relies
on a general functional Gaussian mixture model whose parameters are estimated by
maximizing a log-likelihood function penalized with a functional adaptive pairwise
penalty and a roughness penalty. The former allows identifying the noninformative
portion of domain by shrinking the means of separated clusters to some common
values, whereas the latter improves the interpretability by imposing some degree of
smoothing to the estimated cluster means.

The results here presented are illustrated in
• Centofanti, F., Lepore, A., Palumbo, B. (2021). ‘Sparse and Smooth Functional

Data Clustering’. arXiv preprint arXiv:2103.15224.
Part III

Chapter 9: Robust Functional ANOVA with Application to Additive Manufacturing
In this chapter, we propose a robust nonparametric functional ANOVA method (Ro-
FANOVA) that is able to test differences among group functional means by being
robust against the presence of outliers. Indeed, when dealing with real data, it is
common that the functional sample under study is contaminated by some anomalous
observations, which can strongly bias the analysis. In order to take into account this
possibility, the Ro-FANOVA method reduces the weights of outliers on the results
of the analysis. The performance of the proposed approach is demonstrated in the
framework of a motivating real case-study in additive manufacturing. The aim of the
robust FANOVA consists of identifying significant effects of relevant process factors
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and their interactions on by-products of the process, i.e., spatter ejections, measured
through high-speed video imaging and translated into a functional form.

The results of this chapter are part of an on-going research in collaboration
with Bianca Maria Colosimo (Politecnico di Milano, Milan, Italy), Marco Grasso
(Politecnico di Milano, Milan, Italy), Alessandra Menafoglio (Politecnico di Milano,
Milan, Italy), Biagio Palumbo (University of Naples, Naples, Italy), and Simone
Vantini (Politecnico di Milano, Milan, Italy).

Chapter 10: Functional Real-time Monitoring Control Chart
In this chapter, a new method, referred to as functional real-time monitoring control
chart (FRTMCC), to real-time monitor a functional quality characteristic is described.
Indeed, most of the profile monitoring methods aim to assess the stability of the
functional quality characteristic in its entirely (Centofanti et al., 2020b; Capezza et al.,
2020). However, in some applications, the interest relies in understanding if the process
is working properly before its completion. To tackle this issue, the FRTMCC combines
an alignment step with a monitoring scheme of phase and amplitude variations.

The results of this chapter are part of an on-going research in collaboration
with Max Spooner (DTU Compute, Technical University of Denmark, Kgs. Lyngby,
Denmark), Murat Kulahci (DTU Compute, Technical University of Denmark, Kgs.
Lyngby, Denmark), Biagio Palumbo (University of Naples, Naples, Italy), and Antonio
Lepore (University of Naples, Naples, Italy).
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Chapter 1

A Functional Data Analysis Approach
for the Monitoring of Ship CO2
Emissions

Abstract
Sensing networks provide nowadays massive amounts of data that in many applications
vary over a continuum and thus, can be suitably modelled as functional data. Their proper
modelling by means of functional data analysis approaches naturally addresses new challenges
also in the statistical process monitoring (SPM) of functional data, also known as profile
monitoring. The objective of the present motivation-applied chapter is to provide the reader
with a very transparent set of steps for the SPM of functional data in real-world applications:
i) identifying a finite dimensional model for the functional data, based on functional principal
component analysis; ii) estimating the unknown parameters; iii) designing control charts on
the estimated parameters, in a nonparametric framework. The profile monitoring strategy is
applied to a real-case study from the maritime field in monitoring CO2 emissions during
the navigation phase of a roll-on/roll-off passenger cruise ship, whose data are courtesy of
the owner Grimaldi Group. We show different scenarios highlighting clear and interpretable
indications that can be extracted from the data set that support the detection of anomalous
voyages.

1.1 Introduction

In many applications, the development of data-acquisition systems allows the gathering
of massive amount of data that can be suitably modelled as functional data, that is as
functions varying over a continuum. Functional data analysis (FDA) refers to the set of
statistical methods where the observation units are functional data. Thorough overviews
of FDA techniques are provided by Ramsay and Silverman (2005); Horváth and Kokoszka
(2012); Kokoszka and Reimherr (2017) and Hsing and Eubank (2015); Bosq (2012) for more
specific theoretical insight. Functional data are usually observed on a discrete grid of points.
Thus, standard multivariate methods could be in principle applied. Unfortunately, often the
number of observations is much less than the number of observed discrete points and, thus,
issues of high dimensionality arise, and must be properly overcome when the aim of the
analysis is the monitoring and controlling of the stability over time of quality characteristics
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apt to be modelled as a functional data. Statistical process monitoring of functional data
is known also as profile monitoring, where functional data are referred to as profiles. As
in the classical univariate and multivariate setting, where data are represented by scalars
or vectors, profile monitoring control charts have the task of continuously monitoring the
quality characteristic and of triggering a signal when assignable sources of variations (i.e.,
special causes) act on it. When this happens, the process is said to be out of control (OC).
Otherwise, when only normal sources of variation (i.e., common causes) apply, the process
is said to be in-control (IC). As discussed by Woodall et al. (2004), all the approaches for
profile monitoring share the following structure: i) identifying a finite dimensional model for
the functional data; ii) estimating the unknown parameters; iii) designing control charts on
the estimated parameters. In particular, the book of Noorossana et al. (2012) represents
a comprehensive overview of profile monitoring methods. Pini et al. (2017) proposed a
two-steps profile monitoring approach where, firstly, the informative parts of the functional
data to be monitored are selected by means of the inferential interval-wise testing procedure
(Pini and Vantini, 2017), and, then, the monitoring strategy is performed on the basis of
the information that the functions contain in the selected domains. Menafoglio et al. (2018)
introduced a new approach for monitoring probability density functions based on simplicial
functional principal component analysis. Grasso et al. (2016) presented a novel approach
for profile monitoring that combines the functional principal component analysis and the
use of parametric warping functions. More recently, Capezza et al. (2019) extends classical
multivariate techniques to the monitoring of multivariate functional data and a scalar quality
characteristic related to them. Whereas, Centofanti et al. (2020b) expand the Mandel’s
regression control chart idea (Mandel, 1969) to the functional setting, that is a control chart
elaborated on the functional residuals obtained from a function-on-function regression of the
quality characteristic profile on concurrent functional covariates. Other relevant contributions
in this field include the work of Jin and Shi (1999); Colosimo and Pacella (2007, 2010), and
Grasso et al. (2017).

The objective of the present motivation-applied chapter is to provide the reader with a
very transparent set of steps for monitoring profiles in real-world applications. In particular,
the proposed method can be divided into three main steps. Firstly, the functional data are
obtained from the raw data through a smoothing technique based on spline functions. Then,
a functional principal component analysis (FPCA), that is the functional extension of the
classical (non-functional) principal component analysis (PCA) (Jolliffe, 2011), is performed
in order to extract the relevant principal component scores. Lastly, the retained principal
component scores are used in a monitoring strategy that is based on the simultaneous
application of the Hotelling’s and the squared prediction error (SPE) control charts in a
nonparametric framework.

A complete overview of smoothing techniques for functional data is provided by Ramsay
and Silverman (2005), where methods based on least squares and roughness penalties are
presented under a practical point of view. More generally, references on smoothing spline
estimators for nonparametric regression are Wahba (1990); Green and Silverman (1993);
Eubank (1999), and Gu (2013). A survey of FPCA, and its use in explanatory analysis,
modeling and forecasting, and classification of functional data is provided by Shang (2014).
The T 2 and SPE control charts are widely used for multivariate statistical process monitoring
(Montgomery, 2007). See Lowry and Montgomery (1995) for a review on multivariate control
charts.

Eventually, the proposed monitoring strategy is applied to a real-case study from the
maritime field in monitoring CO2 emissions during the navigation phase of a roll-on/roll-off
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passenger (Ro-Pax) cruise ship, whose data are courtesy of the owner Grimaldi Group.
The chapter is structured as follows. Section 1.2 introduces the proposed procedure.

In particular, in Section 1.2 we discuss how to obtain the functional data from the raw
observations through data smoothing techniques; Section 1.2 describes the functional principal
component analysis, and, Section 1.2 introduces the monitoring strategy based on the T 2

and SPE control charts. The real-case study in the shipping industry is presented in 1.3.
Section 1.4 concludes the chapter. All computations and plots have been obtained by using
the software environment R (R Core Team, 2020a).

1.2 Methodology

As stated before, the proposed methods for profile monitoring is composed of three main
steps.

1. Data smoothing: the raw observations are converted to functional data.

2. Functional Principal Component Analysis: the infinite dimensional problem is trans-
lated into a finite dimensional one by means of an optimal functional data approxima-
tion.

3. Monitoring strategy: the principal component scores are used as input to build the T 2

and SPE control charts.

In the following Section 1.2, 1.2 and 1.2 these steps are illustrated, respectively.

Data Smoothing
Data are collected by devices in a discrete fashion, that is as n discrete observed curves
tYi

�
tj
�
, j � 1, . . . , pui�1,...,n, where ttjuj�1,...,p are the observation points in a given closed

interval T � R. Hence, appropriate methods are required to convert discrete raw data
tYi

�
tj
�u into functional data tXi ptqu computable for any t P T , which are random realizations

of a functional quality characteristic X ptq. If the discrete data are assumed without any
measurement error, functional data can be theoretically drawn up by merely connecting
the whole set of points tYi

�
tj
�
, j � 1, . . . , pui�1,...,n. However, this does not represent the

ordinary situation. When measurement error is present, each discrete observation is expressed
as

Yi
�
tj
� � Xi

�
tj
�� εij , (1.1)

for i � 1, . . . , n and j � 1, . . . , p, where εij are zero mean random errors with equal variances.
Trivially, note that Equation (1.1) degenerates in the previous case when the variance εij
tends to zero. From Equation (1.1), data smoothing techniques aim to recover the functional
data by discarding exogenous perturbation due to error terms εij . Functional data are
intrinsically infinite dimensional, that is infinite features are needed to completely specify
them, precisely, the values at each possible argument t P T . To this end, a common approach
consists of representing, for i � 1, . . . , n, each functional datum tXi ptqu through a linear
combination of K known basis functions Φ � pϕ1, . . . , ϕKqT , as follows

Xi ptq �
Ķ

l�1
cilϕl ptq � cTi Φ ptq t P T , (1.2)
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where ci � pci1, . . . , cikqT is the coefficient vector for each curve. Then, the problem of
recovering the functional data tXi ptqu reduces to the estimation of the unknown coefficient
vectors ci for each i. In particular, for every i � 1, . . . , n, the coefficient vector ci is estimated
as ĉi by minimizing the following penalized sum of squares error

ĉi � argmin
cPRK

p̧

j�1

�
Yi
�
tj
�� cTΦ

�
tj
�	2

� λcTRc, (1.3)

where λ ¡ 0 is a smoothing parameter andR is a matrix whose entries i, j are
³
T ϕ

pmq
i ptqϕpmq

j ptq dt,
with ϕpmq the m-derivative of ϕ. Finally, the functional data we are interested in are as
follows

X̂i ptq � ĉTi Φ ptq t P T , (1.4)

for i � 1, . . . , n.
Note that, to obtain the functional data as in Equation (1.4), some choices should be

done and discussed in the following. As basis functions Φ, the B-spline basis system is
the most common choice in case of non-periodic functional data owing good computational
properties and great flexibility (Ramsay and Silverman, 2005). This implicitly assumes
that the considered curves are well approximated by a spline function. Splines are optimal
in the sense of being the smoothest possible functions interpolating the data (Green and
Silverman, 1993). Spline functions divide the functional domain into subintervals, by means
of break points. Over any subinterval, the spline is a polynomial of specific order q, with
q � 1 non-zero derivatives and matching proper derivative constraints between adjacent
polynomials (De Boor et al., 1978). The smoothing parameter λ in Equation (1.3) is chosen as
that corresponding to the minimum value assumed by the generalized cross-validation (GCV)
criterion, which is a well-known method to tradeoff between variance and bias. This criterion
takes into account the degrees of freedom of the estimated curve that vary according to λ.
See Ramsay and Silverman (2005) for further details. The penalty on the right-hand side
of Equation (1.3) is computed by setting m � 2, i.e., by penalizing the function roughness.
The value of K is not crucial (Cardot et al., 2003), unless it is sufficiently large to capture
the local behaviour of the functional data.

Functional Principal Component Analysis
FPCA is a key method aimed at reducing the infinite dimensionality of the functional data,
by retaining a finite number L of principal component scores or simply scores tξilul�1,...,L,
which explain the largest part of the sample variability, for each functional observation
tXi ptqu, obtained as described in Section 1.2 defined for t P T . Without loss of generality,
in what follows, let us assume that tXi ptqu have zero mean or that, they are opportunely
centered by subtracting the functional sample mean. Then, scores are defined as

ξil �
»

T
ψl ptqXi ptq dt, (1.5)

where tψlul�1,...,L are weight functions referred to as principal components. The principal
components are subject to size restrictions of normalization and orthogonality. Respectively,
they are subject to the constraints:

³
T ψl ptq2 dt � 1 and

³
T ψi ptqψj ptq dt � 0, for i � j. In

this way, each weight function provides new information with respect to those brought by
previous principal components.
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Principal components are calculated defined by an opportune iterative algorithm which at
each step finds the weight function that maximizes the following mean square of the scores,
i.e., their sample variance,

ψl � argmax
ψ

ņ

i�1
ξ2
il �

ņ

i�1

�»
T
ψ ptqXi ptq dt


2
, l � 1 . . . , L, (1.6)

under the normalization and orthogonality constraints. Moreover, the principal components
correspond to eigenfunctions of the covariance function of the process X (Ramsay and
Silverman, 2005). For each i � 1, . . . , n, let us consider the function X̂

PC

i , i � 1, . . . , n
defined as

X̂
PC

i ptq �
Ļ

l�1
ξilψl ptq t P T , (1.7)

that is the linear combination of the principal components and the scores. It can be
demonstrated that for each i, X̂

PC

i is the best L-dimensional approximation of Xi in terms

of mean squared error, i.e., the quantity E
�³

T

�
X̂
PC

i ptq �Xi ptq

2

dt

�
is minimum over all

the other L-dimensional linear combinations.
The choice of the number of retained components L depends on different necessities.

Generally, the retained principal components are chosen such that the latter explain at least
a given percentage of the total variability. However, more sophisticated method could be
used as well (Jolliffe, 2011).

Monitoring Strategy
In this step, the information provided by FPCA is used to continuously monitor the functional
quality characteristic X over time. To this aim, two functional control charts are introduced
based on the following T 2 and the SPE statistics, defined for each i � 1, . . . , n, respectively.
The T 2 statistic is as follows

T 2
i �

Ļ

l�1

ξ2
il

λl
, (1.8)

where λ1, . . . , λL are the variances of ξi1, . . . , ξiL and correspond to the eigenvalues of the
covariance function of X. The statistic T 2 is the square distance of the projection of X from
the origin of the space spanned by the principal components tψlu. Changes along directions
orthogonal to the latter space are monitored by means of the SPEi statistic, defined for
each i as

SPEi �
»

T

�
Xi ptq � X̂

PC

i ptq

2

dt, (1.9)

where X̂
PC

i are defined in Equation (1.7).
In this chapter, we focus on perspective (Phase II) monitoring. Thus, a set of IC data

must be preliminarily set up in the design phase of the control charts (Phase I). Let assume
that the functional observations tXiu are acquired under IC conditions, principal components
tψlu and eigenvalues λ1, . . . , λL shall be estimated from the sample covariance function and
denoted by tψ̂lu and λ̂1, . . . , λ̂L, respectively. The estimation of the control limits for both
the T 2 and the SPE control charts are obtained by means of p1�αq-quantiles of the empirical
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distribution of the two statistics based on the estimated tT 2
i u and tSPEiu. The parameter

α is chosen by using the Bonferroni correction α � α�{2, where α� is the overall type I error
probability, in order to control the family wise error rate (FWER). Other corrections are also
possible, such as the Sidàk correction (Lehmann and Romano, 2006) α � 1� p1� α�q0.5. In
Phase II, let X� ptq, t P T , denote a new observation of the functional quality characteristic.
Then, the new estimated scores are calculated as ξ̂

�

l �
³
T ψ̂l ptqX� ptq dt, for l � 1, . . . , L,

where tψ̂lu are the estimated principal components. The new realization of the T 2 and SPE
statistics are calculated as

T 2� �
Ļ

l�1

ξ̂
�2
l

λ̂l
, (1.10)

and,

SPE� �
»

T

�
X� ptq � X̂

PC� ptq

2

dt, (1.11)

where X̂
PC� ptq � °L

l�1 ξ̂
�

l ψ̂l ptq, t P T . An out-of-control signal is issued if at least one of
T 2� and SPE� violates the control limits.

The more the portion of variability of the functional data explained by the first L principal
components retained into the FPCA model, the more coherent is the following interpretation
of T 2� and SPE� statistics. In fact, as the former is based on the first scores, we expect
that the larger the value, the larger the deviation in magnitude from the reference mean
of the new functional observation. Accordingly, as the latter is based on the last principal
components (see Equation (1.9)), we expect that a new profile with large SPE� exhibits
non-negligible deviation in the covariance structure, which roughly controls the shape of the
current functional observation, from that estimated on the reference data set.

1.3 A Real-case Study in the Shipping Industry

We illustrate the proposed monitoring strategy by means of a real-case study from the
maritime field in monitoring CO2 emissions during the navigation phase of a roll-on/roll-off
passenger (Ro-Pax) cruise ship. The data analysed in this chapter are courtesy of the owner
Grimaldi Group. Information about ports, name of the ship and CO2 emissions are omitted
for confidentiality reasons. Two years’ worth of data are available with five-minute frequency.
In the proposed application, we focus only on one route sailed by the ship to link two ports.
The available data set contains the discrete values for 194 voyages of CO2 emissions due to
propulsion, which is the functional quality characteristic to be monitored at the end of each
voyage. The functional domain is the fraction of total distance travelled from the beginning
of the voyage. The first 146 voyages are used as training data set to perform FPCA and
estimate control chart limits. Then, each of the following 48 voyages is sequentially numbered
using a voyage number (VN) and monitored as described in Section 1.2. Note that, since
we focus on Phase II monitoring only, we do not report details about Phase I, which was
devoted to overarch statistical and engineering considerations to filter out from the training
data set data that do not reflect standard navigation conditions and thus may introduce bias
in the model parameter and control chart limit estimation. For each voyage, functional data
are drawn from discrete observations by means of 50 B-spline basis functions and equally
spaced knots. Functional data are smoothed by penalizing the integrated squared second
derivative and by choosing the smoothing parameter through GCV criterion, as discussed in
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Figure 1.1. First four eigenfunctions obtained with FPCA. For each eigenfunction, the percentage of variability
explained is reported.

Section 1.2. Then, FPCA is applied on the training data set. Figure 1.1 reports the first four
eigenfunctions and the percentage of variability explained by each principal component.

As an example, note that the first component explains 56.8% of the total variability in
the data, which is mainly attributed to the beginning and the end parts of the voyage. This
can be confirmed by a closer look to Figure 1.3, where the Phase I profiles used to perform
FPCA are plotted in grey. The second component explains 14.5% of the variability, which is
attributed to the average value of CO2 emissions alongside the voyage, whereas the third
component explains 12.1% of the variability and attributes the main weight to the end part
of the voyage. Starting from the fourth component, the explained variability is less than 5%
and interpretation becomes cumbersome. For the reasons discussed above, in this application
it is convenient to retain the first L � 3 functional principal components, which explain
together 83.4% of the total variability in the data, to approximate functional data and use
the corresponding scores to calculate the statistic, while the residual functions can be used
to calculate the SPE statistic as in Equation (1.9). Once control limits are estimated based
on the T 2 and SPE statistics calculated on the training data set, it is possible to use control
charts to monitor new voyages. Figure (1.9) shows the T 2 and SPE control charts used for
Phase II monitoring.

Several scenarios are possible, and it is interesting to notice the use of both control charts
supports the interpretation of the type of anomalies encountered. In Figure 1.3 we report
OC profiles against those of the training data set, which are plotted for ease of comparison
as grey lines.

In particular, note that VN 28 and 41 are OC in the T 2 control chart only (Figure 1.3a),
VN 9, 12, 36, and 44 are OC in the SPE control chart only (Figure 1.3b), whereas VN 23, 24,
29, and 39 are OC in both control charts (Figure 1.3c). In Figure 1.3a, profiles of VN 28 and
41 show a clear shift in magnitude only, that is the CO2 emissions plot below the average.
Strictly speaking, it is worth noting that lower CO2 emissions, which are in fact desired,
often are trivially associated to voyages sailed at lower-than-usual speed over ground that,
in turn, imply other types of undesired costs for the shipping company due to arrival delay.
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Figure 1.2. (a) T 2 and (b) SPE phase II control charts. In each control chart, points joint by solid line indicate
monitoring statistic values at each voyage, while dashed lines indicate upper control limit (UCL), at α � 0.05.
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Figure 1.3. : OC CO2 emission profiles (black lines) are superimposed on phase I reference ones (grey lines) and
grouped by OC in (a) in T 2 control chart only, (b) SPE control chart only, (c) both T 2 and SPE control charts.

Therefore, it is crucial that the proposed control charting procedure can signal. In Figure
1.3b, VN 9, 12, 36, and 44 show that, during most of the voyage, the CO2 emissions were
not particularly different from the reference profiles in the training data set. However, some
non-negligible slow down are highlighted in brief parts of these voyages. The most important
shift occurs in fact at the beginning of VN 12, which shows the largest SPE in Figure 1.2b.
The other voyages seem to postpone the acceleration phase at the beginning of the voyage,
or to anticipate the slow down at the end of the voyage, then they show lower amounts of
CO2 emissions. More generally, these voyages show a different shape from standard Phase I
profiles. Finally, In Figure 3c, with respect to the other voyages we discussed above, the
CO2 emissions for VN 23, 24, 29, and 39 show much larger deviations from the reference
profiles in terms of both magnitude and shape. All these voyages have a lower-than-usual
amount of CO2 emissions for most of the voyage (deviation in magnitude), but also show
sudden accelerations/slowdowns (deviation in shape). This is plausibly due to bad weather
conditions, which has forced the ship to sail at an unusual navigation speed profile.

1.4 Conclusions

We presented a motivation-applied chapter to show benefits and practical applicability of
the functional data analysis approach, with a very transparent set of steps. The two most
important advantages in using functional data analysis over a discrete approach are the
possibility (i) to analyze data theoretically defined over a continuum domain even when, over
different replicates, the discrete observations are unequally spaced; (ii) to assume that the
nearer the data points, the more similar, i.e., smoothness assumption. This is very reasonable
in most of the practical cases and results in smooth parameters, such as eigenfunctions
in functional principal component analysis, which supports model interpretability and
fault diagnosis. The proposed functional control charting scheme is shown to be able to
effectively monitor CO2 emissions from real navigation data and to support the detection and
interpretation of anomalous voyages. Different scenarios have in fact validated the capability
of distinguishing the type of deviation associated to OC signals by the two proposed control
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charts with respect to the reference profiles characterizing the normal operating conditions.
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Chapter 2

Functional Regression Control Chart

Abstract

The modern development of data acquisition technologies in many industrial processes is
facilitating the collection of quality characteristics that are apt to be modelled as functions,
which are usually referred to as profiles. At the same time, measurements of concurrent
variables, which are related to the quality characteristic profiles, are often available in
a functional form as well, and usually referred to as covariates. In order to adjust the
monitoring of the quality characteristic profiles by the effect of this additional information,
a new functional control chart is elaborated on the residuals obtained from a function-on-
function linear regression of the quality characteristic profile on the functional covariates.
Furthermore, by means of a Monte Carlo simulation study, the performance of the proposed
control chart are compared with those of other charts proposed in the literature. Eventually,
a real-case study in the shipping industry is presented with the purpose of monitoring ship
fuel consumption and thus, CO2 emissions from a Ro-Pax ship, with particular regard to
detecting CO2 emission reduction after a specific energy efficiency initiative.

2.1 Introduction

In many industrial contexts, the development in data acquisition systems allow massive
amounts of data to be recorded at high-rate and modelled as functions defined on multidimen-
sional domains, i.e., functional data (Ramsay and Silverman, 2005; Ferraty and Vieu, 2006;
Hsing and Eubank, 2015). In this scenario, new statistical process control (SPC) methods
must be developed to monitor and control the stability over time of the quality characteristic,
when functional data are available. In the classical SPC literature, functional data are more
often referred to as profiles (Woodall et al., 2004). An overview of the main achievements in
profile monitoring can be found in Noorossana et al. (2012). Other relevant contributions
include the works of Jin and Shi (1999); Colosimo and Pacella (2010); Grasso et al. (2016,
2017); Menafoglio et al. (2018). As in the classical SPC (i.e., where data are scalars) profile
monitoring control charts have the task of continuously monitoring the quality characteristic
and of triggering a signal when assignable sources of variations (i.e. special causes) act on
it. When this happens, the process is said to be out-of-control (OC). On the contrary, the
process is said to be in-control (IC) when only normal sources of variation (i.e., common
causes) apply.

In practice, there are situations where the quality characteristic is influenced by one or
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more covariates. In this scenario, if one of these covariates manifests itself with an extreme
realization, the quality characteristic may wrongly be judged to be OC. Otherwise, there
may be situations where the covariates are not extreme and the quality characteristic may
wrongly appear IC. As well as, the quality characteristic may wrongly appear IC, because the
variance explained by the covariates is overlooked. In the multivariate SPC literature these
issues have been addressed by means of the regression control chart (RCC) (Mandel, 1969).
The basic idea behind this chart is to consider the quality characteristic after being adjusted
for the effects of the covariates, that is monitoring the residuals of the regression of the
quality characteristic on the covariates. Hawkins (1991) applied this idea to the multivariate
setting by considering the regression of a variable on covariates that are assumed to be
IC, and developed Shewhart and cumulative sum (CUSUM) control charts (Montgomery,
2007) based on the regression residuals. Hawkins (1993) applied the regression adjustment
to particular kind of processes, said cascade processes in order to take advantage of the
correlation between measures. Another application of the idea of regression adjustment
appeared in Wade and Woodall (1993) where the so called cause-selecting control chart
has been used for monitoring and control multistage processes. Other studies on the RCC
include those of Shu et al. (2004), which studied the effects of the parameter estimation on
the run length performance of the control chart, and those of Zhou and Goh (2016), where
the influence of the regression model choice on the control chart performance was analysed.

In the literature of the RCC, the model used to describe the relation between the quality
characteristic (hereinafter referred to also as response variable) and the covariates (hereinafter
referred to also as predictor variables) is the linear regression model. In the functional context,
functional linear regression models with one scalar response and one functional covariate have
been deeply analysed in Cardot et al. (2003) and Hall et al. (2007); whereas, the extension
to functional response was study by Ramsay and Silverman (2005) and Yao et al. (2005a).
Functional linear models with functional response and multiple functional covariates have
been far less studied. Matsui et al. (2009) developed estimation and evaluation methods
based on regularized functional regression, whereas Fan et al. (2014) introduced the functional
response additive model estimation (FRAME) and applied it to a case study in the online
virtual stock markets. Chiou et al. (2016) proposed a functional liner model where both the
response and the predictor variables are multivariate functional data, which relies on the
multivariate functional principal component (MFPC) (or Karhunen–Loève) decomposition
(Chiou et al., 2014; Happ and Greven, 2018).

In this chapter, we propose a new framework for monitoring a functional quality charac-
teristic when functional covariates are available. This framework is henceforth referred to
as functional regression control chart (FRCC) and can be regarded as an extension of the
RCC to the functional context. In particular, we consider the case when the model which
links the functional response and functional covariates is linear and, we monitor residuals
by using the profile monitoring approach introduced by Woodall et al. (2004) and then
used in Noorossana et al. (2012); Grasso et al. (2016); Pini et al. (2017), which is based on
the simultaneous application of the Hotelling’s T 2 and the squared prediction error (SPE)
control charts.

A Monte Carlo simulation study is performed to quantify the FRCC average run length
(ARL) (Montgomery, 2007), in identifying mean shifts in the functional response in presence
or absence of drifts in the covariate means. This is done by comparing the proposed FRCC
with other two control charts widely used in both the industrial context and the literature.
In addition, a real-case study in the shipping industry is presented to illustrate the practical
applicability of the proposed control chart. In particular, the FRCC is shown to adequately
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identify reductions of cumulative fuel consumption, and thus CO2 emissions (which are
stoichiometrically related to it) after an energy efficiency initiative (EEI) was performed
off-line on the considered Ro-Pax ship. In addition, a functional bootstrap procedure is
developed and applied to evaluate uncertainty of the obtained results.

The chapter is structured as follows. Section 2.2 introduces the proposed FRCC. In
Section 2.3 the performance of the FRCC is compared to that of other two popular control
charts used for the same purpose. The real-case study is presented in Section 2.4. Section 2.5
concludes the chapter. All computations and plots have been obtained using the programming
language R (R Core Team, 2020b).

2.2 The Functional Regression Control Chart Framework

The proposed FRCC can be regarded as a general framework for profile monitoring that can
be divided into three main steps. Firstly, (i) define a functional regression model to be fitted

Y � g pXq � ε, (2.1)

where Y is the functional response variable and ε is a functional error term, both defined on
the compact domain T , g is a generic function of a vector X of random functional covariates
X1, . . . , Xp, defined on the compact domain S.

Secondly, (ii) define the estimation method of the chosen model, and, thirdly (iii) define
the monitoring strategy of the functional residual defined as

e � Y � Ŷ , (2.2)

where Ŷ is the fitted value of Y .
In what follows, after some preliminaries, we describe the FRCC when the following

choices are made: (i) the multivariate functional linear regression (MFLR) model (Section
2.2) is set for the first step, (ii) an estimation method based on the Karhunen-Loève’s
decomposition (Section 2.2) is chosen for the second, and (iii) the Hotelling’s T 2 and the
squared prediction error (SPE) control charts (Section 2.2) are built in the third step.

Preliminaries

Assume that X1, . . . , Xp and Y have smooth realizations in L2 pSq and L2 pT q, i.e., the Hilbert
spaces of square integrable functions defined on the compact sets S and T , respectively.
Moreover, let us denote with HX � �L2 pSq�p the Hilbert space whose elements are vectors
of functions in L2 pSq. Then, X � �

X1, . . . , Xp

�T is random vector of functions whose
realizations are in HX . Accordingly, for a compact set Z, the inner product of two functions
f and g in L2 pZq is xf, gy � ³

Z f pzq g pzq dz, with dz the Lebesgue measure on Z, and
the norm is ∥�∥ � ax�, �y. The inner product of two function vectors f � �

f1, . . . , fp
�T

and g � �g1, . . . , gp
�T in HX is xf ,gyHX � °p

i�1xfi, giy and the norm is ∥�∥HX �ax�, �yHX .

Further, assume that X has mean function µX �
�
µX1 , . . . , µ

X
p

	T
, with µXi � E pXiq

and covariance function CX � tCXi,ju1¤i,j¤p, with CXi,j ps1, s2q � Cov
�
Xi ps1q , Xj ps2q

�
, for

s1, s2 P S. Analogously, let µY � E pY q and CY pt1, t2q � Cov
�
Y pt1q , Y pt2q

�
, for t1, t2 P T ,

be the mean and the covariance function of the response variable Y ptq, respectively.
The transformation approach of Chiou et al. (2014) is here used, as covariates can exhibit

different amount of variation. In what follows, all the operations between functions have
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to be considered pointwise. Let Xstd �
�
Xstd

1 , . . . , Xstd
p

	T
� �

VX
��1 �X� µX�, be the

vector of the standardized covariates, with the matrix VX � diag
��
vX1
�1{2

, . . . ,
�
vXp

	1{2



where vXi psq � CXi,i ps, sq, for s P S. The response variable Y is also standardized as
Y std � �

vY
��1{2 �

Y � µY
�
, with vY ptq � CY pt, tq, for t P T . Let CX

std and CYstd be the
covariance functions of the standardized covariate and response variables, respectively. Let
us consider for CX

std the expansion CX
std ps1, s2q �

°8
i�1 λ

X
i ψ

X
i ps1qψXi ps2qT , for s1, s2 P S,

where tψXi u are the orthonormal (i.e., xψXi ,ψXj yHX � δij , with δij the Kronecker delta)
multivariate eigenfunctions of CX

std corresponding to the eigenvalues tλXi u in descending
order. Similarly, we consider for CYstd the expansion CYstd pt1, t2q �

°8
i�1 λ

Y
i ψ

Y
i pt1qψYi pt2q,

for t1, t2 P T where tλYi u and tψYi u are defined in the same way. Note that both expansions
are well-defined in virtue of the multivariate and univariate versions of the Mercer’s Theorem
(Happ and Greven, 2018), respectively.

The Model
For the MFLR model we assume that the covariates Xstd linearly influence the response
Y std as follows

Y std ptq �
»

S

�
β ps, tq�T Xstd psq ds� ε ptq t P T , (2.3)

that is a particular version of Equation (2.1). The regression coefficient vector β ��
β1, . . . , βp

�T , is in
�
L2 pS � T q�p, whose elements are vectors of bivariate functions in

L2 pS � T q (i.e., the space of square integrable function on the closed interval S � T ), and
the random error function ε has E pεq � 0 and Var pεq � v2

ε , and is independent of Xstd.
Thus, the regression function is

E
�
Y std ptq |Xstd

	
�
»

S

�
β ps, tq�T Xstd psq ds t P T . (2.4)

The Estimation Method
From the multivariate and univariate Karhunen-Loève’s Theorem (Happ and Greven, 2018),
standardized covariate and response variables can be represented as follows

Xstd �
8̧

i�1
ξXi ψ

X
i Y std �

8̧

i�1
ξYi ψ

Y
i , (2.5)

where ξXi � xXstd,ψXi yHX and ξYi � xY std, ψYi y are random variables, said principal
component scores or simply scores, such that E

�
ξXi
� � 0, E

�
ξXi ξ

X
j

	
� λXi δij and E

�
ξYi
� � 0,

E
�
ξYi ξ

Y
j

	
� λYi δij , respectively. In this context, the eigenfunctions tψXi u and tψYi u (as

defined in the preliminaries) are referred to as principal components as well. As demonstrated
in Chiou et al. (2016), the regression coefficient vector is as follows

β ps, tq �
8̧

i,j�1

E
�
ξXi ξ

Y
j

	
λXi

ψXi psqψYj ptq s P S, t P T , (2.6)
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which is also the minimizer of the expected squared L2 pT q distance between Y std and³
S
�
f ps, �q�T Xstd psq ds, with f P �L2 pS � T q�p, i.e.

β � argmin
fPpL2pS�T qqp

E∥Y std �
»

S

�
f ps, �q�T Xstd psq ds∥2. (2.7)

By plugging Equation (2.5) and Equation (2.6) into Equation (2.4), and using the
orthonormality of tψXi u, we obtain

E
�
Y std ptq |Xstd

	
�

8̧

i,j�1
bijξ

X
i ψ

Y
j ptq t P T , (2.8)

where bij � E
�
ξXi ξ

Y
j

	
{λXi . Therefore, the best least squares predictor of Y given X is

E
�
Y ptq |X� � µY ptq � vY ptq1{2 E

�
Y std ptq |Xstd

	
t P T . (2.9)

An estimation method of the above unknown quantities is described in the Supplementary
Materials. Broadly speaking, it is based on the truncated versions of Equation (2.5), namely

Xstd
L �

Ļ

i�1
ξXi ψ

X
i Y stdM �

M̧

i�1
ξYi ψ

Y
i , (2.10)

where the number of retained scores L and M are chosen such that they explain at least
given proportions δX and δY of total variation respectively (Ramsay and Silverman, 2005).
The estimation method provides estimators β̂LM of β, in Equation (2.3), and Ŷ

std

LM of
E
�
Y std|Xstd

�
, in Equation (2.8), through the estimators Ĉ

X

std and Ĉ
Y

std of CX
std and CYstd

calculated using the sample mean and covariance functions (Hsing and Eubank, 2015).

The Monitoring Strategy

Upon using the estimator Ŷ
std

LM , the functional residual in Equation (2.2) particularizes as

estd � Y std � Ŷ
std

LM . (2.11)

To monitor the residuals, we follow the strategy of Woodall et al. (2004); Noorossana et al.
(2012); Grasso et al. (2016); Pini et al. (2017). In particular, the Hotelling’s T 2 and the
SPE control charts are applied on the coefficients obtained from the univariate functional
principal component decomposition (Hsing and Eubank, 2015) of estd, i.e.,

estd �
8̧

i�1
ξeiψ

e
i , (2.12)

where the scores ξei � xestd, ψei y and the principal components tψei u are the eigenfunc-
tions corresponding to the eigenvalues tλei u in descending order of the covariance function
Ce pt1, t2q � Cov

�
estd pt1q , estd pt2q

�
, for t1, t2 P T . As a matter of fact, Ce is different

from CYstd (and thus tψYi u from tψei u), because the former refers to the distribution of
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Y std, whereas the latter is related to the conditional distribution of Y std given Xstd. A
straightforward approximation of estd can be thus obtained as

estdK �
Ķ

i�1
ξeiψ

e
i , (2.13)

where K is the number of retained scores.
The Hotelling’s statistic T 2 can be then particularized as follows

T 2
estd � ξeΣ�1

ξe ξ
e, (2.14)

where Σξe � diag
�
λe1, . . . , λ

e
K

�
is the variance-covariance matrix of ξe � �ξe1, . . . , ξeK�T . Note

that T 2
estd is the standardized square distance of the projection of estd from the origin of

the space spanned by the principal components tψei u. Analogously, changes along directions
orthogonal to the latter space are monitored by the statistic

SPEestd �
»

T

�
estd ptq � estdK ptq

	2
dt. (2.15)

The design phase of the control charts (Phase I) can be performed by means of a set of
n functional residuals estdi , i � 1, . . . , n, obtained by n independent observations pXi, Yiq
acquired under IC conditions. This phase involves the estimation of the MFLR model
unknown parameters (Supplementary Materials), of the principal components tψei u and of
the matrix Σξe (calculated by means of the sample covariance) as well as the estimation
of the control limits for both the Hotelling’s T 2 and the SPE control charts, which can be
obtained by means of p1� α�q quantiles of the empirical distribution of the two statistics.
Note that, to control the family wise error rate (FWER) in the strong sense (Lehmann and
Romano, 2006), α� is chosen by using the Šidák correction (Lehmann and Romano, 2006)
α� � 1 � p1� αq1{2, where α is the overall Type I error. In the monitoring phase (Phase
II), functional residuals of a new observation pX�, Y �q are calculated and an alarm signal
is issued if at least one realization of the T 2

estd and SPEestd statistics violates the control
limits.

2.3 Performance Analysis

Data Generation
The overall performance of the proposed FRCC are evaluated by means of a Monte Carlo
simulation. Profile patterns have been generated with signal and correlation structures similar
to those in the real-case study presented in Section 2.4. Details about the data generation
process are provided in the Supplementary Materials. The compact domains S and T are
set, without loss of generality, equal to r0, 1s and the number of covariates p is set equal to 3.

Moreover, in this section, the data are generated with R2 � ³
r0,1s

Var
�

EpY stdptq|Xstdq	
VarpY stdptqq dt set

equal to 0.97 (Yao et al., 2005b). Additional analysis at different values of R2 are provided
in the Supplementary Materials.

The mean functions µX and µY of the generated data are obtained through the following
reference model

µ pzq � P pzq � r
I̧

i�1
gi pz;mi, siq z P r0, 1s , (2.16)
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Table 2.1. Different types of shift in µX and µY .

Shift δa δb δc

A d 0 0
B 0 d 0
C 0 0 d
D d d 0

where
P pzq � az2 � bz � c z P r0, 1s , (2.17)

a, b, c are real numbers, and the terms gi pz;mi, siq are normal probability density functions
having parameters mi and si with values given in the Supplementary Materials. The right
side term of Equation (2.16) is inspired by the data generation process proposed in Pini et al.
(2017); Grasso et al. (2017).

The aim of the simulation is to assess the FRCC performance in identifying mean function
shifts in the response in presence of

1. mean function shifts in Y conditional on X, i.e. E
�
Y |X�, resulting from changes in

µY ;

2. mean function shifts in X, i.e., E pXq � µX , and E
�
Y |X�.

The types of shift are consistent with those of Shu et al. (2004) and Wade and Woodall (1993).
Note from Equations (2.4) and (2.9) that shifts in E

�
Y |X� can result from changes in µY

and β. However, the latter, in addition, can affect variability of the functional regression
residuals as well. Because we are interested in the FRCC performance in identifying mean
function shifts in the response, given that the variability of the residuals are assumed constant,
then, only shifts caused by changes in µY are considered.

The functional patterns with shift in the mean function are generated using the model in
Equation (2.16) with P defined as follows

P pzq � pa� δaq z2 � pb� δbq z � pc� δcq z P r0, 1s , (2.18)

where the real number δa, δb, and δc define the shift type. Without loss of generality δa, δb,
and δc are set equal to a positive severity level d as reported in Table 2.1 where four different
types of shift (namely A,B,C,D) in µX and µY are considered. Shift A is representative of a
change in the mean function curvature, whereas shift B and C represent slope modification
and translation of the profile pattern, respectively. Shift D consists of both curvature and
slope modifications of the mean function. These types of shift are indeed consistent with the
real-case study of Section 2.4 and apt to model usual ways as ship performance increase or
decrease in reality.

Simulation Results and Discussion

Three different profile monitoring methods are compared: (a) monitoring residuals by means
of the FRCC, (b) monitoring model coefficients of the response variable Y via a Hotelling’s
T 2 and SPE control charts (hereinafter denoted by RESP -RESPonse- control chart), and
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Table 2.2. Severity levels associated to each type of shift in µY for Scenario 1 (a) and for Scenario 2 (b).

Shift Severity

µY

A d P t0.5, 1.0, 1.5, 2.0u
B d P t0.5, 1.0, 1.5, 2.0u
C d P t0.5, 1.0, 1.5, 2.0u
D d P t0.5, 1.0, 1.5, 2.0u

(a)

Shift Severity Shift Severity

µY A d P t0.5, 1.0, 1.5, 2.0u
µX1 D d P t0.5u
µX2 A d P t0.5u
µX3 D d P t1.0u

(b)

(c) monitoring the area under the response variable Y considered also in Pini et al. (2017)
(hereinafter denoted by INBA -INdex BAsed- control chart).

Performance analysis of the FRCC is carried out by considering shifts in the conditional
mean E

�
Y |X�, firstly, by means of changes in µY only (Scenario 1), and secondly by means

of changes in both µY and µX (Scenario 2). The first scenario aims to analyse FRCC
performance in absence of shift in the regressor mean µX ; whereas, the second aims to study
the unwanted influence of shifts in µX on the FRCC performance. Severity levels and types
of shift considered by Scenario 1 and Scenario 2 are listed in Table 2.2a and Table 2.2b,
respectively. Note that in Scenario 2 we consider only shift type A (with the same severity
levels of Scenario 1) for µY , shift type D for µX1 , µX3 , and shift type A for µX2 . The latter
three shifts are explored at only one severity level d as reported in Table 2.2b. For each shift
type and severity level for Scenario 1 and for each severity level combination for Scenario 2,
100 simulation runs were performed. Each run consists of the following steps:

Phase I) A design set of 4000 IC patterns is randomly generated. In particular, N1 � 1000
patterns form the training set are used to estimate MFLR model unknown quantities
along with mean and covariance functions. The remaining N2 � 3000 IC profiles are
used as tuning set to estimate the empirical quantiles via the kernel density estimation
(KDE) approach (Chou et al., 2001) with gaussian kernel, 2000 equally spaced points
and bandwidth chosen by means of the Silverman’s rule of thumb (Silverman, 1986).
The number of retained scores L, M and K in Equation (2.10) and Equation (2.13)
are chosen such that the retained principal components explain at least 95% of the
total variability.

Phase II) A testing set of further 4000 OC patterns is randomly generated to carry out the
monitoring phase and to evaluate the chart performance.

As is usually done in the literature (Montgomery, 2007), the FRCC and the competitor chart
performance are compared by means of the average run length (ARL), that is referred to as
ARL0 in the case of no response mean shift (d � 0 for µY ), and as ARL1 otherwise. For the
sake of simplicity, we set ARL0 � 100 and denote indistinctly by ARLz the estimated ARL
(regardless whether it is referred to ARL0 or ARL1).

For Scenario 1, Table 2.3 shows the ARLzs along with 95% approximate confidence
intervals based on the Student’s t approximation. Graphical representation of the latter
are in Figure 2.1, which shows that the FRCC outperforms the RESP and INBA control
charts for all the considered shifts. The gain in efficiency is less evident for Shift C (i.e., in
presence of translations of the profile pattern, only) at high severity level pd � 2q. Whereas,
in Scenario 2, Table 2.4 and Figure 2.2 point out that shifts in covariate mean functions
strongly impact the ARL of the FRCC. Indeed, when the response variable is IC (d � 0),
ARLzs for the FRCC are usually lower than ARL0 � 100. Table 2.4 shows that this issue
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Table 2.3. Estimated ARLs (ARL{s) and 95% confidence intervals (CI) for Scenario 1.

Shift Severity FRCC RESP INBA

d ARLz CI ARLz CI ARLz CI

In-control - 102.94 r97.95, 107.94s 100.81 r95.86, 105.76s 100.74 r97.81, 103.68s

A

0.5 62.14 r59.29, 64.98s 97.47 r92.37, 102.57s 100.03 r96.52, 103.53s
1.0 20.43 r19.76, 21.10s 86.17 r82.21, 90.14s 91.85 r88.36, 95.34s
1.5 6.94 r6.73, 7.14s 69.50 r66.80, 72.20s 73.44 r71.07, 75.80s
2.0 2.93 r2.87, 2.99s 55.57 r53.26, 57.88s 62.59 r60.51, 64.67s

B

0.5 47.00 r45.02, 48.99s 98.65 r93.08, 104.22s 94.68 r91.16, 98.21s
1.0 10.58 r10.18, 10.98s 82.10 r78.07, 86.13s 74.71 r72.38, 77.04s
1.5 3.19 r3.11, 3.27s 68.97 r65.48, 72.45s 55.19 r53.31, 57.07s
2.0 1.56 r1.54, 1.58s 52.78 r50.49, 55.08s 39.25 r38.18, 40.31s

C

0.5 8.30 r8.07, 8.54s 61.82 r59.56, 64.09s 74.51 r71.90, 77.12s
1.0 1.33 r1.32, 1.34s 25.13 r24.20, 26.06s 39.03 r38.12, 39.95s
1.5 1.00 r1.00, 1.00s 10.89 r10.52, 11.26s 20.82 r20.36, 21.27s
2.0 1.00 r1.00, 1.00s 4.93 r4.81, 5.06s 11.48 r11.29, 11.67s

D

0.5 15.42 r14.89, 15.94s 87.00 r83.54, 90.47s 84.08 r80.77, 87.39s
1.0 2.09 r2.06, 2.12s 56.50 r53.82, 59.18s 50.19 r48.53, 51.86s
1.5 1.07 r1.07, 1.08s 32.38 r31.16, 33.60s 28.61 r27.99, 29.23s
2.0 1.00 r1.00, 1.00s 19.37 r18.65, 20.08s 16.93 r16.64, 17.23s

Table 2.4. Estimated ARLs (ARL{) and 95% confidence intervals (CI) for the FRCC in Scenario 2 at different
severity levels d of shifts in the response mean (µY ) (Table 2.2b) as a function of which and how many covariates
are subject to mean shift (each at the severity level reported in Table 2.2b). Zeros and ones in the triplets
(000, 100, 010, 001, 110, 101, 011, 111) indicate IC and OC covariates, respectively. For instance, the triplet 100
means that only the first covariate is OC, 111 means that all the covariates are OC, and so on.

µY FRCC RESP INBA

d shifted covariate combination ARLz CI ARLz CI ARLz CI

0

0 0 0 99.79 r95.42, 104.17s 105.07 r99.21, 110.93s 104.19 r100.32, 108.05s
1 0 0 78.09 r74.65, 81.53s 89.28 r85.67, 92.90s 100.1 r95.73, 104.48s
0 1 0 100.61 r95.74, 105.49s 88.02 r84.26, 91.77s 79.51 r76.60, 82.41s
0 0 1 100.59 r96.22, 104.97s 99.58 r94.68, 104.48s 102.34 r98.62, 106.05s
1 1 0 73.43 r70.03, 76.84s 66.59 r63.48, 69.71s 93.63 r90.52, 96.75s
1 0 1 64.73 r62.41, 67.05s 96.74 r92.93, 100.56s 99.88 r96.30, 103.45s
0 1 1 97.21 r92.56, 101.86s 89.87 r85.42, 94.33s 80.11 r77.25, 82.98s
1 1 1 63.26 r60.72, 65.8s 80.75 r76.73, 84.77s 92.93 r89.57, 96.29s

0.5

0 0 0 63.65 r60.80, 66.50s 105.16 r99.96, 110.37s 101.95 r98.24, 105.66s
1 0 0 44.65 r43.18, 46.11s 85.52 r81.62, 89.41s 85.17 r82.11, 88.24s
0 1 0 62.50 r59.69, 65.31s 96.76 r91.19, 102.32s 98.52 r95.03, 102.00s
0 0 1 57.61 r55.37, 59.84s 97.09 r92.40, 101.79s 100.44 r96.94, 103.93s
1 1 0 45.68 r43.87, 47.49s 77.36 r73.17, 81.56s 100.75 r96.94, 104.56s
1 0 1 39.19 r37.58, 40.80s 94.04 r89.26, 98.82s 89.21 r86.48, 91.94s
0 1 1 59.47 r56.76, 62.17s 96.78 r92.13, 101.42s 91.13 r87.46, 94.80s
1 1 1 38.89 r37.34, 40.44s 84.76 r80.41, 89.11s 102.87 r98.66, 107.08s

1.0

0 0 0 21.08 r20.26, 21.90s 85.43 r81.25, 89.61s 89.22 r86.16, 92.28s
1 0 0 17.23 r16.73, 17.74s 77.09 r73.45, 80.73s 69.95 r67.71, 72.19s
0 1 0 21.18 r20.32, 22.04s 99.23 r94.10, 104.36s 102.16 r98.34, 105.97s
0 0 1 20.28 r19.45, 21.11s 80.57 r76.86, 84.28s 91.30 r88.00, 94.60s
1 1 0 17.68 r17.08, 18.27s 80.68 r76.93, 84.43s 99.91 r96.41, 103.41s
1 0 1 16.41 r15.89, 16.93s 81.56 r77.90, 85.22s 77.33 r74.69, 79.97s
0 1 1 20.64 r19.82, 21.45s 96.69 r92.09, 101.29s 98.09 r94.38, 101.81s
1 1 1 16.53 r15.92, 17.14s 89.58 r84.46, 94.71s 100.85 r96.47, 105.22s

1.5

0 0 0 6.90 r6.70, 7.09s 69.54 r66.41, 72.67s 76.22 r73.66, 78.78s
1 0 0 6.31 r6.14, 6.48s 68.29 r64.69, 71.89s 59.58 r57.74, 61.42s
0 1 0 7.15 r6.91, 7.40s 91.92 r87.36, 96.47s 102.86 r98.68, 107.03s
0 0 1 6.78 r6.58, 6.99s 66.91 r64.08, 69.75s 78.76 r76.14, 81.37s
1 1 0 6.69 r6.50, 6.87s 76.35 r72.85, 79.84s 92.75 r89.30, 96.20s
1 0 1 6.05 r5.89, 6.22s 66.45 r63.77, 69.12s 61.33 r59.57, 63.10s
0 1 1 7.04 r6.83, 7.25s 86.49 r82.15, 90.84s 103.80 r99.44, 108.16s
1 1 1 6.32 r6.12, 6.53s 80.95 r77.09, 84.82s 96.19 r92.72, 99.66s

2.0

0 0 0 2.92 r2.86, 2.98s 54.72 r52.55, 56.89s 63.70 r61.61, 65.80s
1 0 0 2.83 r2.77, 2.89s 53.80 r51.71, 55.90s 48.41 r47.12, 49.71s
0 1 0 3.01 r2.94, 3.08s 73.53 r70.12, 76.94s 96.58 r92.72, 100.43s
0 0 1 2.90 r2.84, 2.96s 55.65 r53.00, 58.30s 66.34 r64.11, 68.57s
1 1 0 2.86 r2.80, 2.92s 66.80 r63.87, 69.73s 80.97 r78.51, 83.43s
1 0 1 2.76 r2.71, 2.81s 53.47 r51.42, 55.52s 50.93 r49.48, 52.39s
0 1 1 2.94 r2.88, 3.00s 76.18 r72.50, 79.86s 99.79 r95.80, 103.77s
1 1 1 2.77 r2.71, 2.83s 68.11 r64.88, 71.35s 82.87 r80.14, 85.61s
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2. Functional Regression Control Chart

Figure 2.1. Estimated ARLs (ARL{) and 95% confidence intervals for different response mean shifts for Scenario 1
(Table 2.3).
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occurs to both the RESP and INBA control charts as well. For the latter charts this is
expected because they do not account for the correlation between covariates and the response
variable. On the contrary, this is not intuitive for the FRCC because it is expected not to be
sensitive to unusual covariate realizations. However, this is completely consistent with what
happens in the multivariate case (Shu et al., 2004). Indeed, let us denote with ∆Y , ∆X1 ,
∆X2 and ∆X3 the shift size of Y , X1, X2 and X3 means, respectively. Moreover, Y std and
Xstd (resp. Y std∆ and Xstd

∆ ) indicate the standardized response and predictors in absence
(resp. presence) of shift. Then, when mean shifts in both response variable and covariates
occur, the functional residual (Equation (2.11)) can be rewritten, for t P r0, 1s, as

estd∆ ptq � Y std∆ ptq � Ŷ
std

LM∆ ptq

� Y std ptq �
» 1

0

�
β ps, tq�T VX psq�1 ∆X psq ds� ∆Y ptq

vY ptq1{2
� Ŷ

std

LM∆ ptq

�
» 1

0

�
β̂LM ps, tq

	T
VX psq�1 ∆X psq ds

� estd ptq � ∆Y ptq
vY ptq1{2

�
» 1

0

�
β ps, tq � β̂LM ps, tq

	T
VX psq�1 ∆X psq ds, (2.19)

where estd is as in Equation (2.11), β̂LM is the estimator of β given in the Supplementary
Materials and VX is defined in Section 2.2 with p � 3, ∆X � �∆X1 ,∆X2 ,∆X3

�T and

Ŷ
std

LM∆ ptq �
» 1

0

�
β̂LM ps, tq

	T
Xstd

∆ psq ds t P r0, 1s . (2.20)

Then expected value of estd∆ conditioned on β̂LM is

E
�
estd∆ ptq

	
� ∆Y ptq
vY ptq1{2

�
» 1

0

�
β ps, tq � β̂LM ps, tq

	T
VX psq�1 ∆X psq ds t P r0, 1s .

(2.21)
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2.3. Performance Analysis

Table 2.5. Estimation error magnitude of the entries of the coefficient vector β

Xstd
1 Xstd

2 Xstd
3

Error 0.086 0.009 0.010

From Equation (2.19), it is clear that a mean shift in the residual, caused by covariate
mean shifts (∆X � 0), occurs when the difference β � β̂LM is not negligible, even though
the response variable is IC, i.e., ∆Y � 0.

Figure 2.2. Estimated ARLs (ARL{s) and 95% confidence intervals for the FRCC in Scenario 2 at different severity
levels d � t0, 0.5, 1u of shifts in the response mean (µY ) (Table 2.2b) as a function of which and how many
covariates are subject to mean shift (each at the severity level reported in Table 2.2b). Zeros and ones in the
triplets (000, 100, 010, 001, 110, 101, 011, 111) indicate IC and OC covariates, respectively. For instance, the triplet
100 means that only the first covariate is OC, 111 means that all the covariates are OC, and so on. The severity
levels d � t1.5, 2u are not reported because the ARL{s are all very small. The Figure depicts part of the results
reported in Table 2.4.
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From Figure 2.2 and Table 2.4, it is clear that the magnitude of the deviations depends
both on the number of covariates with shift in the mean function and the estimation error
magnitude of the entries of the coefficient vector β in Table 2.5. The latter is measured as
the L2 distance between β and β̂LM , estimated by means of 50 random realization of β̂LM .
Therefore, shifts in µX1 affect the performance of the FRCC stronger than mean shifts in
the other covariates (viz. µX2 and µX3 ). Obviously, this effect is more evident when the term

∆Y

pvY q1{2 in Equation (2.19) is zero and do not cover the contribution to estd∆ of β � β̂LM .
The problem of issuing an alarm only when a mean shift occurs in the response variable
regardless of covariate mean shifts is addressed in Section 2.3 and solutions are proposed in
this respect.

Remarks on the Use of the FRCC in Presence of Covariate Mean shifts
As stated before, the FRCC performance in identifying OC condition (of the response
variable) can be affected by the number of covariates with shift in the mean function and
the estimation error of the coefficient vector β (Table 2.4). In particular, when mean shifts
occur in the covariates only, the interpretation of the FRCC becomes cumbersome, because
a point falling outside the FRCC control limits is wrongly assigned to a shift in the response
variable. In this section, we propose some solutions to enhance the FRCC performance in
presence of covariate mean shifts.

As pointed out in Scenario 1 of the simulation study (Table 2.2a), which assumes no
covariate mean shift, the FRCC performance in identifying response mean shifts is always
better than that achieved by the competitor control charts (Figure 2.1). A straightforward
solution is to verify the assumption that no covariate mean shift occurs by extending to
the functional setting the control charts proposed by Wade and Woodall (1993) in the
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2. Functional Regression Control Chart

Figure 2.3. Estimated ARLs (ARL{) and 95% confidence intervals for the FRCC in Scenario 2 no shift (d � 0)
in the response mean (µY ) at different values of truncation parameters L (increasing from top to bottom panel)
and M (increasing from left to right panel) as a function of which and how many covariates are OC (each at the
severity level reported in Table 2.2b). Zeros and ones in the triplets (000, 100, 010, 001, 110, 101, 011, 111) indicate
IC and OC covariates, respectively. For instance, the triplet 100 means that the first covariate mean has shifted,
111 means that all the covariate mean are shifted, and so on.
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multivariate case. In this regard, Capezza et al. (2019) suggest to monitor the covariates X
through the jointly use of the Hotelling’s T 2 and SPE control charts built on the principal
component decomposition of Xstd.

When the number of observations available in Phase I, N1, is large, an alternative
solution, which does not the construction of additional control charts, can be based on the
consistency of the estimator β̂LM of the coefficient vector β (Chiou et al., 2016). Indeed,
when truncation parameters L and M in Equation (2.10) go to infinity with N1, the impact
of ∆X in Equation (2.19) and (2.21) fades out, as in (Yao et al., 2005b), even though they
do not provide more detailed indications on the convergence rate. That is

lim
N1Ñ8

»
S

»
T

�
β ps, tq � β̂LM ps, tq

�2
dsdt � 0 in probability. (2.22)

This result indicates that, theoretically, for large N1, L and M can be increased in order
to ensure convergence. In this perspective, we perform again the simulations in Scenario 2
(that assumes covariate mean shifts reported in Table 2.2b in the case of no response mean
shifts (d � 0 for µY )) with L � 5, 10, 20 and M � 2, 3, 4. The results are shown in Figure
2.3, where ARLzs (which is in this case estimating ARL0 � 100) in function of the number of
covariates with shift in the mean function (according to Table 2.4) are reported by varying L
(row-wise) and M (column-wise). Comparing these results with the top-left panel of Figure
2.2 (d � 0), it is clear that the negative effect (i.e., ARLz not equal to ARL0 � 100) caused
by covariate mean shifts are attenuated by choosing L and M as large as possible (see the
bottom-right panel of Figure 2.3). In general, the latter recommendation is expected to
attenuate the effect on ARLz of the covariate mean shifts, when there is a shift also in the
response mean (depicted in panels d � 0.5, 1.0, 1.5, 2.0 of Figure 2.2).
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2.3. Performance Analysis

Otherwise, when N1 is small, we propose to use in the monitoring strategy (Section 2.2)
the following scaled functional residual (hereinafter referred to as studentized residual)

estdstu ptq �
Y std ptq � Ŷ

std

LM ptq�
σ̂2
ε ptq � ω̂LM pt, tq

	1{2 t P T , (2.23)

instead of that in Equation (2.11). In Equation (2.23), σ̂2
ε is an estimator of Var pεq and

ω̂LM is defined as

ω̂LM ps, tq � Cov
�
Ŷ
std

LM ptq |Xstd



�
�
ξ̂

X

L


T �
Ξ̂
T

XΞ̂X


�1
ξ̂

X

L ψ̂
Y

M psqT Σ̂ϵM
ψ̂
Y

M ptq s P S, t P T ,

(2.24)
where ξ̂

X

L is the estimator of the score vector ξXL of Xstd, Ξ̂
T

XΞ̂X is the estimator of
N1 Cov

�
ξXL , ξ

X
L

�
, ψ̂

Y

M is the estimator of the vector of the first M eigenfunctions of Y std,
and Σ̂ϵM

is the estimator of Cov pϵM q. Given estdstu in Equation (2.23), the Hotelling’s T 2

and SPE statistics, defined in Section 2.2, are particularized by the statistics T 2
estd

stu
and

SPEestd
stu

obtained by replacing estd with estdstu, in Equation (2.14) and (2.15), respectively.
This particular choice for the FRCC will be referred to as studentized functional regression
control chart (sFRCC) which can be regarded as an extension to functional data of the
regression control chart with prediction interval proposed by Wade and Woodall (1993). The
studentized functional residual is the functional extension of the studentized residual that
arises in the multivariate case (Woodall et al., 2004), with σ̂2

ε ptq � ω̂LM pt, tq, for t P T , the
variance function of estd. The effect of σ̂2

ε ptq � ω̂LM pt, tq, for t P T , on the latter is that of
reducing the influence of covariate mean shifts on the residual mean. Indeed, the larger the
term ω̂LM , i.e., the more extreme realization of Xstd, the heavier the corresponding residual
is rescaled and thus the higher the probability of the observation to be judged IC. And this
is because the more the observations are far from the center of the sample cloud the larger
the residual uncertainty. However, for a large N1, consistently with the dataset complexity,
the use of the sFRCC leads to the same results of the FRCC defined before, because in this
case, ω̂LM pt, tq, for t P T , tends to zero. Therefore, all the residuals are equally rescaled
regardless of the values achieved by the covariates.

To investigate the performance of the sFRCC, we carry out again simulation in Scenario
2 only in the case of no response mean shift (d � 0 for µY ) by setting N1 equal to 100 and 50.
Results are reported in Figure 2.4 and show that ARLzs achieved by the sFRCC are closer to
the true value (ARL0 � 100) than those obtained by means of the FRCC. In this simulation,
the truncation parameters L, M and K in Equation (2.10) and Equation (2.13) shall be
chosen large enough to avoid truncation bias, as addressed before, (in case of large N1) but
small enough to avoid overfitting problems due to small N1. In this simulation, we found
appropriate to choose L, M and K such that the retained principal components explain the
99% of total variation. Too small values of L, M and K would not highlight the benefit of
the term ω̂LM pt, tq, for t P T , in the studentized residuals of Equation (2.23). Therefore,
as in the multivariate case studied by Woodall et al. (2004), also in the functional setting,
the sFRCC is able to control the Type I error (i.e., ARL0 � 100) in case of covariate mean
shifts. However, when the assumption of no covariate mean shift can be given as satisfied
(e.g., for technological reasons), the FRCC is recommended since it results more sensitive
than the sFRCC in detecting OC condition (of the functional response mean) as the latter
has control limits wider than those of the FRCC.
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2. Functional Regression Control Chart

Figure 2.4. Estimated ARLs (ARL{s) and 95% confidence intervals for the FRCC (left column panels) and sFRCC
(right column panels) in Scenario 2 no shift (d � 0) in the response mean (µY ) at different sample sizes N1 � 100, 50
as a function of which and how many covariates are subject to mean shift (each at the severity level reported in
Table 2.2b). Zeros and ones in the triplets (000, 100, 010, 001, 110, 101, 011, 111) indicate IC and OC covariates,
respectively. For instance, the triplet 100 means that only the first covariate is OC, 111 means that all the covariates
are OC, and so on.
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2.4 Real-case Study: Fuel Consumption Monitoring in the
Shipping Industry

To demonstrate the potential and the applicability of the proposed control chart in practical
situations, a real-case study in the shipping industry is presented henceforth. It addresses
the issue of monitoring ship fuel consumption and, thus, CO2 emissions, which, in view of
the dramatic climate change, is of great interest in the maritime field in the very last years.
Indeed, the new Regulation (EU 2015/757) of the European Union (EU) Council of 25 April
2015, coherently with the previous guidelines of the International Maritime Organization
(IMO), compel operators having ships sailing in the Mediterranean Sea to monitor, report
and verify (MRV) CO2 emissions. In account of this, shipping companies are nowadays
setting-up multi-sensor systems for massive high frequency recordings of operational data to
be available. A large portion of these is suitably modelled as functional data.

In this study, data recorded during 2015, 2016, and 2017 from a Ro-Pax ship (owned by
the shipping company Grimaldi Group) are analysed. The total number of voyages is 315.
During each voyage the Data AcQuisition (DAQ) device mounted on the ship have been
collecting signals at five-minute frequency. The data refer only to the navigation phase, i.e.,
the time interval between the finished with engine order (when the ship leaves the departure
port) and the stand by engine order (when the ship enters the arrival port). In particular,
the percentage of travelled distance over the voyage is chosen as functional domain so that
variables coming from different voyages are defined on interval of the same width. The
cumulative fuel consumption (CFC) per each voyage is assumed as the functional response
variable. It is the cumulative sum of the fuel consumption during the navigation phase.
The following set of covariates are assumed as influencing the response: sailing time (T ),
measured in hours (h), which is the cumulative navigation time during the navigation phase;
speed over ground (SOG), measured in knots (kn), which is the ratio between the sailed
distance over ground, i.e., the distance travelled by the vessel during the navigation, and the
sailing time; longitudinal and transverse wind components (Wlo and Wtr), measured in knots
(kn), which are functions of the true wind speed and the difference between the true wind
angle (in the earth system) and the course over ground. Covariates are chosen on the basis of
both engineering and statistical considerations. Additional information about the response
and regressor variables can be found in Bocchetti et al. (2015); Erto et al. (2015). The 315
profiles observed for the response and covariates in the considered period are shown in the
Supplementary Materials. Throughout February 2016, EEI (energy efficiency initiative) was
performed on the considered ship, which mainly consisted in a silicone foul realising coat of
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Table 2.6. Estimated ARL (ARL{), mean ARL� of the empirical bootstrap ARL distribution, 95% confidence
interval (CI) for the ARL statistic, and p-values of bootstrap test on the ARL mean differences for each chart
combination.

ARLz ARL� CI p-value
FRCC sFRCC RESP INBA

FRCC 2.07 2.03 r1.78, 2.34s - - - -
sFRCC 2.11 2.21 r1.90, 2.56s 0.000999 - - -
RESP 9.46 10.09 r6.13, 17.92s 0.000999 0.000999 - -
INBA 11.28 11.71 r7.81, 18.45s 0.000999 0.000999 0.000999 -

the hull. As guranteed by the paint company, and described in Erto et al. (2015), this EEI
plausibly produces a shift in the CFC mean. As shown in the Supplementary Materials, this
is also confirmed by visual inspection of the mean function of the response before and after
the EEI. In light of this, the 112 profiles relating to the period before dry-dock operations,
are used to form the Phase I sample. Whereas, the remaining 203 profiles are used in Phase
II to evaluate the proposed chart performance.

Implementation Details and Results
The Phase I sample consists of 112 profiles observed at five-minute frequency during each
voyage. The functional observations are obtained by solving a regularization problem where
profiles are approximated by means of a cubic B-spline basis expansion (i.e., of order 4) with
100 basis and 98 equispaced knots, and a smoothing parameter on the second derivative equal
to 10�10, chosen by means of generalized cross validation (Ramsay and Silverman, 2005).
Then, the IC observations are identified by extending the approach proposed by Colosimo
and Pacella (2007) to the multivariate functional case. As in Section 2.3, the appropriate
values of L, M and K in Equation (2.10) and Equation (2.13) are found as those for whichf
the retained principal components explain at least 95% of total variation. Then, the control
limits are estimated using the empirical quantiles of the T 2

e ans SPEe distribution estimated
through the KDE procedure, as in the simulation study (Section 2.3), with the overall Type
I error α equal to 0.0027 (which corresponds to ARL0 � 370). The choice of α is prompted
by the common industrial practice in analogy with the classic Shewhart control chart with
3-sigma limits (Montgomery, 2007). The remaining 203 profiles used in Phase II are obtained
in the same way as in Phase I. Even if the use of the sFRCC has been recommended in all
cases (Section 2.3), for the sake of completeness both the FRCC and the sFRCC have been
applied. Each observation is plotted onto those two control charts and the two competitor
ones (RESP and INBA) as shown in Figure 2.5.

By comparing the four charts, the responsiveness of the FRCC and the sFRCC is evidently
higher than that of the INBA and the RESP control charts which signal a much lower number
of OCs. In particular, in the FRCC and the sFRCC the change in the response mean is
almost exclusively captured by the T 2 control chart, which means that dissimilarities between
the Phase I and Phase II samples occur mostly in the space spanned by the retained principal
components. As expected by remarks given in Section 2.3, Figure 2.5 shows that the sFRCC
is less sensitive than the FRCC in detecting OC condition (of the functional response).
However, the former chart should be used in this case because the assumption of no covariate
mean shift cannot be given as satisfied. More precisely, by looking at the first column of
Table 2.6, the estimated ARLs (ARLz) achieved by FRCC and sFRCC are at least a fourth
of those achieved by the RESP and INBA control charts.

To quantify the uncertainty of ARLzs, a bootstrap analysis (Efron and Tibshirani, 1986)
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2. Functional Regression Control Chart

Figure 2.5. T 2
estd and SPE

estd charts for the FRCC, the sFRCC, and, the RESP and INBA control charts. The
vertical dotdash line corresponds to the last voyage before the EEI.
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was performed (see Supplementary Materials for more details).
Table 2.6 shows the mean ARL� of the empirical bootstrap ARL distribution and the

bootstrap confidence intervals for each chart. Moreover, to test whether the mean of the
empirical bootstrap ARL distributions differ significantly, bootstrap tests on the ARL mean
differences (Efron and Tibshirani, 1986) for each chart combination were performed. The
p-values are shown in Table 2.6 for each chart combination test. The bootstrap analysis,
i.e., tests and confidence intervals, further confirms that both the FRCC and the sFRCC
outperform the competitor control charts. Indeed, 95% confidence intervals are strictly below
those of the RESP and INBA control charts and accordingly the tests reject the hypothesis
of equal means for each chart combination.

Table 2.7 shows for the FRCC, sFRCC, and RESP control charts the estimated ARLs
(ARLz), the mean ARL� of the empirical bootstrap ARL distribution and the bootstrap 95%
confidence intervals at different δY and δX (i.e., percentages of variance explained by the
retained scores in the response and covariates). The analysis for the INBA control charts
is not influenced by different values of δY and δX and therefore, the results are equal to
those already reported in Table 2.6. Results in Table 2.7 show that bot FRCC and sFRCC
outperform the competitor ones for all δY and δX values. However, as expected by remarks
given in Section 2.3, the choice of the number L and M (Equation (2.10)) of the retained
scores (related to δY and δX ) affects the performance of the FRCC and sFRCC.

2.5 Conclusions

In this chapter, we propose a new general framework for monitoring a functional quality
characteristic when functional covariates are available, referred to as functional regression
control chart (FRCC). In particular, the quality characteristic is adjusted for the effects of the
covariates by means of multivariate functional linear regression model and then monitored by
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Table 2.7. Estimated ARL (ARL{), mean ARL� of the empirical bootstrap ARL distribution, and 95% confidence
interval (CI) for the ARL statistic at different δY , and δX , for the FRCC, sFRCC and RESP control chart.

δY 0.95 (M � 2) 0.98 (M � 3) 0.99 (M � 5)

δX ARLz ARL� CI ARLz ARL� CI ARLz ARL� CI

0.90 (L � 19)
FRCC 2.99 3.06 r2.51, 3.77s 1.97 2.00 r1.77, 2.31s 1.96 2.00 r1.74, 2.29s
sFRCC 2.89 2.95 r2.46, 3.62s 2.19 2.20 r1.92, 2.55s 2.25 2.28 r1.94, 2.67s
RESP 9.46 9.99 r6.23, 17.87s 9.08 9.72 r5.90, 17.95s 5.72 6.50 r2.12, 12.92s

0.95 (L � 36)
FRCC 2.02 2.03 r1.76, 2.34s 1.66 1.67 r1.51, 1.87s 1.24 1.23 r1.17, 1.31s
sFRCC 2.16 2.21 r1.90, 2.56s 1.71 1.72 r1.54, 1.94s 1.28 1.28 r1.21, 1.37s
RESP 9.46 10.09 r6.13, 17.92s 9.08 9.45 r5.74, 16.55s 5.72 6.43 r2.41, 11.53s

0.97 (L � 56)
FRCC 1.36 1.36 r1.26, 1.47s 1.27 1.26 r1.19, 1.34s 1.62 1.63 r1.46, 1.82s
sFRCC 1.46 1.48 r1.36, 1.62s 1.42 1.43 r1.31, 1.57s 1.84 1.86 r1.64, 2.13s
RESP 9.46 10.24 r6.05, 17.14s 9.08 9.60 r5.75, 17.16s 5.72 6.41 r2.39, 12.19s

using jointly the Hotelling’s T 2 and the SPE control charts built on its functional principal
component decomposition. However the approach is very general, indeed the choice of the
model, the estimation method as well as the monitoring strategy can be easily extended. To
the best of the authors’ knowledge, profile monitoring methods that are promptly able to
enhance the monitoring by exploiting additional information on covariates (even possibly
functional ones) are not present in the literature, whose attention is mainly focused on
procedures that consider measurements of the functional quality characteristic only.

A Monte Carlo simulation is carried out with the aim of investigating the performance of
the proposed control chart in identifying mean shifts in the response. The FRCC is then
compared with other two control charts (named Response and INdex-BAsed control charts)
that are widely used both in the literature and in real profile monitoring applications. The
results showed that, firstly, the FRCC is far better than the competitor control charts in
identifying response mean shifts, when no covariate mean shift occurs; secondly, the covariate
mean shift implies estimation error of the coefficient vector and thus, strongly affects FRCC
performance in terms of average run length. When the assumption of no covariate mean
shift cannot be given as satisfied, some solutions are proposed in case of both large and
small Phase I sample sizes. In the latter case, a studentized version of the FRCC (sFRCC)
is proposed to take into account the different residual variance at different covariate values.
Eventually, by means of a real-case study in the shipping industry, the FRCC and sFRCC is
shown to outperform the competitor control charts in identifying CO2 emission reduction
after a specific energy efficiency initiative.

Future researches can be addressed on extending the FRCC framework to different types
of regression models and to different residual monitoring strategies. Moreover, the effect on
the FRCC performance in detecting shifts in the variance function of both the response and
covariates deserve further investigations.

2.6 Supplementary Materials

Estimation of the Multivariate Functional Linear Regression Model

The estimation of the regression coefficient vector β in Equation (2.3), relies on the truncated
principal components decomposition Xstd

L and Y stdM of Xstd and Y std, namely

Xstd
L �

Ļ

i�1
ξXi ψ

X
i , Y stdM �

M̧

i�1
ξYi ψ

Y
i . (2.25)
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2. Functional Regression Control Chart

This leads to truncated version of β in Equation (2.6), that is

βLM ps, tq �
Ļ

i�1

M̧

j�1
bijψ

X
i psqψYj ptq s P S, t P T , (2.26)

with bij � E
�
ξXi ξ

Y
j

	
{λXi . By considering the following expansion of ε in Equation (2.3),

ε �
8̧

i�1
ϵiψ

Y
i , (2.27)

with ϵi � xε, ψYi y, and the related truncated version εM of order M , then the truncated
version of Equation (2.3) is

Y stdM ptq �
»

S

�
βLM ps, tq�T Xstd

M psq ds� εM ptq t P T . (2.28)

Plugging Equation (2.26) and Equation (2.27) in to Equation (2.28), due to the orthonor-
mality of the principal components tψXi u and tψYi u, Equation (2.28) becomes

ξYM � pBLM qT ξXL � ϵM , (2.29)

where ξYM � �
ξY1 , . . . , ξ

Y
M

�T , ξXL � �
ξX1 , . . . , ξ

X
L

�T , ϵM � pϵ1, . . . , ϵM qT and BLM �
tbijui�1,...,L,j�1,...,M . The least squares estimator of BLM is

Bls
LM � Cov

�
ξXL , ξ

X
L

	�1
Cov

�
ξXL , ξ

Y
M

	
. (2.30)

Given n independent realizations pXi, Yiq of pX, Y q, an estimator β̂LM of βLM , - and thus
of β, based on the least squares estimator Bls

LM of BLM - is obtained by means of the
estimators µ̂X and µ̂Y of µX and µY , and the estimators Ĉ

X

std and Ĉ
Y

Z of CX
std and CYstd.

They are calculated using the sample mean and covariance functions (Hsing and Eubank,
2015). Estimators ψ̂

X

i , λ̂
X

i and ψ̂
Y

i , λ̂
Y

i of ψXi , λXi and ψYi , λYi are obtained through the
method proposed by Happ and Greven (2018), based on the theory of integral equations.
Then, the estimator β̂LM of β can be calculated as

β̂LM ps, tq �
�
ψ̂
Y ptq


T �
B̂
ls

LM


T
Ψ̂
X psq s P S, t P T , (2.31)

where ψ̂
Y �

�
ψ̂
Y

1 , . . . , ψ̂
Y

M


T
, Ψ̂

X �
�
ψ̂
X

1 , . . . , ψ̂
X

L


T
and B̂

ls

LM �
�

Ξ̂
T

XΞ̂X


�1
Ξ̂
T

XΞ̂Y ,

with Ξ̂
T

XΞ̂X and Ξ̂
T

XΞ̂Y estimators of nCov
�
ξXL , ξ

X
L

�
and nCov

�
ξXL , ξ

Y
M

�
. Finally, an

estimator Ŷ LM of the best prediction E
�
Y |X� of Y in Equation (2.9) is

Ŷ LM ptq � µ̂Y ptq � v̂Y ptq1{2 Ŷ stdLM ptq t P T , (2.32)

where v̂Y is an estimator of vY and Ŷ
std

LM � °L
i�1

°M
j�1 b̂ij ξ̂

X

i ψ̂
Y

j is an estimator of
E
�
Y std|Xstd

�
in Equation (2.8), with tb̂iju the entries of B̂

ls

LM and ξ̂
X

i � xXstd, ψ̂
X

i yHX .
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Table 2.8. Correlation functions and parameters for data generation in the simulation study.

Type ρ ν

Bessel Jv pzq �
�
|z|{ρ1

2
�ν°8

j�0

�
�p|z|{ρq2

{4
	j

j!Γpν�j�1q 0.25 0

Gaussian G pzq � exp
�
�
�
|z|
ρ

	2
�

1 -

Powered exponential P pzq � exp
�
�
�
|z|
ρ

	ν�
1 0.5

Details on Data Generation
The compact domains S and T are set, without loss of generality, equal to r0, 1s and the
number of covariates p is set equal to 3. The eigenfunctions sets tψXi u and tψYi u are
generated by the spectral decomposition of pre-specified correlation functions. In particular,
the eigenfunction set tψXi u is obtained considering the correlation function GX through the
following steps.

1. Set the diagonal elements GXll , l � 1, 2, 3 of GX as the Bessel correlation function
of the first kind (Abramowitz and Stegun, 1964), the gaussian correlation function
(Abrahamsen and Regnesentral, 1997) and the powered exponential correlation function
(Stein, 1999). The general form of the correlation functions and parameters used in
the simulation study are listed in Table 2.8. Then, calculate the eigenvalues tηXlku and
the corresponding eigenfunctions tϑXlku, k � 1, 2, . . . , of GXll , l � 1, 2, 3.

2. Obtain the cross-correlation function GXlj , l, j � 1, 2, 3 and l � j, by

GXlj ps1, s2q �
8̧

k�1
η̃Xk ϑ̃

X

lk ps1q ϑ̃Xjk ps2q s1, s2 P S, (2.33)

where η̃Xk � �1{3�°3
l�1 η

X
lk and ϑ̃

X

lk �
�

1{?3
	
ϑXlk.

3. Calculate the eigenvalues tλXi u and the corresponding eigenfunctions tψXi u through
the spectral decomposition of GX � tGXlj ul,j�1,2,3, for i � 1, . . . , L�.

The eigenvalues tλYi u and the corresponding eigenfunctions tψYi u, i � 1, . . . ,M� are calcu-
lated by means of the spectral decomposition of GY set as the Bessel correlation function of
the first kind with ρ � 0.2 and ν � 0 (Abramowitz and Stegun, 1964). Further, set L� and
M� equal to 50 and 10, respectively. Then, β is calculated as follows,

β ps, tq �
�
ψY ptq

	T
pBL�M�qT ΨX psq s, t P r0, 1s , (2.34)

where the matrix BL�M� , is set as a partitioned matrix rBL�M�11 BL�M�21sT , where
BL�M�11 is a diagonal matrix of dimension M� and BL�M�21 is a pL� �M�q�M� matrix
of all zeros. Diagonal values of BL�M�11 are listed in Table 2.9 for three different settings,
along with the corresponding R2 values (Horváth and Kokoszka, 2012; Yao et al., 2005a),
defined as

R2 �
»
r0,1s

Var
�

E
�
Y std ptq |Xstd

�	
Var

�
Y std ptq� dt. (2.35)
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Table 2.9. Diagonal values bii of BLM11 and corresponding R2 for three different settings.

R2 bii

0.97 0.698, 0.838, 0.315, 0.0504, 0.002,
0.000, 0.000, 0.000, 0.000, 0.000

0.86 0.658, 0.795, 0.275, 0.010, 0.000, 0.000,
0.000, 0.000, 0.000, 0.000, 0.000

0.76 0.608, 0.745, 0.225, 0.000, 0.000, 0.000,
0.000, 0.000, 0.000, 0.000, 0.000

The R2 value measures globally the proportion of the variance in the response explained by
the covariates. Then, in order to ensure the validity of the model in Equation (2.3), ΣϵM� is
chosen such that the following relation holds

ΣξY

M�
� ΛY � pBL�M�qT ΛXBL�M� �ΣϵM� , (2.36)

with ΣξY

M�
� Cov

�
ξYM�

�
, ΛY � diag

�
λY1 , . . . , λ

Y
M�

�
, and ΛX � diag

�
λX1 , . . . , λ

X
L�

�
. Real-

izations of Xstd are obtained through

Xstd �
L�¸
i�1

ξXi ψ
X
i , (2.37)

with ξXL� �
�
ξX1 , . . . , ξ

X
L�

�T generated by means of a multivariate normal distribution with
covariance Cov

�
ξXL�

� � ΣξX

L�
� ΛX . In the same way, realizations of Y std are generated by

means of

Y std �
M�¸
i�1

ξYi ψ
Y
i . (2.38)

Realizations of the score vector ξYM� �
�
ξY1 , . . . , ξ

Y
M�

�T are obtained as

ξYM� � pBL�M�qT ξXL� � ϵM� , (2.39)

with ϵM� � pϵ1, . . . , ϵM�qT generated by means of a multivariate normal distribution with
covariance matrix Cov pϵM�q � ΣϵM� independent of ξXL� . Further, the mean functions µX

and µY and the variance functions vX � �vX1 , vX2 , vX3 �T and vY are generated through the
following reference model

µ pzq � P pzq � r
I̧

i�1
gi pz;mi, siq z P r0, 1s , (2.40)

where
P pzq � az2 � bz � c z P r0, 1s , (2.41)

and the terms gi pt;mi, siq are normal probability density functions with parameters mi and
si, and a, b, c are real numbers. The values of all unknown parameters are listed in Table
2.10 and Table 2.11. Then, given the mean functions µX and µY and the variance functions
vX and vY , realizations of X and Y are easily obtained. Finally, X and Y are assumed to be
observed at 150 equally spaced time points r0, 1s with measurement errors ζXi � N

�
0,σ2

X

�
and ζYi � N

�
0, σ2

Y

�
where σX � p0.3, 0.05, 0.3qT and σY � 0.3. For illustrative purposes,
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Table 2.10. Values of mi and si to generate X and Y mean and variance functions in the simulation study.

mi si

µX1
0.075, 0.100, 0.250, 0.350,

0.500, 0.650, 0.850, 0.900, 0.950
0.050, 0.030, 0.050, 0.050,

0.100, 0.050, 0.100, 0.040, 0.035
µX2 - -

µX3
0.075, 0.100, 0.150, 0.225, 0.400, 0.525,

0.550, 0.600, 0.625, 0.650, 0.850, 0.900, 0.925
0.050, 0.060, 0.050, 0.040, 0.050, 0.035,

0.045, 0.045, 0.040, 0.030, 0.015, 0.010, 0.015
µY - -

vX1
0.075, 0.100, 0.125, 0.150,

0.400, 0.650, 0.850, 0.900, 0.925
0.050, 0.060, 0.075, 0.075,
0.075, 0.045, 0.045, 0.040

vX2 - -

vX3
0.075, 0.100, 0.150, 0.225, 0.400, 0.525,

0.550, 0.600, 0.625, 0.650, 0.850, 0.900, 0.925
0.050, 0.060, 0.050, 0.040, 0.050, 0.035,

0.045, 0.045, 0.040, 0.030, 0.015, 0.010, 0.015
vY - -

Table 2.11. Values of a, b, c and r to generate X and Y mean and variance functions in the simulation study.

a b c r

µX1 �20 20 �20 0.05
µX2 0 4 0 0
µX3 �10 14 �8 0.05
µY 0 30 0 0

vX1 0 0 1 0.1
vX2 0 0.02 1 0
vX3 �40 150 30 2
vY 0 8 1 0

a sample of 1000 randomly generated realizations of X � pX1, X2, X3qT and Y with their
mean functions are shown in Figure 2.6 for R2 � 0.97.

Figure 2.6. 1000 randomly generated realizations of the predictors and the response with their mean functions
(black solid line).
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Additional Simulations for Different Values of R2

In the simulation study, the analysis were performed using data generated by considering
diagonal values of BL�M�11 corresponding to R2 � 0.97. To assess the effect on the
FRCC performance of changes in the proportion of the response variance explained by the
covariates, the same analysis of Scenario 1 in Section 2.3 are performed by considering the
three different settings in Table 2.9. As expected, Figure 2.7 and Table 2.12 show that the
FRCC performance decrease with the R2 values and that tend to be equal to those of the
RESP control chart. This confirms the fact that when no linear relation hold between the
response and the covariates the FRCC and the RESP control chart perform equivalently.
However, already at R2 � 0.76 the FRCC performs better than the competitors control
charts.

Figure 2.7. Estimated ARLs (ARL{) and 95% confidence intervals for different R2 values.
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Bootstrap Analysis
Given the n observations in Phase II pXi, Yiq, i � 1, . . . , 203, of the covariates and response,
the bootstrap analysis can be summarized in the following steps.

1. Compute the standardized versions
�
Xstd
i , Y stdi

�
of pXi, Yiq, using the quantities

estimated in Phase I.

2. Obtain B standard bootstrap samples of size n
�
Xstd

1b , Y
std

1b
�
, . . . ,

�
Xstd
nb , Y

std
nb

�
, b �

1, . . . , B, resampling with replacement from the standardized observations
�
Xstd

1 , Y std1
�
,

. . . ,
�
Xstd
n , Y stdn

�
.

3. Use the B bootstrap samples
�
Xstd

1b , Y
std

1b
�
, . . . ,

�
Xstd
nb , Y

std
nb

�
, b � 1, . . . , B, to compute

B values of the statistic, ARL1, . . . ,ARLB for each chart.
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Table 2.12. Estimated ARLs (ARL{) and 95% confidence intervals for the three different values of R2 in Scenario
1.

Shift Severity R2

0.97 0.86 0.76

d ARLz CI ARLz CI ARLz CI

In-control - 102.94 r97.95, 107.94s 103.42 r97.75, 109.08s 101.64 r96.20, 107.08s

A

0.5 62.14 r59.29, 64.98s 90.73 r86.43, 95.04s 91.85 r87.09, 96.61s
1.0 20.43 r19.76, 21.10s 57.71 r55.23, 60.20s 68.96 r65.92, 72.00s
1.5 6.94 r6.73, 7.14s 34.12 r32.82, 35.42s 45.23 r43.64, 46.83s
2.0 2.93 r2.87, 2.99s 19.63 r18.96, 20.30s 28.38 r27.41, 29.36s

B

0.5 47.00 r45.02, 48.99s 80.70 r76.81, 84.60s 85.29 r81.20, 89.38s
1.0 10.58 r10.18, 10.98s 42.06 r40.53, 43.58s 53.17 r50.99, 55.35s
1.5 3.19 r3.11, 3.27s 21.10 r20.27, 21.94s 31.32 r30.18, 32.47s
2.0 1.56 r1.54, 1.58s 10.56 r10.25, 10.88s 17.94 r17.37, 18.51s

C

0.5 8.30 r8.07, 8.54s 32.72 r31.53, 33.92s 40.87 r39.32, 42.43s
1.0 1.33 r1.32, 1.34s 6.57 r6.40, 6.74s 10.43 r10.06, 10.81s
1.5 1.00 r1.00, 1.00s 2.15 r2.11, 2.19s 3.43 r3.36, 3.50s
2.0 1.00 r1.00, 1.00s 1.22 r1.21, 1.23s 1.67 r1.65, 1.70s

D

0.5 15.42 r14.89, 15.94s 50.31 r48.37, 52.25s 59.64 r57.32, 61.97s
1.0 2.09 r2.06, 2.12s 14.56 r14.09, 15.02s 23.10 r22.24, 23.95s
1.5 1.07 r1.07, 1.08s 4.76 r4.64, 4.87s 9.08 r8.84, 9.33s
2.0 1.00 r1.00, 1.00s 2.20 r2.17, 2.24s 4.15 r4.05, 4.24s

4. Build the confidence interval with confidence level 1� α for the ARL statistics using
the α{2 and 1 � α{2 quantiles of the empirical bootstrapped ARL distribution and
calculate the mean, ARL�, of the empirical bootstrapped ARL distribution for each
control chart.

The number of bootstrap samples B is set equal to 500, and confidence intervals are built
with α � 0.05.

Additional Plots for the Real-case Study

Figures 2.8 shows the 315 profiles observed for the response and covariates in the real-case
study of Section 4. The functional response is the cumulative fuel consumption (CFC) per
each voyage. The scale on the ordinate axis is omitted for confidentiality reasons. The
covariates are the sailing time (T ), measured in hours (h) the speed over ground (SOG),
measured in knots (kn), and the longitudinal and transverse wind components (Wlo and
Wtr), measured in knots (kn).
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Figure 2.8. Covariates and response in the real-case study.

Figure 2.9 shows the mean function of the response before and after the EEI (energy
efficiency initiative). By visual inspection, it is clear that a shift downward of the cumulative
fuel consumption occurred.

Figure 2.9. CFC before (solid line) and after (dashed line) the EEI.
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Chapter 3

Functional Regression Control Chart
for the Monitoring of Ship CO2
Emissions

Abstract
On the modern ships, the quick development in data acquisition technologies is producing
data-rich environments where variable measurements are continuously streamed and stored
during navigation and thus can be naturally modelled as functional data or profiles. Then,
both the CO2 emissions (i.e., the quality characteristic of interest) and the variable profiles
that have an impact on them (i.e., the covariates) are called to be explored in the light of
the new worldwide and European regulations on the monitoring, reporting and verification
of CO2 emissions. In this chapter, we show an application of the functional regression
control chart (FRCC) with the ultimate goal of answering, at the end of each ship voyage,
the question: given the value of the covariates, is the observed CO2 emission profile as
expected?. To this aim, the FRCC focuses on the monitoring of residuals obtained from
a multivariate functional linear regression of the CO2 emission profiles on the functional
covariates. The applicability of the FRCC is demonstrated through a real-case study of a
Ro-Pax ship operating in the Mediterranean Sea. The proposed FRCC is also compared
with other alternatives available in the literature and its advantages are discussed over some
practical examples.

3.1 Introduction

Nowadays, the quick development in the data acquisition (DAQ) technologies is producing
data-rich industrial environments where massive amounts of data are available. In particular,
a large portion of the ship observational data are complex measurement signals that, even
though they consist of discrete values of the quantities of interest ordered in time or space,
they may be envisaged as reflecting smooth variations of quantities generated by continuous
functions defined on a infinite compact domain, i.e., as functional data. Functional data
analysis (FDA) is a thriving area of statistics. For a comprehensive overview, the reader
could refer to Ramsay and Silverman (2005), Horváth and Kokoszka (2012) and Kokoszka
and Reimherr (2017). In this functional data setting, profile monitoring (Noorossana et al.,
2012) is the name of a new branch of statistical process control (SPC) that provides a suite
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of methods to continuously give a solution to the urging issue of evaluating the stability over
time of functional quality characteristics. Recent contributions are Colosimo and Pacella
(2010), Grasso et al. (2016), Menafoglio et al. (2018). As in the classical SPC, where data
are scalars, profile control charts have the task of continuously monitoring the functional
quality characteristic and of triggering a signal when assignable sources of variations (i.e.,
special causes) act on it. When this happens, the process is said to be out-of-control (OC).
Otherwise, when only normal sources of variation (i.e., common causes) apply, the process is
said to be in-control (IC).

Only recently, Centofanti et al. (2020b) introduced the functional regression control chart
(FRCC) framework to deal with the situations where a functional quality characteristic is
influenced by one or more functional covariates. In this scenario, if one of these covariates
manifests itself with an extreme realization, the quality characteristic may wrongly be judged
to be OC. Otherwise, there may be situations where the covariates are not extreme and
the quality characteristic may wrongly appear IC. The FRCC framework is the functional
extension of the basic Mandel’s idea (Mandel, 1969), where the quality characteristic is
monitored after being adjusted for the effect of covariates, i.e., the control variable is the
residuals obtained from a regression of the quality characteristic on the covariates. In this
way, the focus is on the residual variability not explained by the knowledge of the observed
value of the covariates. In a more direct phrasing, the FRCC answers the question: given
the value of the covariates, is the quality characteristic as expected? If the answer is no, then
special causes may have occurred that are beyond the information brought by the covariates
through the chosen regression model. In particular, in the FRCC framework, the quality
characteristic and the covariates are linked through a multiple functional linear regression
model (MFLR), where both the response and the explanatory variables can be functional
data. Recent examples of MFLR model can be found in Palumbo et al. (2020), Centofanti
et al. (2020a) and Chiou et al. (2014).

In recent years, profile monitoring has emerged as an effective technique in the field of
maritime transport to tackle the issue of CO2 emission monitoring (Capezza et al., 2019;
Centofanti et al., 2020b; Lepore et al., 2018). Indeed, in view of climate change and global
warming crises, the maritime transport industry is currently facing new challenges related
to harmful emission control and reduction. Indeed, the Marine Environment Protection
Committee of the International Maritime Organization (IMO, 2012a,b, 2014) has urged
shipping companies to set up a framework for monitoring, reporting and verification of CO2
emissions based on fuel consumption. In the face of these regulation, shipping companies are
updating DAQ systems on their fleets, enabling large volumes of observational data to be
automatically streamed and transferred to a remote server, bypassing human intervention.
Indeed, a large proportion of these data can be modeled as functional data, thus representing
a new challenge for FDA and related SPC methods in this area. The DAQ system installed on
modern ships facilitates in fact the collection of functional data relating to CO2 emissions as
well as other functional variables affecting them. However, most of the approaches that have
already appeared in the maritime literature (Lepore et al., 2017; Erto et al., 2015; Bocchetti
et al., 2015) do not take advantage of the potential help to managerial decision-making
represented by the modelling of the entire voyage profiles acquired and usually collapse
information in one or more scalar features extracted from them. In this setting, a recurrent
request posed by the maritime engineers is related to the CO2 emissions corresponding to
the given values of other recorded covariates. That is, they want, in particular, to assess if
CO2 emissions are coherent with the values of the covariates, in order to identify unexpected
behaviours and take corrective measures. Engineers are less concerned in identifying CO2
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Features Value
Gross Tonnage 32728

Length 203.9 m
Beam 25 m
Draft 6.8 m

Maximum power for propulsion 46080 kW
Maximum speed 28.9 knots

Table 3.1. Technical features of the considered Ro-Pax ship.

emission profiles that are extreme with respect to their marginal distribution if this can be
explained well by some extreme value in the covariates. They are rather interested in CO2
emission profiles that are not consistent with covariates affecting them because, for example,
this can reveal anomalous ship performance.

The FRCC can be used to meet this engineering need. Therefore, in this chapter we
propose to use the FRCC to monitor ship CO2 emissions throughout each voyage in order to
identify special causes given the values of some functional covariates. Specifically, we consider
a particular instance of the FRCC framework where the functional quality characteristic,
hereinafter referred to as response, and the functional covariates are related through the
multivariate functional linear regression (MFLR) model, whose estimation is based on the
multivariate functional principal components analysis (FPCA) (Happ, 2018; Chiou et al.,
2014). Then, studentized residuals are monitored through the simultaneous application of
the Hotelling’s T 2 and the squared prediction error (SPE) control charts (Woodall et al.,
2004; Noorossana et al., 2012; Grasso et al., 2016; Colosimo and Pacella, 2010). In particular,
in this chapter the FRCC framework is used both retrospectively, as an aid to the practitioner
to determine the IC state of a process and to identify an IC reference sample (Phase I),
and, prospectively to monitor any departure from the IC state at future voyages (Phase II).
The applicability of the FRCC is demonstrated through a real-case study of a Ro-Pax ship
operating in the Mediterranean Sea, courtesy of the shipping company Grimaldi group.

The chapter is structured as follows. In Section 3.2, the structure of the data and
technological details of the ship equipment, for the case study at hand are provided. In
Section 3.3 the main materials and methods behind the particular instance of the FRCC
framework are summarized. In Section 3.4, we apply the FRCC to the real-case study at
hand to monitor CO2 emissions, and, a comparison with competing methods, which do
not take into account the information coming from the covariates, is illustrated as well. In
Section 3.5, we draw conclusions. All computations and plots have been obtained using the
software environment R (R Core Team, 2020b).

3.2 Technological Background and Data Structure

For confidentiality reasons, we omit the ship as well as port names. In Section 3.2, we provide
the technical features of the ship. In Section 3.2, we describe all the variables and the data
used for the analysis.

Technical Features

The main technical features of the ship are illustrated in Table 3.1. The ship is characterized
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by two engine sets, each consisting of two main diesel engines for propulsion Wärtsilä, Type
16ZAV40S, four-stroke, with a maximum continuous rating of 11520 kW at 510 revolutions
per minute (rpm) and by two variable pitch propellers and a shaft generator for electric
power supply. The main engine power is used both for propulsion and electrical generation
through the shaft generators, which are themselves keyed on a gearbox. The gearbox has
two fast inlet shafts powered by the engine shaft, a slow outlet shaft for the propeller and a
faster one to which the shaft alternator is connected. The gear ratio between the engine shaft
and the propeller shaft is equal to 3.24. The gear ratio between the engine shaft and the
shaft alternator is equal to 0.32. The main diesel engine of the considered Ro-Pax ship can
be powered by three types of fuel with different percentage of sulphur (S) content compliant
with the regulation in force on the geographical area to be sailed: heavy fuel oil, very low
sulphur fuel oil (¤ 0.5%S), ultra-low sulphur fuel oil or marine gas oil (¤ 0.1%S). The
electrical power supply of the ship consists of three diesel generators (1840 kVA, 690 V), two
shaft generators (2100 kVA, 690 V) and one emergency diesel generator (480 kVA). The main
engines can supply power in two different modes, at fixed rpm (constant mode) or at variable
rpm (combined mode). In the constant mode, shaft generators can be used to supply electric
power, even though the maximum speed cannot be reached because speed variations are only
possible by changing the pitch of the propellers. Whereas, in the combined mode, the ship
speed can be regulated by increasing both pitch propeller and engine rpm, but, vice-versa,
the possibility to engage the shaft generator is lost.

Data Description

Data come from a DAQ system installed on the ship that are transmitted to the cloud with
at different frequencies varying from 2 to 5 minutes. The data refer to a specific route,
i.e. each observation in the data set corresponds to a voyage of the ship and all voyages
have the same departure and arrival port. A period of 11 consecutive months following a
dry-dock operation on the ship is considered. Observations in the first 9 months (i.e. from
the beginning of February to the end of October 2020) are used in Phase I, i.e. to identify a
reference data set, estimate the model and control chart limits. Observations in the last 2
months (i.e. from the end of October 2020 to the end of December 2020) are used in Phase
II to show the performance of the FRCC on monitoring new voyages. We start with a data
set of 190 voyages for the Phase I (Section 3.4) and 22 voyages for the Phase II (Section 3.4).

Note that the data refer to the navigation phase. More specifically, the navigation phase
begins with the finished with engine order (when the ship leaves the departure port) and
ends with the stand by engine order (when the ship enters the arrival port). Moreover, we
need to identify an adequate functional domain for each voyage. Even if time is naturally
suitable as a functional domain, total travel time can vary from voyage to voyage. Therefore,
we prefer to use the fraction of distance traveled over the voyage as the common domain
p0, 1q of the data.

All the signals acquired by the DAQ system are summarized into several variables that
we describe here to select later the functional covariates and response considered in the
MFLR model. The ship is tracked by its global positioning system (GPS), which provides
longitude and latitude coordinates. The course over ground (COG) is the actual direction of
progress of a vessel, between two points, with respect to the surface of the earth, measured
in degrees. The sailed distance over ground (SDOG) is the distance traveled by the vessel
between two points, measured in nautic miles (NM), calculated from the GPS sensor through
the Haversine formula. The speed over ground (SOG) is measured in knots (kn) and is
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the ratio between SDOG and the sailing time, measured in hours. The propeller pitch
(P) is measured in degrees and represents the angle between the intersection of the chord
line of the blade section and a plane normal to the propeller axis. An anemometer sensor
provides data about the true speed (V ), measured in knots, and direction (ψ), measured in
degrees, of the wind. The latter is obtained as the difference between the true wind angle in
earth system and the COG. Additional information on the wind variables can be found on
Bocchetti et al. (2015). From the two anemometer variables, the longitudinal component of
the wind is calculated as V cosψ, while the transversal component is calculated as |V sinψ|.
Note that a positive (respectively negative) longitudinal component of the wind means that
the wind blows from stern (respectively bow). Moreover, a data fusion process also allows
the integration of marine data into the data set, i.e. weather forecasts about the sea state
furnished by private held weather service provider. The sea state is characterized by the
provider through the typical parameters, viz. height and period, used to model waves that,
in turn, are roughly divided into two components: wind-driven waves, or simply waves
(generated by the immediate local wind) and swell (generated by distant weather systems and
usually having larger period). In particular, the height, measured in meters, is defined as the
vertical distance from wave crest to wave trough; whereas, the period, measured in seconds,
represents the time between successive crests of a train of waves passing a fixed point in
a ship, at a fixed angle of encounter (Lackenby, 1978). Regarding the CO2 measurement,
MRV regulations propose direct and indirect methods. The direct method determines the
amount of CO2 emitted measuring the flow of these emissions passing in exhaust gas funnels.
Instead, the indirect method calculates the CO2 emissions based on the fuel consumption.
The direct method is based on the determination of CO2 emitted that flow in exhaust gas
stacks based on the measurement of the CO2 in the exhaust gas and the measurement of
the volume of the exhaust gas flow per unit of time. This method is very sensitive to the
calibration and the uncertainty related to the measurement devices. Whereas, the class of
indirect method determines calculates CO2 emissions as a product of the whole amount
of fuel consumption of the main and auxiliary engines, boilers, gas turbines and inert gas
generators times the so called emission factor, which is calculated as the average emission
rate of a GHG relative to the activity data of a source stream, assuming complete oxidation
for combustion and complete conversion for all other chemical reactions. In this chapter, we
use the indirect method and we focus on the main engines only.

In what follows, we list the functional variables chosen for the analysis in this work that
are obtained from the signals acquired by the DAQ system. The functional response is the
signal corresponding to the CO2 emissions per hour along the entire voyage. In order to select
functional covariates among the available signals, a very long preliminary investigation was
carried out to identify the covariates that could better explain the CO2 emissions. However,
in practice, many signals that could have played the role of covariates were not able to be
measured accurately. The intersection between the set of candidate and truly measurable
covariates was finally identified after an intensive exchange of information and experience
with marine engineers, shipping managers and operators. The following nine functional
covariates have been identified, which are, thus, assumed as a characterization of the ship
operational conditions. In particular, we include in the analysis the SOG, the left propeller
pitch, the right propeller pitch, the transversal component of the wind, the longitudinal
component of the wind, the wave height, the wave period, the swell height and the derivative
of the cumulative navigation time. Figures 3.1 and 3.2 show the profiles of covariates and
response, respectively, in the reference data set used for model building and control chart
limits estimation. The functional data are obtained from discrete observations as described
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Figure 3.1. Functional covariates in the reference data set.
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in Section 3.4.

3.3 Methodology

The FRCC is a general framework for profile monitoring that can be divided into three
main steps. Firstly, (i) define a MFLR model which links the functional response variable
Ỹ , defined on the compact domain T and a vector X̃ of random functional covariates
X̃1, . . . , X̃p, defined on the compact domain S. Secondly, (ii) define the estimation method
of the chosen model, and thirdly, (iii) define the monitoring strategy of the functional
residual defined as the difference between the fitted value and the observed value of Ỹ . In
what follows, we assume that X̃1, . . . , X̃p and Ỹ have smooth realizations in L2 pSq and
L2 pT q, i.e., the Hilbert spaces of square integrable functions defined on S, T � R.

To obtain a specific implementation of the FRCC, we assume that the vector of covariates
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Figure 3.2. Functional response in the reference data set. For confidentiality reasons, y-axis labels are omitted.
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linearly influence the response through the MFLR model, that is

Y ptq �
»

S

�
β ps, tq�T X psq ds� ε ptq t P T , (3.1)

where Y and X are the standardized versions of Ỹ and X̃, obtained through the transfor-
mation approach of Chiou et al. (2014). The regression coefficient β � �β1, . . . , βp

�T , is a
vector where βi’s are square integrable bivariate functions defined on the closed interval
S � T , and the random error function ε has zero mean and variance function v2

ε , and is
independent of X.

Following Centofanti et al. (2020b), we propose to use an estimation method based on
the multivariate Karhunen-Loève’s Theorem Happ and Greven (2018). In particular, we
assume that the standardized covariate and response variables can be represented as follows

X �
8̧

i�1
ξXi ψ

X
i Y �

8̧

i�1
ξYi ψ

Y
i , (3.2)

where ψXi �
�
ψXi1 , . . . , ψ

X
ip

	T
and ψYi are principal components (PCs), i.e., the eigen-

functions of the covariance operator of the standardized covariates and response vari-
able corresponding to the eigenvalues λXi and λYi in descending order, respectively, and
ξXi � °p

j�1
³
S Xj psqψXij psq ds and ξYi � ³

T Y ptqψYi ptq dt are the scores, such that
E
�
ξXi
� � 0, E

�
ξXi ξ

X
j

	
� λXi δij and E

�
ξYi
� � 0, E

�
ξYi ξ

Y
j

	
� λYi δij , with δij the Kro-

necker delta. As demonstrated in Chiou et al. (2016), the regression coefficient can be
expressed as follows

β ps, tq �
8̧

i,j�1

E
�
ξXi ξ

Y
j

	
λXi

ψXi psqψYj ptq s P S, t P T . (3.3)

An estimator of the regression coefficient is readily obtained by considering the truncated
version of Equation (3.3), i.e.,

βLM ps, tq �
Ļ

i�1

M̧

j�1
bijψ

X
i psqψYj ptq s P S, t P T , (3.4)
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with bij � E
�
ξXi ξ

Y
j

	
{λXi , and L,M   8. Plugging Equation (3.4) into Equation (3.1), due

to the orthonormality of the PCs ψXi and ψYi , Equation (3.1) becomes

ξYM � pBLM qT ξXL � ϵM , (3.5)

where ξYM � �
ξY1 , . . . , ξ

Y
M

�T , ξXL � �
ξX1 , . . . , ξ

X
L

�T , ϵM � pϵ1, . . . , ϵM qT and BLM �
tbijui�1,...,L,j�1,...,M , with ϵi �

³
T ε ptqψYi ptq dt. Therefore, the problem of estimating

β reduces to estimate the matrix BLM that can be obtained through least squares given
n independent realizations

�
X̃i, Ỹ i

	
of
�
X̃, Ỹ

	
. Then, given the least squares estimator

B̂LM of BLM , the estimator β̂LM of β can be calculated as

β̂LM ps, tq �
�
ψ̂
Y ptq


T �
B̂LM

	T
Ψ̂
X psq s P S, t P T , (3.6)

where ψ̂
Y �

�
ψ̂
Y

1 , . . . , ψ̂
Y

M


T
, Ψ̂

X �
�
ψ̂
X

1 , . . . , ψ̂
X

L


T
, with ψ̂

Y

i and ψ̂
X

i ��
ψ̂
X

i1, . . . , ψ̂
X

ip


T
estimators of ψYi and ψXi , respectively. Finally, an estimator Ŷ LM of

Y is

Ŷ LM �
Ļ

i�1

M̧

j�1
b̂ij ξ̂

X

i ψ̂
Y

j , (3.7)

with b̂ij the entries of B̂LM and ξ̂
X

i � °p
j�1

³
S Xj psq ψ̂Xij psq ds.

The raw functional residual is defined as

e ptq � Y ptq � Ŷ LM ptq t P T . (3.8)

Instead of considering the raw residual in Equation (3.8), following the remarks in Centofanti
et al. (2020b), we considered a scaled version of it. In particular, we consider the studentized
functional residual, defined as

estu ptq � Y ptq � Ŷ LM ptq
CovY

�
Y � Ŷ LM

	1{2
ptq

t P T . (3.9)

The residual variance function is estimated as Covy Y

�
Y � Ŷ LM

	
ptq � v̂2

ε ptq � ω̂LM pt, tq,
for t P T , where v̂2

ε is an estimator of v2
ε and ω̂LM is defined as

ω̂LM ps, tq � Cov
�
Ŷ LM

	
ps, tq �

�
ξ̂

X

L


T �
Ξ̂
T

XΞ̂X


�1
ξ̂

X

L ψ̂
Y

M psqT Σ̂ϵM
ψ̂
Y

M ptq s P S, t P T ,

(3.10)
where ξ̂

X

L is the estimator of the score vector ξXL of X, Ξ̂
T

XΞ̂X is the estimator of
nCov

�
ξXL , ξ

X
L

�
, ψ̂

Y

M is the estimator of the vector of the first M eigenfunctions of Y ,
and Σ̂ϵM

is the estimator of Cov pϵM q. As described in Centofanti et al. (2020b), the mean
of the studentized functional residual is less influenced by covariate mean shifts with respect

to the raw residual. Indeed, the aim of CovY
�
Y � Ŷ LM

	1{2
is to weight the raw residual
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on the basis of its uncertainty, such that for an extreme realization of X, the residual is
heavily scaled.

We use a moitoring strategy based on the Hotelling’s T 2 and the SPE control charts
(Woodall et al., 2004; Noorossana et al., 2012; Grasso et al., 2016; Pini et al., 2017) applied
to estu. In particular, the studentized functional residual estu is approximated as

estu,K �
Ķ

i�1
ξeiψ

e
i , (3.11)

where the scores ξei �
³
T e ptqψei ptq dt and the PCs ψei are the eigenfunctions corresponding

to the eigenvalues λei in descending order of the covariance function of estu. The Hotelling’s
statistic T 2 is obtained as follows

T 2
e � ξeΣ�1

ξe ξ
e, (3.12)

where Σξe � diag
�
λe1, . . . , λ

e
K

�
is the variance-covariance matrix of ξe � �ξe1, . . . , ξeK�T . Note

that T 2
e is the squared distance of the projection of estu from the origin of the space spanned

by the PCs standardized for the score variances. Analogously, changes along directions
orthogonal to the latter space are monitored by the statistic

SPEe �
»

T

�
estu ptq � estu,K ptq�2

dt. (3.13)

The control charts are designed in Phase I by means of a set of n functional studentized
residuals estu,i, i � 1, . . . , n, obtained by n independent observations

�
X̃i, Ỹ i

	
acquired

under IC conditions. Phase I includes also the estimation of the MFLR model unknown
parameters, the PCs ψei and the matrix Σξe (calculated by means of the sample covariance)
as well as the estimation of the control limits for both the Hotelling’s T 2 and the SPE
control charts. The latter can be obtained by means of the p1� αq-quantiles of the empirical
distribution of the two statistics, where α is chosen to control the overall type I error
probability. In the monitoring phase (Phase II), the functional studentized residual of a new
observation is calculated and an alarm signal is issued if at least one of the corresponding
T 2
e and SPEe statistics violates the control limits.

3.4 Results and Discussion

In this section we show the results of the application of the FRCC to the data set described
in Section 3.2. In particular, the retrospective and perspective phases, i.e. Phase I and Phase
II, are described in Section 3.4 and Section 3.4, respectively. Moreover, in Section 3.4, a
comparison with simpler monitoring approaches is shown.

Phase I

Phase I comprises the recovery of smooth functional data from the discrete observations
for each voyage (Section 3.4), the identification of the reference data set of IC observations
(Section 3.4), and, the estimation of the MFLR model as described in Section 3.3 (Section
3.4).
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Figure 3.3. Median, across all voyages in the Phase I data set, of the generalized cross-validation (GCV) error as
a function of the number of basis functions, for each functional variable.
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Data smoothing

The first step of the analysis is to get smooth functional data from the discrete observations
for each voyage of the ship. We use B-spline basis expansion and penalized least squares to
estimate the corresponding basis coefficients. A common approach is to set a quite large
number of basis functions and then select the optimal smoothing parameter by minimizing
the generalized cross-validation (GCV) error (Ramsay and Silverman, 2005). However, the
number of available discrete points is above 200 for each voyage and, by following this
approach, the GCV criterion leads to choosing the smoothing parameter equal to zero in
practice for all functional variables. This is a typical problem of overfitting, as also pointed
by Reiss and Todd Ogden (2009), which show that at finite sample sizes GCV is likely to
develop multiple minima and under-smooth. Therefore, we encourage parsimony and achieve
regularization by choosing a small, efficient number of basis functions, with the smoothing
parameter fixed to a small positive value (i.e. 10�10) to ensure identifiabilty. In Figure 3.3,
we plot the GCV error against the number of B-spline basis functions. While increasing
the number of basis functions reduces the GCV error, we select 25 basis functions for all
functional variables as the elbow point of these curves.

Reference data set

Once functional data are obtained, it is necessary to identify a reference data set that can be
used for model building and estimation of the control chart limits. Then, we consider a set
of historical voyages as a starting point, from which observations that are not representative
of the IC conditions have to be removed. Specific Phase I techniques are designed for the
problem of eliminating anomalous observations from the reference data set and generally lead
to the estimation of different limits from the ones calculated in the Phase II control charts.
In this work we use the FRCC also in Phase I and integrate domain knowledge to establish
which voyages are considered anomalous and have to be excluded. More details on the model
building choices can be found in the next subsection. Figure 3.4 shows the FRCC applied to
the initial data set. The x-axis label VN is a progressive counting label denotes subsequent
voyages in the data set. Moreover, Figure 3.5 shows some OC studentized residual profiles
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Figure 3.4. FRCC used for Phase I monitoring on the initial data set of 190 observations, to remove outliers and
define the reference data set.
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correctly signaled as anomalous. After an iterative process of identifying outliers, detecting
anomalies, removing the observations from the data set and re-fitting the model, we end up
with a reference data set of 169 voyages.

Model building

The FRCC relies on the choice of L and M in Equation (3.4), as well as K in Equation
(3.11). Figure 3.6 shows the cumulative fraction of variance explained by the functional
principal components in the multivariate functional covariates, the functional response, and
the functional studentized residuals, respectively. In Centofanti et al. (2020b), L, M and K
are chosen such that the retained functional principal components explain at least 95% of
the variability in the data. Based on the results in Figure 3.6, we instead opt for a more
parsimonious choice and set the thresholds for the explained variability in the data as 80%,
95%, and 95%, respectively, i.e. we select L � 7, M � 1, and K � 8. The corresponding
actual fractions of variance explained are 81%, 96%, and 96%.

We further investigate on the interpretation of the selected functional PCs. Figure
3.7 shows the eigenfunctions of the covariance operator of the standardized multivariate
functional covariates. Since they all have unit norm, we multiply them by the square root
of the corresponding eigenvalues so that profiles with larger norm are PCs that explain a
larger fraction of the total variance in the data. The first PC depends almost entirely on the
two propeller pitch variables, the speed over ground, and the navigation time. The latter
is negatively correlated with the other variables, and for all these variables their weight is
almost constant over the entire functional domain. The second PC strongly depends on the
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Figure 3.5. Some functional studentized residuals identified as OC in Phase I, plotted in red against all the other
ones in the original Phase I data set, plotted in gray.
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Figure 3.6. Eigenvalues of the covariance operator of the functional covariates (a), the functional response (b) and
the functional studentized residuals (c), estimated on the reference data set. Vertical dashed lines indicate the
selected number of components.
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Figure 3.7. Eigenfunctions of the covariance operator of the functional covariates, estimated on the reference data
set.
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sea variables (swell height, wave height and wave period) and the transversal component
of the wind. These functional variables have all positive weight, with some parts of the
domain showing slightly larger weight than others. The third PC seems to mainly depend
on the longitudinal component of the wind alone. To summarize, the first PC describes
how fast the ship is moving, while the second and third PCs capture two distinct aspects of
environmental conditions. Figure 3.8a shows the eigenfunction of the covariance operator of
the standardized functional response. The first PC alone explains most of the variability
in the data, indicating that, after standardization, the fuel consumption per hour is mostly
constant functions over the entire domain, apart from the beginning and the end of the
voyage. Figure 3.8b shows the eigenfunctions of the covariance operator of the studentized
residuals. The first PC depends on the average value over the entire voyage. The second PC
looks at the difference between the first and the second half of the voyage, some of the other
PCs seem to assign a larger weight to the boundaries of the functional domain, however, the
interpretation becomes more difficult with the following PCs.

Figure 3.9 shows the estimated functional coefficients obtained as in Equation (3.6). Since
the functional response is approximated with a single functional principal component that
in practice is constant over the entire domain, the functional coefficient shows only vertical
bands along the direction of t. The most important predictors are the ones associated with
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Figure 3.8. Eigenfunctions of the covariance operator of the functional response (a) and the studentized residuals
(b).
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the first and third PCs in the functional covariates, i.e. the two propeller pitch variables, the
speed over ground (all with positive coefficients), and the navigation time and longitudinal
wind component (with negative coefficients). The other environmental variables, which are
strongly associated to the second PC in the functional covariates, seem to have a relatively
lower weight in the regression. To summarize, we can state that voyages with larger value
of the propeller pitch and speed over ground variables have a large expected value of the
functional fuel consumption, while voyages with larger values of the navigation time and
longitudinal wind component have a lower expected fuel consumption.

A final consideration on the obtained MFLR model regards the choice to consider the
studentized functional residuals instead of the raw residuals. Figure 3.10 shows the effect
of this choice. Some of the more extreme raw functional residuals, shown in Figure 3.10a,
are attenuated by the studentization (Figure 3.10b). This happens because those residuals
correspond to more extreme functional covariates observations as described in Section 3.3.

Phase II
Figure 3.11 shows the FRCC used in Phase II, that is the actual monitoring phase. Points
correspond to 22 subsequent voyages, each of them is denoted by a voyage number. For
simplicity, we count voyages starting again from 1 to 22, even though these voyages must
not be confused with the first 22 Phase I voyages in Figure 3.4. Some Phase II voyages are
OC, in particular voyages 1, 3, 15 and 16 are OC in both Hotelling T 2 and SPE control
charts, while voyages 20 and 21 are OC in the SPE control chart only. OC observations
are generally characterized by some unexpected behavior in the CO2 emissions that has not
been predicted appropriately by the functional regression model in some specific part of
the domain, or because the prediction error was moderately large for a considerable part
of the voyage. Functional studentized residuals for these OC voyages are plotted in Figure
3.12 against the studentized residuals in the reference data set. Voyages 1, 3 and 15 are
far above the upper control limits in both the Hotelling’s T 2 and SPE control charts. In
particular, the functional studentized residual of voyage 1 is signaled as OC because it is
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Figure 3.9. Estimate of the regression coefficient obtained by MFLR as in Equation (3.6), based on the reference
data set.
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Emissions

Figure 3.10. (a) Raw vs (b) studentized functional residuals in the reference data set.
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larger than usual on average and because of the large error at the end of the voyage. Voyage
3 shows a large departure from the reference profiles of the studentized residuals, in fact in
the first part of the voyage the studentized residual profile is positive, while in the second
part it becomes negative, with a large error at the very end of the voyage. Voyage 15 shows
the same large error at the end of the voyage as in voyage 3, while for the previous part of
the voyage the profile remains always negative. Voyages 16, 20 and 21 are signaled as OC,
however they are closer to the upper control limits with respect to the previous voyages,
in fact they show less dramatic behavior. In fact, studentized residuals for these voyages
show less prominent peaks/valleys in the profiles. In particular, voyage 16 is signaled as
anomalous because it shows residual profile with large positive values for almost the entire
voyage. Voyage 20 looks more regular and near to zero in the middle of the voyage, with a
mild peak and valley at the extremes of the voyage. Voyage 21, if considered pointwise, is
almost entirely in the range of the Phase I studentized residuals. However it is signaled as
OC because of a sudden profile jump in the middle of the voyage.

Comparison with Other Methods

In this section we try to show if it is actually convenient to use the FRCC rather than simpler
approaches. Centofanti et al. (2020b) showed that the FRCC is more powerful than the
index based (INBA) control chart, which monitors the area under the response variable, and
the RESP control chart, which monitors the coefficients coming from the functional principal
component decomposition of the response via Hotelling’s T 2 and SPE control charts. We
compare the FRCC with the these two control charts and discuss if there are different results
in terms of detection of OC observations in this specific application. Figure 3.13 shows the
INBA control chart, which is not able to detect any of the voyages signaled by the FRCC and
seems not appropriate for this type of application. Moreover, this control chart only detects
voyage 22 as OC, which is signaled also by the RESP control chart in Figure 3.14, but, on
the other hand, is IC in the FRCC. Apparently, voyage 22 could be an anomalous voyage
that the FRCC is not able to correctly identify. By further investigating the functional
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3.4. Results and Discussion

Figure 3.11. FRCC in Phase II. Each point corresponds to a voyage and the values of the Hotelling T 2 and SPE
statistics are reported. Horizontal dashes indicate upper control limits. Red points denote OC statistics.
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response profile and the corresponding studentized residual (Figure 3.15), it turns out that
this voyage is signaled as OC in the INBA and RESP control charts because, marginally, the
CO2 emissions were particularly low during the entire voyage. However, these low values
of the response variable are predicted well by the MFLR model. Therefore, conditionally
on the functional covariates, the response variable is not anomalous, in fact the functional
studentized residual profile of voyage 22 is IC in the FRCC. This highlights the convenience
in using the FRCC with respect to simpler approaches, when the interest is in monitoring
a functional quality of interest conditionally on functional covariates having influence on
it. The RESP control chart seems to correctly detect some of the voyages identified by the
FRCC, i.e. voyages 1, 3, 15 and 16, but it misses voyages (i.e. 20 and 21), while it signals
voyage 11 that is IC in the FRCC. Note that voyage 11 is close the upper control limits in
both the RESP control chart and the FRCC.
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Emissions

Figure 3.12. Profiles of the Phase II studentized residuals signaled as OC by the FRCC, plotted as red lines against
the studentized residuals in the reference data set, plotted in gray in each panel.
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3.5. Conclusions

Figure 3.14. RESP control chart
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3.5 Conclusions

A particular instance of the functional regression control chart (FRCC) framework proposed
in Centofanti et al. (2020b) is applied in this chapter to monitor the ship CO2 emissions
profiles, in order to identify special causes given the recorded values of the functional
covariates that may have an influence on them. The quality characteristic is adjusted for the
effects of these covariates by means of a multivariate functional linear regression (MFLR)
model, based on multivariate functional principal component analysis. That is, the residuals
from the MFLR model are monitored by using jointly the Hotelling’s T 2 and the SPE
control charts built on their functional principal component decomposition. The specific
implementation of the FRCC relies on the use of the studentized functional residual to
take into account the different residual variance at different covariate values. The proposed
FRCC demonstrated to be effective in the identification of anomalous observations over the
real-case study presented, which is concerned on the data collected during 2020 on a Ro-Pax
ship operating in the Mediterranean Sea. Moreover, it was compared against alternative
approaches available in the literature, which, however, only look at the marginal distribution
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Emissions

Figure 3.15. Profile of voyage 22 of the Phase II data set. Both the original functional response and the studentized
residual are reported. Profiles of voyage 22 are plotted as red lines against the profiles in the reference data set,
plotted in gray.
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of the functional response, or to some specific features. The competing methods showed a
lack of ability to signal some important out of control observations and, in other situations,
provide with false alarms.

Finally, one important output achieved in our research is the technological transfer of
the FRCC framework to the shipping company Grimaldi Group. The practical applicability
of these statistical tools is further investigated by providing the energy saving department of
the company with R code able to automatically import new data from the company server,
to envelop mathematical and numerical details provided in the chapter, and to routinely
produce automatic voyage reports for some Ro-Pax ships of interest from their fleet.
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Chapter 4

Function-on-Function Regression for
Assessing Production Quality in
Industrial Manufacturing

Abstract
Key responses of manufacturing processes are often represented by spatially- or time-ordered
data known as functional data. In practice, these are usually treated by extracting one or
few representative scalar features from them to be used in the following analysis, but this
implies the risk of discarding important information, thus leading to drawing only partial
conclusions. To take into account all the information available in the measured profiles, new
and more sophisticated methods, such as functional data analysis (FDA), must be used.
In this chapter, that represents the first contribution in the direction of integrating FDA
methods, and in particular functional regression methods, into the manufacturing field, the
use function-on-function linear regression modelling is proposed. This approach is based
on a finite dimensional approximation of the regression coefficient in terms of two sets of
basis functions, as well as on two roughness penalties that control the degree of smoothness
of the final estimator. The potential of the proposed method is demonstrated by applying
it to a real-case study in powder bed fusion additive manufacturing for metals to predict
the mechanical properties of an additively manufactured artifact given the particle size
distribution of the powder used for its production.

4.1 Introduction

The fast technological developments of in-line sensing systems and non-contact acquisition
architectures allow gathering huge amounts of data ordered by space or time from production
processes. Those data are often referred to as functional data or profiles. The most
common practice to handle those data, however, mainly consist in extracting and analysing
only one or few representative scalar features from them, possibly based on engineering
conjectures. This approach may obviously risk to discard non-trivial information available
in the measured profiles and to veil knowledge on the characteristics under study. To
avoid scalar feature selection from profiles, functional data analysis (FDA) developed in the
statistical field (Ramsay and Silverman, 2005; Horváth and Kokoszka, 2012; Ferraty and
Vieu, 2006; Kokoszka and Reimherr, 2017) can be suitably used. In particular, functional
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regression has become one of the most suited analytic tools to be applied in real applications
where it is of interest to know the relationship between a quality characteristic (referred to
as response) and one or more independent variables (referred to as covariates), in which
at least one of them is apt to be modelled as a function over a given domain. Excellent
overviews are provided by Cuevas (2014), Morris (2015), Horváth and Kokoszka (2012) and
Ramsay and Silverman (2005).

In this chapter, we focus on the setting where both the response and covariate are
functional and the relationship between them is linear, that is usually referred to as function-
on-function (FoF) linear regression model. The estimation of FoF linear regression models
was originally introduced by Ramsay and Dalzell (1991) through piecewise Fourier basis. The
first steps in the estimation development of FoF models are mainly due to Besse and Cardot
(1996), that used spline-based approaches, and Ramsay and Silverman (2005), that proposed
a general estimation method based on regularization. Then, Yao et al. (2005b) presented a
method based on the functional principal components decomposition Yao et al. (2005a) of
both the response and covariate and Ivanescu et al. (2015) extended penalized functional
regression (PFR) of Goldsmith et al. (2011) to the FoF setting. More recent articles on the
FoF model are Luo and Qi (2017) and Luo and Qi (2019).

In order to show its practical applicability and to highlight the benefits of a functional
data approach, in this chapter the FoF linear regression model is eventually applied to study
a real-case in the additive manufacturing (AM) field. The impact of many characteristics of
raw materials on the final properties of the produced parts is in fact still an open research
issue and hampers the industrialization of additive technologies (Khajavi et al., 2018; Mani
et al., 2017; Slotwinski and Garboczi, 2015; Hague et al., 2004), which are, on the other hand,
also very costly. In particular, the considered AM process refers to laser powder bed fusion
(L-PBF) technique for metals, which enables the layer-wise production of complex shaped
components through spreading and selective laser melting of subsequent metal powder layers
onto a substrate plate (Gardan, 2016; Petrovic et al., 2011; Gu et al., 2012).

As is known, not all the powder is melted to form the final component. Then, the final
properties of the produced parts are affected by the reuse of powder, which may have been
altered, from previous production runs (Barclift et al., 2016; Cordova et al., 2019; Jacob
et al., 2017). In particular, the reuse may modify the size and shape of powder particles and
affect flowability and packing properties, usable layer thickness, and thus powder-processing
behaviour. Specifically, the particle size is affordably measurable and very critical for the
mechanical properties of metal parts produced through laser melting processes (Herzog et al.,
2016; Khairallah et al., 2016; Sutton et al., 2017). The static mechanical properties are
usually summarized into stress-strain curves that are very popular in materials science and
engineering field (Ramberg, Walter and Osgood, William R, 1943; Davis, 2003).

In this setting, practitioners would classically settle the analyses by extracting scalar
features from both the sample particle size distribution (e.g., 10th, 50th and 90th percentiles)
and the observed stress-strain curve (e.g., Yield strength, ultimate tensile strength and
elongation at break). In this chapter, the application of FoF linear regression methods allows
instead the estimation and prediction of the complete stress-strain curve of produced part
(i.e., the functional response) given the powder particle size distribution (i.e., the functional
covariate) that, in turn, changes with powder reuse from previous runs.

More in general, both suppliers and users can benefit from the knowledge of particle size
distribution for product specifications and manufacturing control, as well as for research and
development. Indeed, the laser melting process parameters are usually tuned with respect to
a well-defined distribution of the powder particle size.
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In addition, the ability to reuse metal powder as many time as possible, obviously without
undermining process stability and final part quality, opens up the possibility for these
manufacturing processes to become increasingly popular as green technologies.

The model estimation is based on a finite dimensional approximation of the FoF model in
terms of two sets of basis functions (one for the response and one for the covariate), as well
as on two roughness penalties that control the degree of smoothness of the final estimator.

To quantify the model estimation uncertainty, we propose the use of a simple novel
bootstrap methodology. It is broadly based on resampling with replacement of both response
and covariate functional observations and is a straightforward extension of the resampling
cases bootstrap in the classical regression setting (Efron et al., 1979; Davison and Hinkley,
1997). To date, little work has been done on bootstrap for functional data. In this regard it
is worth mentioning De Castro et al. (2005) for a bootstrap method to evaluate the range
of the forecasts of sulfur dioxide levels near a power plant, and Cuevas et al. (2006), for a
comparison of bootstrap confidence bands (obtained with different resampling methods) of
several functional estimators. The literature on bootstrap for functional regression is even
poorer, with the exception of González-Manteiga and Martínez-Calvo (2011) who obtained
pointwise confidence intervals by means of a bootstrap procedure for functional linear model
with scalar response and functional covariate.

In Section 4.2 the proposed FoF methodology is described. In particular, the estimation
method and model selection issues are presented in Section 4.2 and Section 4.2, respectively.
The bootstrap method is illustrated in Section 4.2. The real-case study in the AM field is
presented in Section 4.3 and conclusions are reported in Section 4.4. Eventually, Appendix
contains additional details on the estimation method. All computations and plots are created
by using R R Core Team (2020b).

4.2 Methodology

Let the set of observations pXi, Yiq, for i � 1, . . . , n, of the functional covariate X and the
functional response Y , that are assumed to belong to the Hilbert space of square integrable
functions L2 pSq and L2 pT q, be defined on the compact intervals S and T , respectively.
Without loss of generality, we assume that Xis and Yis have zero-mean. In practice, this
is obtained by subtracting the covariate and response sample means from the Xis and Yis,
respectively. Then, the function-on-function (FoF) linear regression model is defined as:

Yi ptq �
»

S
Xi psqβ ps, tq ds� εi ptq t P T i � 1, . . . , n, (4.1)

where the regression coefficient β is in L2 pS � T q, the Hilbert space of bivariate square
integrable functions defined on the interval S � T , and εi is a zero mean error process with
covariance function K pt1, t2q, t1 and t2 P T and are independent of Xi.

Model Estimation
The coefficient function β estimator is based on the following penalized least squares estimator:

β̂ � argmin
βPL2pS�T q

! ņ

i�1
||Yi �

»
S
Xi psqβ ps, �q ds||2 � λs||Lms

s β||2 � λt||Lmt
t β||2

)
, (4.2)

where Lms
s and Lmt

t are the ms-th and mt-th order differential operators with respect to
variables s and t, respectively, and || � || denotes the L2-norm corresponding to the inner
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product   f, g ¡� ³
fg; λs and λt are smoothing parameters that control the trade-off

between the roughness of the estimator β̂ and the goodness of fit. As an example, when
λs � 0 and λt � 0, β̂ is the usual least squares estimator, whereas for λs Ñ8 and λt Ñ8,
β̂ converges to a bivariate polynomial function with degree max pms,mtq � 1. Clearly, for
any finite n, the optimization problem in Equation (4.2) has infinite solutions; and thus,
restrictions on β must be placed in order to obtain a unique estimator. In this regard,
by following the approach proposed by Ramsay and Silverman (2005), we consider the
approximation of β as double expansion in terms of L basis functions tψsi u, defined on S,
and M basis functions tψtju, defined on T , that is:

β ps, tq �
Ļ

i�1

M̧

j�1
bijψ

s
i psqψtj ptq � ψs psqT Bψt ptq s P S, t P T , (4.3)

where B � tbiju P RL�M is the coefficient matrix, ψs � �
ψs1, . . . , ψ

s
L

�T and ψt ��
ψt1, . . . , ψ

t
M

�T . By plugging Equation (4.3) in the model of Equation (4.1), the FoF model
becomes:

Yi ptq �XT
i Bψ

t ptq � εi ptq t P T i � 1, . . . , n, (4.4)

with Xi �
³
S Xi psqψs psq ds.

Thus, the problem of estimating β is reduced to the estimation of the unknown coefficient
matrix B. Indeed, the optimization problem in Equation (4.2) becomes:

B̂ � argmin
BPRL�M

! ņ

i�1
||Yi �XT

i Bψ
t||2 � λs||Lms

s

�
ψsTBψt

	
||2 � λt||Lmt

t

�
ψsTBψt

	
||2
)
,

(4.5)
where B̂ is the estimator of B.

As shown in the Appendix, the estimator of B is:

vec
�
B̂
	
�
�
WY bXTX � λsWY bRX � λtRY bWX

��1 �
I bXT

	
vec pY q , (4.6)

where WX � ³
S ψ

s psqψs psqT ds, WY � ³
T ψ

t ptqψt ptqT dt, RX �³
S Lms

s

�
ψs psq�Lms

s

�
ψs psq�T ds, RY � ³

T Lmt
t

�
ψt ptq�Lmt

t

�
ψt ptq�T dt, X �

pX1, . . . ,XnqT and Y � pY1, . . . ,YnqT , with Yi �
³
T Yi ptqψt ptq dt.

Given the matrices A P Rj�k and B P Rl�m, vecpAq indicates the vector of length jk
obtained by writing the matrix A as a column-wise vector, whereas AbB represents the
Kronecker product matrix of dimensions jl � km. Then, an estimator of β is obtained as
follows:

β̂ ps, tq � ψs psqT B̂ψt ptq s P S, t P T . (4.7)

Particularly, the prediction Ŷ � at given new realization X� of the covariate X is defined as:

Ŷ � �XT
� B̂ψ

t, (4.8)

with X� � ³
S X� psqψs psq ds, and can be regarded as the estimated expectation of the

response conditional to the covariate X � X�.
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Model Selection
The choice of the number of basis functions L and M is not crucial for penalized methods,
because the roughness of the estimator is controlled by the smoothing parameters (Cardot
et al., 2003) λs and λt , which however must be chosen carefully. To this aim, the K-fold
cross-validation (Hastie et al., 2009a) is the most popular method because of its simplicity
and applicability. Broadly speaking, it consists in dividing the set of observations pXi, Yiq,
for i � 1, . . . , n, into K roughly equal-sized parts. For each part k � 1, . . . ,K, the model is
fit to the remaining K�1 parts and the prediction error is calculated on the observation that
belongs to the part k. Then, from the K estimates of the prediction error, the K-fold cross
validation estimated prediction error, denoted by CV pλs, λtq, is obtained as a function of the
smoothing parameters λs and λt that are usually made to vary in a pre-specified grid of values.
The values of λs and λt are chosen such that CV pλs, λtq is minimum. However, we suggest
whenever possible to thoroughly inspect the CV pλs, λtq function and customarily choose the
values of λs and λt to achieve the better prediction performance (i.e. the corresponding value
of K-fold cross validation estimated prediction error is near the minimum of CV pλs, λtq)
and interpretability (i.e. λs and λt are large enough so that β̂ results sufficiently smooth).
The most common choice for K is 10 (Hastie et al., 2009a). Standard choices for the basis
functions tψsi u and tψtju are B-spline, Fourier and Wavelet basis (Ramsay and Silverman,
2005). In particular, we suggest, at least for the real-case study presented in Section 4.3,
to use the B-splines of order 4 (i.e. cubic B-spline) with evenly spaced knots, due to their
good properties and wide applicability (De Boor et al., 1978). Lastly, the standard choice
for the order of the differential operators Lms

s and Lmt
t are ms � 2 and mt � 2. That is the

curvature of the coefficient function β is penalized in both s and t directions (Ramsay and
Silverman, 2005) when cubic B-splines are used.

Bootstrap Analysis
To assess the uncertainty of the estimator β̂ of the coefficient function β, we propose a simple
bootstrap procedure. Bootstrap is a re-sampling technique that allows assigning a measure
of accuracy to a sample estimate (Efron and Tibshirani, 1986; Davison and Hinkley, 1997).
It is extremely useful when the uncertainty of an estimate is either impossible or too difficult
to be gauged by analytical calculations. The proposed bootstrap procedure is the following:

1. Sample with replacement from the set of observations pX1, Y1q , . . . , pXn, Ynq to obtain
B bootstrap samples of size n

�
X�

1b, Y
�

1b
�
, . . . ,

�
X�
nb, Y

�
nb

�
, for b � 1, . . . , B.

2. Fit the model in Equation (4.1) B times to obtain the estimates β̂
�

1 , . . . , β̂
�

B of the
coefficient function β.

3. Obtain pointwise confidence intervals with confidence level 1 � α by using the α
2

and 1 � α
2 quantiles of the empirical distribution of β̂ ps, tq, estimated by using

β̂
�

1 ps, tq , . . . , β̂
�

B ps, tq for each s P S and t P T .

Along with the uncertainty quantification of β̂, the reliability of the prediction Ŷ � in Equation
(4.8), given a new realization X� of the covariate, should be evaluated as well. Let e1, . . . , en
be the residuals, obtained as ei � Yi �XT

i B̂ψ
t. Then, we propose the following procedure:

1. Sample with replacement from the set of observations pX1, Y1q , . . . , pXn, Ynq to obtain
B bootstrap samples of size n

�
X�

1b, Y
�

1b
�
, . . . ,

�
X�
nb, Y

�
nb

�
, for b � 1, . . . , B.
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2. Fit the model in Equation (4.1) B times to obtain the estimates β̂
�

1 , . . . , β̂
�

B of the
coefficient function β and thus the estimates B̂

�

1 , . . . , B̂
�

B of the coefficient matrix B.

3. Obtain e�1 , . . . , e
�
B by sampling with replacement from e1, . . . , en.

4. Compute δ�1 , . . . , δ
�
B realizations of the estimated prediction error δ� as δ�i �

XT
� B̂

�

i ψ
t �

�
XT

� B̂ψ
t � e�i

	
, where B̂ is as in Equation (4.5).

5. Obtain the prediction limits at level 1 � α as�
XT

� B̂ψ
t ptq �∆1�α

2
ptq ,XT

� B̂ψ
t ptq �∆ α

2
ptq
�

for t P T , where ∆ α
2
ptq and

∆1�α
2
ptq are the α

2 and 1� α
2 quantiles of the empirical distribution of δ� ptq, estimated

by using δ�1 ptq , . . . , δ�B ptq for each t P T .

In this case, the quantity to be predicted is Y� �XT
�Bψ

t � ε�, where the random error ε�
is assumed independent of ε1, . . . , εn, and the point estimator is Ŷ � �XT

� B̂ψ
t, as shown in

Equation (4.8). Thus, to assess the accuracy of Ŷ �, we estimate the pointwise distribution of
the prediction error δ � Ŷ � � Y� �XT

� B̂ψ
t � �XT

�Bψ
t � ε�

�
with the pointwise empirical

distribution of δ�i �XT
� B̂

�

i ψ
t�
�
XT

� B̂ψ
t � e�i

	
. The proposed prediction limits are inspired

by the bootstrap prediction limits in the classical regression setting (Davison and Hinkley,
1997).

4.3 A Real-case Study in Laser Powder Bed Fusion Additive
Manufacturing

As stated before in the introduction, a real dataset in L-PBF for metals manufacturing
is analysed (Del Re et al., 2018). In the latter work, the effect of the number of powder
reuses on the tensile properties of the produced AlSi10Mg parts is estimated through scalar
one-way analysis of variance (ANOVA). Nine consecutive runs were carried out, starting
from as-received powders only, in the first, and from a mix of as-received and reused powder
(coming from the previous run), in the following eight runs. The work flow used to test the
effect of powder reuse is shown in Fig. 4.1, in which the variables considered also in the
present chapter are framed in red.

A total of fifty-two dog-bone shaped tensile specimens (six in each AM run, except in
the seventh and the last ones for which only five specimens were available) were produced
and tested to measure the mechanical properties achieved under the different processing
conditions due to the different number of reuses. All the specimens were produced by a
EOS EOSINT M280 3D printer with optimal parameters provided by the producer through
the EOS Part Property Profile AlSi10Mg Speed 30 µm. An illustration of the nine printing
job produced is given in Fig. 4.2. At each run, a metal powder sample was collected and
examined. In particular, a Malvern MS2000 equipment for laser diffraction was used to
measure the particle size distribution of each sample according to ASTM B822-17 (ASTM
B822–17, 2017) standard. Tensile tests were conducted by an Instron 1185 TSTM at room
temperature and with displacement rate of cross head equal to 0.0075 mm{s, according to
ISO 6892:2016 (ISO 6892:2016, 2016) and ASTM E8/E8M-16a (ASTM E8/E8M–16a, 2016)
standards.

Detailed size information on the powder particle size is usually provided through a
histogram, even if, as stated before, more common approach refers only to the 10th, 50th,
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Figure 4.1. Work flow to test the effect of powder reuse in a L-PBF process(Del Re et al., 2018).

Figure 4.2. Example of the printing jobs for studying the effects of powder reuse times (Del Re et al., 2018).
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and 90th sample percentiles, denoted by D10, D50, and D90, respectively. A dissertation on
tensile strength testing and stress-strain curves is far beyond the objectives of this chapter so
just brief hints about them will be given below. The presented description is mainly referred
to metals. Other materials, such as plastics or ceramics, can exhibit different behaviours
and kind of curves. Detailed information can be found in Davis (2003). As it is known,
stress-strain curves are widely used in materials science and engineering to describe, for a
given material, the relationship between the applied stress, denoted by σ, and the resulting
strain (or elongation) exhibited by the material itself, denoted by ϵ. The former is calculated
as the ratio of the applied load (orthogonal to the cross section) and the cross-section of the
specimen and is measured in Pascal. The latter is the length of elongation exhibited by the
material under the applied load divided by the original length of the material. Since both
these lengths are usually measured in the same unit, strain can be considered unitless and
is generally expressed as a percentage. A σ � ϵ curve provides information on the degree
of ductility, or brittleness, of a material and on the maximum loads that it can withstand
before it breaks. Some scalar parameters are usually derived from σ � ϵ curves to define the
mechanical properties of the specific material (Del Re et al., 2018). The most commonly
used are: the Young’s modulus (or elastic modulus or modulus of elasticity), E, the yield
strength, YS, the ultimate tensile strength, UTS and the elongation at break, %A.

Implementation Details and Results

The dataset available for the analysis, consisting of 52 σ � ϵ and 9 PSD curves, can be
rearranged by coupling the estimated probability density functions (pdf) of the particle size,
denoted byXi, and the corresponding stress-strain curves, denoted by Yi, for i � 1, . . . , n. The
Xis are obtained through the kernel density estimation method Silverman (2018) proposed by
Charpentier and Flachaire (2015), that ensures positiveness of domain points s P S � r0, 120s
of the estimated pdf’s. Instead, the stress-strain curves Yi are not necessarily defined on
the same domain, and thus they need to be opportunely rescaled on a common domain
T � r0, 1s with respect to the elongation. Covariate and rescaled response observations are
displayed in Figure 4.3 for illustrative purposes.

The density functions are strictly linked to the number of metal powder reuses. We have
more than one observation with the same covariate function. Strictly speaking, we have in
total n � 52 observations instead of 54 due to two missing specimens.

The basis functions tψsi u and tψtju used to approximate β in Equation (4.3) are cubic
B-splines with evenly spaced knots defined on the domains S and T , respectively. The
smoothing parameters λs and λt are set equal to 103 by means of 10-fold cross-validation, to
trade off predictive performance and interpretability of the resulting estimator, as explained
in Section 4.2. Accordingly, the truncation parameters, L and M , in Equation (4.3) are both
set equal to 30. The estimator β̂ is plotted in Figure 4.4 as a function of s P S at different
t � 0.1, 0.2, . . . , 0.9 along with level 1-α pointwise bootstrap confidence intervals obtained as
described in Section 4.2, with α � 0.05 and B � 100.

From Figure 4.4, it appears that β̂ is significantly different from zero in the shadowed
regions for all t P t0.1, 0.2, . . . , 0.8, 0.9u. Few (resp., many) small particles produce higher
(resp., lower) stress values in the stress-strain curve. This behaviour is related to the effect of
small particles (and thus big ones) particles on the powder packing factor, that affects how
particles bind together during laser melting and therefore the resulting mechanical properties
of the produced parts Sames et al. (2016).

As t increases, that is moving along the stress-strain curve, the effect of the particle size
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(a) (b)

Figure 4.3. (a) Estimated pdf’s of powder particle size and (b) rescaled stress-strain curves. The arrows give a
broad indication of the curves evolution over number of powder reuses.
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Figure 4.4. Estimation β̂ of the coefficient function β evaluated at t P t0.1, 0.2, . . . , 0.8, 0.9u, with upper and lower
limits (dotted lines) of the level 1-α pointwise bootstrap confidence intervals, for α � 0.05. The shadowed regions
are where the β̂ is significantly different from zero.
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Figure 4.5. On the left centered predictions (PRE) of one observation, randomly chosen, the true centered realiza-
tions of the response (TRUE) and level 1-α pointwise bootstrap prediction upper (UL) and lower (LL) limits, for
α � 0.05. The corresponding non-centered σ � ϵ curve is shown on the right for σ values between 250 MPa and
320 MPa.

distribution on the stress-strain changes after the ultimate tensile strength is reached and the
necking occurs, corresponding to t � 0.3� 0.4. From this point, the width of the shadowed
region on the left (resp., right) progressively increases (resp., reduces).

For instance, to appreciate the prediction performance of the FoF linear model, the
centered and the non-centered predictions of one observation, randomly selected, of the σ� ϵ
curve are shown in Figure 4.5, along with the true centered and non-centered realizations
of the response. Moreover, level 1-α pointwise bootstrap prediction limits, calculated as
described is Section 4.2 with α � 0.05 and B � 100, are displayed as well.

It is clear that the FoF linear regression model estimated by the procedure illustrated
in Section 4.2 provides good predictions, and thus could be used to predict the mechanical
properties of an artifact produced by the powder bed fusion technique, given the particle size
distribution of the powder used for its production. It is worth noting that for small values of
t the observed curve is outside the pointwise bootstrap prediction limits, as expected for the
5% of the curve at the given pointwise confidence level 1-α � 0.95.

4.4 Conclusions

Quality control of additive manufacturing products represents a great challenge due to the
complexity of this kind of processes, that are affected by a wide number of aspects related
to raw materials, processing parameters, ambient conditions, post-processing operations,
etc. To this aim, we proposed a novel approach based on function-on-function regression
modelling aimed at assessing the mechanical properties of industrial parts. The potential
advantage of the proposed approach was demonstrated by applying it to a real-case study in
the laser powder bed fusion additive manufacturing for metals with respect to the models
and methods commonly used in the manufacturing field, that need to collapse functional data
into scalar features (e.g., sample mean, variance, percentiles). To the best of the authors’
knowledge, the present study represents the first contribution in the direction of integrating
functional regression methods into the manufacturing field. The developed regression method
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is shown to well predict the σ � ϵ curve (i.e. the response function) of a part produced by
laser power bed fusion additive manufacturing processes given the particle size distribution
of the raw powdered material, that can be affordably obtained before starting a new AM
production.

Irrespective of the powder reuse times, the mechanical properties of the produced parts
exhibited small variability, with a potential acceptable decay up to the last printing run. The
possibility of reusing metal powder, at least for a certain number of times, allows companies
to minimize the material waste, thus saving money and reducing the overall environmental
impact, that result mandatory in an industrial context.

A step forward could refer to the possibility of adding other covariates, not necessarily
functional, which more fully describe the powder properties (e.g. chemical composition,
moisture content or tap and apparent density) to increase the predictive power of the method.
In addition, further analysis may address the extensibility of the proposed method to other
types of profiles (for different materials or kind of inspection tests), since its appeal is likely
to increase with increasing complexity of the considered profiles. Indeed, other materials, not
limited to metals, or other tests can return more complex curves, for which the functional,
rather than the scalar, approach may result much more powerful.

4.5 Appendix

Derivation of the Coefficient Function Estimator

The penalty ||Lms
s

�
ψsTBψt
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where RX and WY are as in Equation (4.6) and Tr pAq is the trace of a generic matrix A.
Analogously to Equation (4.9), the penalty: ||Lmt

t

�
ψsTBψt

� ||2 in the right-hand side of
Equation (4.5) may be written as

||Lmt
t β||2 � Tr

�
BTWXBRY

�
, (4.10)
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where WX and RY are as in Equation (4.6). Moreover:

||Yi �XT
i Bψ

t||2 �
»

T

�
Yi ptq �XT

i Bψ
t ptq

�2
dt

�
»

T

�
Yi ptq2 � 2Yi ptqψt ptqT BTXi �XT

i Bψ
t ptqψt ptqT BTXi

�
dt

�
»

T
Yi ptq2 dt� 2

�»
T
Yi ptqψt ptqT dt



BTXi

�XT
i B

�»
T
ψt ptqψt ptqT dt



BTXi

�
»

T
Yi ptq2 dt� 2Y T

i B
TXi �XT

i BWYB
TXi,

and, thus:
ņ
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where X and Y are as in Equation (4.6).
Then, the optimization problem in Equation (4.5) becomes:
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BPRL�M

! ņ
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. (4.13)

By taking the derivative of the right-hand side of Equation (4.12) with respect to B and
setting it equal to zero, we obtain:

XTXBWY � λsRXBWY � λtWXBRY �XTY , (4.14)

and, thus, by applying the vec operator on both sides of Equation (4.14), we obtain:

vec
�
XTXBWY

	
� λs vec pRXBWY q � λt vec pWXBRY q � vec

�
XTY

	
. (4.15)

By using the fact that, for generic matrices A, B and C of appropriate dimensions,
vec pABCq � �

CT bA� vec pBq and vec pABq � pI bAq vec pBq, where I is an identity
matrix of appropriate dimensions, the estimator of B is:

vec
�
B̂
	
�
�
WY bXTX � λsWY bRX � λtRY bWX
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I bXT

	
vec pY q . (4.16)
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Chapter 5

Functional Clustering Methods for
Resistance Spot Welding Process Data
in the Automotive Industry

Abstract
Quality assessment of resistance spot welding (RSW) joints of metal sheets in the automotive
industry is typically based on costly and lengthy off-line tests that are unfeasible on the full
production, especially on large scale. However, the massive industrial digitalization triggered
by the Industry 4.0 framework makes available, for every produced joint, on-line RSW
process parameters, such as, in particular, the so-called dynamic resistance curve (DRC),
which is recognized as the full technological signature of the spot welds. Motivated by this
context, the present chapter means to show the potentiality and the practical applicability
to clustering methods of the functional data approach that avoids the need for arbitrary and
often controversial feature extraction to find out homogeneous groups of DRCs, which likely
pertain to spot welds sharing common mechanical and metallurgical properties. We intend
is to provide an essential hands-on overview of the most promising functional clustering
methods, and to apply the latter to the DRCs collected from the RSW process at hand,
even if they could go far beyond the specific application hereby investigated. The methods
analyzed are demonstrated to possibly support practitioners along the identification of the
mapping relationship between process parameters and the final quality of RSW joints as
well as, more specifically, along the priority assignment for off-line testing of welded spots
and the welding tool wear analysis. The analysis code, that has been developed through
the software environment R, and the DRC data set are made openly available online at
https://github.com/unina-sfere/funclustRSW/.

5.1 Introduction

Resistance Spot Welding (RSW) is the most common technique employed in joining metal
sheets during body-in-white assembly of automobiles (Ighodaro et al., 2016; Zhou and Cai,
2014), mainly because of its adaptability for mass production (Martín et al., 2014). Typical
car body contains about 5000 spot welds joining metal sheets of different materials and
thicknesses (Zhao et al., 2006). The quality of many critical spots (El-Banna et al., 2008)
is routinely controlled in order to guarantee the structural integrity and solidity of welded
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assemblies per vehicle (Martín et al., 2014). Quality assessment is typically based on tests
performed at the end of the RSW process (off-line) on finished sub-assemblies through direct
or indirect evaluation of weld-joint key characteristics (Raoelison et al., 2012). Off-line
testing is, however, costly and lengthy and thus unfeasible on the full production, especially
on large scale.

In the modern automotive Industry 4.0 framework, automatic acquisition systems allow to
routinely control welders during running operations (on-line) through the continuous record
of a large volume of process parameters. In particular, the so-called dynamic resistance curve
(DRC) is the most important process parameter acquired on-line (Zhou and Cai, 2013) and
is popularly recognized as the full technological signature of the metallurgical development
of a spot weld (Dickinson et al., 1980).

In this scenario, a paramount issue constantly faced by practitioners is the identification
of homogeneous groups (clusters) of spot welds based on DRC observations, in terms of
mechanical and metallurgical properties. The identification of clusters with a convenient
interpretation is useful for exploring the mapping relationship between process parameters
and the final quality of the RSW joints produced, and, in general, for supporting the
experience-based learning of any technological process. In this regard, the most common
practice in industry is to analyze one or few scalar features extracted from the acquired
DRC, even though feature extraction is known to be often difficult, arbitrary and risky of
collapsing useful information.

On the contrary, in this chapter, each DRC observation is suitably modelled as a
function defined on the time domain, i.e., as functional datum. Functional data analysis
(FDA) (Ramsay and Silverman, 2005; Horváth and Kokoszka, 2012; Ferraty and Vieu, 2006;
Kokoszka and Reimherr, 2017) is the set of methods that consider functional data as its
founding elements. Clustering functional data is usually a difficult task, because of the
intrinsic infinite dimensionality of the problem. A thorough overview of functional clustering
methods can be found in Ramsay and Silverman (2005) and Ferraty and Vieu (2006). Then,
it is worth mentioning Cuesta-Albertos and Fraiman (2007) who proposed a pure functional
version of the k-means algorithm, which is very popular in the multivariate setting (Everitt
et al., 2011), as an alternative to the method of Abraham et al. (2003), who instead applied
the k-means algorithm to the coefficients obtained by projecting the original profiles onto a
lower-dimensional subspace spanned by B-spline basis functions. Another version of k-means
algorithm is that of Chiou and Li (2007), which relies on a particular distance between
truncations at a given order of the functional principal components expansion (Ramsay and
Silverman, 2005; Hall and Hosseini-Nasab, 2006). This version can be broadly regarded as
an instance of the method proposed by Bouveyron and Jacques (2011), who modelled the
functional principal components through Gaussian mixture. Some parsimony constraints on
the variance parameters are also considered to define a family of parsimonious sub-models.
A similar methods, which is based on a functional principal components expansion of the
functional observations, was proposed by Jacques and Preda (2013). The work of James and
Sugar (2003) is recognized as the first example of model-based procedure for functional data
clustering, as well as the method proposed by Giacofci et al. (2013), which, in particular, relies
on the wavelet decomposition of the functional observations, and is particularly appropriate
for peak-like data, as opposed to methods based on splines. More recently, Delaigle et al.
(2019) proposed a functional k-means algorithm able to cluster observations asymptotically
perfectly. A sparse functional clustering procedure, that is clustering functional data while
jointly selecting the most relevant features, was developed by Floriello and Vitelli (2017)
and, in particular, by Vitelli (2019) who accounted for possible curve misalignments. For the
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sake of completeness, Bayesian approaches have appeared as well (Ray and Mallick, 2006;
Rodríguez et al., 2009; Rigon, 2019) in the literature, even if they are beyond the scope of
this chapter.

After providing Section 5.2 with the technological background and the description of the
functional DRC data set collected from the RSW process that has motivated this research, we
give in Section 5.3 a deeper hands-on illustration of the most promising functional clustering
methods to be applied to the DRC data set at hand. In Section 5.4, we discuss and interpret
from technological viewpoint the main results obtained, even if the proposed approach could
go far beyond the specific application hereby investigated. We conclude by Section 5.5 with a
discussion of issues highlighted by this data set and a broader perspective of the potentiality
of the proposed methods. Technical details for each of the clustering methods implemented
in this chapter are presented in the Appendix.

The DRC data set and the R R Core Team (2020a) code are made openly available online
Capezza et al. (2020a) to allow the reader to possibly investigate other approaches with this
data set and to encourage the fruitful spread of functional data clustering methods among
practitioners in industry.

5.2 Technological Background and Data Structure

The considered RSW process (Zhang and Senkara, 2011) refers to an autogenous welding
process in which two overlapping steel galvanized sheets are joint together, without the use
of any filler material, at discrete spots. Joints are performed by applying pressure to the
weld area from two opposite sides by means of two copper electrodes. Voltage applied to the
electrodes generates a current flowing between them through the material. The electrical
current flows because the resistance offered by metals causes a large heat generation (Joule
effect) that increases the metal temperature at the faying surfaces of the work pieces up to
the melting point. Finally, due to the mechanical pressure of the electrodes, the molten metal
of the metal sheets jointed cools and solidifies forming the so-called weld nugget (Raoelison
et al., 2012; Manufacturers’ Alliance, 2003).

The typical shape of a DRC acquired during this process is displayed in Figure 5.1 for
illustrative purposes. In the light of Dickinson et al. (1980), it mainly depends on physical
changes induced in the material by the ongoing welding process and can be roughly outlined
into five stages, as well depicted by Adams et al. (2017). For the sake of conciseness, these
stages can be summarized as influenced by two main concurrent effects due to (a) the metal
electrical resistivity and (b) the contact area among the metal sheets to joint. These effects
develop during the RSW process by means of the heat produced by the current flow and the
clamping pressure generated by copper electrodes. In particular, DRC values are proportional
to (a), which increases with material temperature.

On the contrary, DRC values are decreasing with b. That, in turn, is increasing with two
main factors: (b.1 ) the deformation, due to the clamping force, of the surface asperities, that
are softened by the high temperatures; and (b.2 ) the melting of the metal, that guarantees
the sheet continuity by occupying the interstices between the work pieces to weld. So stated,
the typical DRC behaviour (Figure 5.1) can be interpreted by the turnover of the effects
due to (a) and (b). Specifically, DRC decreases at first because of the effect due to (b.1 ),
which dominates effect due to (a) until the local minimum; then, conversely, DRC increases
because the effect due to (a) dominates effect due to (b) until the local maximum, which
represents the beginning of the nugget formation. Finally, the DRC decreases slowly to the
end of the RSW process, because the effect due to factor (b.2 ) dominates that due to (a) to
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Figure 5.1. Typical DRC behaviour.

a lesser extent. In a nutshell, DRC behaviour can be roughly outlined by one local minimum
point, one local maximum point, and the resistance value at the end of the welding process.

The data set for the problem at hand consists of 538 DRCs that are plotted in Figure
5.2 and pertains to spot welds of the same type collected during RSW lab tests at Centro
Ricerche Fiat (CRF). The latter have been carried out on coupons of two sheets having
thickness equal to 0.7 mm and 1.3 mm and made of FE220BH and FE600DP galvanised
steels, respectively. The energy was supplied in a single pulse of current. The weld time
period is 237 ms. Strictly speaking, the values of electrical resistance used to obtain each
DRC observation are not direct measurements, but obtained, according to the first Ohm’s
law (Ohm, 1827), as the ratio between the voltage at electrode tips and the current intensity
measurements. For each DRC observation, these have been collected at a regular grid of 238
points equally spaced by 1 ms. In particular, the electrode tip voltage has been measured
using dressed copper wires attached to the electrodes. Whereas, the current intensity has
been measured by means of an air-core toroid in the primary of the welder transformer.
Copper wires are checked up to ensure their integrity at the beginning of every welding
cycle. Electrical resistance of the metal sheets is assumed much larger than that of the
copper electrodes That is, the copper electrode resistance does not practically affect the
measurement of metal sheet resistance.

Note that the raw data plots for the 538 DRCs at hand yield shape and features coherent
with those discussed with reference to Figure 5.1, but show non-negligible variability that
motivates the goal of the present chapter in supporting practitioners to build homogeneous
groups of DRCs. The intent is to identify through the latter spot welds having similar
mechanical and metallurgical properties, and groups themselves that stand apart from one
another. In particular, clustering methods, and even more their functional version, will be of
great value in this regard with the ultimate goal of guiding practitioners along the priority
assignment for off-line testing of welded spots and the welding tool wear analysis.
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Figure 5.2. Raw data plot of spot welding DRCs.

5.3 Functional Data Clustering Approaches for Dynamic
Resistance Curves

Usually, functional data consist of independent realizations X1, . . . , Xn of a functional random
variable X with values in an infinite dimensional space, which is typically taken to be L2 pT q,
the separable Hilbert space of square integrable functions defined on the compact domain
T . In most applications, T � R and represents time, however, multidimensional domains
could be considered as well. Typically, X1, . . . , Xn are not entirely available but are observed
through a finite set of observation points. This means, only discrete observations tXiju of
functional observations tXiui�1,...,n at time points ttij , j � 1 . . . ,miu are available, being mi

the number of discrete points available for the i-th observation. The aim of the clustering
analysis is to define M partitions, i.e., clusters, of the data X1, . . . , Xn such that observations
in different clusters are as dissimilar as possible and that observations within the same
cluster are as similar as possible. In the rest of this section, we describe the most promising
approaches for functional clustering, which can be grouped in raw-data clustering, filtering
methods, adaptive methods, and distance-based methods.

Raw-data Clustering
The raw-data clustering approach consists in the clustering of discretized version tXiju of
the functional observations tXiu by means of classical multivariate methods. This simple
approach does not need the reconstruction of the functional data and relies on well-established
multivariate algorithms.

One of the most popular clustering algorithm is k-means. In the functional setting,
k-means aims to partition the observations into M clusters C�

1 , . . . , C
�
M such that the

within-cluster sum of squares is minimized, that is

tC�
1 , . . . , C

�
Mu � argmin

C1,...,CM

M̧

m�1

¸
XiPCm

pXi � µmqT pXi � µmq , (5.1)

where C1, . . . , CM are all the possible observation partitions in M groups, Xi ��
Xi1, . . . , Ximi

�T , and µm is the mean vector of the observations in Cm. Hierarchical
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clustering (Everitt et al., 2011) produces a representation in which clusters at each level
of the hierarchy is formed by all and only the clusters of the lower levels. Strategies for
hierarchical clustering are mainly divided into two approaches: agglomerative (bottom-up)
and divisive (top-down). The former starts at the bottom (i.e., each observation in one
cluster) and at each level recursively merges a selected pair of clusters into a single cluster.
The latter starts at the top (i.e., all observations in one cluster) and at each level recursively
splits one of the existing clusters at that level into two new clusters. Different versions of
agglomerative methods arise from the choice of the intergroup dissimilarity metric, e.g.,
single linkage, complete linkage, average linkage. (Ward Jr, 1963) considered hierarchical
clustering procedures based on minimizing the loss of information from joining two groups.
Finally, model-based clustering assumes that the data in each cluster is generated from a
given probabilistic distribution and the combined data stems from a convex combination of
these distributions. In all the aforementioned methods, the number of clusters M has to
be determined. For k-means and hierarchical clustering, this can be done based on many
indices (Charrad et al., 2012), e.g., the silhouette width (Rousseeuw, 1987), the gap statistic
(Tibshirani et al., 2001), the Dunn index (Dunn, 1973); whereas, for model-based clustering,
information criteria, such as the Akaike information criterion (AIC), Bayesian information
criterion (BIC) as well as integrated completed likelihood (ICL) could be used.

Analysis of raw data through classical multivariate techniques has several problems,
because of the high number of evaluation points and the strong correlation. This may
especially affect the model-based approach, that assumes non-singular covariance matrix.
Moreover, raw-data clustering approach has the drawback of not taking into account the
functional nature of the data and is not suited for curves observed at different evaluation
points. While this suggests to use approaches specifically designed for functional data, for
comparison purposes we still propose the raw data approach to the clustering. Details on
multivariate clustering methods can be found in Everitt et al. (2011), Hastie et al. (2009b)
and Johnson et al. (2002).

Filtering Methods
Filtering methods rely on the reconstruction of the functional observations tXiu from the
discrete points tXiju. The most common approach (Ramsay and Silverman, 2005) is to
assume that the functional observations are embedded in a finite dimensional functional
space spanned by a finite set of basis functions. In particular, each Xi can be written as

Xi ptq �
Ķ

k�1
cikϕk ptq � cTi ϕ ptq t P T i � 1, . . . , n, (5.2)

where ϕ � pϕ1, . . . , ϕKqT is the vector of basis functions that span the K-dimensional
subset of L2 pT q, and ci � pci1, . . . , ciKqT is the K-dimensional coefficient vector. The basis
functions tϕju can be either pre-specified, e.g. B-spline (De Boor et al., 1978), Fourier
(Ramsay and Silverman, 2005), and wavelet (Walnut, 2013), or data-adaptive, e.g. obtained
using functional principal component analysis (FPCA) (Hall and Hosseini-Nasab, 2006).

In case of pre-specified basis functions, if the tXiju are observed with measurement error,
then the coefficient vector ci is usually estimated as ĉi via penalized least-squares, even
though standard least-squares could be used as well (Ramsay and Silverman, 2005), that is

ĉi � argmin
ciPRK

mi̧

j�1

�
Xij � cTi ϕ

�
tij
�	2

� λ

»
T
rD2cTi ϕ ptqs2dt, (5.3)

82



5.3. Functional Data Clustering Approaches for Dynamic Resistance Curves

where D2 is the second order differential operator and λ ¡ 0 is a smoothing parameter.
It measures the trade-off between fit to the data, as determined by the residual sum of
squares in the first term, and smoothness of Xi, as quantified by the second term. Then, the
reconstructed functional observation is

X̂
PS

i ptq � ĉTi ϕ ptq t P T i � 1, . . . , n. (5.4)

The choice of the smoothing parameter λ is based on the well-known trade-off between
variance and bias. In particular, it is usually performed by picking the λ corresponding to
the minimum value assumed by the generalized cross-validation criterion. This criterion
takes into account the degrees of freedom of the estimated curve that vary according to λ
(Ramsay and Silverman, 2005). Moreover, the choice of K in Equation (5.2) is not crucial
(Cardot et al., 2003), until it is sufficiently large to capture local behaviours of functional
data.

The FPCA provides a data-adaptive basis to obtain the functional data as in Equation
(5.2). In particular, the functional observations are reconstructed, for i � 1, . . . , n, as

X̂
DA

i ptq �
Ļ

l�1
ξilψl ptq � ξTi ψ ptq t P T i � 1, . . . , n, (5.5)

where ξi � pξi1, . . . , ξiLqT is the vector of principal component scores or simply scores defined
as ξil �

³
T ψl ptqXi ptq dt, and ψ � pψ1, . . . , ψLqT is the vector whose elements are weight

functions referred to as principal components. Principal components are defined by an
iterative algorithm which at each step finds the weight function that maximizes the mean
square of the scores, or their sample variance, that is

ψl � argmax
ψ

ņ

i�1
ξ2
il �

ņ

i�1

�»
T
ψ ptqXi ptq dt


2
l � 1 . . . , L, (5.6)

under the constraints:
³
T ψl ptq2 dt � 1 and

³
T ψi ptqψj ptq dt � 0, for i � j. The choice

of the number L in Equation (5.5) of retained components depends on several necessities.
Generally, the retained principal components are chosen such that they explain at least a
given percentage of the total variability. However, more sophisticated methods could be used
as well (Jolliffe, 2011).

In practice, reconstruction of functional observations allows one to reduce the dimension-
ality of the data by summarizing each curve through a finite set of parameters, that is tĉiu
or tξiu depending on whether basis functions used are pre-specified or data-adaptive. Then,
the finite set of parameters are clusterized by means of standard multivariate clustering
techniques, such as k-means, hierarchical clustering or model-based clustering. As for the
raw-data clustering methods, several indices could be used (Charrad et al., 2012) to choose
the number M of clusters.

Adaptive Methods
The present set of methods relies on a finite dimensional representation of the functional
data through basis functions (similarly to the filtering approaches) where the basis expansion
coefficients are treated as random variables with cluster-specific probability distributions.
This differs from the filtering methods, where the basis expansion coefficients are considered
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as parameters to be estimated in the smoothing phase. One of the first example of adaptive
method was in James and Sugar (2003), referred to as fclust. Similarly to the filtering
approaches, if the functional observation Xi belongs to the m-th cluster among the M
clusters, it is modeled through basis functions as

Xi ptq � ηTimϕ ptq t P T i � 1, . . . , n, (5.7)

where ϕ � pϕ1, . . . , ϕKqT are natural cubic splines, and ηik is a vector of spline normal
random coefficients defined as

ηim � µm � γi, (5.8)

with µm the coefficient vector of the m-th cluster mean, and γi � N p0,Γq the subject-
specific random effects for the i-th curve. Then, the vector of discretized values Xi ��
Xi1, . . . , Ximi

�T is modelled as

Xi � Si pµm � γiq � εi, (5.9)

where Si �
�
ϕ pti1q , . . . ,ϕ

�
timi

�	T
is the realization matrix of the vector ϕ, and εi �

N p0,Rq is the measurement error random vector. The covariance matrix R is usually
set equal σ2Imi

, where Imi
is the size mi identity matrix. The unknown parameters µm,

m � 1, . . . ,M , Γ and σ are estimated by maximizing the mixture likelihood in Equation
(5.10), where the cluster membership vector is modeled as a multinomial random variable
with parameters pπ1, . . . , πM q, with πm the probability of an observation to belong to the
m-th cluster. Thus, the mixture likelihood is defined as

L pµ1, . . . ,µM ,Γ, σ, π1, . . . , πM q �
N¹
i�1

M̧

m�1
πmfm pXiq , (5.10)

where fm pXiq is the conditional density function of Xi belonging to the m-th cluster,
that is Xi|m � N pSiµm,Σiq, with Σi � σ2Imi � SiΓSTi . The maximization is often
carried out by means of the expected maximization (EM) algorithm. Once the unknown
parameters have been estimated, each curve Xi is assigned to the cluster whose estimated
posterior probability of cluster membership πm|i � f̂m pXiq π̂m{

°M
j�1 f̂ j pXiq π̂j is maximum.

Moreover, the cluster mean coefficients µm could be further optimally parameterized to
produce useful low-dimensional representations of the curves (James and Sugar, 2003).
Information criteria, such as AIC and BIC, are used to select the number M of clusters and
the basis dimension K (James and Sugar, 2003).

The use of spline basis has two main drawbacks: (i) they are inappropriate when dealing
with functions that show peaks and irregularities, (ii) they require heavy computational
efforts and so are not suitable to represent high dimensional data. For these reasons, Giacofci
et al. (2013) proposed an adaptive method based on the wavelet decomposition of the curves,
referred to as waveclust. Similarly to James and Sugar (2003), the functional observation Xi

belonging to the m-th cluster is modeled as

Xi ptq � µm ptq � Ui ptq t P T i � 1, . . . , n, (5.11)

where µm is the principal functional fixed effect that characterizes the m-th cluster mean and
Ui is a subject-specific random deviation from µm. By applying discrete wavelet transform
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to model in Equation (5.11), contaminated with an additional measurement error function
Ei ptq, t P T , the model reduces to a linear mixed-effect one. That is,�

cTi ,d
T
i

	T
�
�
αTm,β

T
m

	T
�
�
νTi ,θ

T
i

	T
�
�
εTci

, εTdi

	T
, (5.12)

where
�
αTm,β

T
m

�T ,
�
νTi ,θ

T
i

�T ,
�
εTci

, εTdi

	T
, and

�
cTi ,d

T
i

�T are the vectors of scaling and
wavelet coefficients of µm, Ui, Ei and Xi � Ei, respectively; αm and βm are non-random
parameters, whereas

�
νTi ,θ

T
i

�T and
�
εTci

, εTdi

	T
are normal random vectors with zero mean

and covariance matrices G and σεImi
, respectively. Once projected in the wavelet domain,

the clustering model (5.12) resumes to a standard one with additional random effects whose
variance is of particular form. Thus, parameters are estimated by maximizing the likelihood
function typically using the EM algorithm. Final assignment of each curve to a cluster is
performed by maximizing the posterior probability of clustering membership. The number
of clusters are chosen through BIC or ICL (Giacofci et al., 2013).

The last presented adaptive method was proposed by Bouveyron and Jacques (2011),
and referred to as funHDDC. They consider, as James and Sugar (2003), that if Xi belongs
to a given cluster m, it admits the following basis expansion

Xi ptq � γTimΨ ptq t P T i � 1, . . . , n, (5.13)

where Ψ � pΨ1, . . . ,ΨKqT is a given vector of basis functions, and γim is a k-dimensional
random vector. All the functions Xi in a given cluster m are assumed to be adequately
described in a low-dimensional functional latent subspace with dimension dm   K spanned
by a group-specific basis function tφmju. Then, for a given Xi in the cluster m, the random
latent expansion coefficients λi �

�
λi1, . . . , λidm

�T in the group-specific basis function tφmju
are linked to γim as

γim � Umλi � εi, (5.14)

where Um is the K � dm matrix composed by the first dm columns of the orthogonal K �K
matrix Qm, whose entries are the coefficients that the linearly link tΨku and tφmju, and
εi P RK is an independent random noise term. By assuming that λi � N pµm,Smq, with
Sm � diag

�
am1, . . . , amdm

�
, and that εi � N p0,Ξmq, then

γim � N
�
Umµm,Qm∆mQ

T
m

	
, (5.15)

where the K � K matrix ∆m � Qm

�
Um∆mU

T
m �Ξm

�
QT
m and the noise covariance

matrix Ξm is chosen such that ∆m � diag
�
am1, . . . , amdm

, bm, . . . , bm
�
. Let us assume the

cluster membership vector is modeled as a multinomial random variable with parameters
pπ1, . . . , πM q, with πm the probability of an observation to belong to the m-th cluster. Then,
the mixture likelihood is defined as

L pU1, . . . ,UM ,µ1, . . . ,µM , π1, . . . , πM ,Q1, . . . ,QM ,∆1, . . . ,∆M q �
N¹
i�1

M̧

m�1
πmfm pγiq ,

(5.16)
where fm pγiq is the conditional density function of Xi to belong to the m-th cluster, that is
γi|m � N

�
Umµm,Qm∆mQ

T
m

�
. The maximization is conveniently carried out by means of

the EM algorithm. Moreover, it is possible to obtain parsimonious submodels of Equation
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Table 5.1. Number of clusters obtained and computation time for each approach. Programs were run using a
machine with an Intel Xeon 2.10 GHz processor.

Method Number of clusters Computation time (min)
Raw data hierarchical 2

3Raw data k-means 3
Raw data model-based 8

Filtering B-spline hierarchical 3
2Filtering B-spline k-means 3

Filtering B-spline model-based 4
Filtering FPCA hierarchical 3

1Filtering FPCA k-means 3
Filtering FPCA model-based 5

Adaptive fclust 4 621
Adaptive curvclust 2 359
Adaptive funHDDC 2 559

Distance-based 2 2

(5.15) by constraining model parameters within or between groups. The latent subspace
dimension dm and the number of clusters M are chosen through a scree-test and BIC,
respectively (Bouveyron and Jacques, 2011).

Distance-based Methods
These methods are the functional extension of classical geometric clustering algorithm to
functional data, such as k-means (Cuesta-Albertos and Fraiman, 2007) and hierarchical
(Ferraty and Vieu, 2006) clustering, that basically rely on the definition of proximity or
dissimilarity among observations. Therefore, the extension to functional data consists in
the introduction of an appropriate functional measure of proximity or dissimilarity. In
this respect, several authors (Tarpey and Kinateder, 2003; Ferraty and Vieu, 2006; Cuesta-
Albertos and Fraiman, 2007) agree upon the use of the following measure of proximity
between the curves Xi and Xj

dl
�
Xi, Xj

� � �»
T

�
X

plq
i �X

plq
j

	2
dt


1{2
, (5.17)

where Xplq denotes the l-th derivative of X. In this case the number of clusters could be
suitably chosen through the silhouette index (Rousseeuw, 1987).

5.4 Results and Discussion

In this section, we discuss on the results obtained by implementing the functional clustering
methods presented in Section 5.3 to the DRC data set illustrated in Section 5.2. For the sake
of readability, implementation details are deferred to the Appendix. The optimal number of
clusters selected by each approach mentioned in Section 5.3 is reported in Table 5.1. Note
that most of the methods provide similar results and identify two or three clusters. The only
exceptions are some model-based methods, viz. adaptive fclust, filtering B-spline, filtering
FPCA, and raw data, which select from four to eight clusters. In general, the larger the

86



5.4. Results and Discussion

number of clusters, the harder the technological interpretation, i.e., the less straightforward
the discrimination of spot welds belonging to different groups. Inflation in the number of
clusters is usually due to overfitting problems especially for model-based approaches applied
to high-dimensional correlated data and complex variance structures. In this case, the
number of parameters to be estimated can be very large and may lead to instability, no
matter if the BIC criterion, that penalizes the model complexity, is used to select the optimal
number of clusters. This issue may be exacerbated by the use of model-based methods on
raw data (see third row of Table 5.1), which do not rely on an optimal basis representation
and typically contain additional noise. In Table 5.1 it is also reported the computation time
required for each approach using a machine with an Intel Xeon 2.10 GHz processor. The
adaptive approaches result as the most computationally intensive, while all the others require
less than 3 minutes to complete the analysis. Even if strictly dependent on the data set at
hand, this information may be crucial when dealing with complex data structures in order
to pick the most appropriate method to be used when computational resources are limited.

Figure 5.3 shows the DRCs coloured according to the cluster assignment provided by each
method. Whereas, Figure 5.4 depicts the centroids (i.e., mean functions) for each cluster.
Note that, in both figures, first, second and third rows of panels refer to clustering methods
that select two, three and more than three clusters, respectively.

With reference to those figures and coherently with the features highlighted in Section
5.2, we note that DRC centroids have local minimum points with approximately the same
abscissa, but different resistance values; local maximum points with approximately the same
value, but different abscissa; different resistance values at the end of the functional domain. It
will be in fact convenient to facilitate the following technological interpretation and insights
into the industrial problem at hand to focus attention on (I ) the amplitude difference between
minimum and maximum resistance values, (II ) the phase difference between minimum and
maximum abscissas, and (III ) the final resistance value.

The first row of panels of Figure 5.4 displays centroids associated to cluster 1 having am-
plitude, phase difference and final resistance value smaller than those respectively associated
to cluster 2. The separation is clear as cluster 1 centroids show a local minimum value, in
the first part of the functional domain, that is distinctly larger than that corresponding to
cluster 2 centroids, and decrease more rapidly to lower values in the last part of the domain.

Whereas, in the second row of panels, the amplitude, phase difference and final value
of centroids increase together from cluster 1 to cluster 3, except for panels filtering FPCA
k-means and raw k-means that have centroids of clusters 2 and 3 with approximately the
same final value. That is, cluster 1 centroids show the larger local minimum value and the
more rapid decrease at the end of the functional domain, whereas the other centroids tend
to be more similar.

Finally, with reference to each panel of the third row of Figure 5.4, centroids are shown
to have cluster number sorted in ascending order by amplitude and phase difference, only.
That is, the final resistance values do not preserve the order set by the phase difference, as
in the first two rows of panels. In fact, with reference to the third row of panels of Figure
5.4, final resistance values of centroids obtained by adaptive fclust and filtering B-spline
model-based, respectively depicted in the first and second panel, are sorted in ascending order
with the cluster number as 1,2,4,3; whereas, those of the third panel, referring to filtering
FPCA model-based method, are ordered as 1,2,3,5,4; and those of the fourth panel (raw
model-based method) as 1,3,2,5,7,8,4,6.

As it typically happens (Everitt et al., 2011), also for this data set no one clustering
method can be judged to be best in all circumstances. However, dealing with a small number
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Figure 5.3. Plot of the functional data. Each panel correspond to one of the proposed clustering methods, curves
are coloured accordingly to the corresponding cluster assignment. Plots are arranged such that first, second and
third rows of panels refer to clustering methods that divide DRCs into two, three, and more than three clusters,
respectively.

of clusters, say two or three in this case, shall provide with a clearer interpretation of groups
of functions that are well distinct and more likely to lead to informative classifications.
Therefore, in what follows we assume selecting three clusters as the better compromise to
trade off straightforward interpretation of DRCs belonging to the same clusters and distinct
characterization of each cluster.

Consistently with the technological literature (Dickinson et al., 1980; Adams et al., 2017),
being the minimum point abscissa practically constant and the maximum point the landmark
for the start of nugget formation (see also Section 5.2), we can state that the smaller the
phase difference, and thus the larger the time interval between the local maximum and the
end of the welding process, the more the heat energy supplied for nugget growth. Note
that the inflection point typically located between the local minimum and maximum of the
DRC (see, e.g. Figure 1) ideally represents the welding melting point. Centroids having
larger phase difference shall thus characterize welding spot clusters with smaller nugget
size. Unfortunately, in the real case at hand, this ideal statement may not hold because of
the natural wear process of the electrodes, which induces, as conjectured by RSW process
experts, a non-negligible increase of the weld area, and thus different welding conditions for
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Figure 5.4. Plot of the cluster centroids. Each panel corresponds to one of the proposed clustering methods,
curves are centroids of each cluster obtained with the corresponding method. Plots are arranged such that first,
second and third rows of panels refer to clustering methods that divide DRCs into two, three, and more than three
clusters, respectively.
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Figure 5.5. Seven DRC observations, included in the 538 original DRCs, corresponding to spot welds for which
qualitative information about the electrode wear status is available: just renewed (thin solid line), intermediate
wear (dashed line), severe wear (dotted line).
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each spot weld.
In order to explain the cluster in terms of electrode wear, in Figure 5.5 we report seven

DRCs for which it has been possible to retrieve qualitative information on the wear status of
the electrodes. For this purpose, without loss of generality, we refer to the filtering B-spline
hierarchical method among those selecting three clusters, and compare the corresponding
panel in the second row of Figure 5.4 with Figure 5.5. With reference to the latter figure, we
may want to analyze the two extreme wear cases (thin solid and dotted lines) and conjecture
that centroid of cluster 1 of Figure 5.4 shall correspond to the smaller electrode area, i.e.,
electrode just renewed, whereas centroid of cluster 3 to the larger one, i.e., electrode with
severe wear. Even though the technological cause is different, experts’ opinion is that DRCs
associated to cluster 1 and those associated to cluster 3 correspond to spot welds with
improper nugget diameter. In particular, for spot welds that belong to DRCs in cluster 1,
the root cause is attributed to the excessive clamping pressure in the welding zone. The large
clamping pressure is also confirmed by the small amplitude difference in the DRC centroid
of cluster 1 (Dickinson et al., 1980).

Conversely, spot welds pertaining to cluster 3 correspond to larger electrode area, so that
the clamping force generates the lower pressure in the welding zone and cannot guarantee
the proper value of current density. Indeed, despite the larger amplitude difference in the
DRC centroid, which proves the smaller pressure, the nugget diameter may result undersized
because of the delay in the nugget formation. Therefore, it turns out that the better spot
welds in terms of nugget formation achieved by DRCs pertaining to intermediate cluster(s).

This conjecture becomes more clear in the light of Figure 5.6 in which observations with
qualitative electrode wear status, already displayed in Figure 5.5, are colored by cluster
number (assigned through filtering B-spline hierarchical method) and are superimposed to
the corresponding centroids, already displayed in the first panel of the second row of Figure
5.4. By Figure 5.6, the wear status of the electrode clearly appears as a determinant factor in
the clustering of DRCs. This result represents an important industrial finding that confirms
an expert conjecture supported by functional data made available under the Industry 4.0
paradigm. The next steps to exploit this result is to explicitly identify conditions on the
wear status to signal, when the corresponding DRC is associated to a cluster that does
not guarantee proper mechanical and metallurgical properties, the need e.g., for electrode
break-in, renewal or substitution. To put into action this strategy, or even more complicated
maintenance programs, further technological investigation and off-line quality testing should
be carried out for every DRC cluster. The ultimate goal is to avoid the random sampling of
the sub-assemblies to be tested off-line and to support more specific priority assignment. One
could in fact imagine to assign higher priority to future spot welds having DRC observation
with larger (resp., smaller) distance from cluster centroids that have revealed to refer to
adequate (resp., inadequate) quality.

5.5 Conclusions

In this chapter, we tackled the issue of finding homogeneous groups of dynamic resistance
curves (DRCs) coming from a resistance spot welding (RSW) process, which, in the modern
automotive Industry 4.0, is of crucial relevance to better understand the effects of the process
parameters on the final weld quality. To avoid loss of information caused by arbitrary
scalar feature extraction, DRCs have been modelled as functional data defined on the
time domain, and, accordingly, clustering methods specifically designed for functional data
have been presented in a practical hands-on overview with the aim of facilitating their
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Figure 5.6. The corresponding centroids (solid line), already displayed in the first panel of the second row of Figure
5.4, are superimposed to the seven DRCs with qualitative electrode wear status: just renewed (thin solid line),
intermediate wear (dashed line), severe wear (dotted line), already displayed in Figure 5.5, are colored by cluster
number assigned through filtering B-spline hierarchical method.

practical implementation. To the best of the authors’ knowledge, this is the first study where
functional clustering methods are applied to the whole DRC functional observations to gain
technological insights on RSW processes, even if the framework used could go far beyond
the specific application hereby investigated.

The effectiveness of the presented functional clustering methods is demonstrated by
applying them to 538 DRCs acquired during RSW lab tests at Centro Ricerche Fiat (CRF).
It turned out that the identified clusters of DRCs are strictly linked with the wear status
of the electrodes, that, in turn, affects the electrode contact area, clamping pressure in the
welding zone and current density, and impacts on the final quality of spot welds in terms
of mechanical and metallurgical properties. Indeed, in accordance with the experts, we
agree the better spot welds shall correspond to DRCs belonging intermediate clusters having
proper amplitude difference and small phase difference.

A broader perspective of the results is given in supporting practitioners in the priority
assignment for off-line testing of welded spots and in the electrode wear analysis. Functional
clustering analysis could be in fact imagined to be embedded in a wider on-line statistical
quality control framework for RSW processes, which is able to properly exploit the properties
of the clusters identified. Finally, the relationship between the electrode wear and the final
quality of spot welds, which has been discovered by the proposed functional clustering
analysis, could be now further investigated through the specific definition of opportune
quantitative variables in the direction of routinely tracing wear status.

5.6 Appendix

Implementation Details

In the following paragraphs, we provide with further details for each of the approaches
implemented in this chapter on the DRC data set at hand, which should help practitioners
to unbox the R code provided.
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Raw data To mitigate problems due to the high dimensionality and the strong correlation
of the data, for every DRC observation consisting of 238 equally spaced points, we chose
to keep only 19 points, one each 13, and applied clustering methods on these sliced DRCs.
When using model-based methods, the selection of the optimal number of clusters was based
on the optimization of the BIC criterion. In the other cases, viz. k-means and hierarchical
clustering methods, we relied on the R package NbClustCharrad et al. (2012), which allows
the calculation of several indices. Then, the optimal number of clusters was chosen according
to the majority rule, i.e., as that optimizing the largest number of criteria.

Filtering Let us consider the case when using B-spline basis, first. If we choose too
many basis functions to represent profiles, we still have the same high dimensionality and
correlation problems as in the raw data case. This can also make computation very slow.
Since this data set is characterized by functions that are relatively smooth, we chose to
regularize using a lower number of basis functions and to avoid the penalization of the
integrated squared second derivative. We selected the number of basis functions on the basis
of the generalized cross-validation criterion. In particular, in order to keep the number of
basis functions low, after plotting the generalized cross-validation against the number of
bases, we selected 12 basis functions as the elbow of the curve.

When using FPCA in the filtering approach, we applied clustering on the functional prin-
cipal component scores. We first obtained smooth functions using B-spline basis expansion,
with 100 basis. Then, we regularized as described in Section 5.3 by means of a penalty on the
integrated squared second derivative, with smoothing parameters chosen by minimizing the
generalized cross-validation criterion. Thus, we performed functional principal component
analysis on the obtained functional data set and retained only the components that explain
the 99% of the total variability in the data. This allowed in practice to reconstruct original
functions with a strong dimension reduction. In fact, since profiles in this data set are
smooth, only 6 principal components were required.

For both B-spline and FPCA basis, when using the model-based approach, the selection
of the optimal number of clusters was based on optimization of the BIC criterion. In the
other cases, viz. k-means and hierarchical clustering methods, we relied on the R package
NbClustCharrad et al. (2012), which allows the calculation of several indices. The optimal
number of clusters was chosen also in this case according to the majority rule.

Adaptive The adaptive fclust method was performed by means of the R package fclust,
which requires the choice of the number of basis functions K, as mentioned in Section 5.3,
that was set equal to 5, 10. Parameters and the number of clusters were set based on the
BIC criterion.

For waveclust, we relied on the R package curvclustGiacofci et al. (2012), dedicated
to model-based curve clustering. In particular, the considered models include Functional
Clustering Mixed Models (FCMM, i.e., functional clustering with the presence of functional
random effects), but also traditional functional clustering model (FCM, without functional
random effects). Among FCMMs, several structures of the variance of the random effect can
be chosen. In particular, the following alternatives are available, as mentioned in Giacofci et
al.Giacofci et al. (2013): constant, group, scale-position, and group-scale-position dependent.
It is also possible to decide whether to retain all coefficients or to perform individual denoising
to keep coefficients which contain individual-specific information, by applying nonlinear
wavelet hard thresholding before clustering. We considered all parameter combinations
of the variance structures and chose the model and number of clusters that optimize the
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BIC criterion. Model fitting was performed by maximum likelihood method using the EM
algorithm and the stochastic EM as initialization method.

When using funHDDC, several parameters need to be chosen. We considered 0.2, 0.5,
and 0.9 as possible values for the threshold of the Cattell’ scree-test used for selecting
the group-specific intrinsic dimensions dm. Moreover, the following alternative models are
available, as described in Bouveyron and Jacques (2011): akjbkQkdk, akjbQkdk, akbkQkdk,
abkQkdk, akbQkdk, abQkdk. In this chapter, we considered all parameter combinations and
chose the model and numbers of clusters that optimize the BIC criterion. Moreover, to avoid
local minima, for each parameter combination we repeated the model fitting 20 times and
kept the model with the largest log-likelihood.

Distance-based In the distance-based approach, we applied the clustering algorithm for
each number of clusters by considering the distance in Equation (5.17) with l � 0, that is
the usual L2 distance, then, we kept the model with the best value of the silhouette index.
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Chapter 6

Smooth LASSO Estimator for the
Function-on-Function Linear
Regression Model

Abstract
A new estimator, named S-LASSO, is proposed for the coefficient function of the function-
on-function linear regression model. The S-LASSO estimator is shown to be able to increase
the interpretability of the model, by better locating regions where the coefficient function is
zero, and to smoothly estimate non-zero values of the coefficient function. The sparsity of
the estimator is ensured by a functional LASSO penalty, which pointwise shrinks toward
zero the coefficient function, while the smoothness is provided by two roughness penalties
that penalize the curvature of the final estimator. The resulting estimator is proved to be
estimation and pointwise sign consistent. Via an extensive Monte Carlo simulation study,
the estimation and predictive performance of the S-LASSO estimator are shown to be better
than (or at worst comparable with) competing estimators already presented in the literature
before. Practical advantages of the S-LASSO estimator are illustrated through the analysis
of the well known Canadian weather and Swedish mortality data.

6.1 Introduction

Functional linear regression (FLR) is the generalization of the classical multivariate regression
to the context of the functional data analysis (FDA) (e.g. Ramsay and Silverman (2005);
Horváth and Kokoszka (2012); Hsing and Eubank (2015); Kokoszka and Reimherr (2017)),
where either the predictor or the response or both have a functional form. In particular,
we study the function-on-function (FoF) linear regression model, where both the predictor
and the response variable are functions and each value of the latter, for any domain point,
depends on the full trajectory of the former. The model is as follows

Yi ptq �
»

S
Xi psqβ ps, tq ds� εi ptq t P T , (6.1)

for i � 1, . . . , n. The pairs pXi, Yiq are independent realizations of the predictor X and the
response Y , which are assumed to be smooth random process with realizations in L2pSq
and L2pT q, i.e., the Hilbert spaces of square integrable functions defined on the compact
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sets S and T , respectively. Without loss of generality, the latter are also assumed with
functional mean equal to zero. The functions εi are zero-mean random errors, independent
of Xi, and have autocovariance function K pt1, t2q, t1 and t2 P T . The function β is smooth
in L2pS � T q, i.e., the Hilbert space of bivariate square integrable functions defined on the
compact set S � T , and is hereinafter referred to as coefficient function.

FLR analysis is a hot topic in the FDA literature. A comprehensive review of the main
results is provided by Morris (2015) as well as by Ramsay and Silverman (2005); Horváth and
Kokoszka (2012) and Cuevas (2014) who give worthwhile modern perspectives. Although
the research efforts have been focused mainly on the case where either the predictor or the
response have functional form (Cardot et al., 2003; Li et al., 2007; Hall et al., 2007), the
interest in the FoF linear regression has increased in the very last years. In particular, Besse
and Cardot (1996) developed a spline based approach to estimate the coefficient function
β, while Ramsay and Silverman (2005) proposed an estimator assumed to be in a finite
dimension tensor space spanned by two basis sets and where regularization is achieved by
either truncation or roughness penalties. Yao et al. (2005b) built up an estimation method
based on the principal component decomposition of the autovariance function of both the
predictor and the response based on the principal analysis by conditional expectation (PACE)
method (Yao et al., 2005a). This estimator was extended by Chiou et al. (2014) to the case
of multivariate functional responses and predictors. A general framework for the estimation
of the coefficient function was proposed by Ivanescu et al. (2015) by means of the mixed
model representation of the penalized regression. An extension of the ridge regression (Hastie
et al., 2009a) to the FoF linear regression with an application to the Italian gas market was
presented in Canale and Vantini (2016). To take into account the case when the errors εi are
correlated, in Scheipl et al. (2015) the authors developed a general framework for additive
mixed models by extending the work of Ivanescu et al. (2015).

Analogously to the classical multivariate setting, in Equation (6.1) the functional predictor
X contributes linearly to the response Y through the coefficient function β, which works as a
continuous weight function. Trivially note that, in the domain regions over which β is equal
to zero (if any), changes in the functional predictor X do not affect the conditional value of
Y . Because of the infinite dimensional nature of the FLR problem, coefficient functions that
are sparse, i.e., zero valued over large parts of domain, arise very often in real applications.
When the aim of the analysis is descriptive, that is the interest relies on understanding the
relationship between X and Y , rather than predictive only, methods that are able to capture
the sparse nature of the coefficient function may be of great practical interest. These methods
are referred to as sparse or interpretable because they allow better interpreting the effects
of the predictor on the response and reveal the sparse nature of β. On the contrary, the
interpretation of the relationship between X and Y is often cumbersome for methods that do
not focus on the sparsity of the coefficient function. In particular, here the interpretability
of the model in Equation (6.1) is ultimately related to the knowledge of the parts of the
domain S � T where β is equal or different to zero, which are hereinafter referred to as null
and non-null regions, respectively.

Few works address the issue of the interpretability in FLR. In the scalar-on-function
setting, James et al. (2009) proposed the FLiRTI (Functional Linear Regression That’s
Interpretable) estimator that is able to recover the sparseness of the coefficient function, by
imposing L1-penalties on the coefficient function itself and its first two derivatives. Zhou
et al. (2013) introduced an estimator obtained in two stages where the initial estimate is
obtained by means of a Dantzig selector (Candes et al., 2007) refined via the group Smoothly
Clipped Absolute Deviation (SCAD) penalty (Fan and Li, 2001). The most recent work that

98



6.1. Introduction

addresses the issue of interpretability is that of Lin et al. (2017), who proposed a Smooth
and Locally Sparse (SLoS) estimator of the coefficient function based on the combination of
the smoothing spline method with the functional SCAD penalty.

However, to the best of the author knowledge, no effort has been made in the literature
to obtain an interpretable estimator for the FoF linear regression model. In this work, we
try to fill this gap by developing an interpretable estimator of the coefficient function β,
named S-LASSO (Smooth plus LASSO) that is locally sparse (i.e., is zero on the null region)
and, at the same time, smooth on the non-null region. The property of sparseness of the
S-LASSO estimator is provided by a functional LASSO penalty (FLP), which is the functional
generalization of the classical Least Absolute Shrinkage and Selection Operator (LASSO)
(Tibshirani, 1996). Whereas, two roughness penalties, introduced in the objective function,
ensure smoothness of the estimator on the non-null region. From a computational point of
view, the S-LASSO estimator is obtained as the solution of a single optimization problem
by means of a new version of the orthant-wise limited-memory quasi-Newton (OWL-QN)
algorithm (Andrew and Gao, 2007), which is specifically designed to solve optimization
problems involving L1 penalties.

To give an idea of the properties of the proposed estimator, in Figure 6.1 the S-LASSO
estimator is applied to four different scenarios, whose data generation is detailed in Section
6.4. In particular, in each plot the S-LASSO estimate, the true coefficient function, and
the smoothing spline estimate proposed by Ramsay and Silverman (2005), referred to as
SMOOTH, are shown for t � 0.5. For Scenario I, the true coefficient function is zero all over
the domain, which means that the predictor X is independent of the response. It is clear
from Figure 6.1(a) that the S-LASSO estimate successfully recovers the sparseness of β, the
same cannot be said for the SMOOTH estimate, which is different from zero for all values of
s. Figure 6.1(b) and Figure 6.1(c) show the coefficient function estimates for Scenario II and
Scenario III, where β is zero on the edge and in the central part of the domain, respectively.
Also in this case the proposed method provides an estimate which is sparse on the null region
and smooth on the non-null one. Indeed, for Scenario II, the S-LASSO estimate is zero
for s P r0, 0.2s and for s P r0.8, 1s, whereas, it well resembles the true coefficient function
in the central part of the domain. In Figure 6.1(c), the sparsity property of the S-LASSO
estimator can be further appreciated, which, in fact, over the central domain region, i.e., for
s P r0.1, 0.9s, successfully estimates β. The SMOOTH estimate in both scenarios is not able
instead to capture the sparse nature of the coefficient function. The last scenario in Figure
6.1(d) is not favourable to the proposed estimator because the true coefficient function is not
sparse. However, also in this case the S-LASSO method provides satisfactory results. These
four examples are provided with the preliminary purpose of giving an idea about the ability
of the S-LASSO estimator to recover sparsity in the coefficient function while simultaneously
estimating the relationship between X and Y over the non-null region. The performance of
the S-LASSO estimator will be deeply analysed in Section 6.4.

The chapter is organized as follows. In Section 6.2, the S-LASSO estimator is presented.
In Section 6.3, asymptotic properties of the S-LASSO estimator are discussed in terms of
consistency and pointwise sign consistency. In Section 6.4, by means of a Monte Carlo
simulation study, the S-LASSO estimator is compared, in terms of estimation error and
prediction accuracy, with competing estimators already proposed in the literature. In
Section 6.5, the potential of the S-LASSO estimator are demonstrated with respect of
two benchmark datasets: the Canadian weather and Swedish mortality data. Proofs, data
generation procedures in the simulation study, and, algorithm description are given in the
Supplementary Materials.
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Figure 6.1. The S-LASSO ( ) and SMOOTH ( ) estimates along with the true coefficient function, referred
to as TRUE ( ) at t � 0.5 for Scenario I (a), Scenario II (b), Scenario III (c) and Scenario IV (d) in the
simulation study detailed in Section 6.4.

6.2 Methodology

In Section 6.2, we briefly describe the smoothing spline estimator. Readers who are already
familiar with this approach may skip to the next subsection. In Section 6.2, the S-LASSO
estimator definition is given along with details on both computational issues and model
selection.

The Smoothing Spline Estimator

The smoothing spline estimator of the FoF linear regression model (Ramsay and Silverman,
2005) is the first key component of the S-LASSO estimator. It is based on the assumption
that the coefficient function β may be well approximated by an element in the tensor product
space generated by two spline function spaces, where a spline is a function defined piecewise
by polynomials. Well-known basis functions for the spline space are the B-splines. A B-spline
basis is a set of spline functions uniquely defined by an order k and a non-decreasing sequence
of M � 2 knots, that we hereby assume to be equally spaced in a general domain D. Cubic
B-splines are B-splines of order k � 4. Each B-spline function is a positive polynomial of
degree k� 1 over each subinterval defined by the knot sequence and is non-zero over no more
than k of these subintervals (i.e., the compact support property). In our setting, besides the

100



6.2. Methodology

computational advantage (Hastie et al., 2009a), the compact support property is fundamental
because it allows one to link the values of β over a given region to the B-splines with support
in the same region and to discard all the B-splines that are outside that region. Thorough
descriptions of splines and B-splines are in De Boor et al. (1978) and Schumaker (2007).

The smoothing spline estimator (Ramsay and Silverman, 2005) is defined as

β̂S � argmin
αPSk1,k2,M1,M2

! ņ

i�1
||Yi �

»
S
Xi psqα ps, �q ds||2 � λs||Lms

s α||2 � λt||Lmt
t α||2

)
, (6.2)

where Sk1,k2,M1,M2 is the tensor product space generated by the sets of B-splines of orders
k1 and k2 associated with the non-decreasing sequences of M1 � 2 and M2 � 2 knots defined
on S and T , respectively. Lms

s and Lmt
t , with ms ¤ k1 � 1 and mt ¤ k2 � 1, are the ms-th

and mt-th order linear differential operators applied to α with respect to the variables s and
t, respectively. The symbol || � || denotes the L2-norm corresponding to the inner product
  f, g ¡� ³ fg. The parameters λs, λt ¥ 0 are generally referred to as roughness parameters.
The aim of the second and third terms on the right-hand side of Equation (6.2) is that of
penalizing features along s and t directions. A common practice, when dealing with cubic
splines, is to choose ms � 2 and mt � 2, which results in the penalization of the curvature
of the final estimator. When λs � λt � 0, the wiggliness of the estimator is not penalized
and the resulting estimator is the one that minimizes the sum of squared errors. On the
contrary, as λs Ñ8 and λt Ñ8, β̂S converges to a bivariate polynomial with degree equal
to |max pms,mtq � 1|. However, there is no guarantee that β̂S is a sparse estimator, i.e., it
is exactly equal to zero in some part of the domain S � T .

The S-LASSO Estimator
Based on the smoothing spline estimator of Equation (6.2), the S-LASSO estimator is defined
as follows

β̂SL � argmin
αPSk1,k2,M1,M2

! ņ

i�1
||Yi�

»
S
Xi psqα ps, �q ds||2�λs||Lms

s α||2�λt||Lmt
t α||2�λL

»
S

»
T
|α ps, tq |dsdt

)
.

(6.3)
The last term in the right-hand side of Equation (6.3) is the extension of the LASSO penalty
(Tibshirani, 1996) to the FoF linear regression setting, which is referred to as functional
LASSO penalty (FLP). In particular, by starting from the multivariate LASSO penalty, the
FLP is built by substituting summation with integration and by taking into account the
continuity of the domain. The FLP is able to pointwise shrink the value of the coefficient
function for each s, t P S � T . Due to the property of the absolute value function of being
singular at zero, some of these values are shrunken exactly to zero. Thus, the FLP allows β̂SL
to be exactly zero over the null region. The constant λL ¥ 0 is usually called regularization
parameter and controls the degree of shrinkage towards zero of the FLP. The larger this
value, the larger the shrinkage effect and the domain portion where the resulting estimator
is zero. Moreover, the FLP is expected to be able to improve the prediction accuracy (in
terms of expected mean square error) by introducing a bias in the final estimator.

The second and third terms on the right-hand side of Equation (6.3) represent the two
roughness penalties introduced in Equation (6.2) to control the smoothness of the coefficient
function estimator. It is worth noting that, in general, the estimator smoothness may be
also controlled by opportunely choosing the dimension of the space Sk1,k2,M1,M2 , that is,
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by fixing k1 and k2, and choosing M1 and M2 (Ramsay and Silverman, 2005). However,
this strategy is not suitable in this case. To obtain a sparse estimator, the dimension of
the space Sk1,k2,M1,M2 must be in fact as large as possible. In this way, the value of β in
a given region is strictly related to the coefficients of the B-spline functions defined on the
same part of the domain and, thus, they tend to be zero in the null region. On the contrary,
when the dimension of Sk1,k2,M1,M2 is small, there is a larger probability that some B-spline
functions have support both in the null and non-null regions and, thus the corresponding
B-spline coefficients result different from zero. Therefore, we find suitable the use of the two
roughness penalty terms in Equation (6.3).

To compute the S-LASSO estimator, let us consider the space Sk1,k2,M1,M2 generated

by the two sets of B-splines ψs �
�
ψs1, . . . , ψ

s
M1�k1

	T
and ψt �

�
ψt1, . . . , ψ

t
M2�k2

	T
, of

order k1 and k2 and non-decreasing knots sequences ∆s � ts0, s1, . . . , sM1 , sM1�1u and
∆t � tt0, t1, . . . , tM2 , tM2�1u, defined on S � �s0, sM1�1

�
and T � �t0, tM2�1

�
, respectively.

Similarly to the standard smoothing spline estimator, by performing the minimization
in Equation (6.3) over α P Sk1,k2,M1,M2 , we implicitly assume that β can be suitably
approximated by an element in Sk1,k2,M1,M2 , that is

β ps, tq � β̃ ps, tq .�
M1�k1¸
i�1

M2�k2¸
j�1

bijψ
s
i psqψtj ptq � ψs psqT Bψt ptq s P S, t P T , (6.4)

where B � tbiju P RM1�k1�M2�k2 and bij are scalar coefficients. So stated, the problem
of estimating β has been reduced to the estimation of the unknown coefficient matrix
B. Let α ps, tq � ψs psqT Bαψ

t ptq, s P S, t P T , in Sk1,k2,M1,M2 , where Bα � tbα,iju P
RM1�k1�M2�k2 . Then, the first term of the right-hand side of Equation (6.3) may be
rewritten as
ņ

i�1
||Yi �

»
S
Xi psqα ps, �q ds||2 �

ņ

i�1

»
T
Yi ptq2 dt� 2 Tr

�
XBαY

T
�
�Tr

�
XTXBαWtB

T
α

�
,

(6.5)
whereas, the roughness penalties on the left side of Equation (6.3) become

λs||Lms
s α||2 � λs Tr

�
BT
αRsBαWt

�
λt||Lmt

t α||2 � λt Tr
�
BT
αWsBαRt

�
, (6.6)

where X � pX1, . . . ,XnqT , with Xi � ³
S Xi psqψs psq ds, Y � pY1, . . . ,YnqT with

Yi � ³
T Yi ptqψt ptq dt Ws � ³

S ψ
s psqψs psqT ds, Wt � ³

T ψ
t ptqψt ptqT dt, Rs �³

S Lms
s

�
ψs psq�Lms

s

�
ψs psq�T ds andRt �

³
T Lmt

t

�
ψt ptq�Lmt

t

�
ψt ptq�T dt. The term Tr rAs

denotes the trace of a square matrix A.
Standard optimization algorithms for L1-regularized objective functions are designed for

the case where the absolute value enters the problem as a linear function of the parameters.
However, in the optimization problem in Equation (6.3), the FLP particularizes as follows

λL

»
S

»
T
|α ps, tq |dsdt � λL

»
S

»
T
|ψs psqT Bαψ

t ptq |dsdt, (6.7)

which is not a linear function of the absolute value of the coefficient matrix |Bα|, because
the absolute value is instead applied to a linear combination of the parameters. Therefore, in
order to be able to use optimization algorithms for L1-regularized objective functions by the
following theorem, we provide a practical way to approximate the FLP as a linear function
of |Bα|, and thus extremely simplify the computation.
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Theorem 1. Let Sk1,k2,∆1,e∆2,e
� spantBi1Bi2uM1�k1,M2�k2

i1�1,i2�1 , with tBiju the set of B-splines
of orders kj and non-decreasing evenly spaced knots sequences
∆j � txj,0, xj,1, . . . , xj,Mj

, xj,Mj�1u defined on the compact set Dj �
�
xj,0, xj,Mj�1

�
and

∆j,e the extended partitions corresponding to ∆j defined as ∆j,e � tyj,luMj�2kj

l�1 where
yj,1, . . . , yj,kj � xj,0, yj,1�kj , . . . , yj,Mj�kj � xj,1, . . . , xj,Mj and yj,Mj�1�kj , . . . , yj,Mj�2kj �
xj,Mj�1, for j � 1, 2. Then, for f pz1, z2q � °M1�k1

i1�1
°M2�k2
i2�1 ci1i2Bi1 pz1qBi2 pz2q P

Sk1,k2,∆1,e∆2,e
, with z1 P D1 and z2 P D2,

0 ¤ ||f ||ℓ1,∆1,e,∆2,e
� ||f ||L1 � O

�
1
M1



�O

�
1
M2



, (6.8)

where

||f ||ℓ1,∆2,e,∆1,e
�
M1�k1¸
i1�1

M2�k2¸
i2�1

|ci1i2 |
�
y1,i1�k1 � y1,i1

� �
y2,i2�k2 � y2,i2

�
k1k2

, (6.9)

and
||f ||L1 �

»
D1

»
D2

|f pz1, z2q |dz1dz2. (6.10)

The interpretation of the above theorem is quite simple. It basically says that for large
values of M1 and M2, ||f ||L1 is well approximated from the top by ||f ||ℓ1,∆2,e,∆1,e

and the
approximation error tends to zero as M1,M2 Ñ 8. By using this result, the FLP can be
approximated as follows

λL

»
S

»
T
|α ps, tq |dsdt � λL

M1�k1¸
i�1

M2�k2¸
j�1

|bα,ij |

�
sei�k1

� sei

	�
tej�k2

� tej

	
k1k2

� λLw
T
s |Bα|wt,

(6.11)
where tsei u and ttei u are the extended partitions associated with ∆s and ∆t, respectively,

ws �
��

se
1�k1

�se
1

	
k1

, . . . ,

�
se

M1�2k1
�se

M1�k1

	
k1

�T
and wt �

��
te1�k2

�te1

	
k2

, . . . ,

�
teM2�2k2

�teM2�k2

	
k2

�T
.

Therefore, upon using the approximation in Equation (6.11), Equation (6.5) and Equation
(6.6), the optimization problem in Equation (6.3) becomes

B̂SL � argmin
BαPRpM1�k1q�pM2�k2q

! ņ

i�1

»
T
Yi ptq2 dt� 2 Tr

�
XBαY

T
�
� Tr

�
XTXBαWtB

T
α

�
� λs Tr

�
BT
αRsBαWt

�
� λt Tr

�
BT
αWsBαRt

�
� λLw

T
s |Bα|wt

*
.

(6.12)

Then, the coefficient β is estimated by β̂SL ps, tq � ψs psqT B̂SLψ
t ptq for s P S and t P T .

Note that, in Equation (6.12), the FLP is approximated through a weighted linear combination
of the absolute values of the coefficients which strictly resembles the multivariate LASSO
penalty applied to the basis expansion coefficients, i.e. λL

°M1�k1
i�1

°M2�k2
j�1 |bα,ij |. However,

the presence of ws and wt in the FLP approximation in Equation (6.12) is crucial because it
allows the penalty to differently shrink coefficients among B-splines. That is, it avoids that
the absolute values of coefficients corresponding to B-splines strictly localized are weighted as
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the absolute value of coefficients of spreader basis in the computation of the penalty. This is
the direct consequence of the fact that the proposed approximation is a better approximation
of the FLP than the multivariate LASSO penalty applied to the coefficients.

The optimization problem with L1-regularized loss in Equation (6.12) is (i) convex,
being sum or integral of convex function; and (ii) has a unique solution given some general
conditions on the matrix Wt bXTX (with b the Kronecker product). See Section 6.3 for
further details. Unfortunately, the objective function is not differentiable in zero, and thus it
has not a closed-form solution. In view of this, general purpose gradient-based optimization
algorithms —as for instance the L-BFGS quasi-Newton method (Nocedal and Wright, 2006)—
and classical optimization algorithms for solving LASSO problems —such as coordinate
descent (Friedman et al., 2010) and least-angle regression (LARS) (Efron et al., 2004)— are
not suitable. In contrast, we found very promising a modified version of the orthant-wise
limited-memory quasi-Newton (OWL-QN) algorithm proposed by Andrew and Gao (2007).
The OWL-QN algorithm is based on the fact that the L1 norm is differentiable for the set of
points named orthant in which each coordinate never changes sign, being a linear function of
its argument. In each orthant, the second-order behaviour of an objective function of the form
f pxq � l pxq�C||x||1, to be minimized, is determined by l alone. The function l : Rr Ñ R is
convex, bounded below, continuously differentiable with continuously differentiable gradient
∇l, x � px1, . . . , xrqT , C is a given positive constant, and || � ||1 is the usual L1 norm.
Therefore, Andrew and Gao (2007) propose to derive a quadratic approximation of the
function l that is valid for some orthant containing the current point and then to search for
the minimum of the approximation, by constraining the solution in the orthant where the
approximation is valid. There may be several orthants containing or adjacent to a given
point. The choice of the orthant to explore is based on the pseudo-gradiant �f pxq of f at x,
whose components are defined as

�if pxq �

$''''&''''%
Blpxq
Bxi

� C sign pxiq if |xi| ¡ 0
Blpxq
Bxi

� C if xi � 0, BlpxqBxi
  �C

Blpxq
Bxi

� C if xi � 0, BlpxqBxi
¡ C

0 otherwise,

(6.13)

where sign p�q denotes the usual sign function. However, the objective function of the
optimization problem in Equation (6.12) is in the form f� pxq � l pxq � C||Dx||1, with
D � tdiu P Rr�r a diagonal matrix of positive weights. To take into account these weights,
the OWL-QN algorithm must be implemented with a different pseudo-gradiant �f� pxq
whose components are defined as

�if� pxq �

$''''&''''%
Blpxq
Bxi

� diC sign pxiq if |xi| ¡ 0
Blpxq
Bxi

� diC if xi � 0, BlpxqBxi
  �C

Blpxq
Bxi

� diC if xi � 0, BlpxqBxi
¡ C

0 otherwise.

(6.14)

A more detailed description of the OWL-QN algorithm for objective functions in the form
l pxq � C||Dx||1 is given in the Supplementary Materials. Note that, the optimization
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problem in Equation (6.12) can be rewritten by vectorization as

b̂SL � b̂app � argmin
bαPRpM1�k1qpM2�k2q

!
� 2 vec

�
XTY

	T
bα � bTα

�
Wt bXTX

	
bα

� λsb
T
αLwrbα � λtb

T
αLrwbα � λL||Wstbα||1

*
, (6.15)

where b̂SL � vec
�
B̂SL

	
, Lrw

.� pRt bWsq and Lwr
.� pWt bRsq, and Wst is the diagonal

matrix whose diagonal elements are wT
s bwT

t . Moreover, for generic a matrix A P Rj�k,
vecpAq indicates the vector of length jk obtained by writing the matrix A as a vector
column-wise. Therefore, the OWL-QN with pseudo-gradient as in Equation (6.14) can be
straightforwardly applied.

In the following, we summarize all the parameters that need to be set to obtain the
S-LASSO estimator. The orders k1 and k2 should be chosen with respect to the degree
of smoothness we want to achieve, and the computational efforts. The larger the values
of k1 and k2, the smoother the resulting estimator will be. A standard choice are cubic
B-splines, with equally spaced knot sequences, i.e., k1 � k2 � 4. As stated before, M1 and
M2 should be as large as possible to ensure that the null region is correctly captured and
the approximation in Equation (6.11) is valid, with respect to the maximum computational
efforts. Finally, at given k1, k2, M1, and M2, the optimal values of λs, λt and λL can be
selected as those that minimize the estimated prediction error function CV pλs, λt, λLq, i.e.,
CV pλs, λt, λLq, over a grid of candidate values (Hastie et al., 2009a). However, although this
choice could be optimal for the prediction performance, it may affect the interpretability of
the model. Much more interpretable models, with a slight decrease in predictive performance,
may in fact exist. The k-standard error rule, which is a generalization of the one-standard
error rule (Hastie et al., 2009a), may be a more reasonable choice. That is, to choose the
most sparse model whose error is no more than k standard errors above the error of the
best model. In practice, as spareness is controlled by the parameter λL, we first find the
best model in terms of estimated prediction error at given λL and then, among the selected
models, we apply the k-standard error rule. This rule may be particularly useful when
CV pλs, λt, λLq is flat with respect to λL. In this case, it chooses the simplest model among
those achieving similar estimated prediction errors.

6.3 Theoretical Properties of the S-LASSO Estimator

In this section, we provide some theoretical results on the S-LASSO estimator, under some
regularity assumptions, i.e., the estimation consistency (Theorem 2) and the pointwise
sign consistency (Theorem 3) of β̂SL. All proofs are in the Supplementary Materials. The
following regularity conditions are assumed.

C 1. ||X||2 is almost surely bounded, i.e., ||X||2 ¤ c   8.

C 2. β is in the Hölder space Cp1,ν pS � T q defined as the set of functions f on S�T having
continuous partial and mixed derivatives up to order p1 and such that the partial and mixed
derivatives of order p1 are Hölder continuous, i.e., |fpp1q px1q � fpp1q px2q | ¤ c||x1 � x2||ν ,
for some constant c, integer p1 and ν P r0, 1s, and for all x1,x2 P S � T , where fpp1q is the
partial and mixed derivatives of order p1. Moreover, let p .� p1� ν such that 3{2   p ¤ k1 � 1
and 3{2   p ¤ k2 � 1.

105



6. Smooth LASSO Estimator for the Function-on-Function Linear
Regression Model

C 3. M1 � o
�
n1{4

	
, M2 � o

�
n1{4

	
, M1 � ω

�
n

1
2p�1

	
, M2 � ω

�
n

1
2p�1

	
, where an � ω pbnq

means an

bn
Ñ8 for nÑ8,

C 4. There exist two positive constants b and B such that

b ¤ Λmin
�
Wt b n�1XTX

	
¤ Λmax

�
Wt b n�1XTX

	
¤ B, (6.16)

where Λmin pMq and Λmax pMq denote the minimum and maximum eigenvalues of the
matrix M .

C 5. λs � o
�
M�2ms�1

1

	
, λt � o

�
M�2mt�1

2

	
.

C.1 and C.2 are the anoulogus of (H1) and (H2) in Cardot et al. (2003) for a bivariate
regression function. C.2 ensures that β is sufficiently smooth. C.3 provides information on
the growth rate of the number of knots M1 and M2, which are strictly related to the sample
size n. C.4 is the anolugus of condition (F) of Fan et al. (2004) and assumes that the matrix�
Wt b n�1XTX

�
has reasonably good behaviour, whereas, C.5 provides guidance on the

choice of the parameters λs and λt.
Theorem 2 shows that with probability tending to one there exists a solution of the

optimization problem in Equation (6.3) that converges to β̃, chosen such that ||β � β̃||8 �
OpM�p

1 q �OpM�p
2 q. To prove Theorem 2, in addition to C.1-C.5, the following condition is

considered.

C 6. λL � o
�
M�1

1 M�1
2

	
.

The first result is about the convergence rate of β̂SL to β in terms of L8-norm.

Theorem 2. Under assumptions C.1-C.6, there exists a unique solution β̂SL of the opti-
mization problem in Equation (6.3), such that

||β̂SL � β||8 � Op

�
M

1{2
1 M

1{2
2 n�1{2

	
. (6.17)

According to the above theorem, there exists an estimator β̂SL of β that is root-n{M1M2
consistent.

Before stating Theorem 3, let us define with bp1q the vector whose entries are the q non-zero
elements of b that are and with bp2q the vector whose entries are the pM1 � k1qpM2 � k2q � q
elements of b that are equal to zero. In what follows, we assume, without loss of generality,
that b �

�
bTp1q bTp2q

�T
and that a matrix Al P RpM1�k1qpM2�k2q�pM1�k1qpM2�k2q can be

expressed in block-wise form as

Al �
�

Al,11 P Rq�q Al,12 P Rq�pM1�k1qpM2�k2q�q

Al,21 P RpM1�k1qpM2�k2q�q�q Al,22 P RpM1�k1qpM2�k2q�q�pM1�k1qpM2�k2q�q

�
.

To prove Theorem 3, in addition to C.1-C.5, the following conditions are considered.
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C 7. (S-LASSO irrepresentable condition (SL-IC)) There exists λs, λt, λL, and a constant
η ¡ 0 such that, element-wise,���W�1

st,21

!��
Wt b n�1XTX

	
21
� n�1λsLwr,21 � n�1λtLrw,21

�
��
Wt b n�1XTX

	
11
� n�1λsLwr,11 � n�1λtLrw,11

��1

�
Wst,11 sign

�
bαp1q

	
� 2λ�1

L λsLwr,11bp1q � 2λ�1
L λtLrw,11bp1q

�
�2λ�1

L λsLwr,21bp1q � 2λ�1
L λtLrw,21bp1q

)��� ¤ 1� η.

C 8. The functions εi ptq in Equation (6.1) are zero mean Gaussian random processes with
autocovariance function K pt1, t2q, t1 and t2 P T , independent of Xi.

C 9. Given ρ
.� min |

��
Wt bXTX

�
11 �λsLwr,11 � λtLrw,11

��1
��
Wt bXTX

�
11 bp1q

�
|

and Cmin
.� Λmin

��
Wt b n�1XTX

�
11

�
, Λmin pWtqM2 Ñ cw as nÑ8, with 0   cw   8,

and the parameters λs, λt and λL are chosen such that

1.
M2

1M
2
2 log

�pM1 � k1q pM2 � k2q � q
�

λ2
L

�
nc2 � λ2

sΛ2
max pLwrq
nCmin

� λ2
tΛ2

max pLrwq
nCmin

�
� o p1q ,

2.

1
ρ

!dM1M2 log pqq
nCmin

� λL
nM1M2

Λ�1
min

��
Wt b n�1XTX

	
11
� λsn

�1Lwr,11 � λtn
�1Lrw,11

�
|| sign

�
bp1q

	
||2
)
� o p1q .

The SL-IC in C.7 is the straightforward generalization to the problem in Equation (6.3) of
the elastic irrepresentable condition described in Jia and Yu (2010). It is a consequence of
the standard Karush�Kuhn�Tucker (KKT) conditions applied to the optimization problem
in Equation (6.12). C.8 gives some conditions on the relationship of λs, λt, and λL with
M1, M2 and n. In the classical setting, an estimator is sign selection consistent if it has
the same sign of the true parameter with probability tending to one. Analogously, we say
that an estimator of the coefficient function β is pointwise sign consistent if, in each point
of the domain, it has the same sign of β with probability tending to one. The following
theorem states that, under opportune assumptions, the S-LASSO estimator is pointwise sign
consistent.

Theorem 3. Under assumptions C.1-C.5 and C.7-C.9, β̂SL is pointwise sign consistent,
that is, for all s P S and t P T ,

Pr
!

sign
�
β̂SL ps, tq

�
� sign

�
β ps, tq� )Ñ 1, (6.18)

as nÑ8.

This theorem is the functional extension of the sign consistency result for the multivariate
LASSO estimator (Zou and Zhang, 2009).
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Figure 6.2. True coefficient function β for Scenario II a, Scenario III b and Scenario IV c in the simulation study.

6.4 Simulation Study

In this section, we conduct a Monte Carlo simulation study to explore the performance of the
S-LASSO estimator. We consider four scenarios whose corresponding coefficient functions
are depicted in Figure 6.2. Note that the coefficient function for Scenario I is not shown
because it is zero all over the domain. In Scenario II and III, β is sparse, indeed, it is zero
on the edge and in the central part of the domain, respectively. Scenario IV corresponds
to a non-sparse setting, which is not expected to be favourable to the S-LASSO estimator.
Further details on the data generation are given in the Supplementary Materials.

For each scenario, we generate 100 datasets composed of a training set with sample
size n and a test set T with size N equal to 4000 that are used to estimate the coefficient
function and to test its predictive performance. This is repeated for three different sample
sizes n � 150, 500, 1000. As in Lin et al. (2017), we consider the integrated squared error
(ISE) to assess the quality of the estimator β̂ of the coefficient function β. In particular, the
ISE over the null region (ISE0) and the non-null region (ISE1) are defined as

ISE0 � 1
A0

» »
Npβq

�
β̂ ps, tq � β ps, tq

	2
dsdt, ISE1 � 1

A1

» »
NNpβq

�
β̂ ps, tq � β ps, tq

	2
dsdt,

(6.19)
where A0 and A1 are the measures of the null (N pβq) and non-null (NN pβq) regions,
respectively. The ISE0 and the ISE1 are indicators of the estimation error of β̂ over both
the null and the non-null regions. Moreover, predictive performance is measured through
the prediction mean squared error (PMSE), defined as

PMSE � 1
N

¸
pX,Y qPT

» 1

0

�
Y ptq �

» 1

0
X psq β̂ ps, tq ds

�2

dt, (6.20)

where β̂ is obtained through the observations in the training set. The observations in the
test set are centred by means of the sample mean functions estimated through the training
set observations.

The S-LASSO estimator is compared with four different estimators of β which are already
present in the literature of the FoF linear regression model estimation. The first two are
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Figure 6.3. The integrated squared error on the null region (ISE0) along with �0.5pstandard errorq for the TRU(
), SMOOTH( ), PCA( ), RIDGE( ), and S-LASSO ( ) estimators.

those proposed by Ramsay and Silverman (2005), where the coefficient function estimator
is assumed to be in a finite dimension tensor space with regularization achieved either by
choosing the dimension of the tensor space or by introducing roughness penalties. They will
be referred to as TRU and SMOOTH estimators, respectively. The third and fourth ones are
those proposed by Yao et al. (2005b), based on the functional principal components analysis
(referred to as PCA), and by Canale and Vantini (2016), based on a ridge-type penalization
(referred to as RIDGE). The TRU, SMOOTH and S-LASSO are computed by using cubic
B-splines with evenly space knot sequences. The dimensions of the B-spline sets that generate
the tensor product space for the SMOOTH and S-LASSO estimator are both set equal to 60.
All the tuning parameters of the five considered estimators are chosen by means of 10-fold
cross-validation, viz., the dimension of the tensor basis space for the TRU, the roughness
penalties for the SMOOTH, the numbers of retained principal components for the PCA, the
penalization parameter for the RIDGE and λs, λt and λL for the S-LASSO. In particular the
10-fold cross-validation for the S-LASSO method is applied with the 0.5-standard deviation
rule.

The performance of the estimators in terms of ISE0 is displayed in Figure 6.3. It is not
surprising that the estimation error of β over N pβq of the S-LASSO estimator is significantly
smaller than those of the other estimators, being the capability of recovering sparseness
of β its main feature. In Scenario I, the RIDGE estimator is the only one that performs
comparably to the S-LASSO estimator. This is in accordance with the multivariate setting
where it is well known that, when the response is independent of the covariates, the ridge
estimator is able to shrink all the coefficients towards zero. The TRU, SMOOTH, and PCA
estimators have difficulties to correctly identify N pβq for all sample sizes. Nevertheless, their
performance is very poor at n � 150. In Scenario II, the S-LASSO estimator is still the best
one to estimate β over N pβq. However, in this case, the RIDGE estimator performance
is unsatisfactory and is mainly caused by the lack of smoothness control that makes the
estimator over-rough, especially at small n. Among the competitor estimators, the SMOOTH
one has the best performance. In Scenario III, results are similar to those of Scenario II, even
if the TRU estimator appears as the best alternative. Both PCA and RIDGE estimators
are not able to successfully recover sparseness of β for n � 150. For the former, the cause is
the number of observations not sufficient to capture the covariance structure of the data,
whereas for the latter, it is due to the excessive roughness of the estimator.

Results in terms of ISE1 are summarized in Figure 6.4. It is worth noting that, in this
case, as expected the performance of the S-LASSO estimator is generally worse than that
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Figure 6.4. The integrated squared error on the non-null region (ISE1) along with �0.5pstandard errorq for the
TRU( ), SMOOTH( ), PCA( ), RIDGE( ), and S-LASSO ( ) estimators.

of the SMOOTH estimator. In some cases, it is worse than that of the TRU estimator
as well. However, in Scenario II performance differences between the S-LASSO estimator
and TRU or SMOOTH estimators become negligible as sample size increases. The PCA
and RIDGE estimators are always less efficient. The results are similar for Scenario III,
where the performance of the S-LASSO estimator is comparable with that of the SMOOTH
estimator. By comparing to the classical LASSO method, the behaviour of the S-LASSO
estimator — in terms of ISE1 — is not surprising. Indeed, it is well known that LASSO
method does nice variable selection, even if it tends to overshrink the estimators of the
non-null coefficients (Fan et al., 2004; James and Radchenko, 2009). By looking at the result
for Scenario II and III, we surmise that this phenomenon arises in the FoF linear regression
model as well. Finally, in Scenario IV, where β is always different from zero, the S-LASSO
estimator,performs comparably to the SMOOTH (i.e., the S-LASSO estimator with λL � 0).
In this case β is not sparse and, thus, the FLP does not help.

Figure 6.5 shows PMSE averages and corresponding standard errors for all the considered
estimators. Since PMSE is strictly related to the ISE0 and the ISE1, results are totally
consistent with those of Figure 6.3 and Figure 6.4. In particular, the S-LASSO estimator
outperforms all the competitor ones in favorable scenarios (viz., Scenario I, II, and III), being
the corresponding PMSE lower than that achieved by the other competing estimators. In
these scenarios, although the performance of the S-LASSO estimator in terms of ISE1 is not
excellent, the clear superiority in terms of ISE0 compensates and gives rise to smaller PMSE.
Otherwise, for Scenario IV, where the coefficient function is not sparse, the performance
of the S-LASSO estimator is very similar to that of the SMOOTH estimator, which is the
best one in this case. This is encouraging, because, it proves that the performance of the
S-LASSO estimator does not dramatically decline in less favourable scenarios.

In summary, the S-LASSO estimator outperforms the competitors both in terms of
estimation error on the null region and prediction accuracy on a new dataset, as well as that
it is able to estimate competitively the coefficient function on the non-null region. On the
other hand, in order to achieve sparseness, the S-LASSO tends to overshrink the estimator
of the coefficient function on the non-null region. This means that, as in the classical setting
(James and Radchenko, 2009), there is a trade-off between the ability of recovering sparseness
and the estimation accuracy on the non-null region of the final estimator. Moreover, even
when the coefficient function is not sparse (Scenario IV), the proposed estimator demonstrates
to have both good prediction and estimation performance. This is another key property
of the proposed estimator that, encourages practitioners to use the S-LASSO estimator
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Figure 6.5. The prediction mean squared error (PMSE) along with �0.5pstandard errorq for the TRU( ),
SMOOTH( ), PCA( ), RIDGE( ), and S-LASSO ( ) estimators.

even when there is not prior knowledge about the shape of the coefficient function. Finally,
it should be noticed that, in scenarios similar to those analysed, the PCA and RIDGE
estimators should not be preferred with respect to the TRU, SMOOTH and S-LASSO ones.

6.5 Real-Data Examples

In this section, we analyse two real-data examples. We aim to confirm that the S-LASSO
estimator has advantages in terms of both prediction accuracy and interpretability, over the
SMOOTH estimator, which has been demonstrated in Section 6.4 to be the best alternative
among the competitors. The datasets used in the examples are the Canadian weather and
Swedish mortality. Both are classical benchmark functional data sets thoroughly studied in
the literature.

Canadian Weather Data
The Canadian weather data have been studied by Ramsay and Silverman (2005) and Sun
et al. (2018). The data set contains the daily mean temperature curves, measured in Celsius
degree, and the log-scale of the daily rainfall profiles, measured in millimeter, recorded
at 35 cities in Canada. Both temperature and rainfall profiles are obtained by averaging
over the years 1960 through 1994. Figure 6.6 shows the profiles. The aim is to predict the
log-daily rainfall based on the daily temperature using the model reported in Equation (6.1).
Figure 6.7 shows the S-LASSO and SMOOTH estimates of the coefficient function β. The
SMOOTH estimate is obtained using a Fourier basis—to take into account the periodicity
of the data—and roughness penalties were chosen by using 10-fold cross-validation over an
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Figure 6.6. Daily mean temperature and log-daily rainfall profiles at 35 cities in Canada over the year.
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Figure 6.7. S-LASSO ( ) and SMOOTH ( ) estimates of the coefficient functions β at different months for
the Canadian weather data.

opportune grid of values. 10-fold cross-validation is used to set the parameters λs, λt and
λL as well.

The S-LASSO estimates is roughly zero over large domain portions. In particular, except
for values from July through August, it is always zero in summer months (i.e., late June,
July, August and September) and in January and February. This suggests in those months
rainfalls are not significantly influenced by daily temperature throughout the year. Otherwise,
temperature in fall months (i.e., October, November and December) gives strong positive
contribution on the daily rainfalls. In other words, the higher (the lower) the temperature in
October, November and December, the heavier (the lighter) the precipitations throughout
the year. It is interesting that the S-LASSO estimate in spring months (i.e., March, April
and May) is negative for values of t form January through April, and from October through
December. This suggests that the higher (the lower) the temperature in the spring the
lighter (the heavier) the daily rainfalls from October through April. Finally, it is evidenced
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6.5. Real-Data Examples
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Figure 6.8. For the Canadian weather data, a R2
g from permuting the response 500 times, where the black line

corresponds to the observed R2
g and the grey line to the 95th sample percentile; b the black line is the observed

R2 and the grey line is the pointwise 95th sample percentile curve.

a small influence of the temperature in February on precipitations in July and August. It is
worth noting that the S-LASSO estimate is more interpretable than the SMOOTH estimates,
which does not allow for a straightforward interpretation. Moreover, the S-LASSO estimate
appears to have, even if slightly, better prediction performance than the SMOOTH one.
Indeed, 10-fold cross-validation mean squared errors are 22.314 and 22.365, respectively.

Finally, we perform two permutation tests to assess the statistical significance of the S-
LASSO estimator. The first test is based on the global functional coefficient of determination

defined as R2
g
.� ³

T
Var
�
EpY ptq|Xq�

VarrY ptqs dt (Horváth and Kokoszka, 2012), with T � r0, 365s. In

Figure 6.8a the solid black line indicates the observed R2
g that is equal to 0.55. The bold

points represent 500 R2
g values obtained by means of random permutations of the response

variable. Whereas, the grey line correspond to the 95th sample percentile. All 100 values of
R2 as well as the value of the 95th sample percentile is far below 0.55, which gives a strong
evidence of a significant relationship between rainfalls and temperature, globally.
By a second test, we aim to analyse the pointwise statistical significance, i.e., for each
t P T . It is based on the pointwise functional coefficient of determination defined as

R2 ptq .� Var
�
EpY ptq|Xq�

VarrY ptqs for t P T (Horváth and Kokoszka, 2012). Figure 6.8b shows the

observed R2 (solid black line) along with the pointwise 95th sample percentile curve. The
latter has been obtained by means of 500 R2 values produced by randomly permuting the
response variable. The observed R2 is far above the 95th sample percentile curve, except for
some summer months (viz., July and August). As global conclusion, we can state that the
temperature has a large influence on the rainfalls in autumn, winter and spring.

Swedish Mortality Data
The Swedish mortality data, available from the Human Mortality Database (http:
//mortality.org), are regarded as a very reliable dataset on long-term longitudinal mortali-
ties. In particular, we focus on the log-hazard rate functions of the Swedish females mortality
data for year-of-birth cohorts that refer to females born in the years 1751-1894 with ages
0-80. The value of a log-hazard rate function at a given age is the natural logarithm of the
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Figure 6.9. Log-hazard rates as a function of age for Swedish female cohorts born in the years 1751-1894.
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Figure 6.10. S-LASSO ( ) and SMOOTH ( ) estimates of the coefficient functions β at different values of
t for the Swedish mortality data.

ratio of the number of females who died at that age and the number of females alive with
the same age. Note that, those data have been analysed also by Chiou and Müller (2009)
and Ramsay et al. (2009). Figure 6.9 shows the 144 log-hazard functions.

The aim of the analysis is to explore the relationship of the log-hazard rate function
for a given year with the log-hazard rate curve of the previous year by means of the model
reported in Equation (6.1). Our interest is to identify what features of the log-hazard rate
functions for a given year influence the log-hazard rate of the following year.

Figure 6.10 shows the S-LASSO and SMOOTH estimates of coefficient function β. The
unknown parameters to obtain the SMOOTH and S-LASSO estimates are chosen as in the
Canadian weather example, but in this case B-splines are used for both estimators. The
S-LASSO estimate is zero almost over all the domain except for few regions. In particular,
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Figure 6.11. For the Swedish mortality data, a R2
g from permuting the response 500 times, where the black line

corresponds to the observed R2
g and the grey line to the 95th sample percentile; b the black line is the observed

R2 and the grey line is the pointwise 95th sample percentile curve.

at given t, the S-LASSO estimate is different from zero in an interval located right after
that age. This can likely support the conjecture that if an event influences the mortality
of the Swedish female at a given age, it impacts on the death rate below that age born
in the following years. Nevertheless, this expected dependence is poorly pointed out by
the SMOOTH estimator, where this behaviour is confounded by less meaningful periodic
components. It is interesting to note that the S-LASSO estimate at high values of t is slightly
different from zero for ages ranging from 40 to 60. This shows that if an event affecting the
death rate occurs in that range, the log-hazard functions of the following cohorts will be
influenced at high ages (i.e., corresponding to high values of t). On the contrary, the wiggle
of the SMOOTH estimate does not allow drawing such conclusions.

Finally, we perform the two permutation test already described in the Canadian weather
data example. Figure 6.11 shows the results. Both the observed R2

g and R2 are far above
the 95th sample percentile (Figure 6.11a) and the pointwise 95th sample percentile curve
(Figure 6.11b) respectively. This significantly evidences a relation between two consecutive
log-hazard rate functions for all ages.

6.6 Conclusions

The LASSO is one of the most used and popular method to estimate coefficients in classical
linear regression models as it ensures both prediction accuracy and interpretability of
the phenomenon under study (by simultaneously performing variable selection). In this
chapter, we propose the S-LASSO estimator for the coefficient function of the function-on-
function (FoF) linear regression model, which is an extension to the functional setting of the
multivariate LASSO estimator. As the latter, the S-LASSO estimator is able to increase
both the prediction accuracy of the estimated model, via continuous shrinking, and the
interpretability, by identifying the null region of the regression coefficient, i.e., the region
where the coefficient function is exactly zero.

The S-LASSO estimator is obtained by combining several elements: the functional LASSO
penalty (FLP), which has the task of shrinking towards zero the estimator on the null region;
the B-splines, which are essential to ensure sparsity of the estimator because of the compact
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support property; and two roughness penalties, which are needed to ensure smoothness
of the estimator on the non-null region, also when the number of B-splines escalates. We
proved that the S-LASSO estimator is both estimation and point-wise sign consistent, i.e.,
the estimation error in terms of L2-norm goes to zero in probability and the S-LASSO
estimator has the same sign of the true coefficient function with probability tending to one.
Moreover, we showed via an extensive Monte Carlo simulation study that, with respect to
other methods that have already appeared in the literature, the S-LASSO estimator is much
more interpretable, on the one hand, and has still good estimation and appealing predictive
performance, on the other. However, consistently with the behaviour of the classical LASSO
estimator (Fan et al., 2004), the S-LASSO estimator is found sometimes to over-shrink the
coefficient function over the non-null region.

To the best of the authors knowledge, this is the first work that addresses the issue of
interpretability, intended as sparseness of the coefficient function, in the FoF linear regression
setting. However, although the FLP produces an estimator with good properties, other
penalties, e.g. the SCAD (Fan and Li, 2001) and adaptive LASSO (Zou, 2006), properly
adapted to the functional setting, may guarantee even better performance both in terms of
interpretabilty and prediction accuracy, and are, indeed, subjects of ongoing research.

6.7 Supplementary Materials

Orthant-Wise Limited-memory Quasi-Newton Algorithm
Let consider a loss function l : Rr Ñ R that is convex, bounded below and continuously
differentiable with continuously differentiable gradient ∇l. Then, the objective function to
be minimized is f pxq � l pxq � C||Dx||1, where x � px1, . . . , xrqT , D � tdiu P Rr�r is a
diagonal matrix of positive weights, C is a given positive constant, and || � ||1 is the usual L1

norm. The OWL-QN explores points

xk�1 � πξk

�
xk � αpk

	
. (6.21)

The function πy : Rr Ñ Rr, for y � py1, . . . , yrqT , applied to generic vector z � pz1, . . . , zrqT ,
is defined as the vector whose components are

πyi pzq �
"
zi if sign pziq � sign pyiq
0 otherwise,

and it is the projection operator of z on the orthant defined by y. The vector ξk is in
t�1, 0, 1ur and has components

ξki �
$&% sign

�
xki
�

if xki � 0
sign

�
� �i f�

�
xk
�	

if xki � 0,

where �if�
�
xk
�

are the components of the pseudo-gradient of f in xk as defined in Equation
(6.14). The vector pk P Rr is defined as

pk � πvk

�
Hkv

k
	
,

where vk � � � f� �xk� and Hk is the L-BFGS approximation to the inverse Hessian of the
loss l (Nocedal and Wright, 2006). Finally, the step size α is chosen by using a variation
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backtracking line search method (Nocedal and Wright, 2006). That is, for n � 1, 2, . . . ,
accept the first step size α � α00.5n , with α0 � 1{||vk||, such that

f
�
xk�1

	
¤ f

�
xk
	
� γ

�
xk�1 � xk

	T
vk (6.22)

where γ is a parameter that controls the accuracy of the line search method. Given a starting
point x0, the OWL-QN finds a sequence of approximate solutions of the objective function
thorough Equation (6.21) until a stopping condition is met. A pseudo code of the algorithm
is given in Algorithm 1. All the details about the rationale of the aforementioned steps are
in Andrew and Gao (2007).

Algorithm 1 OWL-QN
Set k � 0
Choose the initial point x0

repeat
Compute vk � � � f� �xk�
Compute Hk with L-BFGS
Compute dk �Hkv

k

Compute pk � πvk pdkq
Find xk�1 by using the line search method in Equation (6.22)
Set k � k � 1

until the stopping condition is met

Details on the Data Generation in the Simulation Study
Four different scenarios are considered

 Scenario I The coefficient function is zero all over the domain, i.e., β ps, tq=0, if ps, tq P
r0, 1s � r0, 1s.

 Scenario II β is different from zero in the central part of the domain, i.e.,

β ps, tq �

$&
%�

�
s�0.5
0.25

	2
�
�

t�0.5
0.25

	2
� 1 if 0.5 � 0.25

b
1 � pt � 0.5q2 ¤ s ¤ 0.5 � 0.25

b
1 � pt � 0.5q2

0 otherwise.

(6.23)

 Scenario III β is different from zero on the edge of the domain, i.e.,

β ps, tq �

$'''''''&
'''''''%

0.5 p1 � tq sin
�

10π

�
t � 1.05 �

b
1 � ps � 0.5q2


�
if t ¤ 1.05 �

b
1 � ps � 0.5q2

0.5 sin
�

10π

�
s � 1.05 �

b
1 � pt � 0.5q2


�
if s ¤ �0.05 �

b
1 � pt � 0.5q2

0 otherwise.

(6.24)

 Scenario IV β is non-null everywhere.

β ps, tq �

�
t � 0.5

0.5


3
�

�
s � 0.5

0.5


3
�

�
t � 0.5

0.5


2
�

�
s � 0.5

0.5


2
� 5. (6.25)

This scenario is not expected to be favourable to the S-LASSO estimator.
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The independent observations of the covariates Xi and errors εi are generated as Xi �°32
j�1 xijψ

x
i and εi � k

°20
j�1 eijψ

ε
i , where the coefficients xij and eij are independent

realizations of standard normal random variable, and ψxi psq and ψεi psq are cubic B-splines
with evenly spaced knot sequence (the numbers of basis has been randomly chosen between
10 and 50). In Scenario I, the constant k is chosen equal to 1; whereas, in Scenario II,
Scenario III and Scenario IV, it is chosen such that the modified signal-to-noise ratio function
MSN

.� VarrE �Yi|Xi

�s �max VarrE �Yi|Xi

�s{Var pεiq is equal to 4.

Proof of Theorems

Preliminaries Let Sk1,k2,∆1,e∆2,e
� spantψi1ψi2uM1�k1,M2�k2

i1�1,i2�1 , with tψiju the set of B-
splines of orders kj and non-decreasing knots sequences ∆j � txj,0, xj,1, . . . , xj,Mj

, xj,Mj�1u
defined on the compact set Dj �

�
xj,0, xj,Mj�1

�
and ∆j,e the extended partitions correspond-

ing to ∆j defined as ∆j,e � tyj,luMj�2kj

l�1 where yj,1, . . . , yj,kj
� xj,0, yj,1�kj

, . . . , yj,Mj�kj
�

xj,1, . . . , xj,Mj
and yj,Mj�1�kj

, . . . , yj,Mj�2kj
� xj,Mj�1, for j � 1, 2. Let δj

.� M�1
j , for

j � 1, 2. Moreover, the capital letter C with different subscripts indicates a positive con-
stant. For convenience, we assume in what follows that D1 � D2 � r0, 1s, but the same
arguments can be easily extended to general domains. Let f P Lp pΩq, with Ω a bounded
open set in Rd, the usual d-dimensional Euclidian space, a � pa1, . . . , anqT , with ai P R, and
h � ph1, . . . , hdqT , with hi P R, then,

ωEa pf,hqp .�
¸

γPEa

ωγ pf,hqp

where Ea � taieiuni�1, with ei the unit vector in the i-th direction, and ωγ pf,hqp is the
γ-modulus of smoothness in the p-norm of f defined as

ωγ pf,hqp .� sup
0¤t¤h

||∆γ
t pfq ||LppΩq

is the γ-modulus of smoothness in the p-norm of f , where γ � tγ1, . . . , γdu is a multi-index,
|| � ||LppΩq is the usual Lp-norm, and

∆γ
t pfq

.
� ∆γ1

t1
� � �∆γd

td
pfq ,

with ∆γi

ti the usual γi-forward difference of step length ti applied to the i-th variable of f
(Schumaker, 2007). Moreover, Dα .� Dα1

1 � � �Dαd

d , where Dαi
i stands for the αi derivative in

the i-th variable and α � tα1, . . . , αdu is a multi-index.

Proof of Theorem 1 The proof that ||f ||ℓ1,∆2,e,∆1,e
� ||f ||L1 ¥ 0 is easy and thus is

skipped. To prove that ||f ||ℓ1,∆1,e,∆2,e
� ||f ||L1 � O

�
1
M1

	
� O

�
1
M2

	
, let define two new

knot sequences tτi,juMi�ki�2
j�1 with τi,1 � 0, τi,j �

°j�1
l�1

�
yi,ki�l � yi,l

� {ki, τi,Mi�ki�2 � 1,
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i � 1, 2, then,

||f ||ℓ1,∆2,e,∆1,e
� ||f ||L1

�
M1�k1¸
i1�1

M2�k2¸
i2�1

|ci1i2 |
�
y1,i1�k1 � y1,i1

� �
y2,i2�k2 � y2,i2

�
k1k2

�
»
r0,1s

»
r0,1s

|f pz1, z2q |dz1dz2

�
»
r0,1s

»
r0,1s

��M1�k1¸
i1�1

M2�k2¸
i2�1

|ci1i2 |I�pτ1,i1 ,τ1,i1�1q�pτ2,i2 ,τ2,i2�1q
� pz1, z2q � |f pz1, z2q |

�� dz1dz2

¤ sup
pz1,z2qPr0,1s�r0,1s

|
M1�k1¸
i1�1

M2�k2¸
i2�1

|ci1i2 |I�pτ1,i1 ,τ1,i1�1q�pτ2,i2 ,τ2,i2�1q
� pz1, z2q � |f pz1, z2q ||

� max
i1i2

sup
pz1,z2qP

�pτ1,i1 ,τ1,i1�1q�pτ2,i2 ,τ2,i2�1q
� ||ci1i2 | � |f pz1, z2q ||

¤ max
i1i2

sup
pz1,z2qP

�pτ1,i1 ,τ1,i1�1q�pτ2,i2 ,τ2,i2�1q
� |ci1i2 � f pz1, z2q |

¤ max
i1i2

sup
pz1,z2qP

�py1,i1 ,y1,i1�k1q�py2,i2 ,y2,i2�k2q
� |ci1i2 � f pz1, z2q |.

where Ira�bs pz1, z2q � 1 for pz1, z2q P ra� bs and zero elsewhere. The last in-
equality follows because it is always true that

��
τ1,i1 , τ1,i1�1

�� �τ2,i2 , τ2,i2�1
�� ���

y1,i1 , y1,i1�k1

�� �y2,i2 , y2,i2�k2

��
. From Schumaker (2007) (page 489, Equation (12.25))

and following De Boor et al. (1978) (page 132) we have

|ci1i2 � f pz1, z2q | ¤ C1C2 sup
y1,i1¤u1,u2¤y1,i1�k1
y2,i2¤v1,v2¤y2,i2�k2

|f pu1, v1q � f pu2, v2q |, (6.26)

for pz1, z2q P
�
y1,i1 , y1,i1�k1

�� �y2,i2 , y2,i2�k2

�
. Thus,

||f ||ℓ1,∆2,e,∆1,e
� ||f ||L1 ¤ C1C2ωp1,1q

�
f, pk1δ1, k2δ2qT

�
¤ k1k2C1C2ωp1,1q

�
f, pδ1, δ2qT

�
.

Note that

0 ¤ωp1,1q
�
f, pδ1, δ2qT

�
¤ C3δ1ωp0,1q

�
Dp1,0qf, pδ1, 0qT

�
0 ¤ωp1,1q

�
f, pδ1, δ2sT

	
¤ C4δ2ωp1,0q

�
Dp0,1qf, p0, δ2qT

�
,

thus,

ωp1,1q

�
f, pδ1, δ2qT

�
¤ 2�1C3δ1ωp0,1q

�
Dp1,0qf, pδ1, 0qT

�
� 2�1C4δ2ωp1,0q

�
Dp0,1qf, p0, δ2qT

�
¤ C3δ1||Dp1,0qf ||8 � C4δ2||Dp0,1qf ||8
¤ max

�
C3||Dp1,0qf ||8, C4||Dp0,1qf ||8

	
pδ1 � δ2q . (6.27)

Therefore, by combining Equation (6.26) and Equation (6.27), Theorem 1 is proved.
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Proof of Theorem 2 Let β̂SL � b̂
T

SLΨ and β̃ � bTΨ, where Ψ ��
ψs1ψ

t
1, ψ

s
1ψ

t
2, . . . , ψ

s
1ψ

t
pM2�k2q

, ψs2ψ
t
1, . . . , ψ

s
pM1�k1q

ψtpM2�k2q

	T
, b̂app the solution of the op-

timization problem in Equation (6.12), and b � vec pBq. By condition C.4, it can be easily
proven that given Ψ, both b̂SL and b̂app exist and are unique. Note that, by triangular
inequality, we have

||β̂SL � β||8 ¤ ||β̂SL � β̃||8 � ||β̃ � β||8
� ||

�
b̂SL � b

	T
Ψ||8 � ||β̃ � β||8

¤ ||b̂SL � b||8 sup
ps,tqPr0,1s�r0,1s

pM1�k1q¸
i�1

pM2�k2q¸
j�1

|ψsi psqψtj ptq | � ||β̃ � β||8

� ||b̂SL � b||8 � ||β̃ � β||8
¤ ||b̂SL � b̂app||8 � ||b̂app � b||8 � ||β̃ � β||8
¤ ||b̂SL � b̂app||2 � ||b̂app � b||2 � ||β̃ � β||8, (6.28)

because,
°pM1�k1q
i�1

°pM2�k2q
j�1 |ψsi psqψtj ptq | � 1 for all ps, tq P r0, 1s�r0, 1s. To prove Theorem

2, we focus on the three terms on the last line of Equation (6.28), separately.
Let consider ||β̃�β||8. Let δ � pδ1, δ2qT and d � pk1, k2qT , then, from Schumaker (2007)

(page 492 Equation (12.39)) β̃ can be chosen such that

||β � β̃||8 ¤ C1ωEd
pβ, δq8

� C1

�
ωpk1,0q pβ, δq8 � ωp0,k2q pβ, δq8

	
¤ C1

�
δp

1

1 ωpk1�p1,0q

�
Dpp1,0qβ, δ

	
8
� δp

1

2 ωp0,k2�p1q

�
Dp0,p1qβ, δ

	
8



¤ C1

�
δp

1

1 2k1�p
1�1ωp1,0q

�
Dp1

1 β, δ
	
8
� δp

1

2 2k2�p
1�1ωp0,1q

�
Dp1

2 β, δ
	
8



¤ C1

�
δp

1

1 2k1�p
1�1C2δ

ν
1 � δp

1

2 2k2�p
1�1C3δ

ν
2

	
¤ C1 max

�
2k1�p

1�1C2, 2k2�p
1�1C3

	�
δp

1�ν
1 � δp

1�ν
2

	
� C4

�
δp1 � δp2

�
,

where properties of the modulus of smoothness have been used and condition C.2. Thus,

||β � β̃||8 � Opδp1q �Opδp2q � OpM�p
1 q �OpM�p

2 q. (6.29)

Let focus on ||b̂SL � b̂app||2. Let L pbαq .� ℓ pbαq � λL||α||L1 and Lapp pbαq .� ℓ pbαq �
λL||α||ℓ1,∆1,e,∆2,e

with

ℓ pbαq .�
ņ

i�1

»
T
Yi ptq2 dt�2 vec

�
XTY

	T
bα�bTα

�
Wt bXTX

	
bα�λsbTαLwrbα�λtbTαLrwbα.

Moreover, the Hessian functions with respect to bα are

∇2L pbαq � ∇2Lapp pbαq � 2
�
Wt bXTX

	
� 2λsLwr � 2λtLrw.
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From Theorem 1, we have that for each bα

0 ¤ Lapp pbαq � L pbαq � ||α||ℓ1,∆1,e,∆2,e
� ||α||L1 ¤ C5

�
M�1

1 �M�1
2

	
,

Thus,
Lapp

�
b̂SL

	
� L

�
b̂SL

	
¤ C5

�
M�1

1 �M�1
2

	
.

Let b̂app � argminbα
Lapp pbαq, then by Taylor expansion

Lapp

�
b̂SL

	
� L

�
b̂SL

	
¥ Lapp

�
b̂app

	
� 1

2

�
b̂SL � b̂app

	T
∇2Lapp

�
b̂app

	�
b̂SL � b̂app

	
� L

�
b̂SL

	
� Lapp

�
b̂app

	
� L

�
b̂SL

	
� 1

2

�
b̂SL � b̂app

	T
∇2Lapp

�
b̂app

	�
b̂SL � b̂app

	
¥ 1

2

�
b̂SL � b̂app

	T
∇2Lapp

�
b̂app

	�
b̂SL � b̂app

	
Thus, by the property of the quadratic form,�

b̂SL � b̂app
	T

∇2Lapp

�
b̂app

	�
b̂SL � b̂app

	
¥ Λmin

�
∇2Lapp

�
b̂app

	�
||b̂SL � b̂app||22,

where Λmin pAq denotes the minimum eigenvalues of the matrix A, that is

Λmin
�
∇2Lapp

�
b̂app

	�
� 2Λmin

�
Wt bXTX

	
� 2λsΛmin pLwrq � 2λtΛmin pLrwq

� 2n
�

Λmin
�
Wt bXTX

�
n

� λs
n

Λmin pLwrq � λt
n

Λmin pLrwq
�
.

Therefore,

Λmin
�
∇2Lapp

�
b̂app

	�
||b̂SL � b̂app||22 ¤ C6

�
M�1

1 �M�1
2

	
,

and, by combining this with conditions C.4 and C.5, we have

||b̂SL � b̂app||2 ¤ C7?
bn

�
M�1

1 �M�1
2

	1{2
¤ C7?

bn

�
M

�1{2
1 �M

�1{2
2

	
,

and
||b̂SL � b̂app||2 � OpM�1{2

1 n�1{2q �OpM�1{2
2 n�1{2q. (6.30)

Turn the attention to ||b̂app� b||2. The following arguments are based on Zou and Zhang
(2009). Let define b̂app,0 as the solution of the optimization problem in Equation (6.12) when
λL � 0, and

Q pbαq .�
ņ

i�1

»
T
Yi ptq2 dt� 2 vec

�
XTY

	T
bα � bTα

�
Wt bXTX

	
bα.

Then, by the definition of b̂app, we have

Q
�
b̂app,0

	
� λsb̂

T

app,0Lwrb̂app,0 � λtb̂
T

app,0Lrwb̂app,0 � λL||Wstb̂app,0||1
¥Q

�
b̂app

	
� λsb̂

T

appLwrb̂app � λtb̂
T

appLrwb̂app � λL||Wstb̂app||1.
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By rearranging the above inequality, we get

λL

�
||Wstb̂app,0||1 � ||Wstb̂app||1

�
¥ Q

�
b̂app

	
� λsb̂

T

appLwrb̂app � λtb̂
T

appLrwb̂app

�
!
Q
�
b̂app,0

	
� λsb̂

T

app,0Lwrb̂app,0 � λtb̂
T

app,0Lrwb̂app,0

)
.

(6.31)

Note that

||Wstb̂app,0||1 � ||Wstb̂app||1 ¤ ||Wstb̂app,0 �Wstb̂app||1
¤ |||Wst|||1||b̂app,0 � b̂app||1
¤ pM1 � k1q1{2 pM2 � k2q1{2 ||b̂app,0 � b̂app||2, (6.32)

where |||Wst|||1 is the induced matrix norm corresponding to || � ||1, defined as the maximum
of the absolute values of the column sums of Wst, which is less or equal to one. Note that

vec
�
XTY

	
�
�
Wt bXTX

	
b̂app,0 � λsLwrb̂app,0 � λtLrwb̂app,0,

then, we have

Q
�
b̂app,0

	
� λsb̂

T

app,0Lwrb̂app,0 � λtb̂
T

app,0Lrwb̂app,0 �
!
Q
�
b̂app

	
� λsb̂

T

appLwrb̂app � λtb̂
T

appLrwb̂app

)
�
�
b̂app � b̂app,0

	T ��
Wt bXTX

	
� λsLwr � λtLrw

��
b̂app � b̂app,0

	
.

Thus, by using Equation (6.31) and Equation (6.32), we have

Λmin
��
Wt bXTX

	
� λsLwr � λtLrw

�
||b̂app � b̂app,0||22

¤
�
b̂app � b̂app,0

	T ��
Wt bXTX

	
� λsLwr � λtLrw

��
b̂app � b̂app,0

	
¤λL pM1 � k1q1{2 pM2 � k2q1{2 ||b̂app,0 � b̂app||2.

Then,

||b̂app,0 � b̂app||2 ¤ λL pM1 � k1q1{2 pM2 � k2q1{2

Λmin
��
Wt bXTX

�� λsLwr � λtLrw

� . (6.33)

Moreover, let ϵ � vec
�³

T ε ptqψt ptqT dt
	
� ³T �ψt ptq b I� ε ptq dt, with ε � pε1, . . . , εnqT ,

then

b̂app,0 � b �� pλsLwr � λtLrwq
��
Wt bXTX

	
� λsLwr � λtLrw

��1
b

�
��
Wt bXTX

	
� λsLwr � λtLrw

��1 �
I bXT

	
ϵ,

which implies
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E
�
||b̂app,0 � b||22

	
¤2λ2

s||Lwr
��
Wt bXTX

	
� λsLwr � λtLrw

��1
b||22

�2λ2
t ||Lrw

��
Wt bXTX

	
� λsLwr � λtLrw

��1
b||22

�2 E
�
||
��
Wt bXTX

	
� λsLwr � λtLrw

��1 �
I bXT

	
ϵ||22
�

¤2λ2
sΛ2

max pLwrq ||
��
Wt bXTX

	
� λsLwr � λtLrw

��1
b||22

�2λ2
tΛ2

max pLrwq ||
��
Wt bXTX

	
� λsLwr � λtLrw

��1
b||22

�2 E
�
||
��
Wt bXTX

	
� λsLwr � λtLrw

��1 �
I bXT

	
ϵ||22
�

¤2λ2
sΛ2

max pLwrqΛ�2
min

��
Wt bXTX

	
� λsLwr � λtLrw



||b||22

�2λ2
tΛ2

max pLrwqΛ�2
min

��
Wt bXTX

	
� λsLwr � λtLrw



||b||22

�2Λ�2
min

��
Wt bXTX

	
� λsLwr � λtLrw



E
�
ϵT
�
I bXXT

	
ϵ



¤2Λ�2

min

��
Wt bXTX

	
� λsLwr � λtLrw


�
λ2
sΛ2

max pLwrq ||b||22

� λ2
tΛ2

max pLrwq ||b||22 � Tr
�
Wt bXTX

	
||K||8



¤2Λ�2

min

��
Wt bXTX

	
� λsLwr � λtLrw


�
λ2
sΛ2

max pLwrq ||b||22

� λ2
tΛ2

max pLrwq ||b||22 � pM1 � k1q pM2 � k2qΛmax
�
Wt bXTX

	
||K||8



,

(6.34)
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because

E
�
ϵT
�
I bXXT

	
ϵ

�
� E

�
Tr
�
ϵϵT

�
I bXXT

	
�
� E

�
Tr
�
ϵϵT

�
I bXXT

	
�

�E

��Tr
�»

r0,1s

»
r0,1s

�
ψt pt1q b I

�
ε pt1q ε pt2qT

�
ψt pt2qT b I

	
dt1dt2

�
I bXXT

	���
�Tr

�»
r0,1s

»
r0,1s

K pt1, t2q
�
ψt pt1q b I

� �
ψt pt2qT b I

	
dt1dt2

�
I bXXT

	�

�
»
r0,1s

»
r0,1s

K pt1, t2qTr
�
ψt pt1qψt pt2qT bXXT

	
dt1dt2

¤||K||8
»
r0,1s

»
r0,1s

Tr
�
ψt pt1qψt pt2qT bXXT

	
dt1dt2

¤||K||8 Tr
�»

r0,1s
ψt pt1q dt1

»
r0,1s

ψt pt2qT dt2
�

Tr
�
XXT

	
¤||K||8 Tr

�
Wt bXTX

	
, (6.35)

given that for the Holder inequality
�³

r0,1s ψ
t
i pt1q dt1

	2
¤ ³

r0,1s
�
ψti pt1q

�2
dt1 for i �

1, . . . ,M2 � k2.
By combining the two inequalities in (6.33) and (6.34), we have

E
�
||b̂app � b||22

	
¤2 E

�
||b̂app,0 � b||22

	
� 2 E

�
||b̂app � b̂app,0||22

	
¤4λ2

sΛ2
max pLwrq ||b||22 � 4λ2

tΛ2
max pLrwq ||b||22

Λ2
min

��
Wt bXTX

�� λsLwr � λtLrw

�
�4 pM1 � k1q pM2 � k2qΛmax

�
Wt bXTX

� ||K||8 � 2λ2
L pM1 � k1q pM2 � k2q

Λ2
min

��
Wt bXTX

�� λsLwr � λtLrw

�
¤ 4λ2

sΛ2
max pLwrq ||b||22 � 4λ2

tΛ2
max pLrwq ||b||22

n2Λ2
min

��
Wt b n�1XTX

�� n�1λsLwr � n�1λtLrw

�
�4n pM1 � k1q pM2 � k2qB||K||8 � 2λ2

L pM1 � k1q pM2 � k2q
n2Λ2

min

��
Wt b n�1XTX

�� n�1λsLwr � n�1λtLrw

� .

Under C.5 and C.6, we have

||b̂app � b||2 � Op

�
M

1{2
1 M

1{2
2 n�1{2

	
. (6.36)

Thus, from Equation (6.28), (6.30), and (6.36), we have that by choosing β̃ such that
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Equation (6.29) is satisfied, there exist a unique β̂SL with

||β̂SL � β||8
¤||b̂SL � b̂app||2 � ||b̂app � b||2 � ||β̃ � β||8
�OpM�1{2

1 n�1{2q �OpM�1{2
2 n�1{2q �Op

�
M

1{2
1 M

1{2
2 n�1{2

	
�OpM�p

1 q �OpM�p
2 q,

and by C.3, we have
||β̂SL � β||8 � Op

�
M

1{2
1 M

1{2
2 n�1{2

	
.

Proof of Theorem 3
Note that, for s P S and t P T

sign
�
β ps, tq�

� sign
�
β ps, tq � β̃ ps, tq � β̃ ps, tq

	
� sign

�
sign

�
β ps, tq � β̃ ps, tq

	
|β ps, tq � β̃ ps, tq | � β̃ ps, tq



� sign

�
sign

�
β ps, tq � β̃ ps, tq

	
|β ps, tq � β̃ ps, tq | � sign

�
β̃ ps, tq � bi1i2

	
|β̃ ps, tq � bi1i2 | � bi1i2



¤ sign

�
|β ps, tq � β̃ ps, tq | � |β̃ ps, tq � bi1i2 | � bi1i2

	
where i1 P p1, . . . ,M1 � k1q and i2 P p1, . . . ,M2 � k2q are chosen such that
ps, tq P

��
y1,i1 , y1,i1�k1

�� �y2,i2 , y2,i2�k2

��
, where bi1i2 are the elements of b ��

b11, . . . , bpM1�k1q1, b12, . . . , bpM1�k1qpM2�k2�1q, b1pM2�k2q, . . . , bpM1�k1qpM2�k2q

	T
. By using

the results in both in Theorem 1 (Equation (6.26) and Equation (6.27)) and Theorem 2
(Equation (6.29)), we have that

sign
�
β ps, tq� � sign

�
bi1i2 �O

�
1
M1



�O

�
1
M2



�OpM�p

1 q �OpM�p
2 q

�
,

and, thus, by C.3
sign

�
β ps, tq� � sign

�
bi1i2

�
,

for i1, i2 such that ps, tq � �y1,i1 , y2,i2
�
. By the same arguments, by using results in Theorem

2 (Equation (6.30)), under conditions C.3, C.4 and C.5, we have

sign
�
β̂ ps, tq

	
� sign

�
b̂app,i1i2

	
,

for i1, i2 such that ps, tq � �
y1,i1 , y2,i2

�
, where b̂app,i1i2 are the entries of b̂app �

�
b̂app,11,

. . . , b̂app,pM1�k1q1, b̂app,12, . . . , b̂app,pM1�k1qpM2�k2�1q, b̂app,1pM2�k2q, . . . , b̂app,pM1�k1qpM2�k2q

	T
.

Therefore, to prove Theorem 2, we must show that

sign
�
bi1i2

� � sign
�
b̂app,i1i2

	
,
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for each i1, i2. Or equivalently

sign pbq � sign
�
b̂app

	
, (6.37)

where the sign function is applied element-wise.
Before proving Equation (6.37), let define with bp1q the vector whose entries are the q

elements of b that are non-zero and with bp2q the vector whose entries are the pM1�k1qpM2�
k2q � q elements of b that are equal to zero. In what follows, we assume, without loss of

generality, that b �
�
bTp1q bTp2q

�T
. The subscripts p1q and p2q applied to a generic vector

correspond to the first q and the last pM1 � k1qpM2 � k2q � q elements, whereas applied to a
generic matrix correspond to the matrix composed by the first q and the last pM1�k1qpM2�
k2q � q columns. Moreover, a generic matrix Al P RpM1�k1qpM2�k2q�pM1�k1qpM2�k2q can be
expressed in a block-wise form as

Al �
�

Al,11 P Rq�q Al,12 P Rq�pM1�k1qpM2�k2q�q

Al,21 P RpM1�k1qpM2�k2q�q�q Al,22 P RpM1�k1qpM2�k2q�q�pM1�k1qpM2�k2q�q

�
.

The following arguments follow closly those of Zou and Zhang (2009). To prove (6.37),
we need the following lemma.

Lemma 1. For any positive λs, λt and λL, there is a b̂app in Equation (6.12) that satisfies
Equation (6.37), if and only if, element-wise,

|W�1
st,21

!�
2
�
Wt bXTX

	
21
� 2λsLwr,21 � 2λtLrw,21

�
��
Wt bXTX

	
11
� λsLwr,11 � λtLrw,11

��1

�
�λsLwr,11bp1q � λtLrw,11bp1q � pI bXqTp1q ϵ� 2�1λLWst,11 sign

�
bp1q

	�
� 2 pI bXqTp2q ε� 2λsLwr,21bp1q � 2λtLrw,21bp1q

)
| ¤ λL , (6.38)

|
��
Wt bXTX

	
11
� λsLwr,11 � λtLrw,11

��1

��
Wt bXTX

	
11
bp1q � pI bXqTp1q ε� 2�1λLWst,11 sign

�
bp1q

	�
| ¡ 0. (6.39)

Proof By standard Karush�Kuhn�Tucker (KKT) conditions for optimality in convex
program b̂app is optimal if and only if

� 2 vec
�
XTY

	
� 2

�
Wt bXTX

	
b̂app � 2λsLwrb̂app � 2λtLrwb̂app � λLWstẑ � 0,

(6.40)

with

ẑ �
$&%sign

�
b̂app,i

	
b̂app,i � 0,

r P r�1, 1s otherwise.
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On the other hand, b̂app is sign consistent if and only if b̂appp2q � 0, b̂appp1q � 0 and
ẑp1q � sign

�
bp1q

	
, |ẑp2q| ¤ 1, and, thus, if and only if�

2
�
Wt bXTX

	
21
� 2λsLwr,21 � 2λtLrw,21

��
b̂appp1q � bp1q

	
� 2 pI bXqTp2q ϵ

� 2λsLwr,21bp1q � 2λtLrw,21bp1q � �λLWst,21ẑp2q,

2
�
Wt bXTX

	
11

�
b̂appp1q � bp1q

	
� 2 pI bXqTp1q ϵ

� 2λsLwr,11b̂appp1q � 2λtLrw,11b̂appp1q � �λWst,11 sign
�
bαLp1q

	
.

By solving for b̂appp1q and ẑp2q, we get

�λLẑp2q �W�1
st,21

�
2
�
Wt bXTX

	
21
� 2λsLwr,21 � 2λtLrw,21

�
��
Wt bXTX

	
11
� λsLwr,11 � λtLrw,11

��1

�
�λsLwr,11bp1q � λtLrw,11bp1q � pI bXqTp1q ϵ� 2�1λLWst,11 sign

�
bp1q

	�
� 2 pI bXqTp2q ϵ� 2λsLwr,21bp1q � 2λtLrw,21bp1q,

b̂appp1q �
��
Wt bXTX

	
11
� λsLwr,11 � λtLrw,11

��1

��
Wt bXTX

	
11
bp1q � pI bXqTp1q ϵ� 2�1λLWst,11 sign

�
bp1q

	�
.

Lemma 1 follows by applying the conditions b̂appp1q � 0 and |ẑp2q| ¤ 1.

To prove Theorem 3 , we have to verify (6.38) and (6.39) in Lemma 1. Denote by ei the
vector with 1 in the i-th position and zeroes elsewhere. For each index i P S � t1, . . . , qu
and j P Sc � tq � 1, . . . , pM1 � k1q pM2 � k2qu, define the following random variables:

Ui
.�eTi

��
Wt bXTX

	
11
� λsLwr,11 � λtLrw,11

��1 �
pI bXqTp1q ϵ� 2�1λLWst,11 sign

�
bp1q

	�
,

Vj
.�W�1

st,jj

! �
2 pI bXqTj pWt b Iq pI bXqp1q � 2λsLwr,j � 2λtLrw,j

�
��
Wt bXTX

	
11
� λsLwr,11 � λtLrw,11

��1

�
2�1λLWst,11 sign

�
bp1q

	
� λsLwr,11bp1q � λtLrw,11bp1q � pI bXqTp1q ϵ

�
� 2λsLwr,jbp1q � 2λtLrw,jbp1q � 2 pI bXqTj ϵ

)
,

where pI bXqj is the j-th column of pI bXq, Lwr,j and Lrw,j are the j-th rows of
Lwr,21 and Lrw,21 respectively, and Wst,jj is the j-th diagonal element of Wst,12. Then
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conditions (6.38) and (6.39) hold if and only if the events M pUq .� tmaxiPS |Ui|   ρu
and M pV q .� tmaxjPSc |Vi| ¤ λLu hold simultaneously, with ρ

.� min |
��
Wt bXTX

�
11

�λsLwr,11 � λtLrw,11
��1

��
Wt bXTX

�
11 bp1q

�
|. Now, we analyse the events M pUq and

M pV q separately. To analyse M pV q, we define

µj
.�W�1

st,jj

! �
pI bXqTj pWt b Iq pI bXqp1q � λsLwr,j � λtLrw,j

�
��
Wt bXTX

	
11
� λsLwr,11 � λtLrw,11

��1

�
λLWst,11 sign

�
bp1q

	
� 2λsLwr,11bp1q � 2λtLrw,11bp1q



� 2λsLwr,jbp1q � 2λtLrw,jbp1q

)
,

Ṽ j
.�W�1

st,jj

!�
2 pI bXqTj

�
I � pWt b Iq pI bXqp1q��

Wt bXTX
	

11
� λsLwr,11 � λtLrw,11

��1
pI bXqTp1q s ϵ

� �2λsLwr,j � 2λtLrw,j
���

Wt bXTX
	

11
� λsLwr,11 � λtLrw,11

��1
pI bXqTp1q ϵ

)
,

then Vj � µj � Ṽ j . From the SL-IC (C.7), we have that, element-wise���W�1
st,21

!��
Wt b n�1XTX

	
21
� n�1λsLwr,21 � n�1λtLrw,21

�
��
Wt b n�1XTX

	
11
� n�1λsLwr,11 � n�1λtLrw,11

��1

�
Wst,11 sign

�
bp1q

	
� 2λ�1

L λsLwr,11bp1q � 2λ�1
L λtLrw,11bp1q

�
�2λ�1

L λsLwr,21bp1q � 2λ�1
L λtLrw,21bp1q

)��� ¤ 1� η,

then, |E �Vj� | � |µj | ¤ p1� ηqλL for j � q � 1, . . . , pM1 � k1q pM2 � k2q. M pV q holds if
and only if maxjPSc Vj

λL
¤ 1 and minjPSc Vj

λL
¥ �1. Since

maxjPSc Vj
λL

� maxjPSc µj � Ṽ j
λL

¤ p1� ηq � maxjPSc Ṽ j
λL

,

minjPSc Vj
λL

� minjPSc µj � Ṽ j
λL

¥ �p1� ηq � minjPSc Ṽ j
λL

,

M pV q holds if and only if

Pr
#

maxjPSc Ṽ j
λL

¡ η, orminjPSc Ṽ j
λL

  �η
+
Ñ 0.
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Under assumption C.8, Ṽ �
�
Ṽ q�1, . . . , Ṽ pM1�k1qpM2�k2q

	
is a mean zero Gaussian random

vector and by applying Markov’s inequality and Gaussian comparison results (Ledoux and
Talagrand, 2013), we have

Pr
#

maxjPSc Ṽ j
λL

¡ η

+
¤

E
�

maxjPSc |Ṽ j |
	

λLη
¤

3
b

log
�pM1 � k1q pM2 � k2q � q

�
λLη

max
jPSc

c
E
�
Ṽ

2
j

	
.

(6.41)
Moreover,

E
�
Ṽ

2
j

	
{4

¤3W�2
st,jj Tr

!
E
�
ϵϵT

	
�
I � pWt b Iq pI bXqp1q

��
Wt bXTX

	
11
� λsLwr,11 � λtLrw,11

��1
pI bXqTp1q

�T
pI bXqj

pI bXqTj
�
I � pWt b Iq pI bXqp1q

��
Wt bXTX

	
11
� λsLwr,11 � λtLrw,11

��1
pI bXqTp1q s

)
� 3W�2

st,jjλ
2
s Tr

!
E
�
ϵϵT

	
���

Wt bXTX
	

11
� λsLwr,11 � λtLrw,11

��1
pI bXqTp1q

�T
LTwr,j

Lwr,j

��
Wt bXTX

	
11
� λsLwr,11 � λtLrw,11

��1
pI bXqTp1q

)
� 3W�2

st,jjλ
2
t Tr

!
E
�
εεT

	
���

Wt bXTX
	

11
� λsLwr,11 � λtLrw,11

��1
pI bXqTp1q

�T
LTwr,j

Lrw,j

��
Wt bXTX

	
11
� λsLwr,11 � λtLrw,11

��1
pI bXqTp1q

)

Note that, from Theorem 2 (Equation (6.35)),

Tr
!
E
�
ϵϵT

	
A
)
¤||K||8 Tr

�pWt b Iq pAq
�

¤||K||8 Tr pWtqTr pIqTr pAq
¤||K||8 pM1 � k1q pM2 � k2qTr pAq (6.42)

where A is a generic positive semidefinite matrix of suitable dimensions. We used the
property that for two positive definite matrices A and B of suitable dimensions, Tr pABq ¤
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Tr pAqTr pBq. Thus,

E
�
Ṽ

2
j

	
{4

¤3W�2
st,jj ||K||8 pM1 � k1q pM2 � k2q pI bXqTj

�
I � pWt b Iq pI bXqp1q��

Wt bXTX
	

11
� λsLwr,11 � λtLrw,11

��1
pI bXqTp1q s2 pI bXqj

�3W�2
st,jj ||K||8 pM1 � k1q pM2 � k2qλ2

s

Lwr,j

���
Wt bXTX

	
11
� λsLwr,11 � λtLrw,11

��1
pI bXqTp1q

�2

LTwr,j

�3W�2
st,jj ||K||8 pM1 � k1q pM2 � k2qλ2

t

Lrw,j

���
Wt bXTX

	
11
� λsLwr,11 � λtLrw,11

��1
pI bXqTp1q

�2

LTrw,j , (6.43)

where for a generic matrix A, A2 � AAT . Note that

pI bXqTj
�
I � pWt b Iq pI bXqp1q��

Wt bXTX
	

11
� λsLwr,11 � λtLrw,11

��1
pI bXqTp1q s2 pI bXqj

¤ pI bXqTj
�
I � 2 pWt b Iq pI bXqp1q��

Wt bXTX
	

11
� λsLwr,11 � λtLrw,11

��1
pI bXqTp1q s pI bXqj

� pI bXqTj
�
pI bXqp1q

��
Wt bXTX

	
11
� λsLwr,11 � λtLrw,11

��1
pWt b Iq�

Wt bXTX
	

11

��
Wt bXTX

	
11
� λsLwr,11 � λtLrw,11

��1
pI bXqTp1q s pI bXqj �

� pI bXqTj
�
pI bXqp1q

��
Wt bXTX

	
11
� λsLwr,11 � λtLrw,11

��1
pWt b Iq

λsLwr,11

��
Wt bXTX

	
11
� λsLwr,11 � λtLrw,11

��1
pI bXqTp1q s pI bXqj

� pI bXqTj
�
pI bXqp1q

��
Wt bXTX

	
11
� λsLwr,11 � λtLrw,11

��1
pWt b Iq

λtLrw,11

��
Wt bXTX

	
11
� λsLwr,11 � λtLrw,11

��1
pI bXqTp1q s pI bXqj

� pI bXqTj
�
I � pWt b Iq pI bXqp1q��

Wt bXTX
	

11
� λsLwr,11 � λtLrw,11

��1
pI bXqTp1q s pI bXqj

¤ pI bXqTj pI bXqj ¤ nmax
�
Xpjq

	2
¤ nc2 (6.44)
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where the last inequality follows from condition C.1, and the max of a vector corresponds to
its maximum entry.

Moreover,

λ2
sLwr,j

���
Wt bXTX

	
11
� λsLwr,11 � λtLrw,11

��1
pI bXqTp1q

�2

LTwr,j

� λ2
sLwr,j

��
Wt bXTX

	
11
� λsLwr,11 � λtLrw,11

��1
pWt b Iq�1

LTwr,j

� λ2
sLwr,j

��
Wt bXTX

	
11
� λsLwr,11 � λtLrw,11

��1
λs pWt b Iq�1

Lwr,11��
Wt bXTX

	
11
� λsLwr,11 � λtLrw,11

��1
LTwr,j

� λ2
sLwr,j

��
Wt bXTX

	
11
� λsLwr,11 � λtLrw,11

��1
λt pWt b Iq�1

Lrw,11��
Wt bXTX

	
11
� λsLwr,11 � λtLrw,11

��1
LTwr,j

¤ λ2
sLwr,j

��
Wt bXTX

	
11
� λsLwr,11 � λtLrw,11

��1
pWt b Iq�1

LTwr,j

¤ λ2
s

nCminΛmin pWtqM2 pM1 � k1qM�1
2
Lwr,jL

T
wr,j ¤ C1

λ2
sΛ2

max pLwrq
nCmincw

, (6.45)

with Cmin
.� Λmin

��
Wt b n�1XTX

�
11

�
, where the last inequality follows because

Lwr,jLwr,j � eTi L
T
wrLwrei and because Λmax

�
ATA

� � Λ2
max pAq for a generic matrix

A. Moreover, we used conditions C.3, C.5 and C.9. For the same arguments,

λ2
tLrw,j

���
Wt bXTX

	
11
� λsLwr,11 � λtLrw,11

��1
pI bXqTp1q

�2

LTrw,j ,

¤ C1
λ2
t

nCmincw
Lrw,jL

T
rw,j ¤ C1

λ2
sΛ2

max pLrwq
nCmincw

. (6.46)

Thus, by combining (6.41), (6.43), (6.44), (6.45) and (6.46), we have

PrtmaxjPSc Ṽ j
λ

¡ ηu

¤
6
?

3C2M1M2||K||8
b

log
�pM1 � k1q pM2 � k2q � q

�
λLη

d
nc2 � C1

λ2
sΛ2

max pLwrq
nCmincw

� C1
λ2
sΛ2

max pLrwq
nCmincw

,

because W�2
st,jj ¤M2

1M
2
2 . Thus, under condition C.9 (a), PrtmaxjPSc Ṽ j

λ ¡ ηu Ñ 0 and hence
condition (6.38) holds.

To analyse the event M pUq, let

Zi � eTi
��
Wt bXTX

	
11
� λsLwr,11 � λtLrw,11

��1
pI bXqTp1q ϵ,
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then,

max
i
|Ui|

� max
i
|Zi � 1

2e
T
i

��
Wt bXTX

	
11
� λsLwr,11 � λtLrw,11

��1
λLWst,11 sign

�
bp1q

	
|

¤ max
i
|Zi| � 1

2λL||
��
Wt bXTX

	
11
� λsLwr,11 � λtLrw,11

��1
Wst,11 sign

�
bp1q

	
||2

¤ max
i
|Zi| � 1

2λL

d
Λmax

�
r
��
Wt bXTX

�
11 � λsLwr,11 � λtLrw,11

��1
Wst,11s2



|| sign

�
bp1q

	
||2

¤ max
i
|Zi| � 1

2λLΛ�1
min

��
Wt bXTX

	
11
� λsLwr,11 � λtLrw,11

�
Λmax

�
Wst,11

� || sign
�
bp1q

	
||2

¤ max
i
|Zi| � 1

2
λL

M1M2
Λ�1
min

��
Wt bXTX

	
11
� λsLwr,11 � λtLrw,11

�
|| sign

�
bp1q

	
||2

Under condition C.5, we have

Λmin
��
Wt bXTX

	
11
� λsLwr,11 � λtLrw,11

�
¥ nCmin,

and, from (6.42)

Var pZiq

¤ ||K||8 pM1 � k1q pM2 � k2q eTi
��
Wt bXTX

	
11
� λsLwr,11 � λtLrw,11

��1
pI bXqTp1q

pI bXqp1q
��
Wt bXTX

	
11
� λsLwr,11 � λtLrw,11


�1
ei

¤ ||K||8 pM1 � k1q pM2 � k2q eTi
��
Wt bXTX

	
11
� λsLwr,11 � λtLrw,11

��1
pWt b Iq�1

ei

¤ C1
||K||8 pM1 � k1q pM2 � k2q

nCmincw
.

By condition C.8, Z � �Z1, . . . , Zq
�T is a Gaussian random vector, by using the Gaussian

comparison result we have,

E

�
max
i
|Zi|



¤ 3

d
C1

||K||8 pM1 � k1q pM2 � k2q log pqq
nCmincw

¤ 3

d
C1C2||K||8M1M2 log pqq

nCmincw
.
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Then,

Prtmax
i
|Ui| ¥ ρu

¤ Pr
!1
ρ

�
max
i
|Zi|

�1
2

λL
M1M2

Λ�1
min

��
Wt bXTX

	
11
� λsLwr,11 � λtLrw,11

�
|| sign

�
bp1q

	
||2
�
¥ 1

)
¤ 1
ρ

!
E

�
max
i
|Zi|



� 1

2
λL

M1M2
Λ�1
min

��
Wt bXTX

	
11
� λsLwr,11 � λtLrw,11

�
|| sign

�
bp1q

	
||2
)

¤ 1
ρ

!
3

d
C1C2||K||8M1M2 log pqq

nCmincw

� 1
2

λL
M1M2

Λ�1
min

��
Wt bXTX

	
11
� λsLwr,11 � λtLrw,11

�
|| sign

�
bp1q

	
||2
)
.

Therefore, condition C.9 (b) guarantees that (6.39) holds.
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Chapter 7

Adaptive Smoothing Spline Estimator
for the Function-on-Function Linear
Regression Model

Abstract
In this chapter, we propose an adaptive smoothing spline (AdaSS) estimator for the function-
on-function linear regression model where each value of the response, at any domain point,
depends on the full trajectory of the predictor. The AdaSS estimator is obtained by the
optimization of an objective function with two spatially adaptive penalties, based on initial
estimates of the partial derivatives of the regression coefficient function. This allows the
proposed estimator to adapt more easily to the true coefficient function over regions of large
curvature and not to be undersmoothed over the remaining part of the domain. A novel
evolutionary algorithm is developed ad hoc to obtain the optimization tuning parameters.
Extensive Monte Carlo simulations have been carried out to compare the AdaSS estimator
with competitors that have already appeared in the literature before. The results show
that our proposal mostly outperforms the competitor in terms of estimation and prediction
accuracy. Lastly, those advantages are illustrated also on two real-data benchmark examples.

7.1 Introduction

Complex datasets are increasingly available due to advancements in technology and compu-
tational power and have stimulated significant methodological developments. In this regard,
functional data analysis (FDA) addresses the issue of dealing with data that can be modeled
as functions defined on a compact domain. FDA is a thriving area of statistics and, for a
comprehensive overview, the reader could refer to Ramsay and Silverman (2005); Hsing and
Eubank (2015); Horváth and Kokoszka (2012); Kokoszka and Reimherr (2017); Ferraty and
Vieu (2006). In particular, the generalization of the classical multivariate regression analysis
to the case where the predictor and/or the response have a functional form is referred to
as functional regression and is illustrated e.g., in Morris (2015) and Ramsay and Silverman
(2005). Most of the functional regression methods have been developed for models with scalar
response and functional predictors (scalar-on-function regression) or functional response
and scalar predictors (function-on-scalar regression). Some results may be found in Cardot
et al. (2003); James (2002); Yao and Müller (2010); Müller and Stadtmüller (2005); Scheipl
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et al. (2015); Ivanescu et al. (2015); Hullait et al. (2020). Models where both the response
and the predictor are functions, namely function-on-function (FoF) regression, have been
far less studied until now. In this work, we study FoF linear regression models, where the
response variable function, at any domain point, depends linearly on the full trajectory of
the predictor. That is,

Yi ptq �
»

S
Xi psqβ ps, tq ds� εi ptq t P T , (7.1)

for i � 1, . . . , n. The pairs pXi, Yiq are independent realizations of the predictor X and the
response Y , which are assumed to be smooth random process with realizations in L2pSq
and L2pT q, i.e., the Hilbert spaces of square integrable functions defined on the compact
sets S and T , respectively. Without loss of generality, the latter are also assumed with
functional mean equal to zero. The functions εi are zero-mean random errors, independent
of Xi. The function β is smooth in L2pS � T q, i.e., the Hilbert space of bivariate square
integrable functions defined on the closed intervals S � T , and is hereinafter referred to
as coefficient function. For each t P T , the contribution of Xi p�q to the conditional value
of Yi ptq is generated by β p�, tq, which works as continuous set of weights of the predictor
evaluations. Different methods to estimate β in (7.1) have been proposed in the literature.
Ramsay and Silverman (2005) assume the estimator of β to be in a finite dimension tensor
space spanned by two basis sets and where regularization is achieved by either truncation or
roughness penalties. (The latter is the foundation of the method proposed in this chapter as
we will see below.) Yao et al. (2005b) assume the estimator of β to be in a tensor product
space generated by the eigenfunctions of the covariance functions of the predictor X and the
response Y , estimated by using the principal analysis by conditional expectation (PACE)
method (Yao et al., 2005a). More recently, Luo and Qi (2017) propose an estimation method
of the FoF linear model with multiple functional predictors based on a finite-dimensional
approximation of the mean response obtained by solving a penalized generalized functional
eigenvalue problem. Qi and Luo (2018) generalize the method in Luo and Qi (2017) to the
high dimensional case, where the number of covariates is much larger than the sample size
(i.e., p ¡¡ n). In order to improve model flexibility and prediction accuracy, Luo and Qi
(2019) consider a FoF regression model with interaction and quadratic effects. A nonlinear
FoF additive regression model with multiple functional predictors is proposed by Qi and Luo
(2019).

One of the most used estimation method is the smoothing spline estimator β̂SS introduced
by Ramsay and Silverman (2005). It is obtained as the solution of the following optimization
problem

β̂SS � argmin
αPSk1,k2,M1,M2

! ņ

i�1

»
T

�
Yi ptq �

»
S
Xi psqα ps, tq ds

�2
dt

� λs

»
S

»
T

�
Lms
s α ps, tq�2

dsdt� λt

»
S

»
T

�
Lmt
t α ps, tq�2

dsdt
)
,

(7.2)

where Sk1,k2,M1,M2 is the tensor product space generated by the sets of B-splines of orders
k1 and k2 associated with the non-decreasing sequences of M1 � 2 and M2 � 2 knots defined
on S and T , respectively. The operators Lms

s and Lmt
t , with ms ¤ k1 � 1 and mt ¤ k2 � 1,

are the msth and mtth order linear differential operators applied to α with respect to the
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variables s and t, respectively. The two penalty terms on the right-hand side of (7.2) measure
the roughness of the function α. The positive constants λs and λt are generally referred to
as roughness parameters and trade off smoothness and goodness of fit of the estimator. The
higher their values, the smoother the estimator of the coefficient function.

Note that the two penalty terms on the right-side hand of (7.2) do not depend on s and t.
Therefore, the estimator β̂SS may suffer from over and under smoothing when, for instance,
the true coefficient function β is wiggly or peaked only in some parts of the domain. To
solve this problem, we consider two adaptive roughness parameters that are allowed to vary
on the domain S � T . In this way, more flexible estimators can be obtained to improve the
estimation of the coefficient function.

Methods that use adaptive roughness parameters are very popular and well established in
the field of nonparametric regression, and are referred to as adaptive methods. In particular,
the smoothing spline estimator for nonparametric regression (Wahba, 1990; Green and
Silverman, 1993; Eubank, 1999; Gu, 2013) has been extended by different authors to take
into account the non-uniform smoothness along the domain of the function to be estimated
(Ruppert and Carroll, 2000; Pintore et al., 2006; Storlie et al., 2010; Wang et al., 2013; Yang
and Hong, 2017).

In this chapter, a spatially adaptive estimator is proposed as the solutions of the following
minimization problem

argmin
αPSk1,k2,M1,M2

! ņ

i�1

»
T

�
Yi ptq �

»
S
Xi psqα ps, tq ds

�2
dt

�
»

S

»
T
λs ps, tq

�
Lms
s α ps, tq�2

dsdt�
»

S

»
T
λt ps, tq

�
Lmt
t α ps, tq�2

dsdt
)
,

(7.3)

where the two roughness parameters λs ps, tq and λt ps, tq are functions that produce different
amount of penalty, and, thus, allow the estimator to spatially adapt, i.e., to accommodate
varying degrees of roughness over the domain S�T . Therefore, the model may accommodate
the local behavior of β by imposing a heavier penalty in regions of lower smoothness. Because
λs ps, tq and λt ps, tq are intrinsically infinite dimensional, their specification could be rather
complicated without further assumptions.

The proposed estimator is applied to FoF linear regression model reported in (7.1), and
is referred to as adaptive smoothing spline (AdaSS) estimator. It is obtained as the solution
of the optimization problem in (7.3), with λs ps, tq and λt ps, tq chosen based on an initial
estimate of the partial derivatives Lms

s α ps, tq and Lmt
t α ps, tq. The rationale behind this

choice is to allow the contribution of λs ps, tq and λt ps, tq, to the penalties in (7.3), to be
small over regions where the initial estimate has large msth and mtth curvatures (i.e., partial
derivatives), respectively. This can be regarded as an extension to the FoF linear regression
model of the idea of Storlie et al. (2010) and Abramovich and Steinberg (1996). Moreover,
to overcome some limitations of the most famous grid-search method (Bergstra et al., 2011),
a new evolutionary algorithm is proposed for the choice of the unknown parameters, needed
to compute the AdaSS estimator.

The rest of the chapter is organized as follows. In Section 7.2, the proposed estimator is
presented. Computational issues involved in the AdaSS estimator calculation are discussed
in Section 7.2 and Section 7.2. In Section 7.3, by means of a Monte Carlo simulation study,
the performance of the proposed estimator are compared with those achieved by competing
estimators already appeared in the literature. Lastly, two real-data examples are presented
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in Section 7.4 to illustrate the practical applicability of the proposed estimator. Conclusions
are in Section 7.5.

7.2 The Adaptive Smoothing Spline Estimator

The Estimator

The AdaSS estimator β̂AdaSS is defined as the solution of the optimization problem in (7.3)
where the two roughness parameters λs ps, tq and λt ps, tq are as follows

λs ps, tq � λAdaSSs

1�
|βms
s
y ps, tq | � δs

	γs
, λt ps, tq � λAdaSSt

1�
|βmt
t
y ps, tq | � δt

	γt

that is,

β̂AdaSS � argmin
αPSk1,k2,M1,M2

! ņ

i�1

»
T

�
Yi ptq �

»
S
Xi psqα ps, tq ds

�2
dt�λAdaSSs

»
S

»
T

1�
|βms
s
y ps, tq | � δs

	γs

�
Lms
s α ps, tq�2

dsdt

� λAdaSSt

»
S

»
T

1�
|βmt
t
y ps, tq | � δt

	γt

�
Lmt
t α ps, tq�2

dsdt
)
, (7.4)

for some tuning parameters λAdaSSs , δs, γs, λ
AdaSS
t , δt, γt ¥ 0 and βms

s
y and βmt

t
y initial esti-

mates of Lms
s β and Lmt

t β, respectively. Note that the two roughness parameters λs and λt

assume large values over domain regions where βms
s
y and βmt

t
y are small. Therefore, in the

right-hand side of (7.4), pLms
s αq2 and pLmt

t αq2 are weighted through the inverse of |βms
s
y | and

|βmt
t
y |. That is, over domain regions where βms

s
y and βmt

t
y are small, pLms

s αq2 and pLmt
t αq2

have larger weights than over those regions where βms
s
y and βmt

t
y are large. For this reasons,

the final estimator is able to adapt to the coefficient function over regions of large curvature
without over smoothing it over regions where the msth and mtth curvatures are small.

The constants δs and δt allow β̂AdaSS not to have msth and mtth-order inflection points
at the same location of βms

s
y and βmt

t
y , respectively. Indeed, when δs and δt are set to zero,

where βms
s
y � 0 and βmt

t
y � 0 (msth and mtth-order inflection points), the corresponding

penalties go to infinite, and, thus, Lms
s α ps, tq and Lmt

t α ps, tq become zero in accordance with
the minimization problem. Therefore, the presence of δs and δt makes β̂AdaSS more robust
against the choice of the initial estimate of the linear differential operators applied to β with
respect to s and t. Finally, γs and γt control the amount of weight placed in βms

s
y and βmt

t
y ,

whereas λAdaSSs and λAdaSSt are smoothing parameters. The solution of the optimization
problem in (7.4) can be obtained in closed form if the penalty terms are approximated as
described in Section 7.2. There are several choices for the initial estimates βms

s
y and βmt

t
y . As

in Abramovich and Steinberg (1996), we suggest to apply the msth and mtth order linear
differential operator to the smoothing spline estimator β̂SS in (7.2).
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The Derivation of the AdaSS Estimator

The minimization in (7.2) is carried out over α P Sk1,k2,M1,M2 . This implicitly means that
we are approximating β as follows

β ps, tq � β̃ ps, tq �
M1�k1¸
i�1

M2�k2¸
j�1

bijψ
s
i psqψtj ptq � ψs psqT Bψt ptq s P S, t P T , (7.5)

where B � tbiju P RM1�k1�M2�k2 . The two sets ψs �
�
ψs1, . . . , ψ

s
M1�k1

	T
and ψt ��

ψt1, . . . , ψ
t
M2�k2

	T
are B-spline functions of order k1 and k2 and non-decreasing knots

sequences ∆s � ts0, s1, . . . , sM1 , sM1�1u and ∆t � tt0, t1, . . . , tM2 , tM2�1u, defined on S ��
s0, sM1�1

�
and T � �t0, tM2�1

�
, respectively, that generate Sk1,k2,M1,M2 . Thus, estimating

β in (7.2) means estimating B. Let α ps, tq � ψs psqT Bαψ
t ptq, s P S, t P T , in Sk1,k2,M1,M2 ,

where Bα � tbα,iju P RM1�k1�M2�k2 . Then, the first term of the right-hand side of (7.4)
may be rewritten as (see Ramsay and Silverman (2005), pag 291-293, for the derivation)

ņ

i�1

»
T

�
Yi ptq �

»
S
Xi psqα ps, tq ds

�2
dt �

ņ

i�1

»
T
Yi ptq2 dt�2 Tr

�
XBαY

T
�
�Tr

�
XTXBαWtB

T
α

�
,

(7.6)
where X � pX1, . . . ,XnqT , with Xi �

³
S Xi psqψs psq ds, Y � pY1, . . . ,YnqT with Yi �³

T Yi ptqψt ptq dt, and Wt �
³
T ψ

t ptqψt ptqT dt. The term Tr rAs denotes the trace of a
square matrix A.

In order to simplify the integrals in the two penalty terms on the right-hand side of
(7.4), and thus obtain a linear form in Bα, we consider, for s P S and t P T , the following
approximations of βms

s
y and βmt

t
y

βms
s
y ps, tq �

Lş

i�0

Lţ

j�0
βms
s
y �

τs,i�1, τt,j�1
�
I�pτs,i,τs,i�1q�pτt,j ,τt,j�1q

� ps, tq , (7.7)

and

βmt
t
y ps, tq �

Lş

i�0

Lţ

j�0
βmt
t
y �

τs,i�1, τt,j�1
�
I�pτs,i,τs,i�1q�pτt,j ,τt,j�1q

� ps, tq , (7.8)

where Θs � tτs,0, τs,1, . . . τs,Ls
, τs,Ls�1u and Θt � tτt,0, τt,1, . . . τt,Lt

, τt,Lt�1u are non in-
creasing knot sequences with τs,0 � s0, τs,Ls�1 � sM1�1, τt,0 � t0, τt,Lt�1 � tM2�1, and
Ira�bs pz1, z2q � 1 for pz1, z2q P ra� bs and zero elsewhere. In (7.7) and (7.8), we are as-
suming that βms

s
y and βmt

t
y are well approximated by a piecewise constant function, whose

values are constant on rectangles defined by the two knot sequences Θs and Θt. It can be
easily proved, by following Schumaker (2007) (pag. 491, Theorem 12.7), that the approx-
imation error in both cases goes to zero as the mesh widths δs � maxi

�
τs,i�1 � τs,i

�
and

δ
t � maxj

�
τt,j�1 � τt,g

�
go to zero. Therefore, βms

s
y and βmt

t
y can be exactly recovered by

uniformly increasing the number of knots Ls and Lt. In this way, the two penalties on the
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right-hand side of (7.4) can be rewritten as (Appendix)

λAdaSSs

»
S

»
T

1�
|βms
s
y ps, tq | � δs

	γs

�
Lms
s α ps, tq�2

dsdt � λAdaSSs

Ls�1¸
i�1

Lt�1¸
j�1

dsij Tr
�
BT
αRs,iBαWt,j

�
(7.9)

and

λAdaSSt

»
S

»
T

1�
|βms
s
y ps, tq | � δt

	γt

�
Lmt
t α ps, tq�2

dsdt � λAdaSSt

Ls�1¸
i�1

Lt�1¸
j�1

dtij Tr
�
BT
αWs,iBαRt,j

�
,

(7.10)

where Ws,i � ³
rτs,i�1,τs,isψs psqψs psq

T
ds, Wt,j � ³

rτt,j�1,τt,jsψt ptqψt ptq
T
dt,

Rs,i � ³
rτs,i�1,τs,is Lms

s

�
ψs psq�Lms

s

�
ψs psq�T ds and Rt,j �³

rτt,j�1,τt,js Lmt
t

�
ψt ptq�Lmt

t

�
ψt ptq�T dt, and dsij �

!
1�

|βms
s
zpτs,i,τt,jq|�δs

	γs

)
and

dtij �
!

1�
|β

mt
t
zpτs,i,τt,jq|�δt


γt

)
, for i � 1, . . . , Ls � 1 and j � 1, . . . , Lt � 1.

The optimization problem in (7.4) can be then approximated with the following

B̂AS � argmin
BαPRpM1�k1q�pM2�k2q

! ņ

i�1

»
T
Yi ptq2 dt� 2 Tr

�
XBαY

T
�
� Tr

�
XTXBαWtB

T
α

�
�
Ls�1¸
i�1

Lt�1¸
j�1

�
λAdaSSs dsij Tr

�
BT
αRs,iBαWt,j

�
� λAdaSSt dtij Tr

�
BT
αWs,iBαRt,j

�
)
,

(7.11)

or by vectorization as

b̂AS � argmin
bαPRpM1�k1qpM2�k2q

!
� 2 vec

�
XTY

	T
bα � bTα

�
Wt bXTX

	
bα

Ls�1¸
i�1

Lt�1¸
j�1

�
λAdaSSs dsijb

T
αLwr,ijbα � λAdaSSt dtijb

T
αLrw,ijbα

	*
,

(7.12)

where b̂AS � vec
�
B̂AS

	
, Lrw,ij � �

Rt,j bWs,i

�
and Lwr,ij � �

Wt,j bRs,i

�
, for i �

1, . . . , Ls � 1 and j � 1, . . . , Lt � 1. For a matrix A P Rj�k, vecpAq indicates the vector of
length jk obtained by writing the matrix A as a vector column-wise, and b is the Kronecker
product. Then, the minimizer of the optimization problem in (7.12) has the following
expression

b̂AdaSS �
���Wt bXTX

	
�
Ls�1¸
i�1

Lt�1¸
j�1

�
λAdaSSs dsijLwr,ij � λAdaSSt dtijLrw,ij

	���1

vec
�
XTY

	
�K�1 vec

�
XTY

	
(7.13)
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The identifiability of β, i.e., the uniqueness of b̂AdaSS , comes from the fact that the
inverse of K exists. This is guaranteed with probability tending to one as the sample size
increases, under the condition that the covariance operator of X is strictly positive, i.e., his
kernel is empty (Prchal and Sarda, 2007). In Equation (7.13), this reverts into the condition
that XTX is positive definite. Moreover, Scheipl and Greven (2016) show that identifiability
still holds also in case of rank deficiency of

�
Wt bXTX

�
if, and only if, the kernel of the

covariate covariance operator does not overlap that of the roughness penalties.
To obtain b̂AdaSS in (7.13) the tuning parameters λAdaSSs , δs, γs, λ

AdaSS
t , δt, γt must be

opportunely chosen. This issue is discussed in Section 7.2.

The Algorithm for the Parameter Selection

There are some tuning parameters in the optimization problem (7.12) that must be chosen
to obtain the AdaSS estimator. Usually, the tensor product space Sk1,k2,M1,M2 is chosen
with k1 � k2 � 4, i.e., cubic B-splines, and equally spaced knot sequences. Although the
choice of M1 and M2 is not crucial (Cardot et al., 2003), it should allow the final estimator
to capture the local behaviour of the coefficient function β, that is, M1 and M2 should be
sufficiently large. The smoothness of the final estimator is controlled by the two penalty
terms on the right-hand side of (7.12).

The tuning parameters λAdaSSs , δs, γs, λ
AdaSS
t , δt, γt could be fixed by using the con-

ventional K-fold cross validation (CV) (Hastie et al., 2009a), where the combination of
parameters to be explored is chosen by means of the classic grid search method (Hastie
et al., 2009a). That is an exhaustive searching through a manually specified subset of the
tuning parameter space (Bergstra and Bengio, 2012). Although, in our setting, grid search is
embarrassingly parallel (Herlihy and Shavit, 2011), it is not scalable because it suffers from
the curse of dimensionality. However, even if this is beyond the scope of the present work,
note that the number of combinations to explore grows exponentially with the number of
tuning parameters and makes unsuitable the application of the proposed method to the FoF
linear model in the case of multiple predictors. Then, to facilitate the use of the proposed
method by practitioners, in what follows, we proposed a novel evolutionary algorithm for
tuning parameter selection, referred to as evolutionary algorithm for adaptive smoothing
estimator (EAASS) inspired by the population based training (PBT) introduced by Jaderberg
et al. (2017). The PBT algorithm was introduced to address the issue of hyperparameter
optimization for neural networks. It bridges and extends parallel search method (e.g., grid
search and random search) with sequential optimization method (e.g., hand tuning and
Bayesian optimization). The former runs many parallel optimization processes, for different
combinations of hyperparameter values, and, then chooses the combination that shows the
best performance. The latter performs several steps of few parallel optimizations, where, at
each step, information coming from the previous step is used to identify the combinations
of hyperparameter values to explore. For further details on the PBT algorithm the readers
should refer to Jaderberg et al. (2017), where the authors demonstrated its effectiveness and
wide applicability. The pseudo code of the EAASS algorithm is given in Algorithm 2.

The first step is the identification of an initial population P of tuning parameter combina-
tions pis. This can be done, for each combination and each tuning parameter, by randomly
selecting a value in a pre-specified range. Then, the set V of estimated prediction errors
vis corresponding to P is obtained by means of K-fold CV. We choose a subset Q of P, by
following a given exploitation strategy and, thus, the corresponding subset Z of V . A typical
exploitation strategy is the truncation selection, where the worse r%, for 0 ¤ r ¤ 100, of P,
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Algorithm 2 EAASS algorithm
1: Choose the initial population P � tpiu of combinations of tuning parameter values
2: Obtain the set V � tviu of estimated prediction errors corresponding to P
3: repeat
4: Identify the set Q � P and the corresponding Z � V � exploitation
5: for pi P Q do � exploration
6: Obtain the new combination of tuning parameter values, p1i
7: Obtain the new estimated prediction error v1i corresponding to p1i
8: end for
9: Define Q1 � tp1iu and Z 1 � tv1iu

10: Set P � PzQYQ1 and V � VzZ Y Z 1

11: until The stopping condition is met
12: Return pi P P with the highest vi P V

in terms of estimated prediction error, is substituted by elements randomly sampled from
the remaining p100� rq% part of the current population (Jaderberg et al., 2017). Then the
following step consists of an exploration strategy where the tuning parameter combinations
in Q are substituted by new ones. The simulation study in Section 7.3 and the real-data
Examples in Section 7.4 are based on a perturbation where each tuning parameter value of
the given combination is randomly perturbed by a factor of 1.2 or 0.8. The exploitation and
exploration phases are repeated until a stopping condition is met, e.g, maximum number
of iterations. Other exploration and exploitation strategies can be found in Bäck et al.
(1997). At last, the selected tuning parameter combination is obtained as an element of P
that achieves the lowest estimated prediction error. As a remark, in our trials the AdaSS
estimator works quite well with δs � δ�s max |βms

s
y ps, tq | and δt � δ�t max |βmt

t
y ps, tq |, for

0 ¤ δ�s , δ
�
t ¤ 0.1.

7.3 Simulation Study

In this section, the performance of the AdaSS estimator is assessed on several simulated
datasets. In particular, we compare the AdaSS estimator with cubic B-splines and ms �
mt � 2 with five competing methods that represent the state of the art in the FoF liner
regression model estimation. The first two are those proposed by Ramsay and Silverman
(2005). The first one, hereinafter referred to as SMOOTH estimator, is the smoothing
spline estimator described in (7.2), whereas, the second one, hereinafter referred to as TRU
estimator, assumes that the coefficient function is in a finite dimensional tensor product
space generate by two sets of B-splines with regularization achieved by choosing the space
dimension. Then, we consider also the estimator proposed by Yao et al. (2005b) and
Canale and Vantini (2016). The former is based on the functional principal component
decomposition, and is hereinafter referred to as PCA estimator, while the latter relies on
a ridge type penalization, hereinafter referred to as RIDGE estimator. Lastly, as the fifth
alternative, we explore the estimator proposed by Luo and Qi (2017), hereinafter referred
to as SIGCOMP. Moreover, the AdaSS estimator with cubic B-splines and ms � mt � 2
is considered. For illustrative purposes, we also consider a version of the AdaSS estimator,
referred to AdaSStrue, whose roughness parameters are calculated by assuming that the true
coefficient function is known. Obviously, the AdaSStrue has not a practical meaning because
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the true coefficient function is never known. However, it allows one to better understand the
influence of the initial estimates of the partial derivatives on the AdaSS performance. All the
unknown parameters of the competing methods considered are chosen by means of 10-fold
CV. The tuning parameters of the AdaSS and AdaSStrue estimators are chosen through
the EAASS algorithm. The set P is obtained by using 10-fold CV, the exploitation and
exploration phases are as described in Section 7.2 and a maximum number of iterations equal
to 15 is set as stopping condition. For each simulation, a training sample of n observations
is generated along with a test set T of size N � 4000. They are used to estimate β and to
test the predictive performance of the estimated model, respectively. Three different sample
sizes are considered, viz., n � 100, 500, 1000. The estimation accuracy of the estimators are
assessed by using the integrated squared error (ISE) defined as

ISE � 1
A

»
S

»
T

�
β̂ ps, tq � β ps, tq

	2
dsdt, (7.14)

where A is the measure of S � T . The ISE aims to measure the estimation error of β̂ with
respect to β. Whereas, the predictive accuracy is measured through the prediction mean
squared error (PMSE) defined as

PMSE � 1
N

¸
pX,Y qPT

»
T

�
Y ptq �

»
S
X psq β̂ ps, tq ds


2
dt. (7.15)

The observations in the test set are centred by subtracting to each observation the correspond-
ing sample mean function estimated in the training set. The observations in the training and
test sets are obtained as follows. The covariate Xi and the errors εi are generated as linear
combination of cubic B-splines, Ψx

i and Ψε
i , with evenly spaced knots, i.e., Xi �

°32
j�1 xijΨx

i

and εi � k
°20
j�1 eijΨε

i . The coefficients xij and eij , for i � 1, . . . , n; j � 1, . . . , 32 and
j � 1, . . . , 20, are independent realizations of standard normal random variable and the
numbers of basis have been randomly chosen between 10 and 50. The constant k is chosen
such that the signal-to-noise ratio SN .� ³T VarX rE

�
Yi|Xi

�s{ ³T Var pεiq is equal to 4, where
VarX is the variance with respect to the random covariate X. Then, given the coefficient
function β, the response Yi is obtained.

Mexican Hat Function
The Mexican hat function is a linear function with a sharp smoothness variation in central
part of the domain. In this case, the coefficient function β is defined as

β ps, tq � �1� 1.5s� 1.5t� 0.05ϕ ps, tq , s, t P r0, 1s � r0, 1s

where ϕ is a multivariate normal distribution with mean µ � p0.6, 0.6qT and diagonal
covariance matrix Σ � diag p0.001, 0.001q. Figure 7.1 displays the AdaSS and the SMOOTH
estimates along with the true coefficient function for a randomly selected simulation run.
The proposed estimator tends to be smoother on the flat region and is able to better capture
the peak in the coefficient function (at t � 0.6) than the SMOOTH estimate. The latter, to
perform reasonably well along the whole domain, selects tuning parameters that may be not
sufficiently small on the peaky region, or not sufficiently large over the flat region. This is
also confirmed by the graphical appeal of the AdaSS estimate with respect to the competitor
ones. In Figure 7.2 and top of Table 7.1, the values of ISE and PMSE achieved by the
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Figure 7.1. AdaSS (solid line) and SMOOTH (dashed line) estimates of the coefficient functions and the TRUE
coefficient function β (dotted line) for different values of t in the case of the Mexican hat function.
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Figure 7.2. a The integrated squared error (ISE) and b the prediction mean squared error (PMSE)
�standard error for the TRU, SMOOTH, PCA, RIDGE, SIGCOMP, AdaSS and AdaSStrue estimators in the
case of the Mexican hat function.

AdaSS, AdaSStrue, and competitor estimators are shown as functions of the sample size n.
Without considering the AdaSStrue estimator, the AdaSS estimator yields the lowest ISE for
all sample sizes, and thus has the lowest estimation error. In terms of PMSE, it is the best
one for n � 150, whereas for n � 500, 1000 it performs comparably with SIGCOMP and
PCA estimators. The performance of the AdaSStrue and AdaSS estimators is very similar in
terms of ISE, whereas the AdaSStrue shows a lower PMSE. However, as expected, the effect
of the knowledge of the true coefficient function tends to disappear as n increases, because
the partial derivatives estimates become more accurate.
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7.3. Simulation Study

Table 7.1. The integrated squared error (ISE) and the prediction mean squared error (PMSE) for the TRU,
SMOOTH, PCA, RIDGE, SIGCOMP, AdaSS and AdaSStrue estimators. The numbers outside the parentheses are
the averages over 100 Monte Carlo replications, and the numbers inside parentheses are the corresponding standard
errors. The values corresponding to the AdaSStrue estimator are emphasized to underline the fact that they rely
on the knowledge of the true coefficient function, which is unlikely in real applications. In bold are marked the
lowest values among the AdaSS and the competitors.

n � 100 n � 500 n � 1000
ISE (�10�1) PMSE (�10�2) ISE (�10�1) PMSE (�10�2) ISE (�10�1) PMSE (�10�2)

Mexican hat
TRU 0.4063(0.0059) 0.3575(0.0011) 0.1384(0.0020) 0.3143(0.0007) 0.0660(0.0011) 0.3031 (0.0005)
SMOOTH 0.2191(0.0020) 0.3382(0.0007) 0.0917(0.0008) 0.3088(0.0005) 0.0564(0.0006) 0.3027 (0.0005)
PCA 0.2519(0.0068) 0.3234(0.0007) 0.0681(0.0013) 0.3030(0.0005) 0.0368(0.0008) 0.2995 (0.0005)
RIDGE 0.8813(0.0083) 0.3629(0.0008) 0.3542(0.0041) 0.3157(0.0006) 0.1847(0.0022) 0.3056 (0.0005)
SIGCOMP 0.1465(0.0026) 0.3192(0.0006) 0.0532(0.0006) 0.3026(0.0005) 0.0358(0.0004) 0.2999 (0.0005)
AdaSS 0.0856(0.0023) 0.3171(0.0007) 0.0359(0.0010) 0.3027(0.0005) 0.0217(0.0007) 0.2994 (0.0005)
AdaSStrue 0.0726(0.0176) 0.3080(0.0007) 0.0399(0.0153) 0.2994(0.0005) 0.0188(0.0048) 0.2977 (0.0005)

Dampened harmonic
TRU 0.2851 (0.0050) 0.5403 (0.0014) 0.0983 (0.0010) 0.5051 (0.0010) 0.0651 (0.0009) 0.4960 (0.0010)
SMOOTH 0.2288 (0.0042) 0.5391 (0.0013) 0.0836 (0.0007) 0.5032 (0.0010) 0.0555 (0.0005) 0.4936 (0.0010)
PCA 0.3710 (0.0093) 0.5259 (0.0012) 0.1100 (0.0020) 0.4994 (0.0010) 0.0594 (0.0011) 0.4915 (0.0010)
RIDGE 1.4221 (0.0135) 0.5925 (0.0016) 0.6082 (0.0076) 0.5203 (0.0011) 0.3271 (0.0038) 0.5014 (0.0010)
SIGCOMP 0.2541 (0.0045) 0.5221 (0.0012) 0.1235 (0.0013) 0.5018 (0.0010) 0.0942 (0.0009) 0.4950 (0.0010)
AdaSS 0.1749 (0.0038) 0.5241 (0.0012) 0.0695 (0.0012) 0.4997 (0.0010) 0.0461 (0.0008) 0.4918 (0.0010)
AdaSStrue 0.1504 (0.0030) 0.5179 (0.0012) 0.0744 (0.0018) 0.4985 (0.0010) 0.0582 (0.0022) 0.4912 (0.0010)

Rapid change
TRU 1.9910(0.0278) 4.0461(0.0001) 0.9178(0.0100) 3.7583(0.0001) 0.6020(0.0074) 3.6989 (0.0001)
SMOOTH 1.2961(0.0133) 3.9427(0.0001) 0.5738(0.0046) 3.7205(0.0001) 0.3590(0.0027) 3.6787 (0.0001)
PCA 5.1052(0.0971) 4.3070(0.0001) 1.5870(0.0271) 3.7978(0.0001) 0.8383(0.0125) 3.7141 (0.0001)
RIDGE 10.4781(0.1059) 4.4295(0.0001) 4.1991(0.0537) 3.8459(0.0001) 2.2250(0.0278) 3.7356 (0.0001)
SIGCOMP 1.7129(0.0209) 4.0352(0.0001) 0.8615(0.0234) 3.7702(0.0001) 0.8552(0.0167) 3.7428 (0.0001)
AdaSS 1.0482(0.0166) 3.8737(0.0001) 0.4526(0.0077) 3.6928(0.0001) 0.2916(0.0044) 3.6662 (0.0001)
AdaSStrue 0.8181(0.0191) 3.8274(0.0001) 0.3434(0.0080) 3.6759(0.0001) 0.2114(0.0050) 3.6541 (0.0001)

Dampened Harmonic Motion Function

This simulation scenario considers as coefficient function β the dampened harmonic motion
function, also known as the spring function in the engineering literature. It is characterized
by a sinusoidal behaviour with exponentially decreasing amplitude, that is

β ps, tq � 1� 5 exp
��5 ps� tq� �cos p10πsq � cos p10πtq� , s, t P r0, 1s � r0, 1s .

Figure 7.3 displays the AdaSS and the SMOOTH estimates along with the true coefficient
function. Also in this scenario, the AdaSS estimates is smoother than the SMOOTH estimates
in regions of small curvature. But, it is more flexible where the coefficient function is more
wiggly. Note that intuitively, the SMOOTH estimator trades off its smoothness over the whole
domain. Indeed, it over-smooths at small values of s and t and under-smooths elsewhere.

In Figure 7.4 and in the second tier of Table 7.1, values of the ISE and PMSE for the
AdaSS, AdaSStrue, and competitor estimators are shown as function of the sample size n.
Even in this case, the AdaSS estimator achives the lowest ISE for all sample sizes, and thus,
the lowest estimation error, without taking into account the AdaSStrue estimator. Strictly
speaking, in terms of PMSE, note that the proposed estimator is not always the best choice,
but it shows only a small difference with best methods, viz., PCA and SIGCOMP estimators.
In this case, the AdaSS and AdaSStrue performance is very similar for n � 500, 1000, whereas,
for n � 150, the AdaSStrue performs slightly better especially in terms of PMSE.
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Figure 7.3. AdaSS (solid line) and SMOOTH (dashed line) estimates of the coefficient functions and the TRUE
coefficient function β (dotted line) for different values of t in the case of the dampened harmonic motion function.
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Figure 7.4. a The integrated squared error (ISE) and b the prediction mean squared error (PMSE)
�standard error for the TRU, SMOOTH, PCA, SIGCOMP, AdaSS and AdaSStrue estimators in the case of the
dampened harmonic motion function. The Ridge estimator is not considered due to its too different performance.
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Figure 7.5. AdaSS (solid line) and SMOOTH (dashed line) estimates of the coefficient functions and the TRUE
coefficient function β (dotted line) for different values of t in the case of the rapid change function.

Rapid Change Function
In this scenario, the true coefficient function β is obtained by the rapid change function, that
is

β ps, tq � 1� 5
1� exp

�
10 ps� t� 0.2q� � 5

1� exp
�
75 ps� t� 0.8q� , s, t P r0, 1s � r0, 1s .

Figure 7.5 shows the AdaSS and SMOOTH estimate when β is the rapid change function.
The SMOOTH estimate is rougher than the AdaSS one in regions that are far from the rapid
change point. On the contrary, the AdaSS estimate is able to be smoother in the flat region
and to be as accurate as the SMOOTH estimate near the rapid change point.

In Figure 7.6 and the third tier of Table 7.1, values of the ISE and PMSE for the
AdaSS, AdaSStrue, and competitor estimators are shown for sample sizes n � 150, 500, 1000.
The AdaSS estimator outperforms the competitors, both in terms of ISE and PMSE. The
performance of the AdaSStrue estimator is slightly better than that of the AdaSS one and
this difference in performance reduces as n increases.

7.4 Real-data Examples

In this section, two real datasets, namely Swedish mortality and ship CO2 emission datasets,
are considered to assess the performance of the AdaSS estimator in real applications.

Swedish Mortality Dataset
The Swedish mortality dataset (available from the Human Mortality Database —http:
//mortality.org—) is very well known in the functional literature as a benchmark dataset.
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Figure 7.6. a The integrated squared error (ISE) and b the prediction mean squared error (PMSE)
�standard error for the TRU, SMOOTH, PCA, SIGCOMP, AdaSS and AdaSStrue estimators in the case of
the rapid change function. The Ridge estimator is not considered due to its too different performance.

It has been analysed by Chiou and Müller (2009) and Ramsay et al. (2009), among others.
In this analysis, we consider the log-hazard rate functions of the Swedish females mortality
data for year-of-birth cohorts that refer to females born in the years 1751-1935 with ages
0-80. The value of a log-hazard rate function at a given age is the natural logarithm of the
ratio of females died at that age and the number of females alive with the same age. The
184 considered log-hazard rate functions (Chiou and Müller, 2009) are shown in Figure 7.7.
Without loss of generality, they have been normalized to the domain r0, 1s.
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Figure 7.7. Log-hazard rate functions for Swedish female cohorts from 1751 to 1935.

The functions from 1751 (1752) to 1934 (1935) are considered as observations Xi (Yi)
of the predictor (response) in (7.1), i � 1, . . . , 184. In this way, the relationship between
two consecutive log-hazard rate functions becomes the focus of the analysis. To assess the
predictive performance of the methods considered in the simulation study (Section 7.3),
for 100 times, 166 observations out of 184 are randomly chosen, as training set, to fit the
model. The 18 remaining ones are used as test set to calculate the PMSE. The averages and
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Figure 7.8. AdaSS (solid line) and RIDGE (dashed line) estimates of the coefficient functions for different values
of t in the Swedish Mortality dataset.

standard deviations of PMSEs are shown in the first line of Table 7.2. The AdaSS estimator
outperforms all the competitors. Only the RIDGE estimator has comparable predictive
performance. Figure 7.8 shows the AdaSS estimates along with the RIDGE estimates that

Table 7.2. The prediction mean squared error (PMSE) for the TRU, SMOOTH, PCA, RIDGE, SIGCOMP, and
AdaSS estimators. The numbers outside the parentheses are the averages of the PMSE over 100 replications, and
the numbers inside parentheses are the corresponding standard errors.

TRU SMOOTH PCA RIDGE SIGCOMP AdaSS
Swedish mortality (�10�2) 0.7373 (0.0000) 0.5938 (0.0000) 0.6131 (0.0000) 0.5749 (0.0000) 1.0173 (0.0000) 0.5706 (0.0000)

Ship CO2 emission 0.1019 (0.0008) 0.0814 (0.0007) 0.0689 (0.0008) 0.0625 (0.0007) 0.1033 (0.0013) 0.0771 (0.0007)

represents the best competitor methods in terms of PMSE. The proposed estimator has
slightly better performance than the competitor, but, at the same time, it is much more
interpretable. In fact, it is much smoother where the coefficient function seem to be mostly
flat and successfully captures the pattern of β in the peak region. On the contrary, the
RIDGE estimates is particularly rough over region of low curvature.

Ship CO2 Emission Dataset
The ship CO2 emission dataset has been thoroughly studied in the very last years (Lepore
et al., 2018; Reis et al., 2020; Capezza et al., 2020; Centofanti et al., 2020b). It was
provided by the shipping company Grimaldi Group to address aspects related to the issue of
monitoring fuel consumptions or CO2 emissions for a Ro-Pax ship that sails along a route
in the Mediterranean Sea. In particular, we focus on the study of the relation between the
fuel consumption per hour (FCPH), assumed as the response, and the speed over ground
(SOG), assumed as predictor. The observations considered were recorded from 2015 to 2017.
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Figure 7.9. SOG and FCPH observations from a Ro-Pax ship.

Figure 7.9 shows the 44 available observations of SOG and FCPH (Centofanti et al., 2020b).
Similarly to the Swedish mortality dataset, the prediction performance of the methods are
assessed by randomly chosen 40 out of 44 observations to fit the model and by using the 4
remaining observations to compute the PMSE. This is repeated 100 times. The averages
and standard deviations of the PMSEs are listed in the second line of Table 7.2. The AdaSS
estimator is, in this case, outperformed by the RIDGE estimator, which achieves the lowest
PMSE. However, as shown in Figure 7.10, it is able both to well estimate the coefficient
function over peaky regions, as the RIDGE estimator, and to smoothly adapt over the
remaining part of the domain. Also the PCA estimator achieves smaller PMSE than that
of the proposed estimator. However, the PCA estimator is even rougher than the RIDGE
estimator and, thus, it is not shown in Figure 7.10.

7.5 Conclusions

In this chapter, the AdaSS estimator is proposed for the function-on-function linear regression
model where each value of the response, at any domain point, depends linearly on the full
trajectory of the predictor. The introduction of two adaptive smoothing penalties, based
on initial estimate of its partial derivatives, allows the proposed estimator to better adapt
to the coefficient function. By means of a simulation study, the proposed estimator has
proven favourable performance with respect to those achieved by the five competitors already
appeared in the literature before, both in terms of estimation and prediction error. The
adaptive feature of the AdaSS estimator is advantageous for the interpretability of the results
with respect to the competitors. Moreover, its performance has shown to be competitive also
with respect to the case where the true coefficient function is known. Finally, the proposed
estimator has been successfully applied to real-data examples considered, viz., the Swedish
mortality and ship CO2 emission datasets. However, some challenges are still open. Even
though the proposed evolutionary algorithm has shown to perform particularly well both in
the simulation study and the real-data examples, the choice of the tuning parameters still
remains in fact a critical issue, because of the curse of dimensionality. This could be even
more problematic in the perspective of extending the AdaSS estimator to the FoF regression
model with multiple predictors.
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Figure 7.10. AdaSS (solid line) and RIDGE (dashed line) estimates of the coefficient functions for different values
of t in the ship CO2 emission dataset.

7.6 Appendix

Approximation of the Two Penalty Terms for the AdaSS Estimator
Derivation

In this section the approximations of (7.9) and (7.10) are obtained. For the first penalty, by
using (7.7), we have
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. Then, for (7.5), and following Ramsay and Silverman

(2005), pag. 292,
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)
, for i � 1, . . . , Ls � 1 and j � 1, . . . , Lt � 1. Thus, (7.9) is

demonstrated, the arguments are analogous for (7.10).
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Chapter 8

Sparse and Smooth Functional Data
Clustering

Abstract

A new model-based procedure is developed for sparse clustering of functional data that
aims to classify a sample of curves into homogeneous groups while jointly detecting the
most informative portions of domain. The proposed method is referred to as sparse and
smooth functional clustering (SaS-Funclust) and relies on a general functional Gaussian
mixture model whose parameters are estimated by maximizing a log-likelihood function
penalized with a functional adaptive pairwise penalty and a roughness penalty. The former
allows identifying the noninformative portion of domain by shrinking the means of separated
clusters to some common values, whereas the latter improves the interpretability by imposing
some degree of smoothing to the estimated cluster means. The model is estimated via an
expectation-conditional maximization algorithm paired with a cross-validation procedure.
Through a Monte Carlo simulation study, the SaS-Funclust method is shown to outperform
other methods already appeared in the literature, both in terms of clustering performance
and interpretability. Finally, three real-data examples are presented to demonstrate the
favourable performance of the proposed method. The SaS-Funclust method is implemented
in the R package sasfunclust, available on CRAN.

8.1 Introduction

In the last years, due to advances in technology and computational power, most of the data
collected by practitioners and scientists in many fields bring information about curves or
surfaces that are apt to be modelled as functional data, i.e., continuous random functions
defined on a compact domain. A thorough overview of functional data analysis (FDA)
techniques can be found in Ramsay and Silverman (2005); Ramsay et al. (2009); Horváth
and Kokoszka (2012); Hsing and Eubank (2015) and Kokoszka and Reimherr (2017). As in
the classical (non-functional) statistical literature, cluster analysis is an important topic in
FDA, with many applications in various fields. The primary concern of functional clustering
techniques is to classify a sample of data into homogeneous groups of curves, without having
any prior knowledge about the true underlying clustering structure. The clustering of
functional data is generally a difficult task because of the infinite dimensionality of the
problem. For this reason, methods for functional data clustering have received a lot of
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attention in recent years, and different approaches have been proposed and discussed in
the last decade. To the best of authors’ knowledge, the most used approach is the filtering
approach (Jacques and Preda, 2014), which relies on the reduction of the infinite dimensional
problem by approximating functional data in a finite dimensional space and, then, uses
traditional clustering tools on the basis expansion coefficients. Along this line, Abraham et al.
(2003) propose an advanced version of the k-means algorithm to the coefficients obtained by
projecting the original profiles onto a lower-dimensional subspace spanned by B-spline basis
functions. A similar method is proposed by Rossi et al. (2004) who apply a Self-Organizing
Map (SOM) on the resulting coefficient instead of the k-means algorithm. Elaborating
on this path, Serban and Wasserman (2005) present a technique for the nonparametric
estimation and clustering of a large number of functional data that is still based on the
k-means algorithm applied to the basis expansion coefficients obtained through smoothing
techniques. A step forward is moved by Chiou and Li (2007), who introduce the k-centers
functional clustering method to account, differently from the previous methods, for both
the means and the mode of variation differentials between clusters by predicting cluster
membership with a reclassification step.

Instead of considering the basis expansion coefficients as parameters, a different idea is
that of using a model-based approach where coefficients are treated as random variables
themselves with a cluster-specific probability distribution. The seminal work of James and
Sugar (2003) is the first one to develop a flexible model-based procedure to cluster functional
data based on a random effects model for the coefficients. This allows for borrowing strength
across curves and, thus, for superior results when data contain a large number of sparsely
sampled curves. More recently, Bouveyron and Jacques (2011) propose a new functional
clustering method, which is referred to as funHDDC and based on a functional latent
Gaussian mixture model, to fit the functional data in group-specific functional subspaces.
By constraining model parameters within and between groups, they obtain a family of
parsimonious models that allow for more flexibility. Analogously, Jacques and Preda (2013)
assume cluster-specific Gaussian distribution on the principal components resulting from
the Karhunen–Loeve expansion of the curves, and Giacofci et al. (2013) propose to use a
Gaussian mixture model on the wavelet decomposition of the curves, which turns out to be
particularly appropriate for peak-like data, as opposed to methods based on splines.

In the multivariate cluster analysis, some attributes could be, however, completely
noninformative for uncovering the clustering structure of interest. As an example, this often
happens in high-dimensional problems, i.e., where the number of variables is considerably
larger than the number of observations. In this setting, the task of identifying the features
in which respect true clusters differ the most is of great interest to achieve (a) a more
accurate identification of the groups, as noninformative features may hide the true clustering
structure, and (b) an higher interpretability of the analysis, by imputing the presence of the
clustering structure to a small number of features. More in general, the methods capable
of selecting informative features and eliminating noninformative ones are referred to as
sparse. Such class of methods can be usually reconducted and regarded as variable selection
methods. Sparse clustering has received increasing attention in the recent literature. Based
on conventional heuristic clustering algorithms, Friedman and Meulman (2004) develop a
new procedure to automatically detect subgroups of objects, which preferentially cluster on
subsets of features. Witten and Tibshirani (2010) elaborate a novel clustering framework
based on an adaptively chosen subset of features that are selected by means of a lasso-type
penalty. In terms of model-based approaches, the method introduced by Raftery and Dean
(2006) is able to sequentially compare nested models through approximate Bayes factor and
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to select the informative features. Maugis et al. (2009) improve this method by considering
the noninformative features as independent from some informative ones.

It is moreover worth mentioning quite promising variable selection approaches that make
use of a regularization framework. The seminal work in this direction is that of Pan and
Shen (2007), who introduce a penalized likelihood approach with an L1 penalty function,
which is able to automatically achieve variable selection via thresholding and delivering a
sparse solution. Similarly, Wang and Zhu (2008) suggest a solution by replacing the L1
penalty with either the L8 penalty or the hierarchical penalization function, which take
into account the fact that cluster means, corresponding to the same feature, can be treated
as grouped. Xie et al. (2008) also account for grouped parameters through the use of two
planes of grouping, named vertical and horizontal grouping. In all sparse clustering methods
just mentioned, a feature is selected if it is informative for at least one pair of clusters and
eliminated otherwise, i.e., if it is noninformative for all clusters. However, some variables
could be informative only for specific pairs of clusters. For this reason, Guo et al. (2010)
propose a pairwise fusion penalty that penalizes, for each feature, the differences between all
pairs of cluster means and fuses only the non separated clusters.

Only recently, the notion of sparseness has been translated into a functional data clustering
framework. Specifically, sparse functional clustering methods aim to cluster the curves while
jointly detecting the most informative portion of domain to the clustering in order to improve
both the accuracy and the interpretability of the analysis. Based on the idea of Chen et al.
(2014), Floriello and Vitelli (2017) propose a sparse functional clustering method based on
the estimation of a suitable weight function that is capable of identifying the informative
part of the domain. Vitelli (2019) proposes a novel framework for sparse functional clustering
that also embeds an alignment step. To the best of the authors’ knowledge, these are the
only works that propose sparse functional clustering methods so far.

In this chapter, we present a model-based procedure for the sparse clustering of functional
data, named sparse and smooth functional clustering (SaS-Funclust) method, where the basic
idea is to provide accurate and interpretable cluster analysis. Specifically, the parameters
of a general functional Gaussian mixture model are estimated by maximizing a penalized
version of the log-likelihood function, where a functional adaptive pairwise fusion penalty,
the functional extension of the penalty proposed by Guo et al. (2010), is introduced. Firstly,
it penalizes the pointwise differences between all pairs of cluster functional means and locally
shrinks the means of cluster pairs to some common values. Secondly, a roughness penalty on
cluster functional means is considered to further improve the interpretability of the cluster
analysis. Therefore, the SaS-Funclust method gains the ability to detect, for each cluster
pair, the informative portion of domain to the clustering, hereinafter always intended in
terms of mean differences. If a specific mean pair is fused over a portion of the domain,
it is labelled as noninformative to the clustering of that pair. Otherwise, it is labelled as
informative. In other words, the proposed method is able to detect portions of domain that
are noninformative pairwise, i.e., for at least a specific cluster pair, differently from the
method proposed by Floriello and Vitelli (2017) that is only able to detect portions of domain
that are noninformative overall, i.e., for all the cluster pairs simultaneously. Moreover, the
model-based fashion of the proposed method provides greater flexibility than the latter,
which basically relies on k-means clustering. A specific expectation-conditional maximization
(ECM) algorithm is designed to perform the maximization of the penalized log-likelihood
function, which is a non-trivial problem, and a cross-validation based procedure is proposed
to select the appropriate model. The method presented in this chapter is implemented in
the R package sasfunclust, openly available on CRAN.
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Figure 8.1. True and estimated cluster means obtained through the SaS-Funclust method for three different
simulated data sets with (a) two, (b) three and (c) four clusters generated as described in Section 8.3.

To give a general idea of the sparseness property of the proposed method, Figure 8.1
shows the cluster means estimated by the latter for three different simulated data sets with
(a) two, (b) three and (c) four clusters. Data are generated as described in Section 8.3 and
supplementary materials. In Figure 8.1(a), the estimated means are correctly fused over
t P p0.2, 1.0s. Hence, the proposed method is shown to be able to identify the informative
portion of domain r0.0, 0.2s, for the unique pair of clusters and not for all. In Figure 8.1(b)
and Figure 8.1(c), several cluster pairs are available, because the number of clusters is larger
than 2, and, thus, a given portion of domain could be informative for a specific pair of clusters.
In Figure 8.1(b), the informative portion of domain for each pair of clusters is correctly
recovered. The estimated cluster means are indeed pairwise fused over approximately the
same portion of domain as the true cluster means pairs. Note that, for the clusters whose
true means are equal over t P p0.2, 1.0s, the SaS-Funclust method identifies the informative
portion of domain roughly in r0.0, 0.2s. In Figure 8.1(c), the sparseness property of the
SaS-Funclust method is even more striking. In this case, in the face of many cluster pairs,
the proposed method is still able to successfully detect the informative portion of domain.
The properties of the proposed method will be deepened in Section 8.3.

The remainder of this chapter is organized as follows. Section 8.2 presents the proposed
methodology. Specifically, Section 8.2 and 8.2 introduce the general functional Gaussian
mixture model and the penalized maximum likelihood estimator, respectively. Whereas,
the optimization algorithm and model selection considerations are discussed in Section 8.2
and Section 8.2, respectively. Properties and performance of the SaS-Funclust method are
assessed through a wide Monte Carlo simulation study presented in Section 8.3. Section 8.4
illustrates the potentiality of the SaS-Funclust method by means of of three real datasets:
the Berkeley Growth Study, the Canadian weather, and the ICOSAF project data.

8.2 The SaS-Funclust Method for Functional Clustering

A General Functional Clustering Model
The SaS-Funclust method is based on the general functional clustering model introduced by
James and Sugar (2003). Suppose that N observations are spread among G unknown clusters,
and that the probability of each observation to belong to the gth cluster is πg,

°G
g�1 πg � 1.

Moreover, let us denote with Zi � pZ1i, . . . , ZGiqT the unknown component-label vector
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corresponding to the ith observation, where Zgi equals 1 if the ith observation is in the gth
cluster and 0 otherwise. Then, let us assume that for each i observation, i � 1, . . . , N in the
cluster g � 1, . . . , G, it is available a vector Yi �

�
yi1, . . . , yini

�T of size ni, which can differ
across observations, of observed values of a function gi over the time points ti1, . . . , tini

. The
function gi is assumed a Gaussian random process with mean µg, covariance ωg, and values
in L2 pT q, the separable Hilbert space of square integrable functions defined on the compact
domain T . We assume that, conditionally on that Zgi � 1, Yi is modelled as

Yi � gi � ϵi, i � 1, . . . , N,

where gi �
�
gi pti1q , . . . , gi

�
tini

�	T
contains the values of the function gi at ti1, . . . , tini and

ϵi is a vector of measurement errors that are mutually independent and normally distributed
with mean 0 and constant variance σ2

e . Let us suppose also that the unknown component-
label vector Zi has a multinomial distribution, which consists of one draw on g categories
with probabilities π1, . . . , πG. Then, for every i, the unconditional density function f p�q of
Yi is

f pYiq �
Ģ

g�1
πgψ

�
Yi;µgi,Ωgi � Iσ2

e

	
, (8.1)

where µgi �
�
µg pti1q , . . . , µg

�
tini

�	T
, Ωgi � tωg ptki, tliquk,l�1...,ni , I is the identity matrix,

and ψ p�;µ,Σq is the multivariate Gaussian density distribution with mean µ and covariance
Σ. The model in Equation (8.1) is the classical G-component Gaussian mixture model
(McLachlan and Peel, 2004).

As discussed in James and Sugar (2003), it is necessary to impose some structure curves
gi because both the curves could be observed at different time domain points and the
dimensionality of the model in Equation (8.1) could be too high in comparison to the sample
size. Therefore, similarly to the filtering approach for clustering, we assume that each
function gi, for i � 1, . . . , N , may be represented in terms of a q-dimensional set of basis
functions Φ � �ϕ1, . . . , ϕq

�T , that is

gi ptq � ηTi Φ ptq , t P T , (8.2)

where ηi �
�
ηi1, . . . , ηiq

�T are vectors of basis coefficients. Then, ηi are modelled as Gaussian
random vectors, that is, given that Zgi � 1,

ηi � µg � γig, (8.3)

where µg �
�
µg1, . . . , µgq

�T are q-dimensional vectors and γig are Gaussian random vectors
with zero mean and covariance Γg. With these assumption the unconditional density function
f p�q of Yi in Equation (8.1) becomes

f pYiq �
Ģ

g�1
πgψ

�
Yi;Siµg,Σig

�
,

where Si �
�

Φ pti1q , . . . ,Φ
�
tini

�	T
is the basis matrix for the ith curve and Σig � SiΓgSTi �

Iσ2
e . Therefore, the log-likelihood function corresponding to Y1, . . . ,YN is given by

L
�
Θ|Y1, . . . ,YN

� � Ņ

i�1
log

Ģ

g�1
πgψ

�
Yi;Siµg,Σig

�
, (8.4)
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where Θ � tπg,µg,Γg, σ2
eug�1,...,G is the parameter set of interest. Based on an estimate

Θ̂ � tπ̂g, µ̂g, Γ̂g, σ̂2
eug�1,...,G, an observation Y � is assigned to the cluster g that achieves

the largest posterior probability estimate π̂gψ
�
Y �;Siµ̂g, Σ̂ig

	
, with Σ̂ig � SiΓ̂gSTi � Iσ̂2

e.

The Penalized Maximum Likelihood Estimator
James and Sugar (2003) propose to estimate Θ through the maximum likelihood estimator
(MLE), which is the maximizer of the log-likelihood function in Equation (8.4). In this
work, we propose a different estimator Θ̂PMLE of Θ that is the maximizer of the following
penalized log-likelihood

Lp
�
Θ|Y1, . . . ,YN

� � Ņ

i�1
log

Ģ

g�1
πgψ

�
Yi;Siµg,Σig

�� P
�
µg
�
, (8.5)

where P p�q is a penalty function defined as

P
�
µg
� � λL

¸
1¤g¤g1¤G

»
T
τg,g1 ptq |µg ptq � µg1 ptq |dt� λs

Ģ

g�1

»
T

�
µpsqg ptq

	2
dt, (8.6)

where λL, λs ¥ 0 are tuning parameters, and τg,g1 are prespecified weight functions. The
symbol f psq p�q denotes the sth-order derivative of f if the latter a function or the entries of
f if it is a vector. Note that in Equation (8.6) each function gi may be represented as in
Equation (8.2), then it follows that

P
�
µg
� � λL

¸
1¤g¤g1¤G

»
T
τg,g1 ptq |µTg Φ ptq�µTg1Φ ptq |dt�λs

Ģ

g�1

»
T

�
µTg Φpsq ptq

	2
dt, (8.7)

The first element of the right-hand side of Equation (8.6) is the functional extension of the
penalty introduced by Guo et al. (2010) and is referred to as functional adaptive pairwise
fusion penalty (FAPFP). The aim of the FAPFP is to shrink the differences between every
pair of cluster means for each value of t P T . Due to the property of the absolute value
function of being singular at zero, some of these differences are shrunken exactly to zero.
In particular, the FAPFP allows pair of cluster means to be equal over specific portion of
domain that are, thus, noninformative for separating the means of that pair of clusters.

The choice of the weight function τg,g1 in Equation (8.6) and Equation (8.6) should be
based on the idea that if a given portion of domain is informative for separating the means of
the corresponding pair of clusters, then, the values of τg,g1 over that portion should be small.
In this way, the absolute difference |µg p�q � µg1 p�q | is penalized more over noninforvative
portions of domain than over informative ones. Following the standard practice for the
adaptive penalties (Zou, 2006), we propose to use

τg,g1 ptq � |µ̃g ptq � µ̃g1 ptq |�1 t P T , (8.8)

where µ̃g are initial estimates of the cluster means.

Finally, the term λs
°G
g�1

³
T

�
µ
psq
g ptq

	2
dt is a smoothness penalty that penalizes the sth

derivative of the cluster means. This term aims to further improve the interpretability of the
results by constraining, of a magnitude quantified by λs, the cluster means to own a certain
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degree of smoothness, measured by the derivative order s. Following the common practice
in FDA (Ramsay and Silverman, 2005), we suggest to penalize the cluster mean curvature
by setting s � 2, which implies that the basis functions chosen are differentiable at least
s times. As a remark, the penalization in Equation (8.5) is applied only to the parameter
vectors corresponding to the cluster means, i.e., to µ1, . . . ,µG. The reason is that, in this
work, we consider the case where a portion domain is defined as informative only in terms of
cluster mean differences. However, portions of domain could be informative also in terms
of differences in cluster covariances, which together with the means uniquely identify each
cluster.

The Penalty Approximation and the Optimization Algorithm
To perform the maximization of the penalized log-likelihood in Equation (8.5), the penalty
P p�q, defined as in Equation (8.6), can be written as

P
�
µg
� � λL

¸
1¤g¤g1¤G

»
T
|
�
µ̃Tg � µ̃g1

	T
Φ ptq |�1|

�
µTg � µg1

	T
Φ ptq |dt� λs

Ģ

g�1
µTgWµg,

(8.9)

where the weight functions τg,g1 ptq are expressed as in Equation (8.8), and the initial estimates
of the cluster means are represented through the set of basis functions Φ as µ̃g ptq � µ̃Tg1Φ ptq,
t P T , with µ̃g �

�
µ̃g1, . . . , µ̃gq

	T
. The matrix W is equal to

³
T Φpsq ptq

�
Φpsq ptq

	T
dt. A

great simplification of the optimization problem can be achieved if the first element on the
right-hand side of Equation (8.9) can be expressed as linear function of |µTg � µg1 |. The
following theorem provides a practical way to rewrite the first term of the right-hand side of
Equation (8.9) as linear function of |µTg � µg1 |, when Φ is a set of B-splines (De Boor et al.,
1978; Schumaker, 2007).

Theorem 4. Let Φ � �
ϕ1, . . . , ϕq

�T be the set of B-splines of order k and non-
decreasing knots sequences tx0, x1, . . . , xMj , xM�1u defined on the compact set T �
rx0, xM�1s, with q � M � k, and tτjuq�1

j�1 being a sequence with τ1 � x0, τj �
τj�1 �

�
xminpM�1,jq � xmaxp0,j�1�kq

	
{k, τq�1 � xM�1. Then, for each function f ptq �°q

i�1 ciϕi ptq, t P T , where ci P R, the function f̃ ptq � °q
i�1 ciIrτi,τi�1s ptq, t P T , where

Irτi,τi�1s ptq � 1 for t P rτi, τi�1s and zero elsewhere, is such that

sup
tPT

|f ptq � f̃ ptq | � Opδq, (8.10)

where δ � maxi |xi�1 � xi|, that is f ptq � f̃ ptq converges uniformly to the zero function.

Theorem 4, whose proof is deferred to the supplementary materials, basically states that
when δ is small, f is well approximated by f̃ . In other words, the approximation error |f � f̃ |
can be made arbitrarily small by increasing the number of knots. If we further assume the
knots sequence evenly spaced, δ turns out to be equal to 1{M . These considerations allow

us to approximate |
�
µTg � µg1

	T
Φ ptq | and |

�
µ̃Tg � µ̃g1

	T
Φ ptq |, respectively, as follows

| �µg � µg1�T Φ ptq | � |µg�µg1 |T I ptq , |
�
µ̃g � µ̃g1

	T
Φ ptq | � |µ̃g� µ̃g1 |T I ptq , @t P T ,

(8.11)
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where I �
�
Irτ1,τ2s, . . . , Irτq,τq�1s


T
. Thus, Equation (8.9) can be rewritten as

P
�
µg
� � λL

¸
1¤g¤g1¤G

M̃ |µg � µg1 | � λs

Ģ

g�1
µTgWµg, (8.12)

where M̃ � diag
�

τ2�τ1
|µ̃g1�µ̃g11|

, . . . , τ2�τ1
|µ̃gq�µ̃g1q |

	
is the diagonal matrix with diagonal entries

τ2�τ1
|µ̃g1�µ̃g11|

, . . . , τ2�τ1
|µ̃gq�µ̃g1q |

.
The goodness of the approximations in Equation (8.11) depends on the cardinality q of

the set of B-splines Φ, which, thus, should be as large as possible. However, the number
of parameters in Equation (8.1), which depends quadratically on q, becomes very large
even for moderate values of q. To mitigate this issue, one may further assume equal and
diagonal coefficient covariance matrices across all clusters, that is Γ1 � � � � � ΓG � Γ �
diag

�
σ2

1 , . . . , σ
2
q

	
. As a remark, with this assumption, we are implicitly assuming that

clusters are separated only by their mean values, and, thus, informative portion of domain
are identified only by cluster mean differences and not in terms of covariances.

The penalized log-likelihood function in Equation (8.5) becomes

Lp
�
Θ|Y1, . . . ,YN

� � Ņ

i�1
log

Ģ

g�1
πgψ

�
Yi;Siµg,Σi

��λL ¸
1¤g¤g1¤G

M̃ |µg�µg1 |�λs
Ģ

g�1
µTgWµg,

(8.13)
with Σi � SiΓSTi � Iσ2

e . The maximization of this objective function is a nontrival problem.
A specifically designed algorithm is proposed, which is a modification of the expectation
maximization (EM) algorithm proposed by James and Sugar (2003). By treating the
component-label vectors Zi (defined at the beginning of Section 8.2) and γig in Equation
(8.3) as missing data, the complete penalized log-likelihood is given by

Lcp
�
Θ|Y1, . . . ,YN

� � Ņ

i�1

Ģ

g�1
Zgi

�
log πg � logψ

�
γig, 0,Γ

�� logψ
�
Yi;Si

�
µg � γig

�
, σ2
eI
	�

� λL
¸

1¤g¤g1¤G
M̃ |µg � µg1 | � λs

Ģ

g�1
µTgWµg. (8.14)

The EM algorithm consists in the maximization, at each iteration t � 0, 1, 2, . . . , of
the expected value of Lcp, calculated with respect the joint distribution of Zi and
γig, given Y1, . . . ,YN and the current parameter estimates Θ̂

ptq � tπ̂ptqg , µ̂ptqg , Γ̂
ptq �

diag
�
σ̂

2ptq
1 , . . . , σ̂2ptq

q

	
,

σ̂2ptq
e ug�1,...,G. The algorithm stops when a pre specified stopping condition is met. At each
t, the expected value of Lcp as a function the probability of membership π1, . . . , πG is then
maximized by setting

π̂pt�1q
g � 1

N

Ņ

i�1
π̂
pt�1q
g|i ,

with π̂
pt�1q
g|i � E

�
Zig � 1|Yi, Θ̂ptq



� π̂ptqψ

�
Yi;Siµ̂ptq

g ,Σ̂ptq
i

	
°G

g1�1 π̂
ptq

g1
ψ
�

Yi;Siµ̂
ptq
g ,Σ̂ptq

i

	 . With respect to σ2
1 , . . . , σ

2
q ,
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Lcp is maximized by

σ̂
2pt�1q
j � 1

N

Ņ

i�1

Ģ

g�1
π̂
pt�1q
g|i E

�
γ2
igpjq|Yi, Zgi � 1, Θ̂

ptq



j � 1, . . . , q,

where γ2
igpjq indicates the jth entry of γ2

ig. The value of E
�
γ2
igpjq|Yi, Zgi � 1, , Θ̂

ptq



can be

calculated by using the property that the (conditional) distribution of γig given Yi, Zgi �
1, Θ̂

ptq
is Gaussian with mean Γ̂

ptq
STi

�
SiΓ̂

ptq
STi � Iσ̂2ptq


�1 �
Yi � Siµ̂ptqg

	
and covariance

Γ̂
ptq � Γ̂

ptq
STi

�
SiΓ̂

ptq
STi � Iσ̂2ptq


�1
SiΓ̂

ptq
. Then, σ2

e is updated as

σ̂2pt�1q
e � 1°N

i�1 ni

Ņ

i�1

Ģ

g�1

�
π̂
pt�1q
g|i

�
Yi � Siµ̂ptqg � Siγ̂ptqig

	
T �
Yi � Siµ̂ptq � Siγ̂ptqig

	
� Si Cov

�
γig|Yi, Zgi � 1, Θ̂

ptq


STi s ,

where γ̂ptqig � E
�
γig|Yi, Zgi � 1, Θ̂

ptq



.

The mean vectors µ1, . . . ,µG that maximize the conditional expectation of Lcp are the
solution of the following optimization problem

µ̂
pt�1q
1 , . . . , µ̂

pt�1q
G � argmin

µ1,...,µG

1
2

Ņ

i�1

Ģ

g�1
π̂
pt�1q
g|i

1
σ̂ptqe

�
Yi � Si

�
µg � γ̂ptqig

	
T �
Yi � Si

�
µg � γ̂ptqig

	


� λL
¸

1¤g¤g1¤G
M̃ |µg � µg1 | � λs

Ģ

g�1
µTWµg. (8.15)

The optimization problem in Equation (8.15) is a difficult task of the non differentiability of
the absolute value function in zero, and, it has not a closed form solution. However, following
the idea of Fan and Li (2001), it can be solved by means of the standard local quadratic
approximation method, i.e., by iteratively solving the following quadratic optimization
problem for s � 0, 1, 2, . . .

µ̂
pt�1,s�1q
1 , . . . , µ̂

pt�1,s�1q
G � argmin

µ1,...,µG

1
2

Ņ

i�1

Ģ

g�1
π̂
pt�1q
g|i

1
σ̂ptqe

�
Yi � Si

�
µg � γ̂ptqig

	
T �
Yi � Si

�
µg � γ̂ptqig

	


� λL
¸

1¤g¤g1¤G
|µg � µg1 |TM̃Dpsq|µg � µg1 | � λs

Ģ

g�1
µTgWµg, (8.16)

where Dpsq � diag
�

1
2|µ̂pt�1,sq

g1 �µ̂
pt�1,sq

g11
|
, . . . , 1

2|µ̂pt�1,sq
gq �µ̂

pt�1,sq

g1q
|

�
, and µ̂

pt�1,0q
1 �

µ̂
ptq
1 , . . . , µ̂

pt�1,0q
G � µ̂

ptq
G . Equation (8.16) is based on the following approximation

(Fan and Li, 2001)

|µgi � µg1i| � |µgi � µg1i|
2|µ̂pt�1,sq

gq � µ̂
pt�1,sq
g1q |

� 1
2 |µ̂

pt�1,sq
gq � µ̂

pt�1,sq
g1q |. (8.17)
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The solution to the original problem in Equation (8.15) can be satisfactorily approximated
by the solution at iteration s� of the optimization problem in Equation (8.17) when a pre
specified stopping condition is met, i.e., µ̂pt�1q

1 � µ̂
pt�1,s�q
1 , . . . , µ̂

pt�1q
G � µ̂

pt�1,s�q
G . For

numerical stability, a reasonable suggestion is to set a lower bound on |µ̂pt�1,sq
gi � µ̂

pt�1,sq
g1i |,

and then to shrink to zero all the estimates below the lower bound. It is worth noting
that the proposed modification to the algorithm of James and Sugar (2003) falls within
the class of the expectation conditional maximization (ECM) algorithms (Meng and Rubin,
1993). Based on the convergence property of the ECM algorithms, which also holds for the
local quadratic approximation in variable selection problems (Fan and Li, 2001; Hunter and
Li, 2005), the proposed algorithm can be proved to converge to a stationary point of the
penalized log-likelihood in Equation (8.13).

Model Selection
The proposed SaS-Funclust method requires the choice several hyper-parameters viz., the
number of clusters G, tuning parameters λs, λL, dimension q and the order k of the set of
B-spline functions Φ as well as the knot locations. A standard choice for Φ is the cubic
B-splines (i.e., k � 4) with equally spaced knot sequence, which enjoy the optimal property
of interpolation (De Boor et al., 1978). Moreover, the dimension q should be set as large
as possible to reduce, to the greatest possible extent, the approximation error in Equation
(8.11). This facilitates the estimated cluster means to successfully capture the local feature
of the true cluster means. Unfortunately, the larger the value of q, the higher the complexity
of the model in Equation (8.1), i.e., the number of parameters to estimate. The presence
of the smoothness penalty on µg, as well as the constraint imposed on Γg, allows one to
control the complexity of the model and, thus, to prevent over-fitting issues. The choice of
G,λs, and λL may be based on a K-fold cross-validation procedure. Based on observations
divided into K equal-sized disjoint subsets f1, . . . , fk, . . . , fK , G,λs, and λL are chosen as
the maximizers of the following function

CV pG,λs, λLq � 1
K

Ķ

k�1

¸
iPfk

log
Ģ

g�1
π̂�fk
g ψ

�
Yi;Siµ̂�fk

g , Σ̂
�fk

i



, (8.18)

where π̂�fk
g , µ̂�fk

g and Σ̂
�fk

i denote the SaS-Funclust estimates of πg,µg and Σi obtained by
leaving out the observations in the k-th subset fk. Usually, the CV function is numerically
calculated over a finite grid of values. As in the multivariate regression setting, the uncertainty
of the CV function in estimating the log-likelihood observed for an out-of-sample observation
is taken into account by means of the so called m-standard deviation rule. This heuristic
rule suggests to pick up the most parsimonious model among those achieving values of the
CV function that are no more than m standard errors below the maximum of Equation
(8.18). Note that, in this problem, parsimony is reflected into large λs, λL and small G. By
elaborating on the m-standard deviation rule, we propose to firstly choose G for each value
of λs, λL, with m � m1; secondly, at fixed G, choose λs for each λL, with m � m2; thirdly,
to choose λL at fixed λs and G, by using m � m3. In this way, the estimated model is not
unnecessarily complex and achieves predictive performance that is comparable to that of the
best model (i.e., the one that maximizes the CV function in Equation (8.18)). As a remark,
although the component-wise procedure proposed to choose λs, λL and G proves itself to
be very effective in the simulation study of Section 8.3, we recommand whenever possible
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to directly plot and inspect the CV curve as a function of G,λs, and λL and to use any
information available from the specific application.

8.3 Simulation Study

In this section, the performance of the SaS-Funclust method is assessed by means of an
extensive Monte Carlo simulation study. The SaS-Funclust method, implemented through the
R package sasfunclust, is compared with the following methods that have already appeared in
the literature before. In particular, we refer to the method proposed by Giacofci et al. (2013)
as curvclust, and to that proposed by Bouveyron and Jacques (2011) as funHDDC. These
methods are implemented through the homonymous R packages curvclust (Giacofci et al.,
2012) and funHDDC (Schmutz and Bouveyron, 2019). In addition, we consider also filtering
approaches based on two main steps. The first step consists in the estimation of the functions
gi by means of either smoothing B-splines or functional principal component analysis (Ramsay
and Silverman, 2005); whereas the second step aims to apply standard clustering algorithms,
viz. hierarchical, k-means and finite mixture model clustering methods (Everitt et al., 2011),
on either the resulting B-spline coefficients or the functional principal components scores.
Filtering approaches based on the smoothing B-splines and the hierarchical, k-means and
finite mixture model clustering methods will be hereinafter referred to as B-HC, B-KM
and B-FMM, respectively, whereas methods based on the functional principal component
analysis and the hierarchical, k-means and finite mixture model clustering methods are
referred to as FPCA-HC, FPCA-KM and FPCA-FMM. Finally, we evaluate also the method
presented by Ieva et al. (2013), which is referred to as DIS-KM and it basically consists in
the application of the k-means clustering to the L2 distances among the observed curves.
The number of clusters is selected through the Bayesian information criterion (BIC) for the
curvclust and funHDDC methods, as suggested by Giacofci et al. (2013) and Bouveyron and
Jacques (2011), respectively; whereas the silhouette index (Rousseeuw, 1987) is used for the
DIS-KM method. The majority rule applied to several validity indices (Charrad et al., 2012)
is used to determine the number of clusters for all the filtering approaches. The number
of clusters and the tuning parameters needed to implement the SaS-Funclust method are
determined through the CV based procedure described in Section 8.2 with q � 30, K � 5,
m1 � m3 � 0.5, and m2 � 0. The values of m1 and m3 ensure parsimony in the choice of
λL and G, whereas for picking λs the m-standard deviation is not applied. The initial values
of the parameters for the ECM algorithm are chosen by applying the k-means algorithm on
the coefficients estimated through smoothing B-spline.

The performance of the clustering procedures in selecting the proper number of clusters
and identifying the clustering structure, when the true number of cluster is known, is assessed
separately. In particular, the former is measured through the mean number of selected
clusters, whereas the latter is compared through the adjusted Rand index (Hubert and
Arabie, 1985) denoted by aRand. This index accounts for the agreement between true data
partitions and clustering results corrected by chance, based on the number of paired objects
that are either in the same group or in different groups in both partitions. The aRand yields
values between 0 and 1. The larger its value, the higher the similarity between the two
partitions.

Three different scenarios are analysed where data are generated from Gt � 2, 3, 4 clusters
and referred to as Scenario I, II and III, respectively. For each scenario, the considered
methods are evaluated by assessing the performance over 100 independently simulated
datasets where measurement errors are generated with five different values of standard
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Figure 8.2. Average aRand index for (a) Scenario I, (b) Scenario II, and (c) Scenario III as a function of σe when
the true number of clusters is known.
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Figure 8.3. Average selected number of clusters G for (a) Scenario I, (b) Scenario II, and (c) Scenario III as a
function of σe.

error σe � 1, 1.5, 2, 2.5, 3. From Scenario I to Scenario III, the portion of domain that is
noninformative for all cluster pairs decreases, whereas, the portions of domain that are
informative for specific cluster pairs increases. Further details about the data generation
process are provided in the supplementary materials.

Figure 8.2 shows the average aRand index values for Scenario I, through III as a function
of the standard error σe. In Scenario I, at small values of σe, all methods perform comparably
and provide clustering partitions with aRand values very close to 1, which corresponds to
the perfect cluster identification. However, as σe increases, the SaS-Funclust method turns
out to be the best method, closely followed by the curvclust method. Also the B-FMM
performs very well, except when σe � 3.0. In Scenario II and III, the SaS-Funclust method
is still the best, followed by the curvclust and B-FMM case in Scenario II and only by the
curvclust method in Scenario III. Note that in these scenarios, the DIS-KM underperforms
also in the most favourable cases as a consequence of the lesser capacity of the L2 distance
to recover the true clustering structure.

Figure 8.3 shows the mean number of selected clusters in all scenarios. It is clear that
the SaS-Funclust method is able to identify the true number of clusters much better than
the competitors in all the considered scenarios. In particular, Scenario II highlights that,
especially for large measurement error σe, the competing methods reduce their complexity
and select, on average, a number of clusters smaller than the true number of clusters Gt � 3.
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Figure 8.4. Average selected number of clusters G for Scenario I (a), Scenario II (b), and, Scenario III (c) as a
function of σe.

Table 8.1. Average fractions of correctly identified noninformative portions of domain by the SaS-Funclust method
for each scenario.

Scenario I Scenario II Scenario III

σe

1.0 0.9956 0.9901 0.9782
1.5 0.9921 0.9844 0.9627
2.0 0.9846 0.9589 0.9389
2.5 0.9565 0.9373 0.8942
3.0 0.8821 0.8760 0.8024

This is evident in Scenario III, where the competing methods select, on average, a number of
clusters G � 2 for σe � 2.5, 3.0, which is smaller than Gt � 4.

Figure 8.4 and Table 8.1 highlight the ability of the SaS-Funclust method in recovering
the true cluster means and detecting the informative portions of domain. The average

root mean squared error calculated as RMSE �
�

1
G

°G
g�1

³
T

�
µg ptq � µ̂g ptq

	2
dt

�1{2
, with

µ̂g ptq � µ̂Tg Φ ptq, t P T , is plotted in Figure 8.4 for each method as a function of σe in all
three scenarios. By this figure, the SaS-Funclust method outperforms the competitors in each
scenario, especially for large measurement errors, even though the curvclust method shows
comparable performance. Table 8.1 reports, for each σe and scenario, the average fractions
of correctly identified noninformative portions of domain by the SaS-Funclust method, which
can be regarded as a measure of the interpretability (i.e., sparseness) of the proposed solution.
In more detail, each entry of the table is obtained as the mean of the average fraction of
correctly identified noninformative portions of domain, over the 100 generated datasets, for
each pair of clusters, weighted by the size of the corresponding true noninformative portions
of domain. In Scenario I, it trivially coincides with the average, because the true number of
clusters is Gt � 2. The proposed method is clearly able to provide an interpretable clustering.
The fraction of correctly identified noninformative portions of domain is almost larger than
or equal to 0.90 for σe ¤ 2.5 and decreases to 0.80 for σe � 3.5. It is worth noting that
when σe � 1.0, the pairs of clusters in each scenario are correctly fused over almost all the
noninformative portion of domain in terms of mean differences. This confirms what is shown
in Figure 8.1 of Section 8.1.
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Table 8.2. The values of the aRand index for all the clustering methods with respect to gender difference based
grouping and the SaS-Funclust partition for the Berkeley growth study dataset

SaS-Funclust curvclust funHDDC B-HC B-KM B-FMM FPCA-KM FPCA-HC FPCA-FMM DIS-KM
Gender difference based grouping 0.58 0.51 0.61 0.20 0.58 0.58 0.58 0.58 0.58 0.58

SaS-Funclust - 0.83 0.96 0.37 1.00 1.00 1.00 1.00 1.00 1.00

8.4 Real-data Examples

Berkeley Growth Study Data

In this section, the SaS-Funclust method is applied to the growth dataset from the Berkeley
growth study (Tuddenham, 1954), which is available in the R package fda (Ramsay et al.,
2020). In this study, the heights of 54 girls and 39 boys were measured 31 times at age 1
through 18. The aim of the analysis is to cluster the growth curves and compare the results
with the partition based on the gender difference. This problem has been already addressed
by Chiou and Li (2007); Jacques and Preda (2013); Floriello and Vitelli (2017). In particular,
we focus on the growth velocities from age 2 to 17, whose discrete values are estimated
through the central differences method applied to the growth curves. Figure 8.5(a) shows
the interpolating growth velocity curves for all the individuals.

In view of the analysis objective, all clustering methods described in Section 8.3 are
applied by setting G � 2. As shown in the first row of Table 8.2, all clustering methods,
excluded the B-HC, perform similarly in terms of the aRand index with respect to the gender
difference partition. Moreover, by looking at the second row of Table 8.2, which shows the
aRand index with respect to the SaS-Funclust partition, the competing methods provide
partitions very similar to the SaS-Funclust one.

As expected, the SaS-Funclust method allows for a more interpretable analysis. Figure
8.5 shows (b) the estimated cluster means and (c) the clustered growth curves for the
SaS-Funclust method. The estimated cluster means are fused over the first portion of the
domain, whereas they are separated over the remaining portions. This implies that the two
identified clusters are not different on average over the first portion of domain which can
be, thus, regarded as noninformative. Separation between the two group arises over the
remaining informative portion of domain, where two sharp peaks of growth velocity arise,
instead. The latter peaks are known in the medical literature as pubertal spurts, in which
respect the attained results indicate two main timing/duration groups. In particular, male
pubertal spurt happens later and lasts longer than female one. Nevertheless, some individuals
show unusual growth patterns that are not captured by the cluster analysis. Additionally,
the estimated cluster means from the competing methods, not shown here, do not allow for
a similar straightforward interpretation.

Canadian Weather Data

The Canadian weather dataset contains the daily mean temperature curves, measured in
Celsius degree, recorded at 35 cities in Canada. The temperature profiles are obtained by
averaging over the years 1960 through 1994. This is a benchmark dataset available in the R
package fda (Ramsay et al., 2020) that has been already studied by Ramsay and Silverman
(2005); Centofanti et al. (2020). Figure 8.6(a) displays the interpolating profiles, where, for
computational reasons, temperature curves are sampled each five days.
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Figure 8.5. (a) Growth velocities of 54 girls and 39 boys in the Berkeley growth study dataset; (b) estimated
cluster curve means and (c) curve clusters for the SaS-Funclust method in the Berkeley growth study dataset.

Table 8.3. The values of the aRand index for all the clustering methods with respect to climate zones grouping
and the SaS-Funclust partition for the Canadian weather dataset

SaS-Funclust curvclust funHDDC B-HC B-KM B-FMM FPCA-KM FPCA-HC FPCA-FMM DIS-KM
Climate zones grouping 0.37 0.24 0.21 0.38 0.21 0.33 0.22 0.30 0.17 0.27

SaS-Funclust - 0.50 0.35 0.86 0.35 0.93 0.59 0.72 0.43 0.40

The ultimate goal of the cluster analysis applied to these curves is the geographical
interpretation of the results. In particular, all methods analysed in Section 8.3 are applied
by setting G � 4 in order to try to recover the grouping of 4 climate zones, viz., Atlantic,
Pacific, Continental, Arctic (Jacques and Preda, 2013). The first row of Table 8.3 shows the
aRand index values of the resulting clusters calculated with respect to the 4-climate-zone
grouping. Although the SaS-Funclust and the B-HC methods achieve the largest aRand
in this case, aRand values are in all cases inadequately low, which indicates the clustering
structure disagrees with such grouping. That is, different method performance cannot
properly evaluated by using the 4-climate-zone grouping. The second row of Table 8.3
reports the aRand index for all the competing methods calculated with respect to the
SaS-Funclust method. As expected, the proposed clustering agrees with filtering methods
based on B-splines, while mostly disagrees with the others.

In terms of interpretability, Figure 8.6 shows (b) the estimated cluster means and
(c) geographical distribution of the curves in the clusters obtained by the SaS-Funclust
method. From Figure 8.6(b), the estimated means for clusters 1, 2 and 4 are shown to
fuse approximately from day 100 through 250. This is a strong evidence that the mean
temperature in this period of the year is not significantly different among zones in cluster 1,
2 and 4. Hence, this portion of domain turns out to be noninformative for the separation
of these clusters, whereas the mean temperature is different for the rest of the year. A
different pattern is followed by the curves in cluster 3, which shows significantly smaller
mean temperature all over the year. The geographical displacement of the temperature
profiles coloured by the clusters identified through the SaS-Funclust method is reported
in Figure 8.6(c). Observations in cluster 1, 2 and 3 correspond to Pacific, Atlantic and
southern continental stations and show similar mean temperature patterns only over the
middle days of the year. Observations in cluster 3, which correspond to northern stations,
show lower mean temperature. This nice and plausible interpretation of this well-known
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Figure 8.6. (a) Daily mean temperature profiles at 35 cities in Canada over the year in the Canadian weather
dataset; (b) estimated cluster curve mean and (c) geographical displacement of the curves pertaining to clusters
obtained through SaS-Funclust method.

Table 8.4. aRand index calculated on the ICOSAF project dataset for all competing method partitions with respect
to the SaS-Funclust one.

curvclust funHDDC B-HC B-KM B-FMM FPCA-HC FPCA-KM FPCA-FMM DIS-KM
SaS-Funclust 0.00 0.46 0.41 0.35 0.46 0.44 0.27 0.55 0.56

real-data example is not possible by means of any competing method.

ICOSAF Project Data

The ICOSAF project dataset contains 538 dynamic resistance curves (DRCs), collected
during resistance spot welding lab tests at Centro Ricerche Fiat in 2019. The DRCs are
collected over a regular grid of 238 points equally spaced by 1 ms. Further details on this
dataset can be found in Capezza et al. (2020b) and the data are publicly available online at
https://github.com/unina-sfere/funclustRSW/. In this example, we focus on the first
derivative of the DRCs, estimated by means of the central differences method applied to the
DRC values sampled each 2 ms. Figure 8.7(a) shows the first derivative of the DRCs defined,
without loss of generality, on the domain r0, 1s. In this setting, the aim of the analysis is to
cluster DRCs to identify homogenous groups of spot welds that share common mechanical
and metallurgical properties. Differently from the previous datasets, no information are
available about a reasonable partition of the DRCs. Therefore, based on the considerations
provided by Capezza et al. (2020b) and on cluster number selection methods described for
the SaS-Funclust and competing methods in Section 8.2 and 8.3, respectively, we set G � 3.
Table 8.4 shows aRand values obtained for all method pairs with respect to the SaS-Funclust
partition. In this case, the SaS-Funclust method provides partitions that are more similar to
those obtained through the FPCA-based methods than those obtained with the B-splines
filtering approaches. However, the clusters identified by the SaS-Funclust method do not
resemble those of the other methods. It is worth noting that, for this dataset, even if results
are not reported here, the partition obtained by curvclust differs dramatically from the
others and does not provide meaningful clusters.

Also in this case, the SaS-Funclust method allows for an insightful interpretation of
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Figure 8.7. (a) First derivatives of the 538 DRCs in the ICOSAF project dataset; (b) estimated cluster curve
means and (c) curve clusters for the SaS-Funclust method in the ICOSAF project dataset.

the results. The estimated cluster means and the corresponding clustered curves obtained
through the SaS-Funclust method, displayed in Figure 8.7 (b) and (c), confirm the ability of
the proposed method to fuse cluster means, as it is clear over the second part of the domain.
In particular, the mean of cluster 1 and 3 are fused from 0.5 to 1, which accounts for the
comparable decreasing rate of the DRCs over these clusters. Differently, the mean of cluster
2 is fused with other cluster means between 0.8 and 1, only. This indicates that between 0.5
and 0.8 DRCs of cluster 3 decrease with a rate that is different from that of DRCs included
in other clusters. Differences between cluster 2 and clusters 1 and 3 are plainly visible also
in the first part of the domain, where DRCs of cluster 2 show lower average velocity. Note
also that DRCs of cluster 2 reach their peaks (i.e., zeros of the first derivative) earlier than
those of clusters 3 and 1.

8.5 Conclusions and Discussions

This chapter presented the SaS-Funclust method, a new approach to the sparse clustering of
functional data. Differently from methods that have already appeared in the literature before,
it was shown to be capable of successfully detecting where cluster pairs are separated. In many
applications, this involves limited portions of domain, which are referred to as informative, and
thus, the proposed method allows for a more accurate and interpretable cluster analysis. The
SaS-Funclust method can be considered as belonging to the model-based clustering procedures
with parameters of a general functional Gaussian mixture model estimated by maximizing a
penalized version of the log-likelihood function. The key element is the functional adaptive
pairwise fusion penalty that, by locally shrinking mean differences, allows pairs of cluster
means to be exactly equal over portions of domain where cluster pairs are not well separated,
referred to as noninformative. In addition, a smoothness penalty is introduced to further
improve cluster interpretability. The penalized log-likelihood function was maximized by
means of a specifically designed expectation-conditional expectation algorithm, and model
selection was addressed through a cross-validation technique. An extensive Monte Carlo
simulation study showed the favourable performance of the proposed method over several
competing methods both in terms of clustering accuracy and interpretability. Lastly, real-
data examples further demonstrated the practical advantages of the proposed method, which
provided, thanks to its sparseness property, new insightful and interpretable solutions to
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cluster analysis. In the Berkeley growth study example, the SaS-Funclust method highlighted
that growth velocity curves of boys and girls show different pubertal spurt, which happens
later and last longer for male than female. Whereas, in the Canadian weather example, the
mean temperatures over the Pacific, Atlantic and southern continental regions were found to
be equal over the middle days of the year and different otherwise. Moreover, the proposed
method was applied to the ICOSAF project dataset, where, differently from the previous
datsets, no information are available about a reasonable partition. The SaS-Funclust method
also in this case identified homogenous groups of spot welds that showed, only during the
first part of the process, differences in the rate of change of dynamic resistance curves, which
are likely to be responsible of distinct mechanical and metallurgical properties of the spot
welds.

As closing remarks, we can envisage several important extensions to refine the proposed
method. Regarding the structure of the functional clustering model, the assumption of a
common diagonal coefficient covariance matrix across all clusters may be too restrictive and
may result in a poor fit. Unfortunately, more flexible covariance structures dramatically
increase the number of parameters to be estimated, already enlarged to achieve sparseness,
in the SaS-Funclust method. For this reason, regularization framework shall necessarily be
addressed to avoid overfitting, possibly either by constraining the covariance structure, as
done in this chapter, or by means of shrinkage estimators. However, the choice of the best
approach still remains not straightforward. Furthermore, the covariance structure of the
measurement errors could be modified to include more complex relationships, and the model
can be extended also by including covariates (James and Sugar, 2003).

Another natural extension of the SaS-Funclust method that in worth considering is the
integration of a proper pairwise penalty applied to the covariance functions, useful in those
settings where portions of domain are informative for the clustering also in terms of covariance
functions. Unfortunately, the choice of such penalty and the resulting computational issues
are non-trivial and need for additional careful investigation.

8.6 Supplementary Materials

Proof of Theorem 1

We have that

sup
tPT

|f ptq � f̃ ptq | � sup
tPT

|f ptq �
q̧

i�1
ciIrτi,τi�1s ptq | � max

i
sup

tPrτi,τi�1s
|f ptq � ci|. (8.19)

Following De Boor et al. (1978), we have that for t P rτi, τi�1s and i � 1, . . . , q,

|f ptq�ci| ¤ D sup
sPrτi,τi�1s

|f ptq�f psq | ¤ D sup
s,zPrτi,τi�1s

|f pzq�f psq | ¤ D sup
|s�t|¤δτ

|f ptq�f psq |,

(8.20)
where δτ � maxi |τi�1 � τi|. The term sup|s�t|¤δτ

|f ptq � f psq | is the modulus of continuity
of f on T , and from Schumaker (2007), the following inequality holds

sup
|s�t|¤δτ

|f ptq � f psq | ¤ δτ sup
tPT

|f p1q ptq | ¤ δ sup
tPT

|f p1q ptq |, (8.21)
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Table 8.5. Coefficient mean vectors for each scenario and cluster.

ηi Cluster 1 Cluster 2 Cluster 3 Cluster 4

Scenario I ηi1, . . . , ηi5 1.5 -1.5 - -
ηi6, . . . , ηi30 0 0 - -

Scenario II
ηi1, . . . , ηi5 3 0 0 -
ηi6, . . . , ηi10 1.5 1.5 -1.5 -
ηi11, . . . , ηi30 0 0 0 -

Scenario III

ηi1, . . . , ηi5 1.5 1.5 -1.5 -1.5
ηi6, . . . , ηi10 3 0 0 -3
ηi11, . . . , ηi15 1.5 1.5 -1.5 -1.5
ηi16, . . . , ηi30 0 0 0 0

where the last inequality follows because 0 ¤ δτ ¤ δ. Therefore, upon using Equation (8.19),
(8.20), and (8.21), it readily follows that

sup
tPT

|f ptq � f̃ ptq | ¤ Dδ sup
tPT

|f p1q ptq |, (8.22)

which proves the theorem.

Details on Data Generation of the Monte Carlo Simulation Study
Data are generated from Gt � 2, 3, 4 clusters and referred to as Scenario I, II and III,
respectively. For each scenario, the considered methods are evaluated by assessing the
performance over 100 independently generated datasets. From each cluster, 200 observations
are generated over the domain T � r0, 1s. The true functions are obtained as gi � ηTi ΘB,
with ΘB representing a set of 30 evenly spaced knot cubic B-splines. The coefficients
ηi � pηi1, . . . , ηi30qT are Gaussian random coefficients with mean vectors (depending on both
the scenario and the cluster considered) reported in Table 8.5, and covariance matrix Γ � σ2

cI,
where σc � 0.5 and I denotes the identity matrix. Then, to obtain the contaminated-with-
error observations Yi, the true functions gi are evaluated over a grid of 50 points, with the
addition of measurement errors independently generated as Gaussian random variables with
zero mean and five different values of standard error σe � 1, 1.5, 2, 2.5, 3.
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Chapter 9

Robust Functional ANOVA with
Application to Additive Manufacturing

Abstract

With the advance of modern technology, more and more data are being recorded continuously
and, thus, are apt to be modeled as functional data. In some applications, the interest
relies on identifying the presence of significant differences, in terms of functional mean,
among groups of a functional data, defined by different conditions. This problem is the
functional extension of the classical analysis of variance, that is, the functional analysis of
variance (FANOVA). When dealing with real data, it is common that the functional sample
under study is contaminated by some outliers, which can strongly bias the analysis. In
order to take into account the possible presence of anomalous functional observations, a
new robust method to address the multiway FANOVA problem is proposed which reduces
the weights of outliers on the results of the analysis. It is a permutation test whose test
statistics relies on the functional equivariant M -estimator, the functional extension of the
classical robust M -estimator. By means of an extensive Monte Carlo simulation study, the
proposed test is compared with some alternatives already present in the literature in both
one-way and two-way designs. The performance of the proposed approach is demonstrated
in the framework of a motivating real case-study in additive manufacturing, also known
as 3D-printing. The real case study deals with the analysis of by-products of the process,
i.e., spatter ejections, measured through high-speed video imaging and translated into a
functional form. The aim of the robust FANOVA consists of identifying significant effects
of relevant process factors and their interactions on such by-products, since spatter-related
dynamics have the potential to be used as "signatures" of the process stability and quality.

9.1 Introduction

The development of data acquisition methods allow the analysis of complex systems in
several operating conditions as never before. Several examples may be found in the current
Industry 4.0 framework, that is being reshaping the variety of signals and measurements
that can be gathered during manufacturing processes. Experimental data are more and more
characterized by complex and novel formats, like images, videos, dense point clouds, etc.
This evolution has been enabled also by new industrial production processes like additive
manufacturing, or 3D printing. Indeed, thanks to the ability of manufacturing a product on
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a layer by layer basis, it is possible to look and capture phenomena and events occurring in
every layer, through measurement tools that may range from in-line thermography to machine
vision, spectrometry, etc. (Colosimo et al., 2018; Colosimo and Grasso, 2020; Everton et al.,
2016). As a consequence, the focus of many applications in industrial statistics is being
moving from product quality characteristics to in-line process measurements, thanks to
enhanced sensing and monitoring capabilities. Moreover, novel production paradigms are
characterized by several controllable factors and complex process dynamics that impose
the need for effective and efficient experimental approaches to determine optimal process
conditions but also to gather a deeper comprehension of underlying physical phenomena.

One example, which also motivates the present study, regards the analysis of by-products
in a metal additive manufacturing process known as laser powder bed fusion (L-PBF).
L-PBF is an additive process suitable to produce metal parts exploiting a laser beam to
selectively melt a thin layer of metal powder. The process is repeated layer by layer, with the
material solidified in one layer being welded to the material in underneath layers, enabling
the fabrication of products with complex geometries and innovative properties (Gibson
et al., 2014). In addition to the local melting and consequent material solidification, the
laser-material interaction yields also process by-products. They consist of spatters ejected
from the melted area (also called "melt pool") or its surroundings, and a partial material
vaporisation, also known as "plume" (Young et al., 2020). Various authors showed that the
information enclosed by such by-products represents a possible "signature" of the process
state in terms of its layer-by-layer stability and the final quality of produced parts (Yang
et al., 2020; Andani et al., 2017; Repossini et al., 2017; Ly et al., 2017; Bidare et al., 2018).
Because of this, the analysis of process by-products has gathered an increasing interest in
the last years. The way in which spatters originate during the process and the way in which
they spread in space above the melted area can be captured via in-line high-speed machine
vision. However, in order to investigate the effect of various controllable process factors on
the spatter behaviour, raw video image data shall be translated into a data format more
convenient for the analysis of variance. One possible way to address this task is to refer to a
functional data format, by representing the amount of ejected spatters as a function defined
on a compact domain. In this example, the compact domain consists of the bi-dimensional
space corresponding to the field of view of the machine vision equipment. An example of
such data format transformation is depicted in Fig. 9.1, where the left panel shows one
raw video frame acquired during the L-PBF process and the right panel shows a function
of how spatters were spread in space in that video frame. This function will be referred to
as "spatter intensity" function in this study, as it maps the amount of spatters observed in
any region of the bi-dimension video frame space, ps, tq. The term "intensity" here refers to
the occurrence of spatters in a given location. Therefore, a high spatter intensity at given
spatial coordinates ps, tq means that a large amount of spatters was captured in the video
image stream in that specific location.

The example shown in Fig. 9.1 is just one of many real applications where a functional
data representation may be suitable to deal with complex patterns and data types. A
functional representation similar to the one in Fig. 9.1 may be used in many other processes
where spatters and hot ejections are generated, like welding or laser cutting. However, the
representation of observation units in terms of functions in a 1D, 2D or higher dimensional
domain has a much wider and general validity, not limited to manufacturing applications.
The family of statistical methods suitable to tackle this problem is known as functional data
analysis (FDA). For a comprehensive overview of FDA methods and applications we refer
the reader to Ramsay and Silverman (2005); Horváth and Kokoszka (2012); Kokoszka and
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Figure 9.1. Example of a video frame acquired during an L-PBF process showing ejected spatters as bright spots
(left panel) and corresponding spatter intensity function (right panel).

Reimherr (2017) and, for further theoretical insights, to Hsing and Eubank (2015); Bosq
(2012).

A classical statistical problem consists of identifying the differences among group functional
means in a sample when some experimental conditions vary. In the literature, this problem
is known as functional analysis of variance (FANOVA) that is the FDA extension of the
classical (non-functional) ANOVA problem. In (Ramsay and Silverman, 2005), the authors
proposed a functional ANOVA test, based on a pointwise F -test statistic, that relies on
the normality assumption of the error function. If the observed statistics is larger than
the critical value, calculated as a percentile of the Fisher distribution, for each domain
value, then we safely reject the hypothesis of no differences among the groups. Cuevas et al.
(2004) proposed a FANOVA test based on the integrated squared difference among group
functional means, for both the homoscedastic and heteroscedastic cases. The L2-norm-based
test proposed by Faraway (1997); Zhang et al. (2007) uses a statistic based on the integrated
squared differences between the group means and the global mean, whose distribution is
approximately proportional to a chi-squared random variable. Shen and Faraway (2004);
Zhang (2011) proposed an F -type test based on the fraction of the sum of the integrated
squared differences between the group means and the global mean, and, the sum of the
integrated squared differences between the functional observations and the group means.
Under certain conditions, this statistic has a Fisher distribution. Bootstrap versions of
both L2-norm-based and F -type tests were proposed in Zhang (2013). Finally, Zhang and
Liang (2014) introduced a globalized version of the pointwise F -test. Note that, all the
aforementioned works deal with the one-way FANOVA design. The multi-way functional
ANOVA design has been much less studied than the one-way counterpart. In particular,
Brumback and Rice (1998); Guo (2002); Gu (2013) proposed tests that are able to deal
with more complicated designs that rely on the use of smoothing splines (SS-ANOVA). A
simple technique was proposed by Cuesta-Albertos and Febrero-Bande (2010) that transform
functional data into univariate data by means random projections. Pini et al. (2017) proposed
a non-parametric domain-selective multi-way functional ANOVA able to identify the specific
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Figure 9.2. Example of a spatter intensity function (left panel), one cross-section of the spatter intensity function at
t = 0.75 (central panel) and a superimposition of cross-sections corresponding to different experimental realizations
of the spatter intensity function, where an outlying pattern is highlighted with a thick black line (right panel)

subdomains where group functional means differ.
In this study, we address the functional analysis of variance in the presence of nuisance

effects associated to outlying patterns in the experimental dataset. The proposed real case
study in additive manufacturing highlights the need for novel and effective methods in this
framework. Indeed, additive manufacturing, like many other manufacturing processes and
thermal treatments, is characterized by complex dynamics and many transient and local
phenomena that not only affect the natural variability of the measured quantities, but could
also lead to outlying patterns. In the motivating case study considered in this chapter, an
outlying spatter ejection behaviour may be observed as a consequence of a variety of possible
root causes, ranging from transient fluctuations of the gas flow, local inhomogeneities of the
powder bed, laser beam attenuation caused by evaporated material, etc. Fig. 9.2 shows an
example of an outlying pattern in the spatter intensity function. For sake of graphical clarity,
functions corresponding to different realizations under the same experimental treatment
are compared by looking at their cross-sections at a fixed coordinate t. The cross-section
shown with a solid thick line in Fig. 9.2 represents an outlying spatter behaviour, consisting
of a lower amount of spatters spread in space, possibly caused by a transient laser beam
attenuation that occurred at a given point in time. Additional details about the real case
study can be found in Section 4.

From a design of experiments perspective, outlying patterns like the one in Fig. 9.2
represent a nuisance for the analysis or results, as they may inflate the variability and
mask effects of potential interest. From a statistical process monitoring perspective, instead,
outliers are commonly drivers of relevant information being potential indicators of anomalies
and flaws. In this study we refer to the former perspective, aiming at proposing an effective
approach for the analysis of variance in the presence of outliers that contaminate the
experimental functional data. Due to the many different dynamics involved in the process,
determining whether an experimental point is an outlier and identifying its root cause can
be a difficult task, but similar challenges can be faced in many different manufacturing
applications, due to the complex nature of the response variables and the complex underlying
physical phenomena.

All the one-way and multi-way FANOVA design cited above differently combine in a
quadratic fashion the functional mean to obtain the statistics. However, as in the case of
finite dimensional data, it has been shown that the functional mean, as well as quadratic
forms, are highly sensitive to the presence of outliers and other anomalies.
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Hubert et al. (2015) set up a taxonomy of functional outliers. To deal with outliers,
the diagnostic and the robust approaches are the two common alternatives. The diagnostic
approach (that is based on standard estimates after the removal of sample units identified as
outliers) is often criticized as lacking of objectivity being based on the analyst’s personal
decision. On the contrary, the robust approach produces parameter estimates and associated
tests and confidence intervals more robust, to the presence of outliers. For a general
perspective on this topic in the classical setting see Huber (2004); Hampel et al. (2011);
Maronna et al. (2019). By looking at Fig. 9.2, the marked curve could be safely deleted if
the diagnostic approach is considered. However, as we will see in the subsequent analysis,
it is not always easy to label an observation as outlier, especially when complex process
dynamics and lack of measurable covariates make the search for root causes a difficult task.

In the very last years, several works have explored robust estimation for functional data.
Fraiman and Muniz (2001) defined trimmed means for functional data based on a functional
depth defined as an integral of the univariate depths for each domain value. In order to
obtain robust estimates of the center of a functional distribution, Cuesta-Albertos and
Fraiman (2006) extended the notion of impartial trimming to a functional data framework.
Other location estimators based on depth functions for functional data were proposed by
Cuesta-Albertos and Nieto-Reyes (2008); Cuevas and Fraiman (2009); López-Pintado and
Romo (2009, 2011). The above methods are all extensions of the classical linear combination
types estimators (i.e., L-estimator) (Maronna et al., 2019) to the functional setting. More
recently, Sinova et al. (2018) extended the notion of maximum likelihood type estimators
(i.e., M -estimators) to the functional data setting. M -estimators (Huber et al., 1964) are
less influenced by outliers than the standard least-squares/maximum likelihood estimators,
because they are based on loss functions that increase less rapidly than the usual square loss.
This estimator has been used by Kalogridis and Van Aelst (2019) to robustly estimate the
functional linear model.

The FANOVA methods are not necessarily robust to outliers as they rely both on the
functional mean and on quadratic forms, which are known to be highly sensitive to outlying
observations. In the classical setting, robust ANOVA methods have been proposed by
Schrader and Mc Kean (1977); Schrader and Hettmansperger (1980), where Huber’s M -
estimates are adapted to be used in both a modified F -statistic and a likelihood ratio type
test. However, to the best of our knowledge, no robust ANOVA has been introduced so far
in the functional setting.

In this chapter, we propose a robust nonparametric functional ANOVA method (Ro-
FANOVA) that is able to test differences among group functional means. It is based on
a functional generalization of the test statistic proposed by Schrader and Mc Kean (1977)
included in a permutational framework (Good, 2013; Pesarin and Salmaso, 2010). Appli-
cations of nonparametric methods in FDA can be found in Ramsay and Silverman (2005);
Corain et al. (2014); Pini and Vantini (2017); Pini et al. (2017). Moreover, to obtain the test
statistic, we introduce a functional extension of the normalized median absolute deviation
(NMAD) estimator, referred to as functional normalized median absolute deviation (FuN-
MAD) estimator, as well as an equivariant version of the functional M -estimator proposed
by Sinova et al. (2018). An extensive Monte Carlo simulation study is presented to quantify
the performance of the RoFANOVA with respect to FANOVA tests already present in the
literature, both in one-way and two-way designs. The application of the proposed approach
to the real case study in additive manufacturing also highlights that the RoFANOVA is more
effective than other methods in identifying interaction effects that are relevant to get deeper
insights about the functional response variable of interest.
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The chapter is organized as follows. In Section 9.2, the robust functional analysis of
variance is introduced together with the functional normalized median absolute deviation and
the scale equivariant functional M -estimator. Section 9.3 presents a Monte Carlo simulation
study that compares the RoFANOVA with competing methods both in one-way and two-way
designs. Then, in Section 9.4 the RoFANOVA is applied to the real-case study devoted
to the study of the spatter behaviour in the L-PBF process. Conclusions are provided in
Section 9.5. All computations and plots have been created by using R software (R Core
Team, 2020a).

9.2 The Robust Functional Analysis of Variance

The Scale Equivariant Functional M-estimator and the Functional
Normalized Median Absolute Deviation Estimator
This section introduces the equivariant functional M -estimator and the functional normalized
median absolute deviation estimators. Let us consider the random element X with value
in L2 pT q, the Hilbert space of square integrable functions defined on the compact set

T � Rp, with the usual norm ||f || �
�³

T f
2 ptq dt

	1{2
, for f P L2 pT q, having mean function

µ ptq � E
�
X ptq� and covariance function γ ps, tq � Cov

�
X psq , X ptq�, for s, t P T . Moreover,

let X � pX1, . . . , XnqT be a vector whose elements Xi are independent realizations of X.
Recently, Sinova et al. (2018) proposed a functional M -estimators of location defined as

µ̂s � argmin
yPL2pT q

ņ

i�1
ρ
�||Xi � y||� , (9.1)

where ρ : R� Ñ R is the loss function which is continuous, non-decreasing and satisfies
ρ p0q � 0. As shown by Sinova et al. (2018), each version of µ̂s is well-defined and enjoys
good theoretical properties, e.g., it has maximal breakdown value and is strong consistent
under suitable model assumptions. Unfortunately, these estimators are not scale equivariant.
This means that if all Xi are equally scaled, the resulting robust estimator is not necessarily
equally scaled in analogy with the multivariate case (Maronna et al., 2019). Following
Maronna et al. (2019), we propose a scale equivariant M -estimator of location defined as

µ̂ � argmin
yPL2pT q

ņ

i�1
ρ

�⃦⃦⃦Xi � y

σ

⃦⃦⃦

, (9.2)

where σ ptq �aγ pt, tq, for t P T . If σ was known, the problem would have been reduced to
the case of a L2 random element with σ � 1. Since σ is rarely known, it can be suitably
substituted by a robust scale estimator σ̂. In this regard, we introduce the FuNMAD
estimator defined as

FuNMAD pXq � 1
c

Med
�
|X � µ̂s,med|

	
, (9.3)

with c � 0.6745 and where µ̂s,med, the functional generalization of the median, is the so-
lution of the optimization problem in equation (9.1) with ρmed p�q � | � |; |X � µ̂s,med| ��
|X1 � µ̂s,med|, . . . , |Xn � µ̂s,med|

	T
and Med p�q transforms a vector of functions to a func-

tion of pointwise medians. The constant c � 0.6745 is used to make FuNMAD an asymptoti-
cally pointwise consistent estimator of σ as shown in the supplementary materials.
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Because the minimization problem in equation (9.1) has not a closed-form solution,
in general, Sinova et al. (2018) proposed a standard iteratively re-weighted least-squares
algorithm to approximate µ̂s. The algorithm is specifically modified to approximate µ̂ in
equation (9.2) where σ is approximated by σ̂ � FuNMAD pXq, and can be summarized in
the following steps.

Step 1. Select initial weight vector wp0q �
�
w
p0q
1 , . . . , w

p0q
n

	
P Rn such that wp0q

i ¥ 0 and°n
i�1 w

p0q
i � 1.

Step 2. Generate a sequence tµ̂pkqukPN iterating the following procedure:

µ̂pkq �
ņ

i�1
w
pk�1q
i Xi, w

pkq
i �

ψ

�⃦⃦⃦
Xi�µ̂

pkq

σ

⃦⃦⃦

°n
i�1 ψ

�⃦⃦⃦
Xi�µ̂pkq

σ

⃦⃦⃦
 ,
where ψ � ρ1 is the first derivative of ρ.

Step 3. Terminate the algorithm when

|J
�
µ̂pkq

	
� J

�
µ̂pk�1q

	
|

J
�
µ̂pk�1q

	   ε,

where J phq � °n
i�1 ρ

�⃦⃦⃦
Xi�h
σ̂

⃦⃦⃦

and for a tolerance ε ¡ 0.

The initial weight vector can be chosen as wp0q
i �

ψ

�⃦⃦⃦
Xi�µ̂p0q

σ

⃦⃦⃦�
°n

i�1 ψ

�⃦⃦⃦
Xi�µ̂p0q

σ

⃦⃦⃦� where µ̂p0q is an initial

estimate of µ̂.
The loss function ρ in equation (9.2) defines the properties of the resulting estimator

µ̂. For instance, the Huber’s family of loss functions (Huber et al., 1964), which generates
monotone functional M -estimators of location, is given by

ρHUa pxq �
#
x2{2 if 0 ¤ x ¤ a

a
�
x� a{2� if a   x,

with tuning parameter a ¡ 0. It gives less importance to large errors compared to the
standard least-squares loss function ρsqr pxq � x2. Functional M -estimators arise from the
bisquare or Tukey’s biweight family of loss functions (Beaton and Tukey, 1974) defined by

ρBIa pxq �

$'&'%a
2{6

�
1�

�
1� �x{a�2

	3
�

if 0 ¤ x ¤ a

a2{6 if a   x,

with tuning parameter a ¡ 0. M -estimators obtained by using ρBIa are redescending, that is
values of x ¡ a give the same contribution to the loss, regardless of their distance from a.

181



9. Robust Functional ANOVA with Application to Additive Manufacturing

0 2 4 6 8 10

0
2

4
6

8
1
0

x

ρ

MED

SQR

HUB

BIS

HAM

OPT

Figure 9.3. The loss functions ρHU
a (HUB), ρBI

a (BIS), ρHA
a,b,c (HAM), ρOP

a (OPT), with tuning constants chosen
to achieve 95% asymptotic efficiency, and, ρsqr (SQR) and ρmed (MED).

Another very used family of loss functions is the Hampel’s one (Hampel, 1974), defined
by

ρHAa,b,c pxq �

$''''&''''%
x2{2 if 0 ¤ x   a

a
�
x� a{2� if a ¤ x   b

apx�cq2

2pb�cq � a pb� c� aq {2 if b ¤ x   c

a pb� c� aq {2 if c ¤ x,

with tuning parameter a, b, c ¡ 0. M -estimators obtained by using ρHAa,b,c are redescending as
well. Finally, the optimal family of loss functions (Maronna et al., 2019) is defined by

ρOPa pxq �
» x

0

�
�Φ1

�|x|�� a

Φ
�|x|�

�
�

dx,

where Φ is the standard normal density, a ¡ 0 is a tuning parameter and ptq� denotes the
positive part of t. The tuning parameters used in ρHUa , ρBIa , ρHAa,b,c and ρOPa are chosen in
order to ensure given asymptotic efficiency with respect to the normal distribution (Maronna
et al., 2019). The loss functions ρHUa , ρBIa , ρHAa,b,c and ρOPa with tuning constants chosen to
achieve 95% asymptotic efficiency, along with ρsqr and ρmed, are displayed in Fig. 9.3.

The Proposed Robust Method for the Functional Analysis of Variance
The aim of this section is to describe the proposed RoFANOVA for the multiway functional
ANOVA design. Without loss of generality, and for ease of notation, we will focus on the
two-way functional ANOVA design with an interaction, but the extension to more complex
designs is straightforward. To introduce the two-way functional ANOVA design with an
interaction, let us consider a functional response X, which is a random element with value
in L2 pT q, where T � Rp, and is possibly affected by two factors, say A and B (with I and
J levels, respectively). In this model, X will be expressed as the sum of two main effects
and an interaction between them, plus a random error. Our aim is to test the statistical
significance of the main effects and of the interaction term. Let Xijk, for k � 1, . . . , nij ,
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9.2. The Robust Functional Analysis of Variance

denote the realizations of X at level i of the factor A, i � 1, . . . , I, and level j of the factor
B, j � 1, . . . , J . Then, the two-way functional ANOVA model to be tested is

Xijk ptq � m ptq � fi ptq � gj ptq � hij ptq � εijk ptq t P T , (9.4)

where m is the functional grand mean, which describes the overall shape of the process, fi
and gj are the functional main effects and hij is the interaction term, all these terms being in
L2 pT q. The functional errors εijk are assumed to be independent and identically distributed
zero-mean random functions with covariance function γ. They are not required to be
Gaussian. In order to make the model identifiable, we will assume, that,

°I
i�1

°J
j�1 nijfi ptq �°J

j�1
°I
i�1 nijgj ptq �

°I
i�1

°J
j�1 nijhij ptq � 0. To test the significance of the coefficients

in model (9.4), (that is, to extend the classical ANOVA test to functional data), we consider
the following null and alternative hypotheses

H0,A : f1 � � � � � fI � 0, H1,A :
�
H0,A

�C
, (9.5)

H0,B : g1 � � � � � gJ � 0, H1,B :
�
H0,B

�C
, (9.6)

H0,AB : h11 � � � � � hIJ � 0, H1,AB :
�
H0,AB

�C
, (9.7)

where 0 is a function almost everywhere equal to zero. The hypotheses H0,A against H1,A
and H0,B against H1,B are for the effects of the main factors A and B, respectively, whereas,
the hypothesis H0,AB against H1,AB is for the interaction term.

Each test is carried out through a nonparametric permutational approach. In this regard,
we introduce a test statistic that is a functional extension of the robust F-statistic proposed
by Schrader and Mc Kean (1977). In that paper, the authors considered a robust version of
the classical F -test statistic, defined as the fraction of the drop in residual sum of squares
between the full model (i.e., the model when H0 is false) and the reduced model (i.e.,
the model when H0 is true), and the standard deviation of the error distribution, where
all the quantities are estimated by using the least-squares approach. They modified the
F -test statistic by considering a residual sum of dispersions (identified by a specific loss
function as the ones described in Section 9.2) instead of the residual sum of squares, and a
robust estimate, instead of the least-squares estimate, of the standard deviation of the error
distribution.

In detail, to test the hypothesis (9.5), we propose to use the following test statistic

FA � pI � 1q�1

�
� I̧

i�1

J̧

j�1

nij¸
k�1

ρ

�⃦⃦⃦
Xijk � X̄r � X̄r,ij � X̄r,i�

σ̂r,e

⃦⃦⃦�
�

I̧

i�1

J̧

j�1

nij¸
k�1

ρ

�⃦⃦⃦
Xijk � X̄r,ij

σ̂r,e

⃦⃦⃦��,

where ρ is a given loss function. The test statistic FA is the mean difference between
the standardized residual sum of dispersions under the reduced model and the full model
(analogously to Schrader and Mc Kean (1977) in the classical setting), where X̄r, X̄r,i�, and
X̄r,ij are scale equivariant functional M -estimators (Section 9.2) of the functional grand
mean m, and of the group means of tXijkuk�1,...nij ,i�1,...I and tXijkuk�1,...nij , respectively,
and, σ̂r,e is a robust estimate of the functional standard deviation of the error distribution.
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In detail, X̄r, X̄r,i�, X̄r,ij and σ̂r,e are defined as

X̄r � argmin
yPL2pT q

I̧

i�1

J̧

j�1

nij¸
k�1

ρ

�⃦⃦⃦Xijk � y

σ̂r

⃦⃦⃦

, σ̂r � FuNMAD

�tXijkuk�1,...nij ,i�1,...I,j�1,...J
�
,

X̄r,i� � argmin
yPL2pT q

J̧

j�1

nij¸
k�1

ρ

�⃦⃦⃦Xijk � y

σ̂r,i�

⃦⃦⃦�
, σ̂r,i� � FuNMAD

�tXijkuk�1,...nij ,j�1,...J
�
,

X̄r,ij � argmin
yPL2pT q

nij¸
k�1

ρ

�⃦⃦⃦Xijk � y

σ̂r,ij

⃦⃦⃦�
, σ̂r,ij � FuNMAD

�tXijkuk�1,...nij

�
,

σ̂r,e � 1
0.6745 Med

�
|tXijk � X̄r,ijuk�1,...nij ,i�1,...I,j�1,...J |

	
.

Intuitively, FA is a measure of the discrepancy between the residuals, obtained by using
robust statistics, of the model under H0,A and under H1,A. In this latter case, FA assumes
high values. Analogously, to test the hypotheses (9.6) and (9.7), we define

FB � pJ � 1q�1

�
� I̧

i�1

J̧

j�1

nij¸
k�1

ρ

�⃦⃦⃦
Xijk � X̄r � X̄r,ij � X̄r,�j

σ̂r,e

⃦⃦⃦�
�

I̧

i�1

J̧

j�1

nij¸
k�1

ρ

�⃦⃦⃦
Xijk � X̄r,ij

σ̂r,e

⃦⃦⃦��,

FAB �
�
pI � 1q pJ � 1q

��1

�
� I̧

i�1

J̧

j�1

nij¸
k�1

ρ

�⃦⃦⃦
Xijk � X̄r,i� � X̄r,�j � X̄r

σ̂r,e

⃦⃦⃦�
�

I̧

i�1

J̧

j�1

nij¸
k�1

ρ

�⃦⃦⃦
Xijk � X̄r,ij

σ̂r,e

⃦⃦⃦��,

where

X̄r,�j � argmin
yPL2pT q

I̧

i�1

nij¸
k�1

ρ

�⃦⃦⃦
Xijk � y

σ̂r,�j

⃦⃦⃦

, σ̂r,�j � FuNMAD

�
tXijkuk�1,...nij ,i�1,...I

	
.

Different versions of the proposed test statistics may emerge by the choice of the loss function
ρ as defined in Section 9.2, and, note that, to estimate X̄r,ij , σ̂r,ij � σ̂r,e could be used as
well.

Another element to choose in a permutation test is the method to approximate the
distribution of the considered statistic under the null hypothesis. In our case, we selected the
Manly’s scheme (Gonzalez and Manly, 1998; Manly, 2006) that consists of simply permuting
the raw data without restrictions. Although other schemes could be used, the Manly’s one
has demonstrated to have good performance in spite of its simplicity, especially when the
sample size for given factor levels is small, see Gonzalez and Manly (1998) and Anderson
(2001) for further details.

Therefore, let F be the chosen statistic (resp. FA or FB or FAB) to test, at level α, H0
against H1 (resp. H0,A against H1,A, or H0,B against H1,B , or H0,AB against H1,AB). Then,
the proposed permutation test is composed by the following steps.

Step 1. Compute the observed value of the test statistic Fobs, by considering the original sample
tXijkuk�1,...nij ,i�1,...I,j�1,...J .

Step 2. Randomly permute the data, among the Factor A and Factor B combinations, B times,
and for each permuted sample compute the value F�

1 , . . . , F
�
B of the statistic F .

Step 3. Compute the approximated p-value as

p � 1
B

B̧

i�1
I
�
F� ¥ Fobs

�
,
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where I pEq takes values 1 or 0 depending on whether E is true or false.

Step 4. Accept H0 if p ¡ α, otherwise reject H0.

This test is an approximate (asymptotically exact) level α test for H0 against H1 (Anderson,
2001). The larger the number of permutations B the lower the approximation error. We
suggest to select the number of permutations B equal or larger than 1000 (Good, 2013).

9.3 Simulation Study

In this section, the performance in terms of empirical size and power of the proposed method
are assessed by means of an extensive Monte Carlo simulation study. In particular, two
scenarios are investigated:

Scenario 1 A one-way FANOVA model (i.e., model (9.4) with m � 0, g1 � � � � � gJ � 0 and
h11 � � � � � hIJ � 0) is considered (Section 9.3).

Scenario 2 A two-way FANOVA model (i.e., model (9.4)) is considered (Section 9.3).

In each scenario, the FANOVA model is contaminated by different type of outlying curves. To
do so, we use the same contamination models as in previous works on robust FDA (Fraiman
and Muniz, 2001; López-Pintado and Romo, 2009; Sinova et al., 2018). All the details about
the data generation process are provided in the supplementary materials.

One-way functional analysis of variance
The proposed simulation study framework for one-way FANOVA has been inspired by Cuevas
et al. (2004); Górecki and Smaga (2015). Three different model M1, M2 and M3, with 3 level
main effect fi, i � 1, 2, 3, are considered, where the curves are defined for T � r0, 1s. Model
M1 corresponds to a situation where H0: f1 � f2 � f3 is true; in this case the empirical
size is studied. M2 and M3 provides examples, with H0 false, of monotone functions with
different increasing patterns, where for the latter fi are quite separated, whereas for the
former differences are less apparent; in this case the empirical power is studied. Moreover, to
simulate different type of outlying curves, seven contamination model C0-6 are considered.
The model C0 is representative of no contamination; C1-4 are magnitude contaminations,
i.e., generate curves far from the center, where C1 (C3) and C2 (C4) are symmetric and
partial trajectories contamination models, that are independent (dependent) of the level of
the main effect. Models C5-6 are shape contamination models (López-Pintado and Romo,
2009; Sinova et al., 2018).

In all the cases considered, the response curves are independent realizations of a Gaussian
process with covariance function γ ps, tq � σ2ep�|s�t|10�5q and are observed through 25 evenly
spread discrete points with σ equal to σ1 � 1{25, σ2 � 1.8{25, σ3 � 2.6{25, σ4 � 3.4{25,
σ5 � 4.2{25, σ6 � 5{25 (Cuevas et al., 2004). We expect the higher σ the worse the
performance in terms of both empirical size and power. Fig. 9.4 shows the realizations of the
response curve for the three models M1, M2, and M3 in presence of no contamination (C0)
for σ � σ1. Five implementations of the RoFANOVA method introduced in Section 9.2 are
considered, which are defined by different choices of the loss function, that is the RoFANOVA
with median loss ρmed, referred to as RoFANOVA-MED, Huber loss ρHUa , referred to as
RoFANOVA-HUB, bisquare loss ρBIa , referred to as RoFANOVA-BIS, Hampel loss ρHAa,b,c,
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Figure 9.4. The response curve Y ptq realizations for the three models M1, M2, and M3 in presence of no contam-
ination (C0) for σ � σ1 in Scenario 1.

referred to as RoFANOVA-HAM, and, optimal loss ρOPa , referred to as RoFANOVA-OPT. The
tuning constants are chosen to achieve 95% asymptotic efficiency, the number of permutations
B are set equal to 1000 and the functional 0.8% deepest curve following the FM criteria
(Febrero-Bande and Oviedo de la Fuente, 2012) is chosen as starting value to compute the
robust equivariant functional M -estimators (Section 9.2). The proposed tests are compared
with some non robust methods already appeared in the literature. In particular, we consider
the method proposed by Górecki and Smaga (2015), referred to as FP, which is a permutation
test based on a basis function representation of the response function, the method proposed
by Zhang and Liang (2014), referred to as GPF, based on a globalized version of the pointwise
F -test, the method proposed by Zhang et al. (2007), referred to as L2B, a L2-norm-based
test with the bias-reduced method to estimate the unknown parameters, and, finally, the
method proposed by Zhang (2011), referred to as FB, an F -type test based the bias-reduced
estimation method. All these methods are implemented with the default settings of the
R package fdANOVA (Gorecki and Smaga, 2018). In addition, the method proposed by
Cuesta-Albertos and Febrero-Bande (2010), based on randomly chosen one-dimensional
projections, with both the Bonferroni (referred to as TRPbon) and the false discovery rate
(referred to as TRPfdr) corrections, is considered. The TRPbon and TRPfdr are run with
30 random projections through the R package fda.usc (Febrero-Bande and Oviedo de la
Fuente, 2012).

For each triplet (Ml,Cm,σn), l � 1, . . . , 3, m � 0, . . . , 6, n � 1, . . . , 6, the five proposed
and the seven competitor methods are applied N � 500 times to the generated functional
sample to test H0: f1 � f2 � f3 against H1: pH0qC at level α � 0.05. Then, for each case,
the empirical sizes (for model M1) and powers (for models M2 and M3) of the tests were
computed as the proportional number of rejections out of the N replications with standard
deviation equals at most to 0.0224 (corresponding to the case of probability of rejection
equals to 0.5).

Fig. 9.5 displays the results for model M1, that is the empirical size of the eleven tests as
a function of σn, n � 1, . . . , 6, for different contamination models (C0-6). In this case, the
tests provide satisfactory results in controlling the level α, i.e., the empirical size is approxi-
mately less than or equal to 0.05, in case of no contamination (C0), symmetric magnitude
contamination (C1-2) and shape contamination both symmetric (C5) and asymmetric (C6).
On the contrary, for asymmetric magnitude contamination (C3-4), only the RoFANOVA
tests based on redescending loss functions, that is RoFANOVA-BIS, RoFANOVA-HAM
and RoFANOVA-OPT, are able to control the level α by assuring an empirical size ap-
proximately less or equal than 0.05. This is expected, because rededescending estimators
give no weight to observations far from the center (Maronna et al., 2019). The estimators
used in the RoFANOVA-MED and RoFANOVA-HUB tests do not have this property and,
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Figure 9.5. Empirical size of all tests for H0 against H1 (at level α � 0.05) as a function of σn, n � 1, . . . , 6, for
different contamination models (C0-6) in model M1 of Scenario 1. The proposed and competitor tests are displayed
as black and grey lines, respectively.

thus, they suffer from the presence of contaminations depending on the level of the main
factor. Note that, among the competitors, the TRPbon approximately controls the level
for contamination model C4, while is slightly affected by outliers in model C5. This comes
from the Bonferroni correction property of being conservative for high dimensional multiple
comparisons (Lehmann and Romano, 2006).

In Fig. 9.6, the results, in terms of empirical power, for model M2 are shown. These tend
to get worse as σn increases. In case of no contamination (C0), the FP test achieves the
highest empirical power even though all the RoFANOVA tests have comparable results. For
contamination model C1-6, it is extremely clear the proposed RoFANOVA tests outperform
all the competitors. In particular, among the RoFANOVA tests, those based on redescending
functional M -estimators, i.e., RoFANOVA-BIS, RoFANOVA-HAM and RoFANOVA-OPT,
are the best ones. Note that, for model C3-4 only the RoFANOVA-BIS, RoFANOVA-HAM
and RoFANOVA-OPT tests and the TRPbon (for C4) test should be considered because the
other methods are not able to successfully control the level α (see Fig. 9.5).

Fig. 9.7 shows the empirical power for model M2. Also in this case, when σn increases,
the empirical powers of the tests generally become smaller. The results are similar to
those for model M2, even though the empirical power tend to be higher due to the more
apparent separation of the main effect. Again, the proposed RoFANOVA test outperforms
the competitors when there is contamination (C1-6) and have satisfactory power in case of
no contamination (C0). The best results are achieved by the RoFANOVA-BIS, RoFANOVA-
HAM and RoFANOVA-OPT tests.

Two-way functional analysis of variance
In this section, the two-way FANOVA model (9.4) is considered. The simulation design is
inspired by Cuesta-Albertos and Febrero-Bande (2010).

As for Scenario 1, let T � r0, 1s; then, the functional response depends on a grand mean
m, 2 level main effects fi and gi, and interaction term hij through two parameter a and
b with values in t0, 0.05, 0.10, 0.25, 0.50u. Here, the higher the values of a (b) the more far
away fi (gi) is from the grand mean m. Thus, the empirical power should be an increasing
function of a and b, respectively. The empirical size is studied for a � 0 or b � 0. The grand
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Figure 9.6. Empirical power of all tests for H0 against H1 (at level α � 0.05) as a function of σn, n � 1, . . . , 6, for
different contamination models (C0-6) in model M2 of Scenario 1. The proposed and competitor tests are displayed
as black and grey lines, respectively.

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C0

σ

σ1 σ2 σ3 σ4 σ5 σ6

FP

GPF

L2B

FB

TRP

TRPbon

MED

HUB

BIS

HAM

OPT

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C1

σ

σ1 σ2 σ3 σ4 σ5 σ6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C3

σ

σ1 σ2 σ3 σ4 σ5 σ6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C5

σ

σ1 σ2 σ3 σ4 σ5 σ6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C2

σ

σ1 σ2 σ3 σ4 σ5 σ6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C4

σ

σ1 σ2 σ3 σ4 σ5 σ6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C6

σ

σ1 σ2 σ3 σ4 σ5 σ6

Figure 9.7. Empirical power of all tests for H0 against H1 (at level α � 0.05) as a function of σn, n � 1, . . . , 6, for
different contamination models (C0-6) in model M3 of Scenario 1. The proposed and competitor tests are displayed
as black and grey lines, respectively.

mean m, as well as the 2 level main effects fi and gi are shown in Figure 9.8.
As in Scenario 1, seven contamination models C0-6 are considered, and the response

curves are independent realizations of a Gaussian process with covariance function γ ps, tq �
σ2ep�|s�t|10�5q. Data are observed through 25 evenly spread discrete points with σ � 0.3.
Fig. 9.8 shows the realizations of the response curve for a � b � 0, a � 0.5 and b � 0, and,
a � 0 and b � 0.5 in presence of no contamination (C0).

Also in this scenario, we consider the five versions of the proposed method,
i.e., RoFANOVA-MED, RoFANOVA-HUB, RoFANOVA-BIS, RoFANOVA-HAM, and
RoFANOVA-OPT, with tuning parameters chosen as in Scenario 1. As competitors, we
consider (i) the permutation version of the method proposed by Zhang (2011), referred to as
FNDP, which is permutation test based on a F -type statistic, and (ii) the global version
of the method proposed by Pini and Vantini (2017), which is the two-way extension of the
method of Zhang and Liang (2014), referred to as TGPF. Both for the FNDP and TGPF
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Figure 9.8. The response curve realizations for a � b � 0, a � 0.5 and b � 0, and, a � 0 and b � 0.5 in presence
of no contamination (C0) in Scenario 2.

methods, the distribution of the test statistic is approximated by using a Manly’s scheme
(Manly, 2006) with 1000 random permutations. Moreover, also the TRPbon and TRPfdr
method (Section 9.3) are considered with 30 random projections.

For each triplet (Cm,a,b), m � 0, . . . , 6, a, b P t0, 0.05, 0.10, 0.25, 0.50u, the five proposed
and the four competitor methods are applied N � 500 times to the generated functional
sample to test H0,A, H0,B and H0,AB against H1,A, H1,B and H1,AB resp., at level α � 0.05.
Then, for each triplet and each test, the empirical sizes (when a � b � 0 for H0,A, H0,B
against H1,A, H1,B and a   0.25 for H0,AB against H1,AB) and powers (when a � 0 or
b � 0 for H0,A, H0,B against H1,A, H1,B and a ¥ 0.25 for H0,AB against H1,AB) of the tests
were computed as the proportion of rejections out of N replications (also in this case, with
maximum standard deviation equals to 0.0224).

For the sake of brevity, we summarize the results for cases that are statistically equiv-
alent. For instance, when analyzing the null hypothesis H0,A (resp. H0,B), for each
value of a (resp. b) the five values corresponding to b � t0, 0.05, 0.10, 0.25, 0.50u (resp.
a � t0, 0.05, 0.10, 0.25, 0.50u) are summarized through their median. Similarly when analyz-
ing H0,AB the values corresponding to a   0.25 are substituted by their median for each
value of b.

Fig. 9.9 shows the empirical size (a � 0) and the empirical power (a � 0) of all tests for
H0,A against H1,A as a function of a. When a increases the performance of all the methods
to reject H0,A enhance. In terms of empirical size (i.e., when a � 0), the results are quite
satisfactory for all the methods in case of no contamination (C0), symmetric magnitude
contamination (C1-2) and shape contamination both symmetric (C5) and asymmetric (C6).
However, in case of asymmetric magnitude contamination (C3-4), only the RoFANOVA-
BIS, RoFANOVA-HAM and RoFANOVA-OPT tests are able to control the level α, being
approximately less or equal to 0.05. This behavior is analogous to Scenario 1 (Section
9.3). In terms of empirical power (a � 0), the proposed RoFANOVA test have comparable
performance, when there are no outliers (C0), whereas they are far better than the competitors
for the contamination models C1-6. Note that for asymmetric magnitude contamination
(C3-4), only the RoFANOVA-BIS, RoFANOVA-HAM and RoFANOVA-OPT tests should be
considered, being the only ones able to control the level α.

In Fig. 9.10, the empirical size (b � 0) and the empirical power (b � 0) of all tests for
H0,B against H1,B (at level α � 0.05) as a function of b are displayed. Also in this case,
the proposed tests outperform the competitors in terms of power for contamination models
C1-6 by simultaneously having comparable performance in presence of no contamination
(C0). Moreover, all the tests are able to approximately control the level α, even for the
contamination models C3-4 (differently from Scenario 1). This is expected, because, in
this case, the asymmetry in the contamination affects only the main effect fi by leaving
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Figure 9.9. Empirical power and empirical size (a � 0) of all tests for H0,A against H1,A (at level α � 0.05) as
a function of a, for different contamination models (C0-6) in Scenario 2. The proposed and competitor tests are
displayed as black and grey lines, respectively.

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C0

b

0.00 0.05 0.10 0.25 0.50

FNDP

TGPF

TRPfdr

TRPbon

MED

HUB

BIS

HAM

OPT

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C1

b

0.00 0.05 0.10 0.25 0.50

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C3

b

0.00 0.05 0.10 0.25 0.50

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C5

b

0.00 0.05 0.10 0.25 0.50

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C2

b

0.00 0.05 0.10 0.25 0.50

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C4

b

0.00 0.05 0.10 0.25 0.50

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C6

b

0.00 0.05 0.10 0.25 0.50

Figure 9.10. Empirical size (b � 0) and empirical power (b � 0) of all tests for H0,B against H1,B (at level α � 0.05)
as a function of b, for different contamination models (C0-6) in Scenario 2. The proposed and competitor tests are
displayed as black and grey lines, respectively.

gi unaffected. Among the proposed tests, the RoFANOVA-BIS, RoFANOVA-HAM and
RoFANOVA-OPT ones tend to perform better than the ones based on monotonic functional
M -estimator, i.e., the RoFANOVA-MED and RoFANOVA-HUB tests.

Fig. 9.11 shows the empirical size (a ¤ 0.10 and b � 0) and empirical power (a � 0.25, 0.50
and b � 0) of all tests for H0,AB against H1,AB (at level α � 0.05) as a function of b, for
different contamination models (C0-6). In terms of empirical size (a ¤ 0.10 and b � 0), all
the test are able to approximately control the level α, except for the FNDP and TGPF
tests for model C3 and for RoFANOVA-MED and RoFANOVA-HUB one for model C4 at
b � 0.50. For a � 0.25, 0.50 and b � 0, the empirical powers of the proposed tests is much
higher than those of the competitors for all the contamination model C1-6. Moreover, in
case of no contamination (C0), the power of the RoFANOVA tests is comparable to that
of the competitors for a � 0.25, 0.50. Also in this case, among the RoFANOVA tests, the
RoFANOVA-BIS, RoFANOVA-HAM and RoFANOVA-OPT are the best ones.

190



9.3. Simulation Study

a ¤¤¤ 0.10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C0

b

0 0.05 0.1 0.25 0.5

FNDP

TGPF

TRPfdr

TRPbon

MED

HUB

BIS

HAM

OPT
0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C1

b

0 0.05 0.1 0.25 0.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C3

b

0 0.05 0.1 0.25 0.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C5

b

0 0.05 0.1 0.25 0.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C2

b

0 0.05 0.1 0.25 0.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C4

b

0 0.05 0.1 0.25 0.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C6

b

0 0.05 0.1 0.25 0.5

a ��� 0.25

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C0

b

0.00 0.05 0.10 0.25 0.50

FNDP

TGPF

TRPfdr

TRPbon

MED

HUB

BIS

HAM

OPT

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C1

b

0.00 0.05 0.10 0.25 0.50

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C3

b

0.00 0.05 0.10 0.25 0.50

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C5

b

0.00 0.05 0.10 0.25 0.50

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C2

b

0.00 0.05 0.10 0.25 0.50

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C4

b

0.00 0.05 0.10 0.25 0.50

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C6

b

0.00 0.05 0.10 0.25 0.50

a ��� 0.50

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C0

b

0.00 0.05 0.10 0.25 0.50

FNDP

TGPF

TRPfdr

TRPbon

MED

HUB

BIS

HAM

OPT

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C1

b

0.00 0.05 0.10 0.25 0.50

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C3

b

0.00 0.05 0.10 0.25 0.50

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C5

b

0.00 0.05 0.10 0.25 0.50

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C2

b

0.00 0.05 0.10 0.25 0.50

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C4

b

0.00 0.05 0.10 0.25 0.50

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

C6

b

0.00 0.05 0.10 0.25 0.50

Figure 9.11. Empirical size (a ¤ 0.10 and b � 0) and empirical power (a � 0.25, 0.50 and b � 0) of all tests for
H0,AB against H1,AB (at level α � 0.05) as a function of b, for different contamination models (C0-6) in Scenario
2. The proposed and competitor tests are displayed as black and grey lines, respectively.
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9. Robust Functional ANOVA with Application to Additive Manufacturing

9.4 Real Case-study: Analysis of Variance of Applied to the
Analysis of Spatter Behaviour in Laser Powder Bed Fusion

To demonstrate the potential of the proposed approach, this Section presents the real case-
study in additive manufacturing. In L-PBF, spatters are process by-products that can be
ejected either by the melt pool in the form of hot and liquid droplets or by the powder bed
regions surrounding the melt pool (Young et al., 2020; Ly et al., 2017; Bidare et al., 2018). In
the latter case, spatters consist of powder particles entrained by convective motions above and
around the melt pool. In case they pass through the hot material vaporization region above
the melt pool, they are quickly heated up and become hot particles moving away from the
powder bed. For more details about the spatter generation mechanism, the reader is referred
to (Young et al., 2020; Ly et al., 2017; Bidare et al., 2018) and the literature cited therein.
The analysis of L-PBF process by-products has gathered an increasing interest in the last
years because they can be driver of relevant information about the process state and the final
quality of the manufactured part (Yang et al., 2020; Tan et al., 2020; Yin et al., 2020; Andani
et al., 2017; Repossini et al., 2017; Ly et al., 2017; Bidare et al., 2018). Studying the effect of
controllable process factors and other operating conditions on the spatter behaviour allows
getting a deeper comprehension of underlying physical phenomena. Such knowledge may be
used to tune the process conditions to enhance the quality and mechanical performances of
the products, or to design in-line and real-time process monitoring methodologies that, by
looking at the behaviour of process by-products, allow the detection of possible anomalies
and unstable process states (Colosimo and Grasso, 2020).

Hot spatters ejected as a consequence of the laser-material interaction can be observed
by means of high-speed cameras installed into the L-PBF machine or placed outside its
viewports. The mainstream literature devoted to spatter analysis and monitoring in L-PBF
relies on video image processing methods to compute synthetic indexes that capture salient
aspects of the spatter behaviour, e.g., the number of ejected spatters in each video frame,
their size, speed, travelled distance from the melt pool, etc. (Grasso et al., 2017; Everton
et al., 2016). In the real case study presented in this Section, instead of treating synthetic
descriptors of the spatter ejections as univariate or multivariate variables, they are translated
into a functional form by means of the spatter intensity function introduced in Section 1.
Such function captures the spatial spread of ejected spatter and can be estimated for each
manufactured layer and for each test treatment. Section 4.1 presents the main experimental
settings, whereas the results of the analysis and the comparison against benchmark methods
are reported in Section 4.2.

Experimental Setting and Data Pre-processing

The case study involves the production of specimens of size 5 x 5 x 12 mm via L-PBF
of 18Ni(300) maraging steel powder, a steel alloy commonly used for tooling applications,
with average particle size between 25 and 35 200µ. An industrial L-PBF system, namely a
Renishaw AM250, was used, with a high-speed camera in the visible range placed outside
the front viewport of the machine as shown in Fig. 9.12, left panel. Videos were recorded
during the production of six layers with a sampling rate of 1000 fps (frames per second)
and a spatial resolution of about 200µ m/pixel. Specimens were placed as shown in Fig.
9.12, right panel, and produced by varying the energy density provided by the laser to the
material as shown in Table 9.1.

The laser was displaced by a scanner along a predefined path consisting of parallel scan
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in Laser Powder Bed Fusion

Figure 9.12. Setup of the high-speed camera in front of the Renishaw AM250 machine’s viewport (left panel) and
placement of manufactured specimens in the build area, within the camera’s field of view (right panel): numbers
shown in the specimens correspond to the energy density level, from 1 to 6, applied during the process.

Table 9.1. Process parameters and corresponding energy density levels.

Energy
density level

Laser exposure
time
t (µs)

Distance between
exposed points
along laser scan

track
dp (µm)

Distance between
parallell laser

scan tracks
dh (µm)

Laser power
P (W)

Powder bed
thickness
z (µm )

Energy density
F (kJ/cm3)

1 39 65 80 200 50 30

2 85 85 80 200 50 50

3 104 65 80 200 50 80

4 125 62.5 80 200 50 100

5 115 50 80 200 50 115

6 104 40 80 200 50 130

lines, whose orientation changed layer by layer, with a default rotation of about 67� every
layer. Along each scan line, the laser melts the material with a pulsed mode, i.e., by exposing
points equispaced apart of a quantity d along each scan line with a point exposure duration,
t. The energy density was varied by varying t and d. The energy density is known to be
a factor of primary importance to determine the quality of the process, as insufficient or
excessive energy densities may produce defects, like internal pores, and other deviations
from the expected quality (Grasso et al., 2017; Everton et al., 2016; Mani et al., 2015).
Within the build chamber, where the L-PBF process takes place, a laminar flow of inert gas,
called shielding gas, is used to prevent ejected spatters from falling on the build area with
consequent potential contamination effects, and vaporized material from depositing on the
laser window leading to possible attenuation of the laser beam (Anwar and Pham, 2018).

The functional response variable, i.e. the so-called spatter intensity, was estimated by
applying the video image pre-processing method presented in Repossini et al. (2017). Each
acquired frame consists of a dark background and different hot (bright) areas in foreground.
Those bright areas correspond either to spatters (being visible as particles thanks to the
very low video image integration time) and the region of the powder bed heated up by the
laser, also known as laser-heated zone. A perspective correction was first applied to acquired
videos to compensate the image distortion due to the inclination of the camera above the
build area. Then, the resulting grey-scale frames were converted into a binary format by
means of a thresholding algorithm to isolate and identify each single connected component
(i.e., spatters and the laser-heated zone). A criterion based on the size and location of each
connected component was used to filter out the laser heated zone and focus the analysis
on all other regions of interest, i.e., the spatters. Eventually, the centroid of each spatter
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Table 9.2. Location of analysed layers along the specimen build direction (distance from the baseplate) and
orientation of the laser scan direction relative to the shielding gas flow in each layer.

Analysed layer

Layer height
along the build

direction
(mm)

Laser scan angle
relative to the

shielding gas flow

1 31 10�

2 56 40�

3 83 80�

4 110 85�

5 137 90�

6 163 30�

in the frame was computed and used to determine the spatial coordinates, ps, tq, of each
detected spatter. Additional details about the video image pre-processing steps can be found
in Repossini et al. (2017). In order to spatially map the amount of spatters ejected during
the production of each specimen in each layer, three additional pre-processing operations
were performed. First, the location of spatters was referred to a spatial domain centered in
the center of the scanned area of each specimen, to allow comparing the functional response
variables for specimens produced in different locations. Second, the spatial domain was
discretized into 60 by 80 adjacent squared cells, in order to count the number of spatters
ejected in each layer within each cell. Based on these pre-processing steps, the spatial spread
of the spatters, in each layer and for each specimen, could be summarized into the function
Yi,j,k ps, tq defined on the bi-dimensional domain T � r0, 1s� r0, 1s, where indices i � 1 . . . , 6,
j � 1, . . . 6 and k � 1, . . . , nij indicate the energy density level, the layer, and the number of
replicates (specimens) for each treatment. It is worth noticing that a possible layer effect
could be related to two different aspects. The first regards the orientation of the scan lines
that is varied layer by layer. Indeed, it is known that the orientation of the laser scan with
respect to the shielding gas flow direction affects the spatter trajectory and hence the way in
which they displace above the powder bed (Bidare et al., 2018). The relative orientation of
the laser scan direction with respect to the shielding gas flow for each layer is shown in Table
9.2. The second regards a variation of the material thermal properties as more and more
layers are produced. In the present case study, this second effect is assumed to be negligible
with respect to the first one, due to the small size and simple shape of the specimens. The
spatter intensity function Yi,j,k ps, tq is a smoothed version of the actual amount of spatters
counted in every location of the spatial domain. The number of replicates nij is fixed and
equal to 3, as three specimens were produced for each energy density level, except for i � 6
and j � 1 where nij � 2, due to a missing data point (a delamination occurred in initial
layers prevented from producing one of the three specimens with the lowest energy density
level). The Yi,j,k are obtained by means of a smoothing phase based on tensor product bases
of cubic splines with second derivative penalty as marginal smooths. The marginal basis
dimensions, set equal to 30, and the smoothing parameter were chosen by using restricted
maximum likelihood (REML) (Wood, 2017). The smoothing phase was performed by using
the R package mgcv (Wood, 2017). Then, in order to reduce phase variability, a registration
phase was performed (Ramsay and Silverman, 2005). It consists in the shifting of each Yi,j,k
along the s and t axes to minimize the L2 distance with respect to the reference curve, which
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Figure 9.13. The functional observations Yi,j,k for t � 0.75, (a) and (c), and s � 0.5, (b) and (d), in the real-case
study, for different fluency levels ((a) and (b)) and different scan strategies ((c) and (d)).

was chosen such that the mean of pairwise distances among the aligned curves is minimum.
The functional observations Yi,j,k, i � 1 . . . , 6, j � 1, . . . 6 and k � 1, . . . , nij , for t � 0.75
and s � 0.5 are represented in Fig. 9.13 at different energy density levels and in different
layers. The graphical representation of cross-sections of the spatter intensity function in Fig.
9.13 was adopted to aid the superimposition and direct comparison of functional patterns
corresponding to different experimental treatments.

Results

The spatter intensity functions Yi,j,k (i � 1 . . . , 6, j � 1, . . . 6 and k � 1, . . . , nij) are modeled
according to (9.4), where fi is the energy density functional effect, gi is the layer functional
effect, hij is the interaction term between the energy density and the layer.

The aim of the analysis is therefore to test the energy density effect H0,F lu � H0,A (9.5),
the layer effect H0,Lay � H0,B (9.6) (mainly related to the layer by layer variation of the
laser scan direction) and their interaction effect H0,F luLay � H0,AB against the alternatives
H1,F lu � H1,A (9.5), H1,Lay � H1,B (9.6) and H1,F luLay � H1,AB . As already introduced in
Section 9.1, some outliers could be present. In particular, Fig. 9.14 shows (a) the residuals of
the fitted model for t � 0.75 (the approximate t value of the spatter intensity peak), obtained
by using the RoFANOVA-BIS test as implemented in Section 9.3, and (b) the boxplot of
their L1 norms, defined as ||f ||1 �

³
T |f ptq |dt, for f P L2 pT q. Because T � r0, 1s � r0, 1s,

the L1 norm can be interpreted as the average value of the function over its domain. It is
clear from Fig. 9.14 that some outliers are present in this real case study. However, except
from few points that have residuals far from the bulk of the data, there are some points that
could not be easily labeled as outliers. As mentioned in the introduction, the L-PBF process
is characterized by complex dynamics and many transient and local phenomena that not
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Figure 9.14. (a) Residuals of the fitted model for t � 0.75, obtained by using the RoFANOVA-BIS test as
implemented in Section 9.3, and (b) boxplot of their L1 norms.

Table 9.3. p-values of all robust tests for H0,F lu, H0,Lay and H0,F luLay against H1,F lu, H1,Lay and H1,F luLay.

RoFANOVA-MED RoFANOVA-HUB RoFANOVA-BIS RoFANOVA-HAM RoFANOVA-OPT
H0,F luLay 0.00 0.01 0.00 0.00 0.00
H0,F lu 0.00 0.00 0.00 0.00 0.00
H0,Lay 0.00 0.00 0.00 0.00 0.00

only affect the natural variability of the measured quantities, but could lead also to outlying
pattern. Determining whether an experimental point is an outlier and identifying its root
causes can be a difficult task, which makes the diagnostic approach hardly applicable in the
absence of additional data and information.

Therefore, we applied the RoFANOVA test described in Section 9.3, i.e., the RoFANOVA-
MED, RoFANOVA-HUB, RoFANOVA-BIS, RoFANOVA-HAM, and, RoFANOVA-OPT tests,
specifically adapted for bi-dimensional functional data. As in the Monte Carlo simulation
study (9.3) the tuning constants are chosen to achieve 95% asymptotic efficiency, the number
of permutations B are set equal to 1000. In this case, the functional sample mean is used as
starting value to compute the robust equivariant functional M -estimators (Section 9.2). The
results are shown in Table 9.3. All the tests agree in considering significant the interaction
between the energy density and the layer.

When an the interaction effect is present, it is well-known that an interpretation of the
main effects becomes less straightforward than if the interaction is not significant (Miller Jr,
1997) because, the layer effect upon the spatter intensity will differ depending on the energy
density level. In this case, the best way to interpret the results is through the interaction
plot (Montgomery, 2017), which graphically represents the response means at different factor
levels. Fig. 9.15 shows an interaction plot adapted to deal with bi-dimensional data. In
particular, the L1 norms of the group means corresponding to the RoFANOVA-BIS test are
plotted as a function of the energy density level and the layer. In this case, if an interaction
is present, then, the trace of the average response across the levels of one factor plotted
separately for each level of the other factor will not be parallel (Montgomery, 2017).

Fig. 9.15 shows that, as the energy density increases, the spatter intensity tends to
increase as well. This is in agreement with the fact that a higher energy density generates a
larger and hotter melt pool with more intense convective and recoil motions, which translate
into a more intense spatter ejection (Yang et al., 2020; Repossini et al., 2017; Bidare et al.,
2018). More interestingly, Fig. 9.15 shows different patterns corresponding to different layers.
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Indeed, in layers 1, 2, and 6, there is an approximately linear trend of the spatter intensity
with respect to the energy density. These three levels were characterized by very similar
laser scan directions, with a low angle relative to the shielding gas flow (between 10� and
40�). Since most spatters are ejected forward or backward along the scan direction, when
the scan direction is parallel (or little angled) to the gas flow, more powder bed particles are
pushed along the laser path, increasing the occurrence of particles being heated up by the
hot metal vapour emission and being then ejected as hot spatters. Under these conditions,
increasing the energy density increases the intensity of convective motions that entrap the
powder particles into the hot vapour emission and hence the spatter intensity (Bidare et al.,
2018).

A different influence of the energy density on the spatter intensity was observed in layers
3, 4 and 5. In these layers, the laser scan direction was almost perpendicular to the shielding
gas flow direction, i.e., with angles in the range 80� to 90�. Under these conditions, particles
are dragged away from the scan path, reducing the amount of particles entrained in the hot
vapour plume above the melt pool, and hence reducing the overall spatter intensity with
respect to layers where lower scan angles were applied (Bidare et al., 2018). In addition,
the analysis reveals that when the laser scan direction was about perpendicular to the gas
flow, there was a range of intermediate energy densities (from level 3 to level 5) at which the
influence of the energy density itself on the spatter intensity was reduced or even inverted.
This can be interpreted as follows. When the laser scan direction is parallel to the gas
flow, an increase of the energy density causes an increase of convective motions and metal
vapour emissions that result also in higher spatter intensity. When the laser scan direction
is perpendicular to the gas flow, an increase of the energy density still causes an increase of
convective motions and metal vapour emissions, but such vapour emission has little effect on
the spatter intensity, which makes the influence of the energy density mainly evident at very
low or very high energy density levels only. Such interaction between the energy density
and the laser scan direction on the spatter intensity was explored in very few studies in the
literature, but it is particularly relevant to understand the underlying by-product behaviour
and to design either process optimization or process monitoring tools that rely on the in-line
observation of such by-products.

Finally, we cannot affirm with a sufficient confidence that the spatter intensity is affected
by the layer (i.e., by the laser scan direction) as well, because it is not clear if the differences
among layers are results of interactions only or there is also a systematic laser scan direction
effect.

Even if the use of the RoFANOVA tests is recommended because the results in the Monte
Carlo simulation study (Section 9.3), for the sake of completeness, the bi-dimensional version
of the FNDP and TGPF test have been applied. For the latter, the Manly’s scheme (Manly,
2006) with 1000 random permutations are used to approximate the test statistic distribution.
The additional results are shown in Table 9.4. By comparing the proposed tests (Table
9.3) with the competitors, they disagree in considering significant the interaction between
the energy density and the layer. In particular, the FNDP and the TGPF tests accept the
null hypothesis of no interaction (i.e., large p-values). Therefore, analogously to the Monte
Carlo simulation results suggests in case of two-way FANOVA design (Section 9.3), the
FNDP and the TGPF tests have not as statistical power as needed to detect a significant
interaction among the main factor. In this regard, it appears that the proposed tests spot
a technologically relevant interaction that the FNDP and the TGPF tests fail in finding
significant.
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Figure 9.15. Interaction plot the energy density level and the layer (i.e., the laser scan direction) in the real
case-study.

Table 9.4. p-values of the FNDP and TGPF tests for H0,F lu, H0,Lay and H0,F luLay against H1,F lu, H1,Lay and
H1,F luLay.

FNDP TGPF
H0,F luLay 0.72 0.23
H0,F lu 0.00 0.00
H0,Lay 0.00 0.00

9.5 Conclusions

In this chapter, we have proposed the RoFANOVA test for the functional analysis of variance
problem. In particular, the proposed method has been designed to be robust against
functional outliers, which are increasingly common in complex problems and, as it is well
known, can severely bias the analyses. Robustness comes from the use of robust test statistics
based on the functional equivariant M -estimator and the functional normalized median
absolute deviation, which are the extensions of the classical M -estimator and normalized
median absolute deviation to functional data. The test statistic is, then, incorporated in
a permutation test, in order to solve the FANOVA problem in a non parametric fashion.
However, the proposed approach is very general, as different versions of the proposed test
emerge by the choices of particular loss functions, which are specifically designed to reduce
the abnormal observation weights in the computation of the test statistic in comparisons
with the standard least-squares loss function, and, it is designed for both one-dimensional
and bi-dimensional functional data. To the best of the authors’ knowledge, this is the first
example of a robust method for the FANOVA problem in the literature, where attention has
been mainly focused on non robust methods.

The performance of the proposed method have been investigated by means of an extensive
Monte Carlo simulation study, where the proposed RoFANOVA tests have been compared
with other methods already present in the literature. The results showed that the proposed
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tests outperform all the competitors in presence of outlier contamination in terms of both
empirical size and empirical power. Moreover, the loss of power between the RoFANOVA
tests and the competitors is negligible when no outlier contamination is present.

Eventually, the proposed method was applied to a motivating real case-study in additive
manufacturing. The aim of the analysis was to study the effects of the energy density
and laser scan direction on the bi-dimensional distribution of the spatter intensity, i.e., a
function mapping the amount of spatters ejected within the bi-dimensional field of view of the
machine vision system used for in-line measurements. Apart from the known influence of the
energy density on the spatter intensity, in agreement with previous study, the RoFANOVA
test revealed a statistically significant interaction between the energy density and the laser
scan direction relative to the shielding gas flow. The knowledge of such interaction is
of particular importance to interpret and understand the underlying process by-product
dynamics and to design method that use such by-products as proxies of the process quality
and stability. The statistical significance of the interaction between the two factors was
not identified by other non robust tests, which confirm the effectiveness of the proposed
approach for an application where complex process dynamics may lead to outlying patterns
that contaminate the experimental dataset. However, the validity of the proposed approach
is completely general, and not limited to the case study here presented and even not limited
to manufacturing applications.

In future research, the effects of heteroscedasticity on the RoFANOVA tests should be
investigated in order to be able to deal with a wider variety of settings. In addition, some
efforts should be made to extend the proposed robust method to more complex FANOVA
designs.

9.6 Supplementary Materials

Derivation of the Constant c in the FuNMAD Expression
Following Theorem 3.4 of Sinova et al. (2018), µ̂s,med is a strongly consistent estimator of
µ̃s,med � argminyPL2pT q E

�||Xi � y||�. Moreover, let assume that X is a Gaussian random
process, than, by Proposition 3.2 of Sinova et al. (2018), µ̃s,med � µ, where µ is the mean
function of the random element X. Therefore, from the population version of Equation
(9.3) by applying for each t P T the definition of univariate population median, we have
asymptotically

0.5 � Pr
�|X ptq � µ ptq |   cFuNMAD ptq� � Pr

�
|Z|   c

FuNMAD ptq
σptq

�
,

where Z is a standard normal random variable. Therefore, we must have

Φ
�
c
FuNMAD ptq

σptq


� Φ

�
�cFuNMAD ptq

σptq


� 0.5,

where Φ is the cumulative distribution function of the standard normal distribution. Noticing
that

Φ
�
�cFuNMAD ptq

σptq


� 1� Φ

�
c
FuNMAD ptq

σptq


,

then,
c
FuNMAD ptq

σptq � Φ�1 �3{4� � 0.6745, (9.8)
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where Φ�1 is the quantile function for the standard normal distribution.
Therefore, if c � 0.6745 then FuNMAD is an asymptotically pointwise consistent estimator

of σ.

Details on Data Generation
In this section, the data generation process for Scenario 1 and Scenario 2 of the simulation
study is described. For Scenario 1, let T � r0, 1s, then, three different model with the
following 3 level main effect fi are considered

M1 fi ptq � t p1� tq for t P r0, 1s and i � 1, 2, 3,

M2 fi ptq � ti p1� tq6�i for t P r0, 1s and i � 1, 2, 3,

M3 fi ptq � ti{5 p1� tq6�i{5 for t P r0, 1s and i � 1, 2, 3.

Case M1 corresponds to a situation where H0: f1 ptq � f2 ptq � f3 ptq, for t P r0, 1s, is true;
M2 and M3 provides examples, with H0 false, of monotone functions with different increasing
patterns, where for the latter fi are quite separated, whereas for the former differences are
less apparent. To simulate different type of outlying curves, let B and U two independent
random variables following a Bernoulli (with parameter p) and a discrete uniform on t�1, 1u
distributions, respectively, and T a random number generated from a uniform distribution
on p0, 0.75q. Then, the following contamination models Ci are considered

C0 Ci ptq � 0 for t P r0, 1s and i � 1, 2, 3,

C1 Ci ptq � BUM for t P r0, 1s and i � 1, 2, 3,

C2 Ci ptq �
#
BUM if t ¥ T

0 if t   T,
for t P r0, 1s and i � 1, 2, 3,

C3 Ci ptq � p�1qiBM for t P r0, 1s and i � 1, 2, 3,

C4 Ci ptq �
#
p�1qiBM if t ¥ T

0 if t   T,
for t P r0, 1s and i � 1, 2, 3,

with contamination size constant M � 25 and p � 0.1. The model C0 is representative of no
contamination; C1 (C3) and C2 (C4) are symmetric and partial trajectories contamination
models, that are independent (dependent) of the level i of the main effect. Then, the curves
Xik are generated, for i � 1, 2, 3 and k � 1, . . . , 20, as

Xik ptq � fi ptq � Ci ptq � εik ptq t P r0, 1s ,

where the errors εik are independent Gaussian processes with mean zero and covariance
function γ ps, tq � σ2ep�|s�t|10�5q. Models C1-4 are magnitude contaminations, i.e., generate
curves far from the center, in what follows we consider two shape contamination models
(López-Pintado and Romo, 2009; Sinova et al., 2018) that are both independent and dependent
of the level i of the main effect. In this setting, the curves Xik are generated, for i � 1, 2, 3
and k � 1, . . . , 20, as

Xik ptq � p1�BqYik ptq �BZik ptq t P r0, 1s ,

200



9.6. Supplementary Materials

with
Yik ptq � fi ptq � εik ptq , Zik ptq � fi ptq � εik,c ptq t P r0, 1s ,

where εik,c are independent Gaussian processes with mean zero and covariance function
γi,c ps, tq � σ2ep�|s�t|kγc,i10�5q. The following choices for kγc,i are considered

C5 kγc,i � 102 for i � 1, 2, 3,

C6 kγc,i � 102�i for i � 1, 2, 3.

In all the cases considered, the curves Xik are observed through 25 evenly spread discrete
points and σ is equal to σ1 � 1{25, σ2 � 1.8{25, σ3 � 2.6{25, σ4 � 3.4{25, σ5 � 4.2{25,
σ6 � 5{25.

For Scenario 2, let consider T � r0, 1s, then, the functional response depends on the
grand mean m, 2 level main effects fi and gi, and interaction term hij through two parameter
a and b as follows

• m ptq � tp1� tq for t P r0, 1s,
• fi ptq � ap�1qi| sinp4πtq| for t P r0, 1s and i � 1, 2,

• gj ptq � bp�1qjIpt ¡ 0.5q for t P r0, 1s and j � 1, 2,

• hij ptq � �fi ptq gj ptq Ipa ¥ 0.25q for t P r0, 1s and i � 1, 2, j � 1, 2,

with a, b P t0, 0.05, 0.10, 0.25, 0.50u. For the contamination models C0-4 (Section 9.3), the
curves Xijk are generated, for i � 1, 2, j � 1, 2 and k � 1, . . . , 20, as

Xijk ptq � m ptq � fi ptq � gj ptq � hij ptq � Ci ptq � εijk ptq t P r0, 1s ,

where the errors εijk are independent Gaussian processes with mean zero and covariance
function γ ps, tq � σ2ep�|s�t|10�5q. The curves Xijk are observed through 25 evenly spread
discrete points.

Whereas, for the contamination models C5-6 (Section 9.3), the curves Xijk are generated,
for i � 1, 2, j � 1, 2 and k � 1, . . . , 20, as

Xijk ptq � p1�BqYijk ptq �BZijk ptq t P r0, 1s ,

with

Yijk ptq � m ptq�fi ptq�gj ptq�hij ptq�εijk ptq , Zijk ptq � m ptq�fi ptq�gj ptq�hij ptq�εijk,c ptq ,

for t P r0, 1s, where εijk,c are independent Gaussian process with mean zero and covariance
function γij,c ps, tq � σ2ep�|s�t|kγc,i10�5q with, as for Scenario 1, kγc,i � 102 for C5 and
kγc,i � 102�i for C6. The random variable B follows a Bernoulli (with parameter p � 0.1)
distribution. In this case, the curves Xik are observed through 25 evenly spread discrete
points with σ � 0.3.
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Chapter 10

Functional Real-time Monitoring
Control Chart

This chapter sketches the main elements of a new method for real-time monitoring of
functional data, which is subject of an ongoing research with Murat Kulahci and Max
Spooner of the DTU Compute, Technical University of Denmark, and Biagio Palumbo and
Antonio Lepore of the Univeristy of Naples.

Recent improvements in data acquisition technologies have produced data-rich environ-
ments in every field. Often such data are big, but more often they are complex and high
dimensional. Particularly relevant is the case where data are apt to be modelled as functions
defined on multidimensional domain, which are referred to as functional data. Functional
data analysis (FDA) deals with the analysis and theory of functional data (Ramsay and
Silverman, 2005; Kokoszka and Reimherr, 2017). A typical problem in industrial applications
deals with evaluating the stability over time of some quality characteristics of interest. This
problem is addressed by statistical process control (SPC) methods (Montgomery, 2007).
Profile monitoring (Noorossana et al., 2012) is the suite of SPC methods that deal with
quality characteristics that are functional data.

Most of the profile monitoring methods consider the case where the aim of the analysis
is to assess the stability of the functional quality characteristic in its entirely (Centofanti
et al., 2020b; Capezza et al., 2020). However, in some applications, the interest relies in
understanding if the process is working properly before its completion. In other words,
in these applications, practitioners want to understand, while the process is still ruining,
if only normal sources of variation (i.e., common causes) apply to the process, i.e., the
process is in-control (IC), or assignable sources of variations (i.e., special causes) act on it,
that is the process is out-of-control (OC). This kind of control is referred to as functional
real-time monitoring (FRTM). Although the idea of FRTM is totally new in the profile
monitoring literature, a similar problem is faced by SPC methods for monitoring batch
processes. Indeed, in batch processes, quantities of raw materials are subjected to a sequence
of steps and conditions over a finite duration to transform them into the final product. Thus,
the data produced by a batch process has a three-way structure where for each batch, a set
of variables are measured over time throughout the batch’s duration. In this setting, the
aim is real-time monitoring the batch in order to assess if the process is either IC or OC
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(Spooner and Kulahci, 2018; Kassidas et al., 1998).
The first issue to face to perform FRTM is related to the need of registration or align-

ment of the partially observed functional data. Indeed, during the monitoring phase, we
need to real-time compare, i.e., while the process is running, the observed values of the
quality characteristic with some reference observations. Unfortunately, often this phase is
cumbersome either because functions have different length or because phase variability is
present. In functional data analysis the problem of registration is well-known in the literature
(Marron et al., 2015) and refers to lateral displacements in curve features, referred to as
phase variation, as opposed to amplitude variation in curve heigh. In general, the main
reason for separating phase and amplitude variation is to better preserve the structure of the
observed data, since a separate modelling of amplitude and phase variability will be more
natural, parsimonious and efficient (Srivastava et al., 2011).

When a reasonable comparison is identified through the alignment step, the aligned
partially observed functional data could be seen as complete on the partial domain and, thus,
standard profile monitoring methods could be applied at each time point. However, this
approach considers the registration process as a pre-processing step aimed to identify the
right reference point, and, thus, discards all the information related to the phase variability.
This could be risky because all the OC conditions related to variation in phase would be
overlooked. In applications, where this behaviour is unwanted, the phase component should
be taken into account. The mainstream literature devoted to profile monitoring does not deal
with registration, as it is deemed an unnecessary task or simply treated as a pre-processing
step to be neglected when profile monitoring is applied. The first work, in the direction of
combining curve registration algorithms within the profile monitoring framework is Grasso
et al. (2016), where a novel approach to jointly monitor the stability over time of both the
registered profiles and the warping functions used to align them is proposed.

On this line of research, the present work aims to present a new method, referred
to as functional real-time monitoring control chart (FRTMCC), that is able to real-time
monitor a functional quality characteristic. It is based on the idea of real-time alignment
and simultaneously monitoring of phase and amplitude variations. The FRTMCC apply
iteratively at each time point a procedure consisting of three main steps: i) align the partially
observed functional data to the reference observations through a registration procedure;
ii) perform a dimensionality reduction through a modification of the functional principal
component analysis (FPCA) (Happ, 2018; Ramsay and Silverman, 2005) specifically designed
to take into account the phase variability; iii) monitor the resulting coefficients. The first
step is performed through the functional dynamic time warping (FDTW) (Wang et al.,
1997), which is the functional extension of the well-known dynamic time warping (DTW)
designed to align two signals with different dynamics (Sakoe and Chiba, 1978; Itakura,
1975). The idea of the FDTW is to align two functional data by minimizing a distance as a
function of the warping function which is a nonlinear transformation mapping the system
to the clock time. In particular, a modification of the FDTW is considered to take into
account settings with partial matches, which is referred to as open-end/open-begin FDTW.
The output of this phase is the aligned and the warping functions. Because functions are
intrinsically infinite dimensional, the second step is related to dimensionality reduction. The
most used method to perform dimensionality reduction of functional data is the FPCA.
However, standard FPCA is not designed to take into account the constrained nature of the
warping functions, which are by definition strictly monotonic. Indeed, if standard FPCA is
applied to the warping function, then the reconstructed function is not guaranteed to satisfy
the monotonic constraint. Therefore, a modification of the FPCA is considered where the
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warping function is transformed through an isometric isomorphism from the Bayes space
of the warping functions to the space of square integrable function (Happ et al., 2019). In
this way the constrained warping function is substituted by an unconstrained one in the
space of square integrable functions. The last step concerns with the identification of the
appropriate statistics to be monitored. In particular, we consider the profile monitoring
approach introduced by Woodall et al. (2004) and, then, used in Noorossana et al. (2012);
Grasso et al. (2016); Pini et al. (2017), which is based on the simultaneous application of the
Hotelling’s T 2 and the squared prediction error (SPE) control charts.
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Conclusion and Future Developments

This thesis stands as one of the first attempt to use functional data analysis (FDA) with the
specific aim of solving problems in the industry. Indeed, a suite of methods based on this
object oriented data analysis (OODA) paradigm have been presented to address a whole
variety of industrial applications. The advantages of these approaches have been extensively
discussed, that undoubtedly reveal the utility of FDA methods in the industrial setting.

In particular, in Part I, FDA methods have been proposed to monitor CO2 emissions
during the navigation phase of a roll-on/roll-off passenger cruise ship (Chapter 1) and to
deal with the case where measurements of functional covariates are available along with the
functional quality characteristic (Chapter 2 and Chapter 3). Chapter 4 represents one of the
first contribution in the direction of integrating FDA methods, and in particular functional
regression methods, into the manufacturing field, whereas, Chapter 5 shows the potentiality
and the practical applicability of functional clustering methods to find out homogeneous
groups of dynamic resistance curve in a real-case study in the automotive industry.

Again stimulated by real applications, Part II of this thesis presents new methodological
contributions. The focus in this part is on the notion of interpretability. Indeed, new
interpretable FDA methods are presented. In particular, in Chapter 6, a new interpretable
estimator, named S-LASSO, is proposed to estimate the coefficient function of the function-
on-function linear regression model. Chapter 7 presents the adaptive smoothing spline
(AdaSS) estimator for the same model that is able to adapt to the true coefficient function
over regions of large curvature and not to be undersmoothed over the remaining part of
the domain. Regarding the problem of clustering functional data, Chapter 8 introduces the
sparse and smooth functional clustering (SaS-Funclust) that is able to classify a sample of
curves into homogeneous groups while jointly detecting the most informative portions of
domain. Eventually, Part III presents two ongoing researches. In particular, in Chapter 9 a
new robust method, referred to as Ro-FANOVA, for the functional analysis of variance is
presented, whereas Chapter 10 contains a sketch of a new method for functional real-time
monitoring.

The possibilities for FDA and more in general OODA methods in the industrial field are
countless. Indeed, the more and more complex industrial environment will always require
new methods able to deal with these complexity. FDA deals with complex objects that are
functions, but what about other types of complex objects such as shapes, network, and so
on? Moreover, nowadays datasets of complex objects are of either moderate or small size,
but in the future, huge datasets of complex objects will be available as well. Most of the
methods now present in the literature are not designed for these types of datasets, how could
we deal with this issue? Still, how could the dependence structure among complex objects
be used to provide more insightful analysis results? In this thesis, only linear regression has
been investigated, could non-linear relationships among complex objects be fruitfully used in
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industrial applications? And, in this increasingly complex industrial setting, how could we
guarantee that the analysis results are interpretable as well as robust against the presence of
anomalous observations?

So, the questions are many, but the answers are still few. The voyage of methods for
complex objects in the industry filed is just at the beginning.
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