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 Introduction 

 

1.1 Motivation and background 

 The o-d flows estimation problem 

 

Understanding the spatial and temporal dynamics of mobility demand is essential for many 

applications over the entire transport domain, from planning and policy assessment to 

operation, control, and management. Typically, mobility demand is represented by origin-

destination (o-d) flows, each representing the number of trips from one traffic zone to another, 

for a certain trip purpose and mode of transport, in a given time interval (Cascetta, 2009, Ortuzar 

and Willumsen, 2011). Without loss of generality, reference will be made in the following to 

trips of passenger vehicles, thus the words trips and vehicles will be interchangeable. In statics, 

the time interval reflects a modelling horizon wherein stationary conditions hold, whilst in 

dynamics, the modelling horizon is discretized into time intervals to model within-day o-d flows 

evolution, e.g. the temporal distribution of trip departure times.  

O-d flows have been generally unobservable for decades, thus the problem of o-d matrix 

estimation is still one of the most challenging in transportation studies. Estimation/updating of 

o-d flows has been studied extensively first in static traffic networks, following four main 

approaches: minimum information/maximum entropy (Van Zuylen and Willumsen, 1980); 

maximum likelihood (Bell 1983; Cascetta and Nguyen 1988), Generalized Least Squares 

(Cascetta 1984), Bayesian theory (Maher 1983). Drawing upon these broad general approaches, 

several generalizations and extensions of the o-d updating problem have been proposed: 

examples include incorporating the treatment of congested networks through bi-level 

optimization (Florian and Chen 1995; Yang 1995; Cascetta and Postorino 2001), accounting 

for the stochastic nature of traffic counts (Lo et al. 1996; Vardi 1996), estimating 

simultaneously o-d flows and the route choice model parameters (Lo and Chan 2003), or 

dealing with the availability of traffic counts on multiple days (Hazelton 2003). Extension to 
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the within-day dynamic framework was provided by Cascetta et al. (1993) through the 

proposition of GLS-based simultaneous and sequential o-d estimators. The former estimates 

jointly all o-d matrices for all time slices using the whole set of traffic counts, assuming the 

dynamic assignment matrix known, the latter estimates at each step the o-d flows for a given 

time slice q expressed as a function of the traffic counts within q and (some) of the already 

estimated previous o-d matrices. Usually, a prior estimate is obtained by a model and/or by a 

survey, and then an update of the prior estimate is performed to fit a set of traffic measurements, 

primarily link counts: this approach is characterized by two main issues.  

The former is that the prior estimate is always biased. Traditionally o-d flow data is collected 

via high-cost, labour-intensive and time-spending surveys, such as household surveys, roadside 

intercept surveys, and video license capture methods, known to provide valuable information. 

However, these methods are dated and less viable by now due to concerns such as traffic safety 

and delay, privacy, and respondent burden (Tolouei et al. 2016). Furthermore, the collected 

sample can only represent a ‘static’ picture of the vehicle trip population. An alternative to the 

survey consists of deriving a prior estimate of the o-d matrix using analytical models. However, 

as demand models introduce simplifying behavioural assumptions, they inevitably yield to 

inherent biases.  

The latter relates to the updating of the prior estimates (from both models or surveys) using 

indirect measurements of demand flows including a set of traffic measurements (link flows, 

speeds, densities, travel times, …), such that the final estimate can represent the correct traffic 

regime and reach a higher level of accuracy. Nonetheless, this problem is severely under-

determined: the maximal number of network sensors (corresponding to the number of available 

linearly independent equations) is much lower than the number of the variables to be estimated 

(o-d flows). For this reason, a perfect fit of traffic measurements will not necessarily imply an 

accurate estimation of the o-d matrix. 

Thus, a noteworthy research task arises, that is looking for approaches able to ameliorate the 

updating of prior o-d flows, possibly yielding satisfactory results irrespective of the quality of 

the prior estimate. This is a timely and classical issue in transport engineering, as recalled by 

the literature review presented in Chapter 2 of the thesis. Considering that the key issue is the 

imbalance between unknowns and equations and that in statics this balance cannot be met, 

solutions to the problem should be looked at in dynamics.  After the seminal works by Hazelton 

et al. (2003) and Duong & Hazelton (2005), who dealt with day-to-day dynamics, most of the 

researchers focussed their attention on within-day dynamics. In principle, moving from statics 

to within-day dynamics does not alter the balance between unknowns and equations: given the 



Angela Romano               12 

 

number of time slices considered in the modelling horizon, the number of equations and the 

number of unknowns increases proportionally in the same way. As demonstrated by the 

laboratory experiments on real-size synthetic networks carried out by Marzano et al. (2009), a 

satisfactory updating can be obtained when the ratio between the number of equations and the 

number of variables is close to one. These findings suggested the development of so-called 

quasi-dynamic o-d flow estimation/updating (Cascetta et al. 2013), which is, introducing 

hypothesis on the within-day demand evolution (i.e., between different time slices) to reduce 

the number of unknowns, based on a theoretical consideration: while the generation profile of 

each zone could be considered time-varying among the different time slices, the distribution 

percentages among the different destination zones could be considered linked to territorial 

aspects that vary more slowly across the day. Thus, according to the quasi-dynamic assumption, 

o-d shares are constant across a longer reference period (e.g. 60 minutes), whilst total flows 

leaving each origin vary for each sub-period within the reference period (e.g. 15 minutes). In 

this way, the equation-to-unknown ratio can be pushed toward the desired “one” value and true 

generation profiles. Importantly, the quasi-dynamic assumption has been tested only in 

monitored motorway systems (see Ashok and Ben-Akiva 2000 and Cascetta et al. 2013) and 

there is no evidence of its validity in urban contexts. Furthermore, the quasi-dynamic estimator, 

both offline (Cascetta et al. 2013) and online (Marzano et al. 2018), have been developed and 

tested only in uncongested conditions and assuming knowledge of the true underlying matrix. 

These unexplored aspects motivate the first part of the research presented in this thesis. 

In recent times, unprecedented tracing and tracking capabilities have become available. The 

pervasive penetration of sensing devices (smartphones, black boxes, smart cards, …) adopting 

a variety of tracing technologies/methods (GPS, Bluetooth, …) could make in many cases o-d 

flows now observable. Considerable limitations remain, mainly related to privacy issues, 

organization and management of the tracking process, data transmission and storage, extraction 

of trips’ characteristics other than just instantaneous positions and kinematics. The increasing 

availability of trajectory data sources has provided new opportunities to enhance observability 

of human mobility and travel patterns between origins and destinations, recently explored by 

researchers and practitioners, bringing innovation and new research directions on origin-

destination (o-d) matrix estimation: a comprehensive literature review on trending research 

directions regarding this topic is reported in Chapter 2 of the thesis.  

  Opportunities from sensing data 
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Nowadays, direct measurements of o-d data can be collected leveraging a wide range of 

technologies that can be roughly categorized into two groups: fixed sensors technologies (e.g. 

loop detectors, cameras, Wi-fi and/or Bluetooth antennas) and moving sensors technologies, 

(e.g. Cellular Network, Global Navigation Satellite Systems). Fixed sensor technologies detect  

the number of vehicles/devices passing through the catchment area of a sensor installed at an 

opportunely defined location, whilst moving sensor technologies collected data from onboard 

devices, therefore recording with a pre-specified sample frequency the location of the vehicle 

moving along the network. For the scope of the thesis, this description mainly focuses on the 

second group of technologies (also known as point-to-point technologies) by means of which a 

preliminary estimate of the o-d matrix can be obtained.  Characteristics of o-d flow observations 

can strongly vary according to the different capabilities and limitations of the technology used 

for the data collection; therefore, it is important to define which source can best address the 

study’s scope and objectives.  Concerning the o-d estimation problem, the primary technologies 

being tested and applied include cellular, GPS and Bluetooth (FHWA 2016), which are 

described in detail in the following: 

• The GPS has established itself as a major positioning technology for providing 

locational data for Intelligent transport systems (ITS) applications. GPS satellites 

broadcast radio signals providing their locations, status, and time from onboard atomic 

clocks. The signals travel through space and are received by GPS receivers with their 

exact arrival times. Once a GPS receiver can detect at least four satellites (Zandbergen 

2009), based on the time difference, geometric techniques can be utilized to locate the 

receiver’s position on Earth in three dimensions (GPS.gov 2019). Even with some errors 

due to inaccurate timekeeping by the receiver’s clock, GPS data usually has the highest 

accuracy and precision levels compared to other types of signals such as tower 

triangulation (see 1.1.3).  We can distinguish between two types of GPS trajectory data 

according to the adopted sampling: opportunistic data and purpose-oriented data. In the 

former case the sample comes from various sources such as location-based applications 

for smartphones (as experimented by Zhao & Zang (2017), Cui et al. 2018 and Hasan 

and Ukkusuri (2014)) or navigation devices in fleets (e.g. trucks, taxi and on-demand 

service providers), while in the latter, data is generated from a well-structured process, 

designed with a specific purpose for transport research and applications, such as GPS-

based household surveys (Cottrill et al. 2013; Tolouei et al. 2016; Bricka et al. 2012; 

Lee et al. 2016; Erhardt and Rizzo 2018; Vij e Shankari 2015) or travel diaries 

collection, in which users are actively solicited and asked to provide their movement 
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data. Non-purpose-oriented data should be carefully analysed to identify biases that 

could compromise population representativeness (Markovitc et al. 2019), for example, 

taxi data cannot represent total demand patterns. Therefore, it is common to use such 

datasets as probe data to get information on network status (supply performances), e.g. 

point-to-point travel times (Sanaullah et al. 2016), driving trajectories (Tang et al. 2018), 

traffic volume (Zhan et al. 2017). 

• Cellular data derives from the interactions of mobile phones (which can be smartphones 

or any kind of mobile phones) with the cellular network, for this reason, cellular data is 

also referred as to event-driven data. An event occurs when the mobile device connects 

to the nearest tower of the cellular infrastructure and it can consist of a (starting or 

ending) call, SMS, an activity requiring data exchange or a handover, happening when 

the device is moving and automatically connecting to the next nearest tower to keep the 

connection/communication seamless. When an event occurs, a record containing the 

location of the active cell tower and the timestamp is generated, thus this type of data is 

also referred as to Call Detail Records (CDR). Normally, carriers collect data when the 

mobile device is off-call as well, but with a much lower sampling/recording frequency 

generating another type of records also known as “sighting” records. The location of the 

cell phone is calculated on the basis of its distance from the surrounding towers for e.g. 

by means of a tower triangulation technique (Toole et al. 2015). Its accuracy strongly 

depends upon the type of area in which the device is operating: in urban areas, a higher 

density of cell towers allows to obtain a better precision with respect to rural areas, in 

which cell tower distribution is more sparse. Investigating the location accuracy, 

Leontiadis et al. (2014) developed a method able to estimate stationary locations with a 

median error of 270 meters and in many case studies found in literature this error is 

reported around 300 meters (Wang et. al 2010; Wang et al. 2013; FHWA 2016). To 

derive o-d data, raw data is analysed to identify individual activity points, created when 

a device remains in the same location for a relatively long duration (e.g. five minutes). 

A broadly held conclusion regarding the o-d estimation problem states that mobile 

phone data can represent a proxy for human mobility, being able to capture travel 

patterns as well as to provide reliable estimates of o-d matrices for operational and 

planning applications. These accomplishments come with some important limitations 

affecting statistical results in mobility analysis, such as spatial resolution (e.g. the coarse 

granularity of cell locations leads to unreliable short-distance trip data collection 

(Janzen et al. 2018), poor location accuracy, the market share of the mobile operator 
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from which the dataset is obtained, sample bias in mobile phone users (e.g. high 

percentage of teenager users), calling plans limiting the number of phone activities, 

number of devices per person. Key studies validating mobile phone data processing 

methods and discussing the potential and limitations of mobile phone data can be found 

in  Chen et al. (2014), Zilske e Nagel Yang et al. (2017),  Chen et al. (2016), Chen et al. 

(2017), and Wang and Chen (2018). The validation of such methods relies on the 

possibility of effectively comparing passive data to socio-demographic/census data 

(Calabrese et al. 2011; Calabrese et al. 2013; Dash et al. 2014; Chen et al. 2014; 

Alexander et al. 2015; Bonnel et al. 2015; Çolak et al. 2015). The massive spread and 

the ubiquitous use of cellular devices represent the great potential of mobile phone 

datasets as they usually come with high penetration rates and widespread geographic 

(network) coverage, promising a significant level of population representativeness; 

nevertheless, these factors are evidently depending upon the market share owned by the 

mobile operators (Calabrese et al. 2011). 

• Bluetooth technology is frequently embedded in mobile phones, GPS, and in-vehicle 

navigation systems; this technology is typically used for exchanging data over a short 

distance. Bluetooth-equipped devices can be detected as they approach the catchment 

area of an opportunely pre-located Bluetooth sensor. To track each device passing, the 

sensor identifies its unique alphanumeric identifier known as a Media Access Control 

(MAC) address. O-d data can be derived from Bluetooth technology by matching MAC 

addresses between locations where Bluetooth sensor equipment has been deployed. 

Given a study area, o-d flows data deriving from GPS and cellular technologies are 

based on estimated trip ends, thus they better suit for internal-external/external-internal 

trip estimation, while Bluetooth data does not contain trip ends and deriving o-d flows 

are based on the device location detected by the sensor, thus they are mainly used to 

estimate External-External (E-E) trips (FHWA, 2016). Generally, Bluetooth data is used 

for smaller-scale study cases, since data collection requires the installation of roadside 

sensors, unlike GPS or cellular data. Furthermore, Bluetooth o-d data is mainly used to 

compare and benchmark cell and GPS developed o-d data and for travel time estimation 

(e.g. Barceló et al. 2008).  

 

Table 1.1 (Source:  FHWA 2016) briefly illustrates the pros and cons of each 

technology/method, looking at few aspects. A first consideration relates to the sensing devices 

that implement these technologies/methods. Basically, two types of sensing devices can be 
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considered depending upon the data source, which is smartphone-based or onboard device-

based (OBD-based). Typically, smartphones embed multiple tracking/tracing 

technologies/methods: a single device embeds numerous types of sensors and consequently a 

variety of data types with different level of accuracy can be obtained (Cellular, GPS, Wi-fi, 

Bluetooth data etc.), while OBD usually are single-technology . 

 

 
Source:  FHWA 2016 

Table 1.1 - Key features of sensing data collection technologies/methods. 

The wide and massive spread of smartphones and in general of all portable devices such as 

tablets, laptops, smartwatches etc. has enabled a rich data collection of users’ activity points, 

movements, frequent visited places and so on. Nowadays these devices play a central role in 

people’s life: in e.g.  the 2017 global consumer trends by Deloitte reports that more than 80% 

of the Italian population is smartphone user and more than 90% owns a mobile phone of any 

kind. The situation is similar for each developed country, indicating the high level of penetration 

reached by this technology. Although they allow to provide a high level of information with 

high penetration rates, the most limiting aspect of smartphone-based data is its availability: data 

is often owned by private entities such as mobile carriers, smartphone providers, app developers 

etc. thus it can be inaccessible in most of the cases. Recently these entities have started to sell 

batch of data by encrypting users’ personal information to protect their privacy anonymizing 

the specific individual or mobile device information, dramatically diminishing the informative 

content. Unlike smartphone-based data, on board device-based data is more available and more 

accessible to researchers and practitioners, but in most of the cases the data sample has a poor 
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penetration level. This can compromise the sample representativeness and variety, therefore 

scaling techniques are required to obtain a first estimate of the o-d matrix (see Chapter 5). 

Generally, this type of data derives from insurance providers or other private companies, 

opportunely encrypted to protect users’ privacy. Recently dedicated companies have developed 

their own techniques to pre-process raw trajectory data and generate o-d data to sell it directly 

as a product, but the reliability of the data processing techniques and of the results cannot be 

accurately verified. The sample accuracy in this case is higher in terms of granularity and 

sampling frequency, but the level of socio-economic information provided is low, and if 

present, not accessible, therefore inference-based procedures are required to extract trips’ 

characteristics from raw data.  

To summarize, three critical aspects challenging trajectory data exploitation in transport studies 

and particularly in the o-d estimation problem emerged from the analysis of the literature: 

• Data ownership: data is mostly owned by private entities, therefore there is a 

dramatically restricted availability of movements data. Consequently, a straightforward 

problem concerns the maximum achievable level of penetration. Available data is often 

offered as a product by vendors, e.g. mobile phone carriers or dedicated companies such 

as INRIX, OCTOTELEMATICS, TomTom, HERE etc. selling batch of data from 

various sources (e.g. freight carriers/shippers, car insurance providers etc.).  

• Penetration level and sample representativeness: collected data should have a sufficient 

scale to apply inference techniques, thus the penetration level of the sample is a key 

factor for accurate demand estimates. 

• Sample bias and privacy concerns: since data is often acquired from vendors, sample 

variety can be compromised. Furthermore, ethical issues on privacy protection arise, 

thus some characteristics of the sample are inevitably modified to remove sensitive 

information (e.g. precise location of a GPS trajectory starting point, SIM card ID for 

cellular data). 

As mentioned, a crucial aspect in adopting trajectories for o-d flows estimation/updating relates 

to their penetration rate. Very high penetration rates, typical of mobile phone carrier or 

smartphone providers, can yield to effective o-d flows estimation methods; in addition, 

individual profiling helps associating socio-economic and trip information. Unfortunately, this 

type of data is very costly and not accessible to many researchers and practitioners, who usually 

must deal with trajectories collected with on-board-devices characterized by low penetration 

rates: by way of example, the dataset used in the thesis and described in Chapter 4, has an 

estimated overall penetration rate of about 6% of the total trips registered by census data, which 
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is considered already a good value. In addition, the estimation of the penetration rate itself is 

not straightforward: since the true underlying o-d flows are unknown, only inference based on 

census data (e.g. population, workforce, employees by traffic analysis zone) can be performed. 

Consistent with the above framework, trajectory data can be exploited for o-d flows estimation 

in various manners, as presented in the following and extensively explained in Section 2.2:  

1. to obtain a first estimate of o-d flows; 

2. to infer the assignment map; 

3. to derive route choices underlying the assignment map; 

4. to infer splitting rates at intersection; 

5. to use the precedent information to ameliorate existing o-d flows estimation methods.  

Currently, o-d flows updating methods are enriched with inputs from trajectory data, indeed 

opportunities from exploiting trajectory data are mainly related to novel and alternative 

formulations of the o-d flow updating problem itself: for instance, as recalled in the literature 

review in Chapter 2 , upscaling rates in place of o-d flows can be defined as variables of the 

optimization problem. 

In general, although a few studies are available, to the author’s knowledge no systematic 

assessment of the potential of these approaches has been developed yet. Furthermore, amongst 

methods proposed in the literature for o-d flows estimation/updating based on trajectory data, 

no assessment of the potential of the quasi-dynamic framework has been proposed, as also 

explicitly mentioned by Yang et al. (2017). 

Overall, the above motivates the formulation of the research questions underlying this work, 

stated in Section 1.2. The outline of the thesis is illustrated in Section 1.3. 

1.2 Thesis contribution 

Consistently with the above considerations, this thesis focuses on a threefold objective:  

• To conduct a preliminary study investigating the unexplored properties of quasi-

dynamic assumption and to provide insights on how to implement the quasi-dynamic o-

d estimation framework when dealing with congested networks (Chapter 3);  

• To develop an extended analysis mining the entire range of variability and variety of 

trajectory data samples aiming at evaluating how the issues of representativeness and 

sample bias affect o-d estimation performances. This contribution has been carried out 

by means of both empirical (Chapter 4) and laboratory analysis (Chapter 5, Chapter 6). 

Part of the experimental analysis in Chapter 4 is dedicated to the assessment of quasi-
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dynamic evolution of the demand in urban context, supporting the application of quasi-

dynamic framework to o-d updating methods in presence of trajectory data. 

• To investigate the potential of existing and new formulations of GLS-based estimators 

(simultaneous and quasi-dynamic GLS) in presence of trajectory data, defining its role 

on the basis of the considerations and results derived from the analysis described above 

(see Chapter 7). 

Specifically, this thesis aims to provide a systematic study developed by means of laboratory 

experiments investigating on the potential of the various types of trajectory data samples for o-

d related analysis, in terms of their characteristics (e.g. coverage, penetration level and 

distribution…). Given a set of opportunely defined ground truth data, synthetic experiments are 

used as powerful tools to provide an appropriate validation of proposed o-d estimation methods 

(e.g. Antoniou et al. 2016). Therefore the analysis will cover a wide experimental plan to 

investigate on the implications of sample characteristics variation and their impact on travel 

demand accuracy i.e. from the analysis of real trajectory data, evidence shows that penetration 

rate strongly vary among o-d pairs (see Section 4.2), thus a study assessing its variability and 

the consequent implications on o-d estimation becomes essential. Other hypothesis on the level 

and the distribution of penetration rate are considered: homogeneous by origin, by destination, 

by o-d pair or vice versa. In addition, the study sheds the light on the combined capability of 

different sets of data investigating on the simultaneous use of both trajectory data and link 

traffic data. Considerations on the implications in the dynamic and the static context for 

uncongested networks are developed by means of synthetic experiments, which can be one of 

the best tools guaranteeing a proper validation for o-d related analysis. Several o-d estimation 

methods are tested on variable scale networks to verify the sensitivity of the solution with 

respect to the network dimension. Furthermore, as also suggested by Yang et al. 2017, the quasi-

dynamic hypothesis can be the next step to solve trajectory expansion rate estimation 

dramatically reducing the problem dimension. To this end, a preliminary study on quasi-

dynamic methods is developed, calibrating its parameters for both congested and uncongested 

cases (see Chapter 3 and Section 4.5). Note that the scope of this thesis is car traffic, and, in 

terms of the modelling literature, the discussion involves both dynamic and static (stationary) 

applications.  

This work, being part of the national research program namely “Programma Operativo 

Nazionale Ricerca e Innovazione 2014-2020”, has been developed in collaboration with the 

“Université du Luxembourg” under the supervision of Prof. Ing. Francesco Viti and in 

partnership with the company “PTV – Sistema” under the supervision of Ing. Lorenzo 
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Meschini. The real trajectory data sample analysed in this thesis has been obtained under the 

“STAR: Sostegno Territoriale Attività di Ricerca” program. Further details of the trajectory 

dataset and its characteristics are reported in Chapter 4.  

 

1.3 Outline of the thesis 

Consistent with the statement of research, the structure of the thesis is the following: 

• Chapter 2: Literature review 

• Chapter 3: Quasi-dynamic assumption in congested network 

• Chapter 4: Trajectory data in Napoli 

• Chapter 5: Performance analysis of direct scaling  

• Chapter 6: Laboratory experiments to assess the reliability of traffic assignment map  

• Chapter 7: o-d flows updating methods in presence of trajectory data 

• Chapter 8: Conclusions and future research questions 
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 Literature review 

This chapter reports the literature review related to the two main topics of the thesis, that is o-

d flows estimation/updating (Section 2.1) and the o-d estimation/updating methods in presence 

of trajectory data (Section 2.2). Finally, Section 2.3 summarises the outcomes of the literature 

review and the research contribution developed in the thesis. 

2.1 Estimation/updating of o-d flows 

Estimation/updating of the o-d matrix is a traditional problem in transport engineering. The 

procedure consists of updating a prior estimate of the o-d matrix fitting the information derived 

from a set of traffic measurements, primarily link counts. Traditionally a prior estimate of the 

o-d matrix derives from high-cost, labour-intensive and time-spending surveys, such as 

household surveys, roadside intercept surveys and video license capture methods, known to 

provide valuable information. However, the collected sample represents a ‘static’ picture of the 

vehicle trip population. An alternative to survey consists of deriving a prior estimate of the o-d 

matrix by means of analytical models. However, as demand models introduce simplifying 

behavioural assumptions, they inevitably yield to inherent biases. Thus, the updating of the 

prior estimates (from both models or surveys) using indirect measurements of demand flows 

including a set of traffic measurements (link flows, speeds, densities, travel times, …), is 

performed such that the final estimate can represent the correct traffic regime and reach a higher 

level of accuracy. This problem is severely under-determined: the maximal number of network 

sensors (corresponding to the number of available linearly independent equations) is much 

lower than the number of the variables to be estimated (o-d flows). For this reason, a perfect fit 

of traffic measurements will not necessarily imply an accurate estimation of the o-d matrix.  

The problem formulation depends upon the assumptions on the temporal o-d flows evolution 

(stationary or dynamic conditions), and concerning the dynamic context, a further distinction 

can be made between on-line and off-line applications according to the temporal characteristics 

of the input data and the data feeding process. Furthermore, each case can be analysed for 

congested or uncongested networks. 
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 Static O-D matrix estimation/updating 

The static framework allows to perform the estimation/updating of the o-d matrix from traffic 

counts assuming time-independent conditions within the analysis horizon, such that the time 

interval reflects a modelling horizon wherein stationary conditions hold. Two main theoretical 

approaches have been proposed in the literature: the former approach comprises the “classical” 

estimation methods such as the Maximum Likelihood (ML) estimator proposed by Maher 

(1983) and Bell (1983) and the Generalised Least Squares (GLS) estimator proposed by 

Cascetta (1984), whilst the latter refers to the Bayesian framework proposed by Maher (1983). 

Following Cascetta and Nyguen (1988) and Cascetta (2001), the Maximum Likelihood (ML) 

estimator provides a final demand estimate (dML) maximising the probability of conjunctively 

observing the o-d sampling survey data and the link counts data, under the assumption that 

these two probabilities are independent: 

 
(2.1) 

wherein:  

• x is the vector of the optimization variables, one for each o-d pair;  

• 𝒅. is the demand vector derived by survey data; 

• 𝒇0	is the vector of link counts, one for each measured link.  

Log-likelihood functions in equation 2.1 are specified based on assuming specific hypotheses 

on the probability distribution of demand counts 𝒅. and traffic counts 𝒇0 respectively, conditional 

on the demand vector x. The probability distribution of the prior demand estimate depends 

upon the sampling strategy adopted in the survey, while traffic counts are typically assumed as 

independently distributed as Poisson random variables or as Multivariate Normal random 

variables. 

The Generalized Lead Squared (GLS) estimation method consists of an optimization problem 

aiming at providing a final estimate solving a system of linear stochastic equation. The goal is 

to minimise the distance (error) between collected data (link counts and a priori demand) and 

estimated values, such that the final estimate (dGLS) best fits the collected traffic measurements 

and the o-d survey data. This formulation yields to the following optimization problem:  

 (2.2) 

 wherein: 

• Mf is the sub-assignment matrix related to the set of available traffic counts;  
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•  Z and W are respectively the covariance matrices related to the sampling error 

underlying the demand estimation and the measurement/assignment errors. 

The Bayesian approach combines experimental information derived from measurement traffic 

data (link traffic counts) and non-experimental information based on the a priori knowledge or 

expectation about the demand probability function (e.g. coming from previous estimates or 

from an analytical model). The final estimate provided by the Bayesian-based estimators 

maximises the logarithm of the a posteriori probability, that is the probability function 

attributed to the unknown vector given the a priori estimate d* (g(x|d*)) and the probability of 

observing the vector of traffic counts conditional on the unknown demand vector x (L(𝒇0 |x)): 

 (2.3) 

The specific formulation of a Bayesian estimator and its performance strongly depends upon 

the assumptions on the probability functions g(x|d*) and L(𝒇0 |x). The unknown demand vector 

can be assumed to follow a multinomial random variable (in this case ln g(x|d*) becomes the 

entropy function of the unknown vector x), a Poisson random variable (in this case ln g(x|d*) 

becomes the information function of the unknown vector x), or a Multivariate Normal random 

variable. Interestingly, if all the relevant distributions are assumed as multivariate normal, the 

methods discussed above would result with identical objective functions. 

Drawing upon these approaches, a number of generalizations and extensions have been 

proposed. Bell (1991) explored further theoretical properties of the GLS method. Other 

examples include applications dealing with congested network by incorporating o-d estimation 

and traffic assignment feedbacks through a bi-level formulation of the optimization problem 

(Yang et al. 1991; Florian and Chen 1995; Yang 1995; Cascetta and Postorino 2001). Lo et al. 

(1996) and Vardi (1996) among others, investigated on the stochastic nature of traffic counts. 

A further generalization by Lo and Chan (2003) jointly estimates o-d flows and route choice 

model parameters dispersion in the case of congested networks, whilst Hazelton (2003) 

extended the problem to applications dealing with the availability of traffic counts on multiple 

days considering time-series link counts.  

 Dynamic o-d matrix estimation/updating  

The methods described for the static framework have been generalised to model within-day o-

d flows evolution performing a dynamic estimation/updating using time-varying traffic 

measurements. Specifically, the dynamic framework prompted further research directions 

extending and adapting the static formulations to off-line and on-line applications, which will 

be separately described in the following Sections (2.1.2.1 and 2.1.2.2). Basically, offline 
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applications generally suit long-term purpose (e.g. planning) because measurement data is first 

collected in batch and then used to estimate the o-d flows, while online applications suit real-

time (or short-term) management applications since the traffic data feeding process is 

continuous such that data amount increases at each time-interval.  

2.1.2.1 Off-line	

The dynamic o-d estimation problem was first formulated by Cascetta et al. (1993) proposing 

the simultaneous and the sequential GLS-based estimators. The simultaneous estimator jointly 

estimates the time-dependent o-d matrices for the total number of time slices using the whole 

set of traffic counts, thus it is designed for offline applications, whilst the sequential estimator 

is suitable for online applications, thus it will be discussed in details in the next section. The 

simultaneous estimator formulation can be smoothly derived from the estimator 2.2:  

 (2.4) 

Wherein: 

• 

 

"qÎT represents the unknown demand vectors; 

• "qÎT is the corresponding optimal solutions 

• 𝒅.1 the (𝑛3 ∙ 	𝑛5)	matrix of the prior demand estimates 𝑑7351  for the time slice 𝜃; 

• 𝒇01 the (𝑛9: ∙ 1)	vector of the observed link counts 𝑓791 for the time slice 𝜃. 

• 𝑚359
1>1is the generic term of the dynamic assignment map linking time-dependent o-d 

flows with time-dependent link flows (i.e. it represents the fraction of o-d flow 

generated at the time slice q’ being on link l at the time slice q);  

• sqod and sql are related to the dispersion matrix of the demand and of the counted flows 

distribution respectively; 

• ql is the farthest time slice whose generated demand contributes to the link flows on q.  

Notably, the approach requires a dynamic traffic assignment (DTA) model to derive the 

dynamic assignment map and even though it is a robust estimator for offline applications, 

computational issues arise for moderate size networks, as reported in Cascetta and Russo 

(1997), Toledo et al. (2003) and Bierlaire and Crittin (2004).  

Further adaptations have been proposed to deal with congested networks: since in the 

simultaneous approach the dynamic assignment matrix is exogenously determined, it might be 
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inconsistent with the estimated assignment mapping (Toledo et al. 2015). To avoid such 

inconsistency and take into account the complex interaction between o-d flows, path flows and 

link flows, the problem was formulated as a bi-level optimization problem (Bracken & McGill 

1973) by Tavana and Mahmassani (2000) and Tavana (2001), proposing an iterative solution 

framework to estimate dynamic o-d demand matrix. In the upper-level problem, o-d flows are 

updated to fit the traffic measurements, while in the lower-level a DTA model maps time-

dependent o-d flows with time-dependent link flows such that the estimated link flows are 

consistent with the demand values calculated at the generic iteration of the first level 

(Balakrishna et al. 2007). However, this circular dependency between od flows and traffic 

variables increases problem complexity, since the highly non-linear relationship between these 

two entities makes the problem highly non-convex. Frederix et al. (2011) analysed the influence 

of non-linearity of link-route proportion matrix on o-d estimation to obtain a more accurate 

representation of congestion phenomena, calculating the sensitivity (Jacobian matrix) of the 

link flows to the o-d flows through finite differences with marginal computation simulations 

based on first-order kinematic theory. Alternatively, Toledo and Kolechkina (2013) developed 

iterative algorithms to solve the estimation problem underlying a linear assignment matrix 

approximation. Several authors identified alternative ways to overcome the non-linearity issue: 

i.e. by integrating additional information within the o-d estimation framework (Dixon & Rilett 

2002; Antoniou et al. 2006; Balakrishna 2006; Zhou & Mahmassani 2007; Barcelò, et al. 2010; 

Zhang et al. 2011; Rao et al. 2018; Nigro 2017) or developing assignment matrix-free algorithm 

i.e. by reproducing directly the relationship between measurement profiles and o-d flow profiles 

without using any assignment matrix explaining the demand pattern (e.g. Cremer and Keller 

1981; Cremer and Keller 1984; Cremer and Keller 1987; Nihan and Davis 1987; Nihan and 

Davis 1989; Balakrishna et al. 2008; Carrese et al. 2017) or using machine learning to learn this 

nonlinear relationships (Wu et al. 2018; Krishnakumari et al. 2019). Other relevant research 

directions within this field dealt with joint estimation of demand and supply parameters: starting 

from Liu and Fricker (1996) to the development of efficient estimation algorithms in the recent 

contributions by Antoniou et al. (2015) and Cipriani et al. (2011). Some of the models proposed 

for within-day dynamics have been extended to day-to-day applications aiming at capturing the 

process of traffic evolution over multiple days as proposed by Hazelton (2003). A review of the 

early contributions in this field is reported by Balakrishna et al. (2005). 

2.1.2.2 On-line	

The primary requirement to develop on-line applications is to recursively provide estimations 

of the system state at the current step and future system state in the short term. The estimation 
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should be as fast as possible to dispose accurate real-time prediction status and support transport 

systems management and control. As mentioned in the previous section, the sequential 

estimator proposed by Cascetta et al. (1993) is generally designed for on-line or large-scale 

applications. Indeed, the sequential approach separates a large optimization problem into 𝑛1 

smaller problems, one for each time-slice considered in the time horizon, dramatically 

diminishing computational burden. Each problem estimates only the demand vector referred to 

the current time-slice using current traffic counts and taking in input as target demand, the 

demand vector estimated referred to previous time-slices. Additionally, traffic counts of the 

processed time-slice are expressed as a linear function of the demand vector referred to both 

the current time-slice and to the previous intervals. The corresponding GLS formulation is 

reported in Cascetta (2001). To overcome the limitation of using only current traffic 

measurement in the estimation process Ashok and Ben-Akiva (1993), following the seminal 

work of Okutani and Stephanades (1984), modelled the within-day demand evolution across 

time-slices by means of an autoregressive process and proposed a forward Kalman filter method 

to predict o-d flows for the time slice q+1 based on link flow measurements at the time slice q. 

Indeed, to ameliorate their approach to take account for the previous time-slices measurements, 

Ashok and Ben-Akiva (1993) introduced an augmented state-space model using as state-space 

variables the deviation of the demand vector from its historical values. Subsequently, Ashok 

and Ben-Akiva (2000) suggested an alternative approach, having redefined the state variables 

as the deviations of departure  flows from each origin and the shares headed to each destination. 

Except for different forms of transition equations, the approach has a similar framework as 

those they proposed earlier. Notably, the Kalman filter can be used also for off-line applications, 

as proposed by Balakrishna et al. (2005) and particularly by Gelb (1974), who suggested a 

double-step off-line estimation approach based firstly on a forward Kalman filter application 

and then on a backward Kalman smoothing, to account for the knowledge of link counts for all 

time slices in off-line contexts, providing more robust and reliable results with respect to a 

simple forward Kalman filter (Ashok 1996). Another approach to the on-line application 

introduced by Zhou and Mahmassani (2007)  assumes a polynomial approximation for 

structural deviations of the demand with the respect to the historical estimate and for some of 

its derivatives. Chang and Wu (1995) and Ashok and Ben-Akiva (2002) dealt with the 

randomness of the dynamic assignment matrix introducing supply parameters such as travel 

time and path choice fraction within the state space formulation. Barceló et al. (2010) proposed 

a linear Kalman filtering, later extended by (Barceló et al. 2013) to cope with congestion effects 
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introducing a new formulation for general network structures integrating travel times 

measurements provided by Bluetooth technology. 

Given the high number of variables to estimate in the short term, minimising computational 

time and load becomes crucial for an effective and efficient prediction. The seminal work by 

Bierlaire and Crittin (2004) addressed computational issues proposing an efficient algorithm to 

deal with large scale networks. Later on, Antoniou et al. (2009) proposed a joint calibration of 

the off-line and on-line DTA systems through a common framework such that both historical 

as well as real-time information are efficiently utilised to better reflect prevailing conditions. 

Cipriani et al. (2014) proposed a quasi-dynamic traffic assignment model which approximates 

the dynamic traffic model by steady-state intervals and applies approximate performance 

functions, reducing the computational burden. Another efficient method to reduce 

computational costs was proposed by Djiukic et al. (2012) by applying principal component 

analysis (PCA). The method allows for a significant reduction of the o-d estimation problem 

dimensionality, selecting the o-d pairs which preserve structural patterns and guarantee a 

negligible loss of accuracy.  

The introduction of gradient-free algorithms into o-d estimation/prediction and DTA 

frameworks such as simultaneous perturbation stochastic approximation (SPSA) has played an 

important role in addressing computational issues. SPSA is an iterative derivative-free 

optimization algorithm proposed by Spall (1992, 1998a, 1998b) and designed for stochastic 

problems which significantly saves computational time for large-scale problems with the 

respect to traditional gradient methods (e.g. finite-differences stochastic approximation, 

FDSA). Indeed, differently from gradient-based algorithm which calculates the gradient of the 

objective function to individuate the direction of maximum function variation, SPSA 

approximate the gradient of the objective function with two successive measurements of the 

objective function, independently of the number of parameters to estimate. However, the gain 

in computational time comes with consistent loss of accuracy and information: approximating 

the gradient for each parameter using the aggregate error in the whole network across the entire 

simulation period introduces noise from uncorrelated measurements proportional to the size of 

network and the number of intervals. To overcome these limitations and to ameliorate its 

performance, extended and improved versions of the SPSA have been successfully proposed, 

i.e. Balakrishna and Koutsopoulos (2008) integrate o-d flows transition equations into the 

objective function, or Cipriani et al. (2011) proposing the asymmetric estimation and 

introducing a polynomial interpolation to compute the step size: with the SPSA-asymmetric 

design formulation, the number of necessary assignments to compute the gradient is reduced to 
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50% with respect to the basic SPSA with symmetric design (SD). To mitigate the noise from 

uncorrelated measurements and to enhance convergence and robustness Lu et al. (2015) 

proposed a Weighted SPSA (W-SPSA), embedding information of spatial and temporal 

correlation in a traffic network. The enhanced method outperformed SPSA when applied on a 

hundreds of thousands of o-d pair network (the entire Singapore expressway), demonstrating 

its efficacy on a very large scale network problem. Cantelmo et al. (2014a) proposed a second 

order SPSA introducing a scaling factor involving the inverse of the Hessian matrix estimate to 

mitigate the effect of different magnitude order variables in the objective function. If the 

assignment matrix is available a further SPSA specification, namely adaptive SPSA (Spall, 

2000), allows to estimate the Hessian Matrix from o-d path proportion and speed up the 

algorithm convergence. 

 Quasi-Dynamic o-d matrix estimation/updating  

A serious shortcoming still affecting the o-d demand estimation methods using traffic counts is 

the large imbalance between equations and unknowns: as it stands, the problem is severely 

under-determined meaning that the number of unknown is much larger than the number of 

available linearly-independent equations derived from traffic count measurements such that 

many combinations of demand patterns correspond to the same set of measurements. 

Additionally, the set of possible solutions increases with the size of the network and the 

alternatives available on the network. While in statics this condition cannot be ameliorate, in 

within-day dynamics an effective method to reduce problem dimensionality is making some 

assumptions on the within-day evolution of demand flows. As demonstrated by the laboratory 

experiments on real-size synthetic networks carried out by Marzano et al. (2009), a satisfactory 

updating can be obtained only when the ratio between the number of equations (i.e. independent 

observed link flows) and the number of unknowns (i.e. o-d flows) is close to one. In principle, 

moving from statics to within-day dynamics does not alter the balance between unknowns and 

equation: given the number of time slices considered in the modelling horizon, the number of 

equations and the number of unknowns increase proportionally in the same way. However, 

under reasonable hypotheses on o-d flow variation across time slices, the number of unknowns 

in within-day dynamic systems can be bound, thus achieving unknowns/equations ratios close 

to one. Along this research direction, the paper proposes a “quasi-dynamic” framework for 

estimation of o-d flows, hinted by Marzano et al. (2009), in which o-d shares are assumed 

constant across a reference period, whilst total flows leaving each origin are assumed varying 

for each sub-period within the reference period.   
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2.1.3.1 The	quasi-dynamic	assumption		

Given a time horizon T of duration 𝑡@	divided into 𝑛A	 = 	 𝑡@/𝑡A time slices q of duration 𝑡A,  let 

𝑑351  be the generic o-d flow to be estimated for the time slice q.  𝑑351  can be expressed as the 

product between the generated demand 𝑔31 by origin o during the time slice q and the 

distribution probability 𝑝5|31  of choosing destination 𝑑 moving from o within the time slice q. 

The quasi-dynamic (QD) assumption states that: while factors affecting generation profiles (𝑔31) 

dynamic evolution are inherently within-day time varying (i.e. number of trips starting from o 

in q), distribution shares 𝑝5|31  dynamics can result more within-day stationary. This means that 

the distribution percentages among the different destination zones can be considered linked to 

territorial aspects that vary more slowly across a day. Therefore, distribution probabilities 𝑝5|31  

can be reasonably approximated to their average values across an opportunely pre-specified 

sub-period 𝜏 ⊆ 𝑇	of duration 𝑡I ≤ 𝑡@, encompassing a number of subsequent time slices given 

by 𝑛1|I = 𝑡I/𝑡1. In formulae, indicating the probability distribution average values over t as 

𝑝5|3
I(1), the “quasi-dynamic” o-d flow 𝑑35

1,L5 can be obtained as follows: 

𝑑351 = 	𝑔31𝑝5|31 ≅ 𝑔31𝑝5|3
I(1) = 	𝑑35

1,L5  (2.5) 

wherein:  

𝑔31 =N𝑑351
5

 

 
(2.6) 

𝑝5|3
I(1) =

𝑑35I

𝑔3I
=
∑ 𝑑3511∈I

∑ 𝑔311∈I
=

∑ 𝑑3511∈I

∑ ∑ 𝑑35151∈I
	∀	𝜃 ∈ 𝜏 ⊆ 𝑇 

 
(2.7) 

and 𝜏(q)  maps the time slices q to sub-periods 𝜏, i.e. 𝜏(q) represents the specific subperiod τ 

which the time slice θ belongs to.  The QD assumption allows reducing the number of unknowns 

from 𝑛A	 ∙ 𝑛35 to 𝑛S	 ∙ 𝑛3 +	𝑛I ∙ (𝑛35 − 𝑛3). Inevitably, the QD assumption introduces a bias 

which will be termed as “intrinsic error” 𝑖𝑒351 , given by the distance between prior od flow 

values 𝑑351 	and quasi-dynamic od flows 𝑑35
1,L5: 

𝑖𝑒351 = 	𝑑351 −		𝑑35
1,L5  (2.8) 

This error comes from the fact that the ground-truth is not precisely quasi-dynamic, and 

increases the mathematical complexity of the quasi-dynamic estimator with respect to a 

standard GLS estimator leading to a bilinear form given by the product of the generation and 

distribution variables. To assess the magnitude of the intrinsic error Cascetta et al. (2013) 

developed a statistical analysis of the observed o-d flows to support the assumption of quasi-
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dynamic o-d flows pattern in uncongested networks, using chi-squared and likelihood ratio 

tests, with acceptable goodness-of-fit measures even under the hypothesis of constant 

distribution shares for the whole day.  

2.1.3.2 The	offline	GLS-based	quasi-dynamic	o-d	flows	estimator		

Cascetta et al. (2013) proposed the theoretical formulation of the quasi-dynamic o-d flow 

updating framework, i.e. estimators based on the assumption of constant distribution shares 

across larger time horizons with respect to the within-day variation of the generation profiles, 

leading to an estimator which improves dramatically the unknowns/equations ratio. The quasi-

dynamic GLS estimator, which in the following will be termed as QD-GLS, can be interpreted 

as a particularization of the simultaneous GLS estimator (Cascetta et al. 1993). Indeed, its 

formulation can be obtained adopting the new set of variables resulting from the quasi-dynamic 

assumption, yielding to an optimization problem formally expressed, under the assumption of 

diagonal dispersion matrices, as:  

{𝒈∗[, … , 𝒈∗], … , 𝒈∗𝒏𝜽 ; 𝒑∗[, … , 𝒑∗b, … , 𝒑∗cb} = arg min
k[…	kc]	∈	lm
n[…ncb	∈	lo

p∑ ∑
(kq]∙	nr|q

b(])s	50qr
] )t

uqr
]

vqr
35wx

v]
1wx +

∑ ∑
(∑ ∑ yqrz

]>]cqr
qr{[

]
]>{]z

kq]
>
∙nr|q
b|]>}s	~7z

])t

uz
]

vz�
9wx

v]
1wx �        (2.9) 

s.t. 

𝑔x …	𝑔v] 	∈ 	𝑆k:	𝑔31 ≥ 0	∀𝑜, ∀𝜃 ∈ 𝑇	

𝑝x …𝑝vb 	∈ 	 𝑆n:	0 ≤ 𝑝5|3I ≤ 1	∀𝑝5|3I ∈ 𝒑5|3I 	∀𝜏 ∈ 𝑇		;N𝑝5|3I = 1
5

	∀𝑜, ∀𝜏 ∈ 𝑇 

Wherein: 

• 𝒈1 is the (𝑛3 ∙ 1) vector of the generated demands 𝑔31 for a given time slice 𝜃; 

• 𝒑I is the (𝑛3 ∙ 	𝑛5) matrix of the distribution probabilities 𝑝5|3I  for a given sub-period 

𝜏; 

• 𝒅.1 the (𝑛3 ∙ 	𝑛5)	matrix of the prior demand estimates 𝑑7351  for the time slice 𝜃; 

• 𝒇01 the (𝑛9: ∙ 1)	vector of the observed link counts 𝑓791 for the time slice 𝜃. 

The unknowns are the demand generation profiles 𝒈1 for each time slice 𝜃 and the matrices of 

the distribution shares 𝒑I for each sub-period 𝜏 respecting the feasibility sets described above. 

𝑚359
1>1 is the generic term of the dynamic assignment map linking time-dependent o–d flows 

with time-dependent link flows (i.e. it represents the fraction of o–d flow generated at the time 
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slice 𝜃� being on link l at the time slice 𝜃), 𝜎351  and 𝜎91 are related to the dispersion matrix of 

the demand and of the counted flows distribution respectively, while 𝜃9 is the farthest time slice 

whose generated demand contributes to the link flows on 𝜃. The estimator 2.9 is a bilinear form 

with respect to the unknowns 𝒈1 and 𝒑I: the computational load required makes this 

formulation suitable only for off-line applications.  

Cascetta et al. (2013) conducted the empirical analysis of the QD-GLS estimator on a real 

dataset for the case of uncongested network and fixed route choice, indeed the chosen test site 

consisted of a (closed) motorway system in which congestion phenomena can be considered 

negligible. Moreover, the linear mapping between link counts and o-d flows in this case can be 

expressed by means of a fixed and exogenous assignment matrix inferred from entry/exit times. 

Authors compared its performances with the simultaneous estimator proposed by Cascetta et 

al. (1993)  (see Section 2.1) and the Kalman filter approach proposed by Ashok (1996): a 

recursive estimator typically used for on-line dynamic estimation. Interestingly, Ashok’s 

Kalman Filter formulation introduced an alternative approach based on  a property termed the 

“stability of  shares”,  (a property according to which o-d shares remain stable over the course 

of a day relative to the departing trips), which can be considered as the seminal input for the 

formulation of quasi-dynamic hypothesis, but apart from redefining the state variables as the 

deviations of departure flows from each origin and the shares headed to each destination, the 

proposed method does not allow for a reduction of the problem dimensionality, thus the number 

of variables is not altered. The experimental analysis demonstrated that the QD-GLS estimator 

outperforms the simultaneous estimator in reproducing dynamic o-d flows estimates and the 

quality of the Kalman filter estimates is quite close to the quality of its seed o-d flows: as a 

consequence, the QD-GLS estimator is also very useful in supporting on-line applications, since 

using quasi-dynamic estimates as historical seeds allows the Kalman filter to provide good o-d 

flow estimates. Furthermore, aggregating QD-GLS estimates for successive time slices 

represents also the most effective way to reproduce o-d flows estimates for larger time horizons 

(e.g. hourly estimates) for static applications, outperforming in such way estimations coming 

by both using the classical static estimator proposed by Cascetta et al. (1984) and by aggregating 

the simultaneous dynamic o-d estimates of the corresponding time slices. Adopting the quasi-

dynamic optimization variables framework (i.e. expressing o-d flows as the product of 

generations and distributions), Cantelmo et al. (2015) proposed a Two-Step approach separating 

the dynamic demand estimation problem into two sequential optimizations. Specifically, the 

first step uses a strict quasi-dynamic assumption to update the total generated demand volume 

for each traffic zone assuming fixed distribution shares over the entire time-horizon, while the 
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second step adjusts o-d flow values using a simultaneous GLS (Section 2.1.2.1). Subsequently, 

the two-step approach was applied on a large-scale network by Cantelmo et al. (2017) 

embedding Call Detail Records (CDR) data into the first step objective function to gain 

accuracy on generation demand volumes and extended to large-scale congested networks by 

Cantelmo et al. (2020) conducting a sensitivity analysis evaluating the introduction of different 

weights for speed and link counts measurements into the objective function. Further details 

regarding this approach can be found in Section 3.2, as it has been used as benchmark method 

to investigate the unexplored properties of the quasi-dynamic framework in the context of 

congested networks. Another recent contribution adopting the quasi-dynamic approach in the 

o-d flows estimation problem was provided by Bauer et al. (2017), proposing a method to 

eliminate the need for supplying the historical o-d matrix. 

2.1.3.3 A	Kalman	filter	for	on-line	quasi-dynamic	o-d	flow	estimation/updating	

To extend the quasi-dynamic framework to on-line applications Marzano et al. (2018) proposed 

an extended quasi-dynamic Kalman filter (QD-EKF), implemented for the case of uncongested 

networks. Its mathematical  formulation is based on an augmented state-space variables 

composed of generation and distribution deviations from historical data following an 

autoregressive process. 

In this respect, since Ashok and Ben-Akhiva (1993), Ashok (1996) and Ashok and Ben-Akhiva 

(2000), proposed already a Kalman filter based on an assumption similar to the quasi-dynamic 

termed “stability of shares” assuming the temporal evolution of the distribution shares to be 

less stochastic than the generation profiles, their mathematics is the natural starting point for 

the specification of the QD-EKF. 

Denoting with 𝜃 the Kalman Filter time step, the state variables introduced were the deviations 

g oq -g oHq of the generation profiles and p d|oq - p d|oHq of the distribution shares from their 

respective historical estimates, denoted with superscript H. The state-space vector of the filter 

for the generation profiles is:  

 

 (2.10) 

with dimension no·1, being no the number of origins, whereas for the distribution shares is: 
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 (2.11) 

with dimension nd|o·1 of the distribution shares from origin o, in turn leading to the vector: 

 

 (2.12) 

of dimension nod·1, i.e. containing all distribution shares for the time slice q.  

The corresponding transition equation for the generation profiles is expressed as an 

autoregressive process, given by:  

 (2.13) 

being aoq,t the coefficients of the autoregressive process, qg the order of the process 

encompassing ng+1 time slices, and the error term.  According to matrix terms, (2.13) becomes: 

 (2.14) 

 being aq,t the diagonal square matrix of order no containing the coefficients of the 

autoregressive process related to time slices t and q, given by: 

 (2.15) 

and 

 
(2.16) 

the corresponding vector of error terms. 

The transition of distribution shares is modelled through an autoregressive process as (2.13): 

 (2.17) 

wherein:  

•  are the coefficients of the autoregressive process; 

•  qp is the order of the process encompassing np+1 time slices and 
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•   is the error term. 

 The resulting nod·1 vector of the error terms is given by: 

 (2.18) 

The assumption of stability of shares introduced by Ashok (1996) and Ashok and Ben-Akiva 

(2000) is formally defined by setting Var[ ]<<Var[ ], which expresses that the 

temporal evolution of the distribution shares is less stochastic than the generation profiles.  

To efficiently introduce the quasi-dynamic assumption into the Kalman filter framework, 

Marzano et al. (2019) apply a state-space augmented filter specification spanning from the 

current time slice q back to the time slice q-qs, i.e. considering ns+1 time slices.  

A state-space augmented Kalman filter starts from (2.10), yielding the following augmented 

vector of generation profiles : 

 (2.19) 

and, from 2.12, yielding the following augmented vector of distribution shares : 

 (2.20) 

The resulting augmented state-space vector Dcq in terms of differences from historical values, 

related to time slice q, is defined as: 

 (2.21) 

with dimension [no(ns+1)+nod(ns+1)]·1. The corresponding transition between the augmented 

state-space vectors Dcq+1 and Dcq  is given by: 
 (2.22) 

wherein the augmented state-space vector is given by (2.19) and the matrix of the coefficients 

of the autoregressive process is expressed by: 

 (2.23) 
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where the first no rows contain ns+1 blocks aq,t tÎq...q-qs of dimension no·no given by (2.15), 

and then a lower block with an identity matrix I of dimension nons·nons is appended with a 

matrix of zeros 0 of dimension nons·no. Hence, matrix (2.23) is a square matrix of order no(ns+1). 
Furthermore, since usually the coefficients of the autoregressive process do not depend upon 

the specific time slice q, but only on the relative lag between time slices, the coefficient matrix 

(2.23) is constant across time slices q, i.e.  

The error vector in equation (2.22) is given by: 

𝐄𝛉
𝛄 = �𝛆𝛉

𝛄		𝛆𝛉s𝟏
𝛄 	…		𝛆𝛉s𝛉𝐬

𝛄 �′ (2.24) 

wherein the first no rows are given by the error vector (2.15).  

The transition between distribution shares is analogous to equation (2.22), yielding to: 

 (2.25) 

wherein the matrix    containing the coefficient of the auto-regressive process is given by: 

 (2.26) 

where the first nod rows contain ns+1 blocks bq,t tÎq...q-qs of dimension nod·nod as in 2.14, and 

then a lower block with an identity matrix I of dimension nodns·nodns is appended with a matrix 

of zeros 0 of dimension nodns·nod. Hence, (2.26) is a square matrix of order nod·(ns+1). Finally, 

as in 2.24, the error term in equation 2.25 is given by:  

𝐄𝛉𝛑 = �𝛆𝛉𝛑		𝛆𝛉s𝟏𝛑 	…		𝛆𝛉s𝛉𝐬
𝛑 �′ (2.27) 

wherein all vectors have dimension nod(ns+1)·1 and 𝛆𝛉𝛑 is the error vector (2.18). The expression 

of the transition equation combining (2.22) and (2.25) in state-space augmentation is given by: 
 (2.28) 

wherein the augmented state-space vectors are defined by (2.21), the coefficients matrix of the 

process is a square matrix of order (no+nod)·(ns+1) given by: 

 (2.29) 

 being  given by (2.23) and  by (2.26), and the error vector is a (no+nod)·(ns+1) vector 

appending the corresponding error vectors (2.24) and (2.27): 

 (2.30) 
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 The corresponding variance matrix of the errors (2.30) will be denoted in the following as Qq 

and is defined as: 

 (2.31) 

with the upper-left block of dimension no(ns+1) and the lower-right block of dimension 

nod(ns+1), leading to an overall square matrix of order (no+nod)·(ns+1). Normally, both and 

 are assumed diagonal, which can be calculated either based on the estimation of the 

autoregressive process or considered as design parameters of the filter set by the modeller.  

To effectively implement the assumption of constant distribution shares within each quasi-

dynamic interval, the formulation integrates a single state variable ptd|o representing a constant 

distribution share over the duration of the state-space augmented rolling horizon spanning over 

ns+1 time slices. All ptd|o shares can be ordered in a vector Dpt  defined as: 

 (2.32) 

of dimension nod·1 containing all distribution shares for the augmented state-space rolling 

horizon t. Hence, the resulting augmented state-space vector Dcq , related to time slice q  and 

to a state-space augmentation horizon covering ns+1 time slices, is defined as: 

 (2.33) 

Consequently, at each iteration the filter estimates ns+1 (i.e. as many as the number of time 

slices embedded in the state-space augmentation) vectors of generation profiles g and a single 

matrix of distribution shares p, thus reducing the number of unknowns at each step of the filter. 

Consistently, the transition equation of the distribution shares is modified to account for the 

fact that a single vector of nod·1 distribution shares for the entire duration of the rolling horizon 

is defined, thus yielding a consistent adjustment of the dimensions of the corresponding 

vectors/matrices. Therefore the transition equation is given by a special case of an 

autoregressive process of order -1: 

 (2.34) 
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wherein the vectors   and  have dimension nod·1.  

The final transition equation is formally equal to 2.25 with the state-space vector defined in 

2.34:  

 

Consistently, the coefficients matrix of the process is a square matrix of order no·(ns+1)+nod 

given by: 

 (2.35) 

 and the error vector is a no·(ns+1)+nod vector given by appending the corresponding error 

vectors (2.24) and the one in (2.27): 

 (2.36) 

The corresponding variance matrix of the errors (2.36) can be denoted as Qq and defined as: 

 (2.37) 

 with the upper-left block of dimension no(ns+1) and the lower-right block of dimension nod, 

leading to an overall square matrix of order no·(ns+1)+nod. As above, both  and  are 

assumed diagonal, which can be  calculated either based on the estimation of the auto-regressive 

process or set by the modeller. 

The measurement equation, under the assumptions of non-congested conditions and error-free 

assignment is  expressed as follows, explicitly written in terms of deviations from historical 

estimates: 

 (2.38) 

wherein  is a bilinear form of the state variables.  

In matrix notation, the generic terms of the assignment matrix in (2.38) for a pair of time 

slices t,q can be aggregated into a matrix Mt,q yielding to the following expression: 

 (2.39) 
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 Under the assumption of error-free link counts and assignment matrix, it occurs and the 

corresponding error covariance matrix Rq should be assumed null as well.  

The overall QD-EKF formulation allows to calculate a conditional prediction of the state 

variables and of their variances at the current time slice q based on q-1: 

 (2.40) 

 (2.41) 

 The prediction is subsequently updated at q  according to the first partial derivatives of the 

measurement equation with respect to the state variables (Wq) and through the calculation of 

the gain matrix Gq of dimension [no(ns+1)+nod]·nlc: 

 (2.42) 

 (2.43) 

 (2.44) 

 (2.45) 

The necessary input to initialize the  QD-EKF at time slice q=0, defining a prior state vector 

Dc0|0, with the same dimensions and structure as (2.33) and defining a prior covariance matrix 

S0|0, with same dimensions and structure of (2.35). The performances of the QD-EKF have been 

tested in experiments on both toy and real-size networks, leading to results outperforming all 

estimators tested by Cascetta et al. (2013) and with satisfactory results also for prediction.  

 Summary 

The development of the quasi-dynamic framework has left three main open challenges:  

• The extension of the quasi-dynamic framework to congested networks;  

• The exploration of its performances adopting a more effective algorithm for the solution 

of the optimization problem. 

• The assessment of the quasi-dynamic hypothesis in urban context analysing the 

magnitude and distribution of the intrinsic error. Indeed, such contexts are normally 

characterized by more complex o-d flow patterns; however, a significant percentage of 

the overall urban mobility is represented by systematic trips, for which the quasi-

dynamic assumption is expected to be sufficiently acceptable.  
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Part of this thesis attempts to bring research on these three aspects. Specifically, point 1 and 2 

are discussed in Chapter 3, while the assessment of the quasi-dynamic hypothesis in urban 

context can be found in the trajectory data analysis presented in Chapter 4 (see Section 4.5); 

2.2 o-d flows estimation/updating in presence of trajectory data  

Given its accurate spatio-temporal resolution, trajectory data has been often exploited, besides 

o-d flows estimation/updating purpose, to retrieve information on relevant modelling variables 

contributing on the demand estimation model accuracy such as mode (e.g. Wang et al. 2010; 

Larijani et al. 2015; Huang et al. 2019), trip end and purpose, traffic status and traffic parameters 

(e.g.  Gundlegård & Karlsson 2009; Demissie et al. 2013; Park et al. 2014) or for mobility 

survey development (e.g. Toluei et al. 2017). As introduced in Section 1.1, trajectory data can 

be used for o-d flows estimation in various manners:  

• to derive direct o-d flows estimates  

• to infer route choice set and route choice probabilities;  

•  to infer the assignment matrix; 

• to derive splitting rates at intersection; 

• to use the precedent information to ameliorate existing o-d estimation methods. 

An in-depth analysis of the literature regarding each application is reported in the following 

sections. 

 Direct estimation of o-d flows 

Point-to-point data allows to derive a first direct estimate of the o-d matrix: generally, given a 

opportunely defined traffic analysis zoning, o-d flows are extracted by aggregating the origin 

and destination zones of each vehicle trace.  

Although nowadays sensing technologies allow to collect and store great amount of data 

potentially enabling to completely observe the o-d matrix, trajectory data accessibility remains 

still poor due to a circumscribed/limited data ownership; movements data is mainly owned by 

private entities, thus it is generally unavailable due to privacy concerns and to protecting their 

own business interests. Notwithstanding, the available data is often offered as a product by 

vendors, e.g. some mobile phone carriers or dedicated companies such as INRIX, 

OCTOTELEMATICS etc. selling batch of data acquired from various sources (e.g. freight 

carriers/shippers, car insurance providers etc.). Given the opportunistic nature of this data 

collection/aggregation, trajectory data samples show poor penetration level, insufficient scale 

to apply inference techniques and significant biases, basically lacking representativity and 
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variety. As mentioned in Section 1.1, a crucial aspect in adopting trajectories for o-d flows 

estimation/updating relates to their penetration rate. Very high penetration rates, typical of 

smartphone providers, yield effective o-d flows estimation. Unfortunately, this type of data is 

very costly and not accessible to many researchers and practitioners, who usually must deal 

with small samples (i.e. trajectories collected with on-board-devices), characterized by low 

penetration rates. In light of this phenomenon, trajectory dataset can be interpreted as a 

(distorted) sample of observations from a population (universe) of vehicle trips, thus a necessary 

and preliminary procedure to obtain a better estimate of the o-d matrix is to opportunely scale 

the o-d matrix derived from trajectory data. Intuitively, the penetration level of the sample and 

the sample distortion determines the complexity of the scaling technique to apply. 

As pointed out in section 1.1, the estimation of the trajectory sample penetration level is not a 

straightforward operation itself, since the true underlying of the total amount of vehicle trips is 

unknown. However, considering the specific case of cellular data samples, the penetration level 

can be estimated considering the market share of the mobile operator and in addition, individual 

profiling could help associating further socio-economic and trip information useful to compare 

mobile phone data to census data, dramatically simplifying the scaling procedure. Indeed, trip 

volumes and o-d flows derived from cellular datasets are usually upscaled using a unique 

scaling factor and homogeneous per o-d pair, resulting from the ratio between the total number 

of vehicles from the census data and the total number of sampled vehicles.

𝜀̃ =
	∑ 𝑑35���l�l35

	∑ 𝑑35
����

35
 (2.46) 

The upscaling technique considering a unique expansion factor among all o-d pairs is referred 

here as to direct scaling, leading to a direct estimation of o-d flows.  

Therefore, the rich opportunities deriving from cellular data described above have led to the 

proposition of numerous applications during the past decade performing a direct estimation of 

o-d flows (e.g. Calabrese et al. 2011; Ma et al. 2013; Bahoken & Raimond 2013; Wang et al. 

2013; Larijani et al. 2015; Alexander et al. 2015; Toole et al. 2015; Wu et al. 2015; Gundlegård 

et al. 2016; Ge & Fukuda 2016; Bonnel et al. 2018; Hadachi et al. 2019; Bachir et al. 2019). 

Some of the most relevant works on direct o-d flows estimation from cellular data are broadly 

described below. Calabrese et al. (2011) exploited opportunistically collected mobile phone 

location data to estimate o-d flows, demonstrating that mobile phone data can represent a proxy 

for human mobility, being able to capture weekday and weekend patterns as well as seasonal 

variations when compared to census data. Ma et al. (2013) similarly derive o-d matrices and 

mobility patterns from a mobile phone dataset. Given the extensive coverage and the high 



Angela Romano               41 

 

market share owned by the mobile operator they obtain a high accuracy level of the sample o-

d matrix in fine spatial and temporal resolutions. The derived seed matrices are coupled with 

surveyed commute flow data and prevalent travel demand modelling techniques to provide the 

o-d matrices for operational planning applications (e.g. dynamic traffic assignment models). 

Bahoken et al. (2013) first obtain o-d matrices triangulating mobile phone data, socio-

demographic data and link counts data, then they analyse the effects deriving from different 

spatio-temporal data filtering techniques, thus defining the quality of information that can be 

retrieved according to diverse spatial aggregation (zoning type) and temporal resolution. They 

demonstrate that better information can be retrieved with larger temporal windows, while 

concerning the spatial filtering technique, flows were aggregated at three different scales: 

Voronoi, urban area (UA) and node. Results showed that the loss of information is not relevant 

when flows are aggregated from Voronoi scale to UA scale and it is relevant (55%) when flows 

are aggregated at poles nodes. Wang et al. (2013), estimating travel demand by time-of-day and 

commuting traffic data along a traffic corridor based on a 6 week  mobile phone data 

observation, concluded that, due to the low resolution of location using the network-based cell 

phone network, the use of cell phone network in collecting traffic data would be more feasible 

for long distance or inter-city trips. A long-time observation could increase the cell phone 

sample size and could be useful in obtaining stable cell phone traffic, as well as reduce the bias 

of the data. Alexander et al. (2015) estimate average daily origin–destination trips from 

triangulated mobile phone records of millions of anonymized users, inferring the type of 

location (home, work or other) and trip departure time from census data. Results are again, 

validated against national survey data. Toole et al. (2015) estimate multiple aspects of travel 

demand using call detail records (CDRs) from mobile phones in conjunction with open and 

crowdsourced geospatial data, census records, and surveys to generate representative origin–

destination matrices and route trips through road networks. Iqbal et al. (2014) developed a 

methodology to extract trip patterns and o-d matrices from CDR mobile phone data and 

implemented an optimization-based estimation to identify time-varying grouped scaling 

factors. The scaling rates estimation proposed is based on link traffic count measurements and 

utilises a microscopic simulation model to reproduce the spatial and temporal propagation of 

o-d flows through the network. Although the study provides a relevant example of GLS-based 

scaling method, it overlooks the heterogeneity in call rates from different locations since it 

introduces only two scaling factors defined according to zone adjacency. 

 When link traffic counts are available, another direct scaling procedure can be applied. This 

method, proposed by Van Aerde et al. (1993) consists of scaling up the trajectory o-d matrix 
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(𝒅𝒐𝒅
𝒕𝒓𝒂𝒋) by means of an unique upscaling factor defined for some period 𝜗 (𝛾¥) obtained as the 

average ratio of the total number of vehicles observed from link traffic counts at time-interval 

𝜗 to the total number of tracked vehicles traversing link l at time-interval 𝜗:  

𝛾¥ =
∑ 𝑓9¥v9:
9wx

∑ 𝑓9
����,¥v9:

9wx
			∀	𝜗	 ∈ 𝑇 (2.47) 

𝒅𝒐𝒅
𝑬𝑿𝑷,𝝑 = 𝛾¥ ∙ 𝒅𝒐𝒅

𝒕𝒓𝒂𝒋,𝜽 (2.48) 

Drawing upon this result, few studies in literature dealt with trajectory data sample scaling (Jing 

et al. 2011; Yang et al. 2017; Mitra et al. 2020). For the scope of the thesis , the models proposed 

by Yang et al (2017) and Mitra et al. (2020) are reported in the following. Yang et al. (2017) 

applied the method proposed by Van Aerde et al. (1993) to obtain a crude estimation of the o-

d matrix. An equivalent result can be achieved implementing a GLS-based formulation aiming 

at finding the optimum constant scaling factor for the reference period t, homogeneous among 

all o-d pairs, able to best fit link traffic measurements, as proposed in Mitra et al. (2020) for 

stationary conditions. Following Yang et al. (2017), Mitra et al. (2020) demonstrated that direct 

scaling model expressed in Eq. 2.47 tends to produce biased o-d estimates and although the 

resulting o-d matrix constitutes a good starting point, it would require additional adjustment 

with more complex scaling techniques to reach a higher level of accuracy. Indeed, such scaled 

o-d matrix (𝒅𝒐𝒅
𝑬𝑿𝑷,𝝑) can be used as target o-d matrix in the o-d flows updating process, both for 

dynamic applications as proposed by Yang et al. (2017) involving the simultaneous GLS 

estimator described in section 2.1.2.1, and for stationary conditions as in Mitra et al. (2020) 

using a static formulation of the GLS estimator. For the scope of this thesis the static 

formulation applied by Mitra et al. (2020) is reported in the following:  

{𝒅𝒐𝒅∗ } = argmin
ªqr

pN
(𝑥35 − 𝒅𝒐𝒅𝑬𝑿𝑷)¬

𝜎35

vqr

35wx

+N
(𝑚9,35

���� ∙ 𝑥35 − 𝑓79)¬

𝜎9

vz�

9wx

� (2.49) 

wherein 𝒅𝒐𝒅𝑬𝑿𝑷 is calculated according to 2.48 considering the time interval q in which stationary 

condition of demand flows holds. The stationary conditions imply a unique, scalar upscaling 

coefficient by means of which the direct scaling is performed. 

In both studies, the o-d matrix resulting from direct scaling (2.48) is used as target matrix and 

the traffic assignment model is replaced by an observation of the assignment matrix from the 

trajectory data sample (𝑚9,35
����) obtained as in 2.53. While Yang et al. (2017) performed a 

dynamic o-d flows updating by means of synthetic experiments (although with a quite limited 

experimental plan) on a small-scale network, Mitra et al. (2020) tested the GLS estimator for 

stationary conditions using real data from the road network of Turin, simulating a morning 
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reference time interval of one hour and using as validation procedure a dataset of hold-out 

traffic counts. As further explained in Chapter 5, validation techniques and especially synthetic 

experiments are crucial to assess o-d estimation methods (see Section 5.1). Additionally, Yang 

et al. (2017) proposed a new formulation of the simultaneous GLS integrating a new term into 

the objective function, as briefly described in section 2.2.3 while Mitra et al. (2020) presented 

two alternative formulations of the static GLS estimator. Both formulations assume the demand 

flows as a function of an attraction and a distribution upscaling coefficients (𝛼3 and 𝛽5), 

basically introducing the hypothesis according to which different traffic zones have different 

scaling rates, thus the o-d pair whose origin/destination is the same as the traffic zone will share 

the same scaling rate (respectively 𝛼3 and 𝛽5). This hypothesis yields to the following 

expression of o-d flows:  

𝑑35 = 𝛼3 ∙ 𝛽5 ∙ 𝒅𝒐𝒅𝑬𝑿𝑷 (2.50) 

wherein 𝒅𝒐𝒅𝑬𝑿𝑷	is obtained applying the direct scaling as in 2.48. The first GLS formulation 

proposed by Mitra et al. (2020) consists of a quadratic optimization in which the attraction and 

distribution upscaling factors are jointly adjusted : 

{𝜶𝒐∗ ; 𝜷𝒅∗ } = arg min
±q,²r

pN
(𝛼3 ∙ 𝛽5 ∙ 𝒅𝒐𝒅𝑬𝑿𝑷 − 𝒅𝒐𝒅𝑬𝑿𝑷)¬

𝜎35

vqr

35wx

+N
(𝑚9,35

���� ∙ 𝛼3 ∙ 𝛽5 ∙ 𝒅𝒐𝒅𝑬𝑿𝑷 − 𝑓79)¬

𝜎9

vz�

9wx

� 

(2.51) 

s.t.  

𝛼3 ≥ 0 

𝛽5 ≥ 0 

Conversely, the second model implements an iterative procedure alternately adjusting one 

expansion factor at time, maintaining the other constant: at iteration 1 (2.52) attraction factors 

are considered as optimization variables and distribution factors are maintained constant (𝛽̅5), 

while in iteration 2 (2.53)  distribution factors are adjusted while maintaining attraction factors 

constant (𝛼́3):  

{𝜶𝒐∗} = argmin
±q

pN
(𝛼3 ∙ 𝛽̅5 ∙ 𝒅𝒐𝒅𝑬𝑿𝑷 − 𝒅𝒐𝒅𝑬𝑿𝑷)¬

𝜎35

vqr

35wx

+N
(𝑚9,35

���� ∙ 𝛼3 ∙ 𝛽̅5 ∙ 𝒅𝒐𝒅𝑬𝑿𝑷 − 𝑓79)¬

𝜎9

vz�

9wx

� 

(2.52) 
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s.t.  

𝛼3 ≥ 0 

𝛽5 = 	 𝛽̅5 = 𝑐𝑜𝑠𝑡 

 

{𝜷𝒅∗ } = argmin
²r

pN
(𝛼́3 ∙ 𝛽5 ∙ 𝒅𝒐𝒅𝑬𝑿𝑷 − 𝒅𝒐𝒅𝑬𝑿𝑷)¬

𝜎35

vqr

35wx

+N
(𝑚9,35

���� ∙ 𝛼́3 ∙ 𝛽5 ∙ 𝒅𝒐𝒅𝑬𝑿𝑷 − 𝑓79)¬

𝜎9

vz�

9wx

� 

s.t. 

𝛽5 ≥ 0 

𝛼3 = 	 𝛼́3 = 𝑐𝑜𝑠𝑡 

 

(2.53) 

Authors also tested the proposed methods conducting a sensitivity analysis of the parameter 

𝜎35, expressing the variance of the estimation error, that is the level of reliability of the prior o-

d flow estimates. Intuitively, the lower this value the higher is the level of reliability of the prior 

o-d matrix. Considering a range of variation of 𝜎35	from 0 to 1 [0,1], the authors concluded that 

it would be convenient to search for an optimal solution which preserves the structure of the 

target matrix, specifically the best results were obtained running the formulation in (2.51) with 

1/𝜎35 equal to 0.001.  

The considerations deduced in few studies dealing with trajectory data-driven o-d estimation 

can be summarized as follow:  

• To streamline the o-d flows updating, the main inputs for the implementation of a 

GLS formulation can be derived from trajectory data: the a priori matrix and the 

assignment map (see Section 2.2.3);  

• The direct scaling of the observed o-d matrix as presented in 2.48 is an essential 

precondition to implement more complex scaling techniques;  

• The GLS-based estimators proposed by Mitra et al. (2020) lead to a slight 

improvement of the o-d matrix obtained from direct scaling and tend to be 

susceptible to overfitting the link counts measurements.  

More importantly, from the literature review emerged that, to evaluate and validate the 

performances of any proposed models, it is necessary to account for the estimated trajectory 

sample penetration rate, the level of sample distortion and the dimensionality of the link counts 

sample. Therefore, these results prompted the need of a systematic analysis by means of 
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laboratory experiments investigating the impact of trajectory and link counts sample 

characteristics on o-d estimation model performances. The development of this study is fully 

and extensively described in Chapter 5.  

Additionally, concerning the estimation of o-d flows for the within-day dynamic context, it is 

important to notice that trajectory data allows to identify the departure time distribution during 

the entire period of observation (Mitra et al. 2020), although it strongly depends\ upon dataset 

composition and specifically upon sample variety. The trajectory data analysis and the 

experimental plan developed in this thesis shed the light on the impact of these two aspects (see 

Chapter 4 and Chapter 5). 

 Route choice set and route choice probabilities  

One of the most challenging issue arising in route choice modelling relates to the dimension of 

a real-world network which consists of an high number of nodes, links and centroids. The 

number of the feasible paths connecting each o-d pair often makes unmanageable the possibility 

to explicitly take into account all of them. This is the reason why the choice set definition 

process is one of the most studied topic when dealing with route choice modelling. A common 

method to define users’ choice-set follows a selective approach: intuitively, each decision 

maker actually considers only a few relevant paths for moving from an origin to a certain 

destination. Therefore, the choice-set is generated according to some algorithms: the most 

common one consists of iteratively implementing the shortest path algorithm.  Once a choice 

set is exogenously defined, the second issue lies in evaluating to what extent the choice set 

alternatives are perceived as distinct, because of their degree of physical overlapping or their 

similarities, and the implications of such perception on the route choice probabilities. To this 

end,  trajectory data sample can be a valuable source to derive an observed path choice set 

defining the most likely-to-use paths, limiting the behavioural assumptions that these models 

normally require. A recent example focussing on trajectory-based route choice set generation 

is provided by Yao & Bekhor (2020), in which  different path generation algorithms are 

evaluated using a large GPS trajectory dataset. Experimental data shows that 60% percent of 

the total observations can be covered (assuming a threshold of 80% overlap) using a single path, 

which is significantly in contrast with previous literature findings. The research compares 

different choice set generation algorithms to test their final coverage demonstrating that an 

algorithm taking into account the preference for higher hierarchical roads provide the maximum 

level of coverage (97% with 80% overlap threshold).  Other examples of inferring path choice 

dimension variables from trajectory dataset can be found in Mitra et al. (2020), Tang et al. 

(2019), Parry & Hazelton (2012). Concerning the o-d estimation problem, Nigro et al. (2018) 
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demonstrated by means of synthetic experiments that path choice probabilities deriving from 

Floating Car Data (FCD) can be a much more reliable and powerful information with respect 

to FCD origin–destination flows to inform an optimization-based o-d estimation model, since 

they represent the traffic conditions and behaviours that vehicles experiment along the path. 

Similarly, Carrese et al. (2017) showed how route choice information and point-to point travel 

times can significantly improve the spatial and temporal accuracy of the estimated demand for 

both off-line and on-line demand estimation problem. 

 Assignment map 

Trajectory data can show temporal and spatial relationships among o-d/path flows and link 

arrival flows (Kim & Jayakrishnan 2010). Traffic counts have been the most popular data 

source for o-d estimation, therefore trajectory data has been used as supplementary data to 

derive the mapping between link counts and o-d flows. Substituting traffic assignment model 

with trajectory-based assignment map can dramatically simplify the formulation of the demand 

estimation model. The relation between o-d flows and link flows can be considered linear in 

the case of known and fixed route choice in uncongested networks, while it is non-linear when 

accounting for congestion phenomena and complex route choice (i.e. urban networks, 

numerous alternative routes connecting an o-d pair). The mapping between o-d flows and link 

flows can be described in within-day dynamics by the four-dimensional assignment matrix 

M[t,j], whose generic element 𝑚935
��  represents the fraction of the od flow generated at time 

interval t and being at link l at time interval j. The assignment fractions ( 𝑚935
�� ) depends upon 

two sets of information, whose estimates can be easily derived from trajectory data:  

- link-path fractions: expressing the proportion of a path flow passing the link l and 

describing the spatial-temporal propagation of the route flows throughout the network 

-  route choice probabilities: expressing the proportion of an o-d flow interesting the path 

k and describing the spatial-temporal o-d flows distribution among different paths 

connecting an o-d pair (see section 2.3.2). 

 Inferring arc-path shares and route choice probabilities from trajectory data can provide an 

estimation of the assignment matrix, avoid complex dynamic traffic assignment models and 

streamline the o-d estimation process. Notably, both sets of information depends upon o-d flows 

evolution across time.  

Given a set of sampled trajectories, a direct estimate of such assignment fractions (𝑚·9,35
�,� ) can 

be derived considering the ratio between the total number of sampled vehicles travelling from 

the origin o to the destination d departed at time-interval t and using link l at time-interval j 
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(𝑛9,35
�,� ), and the total number of sampled vehicles travelling between the considered o-d pair 

(𝑛35
�,� ): 

𝑚·9,35
�,� =

𝑛9,35
�,�

𝑛35
�,�  (2.54) 

Nevertheless, Simonelli et al. (2019), developing laboratory experiments on real-size network, 

demonstrated that to achieve a satisfactory level of accuracy of the assignment map, a high 

penetration trajectory sample is required (70%); being part of this work, the overall study is 

reported in Chapter 6. There are few examples in literature testing assignment-free demand 

estimation models (e.g. Yang et al. 2017; Krishnakumari et al. 2019; Mitra et al. 2020). Yang 

et al. (2017), performing numerical experiments by means of simulation datasets testing 

different formulations of an optimization-based dynamic o-d updating, explored a new way to 

construct assignment matrices directly from sampled probe trajectories to avoid sophisticated 

traffic assignment process. One of the proposed method, referred as to “Probe Ratio 

Assignment”, explicitly considers the correlation between o-d probe vehicle penetration ratio 

(the proportion of probe vehicle in the total vehicle population within the same interval) and 

link probe vehicle penetration ratio (the ratio of observed link flow to corresponding link traffic 

flow during each interval), introducing the utilization of a new set of field observations. 

Furthermore, Mitra et al. (2020), substituted the traffic assignment computation by deriving an 

assignment map using path probabilities and arc-path shares observed from FCD. Furthermore, 

Krishnakumari et al. (2019) proposed an assignment-free data-driven o-d estimation method 

adopting only two main assumptions on human behaviour regarding path choice dimension: the 

magnitude of the number of chosen paths and the proportionality of path flows between these 

origins and destinations. 

 Splitting rates at intersections 

A sample of trajectory data contains the turning fraction registered at every node interested by 

a trajectory, notably this is a valuable information regardless of the sample penetration level. 

An example of such application is proposed by Barceló et al. (2010), in which Bluetooth sensors 

are tested to detect mobile devices along a motorway corridor. The goal is to provide reliable 

estimates of average travel time and speed data, to be used as additional source of information 

to link traffic for the dynamic od estimation. 

2.3 Summary 
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The classical o-d flows updating methods (described in Section 2.1) can be enriched with inputs 

from trajectory data. In light of this, in many of the studies mentioned in the previous sections, 

authors derive the information on relevant modelling variables and/or a prior o-d matrix by 

processing trajectory data; subsequently they adopt trajectory-based information to perform the 

classical o-d updating procedures or proposing novel and alternative formulations (Mitra et al. 

2020; Carrese et al. 2017; Cantelmo et al. 2017; Ge and Fukuda 2016; Iqbal et al. 2014; 

Gudlegård et al. 2016; Kim et al. 2018; Krishnakumari et al. 2019; Michau et al. 2015; Montero 

et al. 2019; Nigro et al. 2018; Parry and Hazelton 2012; Wu et al. 2018; Yang et al. 2017). To 

summarize and provide a clear picture of the analysed literature, Table 2.1 reports a synopsis 

of  the discussed works, wherein the first four columns indicate the trajectory-based applications 

of the previous Sections (2.2.1 – 2.2.4) and the last column indicates weather the authors 

perform the o-d updating procedure proposing novel and alternative formulations by integrating 

the information obtained by processing trajectory data.  

 

Application 

 

 

Study 

Direct 

o-d Flows 

Estimation 

Route Choice 

Probabilities 

Assignment 

Map 

Splitting Rates 

at 

Intersections 

Trajectory 

data-based 

o-d Flows 

Updating 

Aerde et al. 1993 P     

Alexander et al., 2015 P     

Mitra et al. 2020 P P P P P 

Bachir et al., 2019 P     

Bahoken and 

Raimond, 2013 
P     

Bonnel et al., 2015 P     

Bonnel et al., 2018 P     

Calabrese et al., 2011 P     

Cantelmo et al. 2017     P 

Carrese et al., 2017 P P   P 

Chen et al., 2017 P     

Çolak et al., 2015 P     

Ge and Fukuda, 2016 P    P 

Gundlegård et al., 

2016 
P     

Iqbal et al., 2014 P    P 
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Kim et al., 2018 P    P 

Kim and 

Jayakrishnan, 2010 
  P   

Krishnakumari et al., 

2019 
P  P  P 

Larijani et al., 2015 P     

Ma et al., 2013 P     

Markovic et al., 2019 P     

Michau et al., 2015 P    P 

Montero et al., 2019 P    P 

Moreira-Matias et al., 

2016 
P     

Mungthanya et al., 

2019 
P     

Nigro et al., 2018  P   P 

Parry & Hazelton, 

2012 
 P P  P 

Patrick, 2015 P     

Toole et al., 2015 P     

Wang et al., 2013 P     

Yang et al., 2017 P  P  P 
Tabella 2.3 – Synopsis of trajectory data-based application for o-d estimation 

2.4 Literature outcomes and research contributions 

Literature studies exploring the use of trajectory data for o-d related analysis have demonstrated 

that a sample of trajectory data can provide a set of important information which effectively 

enriches existing and new model formulations of the o-d estimation problem. Few papers 

proposed enhanced o-d flows updating methods in presence of trajectory data, specifically 

dealing with scaling rate estimation, but none of them provided robust validation techniques to 

demonstrate proposed o-d estimation methods efficacy. These studies have raised several issues 

mostly related to the necessary and crucial investigation of trajectory data sample 

characteristics, significantly influencing models’ outcomes at various levels (e.g. a priori o-d 

flows, assignment map entries, final o-d flows accuracy). Issues arising from various 

characteristics of trajectory data all converge to the fundamental challenge of identifying 

whether the dataset at hand represents the real travel pattern of a study area. Consequently, such 

analysis constitutes an essential step to be taken to generate a new level of understanding and 
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awareness pursuing this research path. Therefore, the main contribution of this research aims at 

investigating the impact of the various trajectory sample characteristics on o-d flows estimation 

process performances in order to provide structured guidelines for researchers and practitioners 

conducting o-d related analysis in presence of trajectory data. This contribution has been carried 

out by means of both empirical investigation, in which real trajectory data is analysed to identify 

the variability range of such sample characteristics (see Chapter 4), and of synthetic 

experiments, performing a sensitivity analysis to investigate the impact of different input 

parameters derived from trajectory data along the entire estimation process. Indeed the 

laboratory  analysis is threefold, testing:  

• Direct scaling methods providing a first estimate of the o-d matrix which can serve as 

the a priori matrix to initialise the updating process (see Chapter 5); 

• Direct estimation of the assignment map entries (see Chapter 6); 

• O-d flows updating procedures, implementing GLS-based estimators (the simultaneous 

and the quasi-dynamic GLS) on the basis of the outputs and the considerations derived 

from the analysis above (see Chapter 7).  

Regarding the updating process, literature outcomes suggested that the use of trajectory data 

could be integrated with the quasi-dynamic approach to further reduce the unknown-to-

observation ratio during the updating process.  However, the development of the quasi-dynamic 

framework has left some open challenges: the extension of the quasi-dynamic framework to 

congested networks, the exploration of its performances adopting more effective algorithms for 

the solution of the optimization problem and the assessment of quasi-dynamic hypothesis in 

urban context. Therefore, this thesis attempts to bring light on these topics conducting a 

preliminary study investigating the unexplored properties of quasi-dynamic assumption, 

providing insights on how to implement the quasi-dynamic o-d estimation framework when 

dealing with congested networks (Chapter 3) and on the quasi-dynamic evolution of the demand 

in urban context (see Chapter 4) in order to support the application of quasi-dynamic framework 

to o-d updating methods in presence of trajectory data (Chapter 7). 
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using trajectory data to inform the QD-GLS method (see Chapter 7). 

 The quasi-dynamic assumption in congested networks 

This Chapter provides experiments demonstrating quasi-dynamic estimators performances 

when applied to congested networks. This study allowed to test the QD-GLS performances in 

congested networks in terms of variance of the solution and reproduction congestion 

capabilities and to define the improvements that can be achieved using a derivative-free 

algorithm to solve the optimization problem. 

3.1 Extension of the quasi-dynamic assumption to congested networks 

To evaluate the performances of quasi-dynamic framework estimators when dealing with 

congested networks and to highlight the improvements achieved adopting derivative-free 

algorithms to solve the demand estimation problem, two methods of the quasi-dynamic 

framework have been considered: the QD-GLS estimator and the Two-Step (TS) approach 

developed by University of Luxembourg research group (Cantelmo et al. 2014, Cantelmo et al. 

2015, Cantelmo 2018, Cantelmo and Viti 2020). Extending the quasi-dynamic o-d estimation 

framework to the case of congested networks implies the adoption of more complex methods 

and algorithms accounting for the bilinear form of the estimator, the non-convex objective 

function and the non-linear relation between link flows and o-d flows. Although the QD-GLS 

formulation remains the same as reported in equation 2.9, to adapt the QD-GLS method to the 

congested framework, the interaction between supply and demand must be developed by means 

of a dynamic traffic assignment (DTA) model which at each iteration of the estimation, 

computes the set of link flows consistently mapping the corresponding o-d flow.  

Indeed, adopting the quasi-dynamic optimization variables framework (i.e. expressing o-d 

flows as the product of generations and distributions) and derivative-free algorithms to solve 

the estimation problem, Cantelmo et al. (2015) proposed a Two-Step approach separating the 

dynamic demand estimation problem into two sequential optimizations. Specifically, the first 

step uses a strict quasi-dynamic assumption to update the total generated demand volume for 

each traffic zone assuming fixed distribution shares over the entire time-horizon, while the 

second step adjusts o-d flow values using a simultaneous GLS (section 2.1.2.1).  
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The collaboration with the University of Luxembourg (Unilu) research group has allowed to 

conduct this study leveraging the research group solid set of expertise on the implications of 

congestion phenomena in dynamic demand estimation models and the crucial inputs for its 

development. Indeed, the two methods were tested on the heavy-congested test site of the inner 

ring of Antwerp (Belgium), a very-well validated test network by the extensive work of Unilu 

research group to assess the two-step approach and the derivative-free algorithms performances 

(Cantelmo et al. 2014, Cantelmo et al. 2015). Therefore, considering the two methods allowed 

not only to test the QD-GLS performances in congested networks in terms of variance of the 

solution and  reproduction congestion capabilities, but also to define the improvements that can 

be achieved using a derivative-free algorithm to solve the optimization problem.  

Although no considerations on demand values accuracy can be defined since no information on 

real demand values are available for the chosen test site network, the quasi-dynamic assumption 

provides robust results implementing different methods running and different algorithms, 

validating the estimation process reliability by proving that final demand estimates respect the 

real congestion pattern.  

3.2 The tested methods  

The Two-Step approach separates the demand estimation problem into two optimizations. 

Leveraging on a strict quasi-dynamic assumption, the first optimization procedure exploits the 

property of stability of shares adjusting prior estimates of total generated demand flows while 

maintaining constant the distribution probabilities. The methodology uses a strict quasi-

dynamic simultaneous GLS estimator reformulating the objective function as:  

{𝒈∗[, … , 𝒈∗], … , 𝒈∗𝒏𝜽} = arg min
k[…	kc]	∈	lm

pNN(𝑓91 −	𝑓791)¬
vz�

9wx

v]

1wx

� (3.1) 

s.t. 

𝑔x …	𝑔v] 	∈ 	 𝑆k:		𝑑351 = 	𝑔31 ∙ 	 𝑝̂5|31 		∀𝑜, ∀𝑑, ∀𝜃 
(3.2) 

wherein the unknowns are the demand generation profiles 𝒈1 , 	𝑝̂5|31  is the seed spatial/temporal 

distribution to move to destination d from origin o in time interval 𝜃. The flow on the link l for 

the time slice 𝜃 (𝑓91) is obtained directly by simulation, performing a DTA, underlying the 

dependence between supply and demand, while constraint (3.2) over-imposes, to the estimated 

matrix 𝑑351 , the spatial/temporal structure of the historical demand. 

Besides strongly reducing the number of decision variables, working with total generated trips 

can limit a demand overestimation during the demand estimation process, which is otherwise 
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likely to occur when dealing with congested networks. Furthermore, generation models are 

considered the most reliable models in transport engineering applications since total generated 

trips are more easily observable than o-d trips (Cascetta, 2009). This concept has also been 

recently analysed within a data driven framework (Krishnakumari et al. 2019). The main 

objective of this preliminary optimization phase is to obtain the right demand level, such that 

the updated demand matrix can provide a better initial point feeding the second step, consisting 

of a traditional optimization procedure using a simultaneous GLS estimator, thus improving 

temporal and spatial matrix distributions. 

For the sake of clarity, the main differences between the two approaches of the quasi-dynamic 

framework are listed below:  

- the Two-Step approach does not necessarily require to explicitly account for historical 

od flows within the objective function to reduce the number of possible solutions. To 

bind the research in the solutions space, constraint 3.2 imposes the distribution shares 

of the seed matrix and thus the information on the seed matrix structure.  

- while the QD-GLS considers a probability function that captures the correlation 

between generation and distribution evolutions over a certain sub-period of time, the 

Two-Step approach assumes constant values of the distributions. 

Concerning the optimization methods, different algorithms could be combined with both 

approaches. However, we propose here to analyse solution methods that have been adopted in 

the original papers in order to be able to compare our results with previous findings. Hence, the 

QD-GLS uses an interior-point algorithm (Karmarkar 1984), while the Two-Step uses the finite 

difference stochastic approximation (FDSA, Spall, 1992) for the first step and the simultaneous 

perturbation stochastic approximation - asymmetric design (SPSA-AD, Spall (1998a), Nigro et 

al. (2018)) for the second step, as briefly described below.  

The interior point algorithm is also known as the “barrier method” because it introduces a 

barrier function into the objective function to bind the decision variables inside the feasible set. 

This enables the algorithm to avoid constraints violation at each iteration and solve a sequence 

of approximate unconstrained minimization problems exploiting estimated information about 

first and second order derivatives to search for the descent direction.  

The FDSA follows approximately the gradient descent direction behaving like a gradient 

method. Specifically, at each iteration it calculates an approximation of the gradient perturbing 

every o-d pair independently, so the number of simulations required for computing the gradient 

at any iteration is equal to the number of o-d pairs plus the initial value of the objective function. 

The SPSA is a path-search optimization method in which an approximation of the gradient is 
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computed simultaneously perturbing of all the variables. With respect to the FDSA, the gradient 

has a stochastic component, hence it requires a lower computational time to obtain the descent 

direction. With the SPSA-asymmetric design formulation, the number of necessary assignments 

to compute the gradient is reduced to 50% with respect to the basic SPSA with symmetric 

design (SD). It should be noted that the FDSA and the SPSA partially capture the nonlinear 

relationship between OD and link flows. However, this requires a higher accuracy and a longer 

computational time.  

3.3 Test Site  

The test case study relates to the inner ringway around Antwerp, Belgium (Figure 3.1). The 

network includes 56 links, 39 nodes, with 46 o-d pairs, all mainly connecting the different entry 

and exit points of this stretch of motorway and making rerouting options unlikely. The morning 

peak period considered occurs between 05:30 and 10:30. The field data - speeds and flows - 

were available every 5 minutes. The detectors are located at the on- and off-ramps and on some 

intermediate sections. 

 

Figure 3.1 Test site: inner ringway of Antwerp, Belgium 
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 The o-d flows were estimated for 15-minutes departure intervals, so the dynamic matrix 

contains 966 o-d pairs; the seed matrix, which amounts to 202,200 trips, is derived from an 

existing static o-d matrix by superimposing a time profile. Flows of a selection of o-d pairs 

were increased, so that the seed matrix has a congestion pattern similar to the actual one. In 

replicating the congestion pattern, the initial solution of the optimization also has a correct 

traffic pattern.  shows the real congestion pattern, where each value on the y axis represents a 

(transversal) section of the inner ring, while on the x axes the time horizon is reported in 

minutes. As shown, the shaded blue colour area indicates low speeds, representing the time-

space distribution of congestion phenomena affecting the inner ring. 

 
Figure 3.2 spatial and temporal plot of measured speeds on the network 

3.4 Experimental Settings  

Table 3.1 illustrates the experiments conducted adopting a wide experimental plan varying the 

settings for both methods and algorithms. Details of the chosen settings will be explained below.  

  EXP ALGORITHM 
STEP 

SIZE 

Obj. 

Function: 

GLS 

CONVERGENCE 

CRITERIA 

(vehic/h) 

n(θ|τ) nvar unkn/eq. 

T

S 

STEP 1 
I FDSA 12 

flows 
∆35=10 

- 

126 0.33 
II FDSA 15 ∆35=5 

STEP2  SPSA-AD 6 
Flows & 

demand 
∆35=1 966 2.56 
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Q

D 
- 

1 

INTERIOR 

POINT 
- 

flows 

STEP SIZE 

TOL. 10sxº 

3 448 1.19 
2 

Flows & 

demand 

3 flows 

21 
172 

 
0.46 

4 
Flows & 

demand 
Table 3.1 Experimental Settings  

Concerning the QD-GLS, two aspects were accounted to define the optimal settings for the 

experiments:  

• the magnitude of the intrinsic error; 

• the possible reduction of the number of the variables; 

The presence of an intrinsic error has a key relevance as it represents a lower bound for the 

effectiveness of the QD-GLS estimator. Intuitively, the less reliable is the quasi-dynamic 

assumption within τ (i.e. the longer is the duration in which distribution shares are approximated 

to their average values to reduce the number of variables), the larger is the intrinsic error. Since 

both aspects depend on the duration of the reference period 𝜏, the key parameters to set were 

the number of quasi-dynamic intervals (𝑛𝜏) and the corresponding number of time slices 

encompassing the reference period τ (𝑛1|I), as they define the trade-off between quasi-dynamic 

assumption and intrinsic error. In line with the findings provided by Marzano et al. (2009), we 

started from imposing a ratio between the number of variables and the number of equations 

equal to one leading to a value of 𝑛1|I = 3 (EXP 1 – EXP 2). Choosing a number of time slices 

encompassing the reference period 𝜏 equal to 3 we assumed that distribution shares were stable 

in a reference period of 45 minutes duration. Afterwards, imposing this parameter equal to 21, 

we extended the assumption to the whole-time horizon duration (5 hours) and tested the 

minimum possible value for the ratio corresponding to the maximum reduction of the decision 

variables, although accepting a greater intrinsic error. Each quasi-dynamic setting was tested 

both including and not including the quadratic error on o-d flows (flow, flow & demand) into 

the objective function to evaluate the sensitivity of the algorithm in terms of distance from the 

starting matrix. The step-size and the descent direction for the QD-GLS experiments were 

iteratively computed by the algorithm choosing alternatively a projected conjugated gradient 

method or quasi-Newton method. As stopping criteria, a step size tolerance was adopted, thus 

the algorithm stopped when the relative change of the variables was less than a certain value 

reflecting the desired solution accuracy. In each experiment presented, no information related 
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to the dispersion matrix of the demand and of the counted flows distribution were introduced 

(𝜎351 	𝑎𝑛𝑑		𝜎91 set equal to 1). 

For the Two-Step approach, the step-size (i.e. the advancement in the descent direction) is the 

most important parameter to be analysed. As the model combines the FDSA with a strict quasi-

dynamic assumption, a small step leads to better estimations but implies greater computational 

times. After testing different values and different convergence criteria, the set of parameters 

reported in Table 1 provided the best compromise between efficiency and quality. For the first 

step, two experiments were conducted choosing respectively an initial step size equal to 12 

(EXP I) and 15 (EXP II), while the convergence criteria were referred to a specific tolerance 

on the variables variation of two consecutive iterations, such that the algorithm stopped if the 

largest difference (𝑚𝑎𝑥∆35)	between two consecutive solutions (o-d flows) was less than 10 

vehicles per hour in the first experiment, while for the second experiment this parameter was 

set to 5. These values were related to the magnitude of starting matrix o-d flows, evaluated 

considering the average o-d flow initial values, resulting about 209.3 (vehicles/hour). For the 

second step a stricter convergence condition (𝑚𝑎𝑥∆35= 1 vehicle/hour) was set to  push the 

algorithm to deeply explore the solution space and thus guarantee no significant improvement 

of the solution was possible in a feasible computational time. On this purpose, both FDSA and 

SPSA-AD, implemented for the first and the second step respectively, were structured such that 

the algorithms allow to accept solutions even worse than the current one, to avoid getting stuck 

in the first local minimum found. To approximate the gradient, forward finite difference 

formulation is adopted in each experiment, since it has been demonstrated to be equivalent to 

the central finite difference formulation in terms of accuracy while more effective in terms of 

computational time (Cantelmo et al. 2014). 

Table 3.1 also contains the ratio between unknowns and equations showing the level of balance 

reached: maintaining constant the distribution shares (STEP 1: EXP I – II), imposing no 

reduction technique (STEP 2) or for the QD-GLS experiments, choosing a different number of 

time slices encompassing the reference period  (EXP 1-2, 3-4). To compute this ratio, a 

consistent number of equations deriving from collected link counts was considered, i.e. 

measurements referring to a time interval consistent with the estimation process time slice (15 

min).  

Results are presented in terms of some widely used indicators reported below: 

𝑀𝑒𝑎𝑛	𝑆𝑞𝑢𝑎𝑟𝑒	𝐸𝑟𝑟𝑜𝑟	(	𝑀𝑆𝐸) ∑ (𝑦Ã − 𝑦Ä·)¬v
Ãwx

𝑛  (3.3) 
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𝑅𝑜𝑜𝑡	𝑀𝑒𝑎𝑛	𝑆𝑞𝑢𝑎𝑟𝑒	𝐸𝑟𝑟𝑜𝑟	(𝑅𝑀𝑆𝐸) Æ∑ (𝑦Ã − 𝑦Ä·)¬v
Ãwx

𝑛  (3.4) 

𝑅𝑀𝑆𝐸	𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡	𝑜𝑓	𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛	(𝑐𝑣𝑅𝑀𝑆𝐸) 
𝑅𝑀𝑆𝐸
𝑦́  (3.5) 

𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡	𝑜𝑓	𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛	(𝑟¬) 
∑ (𝑦Ä· − 𝑦́)¬v
Ãwx

∑ (𝑦Ã − 𝑦́)¬v
Ãwx

; (3.6) 

Wherein: 

• n is the number of observations 

• 𝒚 is a generic vector which can be specified either by starting demand vector either by 

measurement data vector  

• 𝒚Ë  is its average value  

• 𝒚· is a generic vector which can be specified either by updated demand vector either by 

corresponding link flows/speeds vector deriving from the DTA simulation respectively.  

3.5 Results  

No considerations on o-d flows estimation accuracy can be made since no ground truth 

information related to real o-d flows are available. Therefore, results have been analysed in 

terms of distance from the historical matrix, link flow reproduction capabilities and reliability 

with respect to congestion pattern replicability of the real traffic regime. 

Table 3.2 summarizes the results obtained. MSE and RMSE values are reported in 

vehicles/hour, while RMSE on speed data is reported in km/h. Final demand values were 

compared to historical ones (EST O-D MATRIX/SEED column), while link flows 

corresponding to the updated demand were compared against real measurements to evaluate 

data fitting performances (EST/ OBS LINK FLOWS column). Speed data were only used for 

validation purpose, comparing speed values corresponding to final demand against the real 

speed data (EST/OBS SPEED column).  

The starting point of each experiment of the first step (two-step approach) presents an initial 

error on link flows corresponding to 𝑐𝑣𝑅𝑀𝑆𝐸9ÃvÌs~93ÍÎ = 0.457, 𝑅𝑀𝑆𝐸9ÃvÌs~93ÍÎ =

1409	𝑣𝑒ℎ/ℎ	 providing a moderate fit with the traffic counts (	𝑟¬ = 0.623). For the quasi-

dynamic method, the initial error on link flows is slightly different since the quasi-dynamic 

hypothesis introduces an intrinsic bias in the estimation process referred as to the 

aforementioned “intrinsic error”, depending on the duration of the reference period: 

• n(θ|τ)=3: 𝑐𝑣𝑅𝑀𝑆𝐸9ÃvÌs~93ÍÎ = 0.455, 𝑅𝑀𝑆𝐸9ÃvÌs~93ÍÎ = 1.400	𝑣𝑒ℎ/ℎ; 
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• n(θ|τ)=21: 𝑐𝑣𝑅𝑀𝑆𝐸9ÃvÌs~93ÍÎ = 0.459	, 𝑅𝑀𝑆𝐸9ÃvÌs~93ÍÎ = 1.410	𝑣𝑒ℎ/ℎ;  
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EST O-D 

MATRIX/see

d 

est/ OBS Link Flows est/OBS speed  

E

X
P 

cvRMSE RMSE cvRMSE RMSE 	𝒓𝟐 
%Reduction 

cvRMSE 
RMSE cvRMSE 

C.T.  

[h] 

T

S 

STEP

1 

I 0.23 485 0.38 1170 0.659 16.8% 16.5 0.27 28.14 

I

I 
0.50 104 0.34 1042 0.729 26.0% 17.8 0.29 

110.8

8 

STEP

2 
- 1.26 263 0.21 635 0.936 54.9% 20.6 0.33 

228.0

0 

Q

D 
- 

1 1.48 309 0.31 943 0.913 32.8% 20.7 0.33 24.10 

2 1.41 294 0.30 936 0.891 33.2% 18.4 0.29 65.44 

3 1.44 301 0.30 930 0.930 34.2% 15.2 0.25 10.44 

4 1.39 291 0.29 903 0.926 36.2% 16.2 0.26 5.56 

Table 3.2 Results for the different settings reported in Table 3.1 

Experiments on the QD-GLS estimator produce robust solutions since results are very close to 

each other although imposing different settings. Experiment number one and two provided good 

results slightly worse than experiment number three (EXP 3), which gave the best results in 

terms of link traffic counts and speed measurements reproduction, while experiment number 

four (EXP 4) provided the best improvement in terms of link flows root mean square error 

deviation reduction (36.2%) and the minimum distance from seed matrix. This show that 

imposing a stricter quasi-dynamic hypothesis satisfactory results can be obtained reaching 

convergence with low computational times (Figure 3.5). To evaluate the accuracy of the 

estimation in terms of o-d flows when dealing with congested networks, this aspect should be 

further tested in a controlled scenario in which true demand values are known. 

As discussed in the previous works regarding the Two-Step approach, the first step is performed 

to preserve the starting o-d matrix structure maintaining constant the distribution probabilities 

and adjusting only total generated flows. This aspect can be observed analysing results on both 

experiments conducted for the first step (EXP I and II). Performance indicators comparing final 

demand and historical values (RMSE and RMSE coefficient of variance) indicate that the 

algorithm does not compromise the initial matrix structure, aspect further confirmed by a low 

dispersion from the root mean square value. Therefore, although in the first step results show 
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relatively poor data fitting performances, we optimize the total generated flows obtaining a 

better initial point for the second step. 

 

 
Figure 3.5 Evolution of the Objective Function of STEP 1 – EXP I; 

        
Figure 3.6 Evolution of the Objective Function of STEP 1 – EXP II 

Comparing the performances of EXP I and EXP II varying the step size settings, it is known 

that running the algorithm with a smaller step can increase solution accuracy but also implies a 

longer computational time, since the algorithm requires a greater number of iterations to reach 
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a local minimum. In this case, setting a relaxed convergence condition (i.e. larger value of the 

maximum difference between consecutive solutions equal to 10 veh/h) the overall 

computational time remains moderate, reaching convergence after 29 iterations (Figure 2a). A 

better option would be to use a line search algorithm, which would drastically increase model 

performances. EXP II tests the opposite condition in which step size is increased, thus we 

experiment a rapid descent towards the minimum (i.e. with a greater slope) (Figure 2b). 

Nonetheless, imposing a stricter condition on the convergence, the overall computational time 

resulted longer than the first experiment (EXP I).  

In the second step (STEP 2), the error on link flows further decreases, reaching the best level 

of fit  (	𝑟¬ = 0.936) although with a significant computational time. Due to a reduced tolerance 

on the convergence criterion and the lack of a smart line search algorithm, the SPSA takes a 

significant amount of time in exploring the solution space, requiring a larger number of 

iterations to reach solution stability (Figure 3.7).  

 
Figure 3.7 Evolution of the Objective Function of STEP 2 starting from the solution of STEP 1 EXP II 
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Figure 3.8 Evolution of the Objective Function of QD-GLS EXP 3  

To evaluate solutions reliability, the estimated demand values were also validated in terms of 

speed and congestion patterns. A congestion pattern very close to the real one was obtained 

with all the tested scenarios as confirmed by observing speed RMSE and cvRMSE values 

reported in Table 3.2 (SPEED column). In Figure 3.9 and Figure 3.10 the space-time plots of 

the vector of the differences between simulated and measured speeds respectively resulting 

from the Two-Step approach and EXP 3 are presented, to validate best results obtained from 

both methods. 
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Figure 3.9 -  Space-time Plot of the vector of the differences between simulated and measured speeds resulting 

from STEP 2 

 

Figure 3.10 Space-time Plot of the vector of the differences between simulated and measured speeds resulting 

from EXP 3 – QD-GLS Experiments 
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While these differences show that the congestion pattern does not perfectly match, in both cases 

the model properly approximate both the beginning and the end of the congestion period, 

despite link speeds were not adopted within the objective function.  

Overall, both models provide proper estimates with respect to all available traffic measures. 

This suggests that, on the one hand, the quasi-dynamic assumption is generally suited for o-d 

estimation problems and it is not dependent on one specific algorithm or implementation. On 

the other hand, we observed that the QD-GLS provide worse results but lower computational 

time, while the TS perform best for longer computational times. This suggests that different 

assumptions on the intrinsic error and its propagation have a huge influence on the performance 

of the model. Also, this phenomenon is not necessarily easy to predict, as for the QD-GLS a 

stricter assumption leads to shorter computational times, while for the TS, which also use a 

strict quasi-dynamic assumption, this is not the case. This suggests that the best compromise is 

to develop ad-hoc frameworks to leverage both these properties of the quasi-dynamic 

assumption, hence increasing model performance and fitting at the same time.   

Best performances are achieved when the ratio between unknown variables and observations is 

lower than one. However, observability of the variables does not depend only on the number of 

sensors but also on their location (Yim et al. 1998, Bianco et al. 2001, Gan et al. 2005, Ehlert 

et al. 2006, Chen et al. 2007, Simonelli et al. 2012), as well as from the type of information 

available. To consider this, the TS approach combines a strict quasi-dynamic assumption (i.e. 

strict stationarity) with assignment matrix-free algorithms to optimally combine the quasi-

dynamic assumption with multiple data sources. Then, in the second phase, the model relaxes 

the stationarity constraint to better fit the data. While this model is easier to implement, as it 

does not require to play with the intrinsic error generated by the quasi-dynamic assumption, the 

parameters of the optimization algorithm assume a central role to achieve good performance, 

as they establish when and how to relax the quasi-dynamic assumption. 

Both models have been tested using real data on an highly congested network: the inner ring of 

Antwerp (Belgium).  

3.6 Conclusions  

Results from the two approaches can be summarized as follows: 

• Both models provide good estimation results with respect to the error on the historical 

o-d flows and observed link flows, while acceptable for link speeds measurements; 
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• The QD-GLS performs best for a small ratio between unknown and equations, meaning 

assuming correlations between longer time periods. These settings ensure fast 

convergence and good results.  

The TS, assuming constants distribution shares, provides the best results but also the highest 

computational time. These observations suggest that the quasi-dynamic assumption can have 

two corner solutions.  

The first, is to introduce a relaxed quasi-dynamic assumption to quickly fit the data. This will 

result in a sub-optimal solution but computational times will be low. If the model is allowed to 

relax this assumption, a better solution will be found. However, computational time will 

increase at least linearly, as it increases with the number of variables (if SPSA/FDSA are used). 

This means that, under specific conditions, the quasi-dynamic model might find a good solution 

of the problem. Clearly, this depends on a series of considerations, including network topology, 

level of congestion and amount of information.  
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 Trajectory data in Napoli 

This Chapter contains an extended analysis of an opportunistic trajectory data sample 

composed of 50.933.281 GPS data points spanning over 31 days. The objective of this analysis 

is threefold:  

• Dataset statistical analysis; 

• Trajectory o-d matrices and sampling rate estimation; 

• Experimental analysis of the quasi-dynamic assumption in urban context; 

4.1 Dataset composition  

The analysed trajectory sample was provided by a private company namely INRIX, one of the 

leading providers of mobility data. Its core business is to gather data from various sources such 

as road sensors and private and fleet vehicles to produce analytics and insights on human 

mobility to sell it as a product to mainly automotive and transport industries/agencies.  

The dataset consists of 50.933.281 GPS data points spanning over 31 days of October 2017. 

The corresponding 2.328.471 trajectories were collected from 101.090 mobile devices, private 

and fleet vehicles crossing the geographic area highlighted in blue in Figure 4.1, approximately 

matching the entire city of Napoli and some of the surrounding suburb areas.  
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Figure 4.1  Naples urban area - Source: Inrix 

In details, raw data included an array of .txt and .csv files, among which the most relevant were: 

• TripRecordsReportWaypoints.csv: including the associated waypoints data for each trip 

(File I); 

• TripsRecordsReportProviderDetails.csv: containing the trip providers details (File II); 

• TripRecordsReportReadMe.txt: including the description of the fields contained in each 

.csv file (File III). 

File I, II and III are further described in the following.  

File I includes all of the details related to each of the 50.933.281 GPS data points collected 

during the entire period of observation, thus containing as many rows as the total recorded 

waypoints. Table 4.1 reports the most relevant data fields. The list of consecutive waypoints 

belonging to each trip can be either recognised from the waypoint sequence, starting with "1" 

and incrementing by one, either from the repetition of the same trip identifier along the first 

column. Each waypoint is spatially defined in terms of latitude and longitude and temporally 

by a timestamp (Capture Date) containing the capture date and time in UTC, ISO-8601 format. 

 

 

 

 

 

 



Angela Romano               69 

 

Data field Description 

Trip ID 
A trip's unique identifier corresponding to the 

waypoint recorded; 

Waypoint Sequence 
The order of the waypoint within the trip starting 

with "1" and incrementing by one; 

Capture Date 

The capture date and time of the waypoint in UTC, 

ISO-8601 format, example: "2014-04-

01T08:33:35.000Z"; 

Latitude 
The decimal degree latitude coordinates of the 

waypoint; 

Longitude 
The decimal degree longitude coordinates of the 

waypoint; 
Table 4.1 waypoints details from raw data - field description 

File II contains as many rows as the total number of recorded trips (2.328.471) and each row is 

associated with a number of fields containing specific characteristics of the trip (see Table 4.2). 

The trip’s spatial and temporal information is specified by the origin location (Start point) and 

the destination location (End point)  defined in terms of latitude and longitude, and by a 

timestamp containing the origins and destinations capture date and time in UTC, ISO-8601 

format, namely “Start Date” and “End Date”. Furthermore, this information is enriched with 

starting and ending day-type of the week (StartWDay and EndWDay fields) .   

 

Data field Description 

Trip ID A trip's unique identifier 

Device ID A device's unique identifier 

Provider ID A provider's unique identifier 

Start Date 
The trip's start date and time in UTC, ISO-8601 

format, example: "2014-04-01T08:33:35.000Z" 

Start WD 

The weekday of the trip's start in UTC (1 = 

Monday, 2 = Tuesday, 3 = Wednesday, 4 = 

Thursday, 5 = Friday, 6 = Saturday, 7 = Sunday) 

End Date 
The trip's end date and time in UTC, ISO-8601 

format, example: "2014-04-01T08:33:35.000Z"  
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End WDay 

The weekday of the trip's end in UTC (1 = Monday, 

2 = Tuesday, 3 = Wednesday, 4 = Thursday, 5 = 

Friday, 6 = Saturday, 7 = Sunday) 

Start Location Lat 
The latitude coordinates of the trip's start point in 

decimal degrees 

Start Location Lon 
The longitude coordinates of the trip's start point in 

decimal degrees 

End Location Lat 
The latitude coordinates of the trip's end point in 

decimal degrees 

End Location Lon 
The decimal degree longitude coordinates of the 

trip's end point in decimal degree 

Geospatial Type 

Type of trip, describes the trip's geospatial 

intersection with the requested zones (II - Internal 

to Internal; trips that starts and end within any 

requested zones; IE - Internal to External; trips that 

starts within any requested zone and end outside of 

any requested zone; EI - External to Internal; trip 

that start outside of any requested zone and ends 

within in any requested zone, and EE - External to 

External; trips that start and end but have one or 

more waypoints that intersect or completely 

traverse a requested zone) 

Vehicle Weight Class Numeral, representing the vehicle weight class 
Table 4.2 trip details from raw data -  fields description 

Each trip is associated with a device unique identifier indicating the vehicle/mobile phone from 

which the trip was collected, as well as a provider unique identifier, which discloses the original 

source of the trajectory record. This allows to track the total number of trips collected from a 

specific vehicle/device.  

A trip can be also distinguished according to its geospatial intersection with Napoli urban area, 

basically considering the location of its origin and destination; this information is contained in 

the field termed ‘Geospatial Type’. In light of this, four trip categories are defined:  

• Internal to Internal (I-I): trips that starts and end within Napoli;  

• Internal to External (I-E): trips that starts within Napoli and end outside of Napoli; 
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• External to Internal (E-I): trips that start outside of Napoli urban area and ends within 

the study area 

• External to External (E-E): trips that start and end outside the study area but have one 

or more waypoints that intersect or completely traverse Napoli urban area.  

Figure 4.2 presents a simplified schematization of the four possible trip geospatial types 

illustrating Napoli urban area divided in 10 zones corresponding to the 10 municipalities 

(administrative zoning of the city of Napoli):  

• Chiaia, Posillipo, San Ferdinando (1); 

• Avvocata,Montecalvario, Mercato,Pendino, Porto, S. Giuseppe (2); 

• Stella, San Carlo all’Arena (3); 

• San Lorenzo, Vicaria, Poggioreale, Zona Industriale (4); 

• Arenella, Vomero (5); 

• Ponticelli, Barra, S. Giovanni a Teduccio (6); 

• Miano, Secondigliano, S. Pietro a Patierno (7) 

• Piscinola, Marianella, Chiaiano, Scampia (8); 

• Soccavo, Pianura (9); 

• Bagnoli, Fuorigrotta (10);  

 
Figure 4.2 geospatial type categories: Internal to Internal (I-I); Internal to External (I-E); External to Internal 

(E-I); External to External (E-E); zoning:10  municipalities (administrative zoning of Napoli city) 

The majority of origins and destinations from respectively E-I and I-E trips are distributed all 

over the Italian peninsula and only few origins/destinations fall outside Italian boarders, 

probably corresponding to freight distribution trips. An example showing this aspect can be 

observed in Figure 4.3 depicting the origins of all the sampled trips.  
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Figure 4.3  trip origins from raw trajectory data 

Collected trips derive from miscellaneous sources, private and fleet vehicles, thus a field of file 

II contains the vehicle weight class. In light of this, tracked vehicles are categorised in three 

different classes according to their weight while the specifics on probe source type are included 

in the information reported in file III.  The vehicle weight classes are defined as follow: 

• Light Weight Vehicles (LWV):  vehicles with weight up to 6.35 ton  

• Medium Weight Vehicles (MWV): vehicles with weight from 6,35 to 11,8 ton 

• Heavy Weight Vehicles (HWV): vehicles with weight over 11,8 ton 

 This distinction is essential to identify private vehicles (LWV such as personal cars, scooters, 

etc. ) and vehicles dedicated to freight transport (MWV and HWV such as trucks, lorries etc.): 

this is a relevant information especially for o-d matrix derivation purpose and for the other 

scopes of the analysis as well.  

File III reports the details of the multiple providers (i.e. consumers/users, fleet) from which the 

trajectory data was collected in the first place. Additionally, this information allows to identify 

the type of deployed sensor (Probe Source Type).  
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Data field Description 

Provider Id A provider's unique identifier 

Provider Type 
Describes the provider type: 1 = Consumer, 2 

= Fleet 

Provider Driving Profile 

Driving class, additional detail about type of 

provider: 1 = Consumer Vehicles, 2 = 

Taxi/shuttle/town car services, 3 = Field 

Service/Local Delivery Fleets, 4 = For 

hire/private trucking fleets 

Vehicle Weight Class 

Lists one of three weight classes provider: 1 

= Light Duty Truck/Passenger Vehicle: 

Ranges from 0 to 14,000 lb; 2 = Medium 

Duty Trucks / Vans: ranges from 14001–

26000 lb; 3 = Heavy Duty Trucks: > 26000 

lb. 

Probe Source Type 
Type of sensor (i.e. mobile device or 

embedded GPS) 
Table 4.3 provider details from raw data – fields description 

4.2 Data cleaning and descriptive statistics  

To develop descriptive statistics and to derive o-d matrices from the raw dataset, some 

preliminary data cleaning operations were required. To handle the great amount of data and 

speed up the data reading process, waypoints data from file I necessitated to be divided into 

smaller .csv files. Specifically, waypoints data was divided into 31 csv files, one per each day 

of observation. Secondly, data from the different input files (I-II-III, see section 4.1) had to be 

consistently joined into a unique database. To this end, the data cleaning process started with 

importing raw data into Matlab as a ‘tabular text datastore’, a Matlab object to manage large 

collections of text files containing column-oriented or tabular data. Identifying the trip ID as 

the key field, a unique table was created allowing for descriptive statistical analysis.  

Since the vehicle weight class is particularly relevant for mobility analysis, specifically for o-d 

matrices estimation, a first investigation concerned the composition of the overall volume of 

trips according to this parameter. The analysis revealed that trips related to LWV were more 

the 71.1% of the total number of collected trajectories, while 28.1 % of the trips were from 

MWV and only 0.8% were from HWV. Therefore, the majority of the trips collected derives 
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from private vehicles, as shown in Figure 4.4. An analogous investigation has been developed 

considering the trip geospatial type (Figure 4.5), and subsequently focused on to trips detected 

from light weight vehicles, yielding to the following results: 46.7% of the trips were starting 

and ending in Naples urban area (I-I trips), around 21% were I-E and E-I and the remaining 

were E-E (see Figure 4.6) This suggests that the dataset, containing a high percentage of intra-

urban trips (I-I) detected from light weight vehicles, results adequate to conduct the analysis of 

the applicability of the quasi-dynamic assumption in the case of urban context and further 

considerations on urban mobility.  

 
Figure 4.4 Trips per weight vehicle class: 78.1% LWV, 

21.1% MWV, 0.8% HWV 

 
Figure 4.5 Trips per geo-spatial type : 46.7% I-I, 21% 

I-E & E-I, 32.3% E-E 

 
Figure 4.6 Light Weight Vehicle Trips per geo-spatial type 

Basic waypoints statistics revealed insights on the spatial temporal distribution of recorded 

trips:  
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• Average Number of Detected Trips per day: 75.108 (Figure 4.7); this suggests an 

uniform distribution of the collected trajectories spanning the 31 days.  

• Average Number of Detected Points: 1.643.009. Figure 4.8 shows per each day reported 

on x-axes the average number of detected points among the total number of detected 

trips, then, averaging these quantities on the observation period, the overall average 

number of detected points has been obtained. 

• Average Polling Frequency: 51,2 s (Figure 4.9), obtained with the same procedure as 

specified in the previous . Specifically, more than 70% of the trajectories has a polling 

frequency equal to 60 seconds. The higher is the polling frequency, the better can 

perform the map-matching process.  

• Average Distance between two GPS Points: 355,9 m (Figure 4.10); this is particularly 

useful to get insights on the potential path choice inference, indeed the smaller is the 

distance between two GPS points, the higher is the possibility of reconstructing the real 

route and the higher is the potential route choice probability accuracy. 

The average values reported above are all denoted in the following figures by the green dotted 

line.  
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Figure 4.7 Daily Number of Detected Trips 

 
Figure 4.8 Daily Number of Detected Waypoints 

 
Figure 4.9 Mean GPS Polling Frequency on 

detected trips per day 

 
Figure 4.10 Mean distance between two GPS points 

on detected trips per day 

Raw data was pre-processed by INRIX company anonymising and encrypting trip data to 

protect users’ identity and sensitive information. During this operation, the company reassigned 

a unique ID to each tagged vehicle (see field “Device ID” in Table 4.2), allowing to consistently 

keep the observation of multiple trips deriving from the same vehicle over multiple days and 

reconstruct the total number of the trips collected from each vehicle for the entire period of 

observation. In light of this, it has been possible to define the distribution of the number of trips 

per each tagged vehicle. Around 35% of the vehicles registered only one trip, 12% registered 

two trips, less than 5% registered three and four trips, thus 57% registered less than five trips 

and the remaining 43% registered more than four trips (Figure 4.11) indicating an adequate 

heterogeneity of the dataset.  
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Figure 4.11 Trips per vehicle 

4.3 Estimation of o-d matrices from trajectory data 

The analysed trajectory dataset allows to derive a first crude estimation of time-dependent o-d 

matrices representing the collected trips taking place between two specific locations (traffic 

analysis zones) at a certain time of a day. This process requires defining the study area, a spatial 

discretization (zoning) of the study area and a temporal discretization (time-slice duration) of 

the analysed time-horizon (i.e. trajectory data observation period). Since the trajectory data 

analysis conducted in this study attempts to address diverse objectives, the o-d matrices have 

been referred to different geographic levels and multiple temporal discretization levels. To 

implement this process, a Matlab tool has been developed, able to select the trip list and derive 

the o-d matrices given one combination of these inputs, which can take the following values as 

shown by the Figure 4.11 (lines 44-48):  

• Study Area: the considered study areas are referred to the territory of Campania region 

or alternatively to Napoli city, which is the capital of Campania region. The region of 

Campania is located in the southern part of the Italian peninsula, whose area is depicted 

in orange in Figure 4.12 (a). Since the area of interest covered by the trajectory dataset 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of trips

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
%

 T
ag

ge
d 

Ve
hi

cl
es



Angela Romano               78 

 

is Napoli city, for the analysis concerning the demand evolution in the urban context, 

the observed o-d matrices have been also referred to its urban area whose boarders are 

illustrated in Figure 4.12 (b). In light of this, since the trajectory dataset contained 

waypoints spreading inside and outside the Italian borders, a preliminary operation to 

implement the tool consisted in filtering out of the total number of recorded waypoints 

a subset of waypoints falling inside the Campania region: this selection was performed 

using TransCAD software and the resulting data was subsequently imported into 

Matlab.  

 
(a) 

 
(b) 

Figure 4.12 Study Areas: (a) Campania region; (b) Napoli city urban area. 

• Zoning: Cities (applicable for Campania Region only, referring to the 550 cities of 

Campania region registered in 2017), Municipalities (applicable for Napoli City only, 

referring to the 10 municipalities of Napoli city and macro-tract census zones for a 

higher level of disaggregation (30 zones used only for Napoli city but applicable for 

both territories); The origin and the destination zones of each trajectory have been 

identified selecting the areas where first and the last waypoints of the recorded sequence 

referring to the same trip ID. 
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(c) 
Figure 4.13 Reference Zoning systems: (a) Cities of Campania region (550); (b) ASC of Napoli city (30); (c) 

Municipalities of Napoli city (10) 

• Time-slice duration: the o-d matrices can refer to any duration ranging from 15 minutes 

to 1440 minutes (o-d matrix corresponding to the entire day): the recommended step in 

this range is 15 minutes; 

Additionally, the tool architecture allows to build o-d matrices referred to the whole trajectory 

data observation period (31 days), and classified according to a given day type (working day, 

before holiday, holiday) and eventually to a specific weight vehicle class (Low, Medium, 

Heavy), as shown in Figure 4.14.  
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Figure 4.14 MatLab tool flowchart  to obtain trajectory data statistics and classified o-d matrices by trajectory 

data 
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Once the input parameters have been set, the tool filters out from the list of all the trips collected 

in the trajectory sample the trips selected by the input criteria (Figure 4.14) and maps their 

origins and destinations to the chosen geographic zoning, generating the requested o-d matrices. 

The magnitude of the resulting o-d flows depends upon the granularity of the chosen spatial 

and temporal discretization: by way of example, Figure 4.15 reports the hourly-based demand 

profile of one o-d pair in Napoli urban area over a typical working day, using municipalities as 

reference zoning system, as depicted in Figure. In this case the maximum registered value 

among o-d flows is around 30 vehicles in the time interval from 4 pm to 5 pm. Additionally, 

the example shows that municipality zoning and 1 hour time-slice constitutes an adequate 

spatial and temporal discretization to avoid matrix sparsity, a well-known problem of o-d 

matrices derived from trajectory data samples. 

 
Figure 4.15 hourly-based demand profile of one o-d pair in Napoli urban area spatially discretised in 

Municipalities zones as in Figure 4.13 (c); 

To gain more insights on o-d flows daily patterns, daily o-d flows of Napoli urban area have 

been categorised and analysed to quantify the variability among o-d flows resulting in the same 

day-type (working days, before holidays and holidays). To this end, only light vehicle trips 

were filtered and mapped with an acceptable granularity to the 10 municipalities of Naples city 

(Figure 4.13 (c)). Additionally, outbound and inbound demand flows deriving from the 

exchange with the remaining territory of Campania region and crossing the city area have been 

considered into the analysis, defining an 11x11 o-d matrix for each day, by referring the 

eleventh o-d pair to the exchange flows with external areas.  

Subsequently, the o-d matrices were grouped according to the day-type (Figure 4.14). To 

perform the variability assessment for each day-type group, each daily o-d matrix has been 

compared to an o-d matrix containing group mean values and evaluating the coefficient of 

variation of the root mean square error (cvRMSE), a very well-known indicator already 

introduced in Section 3.1.3 (Equation 3.5) Figure 4.16 and Figure 4.17 show that the variability 
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of daily o-d flows is significant for both working days and before holydays, while for holidays 

results quite stable (Figure 4.18). 

 
Figure 4.16 working days  o-d matrices variation with the respect to group mean values 

 
Figure 4.17 before holidays  o-d matrices variation with the respect to group mean values 
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Figure 4.18 holidays  o-d matrices variation with the respect to group  mean value 

4.4 Penetration rate estimation 

 Methodology 

As previously mentioned, trajectory data represents only a subset of vehicles on the road, thus 

it is important to define its representativeness of the true underlying phenomenon. To this end, 

it is necessary to estimate the penetration rate of the collected sample. Furthermore, 

understanding the distribution of the penetration rate among origins, destinations and o-d pairs 

becomes essential to develop ad-hoc scaling techniques and properly expand the trajectory 

sample. Since the true o-d flows are unknown, the estimation of the penetration level and its 

distribution is not straightforward, thus only an inference based on census data (e.g. population, 

workforce, employees by traffic analysis zone, commuter trips) can be performed. While, when 

census data is unavailable, the analysis can be performed using as benchmark data a reliable 

historical o-d matrix, usually provided from previous studies. When commuter trips data and/or 

population data are available, a first crude estimation of the overall penetration rate can be 

derived comparing the total number of trajectories detected in a sample (∑ 𝑑35
����

35 ) and the 

total number of trips reported in census data (∑ 𝑑35���l�l35 ): 

𝜌Ù =
	∑ 𝑑35

����
35

	∑ 𝑑35���l�l35
 (4.1) 

This operation is essential to develop a direct scaling technique as presented in section 2.2.1, 

especially when link counts data are not available. Indeed, the expansion rate reported in 

equation 2.46 to perform a direct scaling is basically given by the inverse of the overall 

penetration rate calculated in equation 4.1: 
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𝜀̃ =
1
𝜌Ù (4.2) 

Note that, to opportunely define the overall penetration rate it is necessary to guarantee 

consistency between o-d flows derived from trajectory data and census data o-d flows in terms 

of: set of covered o-d pairs, scope of the trip, transport mode and reference period. 

To complete the analysis and evaluate the penetration rate distribution among origins, 

destinations and o-d pairs, it has been defined: 

- A penetration rate depending on the origin zone, assuming that the o-d pair whose origin 

is the same will share the same penetration rate: 

𝜔3 =
	∑ 𝑑35

����
5

	∑ 𝑑35���l�l5
∙ 100		∀	𝑜	 ∈ 𝑂 (4.3) 

- A penetration rate depending on the destination zone, assuming that the o-d pair whose 

destination is the same will share the same penetration rate: 

𝜑5 = 	
	∑ 𝑑35

����
3

	∑ 𝑑35���l�l3
∙ 100	∀	𝑑	 ∈ 𝐷 (4.4) 

- A penetration rate depending on the o-d pair, basically assuming a different penetration 

rate per each o-d pair: 

𝜎35 = 	
	𝑑35
����

	𝑑35���l�l
	∀	𝑜𝑑	 ∈ 𝐼 (4.5) 

Wherein ∑ 𝑑35
����

5  is the total demand flow originated from origin o and ∑ 𝑑35
����,Í5

3  is the total 

demand flow reaching the destination d; 

Note that, since trajectory data total coverage is not guaranteed per each origin, destination or 

o-d pair, the non-zero values can be calculated only for the origins/destinations/o-d pairs 

resulting from the intersection of the sampled o-d pairs in the trajectory dataset and the covered 

o-d pairs from commuting survey. 

 Results 

 The census data used in this part of the thesis refers to the last available commuting census 

referring to the 15th population census carried out in October 2011 by the Italian Institute for 

statistics whose acronym is ISTAT, standing for “Istituto Nazionale di Statistica” (literally: 

National Institute for Statistics). Specifically, this survey is periodically conducted every 10 

years and its aim is to register the internal flows of any Italian city and the inbound and the 

outbound flows from any Italian city to any other city in the country. The recorded o-d flows 

refer to 28.871.447 individuals moving to go to the work/study place during the morning peak 

hours (approximately 7.15 – 9.15 AM) of a typical working day (usually Wednesday). Besides 
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the o-d pair, the commuting trips are classified by the scope of the trip, the type of residency 

(private or co-living households) and the travellers’ gender. 80% out of the total number of 

records contained in the survey are furtherly classified by the mode of transport, the time range 

of departure and the approximated travel time. Therefore, only the latter set of records 

specifying the mode of transport can be used for the scope of the analysis. A preliminary 

operation to obtain a first estimate of the overall penetration rate (𝜌Ù) is to guarantee a consistent 

comparison between the two terms in equation 4.1 according to the set of covered o-d pairs, the 

scope of the trip, the transport mode and the reference period.  

To obtain the terms in equation 4.1, a preliminary step consisted of deriving the o-d matrices 

relative to the morning peak hours (7.15 AM – 9.15 AM) of the working days collected in the 

trajectory dataset and the commuting o-d matrix derived from the trips reported by ISTAT by 

means of the Matlab tool structured as in Figure 4.14 and described in Section 4.3, using cities 

as reference zoning system (Figure 4.13). Subsequently, since the trajectory dataset refers to 

Napoli urban area (see Section 4.1), a consistent set of covered o-d pairs to compare trajectory 

data to census data was obtained selecting out from ISTAT records the internal trips of Napoli 

city, the inbound and the outbound flows from/to each city of the provinces of Campania region 

to/from Napoli city. In other words, a consistent set of o-d pairs for both datasets refers to trips 

inside the Campania region and having as origin and/or destination Napoli city area.  

To demonstrate that the comparison between the two sets of data referring to two different years 

(2017 for trajectories and 2011 for census data) can hold despite the significant temporal gap, 

an evaluation of the population variation registered from 2011 to 2017 for all the cities of 

Campania region has been carried out. As shown in Figure 4.19, negligible changes occurred 

to population census data between the two years, indeed, only in 35 out of 550 cities the 

variation (delta) corresponds to a value presenting an order of magnitude equal to 10ß. 

Therefore considerations on the results deriving from the comparison of trajectory data to 2011 

census data can be considered reliable. 
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Figure 4.19 Variation of population between 2011 and 2017 of Campania region cities 

A first observation concerns the number of non-zero o-d flows and the related set of reported 

o-d pairs by both datasets: interestingly, while the census dataset referring to the morning peak 

of a typical working day reports 700 o-d pairs (e.g. referred to non-zero o-d flows) out of the 

total 1099 o-d pairs related to inbound, outbound and internal trips of Napoli city, the trajectory 

dataset reports more than 1000  non-zero o-d flows referred to the same type of the day and 

time interval. This implies that a considerable percentage of the non-zero o-d flows derived by 

trajectory data refers to o-d pairs not reported in the census dataset. By way of example, the 

number of o-d pairs referring to non-zero o-d flows by trajectory and not collected in the census 

dataset has been reported in Table 4.4 for the four Wednesdays of the trajectory sample 
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Total number of non-

zero flow o-d pairs by 

trajectory 

non-zero flow o-d pairs 

by trajectory not 

reported by census 

% of o-d pairs 

collected in both 

trajectory and census 

Oct 4th 2017 1033 757 39% 

Oct 11th 

2017 
1048 781 38% 

Oct 18th 

2017 
1033 762 39% 

Oct 25th 

2017 
1023 764 37% 

Table 4.4  comparison of the number of o-d pairs referring to non-zero o-d flows by trajectory and o-d pairs not 

collected in the census dataset 

Therefore, around more than 70% of the o-d pairs referring to non-zero o-d flows collected in 

the trajectory sample is not reported by census commuting data; similar values have been 

derived for all working days in the sample. The calculations on the trajectory sample penetration 

rate defined per origin, destination and o-d pair as respectively presented in Equations 4.3, 4.4 

and 4.5 have been developed considering the set of o-d pairs covered by both datasets, thus the 

deriving considerations on the penetration rate estimates must account for this relevant aspect.  

Furthermore, it is worth of notice that although the two sets of data can be considered consistent, 

a further investigation should be conducted to estimate the scope of the trips detected from 

trajectories: as introduced in Section 1.2, one of the main drawbacks of trajectory data is its 

enormous lack of socio-economic information, which are hidden on purpose to protect users’ 

privacy. Indeed, in this analysis it is reasonably assumed that the total number of trips 

happening between the morning peak hour are systematic, however this could only partially 

correspond to reality. 
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To visualise the area of interest used for the trajectory sample penetration rate estimation, a 

simplified map of Campania region in Figure 4.12 (b) highlights Napoli province area in red, 

while all other provinces of Campania region are depicted in yellow, which are arranged in 

clockwise order as: Caserta, Benevento, Avellino and Salerno. Therefore, a slightly smaller part 

of the red area corresponds to the sampling area of INRIX trajectories, which is Napoli urban 

area as depicted in Figure 4.1. Furthermore, for the scope of the analysis only the trips by private 

vehicles (e.g. car or motorbike), originating from/reaching any city of Campania region (Figure 

4.13 (a)) and to/from Napoli city (as in Figure 4.1) were selected from ISTAT census data, 

while from the INRIX trajectories only LWV class trips collected during the morning peak of 

the 21 working days in Napoli province were selected. 

Denoting with  𝑑35
����,Í5 the total number of trips by trajectory detected during the morning peak 

of a typical working day (formally wd) and with ∑ 𝑑35àl@á@35  the total number of trips contained 

in the ISTAT commuting census corresponding to the same time interval, the penetration rate 

𝜌Ù can be estimated applying equation 4.1 for each working day reported in the trajectory sample. 

Since (almost) all trips collected during the morning peak are systematic, it is possible to 

perform a direct comparison with ISTAT commuting census data. The values of the penetration 

rate obtained applying equation 4.1 referred to the morning peak of the twenty-one working 

days by trajectory are reported in the following table: 

Working day Morning Peak penetration rate 

1 0.07 

2 0.06 

3 0.06 

4 0.07 

5 0.06 

6 0.06 

7 0.06 

8 0.06 

9 0.06 

10 0.06 

11 0.06 

12 0.06 



Angela Romano               90 

 

13 0.06 

14 0.06 

15 0.06 

16 0.03 

17 0.06 

18 0.06 

19 0.06 

20 0.06 

21 0.06 
Table 4.5 values of the penetration rate obtained applying equation 4.1 referred to the morning peak of the 

twenty-one working days collected in the trajectory sample 

An overall value of the estimated penetration rate can be derived as the mean value over the 21 

working days of the sample: 

𝐸[𝜌]ä = 𝐸 å
	∑ 𝑑35

����,Í5
35

	∑ 𝑑35àl@á@35
æ 100 = 6.1% (4.6) 

Another calculation of the overall penetration rate can be performed comparing the total number 

of daily trips collected in the trajectory sample and an estimation of the total number of daily 

trips obtained from the total reported by ISTAT commuting census data. This calculation lead 

to a similar value of the overall penetration rate referred to the morning peak total demand 

reported in equation 4.6, assessed around 6%. 

This is a satisfactory value compared to the range of variability of GPS trajectory sample 

penetration rate, indeed as reported by FHWA in 2016, the sampling rate generally ranges from 

small percentages up to 10% (see Chapter 2 for literature references). This result suggests that 

applying a scaling technique is a crucial operation to obtain a reliable estimate of the o-d matrix. 

In light of this, the direct scaling techniques presented in section 2.2.1 are primarily considered 

as an essential step to scale the volume of the captured trajectories such that a first reliable 

estimate of generated demand could be derived.  

An ideal sampling technique guaranteeing an effective representativeness of the overall demand 

would imply an uniform distribution of the sampling rate among o-d pairs, e.g. using basic 

sampling techniques such as simple random sampling. This distribution can be obtained when 

building a purpose-oriented trajectory dataset in which the sampling process is well structured 

and its characteristics are defined a priori, conversely these conditions do not hold when dealing 

with non-purpose oriented trajectory data, which remarks the importance of this analysis. For 

this reason, to better understand the trajectory sample representativeness, a further analysis 
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pertains the penetration rate distribution among origins, destinations, and o-d pairs applying 

equations 4.2, 4.3, 4.4 respectively.  

The analysis concerns the o-d matrices relative to the morning peak hours (7-9 AM) of the four 

Wednesdays (𝑑35
����,Í5), among all working days included in the trajectory dataset, in light of 

the fact that ISTAT commuting data are approximately referred to this time range and usually 

to Wednesdays. These matrices have been individually compared to commuting o-d flows 

reported by the ISTAT commuting survey (𝑑35àl@á@). Since trajectory data total coverage is not 

guaranteed per each origin, destination or o-d pair, the sampling rates have been calculated only 

for the origins/destinations/o-d pairs resulting from the intersection of the available o-d pair in 

the trajectory dataset and the available o-d pair from ISTAT commuting survey, thus it is 

expected a different number of origins/destinations/o-d pairs covered per each analysed o-d 

matrix referring to a specific working day. To further evaluate the representativeness of 

generated demand observed from trajectory data the sampling rate per origin has been 

additionally calculated applying Equation 4.2 using as benchmark the population data collected 

during the census survey conducted in 2017; the obtained values are presented in Figure 4.20. 
The population data has been filtered considering only people whose age is eligible for obtaining the driving 

license. By way of example Figure 4.20, Figure 4.21, Figure 4.22 and Figure 4.23 illustrate the results referred 

to one of the working days of October 2017, while  

Table 4.6 reports relevant statistics on the measured values. Similar values have been obtained 

for all working days;  
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Figure 4.20 Sampling rate per Origin - values calculated comparing generated demand observed from 

trajectory data and population census data (collected in 2017) using as zoning system the cities of Campania 

region depicted in Figure 4.13 (a) 
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Figure 4.21 Sampling rate per origin zone obtained  by comparing trajectory data to ISTAT commuting data 

collected between 7 and 8 AM of a typical working day, using as zoning system the cities of Campania region 

depicted in Figure 4.13 (a) 
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Figure 4.22 Sampling rate per destination zone obtained by comparing trajectory data to ISTAT commuting data 

collected between 7 and 8 AM of a typical working day, using as zoning system the cities of Campania region in 

Figure 4.13 (a). 
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Figure 4.23 Sampling rate per o-d pair obtained by comparing trajectory data to ISTAT commuting data 

collected between 7 and 8 AM of a typical working day, using as zoning system the cities of Campania region 

depicted in Figure 4.13 (a). 

 MIN [%] MEAN [%] MEDIAN [%] 

𝛚𝐨 0.56 5.17 2.77 

𝝓𝒅 0.73 9.84 5.95 

𝝈𝒐𝒅 0.57 7.07 3.47 
 

Table 4.6 relevant statistics on penetration rate defined per origin, destination and o-d pair 

To evaluate the evolution and the characteristics of penetration rate defined by o-d pair at urban 

level, an analogous calculation has been referred to Napoli urban area using as zoning system 

the macro-census tracts defined by ISTAT. According to this zoning, 30 zones are defined as 

shown in Figure 4.13 (b), allowing to have an acceptable granularity and limited sparseness of 

o-d matrix for the scope of the analysis. The results have been provided for the entire period of 

observation ( 21 working days of October 2017). By way of example, only the results referred 
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to four Wednesdays of October 2017 have been reported in Figure 4.24, Figure 4.25, Figure 

4.26 and Figure 4.27 respectively. 

 
Figure 4.24 Heatmap depicting the level of penetration rate defined by o-d pair at urban level in Napoli city for 

a typical working day. 
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Figure 4.25 Heatmap depicting the level of penetration rate defined by o-d pair at urban level in Napoli city for 

a typical working day. 
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Figure 4.26 Heatmap depicting the level of penetration rate defined by o-d pair at urban level in Napoli city for 

a typical working day. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
OD pair: macro census tract

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

O
D

 p
ai

r: 
m

ac
ro

 c
en

su
s 

tra
ct

Penetration Rate per OD pair in Napoli urban area

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



Angela Romano               99 

 

 
Figure 4.27 Heatmap depicting the level of penetration rate defined by o-d pair at urban level in Napoli city for 

a typical working day. 

Evidence from results suggests a strong variability of the sampling rate defined by o-d pair for 

both regional and urban level, meaning that for the given sample, the penetration rate 

distribution is not uniform among o-d pairs, thus the probability of extracting a trip from the 

population (total number of actual trips) varies according to the considered o-d pair. Clearly, 

the evidence is similar in the other cases of sampling rate defined by origin zone and destination 

zone. Notably, for some of the sampled o-d pairs the sampling rate resulted equal to 100% (e.g. 

see o-d pair number 50 in figure 4.20), this is explained by the fact that some of the o-d flows 

reported both in the census dataset used as benchmark and in the trajectory dataset are equal to 

one. Clearly this case is not realistic, therefore these values should not drive the conclusions of 

this analysis.  

Given these considerations, the experimental results have been utilized as a starting point to 

deepen the analysis on the implications of penetration rate distribution on demand flows 

accuracy when applying o-d flows estimation methods and inherent scaling techniques. This 

study, conducted by means of laboratory experiments, is presented in the following Chapters.  
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4.5 Experimental analysis of the quasi-dynamic assumption in urban context 

 Methodology  

As introduced in Section 2.3.2.1, the quasi-dynamic assumption derives from the intuitive 

consideration that generation profiles evolution are more within-day dynamic varying 

compared to distribution shares evolution, basically these two set of variables follow different 

dynamics: the percentages of distributions vary across a longer period of time, while generation 

profiles are subject to rapid changes in time. In light of this, according to the quasi-dynamic 

hypothesis, the distribution profiles can be approximated to their average values and assumed 

constant over a longer period of variation with the respect to generation profiles reference 

period of variation. As introduced in equation (2.5), o-d flow demand variables can be 

expressed as the product of generation profiles and distribution shares:  the approximation 

introduced applying the quasi-dynamic hypothesis yields to a new set of variables, namely the 

quasi-dynamic o-d flows (𝑑35
1,L5	as in equation 2.5):  

𝑑351 = 	𝑔31𝑝5|31 ≅ 𝑔31𝑝5|3
I(1) = 	𝑑35

1,L5 (2.5) 

However, although the quasi-dynamic hypothesis allows to dramatically reduce the number of 

variables in the o-d flows estimation problem, it introduces an inherent bias into the estimation 

process known as the ‘Intrinsic Error’, which is formally reported here for the sake of 

readability:

𝑖𝑒351 = 	𝑑351 −		𝑑35
1,L5 (2.8) 

Basically, it represents the distance (error) between the quasi-dynamic o-d flows, computed 

considering constant distribution shares over a pre-determined period of time,  namely the 

quasi-dynamic interval, and the original o-d flows. Intuitively, the longer is the assumed 

duration of the quasi-dynamic interval, the larger will be the intrinsic error. Cascetta et al. 

(2013) assess the magnitude and the variation of the intrinsic error for different duration of the 

quasi-dynamic interval by means of statistical tests such as chi-squared and likelihood ratio test 

in the case of a closed motorway system, thus evaluating its variability in uncongested networks 

with fixed path-choice. Since ground-truth data was available for the test site, the conducted 

analysis demonstrated that the quasi-dynamic o-d flows follow the same probability distribution 

of the real o-d flows, meaning that their statistic parameters (mean, variance) represent the same 

distribution. In this way, the study demonstrated that acceptable goodness-of-fit measures can 

be obtained even under the hypothesis of  a 24h quasi-dynamic interval duration. Specifically 

the conducted study refers to a highway network, which is a closed system test site, not only 

implying that ground truth values were available but also that the path choice is fixed and the 
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congestion phenomena can be considered as negligible (indeed the study is conducted in the 

case of uncongested network).  

In this section, the experimental analysis investigating the intrinsic error magnitude and its 

distribution has been extended to urban context. Such contexts are normally characterized by 

more complex o-d flow patterns; however, since a significant percentage of the overall urban 

mobility is represented by systematic trips, the quasi-dynamic assumption is expected to be 

sufficiently acceptable considering the peak periods in which it is expected that the majority of 

trips are due to commuting activities. The approach adopted in this thesis is based on an 

empirical analysis: the aim is to analyse the intrinsic quasi-dynamicity of the o-d matrices 

observed from trajectory data, which means evaluating the stability of distribution shares across 

a pre-specified quasi-dynamic interval, basically quantifying the error between quasi-dynamic 

trajectory o-d flows and trajectory o-d flows. Two well-known goodness-of-fit measures have 

been used to assess the quasi-dynamicity of trajectory o-d flows: the coefficient of 

determination (𝑟¬) expressing the linear fitting between trajectory o-d flows and quasi-dynamic 

o-d flows (equation 3.5) and the cvRMSE already introduced in equation (3.5). The empirical 

analysis is propaedeutic to set the basis of synthetic experiments conducted with the scope of 

analyzing the performance of trajectory data scaling techniques and other o-d flow estimation 

methods, as described in the Chapters 5 and 7.  

 Results  

Consistent with the scope of the analysis, the area of study is bound to Napoli city and the 

trajectories involved are collected from light weight vehicle trips (private vehicles). The o-d 

matrices have been calculated discretizing the area in traffic analysis zones matching the 30 

macro census tract of Napoli city and referred to 15 minutes time-interval. The spatial and 

temporal discretization demonstrated to bind the o-d matrices sparsity, limiting the presence of 

zero values as discussed in Section 4.3. To capture the great percentage of systematic trips, the 

o-d flows have been calculated for four different working days specifically referring to the 

morning peak-hour (from 7 to 8 AM) choosing a 60 minutes quasi-dynamic interval. By setting 

these conditions the vector of percentage of distributions defined per each origin referred to 15 

minutes time-interval is approximated to a vector containing their average values over the 

specified quasi-dynamic interval (one hour), leading to the quasi-dynamic o-d flows as 

expressed by Equation 2.5 introduced in the previous section. 

Figure 4.28, Figure 4.29, Figure 4.30 and Figure 4.31 depict the scatter plots respectively 

illustrating the error between 15-minutes trajectory o-d flows and quasi-dynamic o-d flows by 

trajectory for the four working days considered. Experimental evidence suggests that 



Angela Romano               102 

 

distribution shares cannot be properly approximated to their average values over a quasi-

dynamic period of one hour, considering that intrinsic error quantified by the 𝑐𝑣𝑅𝑀𝑆𝐸 

calculated on 15-minutes demand flows, is greater than one for each of the considered working 

days, indeed its average value is equal to 1.31 (see Table 4.5). Therefore, distribution shares 

evolution does not remain stable along the morning peak hour, thus the quasi-dynamic o-d 

matrix cannot be used as an adequate approximation of the trajectory o-d matrix, as also 

confirmed by the values of 𝑐𝑣𝑅𝑀𝑆𝐸 reported in Table 4.7. Results lead to two different 

conclusions: either the utilised trajectory data sample penetration is not adequate enough to 

capture quasi-dynamic evolution of o-d flows, either the evolution of demand in an urban 

context does not follow a quasi-dynamic trend. Nevertheless, this result has contributed to the 

generation of the ground-truth population for the synthetic experiments described in the next 

chapters, being a pivot value to define the dynamic evolution of demand at urban level, (see  

section 5.2 for details). 

 

 
Figure 4.28 linear fitting between trajectory o-d flows and quasi-dynamic o-d flows, 𝜏	= 60 min, day 1 
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Figure 4.29 linear fitting between trajectory o-d flows and quasi-dynamic o-d flows, 𝜏	= 60 min, day 2 
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Figure 4.30 linear fitting between trajectory o-d flows and quasi-dynamic o-d flows, τ = 60 min, day 3 
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Figure 4.31 linear fitting between trajectory o-d flows and quasi-dynamic o-d flows, τ = 60 min, day 4 

INTRINSIC 

ERROR: 

CVRMSE 

OCT 4TH 2017 OCT 11TH 

2017 

OCT 18TH 

2017 

OCT 25TH 

2017 

7.00-7.15 AM 
1.64 1.63 1.70 1.62 

7.15-7.30 AM 
1.37 1.34 1.32 1.38 

7.30-7.45 AM 
1.15 1.15 1.21 1.25 

7.45-8.00 AM 
1.13 1.04 1.02 1.04 

Table 4.7 trajectory o-d flows intrinsic error - cvRMSE values- (mean value 1.31) 
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 Performance Analysis of Direct Scaling 

This chapter presents laboratory experiments testing direct scaling techniques providing a 

sensitivity analysis on trajectory sample representativeness and biases key factors: penetration 

level, penetration distribution and other sample characteristics combined with other sources of 

information such as a set of link counts measurements. 

5.1 Motivation  

The analysis of the literature revealed that few studies explored the opportunities of using 

trajectory data to enhance or propose alternative o-d estimation methods in diverse manners 

(see Sections 2.1 – 2.3). Notwithstanding, given that the majority of the provided examples are 

mainly based on real case studies, the unobservability of o-d flows remains a primary issue for 

demonstrating the effectiveness of such methods. In light of this, evaluating the quality of o-d 

estimation methods using real datasets can be troublesome, indeed it is not possible to provide 

decisive experimental evidence of their effectiveness and advantages over others, except when 

applied for closed systems such as highway networks in which the true phenomena underlying 

can be observed. As introduced in Section 1.1, a consolidated procedure to obtain more accurate 

estimates is to update the a priori estimate of the o-d matrix exploiting a set of traffic 

measurements (link traffic counts, speed measurements, link travel times, etc.); however, a 

perfect fit of the observed measurements used for o-d estimation/updating procedures does not 

necessarily imply that estimated o-d flows closely match the true underlying values. Hence, 

reliable validation techniques and especially experiments based on synthetic data are crucial to 

assess o-d estimation methods performance.  

Nevertheless, from the analysis of the literature, no evidence of existing laboratory experiments 

with a remarkably wide range of case studies and experimental setups testing scaling techniques 

and o-d estimators in presence of trajectory data was found. In light of this, synthetic 

experiments are extensively applied in this thesis to develop a systematic analysis of trajectory 

data sample scaling methods and o-d flows updating methods in presence of trajectory data, 

investigating the impact of trajectory and link counts sample characteristics on o-d estimation 



Angela Romano               107 

 

model/scaling technique performances. The main goal is to provide a sensitivity analysis 

focussing on trajectory sample representativeness and biases key factors: penetration level and  

penetration rate distribution. To this end, the outcomes from each model/scaling technique are 

analysed considering different scenarios given by a variety of combinations of the project 

variables which can be roughly categorised into two main classes: the trajectory sample 

characteristics (e.g. penetration level and distribution) and the link counts sample characteristics 

(e.g. number of sensors and sensor locations). 

The results from the trajectory data analysis conducted in this study, consistent with other 

studies found in literature, demonstrated that a generic sample of trajectory data can represent 

a small percentage (e.g. up to 10%) when compared to the total number trips collected by census 

surveys, (see Chapter 4). Evidence from the experimental analysis indicates that using a direct 

scaling method is a primary and essential step to rescale the observed o-d flows by trajectory 

data and obtain a first crude estimate of the o-d matrix. For the sake of clarity, a direct scaling 

method is referred as to a procedure by means of which o-d flows derived from trajectory data 

samples are rescaled or normalised to more realistic values, not involving the application of 

statistical methods or optimization processes. Additionally, a different type of direct scaling 

can be defined according to the specification of the upscaling factor(s). The types of direct 

scaling technique tested in this work are described in Section 5.2.3. Given the essential role of 

direct scaling methods and the lack of studies presenting synthetic experiments, this part of the 

study attempts to evaluate to which extent a direct scaling procedure can provide reliable o-d 

flow estimates by considering a variety of different scenarios. Bringing light on this research 

question, this work can provide structured guidelines for the use of trajectory data in the o-d 

flows estimation problem. 

5.2 Methodology  

To validate and compare different approaches in a variety of settings and conditions, the 

proposed laboratory experiments are based on the generic structure of the benchmarking 

platform presented by Antoniou et al. 2017 which aims to provide a reliable test bed examining 

o-d flows estimation methods and algorithms under equal/standardised conditions. The 

methodology pivots on the use of synthetic data, basically representing the ground truth data, 

which allows to set up a full knowledge of the o-d matrix and the underlying phenomena. 

Although, the methodology applied in this thesis required some necessary adaptations to the 

specific case. Its structure encompasses three main components as illustrated in Figure 5.1:  
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• Synthetic ground-truth case study setup: defining a true testbed in terms of o-d flows, 

network characteristics and any other relevant parameter related to demand and supply, 

including an assignment model performing the interaction between demand and supply 

which allows to calculate the true link flows and traffic flows characteristics and to 

ensure mutual consistency between o-d flows and traffic flow characteristics throughout 

the entire estimation process. The testbed must be consistent with the sensitivity analysis 

which has to be performed.  

• Design of experimental setup: mimicking real situations with uncertainties and/or biases 

of available o-d flow estimates derived by the trajectory data samples. Specifically, the 

experimental settings refer to a wide range of assumptions on the selection of 

measurements to simulate realistic scenarios regarding the availability of a subsets of 

measurements in specific network locations (e.g. link flows measurements) and a subset 

of o-d flows (e.g. derived from trajectory data samples). This step also includes the 

definition of key indicators and goodness-of-fit (GOF) measures assessing the 

estimation methods performances. 

• Testing: applying the scaling techniques and/or the o-d estimation/updating algorithms  

under analysis fed by the setup values defined in the second step; the resulting 

estimated/updated values are compared with the true values defined in the first step of 

the procedure, using the selected GOFs.  

As also pointed out in Antoniou et al. 2017, a key feature in the assessment of o-d flows 

estimators is to consider a wide experimental plan to test a variety of settings and 

heterogeneous conditions (network scale, demand volumes, number and location sensors, 

accuracy and reliability of measurements) consistently defined across methods/algorithms 

to be tested, yielding to a comprehensive range of possible scenarios.  
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Figure 5.1 Illustrative flowchart of the laboratory experiments testing direct scaling techniques performances 

Details regarding the adopted procedure for each step are reported in the next sections.  

 Ground-truth case study setup 

To develop the synthetic ground truth case study a set of demand and supply parameters needs 

to be defined: 

• the test site network and the appropriate zoning system; 

• the ground truth o-d flows indicating the exact number of trips between origins and 

destinations; 
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• the technique to generate the set of trajectories providing the sequence of links traversed 

by each vehicle and the departure time distribution indicating the time by which each 

vehicle leaves each origin; 

Furthermore, it is necessary to select an assignment model to simulate the interaction between 

demand and supply and thus obtain the true link flows and the necessary traffic parameters (e.g. 

travel times, vehicles speed etc.) consistent with true o-d flows.  

To cover a wide range of variety of real case studies and develop the sensitivity analysis of  

trajectory data sampling characteristics, two different test sites were selected composing the 

ground truth testbeds for small and large scale networks respectively. Experiments on the 

selected test sites were conducted simulating the demand flows evolution over the morning 

peak hours which, for the specific test sites, realistically occurs between 6 AM and 10 AM.  

5.2.1.1 Small	network	case	study	

For the small scale network case study, the test site selected by Yang et al. 2017 was considered, 

consisting of a road network in the northern part of Maryland State, whose topology is 

represented in Figure 5.2. The network consists of 28 nodes and 74 links (equivalent to 37 

bidirectional links) as shown in Figure 5.3 processed by MatLab. The simulation period is set 

to 4 hours (6-10 AM) corresponding to 16 demand time intervals, choosing 15 minutes long 

time windows. 40 o-d pairs are selected for the case study and 12 out of the 74 links are 

equipped with traffic sensors to detect the number of vehicles occupying the link in each time 

interval. The measured links are chosen according to two criteria extensively described in 

Section 5.3.1, to test the efficacy of the two correspondent solutions of the sensor location 

problem (max flow & random selection).  

To define the true time-dependent o-d flows, a different criteria has been used to define demand 

volumes in order to control its dynamics, to define the intrinsic error parameters and evaluate 

the applicability of quasi-dynamic hypothesis, while the route choice has been derived by Yang 

et al 2017, selecting the paths whose lengths are shorter than the others. Table 5.1 summarizes 

the route choice probability of all paths between all o-d pairs.  
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Figure 5.2 small-scale test site Source: Yang et al. 2017 
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Table 5.1 Turning ratio via different paths. Source: Yang et al. 2017 

5.2.1.2 Large	network	case	study	

For the large-scale network case study, the laboratory experiments were carried out with 

reference to the real network of the Caserta province. The road network is based on the 

OpenStreetMap (OSM) topology, consisting of 4.879 nodes and 12.671 links, hierarchically 

clustered into four mutually exclusive sets of network levels depending upon specific road 

attributes such as link travel time and link monetary costs, available from previous studies. In 

the following, the links whose hierarchy is lower than 3 are referred as relevant links (depicted 

in Figure 5.3 in black). The relevant links are considered for specific considerations on the 

calculation of the Mean Absolute Percent Error (MAPE) and the Root Mean Square Error 

(RMSE) indicators (see Section 5.4.1). The selected traffic analysis zones correspond to the 104 

municipalities of the Caserta province whose boarders are depicted in Figure 5.3 in green, 

yielding to 10816 o-d pairs. 
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Figure 5.3 Caserta province road network: hierarchy levels and traffic analysis zones 

To examine the steady state context, ground-truth demand values were derived from ISTAT 

(Italian National Institute of Statistics) 2011 commuting survey, which reports the internal 

flows of Caserta province relative to back and forth trips of the same day to go to or to come 

from the work/study place during the morning peak hours (approximately 7.15 – 9.15 AM) of 

a typical working day (usually Wednesday). Consistently with the resulting o-d matrix, a 

population of travellers between each o-d pair has been generated. These operations allowed to 

set up a synthetic but realistic case study, wherein the travel demand is known.  

To model the route choice of each traveller of the population and thus generate a set of 

trajectories consistent with the o-d matrix, a random utility model based on the generalized 

perceived route costs has been adopted. Specifically, the utility function of each individual i is 

expressed as a linear combination of the travel time and the monetary cost, whose values have 

been derived from previous studies. Formally, the random utility is expressed as: 

𝑈�Ã = 	𝛽�Ã𝑡� +	𝛽:Ã𝑐� + 𝜀�Ã  (5.1) 

Wherein:  

• 𝑈�Ã is the perceived utility of route r for the user i; 

• 𝑡�	is the travel time of the route r; 
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•   𝑐� is the monetary cost of the route r; 

• 𝛽�Ã  and 𝛽:Ã  are the utility function coefficients for the user i; 

• 𝜀�Ã 	is the random term in the perceived utility for the route r and user i; 

 

To simplify the case study, congestion phenomena are considered negligible and, since link 

costs are assumed as additive, route costs can be calculated as the sum of the corresponding 

link costs. The travel time and monetary cost coefficients of each individual (𝛽�Ã and 𝛽:Ã) , have 

been respectively drawn from two different mono-variate Normal distributions to introduce 

heterogeneity among the individuals of the synthetic population. The ratio between the two 

coefficients represents the value of time given by the individuals. Since the distribution of the 

ratio of two Normal random variables is unknown, their average values are set such that the 

value of time (VOT) is equal to 10 €/h. Furthermore, although the Normal distribution is 

theoretically unbounded, the dispersion factors for the distributions of 𝛽�Ã  and 𝛽:Ã  have been set 

such that the results did not yield to unrealistic positive values. The random term 𝜀�Ã 	 has been 

drawn upon a multivariate normal distribution, with a covariance matrix consistent with the 

Daganzo and Sheffi (Daganzo and Sheffi, 1977) assumption, as recalled in the following:  

𝑐9
n~𝑁(𝑐9, 𝜉 ∙ 𝑐9) (5.2) 

Wherein:  

• 𝑐9
n represents the perceived cost of the link l;  

• 𝑐9 is its expected value; 

• 𝜉  is a proportionality factor to be estimated.  

Drawing upon the Daganzo and Sheffi assumption, the covariance matrix 𝚺�	of the perceived 

costs of the routes is given by:  

𝚺� = 𝜉 ∙ 𝑸@ ∙ 𝚺9 ∙ 𝑸 (5.3) 

where Q is the link-paths incidence matrix and 𝚺9 is the diagonal variance-covariance matrix of 

the link costs consistent with the Daganzo-Sheffi assumption. The constant of proportionality 

𝜉 has been computed per each o-d pair s setting the value of variation coefficient cv according 

to the following expression: 

𝜉 = 𝑐𝑣¬ ∙ 𝐶35,yÃv (5.4) 
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being 𝐶35,yÃv the minimum cost among all the paths connecting the considered o-d pair. 

Starting from the previous assumptions, a sequence of links defining a path has been assigned 

to each user travelling between all o-d pairs such that the total number of users of the synthetic 

population was equal to the total number of trips and consistent with each actual od matrix 

entry.  

5.2.1.3 Dynamic	evolution	of	o-d	flows	for	the	large-scale	network	case	study	

To study the dynamic evolution of the travel demand in the case of large-scale network, a 

different set of ground truth o-d flows values has been defined. Specifically, the time-dependent 

o-d flows were referred to the morning peak period indicated with T occurring from 6 AM to 

10 AM. Demand values were referred to 16 time intervals corresponding to 15 minutes long 

time slice q, composing the entire time-horizon T.  

Real traffic data reporting the distribution of departure time during the morning peak has been 

used to reconstruct realistic ground-truth values of time-dependent o-d flows. 

Specifically, the traffic data contained the percentages of travellers departing every 5 minutes 

with respect to the travel demand referred to entire day of Caserta urban area (percentage of 

trips detected every 5 minutes).  

 
Figure 5.4 x: time of the day (min); y: percentage of departures. Real data from urban loop detectors. 

Processing the data, the percentages of trips departing every hour during the time horizon T 

(𝑝ò|@) and every time slice q per each hour h of the time horizon (𝑝1|ò) have been calculated 

for the time-horizon T (6-10 AM). Results are shown in Table 5.2: 

Peak Hour 𝒑𝒉|𝑻 𝒑𝜽𝟏|𝒉 𝒑𝜽𝟐|𝒉 𝒑𝜽𝟑|𝒉 𝒑𝜽𝟒|𝒉 

6-7 AM 0.10 0.17 0.18 0.25 0.31 

7-8 AM 0.29 0.23 0.24 0.26 0.24 

8-9 AM 0.36 0.23 0.27 0.24 0.23 

9-10 AM 0.25 0.37 0.31 0.25 0.22 
Table 5.2 Percentage of departure during the morning peak period for each hour h of the time horizon  

(𝑝ò|@)	and for each time slice q of each hour h of the time horizon T (𝑝1|ò)  
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Three sets of information were derived from the o-d matrix reported by the ISTAT commuting 

survey with reference to the peak hour 7-8 AM: 

• the total number of trips (𝑁àl@á@	(÷sø	áù))	; 

• the generated flow from each origin (𝑔3÷sø	áù); 

• the percentages of distribution (𝑝5|3
àl@á@	(÷sø	áù)) ;  

Given the percentage of departures during the same time interval reported by the real data from 

traffic sensors as in Table 5.2, the total number of trips referring to the time-horizon T has been 

calculated as: 

𝑁ú =
𝑁àl@á@	(÷sø	áù)

𝑝÷sø	áù
; (5.5) 

Consequently, the number of trips per each hour of the time horizon T has been was derived as: 

𝑁ò = 𝑁ú ∙ 𝑝ò|@; 	∀ℎ ∈ T (5.6) 

Wherein 𝑝ò|@ indicates the percentage of generated demand during each hour h of the time 

horizon T. The demand flows leaving each origin during each hour of the time-horizon (𝑔3ò) 

have been proportionally amplified or reduced using as benchmark values the flows generated 

from each origin of the set of origin nodes O during the reference period 7-8 AM (𝑔3÷sø	áù). 

To simulate the travel demand fluctuations among different time-slices and to introduce a 

dispersion factor, the generated flow from each origin has been perturbed drawing upon a 

standard normal distributed random variable (identified as z) using a pre-specified coefficient 

of variation 𝑐𝑣kûv: 

𝑔3ò = ü
𝑁ò

𝑁àl@á@	(÷sø	áù)ý ∙ 𝑔3
÷sø	áù + |𝑐𝑣kûv ∙ 𝑧};	∀𝑜 ∈ 𝑂, ∀ℎ ∈ Τò (5.7) 

Wherein:  

• 𝑧~𝑁(0, 1) 

• 𝑐𝑣kûv=0.1 

Starting from these values and exploiting the percentage of travellers departing every 15 

minutes over each hour of the time-horizon reported in Table 5.2 (𝑝1|ò), the final flows leaving 

each origin during each time-slices have been calculated according to the following:  

𝑔31 = 𝑔3ò ∙ 𝑝1|ò; 	∀𝜃 ∈ Τ1 (5.8) 

The percentages of distribution 𝑝5|31  expressing the portion of demand generated leaving from 

origin o and heading to the destination d of the set of destinations D during time-slice 𝜃 were 

assigned perturbing the percentages of distribution derived from the hourly-based o-d matrix 
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reported by ISTAT (𝑝5|3
àl@á@	(÷sø	áù)), extracting pseudo-random values from a standard normal 

distribution using a pre-specified coefficient of variation 𝑐𝑣5ÃÎ, leading to:  

𝑝5|31 = 𝑝5|3
àl@á@	(÷sø	áù) + (𝑐𝑣5ÃÎ ∙ 𝑧);	∀𝑑 ∈ 𝐷, ∀𝜃 ∈ Τ1 (5.9) 

The perturbed percentages of distribution have been subsequently scaled such that their sum 

was equal to 1, satisfying the following condition:  

N 𝑝5|31

5∈!>
= 1	∀𝑜 ∈ 𝑂, ∀𝜃 ∈ Τ1 (5.10) 

Therefore, the final time-depending o-d flow values composing the ground-truth values for each 

o-d pair of the set OD were derived as:  

𝑑351 = 𝑔31 ∙ 𝑝5|31 	∀𝑜𝑑 ∈ 𝑂𝐷 (5.11) 

The values of the coefficients of variation for both perturbations have been defined in order to 

obtain an intrinsic error consistent with the average value found in the experimental analysis of 

the quasi-dynamic assumption in urban context described in Section 4.5. 

Given the o-d flows values, a set of trajectories has been generated according to the same path 

choice model used for the steady state context, yielding to a total number of trajectories equal 

to 165,237. Details of each test bed are summarised in Table 5.3. 

 
Small Network 

Yang et al. 2017 

Large Network 

Simonelli et al. 2019 

Nodes 28 4,879 

Links 74 12,671 

Origins/Destinations 11 104 

o-d Pairs 40 10,816* 

Trips 19,185 165,237 
Table 5.3 Test beds for the laboratory experiments 

Considering the higher complexity of the dynamic state context and the consequent increasing 

number of variables to be estimated, a smaller set of o-d pairs with respect to the steady state 

context has been selected according to a max-flow criterion. Therefore, to lean the estimation 

process only o-d flows greater than 20 have been considered, reducing the number of o-d pairs 

from 10816 to 394 (*). Consequently, the total number of time-dependent o-d flows to be 

estimated was given by:  

𝑛35 = 𝑛351 ∙ 𝑛1 = 394 ∙ 16 = 6304;		𝑛35:	𝑑35 > 20 (5.12) 

Wherein 𝑛351 	is the number of o-d flows to be estimated for each time slice 𝜃 and 𝑛1 is the 

number of time-slices composing the simulation period. Considering a smaller set of o-d pairs 
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with respect to the steady-state context test bed, yields a reduction of the total number of paths 

connecting the o-d pairs and consequently to a reduction of the links travelled by each user of 

the network. 

The experiments are conducted considering the case of uncongested network for both test sites: 

while for the small scale network case studies path choice probabilities are fixed and known, 

the assignment model utilised to simulate the interaction between demand and supply 

parameters in the large scale network case study involves a flow propagation model and a route 

choice model assuming a linear structure. Therefore, since the link costs are assumed as additive 

and congestion phenomena are considered as negligible, the considered assignment model 

relies on a linear approximation of the assignment map identifying the relationship between o-

d flows and link flows. A dynamic network loading algorithm has been used to identify the 

flow propagation on the network for the dynamic state conditions. To operate in the dynamic 

context, the algorithm determines the time-dependent link volumes, together with link and path 

travel times, given the time-varying path flow departure rates over a finite time horizon. 

 Design of Experimental Setup  

The second main implementation task to develop the laboratory experiments is to provide a 

comprehensive design of the experimental setup in terms of:  

• The trajectory sample and its characteristics, defining the set of direct measures of o-d 

flows; 

• the set of traffic flow measurements and locations, composing the indirect measures to 

estimate the demand flows; 

• the definition of the direct scaling technique to test (Section 5.2.3);  

• the choice of GOFs (Section 5.2.4). 

A delicate step of designing the experimental setup consists of generating the trajectory data 

sample and defining its characteristics. As recalled in Section 1.1.2, there are some critical 

aspects challenging trajectory data exploitation in transportation studies. Indeed, collected data 

should have a sufficient scale to apply inference techniques, thus the penetration level of the 

sample is a key factor for deriving accurate demand estimates; furthermore, trajectory data are 

usually acquired from specialised vendors, thus sample variety can be compromised and the 

collected sample can be biased. 

In light of this, it is necessary to conduct an extended analysis focussing on two important 

characteristics associated to the trajectory data sample: 
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• The penetration level: also known as sampling rate, it can be expressed as a random 

variable, whose average value indicates whether the collected sample is representative 

of the true underlying o-d flows. By definition, during a laboratory experiment in which 

ground truth values are available, an estimate of the penetration rate can be obtained 

comparing the total number of collected trips with the ground truth trip total number. 

• The distribution of the penetration rate among the different elements of the network 

e.g. o-d pairs, origins, destinations. Since the trajectory data sample is usually not 

collected according to a systematic sampling, the data collection yields to biased 

samples across space and time e.g. among different traffic analysis zones and time of 

the day (concerning the within-day dynamic context).  

To explore the range of variability and conduct a robust sensitivity analysis of these two factors, 

different techniques to generate trajectory samples simulating a data collection process have 

been proposed. The range of variability of the penetration rate, its temporal and spatial 

distributions have been set according to the values observed from the analysis of a real 

trajectory data sample, as described in Chapter 4. Section 4.4.2 reports the average value of the 

penetration rate obtained confronting the total number of sampled trajectories and the total 

number of trips registered in the last commuting survey referred to a typical working day. Its 

value resulted around 6%, and its maximum value resulted around 30%, not considering outlier 

(non-realistic) values. Therefore, the analysed range in the laboratory experiments concerning 

some of the o-d flow updating procedures was set to [5% , 30%], while for the assessment of 

direct scaling technique performances and to validate the method, the entire range of variability 

has been considered [1% -100%] with a step range of 5%, such that it was possible to verify 

whether the error was equal to zero in the case of maximum possible sampling rate (100%).  

To assess the impact of sampling rate distribution on the level of accuracy of demand flows, 

two sampling process have been used to extract a sample of trajectories from the synthetic 

population corresponding to the two types of trajectory data sample introduced in Section 1.1.2: 

opportunistic data and purpose-oriented data. Concerning the former case, in light of the strong 

variability of the sampling rate among different o-d pairs which arose from the analysis of the 

opportunistic data sample conducted in Chapter 4, the trajectory sample has been generated 

assuming a different probability of extraction for each o-d pair (as illustrated in. Figure 4.23). 

To simulate the trajectory data sampling process, each o-d pair is randomly associated with a 

different weight, thus the algorithm picks the trajectories with higher weights until the desired 

total number of trajectories is extracted. While, to mimic the latter case deriving from a well-

structured sampling process and designed with a specific purpose for transport research and 
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applications, a uniform distribution of the sampling rate has been assumed. In this case, the 

sampling rate is assumed homogeneous among o-d pairs, thus the probability of extracting 

trajectories from a certain o-d pair is equal among all o-d pairs. Therefore the algorithm selects 

the trajectories from the ground-truth trajectory list drawing upon a uniform random 

distribution. 

The dimension of the link counts sample has been set according to a plausible value consistent 

with existing applications in literature and based on the typical number of available loop traffic 

sensors installed in an urban area; the penetration of link traffic sensors, meaning the ratio of 

the number of measured links to the total number of the links of the is commonly around 1% 

out of the total number of links. The analysis evaluates the sensitivity of the results considering  

a range varying from approximately 0.5 to 2 % out of the total number of links. The maximum 

value (2%, corresponding to 254 link counts) has been considered to eventually observe any 

improvement of the technique performances when a greater number of link counts is available. 

To define link traffic sensors locations and thus to select the set of link traffic measurements, 

two criteria have been applied: the k-max flow and random selection criteria. According to the 

k-max flow criteria, the set of the available link counts contains the measurements of the k links 

interested by the major flows. The link count sections have been located on the network such 

that the equations describing the relation between link traffic measurements and o-d flows were 

linearly independent. This aspect is critical to feed models with non-redundant information and 

to guarantee the applicability of GLS-based estimators. For the within-day dynamic context, 

the k maximum link flows composing the sample have been selected considering the time-slice 

interested by the maximum demand volume (i.e. the total number of travelling vehicles). 

Conversely, according to the random selection criteria, the set has been defined extracting 

pseudorandom locations of the sensors guaranteeing the linear independency of measurement 

equations. For each experiment deriving from the combination of the experimental settings 

shown in Table 5.4, ten replications were generated to attain stable results on the goodness of 

fit measure mean values. 
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Observations Experimental Settings 
Number of 

Replications 

Link Counts Max Flows Random 

Number of 

Link Counts 

{0.5, 1, 2} % 
10 

Trajectory Uniform OD-based 

Max Sampling 

Rate 

1÷100 % 
Table 5.4 Values of the project variables used to test direct scaling techinques by means of laboratory 

experiments 

 Direct scaling techniques: hypothesis on upscaling factors  

Several direct scaling techniques can be tested according to the specification of the upscaling 

factor by means of which o-d flows derived by trajectory data sample can be scaled; some of 

them have been already introduced in Section 2. The first direct scaling method tested in this 

work was proposed by Van Aerde et al. (1993) and applied by Yang et al. (2017) for the o-d 

flows estimation problem; its formulation is reported here for the sake of readability:  

𝛾¥ =
∑ 𝑓9¥v9:
9wx

∑ 𝑓9
����,¥v9:

9wx
					∀	𝜗	 ∈ 𝑇 

 

(2.47) 

As introduced in Section 2, the method consists of rescaling the trajectory o-d matrix by means 

of an upscaling factor defined for some period 𝜗 (𝛾¥) obtained as the ratio of the total number 

of vehicles observed from link traffic counts at time-interval 𝜗 to the total number of tracked 

vehicles traversing link l at time-interval 𝜗. The method defines a scalar upscaling factor per 

each time-slice, implying that the dynamic evolution of the upscaling factor follows the same 

demand fluctuations.  

The second method is a particularization of the technique above, involving a scalar upscaling 

factor for all the o-d pairs and for the entire time-horizon. Therefore, the upscaling factor is 

independent of the o-d pair and the time slice considered. This value can be easily calculated 

as the ratio of the sum of counted link flows to the sum of link flows corresponding to the o-d 

flows derived by the trajectory sample. As illustrated in Figure 5.1, to perform the dynamic 

traffic assignment, dynamic traffic assignment map entries are directly derived from the 



Angela Romano               123 

 

trajectory data sample according to the procedure described in Section 2.2.3. The upscaling 

factor is formally expressed by:  

𝛾 =
∑ ∑ 𝑓9¥v9:

9wx
v#
¥wx

∑ ∑ 𝑓9
����,¥v9:

9wx
v#
¥wx

 (5.13) 

A novel formulation which, by the author’s best knowledge at this time, has not been introduced 

in literature involves a time-dependent upscaling factor defined by link count section. 

Therefore, this hypothesis implies a different value of the upscaling factor per link count section 

and per each time interval, leading to the following formulation:  

𝜁9¥ =
𝑓9¥

𝑓9
����,¥ 	∀	𝜗	 ∈ 𝑇, ∀	𝑙	 ∈ 𝐿𝐶 (5.14) 

Wherein LC is the subset of links of the network equipped with a detector. 

The coefficient 𝜁9¥ is defined as the ratio of the traffic flow of link l measured at time interval t 

to the link traffic flow deriving from the loading of o-d flows by trajectory onto the network at 

the same time interval. To rescale the o-d flows derived by the trajectory sample, the coefficient 

𝜁9¥	must be referred to the set of o-d pairs: this calculation is performed by considering a matrix 

of the same dimensions of the dynamic sub-assignment map (i.e. referred to link counts only)  

deriving from the trajectory data sample (L����). The generic term of the L���� matrix 𝜆359
����,1>1 

is equal to one if the measured link flow entering the link l at time slice 𝜗 belongs to the path k 

connecting the o-d pair od whose corresponding o-d flow is generated at at the time slice q’ and 

equal to zero otherwise:  

𝜆359
����,1>1 = (

1; 		𝑖𝑓	𝑙	 ∈ 𝑘|35
0; 		𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	

 (5.15) 

Consistently multiplying element by element each upscaling factor 𝜁9¥ by the entries of the 

L���� matrix	and computing the average values for each column of the matrix, it is possible to 

obtain an upscaling factor per each o-d pair od and each time slice 𝜗:	 

𝜉35¥ =
∑ 𝜁9¥𝜆359

����,1>1v9:∙v¥
9wx

𝑛𝑙𝑐 ∙ 𝑛𝜗 	∀	𝜗	 ∈ 𝑇, ∀		𝑜𝑑	 ∈ 𝑂𝐷 
(5.16) 

Clearly, the average values are calculated omitting the L���� matrix entries equal to zero and 

all the entries such that the link flow deriving from trajectory data entering the link l at time-

slice 𝜗	is equal to zero.  

It is worth of notice that 𝜆359
����,1>1 are direct estimates of the time-depending path choice sets 

and path choice probabilities derived from the collected trajectory data sample: thus, 
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a significant bias is introduced in the upscaling method. To quantify and investigate this bias a 

set of laboratory experiments have been conducted to assess the accuracy level of direct 

estimates of assignment map entries (see Chapter 6). 

 Goodness-of-fit measures 

In order to compare the results of the analysis, the cvRMSE indicator has been analysed as the 

sampling rates changes, whose expression is introduced in Section 3. The goodness of fit 

measure is calculated comparing the upscaled o-d flows, the corresponding link count flows, 

hold-out flows, all link flows, assignment map entries and upscaling factors to the ground-truth 

values. The outcomes of the experiments are described in detail in the following Section. 

5.3 Experimental Results 

The combination of all the possible values of the project variables shown in Table 5.4 have led 

to 384 different experiments testing each scaling method presented in Section 5.2.3. Overall, 

the total number of experiment instances (considering the number of replications) was equal to 

11520. To simplify the analysis of the results, the experiments were classified by the trajectory 

sampling rate distribution and by the network sensors localization criteria; the classification 

yielded to twelve different scenarios, which are reported in the following table (Table 5.5):  
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Scenario 
Sampling Rate 

Distribution 

network sensors 

localization 

criterion 

Upscaling 

Horizon/Method 

U-MF-TH 

Uniform 

Max Flow Time-Horizon based 

U-RND-TH Random Time-Horizon based 

U-MF-TS Max Flow Time-Slice based 

U-RND-TS Random Time-Slice based 

U-MF-LC Max Flow Link-Count based 

U-RND-LC Random Link-Count based 

OD-MF-TH 

OD-based 

Max Flow Time-Horizon based 

OD-RND-TH Random Time-Horizon based 

OD-MF-TS Max Flow Time-Slice based 

OD-RND-TS Random Time-Slice based 

OD-MF-LC Max Flow Link-Count based 

OD-RND-LC Random Link-Count based 

Table 5.5 Scenarios summarizing the experimental plan of direct scaling performance analysis 

Table 5.5 is used as reference throughout the description of the results. All the conclusions were 

deduced observing the trend of cvRMSE mean values varying the sampling rate and the number 

of link counts. The cvRMSE mean values were calculated among the results deriving from the 

multiple replications of the same experiment corresponding to each scenario listed above (Table 

5.5). Results shown in this section refer to the case of large-scale network described in Section 

5.2.1.2. 

Conducting a structured and purpose oriented sampling process, thus assuming a uniform 

sampling rate distribution, the minimum sampling rate threshold above which the coefficient 

of variation of the RMSE calculated for o-d flows is less than 0.30 is equal to 35% . This value 
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is reached assuming a max flow link counts sample and a time-horizon based upscaling factor 

(see Table 5.6, Scenario U-MF-TH).  

Max Sampling 

Rate/ Scenario 
5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

U-MF-TH 0.96 0.65 0.44 0.33 0.27 0.22 0.17 0.14 0.11 0.07 0.00 

U-RND-TH 0.97 0.66 0.44 0.34 0.27 0.22 0.18 0.14 0.11 0.07 0.00 

 U-MF-TS 0.97 0.66 0.44 0.34 0.27 0.22 0.18 0.15 0.11 0.07 0 

U-RND-TS 0.97 0.66 0.44 0.34 0.27 0.22 0.18 0.15 0.11 0.07 0 

U-MF-LC 0.97 0.74 0.57 0.47 0.40 0.33 0.27 0.21 0.15 0.09 0.00 

U-RND-LC 1.17 0.98 0.80 0.68 0.58 0.48 0.39 0.30 0.20 0.12 0.00 

OD-MF-TH 1.74 1.53 1.37 1.32 1.17 1.03 0.88 0.75 0.60 0.43 0.06 

OD-RND-TH 1.50 1.30 1.18 1.09 1.03 0.93 0.80 0.71 0.59 0.42 0.07 

OD-MF-TS 1.76 1.55 1.37 1.32 1.17 1.02 0.88 0.74 0.60 0.43 0.06 

OD-RND-TS 1.56 1.34 1.24 1.13 1.05 0.94 0.82 0.71 0.59 0.41 0.06 

OD-MF-LC 1.45 1.23 1.11 1.03 0.98 0.87 0.77 0.67 0.53 0.37 0.05 

OD-RND-LC 1.39 1.27 1.14 1.09 0.99 0.88 0.76 0.69 0.54 0.36 0.04 
Table 5.6 cvRMSE mean values calculated comparing upscaled o-d flows and ground-truth values per each 

scenario and sampling rate considering 127 link counts 

Each figure in the following reports four diagrams respectively showing the trend of cvRMSE 

values on o-d flows, link count flows, hold-out flows and all link flows arranged in clockwise 

order as the sampling rate varies on a scale ranging from 0 to 1 (100%). The colour of each line 

depicted in each diagram identifies the dimension of the link counts sample (i.e. blue for 63, 

red for 127 and yellow for 254 link count sections).  

As illustrated in Figure 5.5, Figure 5.6, Figure 5.7, Figure 5.8, Figure 5.9 and Figure 5.10 the 

frequent overlapping of the cvRMSE on o-d flows trends suggests that the scenarios assuming 

a uniform distribution do not show any appreciable improvement in their outcomes augmenting 

the numerosity of the link count sample and varying link count sections locations when applying 

the time-horizon and time-slice based direct scaling methods. Conversely, using a different 

scaling factor per each link count section and per each time-slice leads to worse performances 

compared to the other scaling methods, which are likely to improve if a greater number of link 

traffic measurements is available (see Scenario U-MF-LC and Scenario U-RND-LC in Figure 

5.9 and Figure 5.10 respectively).  
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Figure 5.5 Scenario U-MF-TH: cvRMSE average values on o-d flows, link count flows, Hold-Out flows, All link 

flows (clokwise order). 
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Figure 5.6 Scenario U-RND-TH: cvRMSE average values on o-d flows, link count flows, Hold-Out flows, All 

link flows (clokwise order). 
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Figure 5.7 Scenario U-MF-TS: cvRMSE average values on o-d flows, link count flows, Hold-Out flows, All link 

flows (clokwise order). 
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Figure 5.8 Scenario U-RND-TS: cvRMSE average values on o-d flows, link count flows, Hold-Out flows, All 

link flows (clokwise order). 
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Figure 5.9 Scenario U-MF-LC: cvRMSE average values on o-d flows, link count flows, Hold-Out flows, All link 

flows (clokwise order). 

0 0.2 0.4 0.6 0.8 1
Max Sample Size 

0

0.5

1

1.5

2

2.5

3

3.5

4

cv
R

M
SE

 O
-D

 F
lo

w
s

 63
127
254

Number of Link Counts

0 0.2 0.4 0.6 0.8 1
Max Sample Size 

0
0.25

0.5
0.75

1
1.25

1.5
1.75

2
2.25

2.5
2.75

3
3.25

3.5
3.75

4

cv
R

M
SE

 L
in

k 
C

ou
nt

 F
lo

w
s

 63
127
254

Number of Link Counts

0 0.2 0.4 0.6 0.8 1
Max Sample Size

0

0.5

1

1.5

2

2.5

3

3.5

4

cv
R

M
SE

 H
ol

d-
O

ut
 F

lo
w

s

 63
127
254

Number of Link Counts

0 0.2 0.4 0.6 0.8 1
Max Sample Size 

0
0.25

0.5
0.75

1
1.25

1.5
1.75

2
2.25

2.5
2.75

3
3.25

3.5
3.75

4

cv
R

M
SE

 A
ll 

Li
nk

 F
lo

w
s

 63
127
254

Number of Link Counts



Angela Romano               132 

 

 
Figure 5.10 Scenario U-RND-LC: cvRMSE average values on o-d flows, link count flows, Hold-Out flows, All 

link flows (clokwise order). 
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Figure 5.11 Scenario OD-MF-TH: cvRMSE average values on o-d flows, link count flows, Hold-Out flows, All 

link flows (clokwise order). 
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Figure 5.12 Scenario OD-RND-TH: cvRMSE average values on o-d flows, link count flows, Hold-Out flows, All 

link flows (clokwise order). 

0 0.2 0.4 0.6 0.8 1
Max Sample Size 

0

0.5

1

1.5

2

2.5

3

cv
R

M
SE

 O
-D

 F
lo

w
s

 63
127
254

Number of Link Counts

0 0.2 0.4 0.6 0.8 1
Max Sample Size 

0
0.25

0.5
0.75

1
1.25

1.5
1.75

2

cv
R

M
SE

 L
in

k 
C

ou
nt

 F
lo

w
s

 63
127
254

Number of Link Counts

0 0.2 0.4 0.6 0.8 1
Max Sample Size

0

0.5

1

1.5

2

cv
R

M
SE

 H
ol

d-
O

ut
 F

lo
w

s

 63
127
254

Number of Link Counts

0 0.2 0.4 0.6 0.8 1
Max Sample Size 

0
0.25

0.5
0.75

1
1.25

1.5
1.75

2

cv
R

M
SE

 A
ll 

Li
nk

 F
lo

w
s

 63
127
254

Number of Link Counts



Angela Romano               135 

 

 
Figure 5.13 Scenario OD-MF-TS: cvRMSE average values on o-d flows, link count flows, Hold-Out flows, All 

link flows (clokwise order). 
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Figure 5.14 Scenario OD-RND-TS: cvRMSE average values on o-d flows, link count flows, Hold-Out flows, All 

link flows (clokwise order). 
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Figure 5.15 Scenario OD-MF-LC: cvRMSE average values on o-d flows, link count flows, Hold-Out flows, All 

link flows (clokwise order). 
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Figure 5.16 Scenario OD-RND-LC: cvRMSE average values on o-d flows, link count flows, Hold-Out flows, All 

link flows (clokwise order). 

 

As expected, observing the results in Table 5.7, a random localization of the sensors negatively 

affects the results of cvRMSE trend calculated for link count flows compared to the scenarios 
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Max 

Sampling 

Rate/ 

Scenario 

5% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

U-MF-TH 0.28 0.19 0.13 0.10 0.08 0.06 0.05 0.04 0.03 0.02 0.00 
U-RND-TH 0.59 0.40 0.27 0.21 0.17 0.13 0.11 0.09 0.07 0.05 0.00 
U-MF-TS 0.27 0.18 0.12 0.09 0.08 0.06 0.05 0.04 0.03 0.02 0.00 

U-RND-TS 0.59 0.40 0.27 0.21 0.17 0.13 0.11 0.09 0.07 0.05 0.00 
U-MF-LC 0.16 0.11 0.07 0.06 0.05 0.04 0.03 0.02 0.02 0.01 0.00 

U-RND-LC 0.35 0.25 0.18 0.14 0.11 0.10 0.08 0.06 0.05 0.03 0.00 
OD-MF-TH 0.46 0.42 0.38 0.38 0.34 0.31 0.28 0.24 0.20 0.14 0.02 

OD-RND-TH 1.00 0.85 0.78 0.73 0.68 0.61 0.50 0.44 0.35 0.24 0.04 
OD-MF-TS 0.45 0.40 0.36 0.36 0.33 0.28 0.26 0.22 0.18 0.13 0.02 

OD-RND-TS 0.93 0.80 0.71 0.66 0.62 0.55 0.46 0.40 0.32 0.22 0.02 
OD-MF-LC 0.24 0.19 0.17 0.16 0.16 0.14 0.12 0.11 0.09 0.07 0.01 

OD-RND-LC 0.43 0.34 0.30 0.29 0.27 0.25 0.20 0.19 0.16 0.10 0.01 
Table 5.7 cvRMSE mean values calculated comparing link count flows by assigning upscaled o-d flows by 

trajectory and ground-truth values per each scenario and sampling rate considering 127 link counts 

Regarding the scenarios assuming an o-d weighted sampling rate distribution, it is worth of 

notice that the cvRMSE on o-d flows corresponding to a sampling rate equal to 100% is not 

equal to zero due to the fact that the algorithm extracting trajectories from ground-truth values 

utilizes an approximation to obtain integer numbers (i.e. number of trajectories to extract per 

each o-d pair); this implies that the effective sampling rate deriving from the sampling process 

is lower compared to the value set by the user. In light of this, results are referred to the 

maximum possible sampling rate values. Comparing the scenarios assuming the different 

sampling rate distributions (uniform and o-d based), for the same value of the sampling rate 

threshold found for the uniform distribution cases, in the case of o-d weighted sampling rate 

distribution the value of the cvRMSE on o-d flows is tripled; specifically, applying the time-

horizon and time-slice based direct scaling methods the value associated to the threshold is 

greater than one (Scenarios OD-MF-TH, OD-RND-TH, OD-MF-TS, OD-RND-TS), while slightly 

better results are obtained when applying a link-count based scaling method in which cvRMSE 

on o-d flows is around one (OD-MF-LC and Scenario OD-RND-LC). Indeed, a straightforward 

conclusion can be deduced from these results: the link count based direct scaling leads to the 
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best performances when dealing with opportunistic trajectory data (see Figure 5.17 for an 

overall comparison among all the scenarios).  

 
Figure 5.17 Overall comparison among scenarios: cvRMSE mean values on o-d flows (y axis) per sampling rate 

(x axis) for all scenarios considering 127 link counts 

From an overall point of view, given the experimental results obtained from the trajectory data 

analysis described in Chapter 4, considering the average value of the penetration rate obtained 

applying Equation 4.6 (about 6%) and considering the range of trajectory sample penetration 

rate reported in literature ([0.1-10] %, FHWA 2016), it is evident that by using opportunistic 

trajectory data, direct scaling performances alone are not satisfactory to obtain reliable o-d 

flows estimates. In light of this, upscaled o-d flows need further updating methods to reach an 

acceptable level of accuracy. On the basis of this finding, an extended analysis has been carried 

out to eventually evaluate any significant improvement updating upscaled o-d flows by means 

of GLS-based estimators: indeed, in line with the experiments conducted by Yang et al. (2017) 

and Mitra et al. (2020), upscaled o-d flows can be used as prior o-d estimates and updated 

exploiting a set of link traffic measurements. As supported by numerous studies, reliability of 

the target matrix is crucial to ensure better performances of o-d updating methods, thus using a 

link-count based direct scaling method could be recommended in this phase. The complete 

analysis is reported in Chapter 7.  

Another relevant aspect which required further analysis concerned the direct estimation of 

traffic assignment map. Indeed, Chapter 6 describes an extended analysis identifying and 

quantifying the effect of the errors affecting traffic assignment map estimation on traffic 

simulation and o-d estimation. 

Sampling Rate  

cv
RM

SE
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5.4 Conclusions 

This chapter deals with the crucial issue of sample representativeness arising with o-d flows 

estimation methods specifically investigating the potential of direct scaling methods which 

provides a first estimate of o-d flows upscaling trajectory o-d flows. To understand how the 

level of sample representativeness and other characteristics of the trajectory sample affect direct 

o-d flows estimates accuracy, the performances of three direct scaling methods described in 

Section 5.2.3 are analysed by means of laboratory experiments; these methods have 

demonstrated to be an essential step for ameliorating o-d flows estimates derived by trajectory 

data. The proposed experiments, consistently with the benchmarking platform proposed by 

Antoniou et al. (2107), cover a wide experimental plan accounting for the range variability and 

variety of trajectory data sample and traffic measurements sample characteristics. Final 

considerations were deduced comparing upscaled o-d flows and related link traffic flows to the 

ground-truth values, therefore they might provide useful guidelines for researchers and 

practitioners dealing with various types of trajectory data sample and conducting o-d related 

applications. Specifically, conclusions can be referred to the two types of trajectory data 

classified according to the adopted trajectory data generation process: opportunistic data and 

purpose-oriented data (see Section 1.1.2).  

The direct scaling performance analysis revealed that, when a sample of opportunistic data is 

available, to obtain reliable o-d flows estimates further updating of the upscaled o-d flows is 

essential. Indeed, acceptable errors on o-d flows can be attained only if the sampling rate 

reaches values greater that 80% (in the best case), which is way above the penetration of 

commonly available samples. Nonetheless, as also supported by literature (see Chapter 2), the 

upscaled o-d flows may constitutes a reliable starting point for updating procedures. This 

investigation is extensively developed in Chapter 7. Furthermore, given the central role of 

dynamic traffic assignment in o-d estimation/updating procedures, a further analysis is required 

to evaluate the reliability of traffic assignment map derived by trajectory (see Chapter 6). On 

the other hand, if the data collection process can be generated in a controlled environment, 

direct scaling methods can provide satisfactory results even with (relatively) low values of the 

sampling rates.  
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 Laboratory experiments to assess the reliability of traffic 

assignment map 

This Chapter is the revised version of the article: Simonelli F., Tinessa F., Marzano V., Papola 

A. and Romano A., "Laboratory experiments to assess the reliability of traffic assignment map," 

2019 6th International Conference on Models and Technologies for Intelligent Transportation 

Systems (MT-ITS), 2019, pp. 1-9.  

6.1 Motivation and background  

The assignment models, representing the relationship between travel demand and flows on the 

network, play a key role in both transport network planning and management applications. 

Although synthetic approaches have recently proposed, e.g. based on deep learning 

(Vlahogianni et al 2014, Csikos et al. 2015, Gallo et al. 2016), and/or based on data driven 

models (Oh et al. 2015, Chen et al. 2001, Clark 2003, Innamaa 2003, van Lint et al. 2002, Tak 

et al. 2014), an explicit representation and interpretation of the travel behavior is an 

indispensable tool for transport networks design and simulation and for the implementation of 

effective traffic management operations, especially when coping with unexpected changes of 

travel demand and/or supply, typical of non-recurring situations.  

Although there are countless specifications of the assignment models for both steady-state and 

within-day dynamic contexts, their reliability and the statistical properties of their variables are 

rarely discussed in the literature. Specifically, the reliability of the assignment models depends 

upon the dispersion of the aggregate traffic measurements (e.g. the trace of the traffic 

measurements covariance matrix) and to possible distortions of the estimator itself, e.g. a direct 

and/or a model-based estimator might introduce inherent biases, while the statistical properties 

of these models refer to the statistical distribution of the assignment matrix, whose entries can 

be provided by a given assignment model and/or estimated from experimental data. Since in 

most cases information on the reliability and on the statistical properties of the assignment 

models is not available, the statistical properties of the assignment matrix are often neglected 

assuming the assignment matrix entries as deterministic variables and assuming “error-free” 

traffic measurements. Therefore, neglecting both the assignment matrix simulation error (i.e. 
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the error deriving from approximating the real phenomenon) and the error affecting traffic 

measurements implies remarkable impacts on the representation of travellers’ route choice and 

consequently on the reliability of the o-d matrix estimation process.  

As mentioned in Chapter 2, concerning the o-d estimation models based on traffic 

measurements, several assumptions have been proposed to represent the relationship between 

travel demand and traffic measurements. The diverse assumptions on the statistical properties 

of travel demand, traffic measurements and the assignment models lead to different estimators 

such as minimum information/maximum entropy (Van Zuylen and Willumsen, 1980), 

maximum likelihood (Bell, 1983), generalized least squares (GLS) (Cascetta, 1984) or 

Bayesian (Baher, 1983). The approaches proposed in steady state conditions have been 

extended to the within day dynamic context (Cascetta et al. 1993) and models suitable for online 

applications have been introduced (Ashok 1996, Ashok and Ben-Akiva 200), while other works 

deal with the use of other traffic measurements (Antoniou et al. 2006) or address algorithmic 

aspects related to the computational efficiency (Cipriani et al. 2011, Lu et al. 2015). A 

comprehensive literary review on o-d estimation methods is reported in Chapter 2.  

Another research field in which the hypothesis of error-free assignment matrix can strongly 

affect the results is strictly related to o-d matrix estimation applications and deals with the NSLP 

(Network Sensor Location Problem), which consist of defining the optimal locations of the 

sensors to collect the traffic measurements used to estimate the o-d flows (Yang and Zhou 1998, 

Gan et al. 2005, Bierlaire 2002, Zhou and List 2010). Nevertheless, even when a random error 

is introduced in the measurement equation, implying a stochastic relation between the problem 

variables and the measurements, the random term is generally related to the measurements error 

due to sensor failure, while the effect of the assignment matrix simulation error is usually 

neglected. This aspect will be addressed by means of laboratory experiments with reference to 

a hypothetic but realistic case study, to assess the reliability of the assignment map derived from 

a trajectory data based survey and/or model calibration. The study aims at identifying and 

quantifying the effect of the errors affecting traffic assignment map estimation on traffic 

simulation and o-d estimation.  

6.2 Methodology  

 Description of the experiments 

The assignment model involves a non-linear route choice model in the problem variables and a 

flow propagation model which, in the case of uncongested network or fixed travel times, can 

be expressed by means of a linear relationships between o-d flows and traffic network variables. 



Angela Romano               144 

 

Route choice models’ state of the art embraces several decades of literature since the first 

specific application of the Multinomial Logit (MNL) model for this purpose (Dial 1971). 

Successive contributions proposed the application of different random utility models to route 

choice, with the aim of obviating the limitations of the MNL, mainly due to the I.I.A 

(Independence of Irrelevant Alternatives). property and the impossibility to reproduce the 

substitution pattern across the alternatives. A well- established assumption on route choice 

correlations is due to Daganzo and Sheffi 1977, which directly relates the correlations among 

the unobservable components of the route utilities to their physical overlapping, identifying in 

the Multinomial Probit (MNP) model the perfect model for accommodating this target.  

Unfortunately, the MNP does not entail a closed-form expression of the choice probabilities, 

thus it requires burdensome simulations to be performed. In light of this, several authors 

proposed the application of other route choice models, following three main research directions. 

The former accounts for the physical overlaps among the routes by introducing a deterministic 

correction penalty factor to compute the systematic utilities of overlapping routes (see the C-

Logit (Cascetta et al. 1996, Russo and Vitetta 2003, Zhou et al. 2012) and the Path-Size Logit 

Ben-Akiva and Ramming 1998, Ramming 2001, Hoogendoorn-Lanser et al. 2015, Bovy et al. 

2009). The second one introduces different distribution shapes for the random term of the 

perceived utility. The distributions are mainly GEV type, allowing for closed-form expressions 

for choice probabilities (see the Cross Nested Logit: Vovsha and Bekhor 1998, Prashker and 

Bekhor 1998, Bekhor and Prashker 2001, Prashker and Bekhor 2004, Bekhor et al. 2008; the 

Pair Combinatorial Logit: Gliebe et al. 2009; the Network GEV: Papola and Marzano 2013) 

and for both choice probabilities and correlations (see the Combination of Nested Logit model: 

Papola 2016, Tinessa et al. 2017, Papola et al. 2018). The third research direction involves the 

application of the Mixed Logit for route choice (Bekhor et al. 2002, Frejinger and Bierlaire, 

2009) which does not avoid integral simulation, but allows for simplifying it. Recently, different 

paradigms inheriting their theoretical background from other disciplines are taking hold (see 

the recursive models derived from the dynamic programming: Fosgerau et al. 2013, Mai et al. 

2015, Mai 2016; the mental representation items e.g. Kazagli et al. 2016; the machine learning 

e.g. Yang et al. 1993 or the fuzzy logic: e.g. Lotanand and Koutsopoulos, 1993). However, their 

applications are currently a few and their properties need to be further investigated.  

Considering the non-linearity, a theoretical approach to estimate the dispersion of the route 

choice model outputs appears cumbersome; therefore in this study, this dispersion can be 

numerically evaluated by means of laboratory experiments which allow for operating in a 

controlled environment. Specifically, with reference to a real context concerning the network 
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topology, the travel demand and the flow propagation, several populations of travellers are 

generated according to diverse route choice models. Each corresponding model is in turn 

calibrated on the basis of several samples of individuals extracted from the population 

according to different sampling rate. Based on the assumed data collection technique, the 

sample may represent a set of users whose entire route is known or alternatively, a set of floating 

cars with partial location data collected along their route.  

In light of this, the sampling rate can be varied both in terms of percentage of users detected 

from the entire population and in terms of complete or partial coverage of the path followed. 

Given a sample of users travelling through the network and known their corresponding o-d pair 

and route, the assignment matrix could be inferred by considering the percentage of users in the 

sample choosing a certain route, therefore the estimation is performed without using any model 

or behavioural hypothesis. Depending upon the sampling rate, this kind of estimation which is 

named in the following "direct estimate", does not guarantee the full o-d pairs and network 

coverage, i.e. if no observation of user travelling between some o-d pair or using some link is 

collected in the sample, there is no information about the assignment submatrix related to that 

o-d pair or, in the latter case, the link flow estimate on that link is equal to zero. This aspect 

highlights the need of using a model, capable of balancing missing information in the sample. 

For each sampling rate, several draws and calibrations are carried out to numerically evaluate 

the dispersion of the route choice model parameters (i.e. those entering its underlying utility 

function) and especially of its outputs (route choice probabilities) which, combined with flow 

propagation models, provide the assignment matrix. In this context, it is also possible to 

evaluate to which extent the errors affecting the assignment model impact on link flows 

estimation, given the true travel demand and/or vice versa, on the o-d flows estimation when a 

set of link counts is available.  

Furthermore, the effect of the spatial disaggregation level of the travel demand can be 

investigated. Specifically, given a higher level of spatial aggregation (e.g. larger traffic analysis 

zone system), it is possible to define the extent to which the corresponding aggregated travel 

demand and the corresponding routes, limited to hierarchically higher links in the network, lead 

to a greater or lower level of uncertainty of the assignment matrix, which in turn affects the link 

flows estimation process and the o-d matrix estimation process based on traffic measurements.  

 Experimental Setup 

The laboratory experiments were carried assuming the steady state conditions with reference to 

the real network of the Caserta province, depicted in Figure 5.3. The experimental setup are 

described in detail in Section 5.2.1.2. To model the route choice of each traveller of the 
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population, the random utility model based on the generalized perceived route costs described 

in Section 5.2.1.2 has been adopted.  

 Direct Estimates 

Given a random sample k of users, the assignment matrix 𝑀�
Î could be estimated by considering 

the percentage of users in the sample travelling between each o-d pair s that uses the link a. 

Formally: 

𝑀Ì,�
Î =

𝑛Ì,�Î

𝑛ÌÎ
 

(6.1) 

being 𝑛ÌÎ  the number of users in the sample k travelling between the o-d pair s, while 𝑛Ì,�Î  the 

number of users included in the sample k travelling between the o-d pair s and using the link a; 

The total sampled link flows 𝑓Ì,� are obtained as: 

𝑓Ì,� = N𝑛Ì,�Î
Î

 (6.2) 

It is worth noting again that, if no users travelling between some o-d pairs are detected in the 

sample, the direct estimation of the corresponding assignment submatrix cannot be performed. 

In other words, it is assumed that a set of users is traced along their journey and, for each 

sampling rate, the set is randomly extracted regardless of the o-d pairs (each o-d pair has the 

same probability of extraction from the entire set of o-d pairs). Moreover, two sampling 

scenarios are considered: the former assumes a full link coverage of observed routes, whilst the 

latter assumes a GPS polling frequency leading to partial route coverage. 

  Models estimate 

Part of the study aims at comparing the results of the direct estimation with the outcomes of the 

MNL and the C-Logit models. Therefore, an explicit path enumeration has been performed by 

generating a choice set with the double random method.  

The estimation of the model parameters is performed through the maximum log-likelihood 

method, expressing the likelihood in terms of reproduction of observed link choice probabilities 

by the model. 

The general explicit formulation for the route choice probability is:

𝑝(𝑟) =
exp	(𝛽� ∙ 𝑡� + 𝛽: ∙ 𝑐� + 𝛽�- ∙ 𝐶𝐹�)

∑ exp	(𝛽� ∙ 𝑡� + 𝛽: ∙ 𝑐� + 𝛽�- ∙ 𝐶𝐹�)��
 

(6.3) 

 Where 𝛽�- is the coefficient of the commonality factor 𝐶𝐹�, defined according to Cascetta et 

al. 1996 as: 
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𝐶𝐹� = lnN 0
𝐶���

1𝐶� ∙ 𝐶��
2
3

��

 
(6.4) 

being 𝐶��� the sum of link costs which are common to r and r’. 

Noticeably, substituting 𝛽�- = 0 in Eq. (6.3), the basic MNL formulation can be obtained. 

The generic assignment matrix element reproduced by such models can be obtained as: 

𝑀Ì,�
Î =

𝑓�Î

𝑑Î
 

(6.5) 

being	𝑓�Îthe link flow obtained by the network loading of the demand 𝑑Î. 

6.3 Results 

In order to compare the results of the direct estimate and the route choice model, the Mean 

Absolute Percent Error (MAPE) and the Root Mean Square Error (RMSE) indicators are shown 

according to different values of the sampling rates; the indicators have been calculated with 

reference to the single 𝑀Ì,�
Î  values and to the link flows 𝑓�. Specifically, the figures illustrate 

the trend of the average value and the coefficient of variation of the MAPE and the RMSE 

indicators, computed on 100 experiments for each value of sampling rate.  
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Figure 6.1Average values of MAPE on link flows.. 

 

 
Figure 6.2 Standard Deviation of MAPE on link flows. 

 

 
Figure 6.3 Average values of MAPE on Assignment 

map entries. 

 

 
Figure 6.4 Standard Deviation of MAPE on Assignment 

map entries. 

 

As can be seen in Figure 6.1 the MAPE on the link flows reaches average values in the range 

between 0.40 to approximately 1, for values of the sampling rates lower than 10%, although it 

rapidly decreases with an upwards concavity. A sampling rate of about 30% should be reached 

to observe errors on the aggregated flows of 30% on average, while a sampling rate lower than 

20% is enough to obtain an acceptable error for the estimation of the relevant links.  

Conversely, concerning the assignment map entries, the concavity is less pronounced (the trend 

is approximately linear), and only great values of the sampling rates can guarantee an acceptable 

estimation error, as shown in Figure 6.2. Furthermore, no substantial differences are observed 

when considering only relevant links. However, the errors on the assignment map entries seem 
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to auto-compensate for low sampling rates: for example, a value of 20% of the sampling rate 

corresponds to an average value of the MAPE equal to 70% on the assignment map entries, 

while the value in terms of aggregated link flows on relevant links is smaller than 30%.  

The link flows error trend is further confirmed by the RMSE values shown in Figure 6.5. 

In this case, greater errors observed on relevant links can be easily justified by the fact that, 

unlike the MAPE, the RMSE draws upon absolute values and relevant links are generally 

interested by the major link flows on the network. However, the errors are smaller in terms of 

percentage, as shown inFigure 6.3. The standard deviation on link flows tends to decrease as 

the sampling rate increases, suggesting an asymptotical stability of the link flow estimator, 

which implies an increasing reliability of the link flows estimates as the sample dimension 

augments (Figure 6.2 and Figure 6.6).  

 
Figure 6.5 Average values of RMSE on link flows. 

 

 
Figure 6.6 Standard Deviation of RMSE on link 

flows. 

 

 
Figure 6.7 Average values of RMSE on Assignment 

map entries. 

 
Figure 6.8 Standard Deviation of RMSE on 

Assignment map entries. 
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As introduced in Section 6.2.1, an interesting analysis has been carried out evaluating  the effect 

of zonal (or o-d pairs) aggregations on direct estimates, in order to assess the extent to which 

link flows estimates and assignment entries estimated are affected by the spatial discretization 

of origins and destinations. 

To this aim, a 50-zones zoning has been defined from the initial 104-zones zoning. 

 Results are reported in Figure 6.9, showing a noticeable improvement – around 10% on average 

– in the capability of reproducing relevant link flows. In order to assess the effect of the errors 

in matrix assignment entries on o-d matrix estimation updating based on link flows 

measurements, further experiments have been carried out. Considering a set of 500 link counts 

and the assignment map derived from a direct estimation over the entire range of variability of 

the sampling rate, the a priori o-d matrix has been updated by means of a GLS estimator. 

 
Figure 6.9 Average value of the MAPE on link flows for aggregation levels. 
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Figure 6.10  percentage error of RMSE on link flows – benchmark: RMSE obtained by using  true assignment 

map in the o-d matrix updating (104 zones) 

 
Figure 6.11  percentage error of RMSE on link flows – benchmark: RMSE obtained by using  true assignment 

map in the o-d matrix updating (50 zones) 

 

Figure 6.10 shows the trend of the percentage error of RMSE on link flows computed 

considering as benchmark the value of the RMSE obtained by using the true assignment map 

in the o-d matrix updating process. The RMSE decreases up to a value of 50% of the sampling 

rate, nearly reaching the value obtainable using the true matrix assignment in the updating 

process. Interestingly, for small sampling rates, the error exceeds the RMSE value associated 

to the prior o-d matrix (e.g. less than 25%). This result proves that the o-d flows estimates 

obtained using direct estimates of the assignment map relative to small sampling rates may 

report higher errors than the prior o-d estimate, which usually is obtained by survey and/or a 

model. This consideration holds for a smaller range of the sampling rate (e.g. less than 15% ) 
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in the case of a higher level of spatial aggregation (50 zones), as illustrated in Figure 6.11, 

showing the same trend as Figure 6.10.  

Concerning the model-based estimates (MNL and C- Logit models), trends are totally different. 

Indeed, the values of MAPE and RMSE for both models do not appreciably depend upon the 

sampling rate. Conversely, when comparing their performance only on relevant links, the 

MAPE significantly decreases for both models. Regarding the assignment map, differently from 

the direct estimate case, a reduced error occurs when considering only relevant links (Figure 

6.12 and Figure 6.16); furthermore, results on the RMSE confirms this trend (Figure 6.14 and 

Figure 6.18). These outcomes can be substantially explained by the design of experimental 

setup, wherein the generation of the synthetic population and the specification of the route 

choice model utility are inherently consistent: this setup has been motivated in order to 

demonstrate that, even in ideal conditions, a model-based estimation tends to perform poorly, 

regardless of the sampling rate. In general, a comprehensive assessment of this aspect will 

require a more exhaustive set of experiments, which is left as research prospect. However, an 

interesting tendency seems to appear: a direct-based estimate requires a significant number of 

sampled trajectories, unlikely available even considering the current market penetration of 

sensing devices. In addition, for relatively low sampling rates (i.e. 0.4 – 0.5) and in optimal 

conditions (i.e. a synthetic population consistent with a simple choice context), model-based 

estimates yield comparable results with direct-based estimates, albeit both high in absolute 

terms. Furthermore, comparing the results on MAPE of direct estimate with the ones of MNL 

(Figure 6.12) and CL (Figure 6.16), to obtain a comparable error among the two procedures, 

the direct estimate involves a sampling smaller than 10%. 

Concluding, reliable estimates can be only obtained by exploiting trajectory samples with 

substantial values of the sampling rate (about 20% to have mean percentage errors of 20% on 

aggregated measurements, e.g. link flows), which by far, are still outside the usual practical 

possibilities (considering this population, a sampling rate of 20% means more than 10’000 

observed trajectories).  
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Figure 6.12  MAPE on link flows (MNL with explicit 

path enumeration). 

 
Figure 6.13 MAPE on the assignment map entries 

(MNL with explicit path enumeration). 

 
Figure 6.14 RMSE on the link flows (MNL with explicit 

path enumeration). 

 
Figure 6.15 RMSE on the assignment map entries 

(MNL with explicit path enumeration). 

 
Figure 6.16  MAPE on link flows (CL with explicit path 

enumeration). 

 
Figure 6.17 MAPE on the assignment map entries 

(CL with explicit path enumeration). 
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Figure 6.18 RMSE on link flows (CL with explicit path 

enumeration). 

 
Figure 6.19 RMSE on the assignment map entries 

(CL with explicit path enumeration). 

 

6.4 Conclusions  

This part of the work aims at evaluating the reliability of standard assignment procedures (e.g. 

model-based) and at comparing their outcomes with direct estimation performances by means 

of synthetic experiments based on a ground-truth population of more than 50’000 individuals. 

The evaluation is developed in terms of total link flows and single assignment map entries, 

using as reference values the ground-truth values of the simulated population. Results show that 

direct estimates produce an error on link flows estimates rapidly decreasing with the sampling 

rate, but less rapidly when compared to the error trend of assignment map entries estimates. 

Regarding the link flows, a sampling rate of about 20% is necessary to obtain an acceptable 

level of error. Consequently, obtaining reliable estimates by inference using trajectory data can 

be a burdensome procedure and the necessary sampling rates enabling comparable 

performances with model-based assignment procedures (MNL, CL) can be outside the usual 

practical possibilities. Concerning the tested models, their performance result stable over the 

entire range of the sampling rates values. Indeed, the models reach their maximum performance 

stability even for values ranging from 1 to 5% of sampling rates, both in terms of link flows 

and in terms of assignment map entries. The gap between direct estimation outcomes and 

assignment models outputs is not negligible in terms of assignment map, although evidence 

showed a compensation in terms of aggregated link flows. 
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Therefore, o-d flows estimation/updating problem performances can be heavily affected by 

replacing assignment models with direct estimates of the traffic assignment map, specifically 

introducing not negligible errors into the estimation process. 

Overall, an interesting tendency seems to appear: a direct-based estimate requires a significant 

number of trajectories, unlikely available even considering the current market penetration of 

sensing devices. In addition, for relatively low sampling rates and considering optimal 

conditions (i.e. a synthetic population consistent with a simple choice context), model-based 

estimates yield comparable results with direct-based estimates, although both relatively high in 

absolute terms.  
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  Testing o-d flows estimation/updating methods in 

presence of trajectory data 

This chapter aims at testing the simultaneous GLS and QD-GLS performances in presence of 

trajectory data by means of laboratory experiments, implemented on the basis of the results 

obtained from the studies described in the previous Chapters. Two key inputs of the GLS 

estimators formulations are directly estimated from a synthetic trajectory dataset: the a priori 

matrix, obtained according to the methods described in Chapter 5, and the assignment map 

whose estimation procedure is described in Chapter 6.  

 

7.1 Motivation  

Few studies from literature dealing with the o-d estimation problem have demonstrated that 

trajectory data can ameliorate o-d flows estimation/updating methods performances (Iqbal et 

al. 2014;Yang et al. 2017; Mitra et al. 2020). Currently, information derived from a sample of 

trajectory data (see Section 2.2) enriches o-d flows updating methods (e.g. GLS- estimators), 

indeed opportunities from exploiting trajectory data are mainly related to novel and alternative 

formulations of the o-d flow updating problem itself. Although a few studies on the topic are 

available, to the author’s knowledge no systematic assessment of the potential of these 

approaches has been developed yet. Furthermore, amongst methods proposed in the literature 

for o-d flows estimation/updating in presence of trajectory data, no assessment of the potential 

of the quasi-dynamic framework has been proposed, as also explicitly mentioned by Yang et 

al. (2017).  

In light of this, to investigate the potential of existing and new formulations of o-d flows 

updating methods in presence of trajectory data, synthetic experiments have been developed on 

the basis of the results and considerations deduced from precedent studies (see Section 2.2), 

from the analysis of direct scaling methods performances conducted in Chapter 5 and fromm 

the results regarding the reliability of trajectory assignment map obtained in Chapter 6. Results 

from the analysis in Chapter 5 revealed that, according to the type of trajectory data sample at 

hand, the numerosity of traffic measurements sample and their location on the network, 
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upscaled o-d flows can reach different levels of accuracy, which unfortunately in most of the 

cases are not satisfactory. Nevertheless, as also introduced by Yang et al. (2017) and Mitra et 

al. (2020), upscaled o-d flows can serve as target matrix for o-d flows updating procedures. 

Furthermore, numerous studies demonstrate the enormous advantages of substituting DTA 

models with a direct estimation of assignment map, although accepting to introduce 

considerable errors in the estimation process as demonstrated in Chapter 6. These aspects are 

extensively investigated by means of laboratory experiments conducted in this part of the work. 

7.2 Methodology  

 Description of the experiments  

The laboratory experiments test the performances of two GLS estimators enriched with 

information from a trajectory data sample generated from synthetic ground-truth data. The 

considered estimators are the simultaneous GLS estimator (Eq. 2.4) and the quasi-dynamic GLS 

estimator (Eq. 2.9) whose standard formulations are reported in the following: 

 (2.4) 

Wherein: 

• 

 

"qÎT represents the unknown demand vectors; 

• "qÎT is the corresponding optimal solutions 

• 𝒅.1 the (𝑛3 ∙ 	𝑛5)	matrix of the prior demand estimates 𝑑7351  for the time slice 𝜃; 

• 𝒇01 the (𝑛9: ∙ 1)	vector of the observed link counts 𝑓791 for the time slice 𝜃. 

• 𝑚359
1>1is the generic term of the dynamic assignment map linking time-dependent o-d 

flows with time-dependent link flows ang(i.e. it represents the fraction of o-d flow 

generated at the time slice q’ being on link l at the time slice q);  

• sqod and sql are related to the dispersion matrix of the demand and of the counted flows 

distribution respectively; 

• ql is the farthest time slice whose generated demand contributes to the link flows on q.  

The implementation of quasi-dynamic estimator requires an additional setting related to the 

quasi-dynamic interval, that is the time-period in which distribution shares are approximated to 

their average values. In these experiments the quasi-dynamic time-interval was set equal to 60 
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minutes. This value is chosen in order to balance the number of variables to be estimated and 

the number of equations (e.g. deriving from linearly independent link flow measurements), (see 

Section 2.1.3.1). 

{𝒈∗[, … , 𝒈∗], … , 𝒈∗𝒏𝜽 ; 𝒑∗[, … , 𝒑∗b, … , 𝒑∗cb}

= arg min
k[…	kc]	∈	lm
n[…ncb	∈	lo

pN N
(𝑔31 ∙ 	𝑝5|3

I(1) −	𝑑7351 )¬

𝜎351

vqr

35wx

v]

1wx

+NN
(∑ ∑ 𝑚359

1>1vqr
35wx

1
1>w1z 𝑔31

> ∙ 𝑝5|3
I|1>} −	𝑓791)¬

𝜎91

vz�

9wx

v]

1wx

� 

(2.9) 

s.t. 

𝑔x …	𝑔v] 	∈ 	𝑆k:	𝑔31 ≥ 0	∀𝑜, ∀𝜃 ∈ 𝑇	

𝑝x …𝑝vb 	∈ 	 𝑆n:	0 ≤ 𝑝5|3I ≤ 1	∀𝑝5|3I ∈ 𝒑5|3I 	∀𝜏 ∈ 𝑇		;N𝑝5|3I = 1
5

	∀𝑜, ∀𝜏 ∈ 𝑇 

Wherein: 

• 𝒈1 is the (𝑛3 ∙ 1) vector of the generated demands 𝑔31 for a given time slice 𝜃; 

• 𝒑I is the (𝑛3 ∙ 	𝑛5) matrix of the distribution probabilities 𝑝5|3I  for a given sub-period 

𝜏; 

• 𝒅.1 the (𝑛3 ∙ 	𝑛5)	matrix of the prior demand estimates 𝑑7351  for the time slice 𝜃; 

• 𝒇01 the (𝑛9: ∙ 1)	vector of the observed link counts 𝑓791 for the time slice 𝜃. 

For the scope of the analysis, both models are informed replacing two fundamental inputs:  

• the target demand flows 𝑑7351  are replaced with 𝑑735
�4,1, obtained by using one of the 

upscaling method described in Section 5.2.3; 

• the entries of the dynamic assignment map are replaced with observed values 𝑚359
����,1>1 

consisting of direct estimates calculated according to Equation 2.54. 

To develop a consistent comparison between the results of the updating process, the direct 

scaling methods used to produce the a priori o-d flows in this set of experiments refer to 

Equation 2.47 and Equation 5.16. Indeed, both methods refer to a time-slice based upscaling 

horizon. The method in Equation 2.47 consists of rescaling the trajectory o-d matrix by means 

of an upscaling factor defined per each period 𝜗 (𝛾¥) of the time horizon:  

𝛾¥ =
∑ 𝑓9¥v9:
9wx

∑ 𝑓9
����,¥v9:

9wx
					∀	𝜗	 ∈ 𝑇 

 

(2.47) 
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Therefore, an upscaling factor defined for some period 𝜗 (𝛾¥) obtained as the ratio of the total 

number of vehicles observed from link traffic counts at time-interval 𝜗 to the total number of 

tracked vehicles traversing link l at time-interval 𝜗. Considering this, he upscaled a priori o-d 

flows are equal to: 

𝑑735
�4,1 = 	 𝛾¥ ∙ 𝑑735

����,1	∀		𝑜𝑑	 ∈ 𝑂𝐷, ∀		𝜗	 ∈ 𝑇 

While, the second upscaling method used for this set of experiments involves a time-dependent 

upscaling factor by link count section which, according to the procedure described in Section 

5.2.3 leads to the following o-d time-dependent upscaling factor: 

𝜉35¥ =
∑ 𝜁9¥𝜆359

����,1>1v9:∙v¥
9wx

𝑛𝑙𝑐 ∙ 𝑛𝜗 	∀		𝑜𝑑	 ∈ 𝑂𝐷 
(5.16) 

and to the following a priori o-d flows:  

𝑑735
�4,1 = 	 𝜉35¥ ∙ 𝑑735

����,1	∀		𝑜𝑑	 ∈ 𝑂𝐷, ∀		𝜗	 ∈ 𝑇		 

The final estimates obtained from the updating procedure are compared to ground truth data to 

provide goodness of fit (GOF) indicators. The GOF measures used in this part of the thesis are 

MSE and cvRMSE, already introduced in Section 3.3. 

 Figure 7.1 illustrates the global flowchart of the entire process underlying the laboratory 

experiments conducted in this part of the work. 
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Figure 7.1 Flowchart of laboratory experiments testing GLS updating methods in presence of trajectory data. 
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 Experimental Setup 

The laboratory experiments are based on the same ground-truth testbeds setup for the 

performance analysis of direct scaling methods conducted in Chapter 5, thus the reader can 

refer to Section 5.2.1 for an extended description of synthetic ground-truth data setup.  

The experimental plan on which this new set of experiments is based, is consistent with the 

experimental settings presented in Chapter 5 (see Table 5.4), although some necessary 

adaptations were adopted to account for the high computational burden, typical of dynamic o-

d flows updating problem. The experimental settings involves the characteristics of the 

trajectory data sample and the link traffic measurements sample used to inform the updating 

model.  

Concerning the trajectory data sample, experimental settings consist of different values of the 

sample penetration level (sampling rate) and of its distribution among the element of the 

network (Uniform, o-d weighted), while regarding the link counts sample, experimental settings 

refer to the sample numerosity and the location of the counting sections on the network(Max 

Flows, Random). A detailed description and the reasons underlying the definition of each 

setting can be found in Section 5.2.2. To account for the significant computational burden, the 

experimental plan explores a smaller range of sampling rate (5% to 80%) and only one value 

for the link counts sample numerosity, which is set to the realistic value of 1% of the total 

number of links.   

Observations Experimental Settings 

Link Counts 
Max 

Flows 
Random 

Number of Link Counts 

1% 

Trajectory Uniform OD-based 
Max Sampling Rate 

5÷80 % 
Table 7.1 Experimental Settings to test GLS estimators in presence of trajectory data 

7.3 Results  

Results presented in this section are referred to the large-scale network of Caserta province 

introduced in 5.2.1.2. For the description of the results, scenarios explored in this part of the 

work are reported in the following table ( 
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Scenario 
Sampling Rate 

Distribution 

network sensors 

localization 

criterion 

Upscaling 

Horizon/Method 

U-MF-TS 

Uniform 

Max Flow Time-Slice based 

U-RND-TS Random Time-Slice based 

U-MF-LC Max Flow Link-Count based 

U-RND-LC Random Link-Count based 

OD-MF-TS 

OD-based 

Max Flow Time-Slice based 

OD-RND-TS Random Time-Slice based 

OD-MF-LC Max Flow Link-Count based 

OD-RND-LC Random Link-Count based 

Table 7.2) keeping the same reference of the scenarios as in Table 5.5. 

Scenario 
Sampling Rate 

Distribution 

network sensors 

localization 

criterion 

Upscaling 

Horizon/Method 

U-MF-TS 

Uniform 

Max Flow Time-Slice based 

U-RND-TS Random Time-Slice based 

U-MF-LC Max Flow Link-Count based 

U-RND-LC Random Link-Count based 

OD-MF-TS 

OD-based 

Max Flow Time-Slice based 

OD-RND-TS Random Time-Slice based 

OD-MF-LC Max Flow Link-Count based 

OD-RND-LC Random Link-Count based 
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Table 7.2 Explored scenarios to test updating methods in presence of trajectory data 

 Performances of simultaneous GLS estimator 

Initial values of the cvRMSE reported in Table 7.3 are calculated comparing upscaled (a priori) 

o-d flows to ground-truth values. Analogously, final values are obtained comparing updated o-

d flows to ground-truth values.  

Comparing final values to initial values of the cvRMSE on o-d flows in Table 7.3 referred to 

the scenarios involving a uniform distribution of the sampling rate and a time-slice based 

upscaling method, a slight improvement on demand flows accuracy can be noted. A similar 

trend is observed for scenarios OD-MF-LC and OD-RND-LC. This remark holds regardless of 

the link counts sample characteristics (numerosity and sensors location). Conversely, using a 

link-count based upscaling method (scenarios U-MF-LC and U-RND-LC), it is evident that no 

appreciable improvement can be obtained implementing the updating process (see also 

percentages of reduction in Table 7.4). This trend is explained by the fact that, link count 

measurements cannot further inform the updating model, indeed initial values of cvRMSE on 

link counts are already very low (see Table 7.5). 

 

Max 

Sampling 

Rate/ 

Scenario 

5% 10% 20% 30% 40% 50% 60% 70% 80% 

U-MF-TS 
I 0.96 0.68 0.44 0.34 0.28 0.22 0.18 0.15 0.11 

F 0.92 0.65 0.41 0.31 0.25 0.20 0.17 0.13 0.10 

U-RND-TS 
I 0.95 0.69 0.43 0.34 0.28 0.22 0.18 0.15 0.11 

F 0.89 0.65 0.41 0.31 0.26 0.20 0.17 0.14 0.10 

U-MF-LC 
I 0.97 0.74 0.57 0.47 0.40 0.33 0.27 0.21 0.15 

F 0.97 0.74 0.56 0.47 0.40 0.32 0.26 0.20 0.15 

U-RND-LC 
I 1.11 0.94 0.75 0.66 0.56 0.45 0.36 0.28 0.19 

F 1.11 0.95 0.75 0.65 0.56 0.45 0.36 0.28 0.19 

OD-MF-TS 
I 1.88 1.53 1.43 1.21 1.07 0.95 0.81 0.71 0.63 

F 1.78 1.41 1.28 1.07 0.95 0.83 0.70 0.60 0.51 

OD-RND-TS 
I 1.62 1.36 1.22 1.11 0.97 0.87 0.79 0.68 0.61 

F 1.53 1.26 1.09 1.01 0.89 0.78 0.71 0.60 0.57 

OD-MF-LC I 1.49 1.28 1.12 1.01 0.94 0.83 0.74 0.65 0.57 
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F 1.48 1.22 1.05 0.92 0.87 0.76 0.67 0.57 0.49 

OD-RND-LC 
I 1.45 1.27 1.21 1.03 0.96 0.86 0.73 0.67 0.58 

F 1.45 1.26 1.19 1.01 0.94 0.83 0.71 0.65 0.57 
Table 7.3 Inital (I) and final (F) values of cvRMSE on o-d flows updated with the simultaneous GLS from all the 

scenarios for each sampling rate 

Max 

Sampling 

Rate/ 

Scenario 

5% 10% 20% 30% 40% 50% 60% 70% 80% 

U-MF-TS -4.7% -5.2% -6.5% -7.7% -8.1% -7.3% -7.2% -8.3% -7.6% 

U-RND-TS -6.3% -6.3% -6.8% -7.7% -7.7% -7.5% -7.1% -7.2% -7.4% 
U-MF-LC -0.2% 0.0% -1.2% -1.3% -1.4% -1.1% -1.2% -1.6% -1.7% 

U- RND-LC 0.3% 0.4% -0.4% -0.2% -0.4% -0.3% -0.3% -0.3% -0.3% 

OD-MF-TS -5.5% -7.7% -10.3% -11.4% -10.7% -12.0% -13.7% -15.2% -18.6% 
OD-RND-TS -5.5% -7.0% -10.2% -9.1% -9.1% -10.5% -10.2% -11.4% -6.8% 

OD-MF-LC -11.6% -14.9% -22.9% -16.8% -23.2% -27.2% -22.5% -24.6% -14.9% 

OD-RND-LC 0.3% -0.9% -1.6% -2.2% -2.2% -3.7% -2.8% -3.1% -2.0% 

Table 7.4 percentages of reduction of cvRMSE values after updating o-d flows  

Max Sampling 

Rate/ Scenario 
5% 10% 20% 30% 40% 50% 60% 70% 80% 

U-MF-TS 
I 0.29 0.19 0.12 0.10 0.08 0.07 0.05 0.04 0.03 

F 0.08 0.05 0.03 0.02 0.02 0.01 0.01 0.01 0.01 

U-RND-TS 
I 0.58 0.39 0.26 0.20 0.16 0.13 0.11 0.09 0.06 

F 0.26 0.17 0.10 0.07 0.06 0.05 0.04 0.03 0.02 

U-MF-LC 
I 0.15 0.11 0.07 0.06 0.05 0.04 0.03 0.03 0.02 

F 0.07 0.05 0.03 0.02 0.02 0.01 0.01 0.01 0.01 

U-RND-LC 
I 0.30 0.22 0.14 0.11 0.09 0.08 0.06 0.05 0.04 

F 0.21 0.13 0.07 0.05 0.04 0.04 0.03 0.02 0.02 

OD-MF-TS 
I 0.47 0.40 0.40 0.30 0.27 0.27 0.23 0.22 0.20 

F 0.13 0.08 0.06 0.04 0.04 0.03 0.03 0.03 0.02 

OD-RND-TS 
I 0.93 0.75 0.67 0.60 0.56 0.54 0.44 0.39 0.30 

F 0.40 0.27 0.24 0.17 0.16 0.14 0.12 0.11 0.08 

OD-MF-LC 
I 0.24 0.18 0.17 0.17 0.13 0.14 0.12 0.11 0.11 

F 0.12 0.07 0.05 0.04 0.04 0.03 0.03 0.03 0.02 
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OD-RND-LC 
I 0.44 0.33 0.31 0.24 0.26 0.25 0.19 0.18 0.14 

F 0.31 0.19 0.15 0.10 0.10 0.10 0.07 0.06 0.04 
Table 7.5 Inital (I) and final (F) values of cvRMSE on link count flows  updated with the simultaneous GLS from 

all the scenarios for each sampling rate 

As illustrated in Figure 7.2, results from the two different distribution of the sampling rate can 

be clearly distinguished: o-d based distribution of the sampling rate leads to higher values of 

the cvRMSE with respect to the uniform case. In the former group of experiments, fixing a 

certain value of the sampling rate, best performances of the simultaneous GLS are obtained 

when a max-flow criterion and a link-count based upscaling method are used to produce the a 

priori o-d flows (see the blue line denoting OD-MF-LC scenario), while for the latter group, 

the cvRMSE trends from scenarios U-MF-TS and U-RND-TS basically overlap, suggesting that 

concerning a uniform distribution of the sampling rate, a time-slice based upscaling method 

yields to the best performance of the estimator. 

 
Figure 7.2 cvRMSE on o-f flows per sampling rate obtained applicating the simultaneous GLS estimator - all 

scenarios 

 Performances of quasi-dynamic GLS estimator  

Considering the scenarios involving a uniform distribution of the sampling rate and for 

sampling rates greater than 30%, the outcomes of the QD-GLS estimator did not bring any 

further improvement of the level of accuracy of demand flows, instead the model seems to 

overfit the measurements data. This consideration holds regardless of the characteristics of 

trajectory data sample and link count sample. While, for the scenarios involving a different 

probability of extraction per each o-d pair (o-d based), a slight improvement can be observed 

(SEE Figure 7.3). It is worth of notice that, results of laboratory experiments testing the 
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reliability of assignment map derived from trajectory data have demonstrated that using such 

estimates can introduce a significant error into the estimation process. This could be the main 

explanation of the poor performances of tested methods, despite high levels of sampling rates. 

Nevertheless, as shown in Figure 7.4 and Figure 7.5, QD-GLS do not outperform the 

simultaneous estimator. This result must be evaluated accounting for the intrinsic error of 

ground-truth demand values, which on purpose has been set according to the empirical results 

obtained analysing real trajectory data to investigate the applicability of quasi-dynamic 

assumption in urban context (see Section 4.6). Therefore, conducting this analysis on closed 

networks such as highway networks may lead to very different results.  
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Figure 7.3 performances of the QDGLS estimator: cvRMSE trends per sampling rate 

 
Figure 7.4 comparison between simultaneous and QD-GLS best performances for scenarios involving a 

uniform sampling rate  distribution. 
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Figure 7.5 comparison between simultaneous and QD-GLS best scenarios performances for  scenarios 

involving a o-d weighted sampling rate  distribution. 

7.4 Conclusions 

This part of the work aims at assessing the effective improvement which various types of 

trajectory data can provide when informing two types of GLS estimation/updating models: the 

simultaneous GLS estimator and the quasi-dynamic GLS estimator. The models are enriched  

by introducing two fundamental adjustments in their formulations given the presence of the 

trajectory data sample: the a priori demand flows are obtained applying one of the direct scaling 

methods tested in Chapter 5 and the DTA model is substituted by introducing the direct 

estimates of the dynamic assignment map entries according to the procedure illustrated in 

Section 6.2.3. 

The results of the systematic analysis confirmed some of the outcomes already present in 

literature. Evidence showed that regardless of the trajectory data sample, deriving a first 

estimate of the demand flows rescaling the observed o-d flows applying a direct scaling 

methods, little improvements can be achieved performing a further updating procedure by 

means of GLS estimators.  
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 Conclusions  

8.1 Research questions and main findings 

The purpose of this thesis was to develop a deep understanding of the opportunities and the 

limitations of trajectory data to assess its potential for ameliorating the o-d flows 

estimation/updating problem and for conducting o-d related analysis. The proposed work 

involved both real trajectory data analysis and laboratory experiments based on synthetic data 

to investigate the implications of the trajectory data sample distinctive features (e.g. sample 

representativeness and bias) on demand flows accuracy. The trajectory data analysis was 

developed analysing a sample provided by a private company namely INRIX, one of the leading 

providers of mobility data. The dataset consisted of 50.933.281 GPS data points spanning over 

31 days of October 2017. The corresponding 2.328.471 trajectories were collected from 

101.090 mobile devices, private and fleet vehicles crossing the geographic area approximately 

matching the entire city of Napoli and some of the surrounding suburb areas. The analysed 

trajectory dataset allowed to derive a first crude estimation of time-dependent o-d matrices 

representing the collected trips taking place between two specific locations (traffic analysis 

zones) at a certain time of a day. To investigate the sample representativeness, the penetration 

rate and its distribution among origins, destinations and o-d pairs were evaluated. Since the true 

o-d flows are unknown, the estimation of the penetration level and its distribution is not 

straightforward, thus only an inference based on census data (e.g. population, workforce, 

employees by traffic analysis zone, commuter trips) can be performed. While, when census data 

is unavailable, the analysis could be performed using as benchmark data a reliable historical o-

d matrix, usually provided from previous studies. 

Evidence from the trajectory data analysis suggested a strong variability of the sampling rate 

defined by o-d pair for both regional and urban level, meaning that for the given sample, the 

penetration rate distribution is not uniform among o-d pairs, thus the probability of extracting 

a trip from the population (total number of actual trips) varies according to the considered o-d 

pair. The experimental results have been utilized as a starting point to deepen the analysis of 

the implications of penetration level and distribution on demand flows accuracy when applying 

o-d flows estimation methods and inherent scaling techniques. Upscaling the observed o-d 
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flows by applying direct scaling methods demonstrated to be an essential step for ameliorating 

o-d flows estimates derived by trajectory data. Considering this, the performances of three 

direct scaling methods have been analysed by means of laboratory experiments based on a 

synthetic data case study. The synthetic ground truth data setup consisted in developing a true 

testbed in terms of o-d flows, network characteristics and any other relevant parameter related 

to demand and supply, including an assignment model performing the interaction between 

demand and supply which allowed to calculate the true link flows and traffic flows 

characteristics and to ensure mutual consistency between o-d flows and traffic flow 

characteristics throughout the entire estimation process. The laboratory experiments covered a 

wide experimental plan accounting for the range variability and variety of trajectory data 

sample and traffic measurements sample characteristics leading to a total number of experiment 

instances equal to 11520. Indeed, the experiments were conducted considering the entire range 

of penetration level variability (1-100%) and distribution (uniform, o-d based) and different 

levels of link count sample numerosity (0.5,1,2%). Final considerations were deduced 

comparing upscaled/updated o-d flows and related link traffic flows to the ground-truth values, 

therefore results might provide useful guidelines for researchers and practitioners dealing with 

various types of trajectory data sample and conducting o-d related applications. Specifically, 

conclusions are referred to the two types of trajectory data classified according to the adopted 

trajectory data generation process: opportunistic data and purpose-oriented data (see Section 

1.1.2 for more details).  

Final considerations were deduced comparing upscaled/updated o-d flows and related link 

traffic flows to the ground-truth values, therefore results might provide useful guidelines for 

researchers and practitioners dealing with various types of trajectory data sample and 

conducting o-d related applications. 

If a purpose oriented sampling can be adopted, thus a sample of trajectory data can be generated 

according to a well-structured sampling process involving a uniform distribution of the 

sampling rate, it is necessary to identify the level of representativeness (sampling rate) such 

that the desired accuracy level on demand flows can be achieved. Results deriving from 

scenarios assuming a uniform sampling rate distribution showed that the minimum sampling 

rate threshold above which the coefficient of variation of the RMSE calculated for o-d flows is 

less than 0.30 is equal to 35%. In such case, the issue of representativeness associated with 

trajectory data can be potentially corrected by rescaling observed o-d flows by means of direct 

scaling methods.  Specifically, best performances are reached using a time-slice based direct 

scaling method as in Equation 2.47.  
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Conversely, if an opportunistically collected trajectory data sample is at hand, a preliminary 

processing of the sample should be implemented to identify the appropriate level of spatial 

aggregation to derive observed o-d flows and other information such as assignment map entries 

and path choice probabilities, such that a proper investigation on the characteristics of the 

sample can be developed. Subsequently, it is necessary to derive a first estimate of the level of 

representativeness comparing observed o-d flows with census/historical data and evaluate its 

distribution among the element of network (e.g. o-d pairs). In this case, the analysis of direct 

scaling methods demonstrated that population bias associated with trajectory data can be 

partially addressed by rescaling observed o-d flows with traffic counts assuming different 

scaling factors per o-d pairs. In absolute term, demand accuracy level remains still 

unsatisfactory for the entire range of sampling rate variability. This result is particularly relevant 

considering the range of variability of trajectory data samples available so far: concerning the 

range of available penetration level of such samples (e.g. 1-10%, FHWA), the coefficient of 

variation of RMSE calculated comparing upscaled demand flows to ground truth values is still 

higher than 1.5 for all the scenarios assuming an o-d based distribution. Overall, best 

performances in these scenarios were reached adopting a link-count based direct scaling 

methods, introduced in this thesis in Equation 5.16. Nevertheless, the upscaled o-d flows may 

be integrated as prior estimate in existing o-d updating model formulations. Indeed, the last part 

of this research consisted in another set of 36 laboratory experiments analysing the effective 

improvement which various types of trajectory data can provide when informing two types of 

GLS estimation/updating models: the simultaneous GLS estimator and the quasi-dynamic GLS 

estimator. Both models are enriched by introducing two fundamental adjustments in their 

formulations given the presence of the trajectory data sample: the a priori demand flows are 

obtained applying a direct scaling method and the DTA model is substituted by introducing the 

direct estimates of the dynamic assignment map entries. The results of the systematic analysis 

confirmed some of the outcomes already present in literature. Evidence showed that regardless 

of the trajectory data sample, deriving a first estimate of the demand flows by rescaling the 

observed o-d flows applying a direct scaling methods, little improvements can be achieved 

performing a further updating procedure by means of GLS estimators. Better improvements are 

obtained  for the scenarios assuming a o-d based penetration rate distribution, in which best 

performance were achieved adopting a link-count based direct scaling methods to obtain the a-

priori o-d matrix (see Equations 5.14 to 5.16). 

 Given the central role of dynamic traffic assignment in o-d estimation/updating procedures, a 

further analysis was required to evaluate the reliability of standard assignment procedures (e.g. 
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model-based) and to compare their outcomes with direct estimation performances by means of 

synthetic experiments based on a ground-truth population. The evaluation was developed in 

terms of total link flows and single assignment map entries, using as reference values the 

ground-truth values of the simulated population. Results show that direct estimates produce an 

error on link flows estimates rapidly decreasing with the sampling rate, but less rapidly when 

compared to the error trend of assignment map entries estimates. In addition, for relatively low 

sampling rates and considering optimal conditions (i.e. a synthetic population consistent with a 

simple choice context), model-based estimates yield comparable results with direct-based 

estimates, although both relatively high in absolute terms. Therefore, replacing assignment 

models with direct estimation of assignment map entries can avoid the introduction of 

behavioural assumptions, although, using such estimates can introduce a significant error into 

the estimation process. This could be the main explanation of the poor performances of tested 

methods, despite high levels of sampling rates.  

To support the implementation of the quasi-dynamic estimator in presence of trajectory data 

and the synthetic case study setup, two preliminary studies have been conducted: the former 

provides insights on how to implement the quasi-dynamic o-d estimation framework when 

dealing with congested networks and the latter is dedicated to the assessment of quasi-dynamic 

evolution of the demand in urban context. Results from the former study have demonstrated 

that quasi-dynamic framework can still provide robust solutions of the problem when 

considering highly congested network especially using derivative-free algorithms to solve the 

optimization problem. From the latter study assessing its applicability in the urban context, 

experimental evidence suggests that the quasi-dynamic o-d matrix cannot be used as an 

adequate approximation of the trajectory o-d matrix. However, this result allowed to define the 

value of the intrinsic error associated to the ground-truth o-d flows of the large-scale network 

test site and thus to develop a realistic case study.  

Future research on this topic could further validate these results generating more than one 

synthetic population to investigate on the implications of different demand structures and levels 

of the intrinsic error. Furthermore, experiment should be repeated including congestion 

phenomena into the analysis to evaluate its impact on the results, indeed all the experiments 

carried out in this work consider congestion phenomena as negligible, thus the relationship 

between demand flows and link flows is represented by a fixed assignment map which, in highly 

congested networks, cannot reproduce the actual evolution of traffic flow. In addition, regarding 

the direct scaling methods, improving the classification of scaling factor defined per each o-d 

pair may yield better results and a partition of the set of link counts can be defined, such that 
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two independent set of measurements data can be used separately in two phases, respectively 

for direct scaling and for further updating procedures.  
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