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Abstract 

Systems biology allows analytical investigation of intracellular dynamics, 
analyzing complex processes and taking into account the interactions among 
the various subsystems. In this study, biochemical models describing the 
behavior of regulatory molecular networks were created and interfaced with a 
simulation system able to reproduce motility and proliferation of eukaryotic 
cell cultures. The primary focus was on MAPK cascades, particularly Erk1/2 
activation by growth factors and mitogens such as EGF through tyrosine kinase 
receptors (RTKs) as Egfr, which represent a fundamental signal transduction 
and regulatory network affecting many cellular processes, including 
proliferation, motility, differentiation and survival. Erk1/2 predicted levels 
were related to reactions representing the progression of the cell cycle and used 
to modulate cell growth in a cell simulator. 
The biochemical model was built starting from literature data and a database of 
estimated protein concentrations representative of different cell types and 
experimental conditions and may be run for prolonged time frames and in 
various experimental conditions, including a vast array of cell lines. A software 
tool developed on purpose is able to run the model and interface with the cell 
simulator.  
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1. Background 

1.1 Systems biology's approach to the study of molecular pathways 

1.1.1 Systems Biology 
 Systems biology has evolved as a scientific discipline in which 
computational and mathematical modeling is used to study biological systems 
(Vidal 2009). This discipline focuses the attention on the study of the complex 
metabolic pathways of an organism, or the networks that govern intracellular 
signaling. It studies molecular interactions at different levels, enabling the 
identification and description of the subcellular machinery that makes 
functional operational units in cells, tissues and organ systems resulting in 
physiological behaviors (Ideker 2001, Kirschner 2005) using both experimental 
and computational frameworks to answer biological questions. Omics 
technology provides a platform to extract knowledge using bioinformatics, 
statistical methods and network analysis. The dynamical models of certain 
components in these networks must be verified by low-throughput, high-
fidelity and single cell experiments that provide new strategies to improve and 
optimize the dynamical models. 
 Unlike the classical molecular biology, characterized by a qualitative 
scientific approach, aimed at verifying the validity of a (verbal) model through 
the formulation and verification of hypotheses, and studying the complexity of 
biological phenomena analyzing subset question, often through in vitro 
experiments, systems biology, prefers a holistic analytical approach, studying 
the phenomenon in its globality, and prefers to involve quantitative analysis 
(Kell 2004). Methodologies can be applied either in a “bottom-up approach”, 
that puts small functional units together to make a system or in a “top-down 
approach”, that starts from the global view of the system and then tries to study 
smaller subsystems (Batchelor  2009, Purvis 2013). 
 Despite the different approaches, systems biology is highly dependent 
on the extensive biological information that has been acquired through 
molecular biology, and systems biology studies often require confirmation of 
their results and hypotheses using a reductionist approach. There are two 
complementary different approaches to systems biology (Jewett 2008). In the 
first, different types of high-throughput generated data, often referred to as 
omics data, are analyzed in an integrative way; it is useful for mapping cellular 
functions at the genome scale. In the second, detailed models for specific 
processes, such as enzymatic reactions, are assembled into a model describing 
the system being studied, enabling detailed timescale resolution of the impact 
of individual components on overall system properties. Both approaches allow 
the identification of how the interactions between the many different cellular 
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components give rise to biological functions that cannot be identified through a 
reductionist approach.  
 The first systems biology approaches date back to the 1950s and 1960s, 
with Denis Noble’s computer model describing the function of the heart 
pacemaker being a landmark study (Noble 1960). In the late 1960s a research 
driven by Arnold Fredrickson and Henry Tsuchiya at the University of 
Minnesota, aimed to improve industrial fermentation process designs, 
developed an extensive modeling framework for cellular growth models 
(Fredrickson 1970). In the 1970s biochemists and biophysicists had the idea of 
exploiting mathematical modeling to study complex biological processes, such 
as signaling pathways and metabolic pathways. In 1974 Reinhart Heinrich at 
Humboldt University and Tom Rapoport described a model that allowed the 
quantification of flux control in metabolic pathways (Heinrich 1974). A few 
months earlier, Kacser and her colleagues published a similar mathematical 
model with the same objective (Kacser  1973), and these two frameworks have 
now been combined into what is referred to as metabolic control analysis 
(MCA). In the following years the MCA was developed significantly, in 
particular by Hans Westerhoff and Douglas Kell (Kell 1989), and today it 
represents a valid tool useful for the study of cellular processes and for 
classroom illustration of how fluxes are controlled in metabolic pathways. 
 One of the most important keys needed to develop a successful model is 
to have high quality experimental data. In recent decades, our knowledge of the 
foundation of living organisms in terms of various components of cells, tissues 
and organ systems has been greatly expanded due to advances in technologies 
for high-throughput measurements such as genomics, transcriptomics, 
proteomics and metabolomics. In genetics and genomics, entire genomes of 
many organisms have been sequenced and the gene expression profiles 
comprehensively mapped. In biochemistry, mass spectrometry-based protein 
surveys have provided extensive lists of proteins and protein complexes, while 
molecular and cell biology have provided information on how proteins are 
organized to orchestrate the functions of subcellular systems such as cell 
organelles and cellular machinery components. The availability of such 
multiscale information has catalyzed the formation of systems biology as a 
discipline in biomedical sciences (Tavassoly 2018). The development of this 
knowledge led Ideker and coworkers to analyze these in the context of 
annotated biological networks, as illustrated in a study of the galactose 
regulation of yeast (Ideker 2001). This led to the coining of the term "systems 
biology" by Leroy Hood (Ideker 2001) and Hiroaki Kitano (Kitano 2002), who 
independently established the first institutes for systems biology in Seattle and 
Tokyo, respectively, in 2000. 
 Today, systems biology finds wide application in basic studies of 

7



biology, engineering cells for the production of valuable chemicals, and 
understanding the molecular mechanisms underlying complex human diseases 
(Nielsen 2017). As an example, systems biology is used to study the evolution 
of a cancer cell from a normal cell. This involves interactions among molecular 
components at the cell level. At the same time, systems biology can be used to 
integrate the interactions among cancer cells and the evolution of tumors. It is 
also capable of describing the interaction of different tissues such as blood 
vessels, tumors and the immune system to shed light on the complex 
phenomena of cancer at the organ level (Anderson 1998, Kreeger 2010).  

1.1.2 Mathematical Modelling 
 The center of systems biology is mathematical modelling, by which a 
biological system can be translated into a mathematical model for subsequent 
computer simulation and analysis. In order to be useful to biological questions, 
such models must accurately reproduce the biological system under study, and 
be able to make predictions about its behavior. Thus, while the basis of a model 
is the topological representation of its components and their links, it is the 
description of the biological system’s dynamic behavior which equips the 
model with predictive power (Tomita 1999). However, it is important to 
underline that a model is not a real and exact representation of the biological 
system, but only a simplified description that could assist the analysis. A 
mathematical model can be used to generate new insights, make testable 
predictions, identify gaps in our biochemical knowledge, test conditions that 
may be difficult to obtain in the laboratory and help to identify what is right 
and wrong with our hypotheses (Orton 2005).  
 It is now extremely clear and ascertained that the eukaryotic signal 
transduction pathways are extremely complex. Pathways that were once 
described as simple and linear are now described in an extremely branched 
way, and modules once conceived as autonomous are known to crosstalk 
(Schlessinger 2000). This led to ideating new approaches and methodologies to 
study these complex communication networks, and an exhaustive answer came 
precisely from the use of quantitative mathematical models, to better 
understand the behavior of cellular signaling networks. 
Analyzing the models of biological systems available in literature so far, a 
possible common workflow could be hypothesized and described as composed 
of five main steps (Orton 2005): 

1. The first step involves the selection of the biological system to model 
(e.g., the MAPK cascade), especially identifying the biological 
question the model aims to answer (e.g., which concentration of EGF is 
sufficient to activate Erk1/2?). 
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2. The second step involves the definition of the model. Essentially, this 
involves drawing a detailed topological chart of the system that shows 
all the species (e.g., proteins) involved, what reactions they can 
participate in and where. Each reaction is defined according to its 
kinetic nature. It is also necessary to define the kinetic parameters 
(such as rate constants and initial species concentrations) characteristic 
of the reaction. The search for detailed kinetic parameters takes place 
through the consultation of the scientific literature and numerous 
databases available today, while to estimate the missing kinetic 
parameters it may be necessary to resort to laboratory experiments or 
computational techniques (Mendes 1998). It is important to keep in 
mind that many biological processes are very complex and not yet well 
understood. Therefore, defining a model often involves making 
simplifying assumptions that reduce complex and poorly understood 
processes into simpler ones that can still represent the biological 
processes well enough to explain the observed data. 

3. The next step involves translating these kinetic reactions into a set of 
differential equations that describe how the concentration of each 
species changes over time. This set of differential equations is then 
simulated (or solved) over a period of time. Several software tools are 
now available that allow the generation and simulation of models based 
on differential equations. 

4. The simulation typically returns a table of data or a curve showing how 
each species’ concentration changes over time. The results obtained 
must now be validated against other available experimental data. If the 
model results agree with the other experimental data, the model itself 
can be further analyzed and expanded, otherwise it must be revised. 
This is a ‘debugging’ loop involving model definition, simulation and 
validation, where the model is refined in order to obtain a behavior 
which conforms with experimental observations. This validation step is 
extremely important in order to generate a model that produces reliable 
predictions. 

5. After the model has been validated, it can be used, and the simulation 
results interpreted. What is commonly performed is a sensitivity 
analysis, in which the systems’ reactions to the variation of some 
crucial parameters are evaluated. For example, it is evaluated how the 
peak height or the duration of the phosphorylated Erk signal or its 
nuclear at translocation at different activator pathway concentrations. 
Sensitivity analysis can also be used to assess how robust the system is. 
A robust system can absorb fairly large disturbances and continue to 
perform reasonably well. If a system variable has low sensitivity with 
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respect to a parameter, it is robust to alterations in that parameter. The 
structural strength of a model can also be analyzed by monitoring how 
it behaves when parts of it are removed. This can be useful, because 
there is often redundancy in biological systems where multiple 
pathways are available for the production or activation of a certain 
protein. 

1.1.3 Ordinary differential equations (ODEs) 
 A biochemical process has a dynamic that can be studied by translating 
its components (nodes and edges) into a set of ordinary differential equations 
(ODEs). The technical definition of a differential equation is an equation 
involving one or more unknown functions and their derivatives. For example, a 
differential equation describes how a property of interest, such as the 
concentration of a substrate, changes over time; this is usually expressed by 
describing how the rate of change of the concentration is related to the 
concentration at that moment. 
Simulation uses numerical methods to solve the differential equations and 
approximate the change in concentration of all the species in a system over 
time. There are many advanced methods of numerical integration, such as the 
Euler’s method, Runge-Kutta, Rosenbrock and Richardson extrapolation. After 
a first step, which solve the differential equation, the chosen method is then 
repeated for another step size using the result from the previous step as the new 
starting point. Differential equations can easily be used to model large 
biological systems involving many more species and reactions, as well as more 
enzyme reactions.  
 Chemical reactions can be classified as irreversible, when the 
equilibrium is completely displaced either on the part of the reactants or of the 
products, and as reversible, where instead the reactants and the products 
coexist in chemical equilibrium. Almost all chemical reactions are reversible. 
This means that reagents can be obtained from the products and vice versa. 
This situation is called dynamic equilibrium: it can be considered reached 
when the direct and reverse reaction rates are equal. It is called "dynamic" 
because, even when at equilibrium, direct and reverse reactions continue to 
occur, although with no change of the species concentrations. Since at 
equilibrium the concentrations of the components are constant, their ratio will 
also be constant; this means that if the concentration of one specie is changed, 
the others’ automatically change to conserve the ratio. This mathematical 
constraint is expressed by the law of mass action. The following reversible 
reaction 

        A ⇌ B
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describes the conversion of A into B. It is a simple, non-catalyzed reaction, 
which can be described by the kinetics of mass action. The reaction rate 
constant k represent the specific speed of the reaction, measured at 1 M reagent 
concentration. The reaction proceeds at speed v=k[A]. In this case the reaction 
speed depends by the concentration of A: the higher the value of [A], the 
higher the speed, and therefore the faster A will be consumed, and the faster B 
will be produced. This type of reaction is also referred to as a first order 
reaction, and k is measured in s-1. In a second order reaction, where two equal 
or different species react to form a product, on the other hand, the reaction rate 
is directly proportional to the product of the concentrations of the two reacting 
substrates, or to the square of the concentration of only one of the reactants. In 
this case k is measured in L mol-1 s-1.  
 In the biochemical model, the mass action kinetics can be used to 
model reactions such as those which physiologically inactivate species, 
proteins degradation/synthesis, or complex/decomplex reactions. Most other 
reactions need to be catalyzed to take place at interesting rates. Enzymes are 
proteins that convert specific reactants into products while remaining basically 
unchanged. A classical scheme for an enzyme catalysed reaction: 

     

For this kind of reaction, the rate of production depends nonlinearly on the 
concentration of the substrate. This reaction can be described by the Michaelis–
Menten kinetics, one of the best-known models of enzyme kinetics (Srinivasan 
2021). This model relates the concentration of substrate to the reaction rate.  

     

It introduces a saturating behaviour in the dynamics, plotting the rate (extracted 
from initial velocity phase) as a function of substrate concentration and fitting 
that to a single-site binding hyperbola. The Vmax is reached only when all the 
enzyme present in solution is bound to the substrate; it depends on the 
concentration of the enzyme in solution according to the relationship Vmax = 
kcat [E]T, where kcat is the catalytic constant, or turnover number, an intrinsic 
kinetic property of the enzyme that expresses the number of substrate 
molecules converted into product by an enzyme molecule in the unit of time, 
when the enzyme is saturated. The Michaelis-Menten constant, KM, represents 
the substrate concentration necessary for the reaction to have a speed equal to 
half the maximum speed (or semi-maximal speed). Application of this model to 

E + S ⇌ ES ⟶ E + P

v =
d[P ]

dt
= Vmax

[S ]
KM + [S ]
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several turnover enzymes reactions requires several approximations and 
assumptions (Cleland 1967, Segel 2013): 

1. the enzyme is a catalyst and is not consumed in the reaction, and 
rapidly reacts with the substrate to form the enzyme-substrate complex; 

2. only a single substrate and a single enzyme-substrate complex are 
involved, and the enzyme-substrate complex breaks down directly to 
form free enzyme and product; 

3. enzyme, substrate and enzyme-substrate complex are at equilibrium, 
that is, the rate at which ES dissociates to E and S is much faster than 
the rate at which ES breaks down to form E+P. 

In the field of biochemical modelling, the Michaelis-Menten equation helps to 
model reactions such as phosphorylation/dephosphorylation reactions. 
 Many studies on the kinetics of enzymes have been made, and many of 
the collected informations are collected in the BRENDA database (http://
www.brenda-enzymes.org). BRENDA (Braunschweiger Enzymdatenbank) is 
the most important database that collects information on enzymes, such as: 

1. the reactions they catalyze, their specificity, structure, thermal stability, 
optimal catalysis conditions in terms of pH; 

2. the organisms from which the enzymes were isolated and purified, the 
specific activity, the kM, inhibitors, all the bibliographic references 
relating to the data presented and links to other databases. 

An important part of BRENDA is represented by more than 110,000 enzyme 
ligands entries. These include not only metabolites of primary metabolism, co-
substrates or cofactors but also enzyme inhibitors or metal ions. Each entry 
includes its chemical structure. The database is maintained by the Institute of 
Biochemistry of the University of Cologne. The data it contains are extracted 
directly from the scientific literature; the database is handled manually, 
although the informations are extracted by the means of computer tools. 

1.1.4 The Systems Biology Markup Language (SBML)

 When modeling a system composed of several biochemical species, 
each represented by a differential equation, the ODE based methods require the 
simultaneous solving of all the differential equations representing the system.  
Software implementing these methods generally have a graphical interface that 
allows the user to enter the biochemical reactions and kinetic constants, which 
are used by the instrument to automatically generate and simulate the model. In 
certain cases, advanced features allowing to view and analyze the models and 
visualize the simulation results are available. Over the years, various 
simulation environments have been created, such as Gepasi, E-CELL, 
MATLAB, COPASI, NEURON, and STEPS; each of them use its own 
template, so it is very difficult to reuse the same template in different 
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environment. For a model to be effective, it must ensure some degree of 
interoperability, so that it can run in different execution environments. For this 
purpose, it was necessary to achieve a standardization of the different model 
descriptions available. To solve this problem, the Software Platforms for 
Systems Biology forum was created, which included several representatives 
from the teams developing the software packages.  
 The forum decided at the first meeting to develop a simple, XML-based 
language for representing and exchanging models between simulation/analysis 
tools: the Systems Biology Markup Language (SBML) (Hucka 2003). An XML 
(eXtensible Markup Language) format was chosen as it was increasingly 
widespread and accepted as a standard data language for bioinformatics 
(Achard 2001). The base definition, SBML Level 1, is the result of analyzing 
common features in representation languages used by several simulators. 
Subsequent releases of SMBL have added several features and structures to 
level 1: the current version of SMBL is level 3. 
 An SMBL model is nothing more than a serie of one or more lists, each 
of which contains the elements that make up the model. In these lists 
information on compartment, species, reactions, parameters, unit definition and 
rules of the model can be found. A software package can read a model 
expressed in SBML and translate it into its own internal format for model 
analysis.  
 It has the classic characteristics of an XML file, where each element 
consists of a matched pair of start/end tags enclosed by ‘<’ and ‘>’ characters. 
The first line contains a particular sequence of characters (beginning with ‘<?
xml’) declaring the rest of the data stream as conforming to the XML encoding 
standard. The sbml element, starting from line 2, defines the SMBL model and 
the version with which it was created, allowing it to be distinguished from 
others. Inside it is the model subelement, which has a single attribute that 
specifies the name of the model, and a series of different subelements, each one 
acting as a container for all the elements of which it is made up (Hucka 2003). 
 Over the years a large database that collects all the mathematical 
models created in the SBML format has been created. It’s named Biomodels, 
available at http://www.ebi.ac.uk/biomodels/ . It is divided in two main 
branches: 
1. Literature-based models composed of models derived from literature. Prior 

to be added to the database, models are curated and annotated. In this way, 
all the model components are cross-referenced to external database 
information. The models are evaluated for compliance with MIRIAM 
guidelines to ensure reproducibility of simulation results and supply of 
adequate provenance informations. 
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2. Path2Models, containing automatically generated models of pathway 
resources such as KEGG, MetaCyc and BioCarta. They can be 
supplemented with kinetic information fetched from dedicated databases or 
predicted from the pathway structure. These models have been classified 
on the basis of the resource from which they were generated: there are 
‘metabolic’ models, referring to quantitative, kinetic metabolic pathways, 
‘non metabolic’ models, referring to qualitative, logical non-metabolic 
pathways, and ‘whole-genome metabolism’, referring to ‘genome-scale 
metabolic network reconstructions’. 

BioModels currently hosts more than 140000 models, including over 1200 
models directly derived from literature (Chelliah 2015). 

1.1.5 Starting Protein Concentrations 
 To simulate this type of reactions it is necessary to know the initial 
values (at time zero) of the species involved in the model. Protein 
measurements are key data for the development of a mechanistic models 
(Erickson 2019). Techniques for evaluating the proteome of a cell line are 
becoming increasingly efficient, faster, and affordable. Analytical approaches 
based on mass spectrometry (MS) demonstrated the ability to evaluate the 
protein profile in a comprehensive fashion, even of multiple mammalian cell 
lines in parallel (Geiger 2012). In addition, other proteomic analysis methods 
have been developed which eliminate the need for references, simplifying 
protocols and making them suitable for large-scale proteomics approaches 
(Wisnievski 2014). A recent study conducted a proteomic analysis on several 
human mammary epithelial cell lines (HMEC), fibroblasts and tumor cell lines 
in parallel, using ultra-sensitive targeted proteomic approach. The aim of the 
study was to quantify the different protein species involved in the Erk cascade. 
The analysis revealed that most of these proteins have a similar level of 
expression between different cell lines (Shi 2016). Through approaches like 
this, proteomics reinforces the reliability of models applied to different cell 
lines. Today, phosphoproteomic techniques are becoming increasingly 
important, as protein phosphorylation is important in many cellular regulatory 
processes and in signal transduction pathways. These innovative 
methodologies were applied to study serine-threonine family kinases, 
identifying proteins with decreased phosphorylation following addition of Egfr, 
PI3K, mTOR, and Mek inhibitors (Moritz 2010). 
 Other interesting information useful to construct models, can come 
from the analysis of the cellular transcriptome. The next-generation RNA 
sequencing (RNA-seq) technologies have become a powerful tool to study the 
presence and quantity of RNA molecules in biological samples and have 
revolutionized transcriptomic studies. RNA-seq data are highly reproducible 
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for both technical and biological replicates and the quantification of expression 
levels is highly accurate. 
 In hosting laboratory a standardization method that calculates 
intracellular protein concentrations starting from quantitative data derived from 
both mass spectrometry-based proteomics experiments and RNA-seq-based 
experiments was developed (see material and methods). In this way, the 
integration of experimentally determined data of a different nature can offer a 
solution in the search for the missing parameters necessary for the construction 
of effective models. 

1.2 The Erk1/2 cascade 
 Cell motility plays an important role in many physiologic and 
pathologic processes, such as tissue remodeling, metastatic tumor cell 
migration, stem cell mobilization and homing. The main challenge in the field 
of cell motility study is to develop a comprehensive physical description of 
how and why cells move. To this purpose it is necessary to find new ways to 
model the biological properties of cells. This goal can be achieved through the 
development of new experimental techniques aimed to extract physical 
information from living systems, and to define, on the basis of them, new 
theoretical models, through which better understanding this process. 
 The mitogen-activated protein kinases (MAPKs) have been considered 
one of the crucial regulators of cell motility. Several studies have highlighted 
that Erk signaling also regulates cell motility through the phosphorylation of 
various components that are involved in cell motility machinery (Tanimura 
2017). In addition to cell motility, Erk signaling also plays critical roles in the 
regulation of various cellular functions, including proliferation, differentiation, 
and survival in response to extracellular signals. Consistently, with the diverse 
roles of Erk in cellular regulation, its constitutive activation results in tumour 
formation and progression (Yarden 2001), and thus inhibition of Erk signaling 
is believed to be a promising strategy for cancer therapy (Sebolt-Leopold 
2004). 

1.2.1 The cascade 
 The Extracellular signal-regulated protein kinases 1 and 2 (Erk1/2) 
signaling pathway represents the prototypical and most extensively studied 
subfamily of MAPKs. It refers to a module of three kinases that sequentially 
activate each other by phosphorylation in response to a wide range of 
extracellular stimuli, such as cytokines, growth factors, cellular stress and cell 
adhesion. The pathway employs one of the more generic signaling patterns 
found in biological signal transduction: a loop formed by a kinase 
phosphorylating a target protein and an opposite phosphatase which is in 
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charge of dephosphorylating the same target. Therefore, the pathway plays a 
central role in many key cellular processes, such as proliferation, cell 
differentiation and survival, and in the cellular adaptation to chemical and 
physical stress. 
 The cascade starts by the interaction of an extracellular stimulus with a 
multimolecular complex of receptors such as receptor tyrosine kinases (RTKs) 
and G protein-coupled receptors (GPCRs). The epidermal growth factor 
receptor (Egfr) belongs to a widely expressed tyrosine kinase receptor family, 
frequently mutated or overexpressed in cancer. On the extracellular membrane 
four different monomers, also named Erbb1-4, can be expressed, and can form 
both homo- and heterodimers. Two members of this family, i.e. ERBB2 and 
ERBB3, are non-autonomous: the former lacks the capacity to interact with the 
ligand, while the latter shows a defective kinase activity. However, by 
heterodimerization with other members of the family, they can evoke strong  
intracellular signals (Citri 2006). In the absence of their ligand, an equilibrium 
between Egfr inactive monomers and inactive dimers exists (Chung 2010, Jura 
2009). EGF binding stabilizes receptor conformations that expose an 
extracellular dimerization interface, triggering the accumulation of active Egfr 
dimers (Ferguson 2003, Ogiso 2002). After Egfr dimerization, the tyrosine 
kinase domain of one Egfr moiety phosphorylates several Tyr residues in the 
partner moiety.  
 The extracellular domain of Egfr can adopt two conformations, closed 
and extended, the latter being dimerization-competent. EGF binding stabilizes 
the extended conformation, thus favoring dimer formation, and allows the Egfr 
kinase domain to interact with its Tyr substrates (Zhang 2006). The kinase 
activity is antagonized by phosphatase acting at the membrane already at the 
very early stages of Egfr signalling. Young (2019) found that PTP1B acts by 
Egfr dephosphorylation in order to finely tuning its signalling pathway (Young 
2019). Liang (2018) investigated whether the formation of Egfr active dimers 
in the absence of EGF could be sufficient to the downstream activation of Ras 
by developing a synthetic Egfr analogue peptide. Interestingly, they found that 
the presence of EGF is necessary to the conformational changes, like 
oligomerization and reorganization on the cell surface, needed for an efficient 
signaling through the Sos-Ras-MAPK pathway (Liang 2018). 
 The cellular responses to different concentration of a stimulating specie 
can be expressed in both linear and nonlinear modalities. While the former is 
an almost obvious model of dose-response intracellular signalling, the latter 
shows a threshold-controlled mechanism. An example of such modalities 
concerns the EGF-dependent internalization of Egfr. The activated receptor is 
internalized through both clathrin mediated endocytosis (CME) and non-
clathrin endocytosis (NCE). The first is a saturable mechanism, active at all 
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concentrations of EGF, coupled to the recycling of the receptors on the cell 
surface and thus to sustainment of signalling. NCE is observed only at high 
concentrations of EGF and is largely devoted to commit the receptor to 
lysosomal degradation; thus, the intense activation of NCE above a certain 
EGF threshold, might regulate the net signalling output, in response to 
increasing EGF concentration, in a nonlinear way (Sigismund 2013). 
Investigating this field, Sigismund at al. demonstrated how the ubiquitination 
of the Egfr at the plasma membrane is threshold controlled. This threshold 
controls the modality of Egfr internalization at the PM, and thereby enables 
cells to translate quantitative inputs (EGF concentrations) into qualitatively 
different internalization mechanisms. At low EGF concentrations the Egfr is 
scarcely ubiquitinated and internalized primarily through CME. At high EGF 
concentrations, Egfr is mostly endocytosed through NCE, as the receptor 
becomes ubiquitinated. Thus, the ubiquitination threshold controls receptor fate 
and the balance between maintenance versus attenuation of Egfr signalling 
(Capuani 2015). 
 Phosphorylated tyrosines serve as binding sites for adapters proteins 
that contain a Src homology 2 (Sh2) domain, which is expressed in Grb2 
(growth factor receptor-bound protein 2); with its SH3 domain inteacts with the 
guanine nucleotide exchange factor Sos1/2, the best characterized route of Ras 
activation that occurs at the plasma membrane (Cargnello 2011).  
 The Ras proteins superfamily includes three members: H-Ras, K-Ras, 
and N-Ras. Ras mainly localizes on the cytoplasmatic surface of the plasma 
membrane (Hancock 2003). In the inactive state, Ras binds GDP. After the 
cells are stimulated, Ras receives activating inputs from guanine nucleotide 
exchange factors (GEFs, such as Sos1/2) and deactivating inputs from GTPase 
activating proteins (GAPs). GEFs facilitate Ras conformational change from 
the inactive GDP-bound form to the active GTP-bound form by promoting 
nucleotide release. As intracellular GTP/GDP ratios are estimated to be greater 
than 10 under nutrient replete conditions, a free Ras G domain is more likely to 
bind GTP than GDP. GAPs (e.g., Rasa1, NF1) prompt the reverse transition by 
accelerating GTP hydrolysis. Thus, Ras GAPs have the potential to function as 
tumor suppressors, and loss-of-function mutations affecting Ras GAPs have the 
potential to be oncogenic (Erickson 2019).  
 It is important to focus the attention on two important aspects to better 
understand the importance of these proteins in the overall cascade: 

1. The influence of Sos dynamics in MAPK signaling is underscored by the 
relatively low Sos protein copy number in the Egfr-MAPK pathway. While 
the absolute abundance of most core proteins was between 50,000 and 
70,000 copies per cell, adaptors concentrations like Sos were found at far 
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lower amounts (2000 to 5000 copies per cell). MAPK signaling showed 
saturation in all cells between 3000 and 10,000 occupied EGFRs, 
consistent with the idea that adaptors limit signalling. Shi (2016) shows 
how the relative stoichiometry of core MAPK pathway proteins is very 
similar across different cell types, with cell-specific differences mostly 
restricted to variable amounts of feedback regulators and receptors. The 
low abundance of adaptors relative to Egfr could be responsible for 
previous observations that only a fraction of total cell surface Egfr is 
capable of rapid endocytosis, high-affinity binding, and mitogenic 
signaling. 

2. Extensive work has shown that the duration of the Ras signal is a key 
determinant of cell fate in the sense that growth factor activation of Ras 
must be transient to promote a proper proliferative response (Henning 
2016). 

 Ras substrates are able to recognise the conformational changes in Ras 
induced by this GDP/GTP exchange and to interact with Ras-GTP with higher 
affinity than with Ras-GDP. Ras does not chemically modify its substrates but 
regulates their activity by recruiting them to the activator localized to the 
plasma membrane near it. A primary target of activated Ras during growth-
factor stimulation is Raf, a serine/threonine kinase localized in the cytoplasm. 
Three Raf proteins are found in mammalian cells: Raf-1, A-Raf, and B-Raf. 
The first is the most widely expressed, with significant protein levels detected 
in all cell type. In addition, mouse knockout studies have revealed that Raf-1 is 
required for viability, acting in the transmission of normal growth and 
developmental cues (Dougherty 2005). In a quiescent cell, Raf-1 exists in an 
inactive state in the cytosol. The inactive conformation is ensured by 
interaction between the N-terminal regulatory and the C-terminal catalytic 
domains, and by the binding of a 14-3-3 dimer that contact two 
phosphorylation sites, S259 and S621. Ras-GTP binding promotes the 14-3-3 
displacement and the conformational changes that remove the Raf-1 
autoinhibition and facilitate the phosphorylation of activating sites (Hibino 
2011). Several mechanisms have been identified that induces the Raf 
inactivation. The most important involve the Protein phosphatase 5 (PP5) 
enzyme, that has been reported to dephosphorylate the critical S338 N-region 
site of C-Raf. Another important mechanism that attenuates the activity of all 
Raf family members involves a negative feedback loop in which active Erk 
phosphorylates the RAFs on multiple S/TP sites. Phosphorylation of the S/TP 
sites disrupts the interaction with Ras as well as Raf dimerization, and results 
in Raf proteins that are signaling incompetent (Terrell 2019). 
 Thereafter, Raf kinases transmit the signal to the MAPKKs, Mek1 and 
Mek2 (Mek1/2), by phosphorylation of two Ser residues in their activation 
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loop. MEKs are localized in the cytoplasm both resting and stimulated cells 
due to due the interaction with scaffold/anchoring proteins, such as KSR1 close 
to the plasma membrane. Beside their monomeric cytoplasmatic localization, 
MEKs can stay in that location also as heterodimers and this is important for 
the regulation of Mek2 activity. Upon stimulation the free MEKs, and some 
Mek molecules that are detached from their anchors, rapidly translocate to the 
nucleus. However, they usually remain there only for a short time due a rapid 
export signal by the NES/exportin system, giving rise to their apparent 
cytoplasmatic localization (Zehorai 2010). 
 In turn, Mek1/2 activate their only known substrates, native Erk1/2, 
which function as their sole downstream targets, suggesting that the Mek1/2 
serve as the specificity-determining components of the Erk1/2 cascade. The 
Mek1/2 are the only kinases that can phosphorylate both regulatory Thr and 
Tyr residues of Erk1/2. Inactivation of ERKs requires the removal of either one 
or both phosphorylation. A large family of dual specify phosphatases, the 
DUSPs, can inactivate ERKs. A coordinated action of these phosphatases is 
important to shape the temporal activity for proper mammalian development 
and growth (Wortzel 2011). 
 In resting cells, Erk is localized primarily in the cytoplasm. This 
localization is mediated by a set of anchoring and scaffold proteins that bind 
the Erk common docking (CD) motifs and retain it diffused in the cytoplasm or 
in cytoskeletal elements, surface of organelles. Erk phosphorylation causes not 
only kinase activation, but also conformational changes. In this way ERKs, free 
from their anchoring proteins, can shuttling to other parts of the cells, including 
not only nucleus, but also mitochondria, endosomes/lysosomes. Interestingly, 
about 30% of Erk molecules are not affected by stimulation and remain 
attached to their anchoring proteins upon stimulation. These molecules are not 
anchored via their CD nut rather via loop6, important for anchoring to 
cytoskeletal elements. This binding is important to regulate the intensity and 
targets of Erk signal upon stimulation (Wainstein 2016). 
 Erk nuclear shuttling involves multiple steps. First, Erk is 
phosphorylated on two Ser residues (Ser244 and 246 in ERK2) within the 
kinase insert domain by autophosphorylation and mainly by the kinase CK2. 
The phosphorylated residues, together with seven other adjacent residues, 
constitute the nuclear traslocation signal (NTS), which mediate the binding of 
Erk to importin7, which escorts Erk to the nucleus via nuclear pores. Here a 
Ran GTPase dissociates the complex, making Erk free to phosphorylate its 
targets (Plotnikov 2011). 
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1.2.2 Erk1/2 role in cell proliferation and tumour 
 Erk activation is necessary for the cell cycle progression induced by 
growth factors like EGF, especially in the progression from G1 phase to S 
phase. The first clue of this came from experiments using synthetic Mek 
inhibitors, like PD98059, which inhibits both Mek1/2 and Mek5, and was 
better confirmed by using more specific inhibitors like PD184352, capable of 
discriminating between Mek1/2 and Mek5: at concentrations below 1 
micromolar it is able to completely inhibit Mek1/2, but it does not affect Mek5 
function.  
 Furthermore, serum-induced cyclin D1 expression and DNA synthesis 
were inhibited by low concentrations of PD184352. The key step for quiescent 
cells to undergo cell cycle entry is the formation of an active cyclin D-CDK4/6 
complex, formed when newly synthesized cyclin D associates with existing 
CDKs. CDK4/6 kinase activity releases E2F family of transcription factors 
from Rb repression inducing expression of a second class of G1 cyclins, cyclin 
E required for S phase entry. It is worth noting that the stimulatory effects of 
cyclins can be counteracted by CDK inhibitors (CDKIs). Repression of CDKIs 
is also required for G1/S phase transition, while elevation of the level of cyclin 
D1 is not sufficient to induce cell cycle entry. Erk activation acts at several 
levels in order to promote the activity of CDKs in late G1, and in the inhibition 
of CDKIs. First, Erk leads to c-Fos and Fra-1 expression, which act indirectly 
to induce cyclin D1 transcription. Second, activation of Erk1/2 enhances c-Myc 
protein stability as a result of direct phosphorylation of Ser 62. c-Myc is a 
member of the Myc family of transcription factors that plays a central role in 
regulating cell growth, cell cycle progression and apoptosis. c-Myc 
heterodimerizes with its obligate partner Max to activate or repress 
transcription of a wide set of genes. c-Myc participates directly in the 
transcriptional induction of the genes codifying for cyclin D1, Cdk4, p21 and 
Cdc25. It is noteworthy that Erk1/2 signaling and induction of c-Myc are both 
necessary to drive cells from G0 to late G1 phase (Meloche 2007). 
 Erk plays a role in multiple pathways concerning cell proliferation 
(Chambard 2007): 

• Erk activation instructs the cell to synthetize more pyrimidine nucleotides, 
by increasing the activity of CAD by phosphorylating Thr 456 of 
carbamoyl phosphate synthetase (CPS II), part of the multifunctional 
enzyme CAD, which is involved in a rate-limiting step of the de novo 
synthesis of pyrimidine nucleotides pathway; 

• Upon Erk stimulation, transcription of the ribosomal RNA genes by RNA 
polymerase I is rapidly activated. 

• The MNK1 protein kinase, direct substrate of Erk, is responsible for 
inducing phosphorylation of the eukaryotic translation initiation factor 4E 
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(eIF4E) on Ser 209 following cell stimulation. This phosphorylation 
increases translation by incrementing the affinity of eIF4E for capped 
mRNA. 

 As expected, Erk/MAPK signaling pathway plays an important role in 
cancer, since it are composed of immortal, constantly proliferating cell. 
Cancer-associated alterations of MAPK signaling derive from its effector’s 
mutations, in both form of constitutive activation and continuous deregulated 
signal transduction. This is especially important in solid tumours, which can be 
characterized by the mutations affecting the genes coding for Ras, Raf, Erk and 
Mek. They are listed in order of decreasing probability of being involved. For 
example, Ras-small G-protein is mutated in about 34% of colorectal cancers, 
whilst mutations of Mek or Erk are found in about 3%. Ras mutations are also 
relevant as a predictor of tumour aggressiveness and poor prognosis (Burotto 
2014).  

1.2.3 Erk1/2 role in tissue invasion and metastasis 
 A mutated Ras is found in approximately 50% of metastatic tumours. 
Cancer metastasis is a phenomenon which occurs in sequential steps (a) 
detachment from the primary tumor mass; (b) digestion the surrounding 
extracellular matrix (ECM) and migration through it; (c) penetration into local 
blood or lymphatic vessels (intravasation), and transportation by the blood or 
lymph throughout the organism; (d) arrest in the narrow lumen of small 
vessels, breach the vessel wall, and transmigrate into the extravascular space 
(extravasation); (e) adaptation to the new anatomic site and outgrowth (Welch 
2019). Tumour cells break away from the primary tumour, adhere to the 
basement membrane and become invasive. These cells infiltrate and grow in 
the surrounding stroma and enter the circulatory system, where most cells are 
spotted and killed by the immune system. A small number of tumour cells with 
strong survival ability reach the target organ and continue proliferating, 
forming new metastases in the same manner as the primary tumour (Guo 
2020). With respect to focal adhesions, Erk activation is associated both in time 
and space with integrin clustering during cell spreading, which may play a role 
in regulating the focal adhesion assembly process. Active Erk may be targeted 
to newly forming focal adhesions after integrin engagement. Both active Erk 
targeting and cell spreading may be impaired by UO126, a Mek1 inhibitor 
(Klemke 1997).  
 Components of the integrin to focal adhesions pathway include several 
Erk substrates that might be responsible for Erk-induced peripheral effects on 
cell migration, including myosin light chain kinase (MLCK). The mitogenic 
signals generated by integrins or surface receptors, impact the actin-myosin 
cytoskeleton and temporal-spatial organization of cell adhesion contacts with 
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the extracellular matrix. Previous studies indicate that Erk activates the cell’s 
motility machinery by enhancing MLCK activity leading to increased MLC 
phosphorylation and enhanced cell migration. MLCK represent a key regulator 
of cell motility and contraction. It has also been shown that this MAPK-
induced cell migration can be blocked by selectively interfering with MLCK 
activity, suggesting that MLCK is downstream of MAPK and is required for 
cell migration. Active Erk phosphorylates MLCK that in turn induces 
phosphorylation of the myosin light chain, promoting myosin ATPase activity.  
Thus, MLCK activation might be involved in turnover of focal adhesions and 
extension of membrane protrusions at the front of polarized cells, which are 
important for cell migration. Inhibiting the Erk pathway negatively affects 
MLCK, MLC phosphorylation and disrupts cell migration. On the other hand, 
expression of active Mek1 promotes phosphorylation of MLCK and MLC and 
enhances cell migration in COS-7, MCF-7 human breast cancer and HT1080 
fibrosarcoma cells (Reddy 2003). Egfr overexpression can circumvent the 
dependence on Erk for maintaining sustained cell motility. Two distinct 
pathways regulate cell migration in Egfr overexpressing cells such as 
MDA-468 breast cancer cells: MAP kinase (MAPK or Erk 1/2) and myosin 
light chain kinase (MLCK) pathways play a more significant role in regulating 
early stages of cell migration, and protein kinase-delta isoforms (PKC-d) and 
ROCK (Rho-kinases) pathways play the most significant role in regulating the 
sustained cell migration. Inhibition of Erk activity with Mek inhibitor PD 
98059 or MLCK activity with ML-7 blocks early stages of cell migration (Sepe 
2013, Barillari 2020). 
 During cancer cell invasion and metastasis, tumor cells digest the ECM 
molecules by synthesizing and employing a large variety of enzymes; among 
them, the matrix metalloproteinases (MMPs) are the main contributors to ECM 
degradation by tumor cells (Gialeli 2011).  
Disruption of the integrity of the basement membrane is a key histological 
marker of tumor’s transition to invasive carcinoma. The basement membrane 
forms a cellular support for tumors and is composed of a mix of extracellular 
matrix (ECM) proteins, including laminins, collagens and proteoglycans. In 
response to extracellular stimuli, phosphorylated Erk translocates from 
cytoplasm to the nucleus, where Erk activates various transcriptional factors 
like activating protein-1 (AP-1), as a result of the induction of the c-fos gene. 
AP-1 is involved in expression of matrix metalloproteinases (MMPs), which 
are proteolytic enzymes that hydrolyze the extracellular matrix (ECM), one of 
the most important processes in the invasion and metastasis of cancer cells 
(Maeda-Yamamoto 2003). MMPs derive their name from the finding that they 
are metallo-enzymes able to degrade ECM, and therefore have been implicated 
in progression and invasion of cancer in addition to their involvement in 
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normal tissue remodeling, wound healing and angiogenesis. In tumors, 
sustained MAPK activation could lead to enhanced induction of proteolytic 
enzymes in the surrounding environment, leading to destruction of ECM. In 
addition data showing that direct association of MMPs with specific ECM 
receptors provides spatial control of MMP activity and directional signals to 
the invading tumor cells are available. The activation of the Erk/MAPK 
signaling pathway can increase tumour invasion and metastasis by upregulating 
MMP expression, while inhibition of this signaling pathway can reduce tumour 
invasion and metastasis. Maeda-Yamamoto (2003) showed that inhibition of 
Erk phosphorylation in fibrosarcoma HT1080 cells resulted in inhibition of 
MMP-2 and MMP-9 expression in these cells. In the same way, Simon et al 
(1999) found that in oral cancer cells, Erk1/2 activation downregulates 
MMP-9, thus reducing invasiveness. 
 Cell morphological alterations and migration, related to expression of 
cytoskeletal and microfilament-related proteins, occur during tumour 
metastasis. Several studies showed that protein phosphorylation is associated 
with regulation of the microfilament cytoskeleton. The human colon cancer cell 
line SW620 showed a larger number of intracellular microfilaments and a 
longer migration distance upon treatment with hepatocyte growth factor (HGF) 
compared with a control treatment. The study showed that HGF enhanced cell 
migration by activating the Erk/MAPK signaling pathway, thus promoting the 
invasion and metastasis of tumour cells. Bray et al (2001) demonstrated that 
Erk/MAPK signaling pathways transduce extracellular signals and regulate the 
expression of transcription factors that cause cytoskeleton deformation and 
enhance tumour invasion and metastasis. Blocking the Erk/MAPK signaling 
pathway may inhibit the role of extracellular signals that promote cell 
movement, which inhibits tumour invasion and metastasis.  
 Recently, a novel Erk substrate was characterized: epithelial protein lost 
in neoplasm (EPLIN). It was originally identified as the product of a gene 
transcriptionally down-regulated or lost in a number of human epithelial tumor 
cells, including oral, prostate, and breast cancer cell lines. When present, 
EPLIN cross-links and bundles actin filaments, thereby stabilizing actin stress 
fibers. In addition, EPLIN inhibits Arp 2/3 complex-dependent nucleation of 
new actin filaments. These events result in overall reduction of cell motility. 
Erk is able to regulate EPLIN activity by phosphorylation of Ser 360, Ser 602, 
and Ser 692 at the C-terminal region. These phosphorylations reduce EPLIN 
affinity for actin filaments, and cause destabilization of stress fibers and 
reorganization of the actin cytoskeleton in protrusive structures, eventually 
enhancing cell migration. A similar effect may be observed by RNAi-mediated 
silencing of EPLIN, which also results in enhanced cell motility. On the other 
hand, expression of an EPLIN mutant, not phosphorylatable by Erk, prevents 
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stress fiber disassembly and membrane ruffling and inhibits cell migration 
(Han 2007). 

1.3 State of the art on Erk 1/2 models 
 The Erk cascade is one of the most important cellular signaling 
pathways and has been the subject of intensive study in the laboratory and, 
more recently, through systems biology approaches.  

1.3.1 The first simple models 
The first mathematical models developed focused on the study of the properties 
and behavior of the cascade. The first model was published in 1996 by Huang 
and Ferrell (1996). Their model starts from the activation of Raf by Ras up to 
Erk activation, where the dual phosphorylation of Mapkk1/2 and Erk occur by 
two-step distributive mechanism. They assumed the initial species 
concentrations by experimental measurement done in Mos and Xenopus 
oocytes, and in some cases, they have estimated them. The kinetic parameters 
were set in this way: they arbitrary took all the Km values to be 300 nM, based 
on the value measured for the phosphorylation of p42 MAPK/Erk2 by active 
MKK-1. They subsequently varied all of these Km values and concentrations 
over a 25-fold range. The input stimulus to the cascade was taken to be the 
concentration of Ras. The model shows how the Erk cascade exhibit 
ultrasensitivity, i.e. a non-linear sigmoid activation curve, with the degree of 
ultrasensitivity increasing as one moves down the cascade. 
 Models now routinely incorporate growth-factor receptors that 
subsequently activate the Erk cascade. Egfr represents the receptor that most 
commonly activates the Erk cascade and is the major growth factor receptor 
incorporated in the Erk cascade models. This is because the Egfr system has 
been well studied, is expressed in a sensible manner in several cell lines, and 
good antibodies and molecular reagents are widely available, which allow for a 
variety of quantitative studies. Kholodenko (1999) studied the short-term 
pattern of cellular responses to epidermal growth factor (EGF) in isolated 
hepatocytes combining experimental kinetic analysis and computational 
modeling. They developed an ODE-based mathematical model of the Egfr 
signalling with 25 reactions involving 23 different species, that describe for the 
first time the binding with the receptor with EGF, the dimerization and the 
receptor auto-trans-phosphorylation. The model includes three adaptor proteins 
that can directly interact with phosphotyrosine residues on Egfr (Shc, Grb2 and 
PLCγ). The kinetic parameters in the model were extrapolated from the 
scientific literature and/or derived from basic physical-chemical quantities. In 
order to validate the model before analysis, a number of ‘wet’ laboratory 
experiments were performed, such as time courses of Egfr phosphorylation 
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induced by several EGF concentrations. The simulation was then compared 
with these data to demonstrate the validity of the model created. Analysis of the 
model showed a rapid, short-lived, pattern of Egfr phosphorylation. Sensitivity 
analysis of the model showed to be robust to significant changes in many of the 
rate constants of the protein interactions involved. 

1.3.2 Complete cascade models 
 Kholodenko’s model does not include the core Erk cascade in its 
description, but it has been used as a basis for many other models of the Egfr 
system which do include the core Erk cascade. By integrating the recruitment 
of Sos to Egfr at the plasma membrane where Ras is located, this model can be 
used to predict the transient activation of Ras and the Erk cascade, as expected 
for an EGF response. Schoeberl (2002) developed a model describing the 
behaviour of the EGF signal-transduction pathway to investigate the effects of 
receptor internalization on the Erk cascade, and also the signal–response 
relationship between the Egfr activation by EGF at the cell surface and the 
activation of downstream proteins in the signalling cascade. The model is one 
of the most comprehensive available (125 reactions involving 94 species), 
including a large range of dynamic processes. The model includes two 
pathways of Ras activation (Shc-dependent and Shc-independent), and the Egfr 
internalization by endocytosis. The majority of kinetic parameters were based 
on values published in the literature (some from the Kolodenko’s receptor 
model), and the species’ concentrations were based on the literature or based on 
laboratory experiments measurements. The model describes how the initial rate 
of change of receptor activation determines the cellular response to EGF. The 
initial velocities of Egfr activation, rather than the peak maxima, are important 
for signal propagation. As the EGF concentration varies, the initial speed of 
Egfr activation, rather than the maximum peak reached, influences the 
behaviour of the signaling. The presence of receptor internalization reactions 
allows the model to predict how they can attenuate the activation of the 
pathway at very high doses of EGF. 
 The researchers Arkun and Yasemi tried to understand how the pathway 
dynamics can be modulated to generate a diverse array of Erk dynamics that 
will selectively affect the cellular functions. They focused their attention on the 
how the negative and positive feedback loops affect the dynamic characteristics 
of the cascade. To generate their model, they subdivided the cascade in three 
subsystems, combining three different available models: the EGF-Sos 
subsystem from Kolodenko model, the Ras subsystem from Das (2009), and 
the MAPK subsystem from Qiao (2007) . The resulting model was integrating 
with several reactions that reproduce several positive and negative feedback 
loops. All the parameters and the species’ concentrations involved were 
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converted to a single set of units, and some parameters were fixed at their 
literature values. In this way, they show combination of positive and negative 
feedback loops modulates the Erk behavior (in terms of duration, amplitude, 
stability and oscillations) selectively to obtain the specific biological effect 
(Arkun 2018). 
 Brown (2004). studied the actions of nerve growth factor (NGF) and the 
EGF in rat pheochromocytoma (PC12) cells. Each of these growth factors 
stimulates Erk phosphorylation with distinct dynamical profiles. Considering 
how many of the parameters required remain unknown or at best represent 
estimates, they chose a different approach. They applied the statistical 
mechanics to extract predictions of the parameters for the model. An important 
feature of the approach involves the use of Monte Carlo methods in Bayesian 
sampling of model spaces. They showed that this approach can make useful 
biological predictions even in the face of indeterminacy of parameters and of 
network topology. The generated model consists of 13 different protein species 
involved in 16 biochemical reactions, which primarily utilize Michaelis-
Menten kinetics. The model considers the Sos-Ras-RAF1 pathway leading to 
Erk activation as well as the Sos negative feedback and Akt negative feed-
forward loops. 

1.3.3 Tumour cascade models 
 Brown’s model was used and expanded by other researchers later. In 
2009 Orton proposed this model to investigate what effects various cancerous 
alterations (such as Ras or an Egfr mutation) had on signalling through the 
EGF activated Erk pathway. Within the original Brown model, they included 
the activation of Rap1 by EGF and its capability to selectively activate B-Raf, 
adding additional complexity to the pathway. The new model consists of 17 
proteins involved in 31 reactions, which utilize primarily Michaelis-Menten but 
also mass action kinetics. The model predicts how different cancerous 
situations resulted in different signalling patterns through the Erk pathway, 
especially when compared to the normal EGF signal pattern; cancerous Egfr 
mutation and overexpression signals via the Rap1 pathway are the best target 
for drugs. 
 About 50% of melanomas have B-Raf activating mutations. It is an 
aggressive tumor of the skin with a poor prognosis for patients with advanced 
disease and it seems to be resistant to current therapeutic approaches. In this 
way it represents a good tumor model to investigate the activation of the 
MAPK cascade. Pappalardo (2016) considerably expanded the Brown model 
(48 species and 48 biochemical reactions) to study the biochemical and 
metabolic interactions in the PI3K/AKT and MAPK pathways potentially 
involved in melanoma development. Moreover, they introduced the features to 
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reproduce the effect of Dabrafenib inhibitor in the complex dynamics of the 
PI3K/AKT pathway and modeled two specific reaction: the normal drug 
degradation and the main effect of Dabrafenib in the inhibition of the B-Raf 
Mutated species. 
 Several studies have shown that the Egfr overexpression is very 
common in their the non-small-cell lung cancer (NSCLC), one of the deadliest 
and most difficult to diagnose forms of cancer. Bidkhori (2012) developed two 
mathematical models to relate to the different Egfr signaling in NSCLC and 
normal cells in the presence or absence of Egfr mutations. The model’s 
reactions were designed in according to previous experimental observations 
and model (most of them described above). For the first time they 
simultaneously analyze several mutations in both Egfr and PTEN and over- 
expression of PI3K, Egfr, Akt, STAT3 and Ras in NSCLC Egfr signaling in one 
study. Their model shows how mutations in Egfr can increase the levels of 
pERK, pSTAT and pAkt. Over activation of Erk, Akt and STAT3 which are the 
main cell proliferation and survival factors is a promoting factor for tumor 
progression in NSCLCs. 
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2. Aim of the work 

The aim of the project was to develop models which describe the behaviour of 
Erk1/2 cascade and to interface them with a simulation system which 
reproduces motility and proliferative behaviour of eukaryotic cell cultures, with 
the intent of studying cellular migration in pathological contexts like tissue 
invasion and metastasis. 
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3. Materials and methods 

3.1 Motocell 
 Motocell (Cantarella 2009) is a bioinformatic tool which was first 
created as an online application for the evaluation of the motility of cell 
populations maintained in various experimental conditions. It can 
simultaneously perform time-lapse experiments, derive motility parameters 
from the comparative analysis of multiple experiments, and test the models' 
predictions of cell proliferation and movement. The system also includes 
additional tools which allow the acquisition and analysis of microscopy images 
and the graphical representation of datasets describing cell paths obtained by 
tracking procedures. Statistical analysis is also included: it consists of the 
evaluation of descriptive parameters (such as average speed and angle, 
directional persistence, path vector length) calculated for each step of the 
migration for the entire population as well as for each single cell; in this way 
the behavior of a cell population may be assessed as a whole or as a summation 
of individual entities. 
 Over the years, it was gradually expanded, until it became a 
development environment containing different integrated analytical modules, 
where to perform custom routines to extract and manipulate data, access the R 
environment, plot the results in tables and graphs. Among them, at the moment 
tools of systems biology are available such as models that predict the behavior 
of biochemical pathways. 

3.2 Cultured cell movement simulation 
The tool, developed in hosting laboratory, reproduces the behaviour of 
eukaryotic cultured cells observed in time-lapse microscopy experiments, 
reproducing migration paths of cultured cells under different experimental 
conditions. The tool is based on a single cell approach where individual cells 
are followed through the cell cycle, to generate a synthetic cell population with 
features comparable to the experimental data used as a reference. Different 
features of the cell are taken into account in the system, such as:  

• The chemical gradient that influence the cell migration as generated by a 
reagent added to the culture, such as nutrients or growth factors. 
Combination of different gradients is also supported; 

• Interaction between cells is taken into account, both in terms of attraction 
and repulsion;  

All these features can be combined to reproduce a cell population behaviour in 
different experimental conditions. The tool is able to quantitatively tune the 
contribution of each movement feature in complex situations.  
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 Originally, the cell proliferation simulation is based on the probability 
of undergoing mitosis calculated from a cumulative Weibull  distribution model 
adapted to experimental informations produced by observing cell cultures in 
time-lapse experiments. Given a set of parameters,  the use of the Weibull 
model in combination with random number generation,   produces simulated 
populations  that,  whilst  showing  some  variability, have a proliferation trend 
which closely resembles the one of the original experimental cell population.   

3.3 Database of estimated protein concentrations 
 In hosting laboratory was developed a database of estimated protein 
concentrations representative of different cell types and experimental 
conditions. It is based on a standardization method that calculates intracellular 
protein concentrations starting from both quantitative data derived either from 
mass spectrometry-based proteomics experiments, and RNA-seq-based 
experiments. An automated system retrieve data from proteomics and 
transcriptomics online databases, and use these data to estimate the 
concentrations. based on an algorithm that estimates intracellular protein 
concentrations from literature data and converts them to values directly usable 
for systems biology approaches. First a method was developed able to 
normalize quantitative data derived from different experimental sources in a 
reliable way; the resulting protein concentrations were stored in a database 
specifically built that can be easily accessed programmatically by a model 
runner tool. Those data were then used to set up mathematical equations, which 
describe the biochemical processes under consideration, to create a cellular 
model that is then simulated to forecast changes over time and under different 
conditions, in concentrations and phosphorylation degrees in involved 
molecules. 
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Cell line Cell Type Molecular source

NIH3T3 Mouse fibroblasts Protein

GAMG Glioblastoma Protein

HEK293 Human embryonic kidney Protein

LnCAP Androgen-sensitive prostate adenocarcinoma Protein

RKO Colon carcinoma Protein

U2OS Bone osteosarcoma Protein

HeLa Cervix adenocarcinoma Protein, transcriptomics

HepG2 Hepatocellular carcinoma Protein, transcriptomics

A549 Lung adenocarcinoma Protein, transcriptomics

MCF Breast adenocarcinoma ER+ Protein, transcriptomics

ECC-1 Endometrium adenocarcinoma transcriptomics

T-47D Braest ductal adenocarcinoma transcriptomics

HT-29 Colorectal carcinoma transcriptomics

MCF10A Fibrocystic disease from breast transcriptomics

TMR Breast adenocarcinoma Tamoxifen-resistant transcriptomics

HelaS3 Subclone of HeLa transcriptomics

786-O RCC Renal adenocarcinoma transcriptomics

HCT116 Colorectal carcinoma transcriptomics

OVCAR5 High grade ovarian adenocarcinoma transcriptomics

A1847 Ovarian adenocarcinoma transcriptomics

HCC70 Primary ductal breast carcinoma transcriptomics

CR4 Metastasis of colon carcinoma transcriptomics

SK-BR-3 Metastasis of breast adenocarcinoma transcriptomics

C4-2B Metastasis of prostate carcinoma transcriptomics

Table I - Database of estimated protein concentration. Cell lines available at the 
moment.
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3.5 Software development 
  
3.5.1 Use of objects 
 The simulator development is based on object-oriented programming 
(OOP), a style of programming which includes the flexibility to create modules 
that do not need changes when a new type of object is implemented. New 
objects are created by extending the already present objects and inherit all of 
their characteristics. In OOP, every object is an occurrence of a class, which 
defines the properties and methods of an object. The OOP approach is diffusely 
used to compute modular softwares where different tools share the same 
objects and acquire specific characteristics and behavior. 
  
3.5.2 PHP  
 PHP is the main programming language subtending the development of 
the simulator. PHP is a scripting language which was born for the design of 
dynamic web pages and is strictly integrated with the Apache server. The 
relationship between PHP and the simulator software is that the former was 
occasionally used as a simple scripting language for web pages, but mostly as a 
standard language for developing multifile programs. The version currently in 
use is PHP 5.6.30. 
  
3.5.3 R 
 Simulations of biochemical pathways were performed by using R (web 
site: R),  through Motocell, where a good software integration with the R 
environment was already made available. R is an open source environment for 
statistical computing and graphics, which runs on a wide array of platforms. R 
is a combination of different statistics packages and programming languages. 
In the Biochemical simulations were executed with the function sim() from the 
SBMLR package provided by Bioconductor. It is an interface to Systems 
Biology Markup Language (SBML), a standard language used for the 
definition of systems biology models and based on a text format (XML), which 
allows the sharing of models between different softwares. The software version 
used was R 3.3.2. 

32



4. Results 

4.1 Development of the biochemical model 
 Simulation of a cell that is followed for a number of hours during which 
it undergoes changes in cell cycle phases and, quite likely, changes in the 
surrounding environment, required a quantitative model, that goes beyond the 
scope of currently available models. To this aim, a new model was created, 
which, by using kinetic parameters and concentrations derived from literature 
or locally determined data, can simulate the Erk1/2 cascade and their effects on 
cell cycle, starting from an extracellular stimulus. The model was generated by 
decomposing the pathway into four linked functional subsystems:  

1. The first subsystem describes the initial part of the pathway from the 
extracellular growth factor-receptor binding to the formation of the 
active receptor complex; 

2. The second subsystem is necessary to sustain longer execution times 
and includes the mechanisms involved in internalization and 
degradation of the receptor complex; 

3. The third describes the steps leading to the activation of Ras and Raf 
proteins; 

4. The fourth subsystem describes the phosphorylations cascade of 
Mek1/2 and Erk1/2 and transfer of phosphorylated Erk to the nucleus. 

4.1.1 The receptor binding and activation subsystem 
 For the purposes of this study, epidermal growth factor (EGF), which is 
present in the growth medium of many eukaryotic cells, was chosen as the 
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Figure 1 - Receptor binding and activation.  EGF exerts its stimulating effects through its 
binding with Egfr, followed by the dimerization between two bound monomers of the 
receptor, and the dimer auto-trans-phosphorylation. The activated dimer then binds the 
adaptor protein Grb2 and the GEF protein Sos; it can also be dephosphorylated by the Ptp1 
phosphatase. Created with BioRender.com

http://BioRender.com


activating stimulus of the cascade. It binds to its receptor, the epidermal growth 
factor receptor (Egfr), whose activation starts the intracellular response (Fig. 
1). In order to simulate these events, a set of reactions was defined (Fig. 2) and 
an in-depth study of the literature directed to identify acceptable kinetic 
parameters was conducted. The complete list of reactions and the relative 
kinetic parameters are listed in the Appendix.  

 To simulate the binding between EGF and Egfr, a basic landmark was 
the study from Berkers (1991), because it was conducted on HeLa cells, and 
biochemical assays directly measured binding to membrane receptors within 
living cells, also differentiating them in subtypes with different affinity for the 
ligand. The binding parameters calculated on the basis of this study were tested 
by simulating binding and release reactions between EGF and Egfr at different 
concentrations (Fig. 3). In order to confirm the effectiveness of the simulator 
software, Berkers' experiment was replicated, reproducing his experimental 
conditions (cell line, receptor concentrations, EGF concentrations). The results 
obtained with the software match closely with the results reported in the article, 
with higher EGF concentrations resulting in more receptors bound and shorter 
time needed to reach equilibrium. These results also confirmed the good 
performance of the simulator software. 
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Figure 2 - Reactions flowchart.



 The following steps of Egfr activation after EGF binding were  
produced through extensive research of scientific evidence from diverse 
papers, which contain parameter calculations and models; the model by 
Kholodenko (1999), is one of the first models ever created and still represents a 
reference point for this kind of research. Figure 4B shows how the model 
produced in this way predicts a rapid phosphorylation pattern of Egfr: 
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Table 1

time 0,18 1,08 1,98 3,78

-20 0,0000134989385449460,0000134989385449460,0000134989385449460,0000013501170237591

-19 0,0000266944115848290,0000266944115848290,0000266944115848290,0000026703232899126

-18 0,0000395932538246360,0000395932538246360,0000395932538246360,0000039612815653699

-17 0,0000522013219565840,0000522013219565840,0000522013219565840,0000052235600156367

-16 0,0000645262810316130,0000645262810316130,0000645262810316130,0000064579025063026

-15 0,00007657422406750,00007657422406750,00007657422406750,00000766490071555

-14 0,0000883513878823920,0000883513878823920,0000883513878823920,0000088451605095659

-13 0,0000998638773247450,0000998638773247450,0000998638773247450,0000099992743469615

-12 0,000111117639554680,000111117639554680,000111117639554680,000011127821526102

-11 0,000122118499308680,000122118499308680,000122118499308680,000012231368508404

-10 0,000132872149745740,000132872149745740,000132872149745740,000013310469200563

-9 0,000143384154508970,000143384154508970,000143384154508970,000014365665232984

-8 0,00015365995166570,00015365995166570,00015365995166570,000015397486232029

-7 0,000163704856545480,000163704856545480,000163704856545480,00001640645008623

-6 0,000173524064526860,000173524064526860,000173524064526860,000017393063206578

-5 0,00018312265375980,00018312265375980,00018312265375980,000018357820781042

-4 0,000192505587825210,000192505587825210,000192505587825210,000019301207023431

-3 0,000201677718333550,000201677718333550,000201677718333550,000020223695416741

-2 0,000210643787463970,000210643787463970,000210643787463970,000021125748951088

-1 0,000219408430445170,000219408430445170,000219408430445170,000022007820356368

0 0,000455644226110430,00163607507449530,00277776651248280,0047819246095868

1 0,000685118880514930,00296667538577330,00510190682393390,0088253915342021

2 0,000908029711715940,00421737637423860,00721339825737680,012263835875143

3 0,00112454457237830,00539191755098970,00913298063138430,015187881476772

4 0,00133488175247570,0064958428986282 0,01087797268137 0,017675292140318

5 0,00153921284756520,00753333099563590,012464514728232 0,019791351328123

6 0,00173771237347510,00850846629738220,013907184838269 0,02159167579321

7 0,00193054994464080,00942506610521280,015219090470182 0,023123712173156

time
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Figure 3 - EGF-Egfr binding simulation: The graphs show the association and 
dissociation between EGF and Egfr, which were evaluated at different EGF concentrations 
(0.18, 1.08, 1.98, 3.78 nM in Fig. 2 A-D). In each plot, the level of monomeric Egfr (Egfr, 
red lines) is compared to the concentration of the receptor bound (EgfEgfr, blu lines). The 
results for EgfEgfr were plotted together (Fig. 3E).



implementing the dimerization and the phosphorylation steps shifts the 
chemical balance towards the products, which increases the receptor's 
saturation. The dephosphorylation step decreases the phosphorylated receptor 
level (Fig. 4C); on the other hand, binding with Grb2 prevents receptor 
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Figure 4 - Receptor binding and activation subsystem in HeLa cells: the plots show the 
predicted behaviour of the cascade's early steps, regarding the Egfr. Its binding to EGF 
(Fig. 4A) is followed by the dimerization of two bound monomers (EgfEgfr_2, green line) 
and the phosphorylation of the receptor (EgfEgfrp_2, purple line) showed in Fig. 4B. The 
effect of the deophosphorylation by phosphatase PTP1 on the complex is depicted in Fig. 
4C, partially countered by the binding of Grb2 to the complex (EgfEgfrp_2.Grb2, black 
line, Fig. 4D). Next, the nucleotide exchange factor Sos binds the phosphorylated complex 
(EgfEgfrp_2.Grb2.Sos, red line, Fig. 4E).



phosphorylation, but overall receptor activation still results toned down, as 
clearly seen from the comparison between Fig. 4D and Fig. 4B. This way, the 
introduction in the model of the PTP1 phosphatase and the adaptor proteins 
allows to reproduce not a fast dose-response effect, but an attenuated signal 
which can be measured over a longer time. The adaptor protein binding to the 
receptor is followed by the binding of the complex to the nucleotide exchange 
factor Sos (Fig. 4E).  

4.1.2 Receptor degradation subsystem 
 A path for receptor internalization and degradation, based on the 
process described in Fig. 5, was implemented, in order to confer the ability to 
describe the cascade over longer times, typical of a eukaryotic cell culture. The 

path includes two distinct processes acting on the activated receptor complex, 
the constitutive non-clathrin endocytosis (NCE) mechanism, simulated with an 
irreversible constant flux law, and a clathrin-mediated endocytosis (CME)  one, 
requiring a more complex simulation including additional molecular species. 
The reaction scheme describes the trafficking processes of phosphorylated 
receptor complex, and follows the approach described in Fig. 6, where the two 
mechanisms act on the various phosphorylated Egfr species present on the 
plasma membrane. The main outcome of the NCE process is lysosomal 
degradation, with only a small fraction (10%) of the receptor recycled, in 
agreement with data reported in literature (Sigismund 2008). CME was instead 
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Figure 5 - Receptor degradation processes. The subsystem simulates the two 
internalization processes acting on the receptor complex (NCE and CME), followed by the 
receptor degradation, and its recycle. Created with BioRender.com

http://BioRender.com


modelled through a main reversible clathrin-binding reaction, which leads to 
membrane recycling and receptor degradation.  
 The effectiveness of the model in reproducing the different kinetics of 
these processes, was tested using three different Egfr activation levels (Fig. 7), 
corresponding to 0.5 nM, a level typical of 10% FBS cultured cells (left), 40 
nM, for cultured cells stimulated with 1 nM EGF (center), and 200 nM, 
representative of cell lines characterized by Egfr over expression (right). The 
results show that the model correctly predicts receptor decay via the NCE path, 
with the same halftime at various Egfr concentrations (Fig. 7A). The 
simulation of CME, instead, shows a faster but saturable behaviour (Fig. 7B). 
Figure 7C shows the combined effect of the two mechanisms: at low EGF 
concentrations receptor decay via CME is more effective than NCE, but at 
higher concentrations it becomes less relevant, being limited by clathrin 
concentration. 
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Figure 6 - Receptor trafficking. Here is represented the reaction scheme describing the two 
internalization mechanisms of the phosphorylated Egfr receptor. NCE, on the top, was 
modelled as an irreversible constant flux. The internalized receptorial dimer (Egfrp_2.endo2) 
undergoes dedimerization (r15); the monomers are then degraded at lysosomal level (r16). 
This scheme takes into account also the small percentage of receptor which is recycled to the 
cell surface (r17). On the other hand, CME starts with the main reversible reaction between 
clathrin and receptor (r22/r23). The Egfr-clathrin complex is internalized; then, after the 
clathrin detachment (r24), the receptor undergoes dedimerization (r25), and the monomers 
proceed to recycle (r26) or degradation (r27). The clathrin molecule goes back to the cell 
membrane to start another reaction (r28).



 Figure 8A and B shows, for HeLa and A549 cells respectively, the 
results of the execution of the complete subsystem including degradation of 
internalized receptor as well as recycling to the plasma membrane. The plots 
show that at low EGF concentration, the receptor recycling process has a 
stronger effect, in agreement with the available experimental evidence 
(Carpenter, 1976). At an EGF concentration of 1 nM, the activated receptor 
concentration produces a peak after around 20 minutes, and then slowly decays 
within about six hours, both in HeLa and A549 cell simulations. The results 
obtained are consistent with the experimental data by Carpenter and Cohen 
(1976) who show that, by treating human fibroblasts with iodine tagged EGF, 
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Figure 7 - The receptor degradation and recycle subsystem: different Egfr levels (0.5 nM 
on the left, 40 nM on the center, 200 nM on the right) were used to evaluate the impact of the 
two internalisation processes on the receptor behaviour. Fig. 7A show the impact of the NCE 
(expressed by the internalisation receptor EgfEgfrp_2.endo in blue), while the Fig. 7B show 
the effect of the CME (expressed by the internalizated complex EgfEgfrp_2.cla in blue and 
the internalised receptor Egfrp_2.endo2 in green). Fig. 3C represent the simulation merge 
between the two processes.



the radioactive signal from the cell surface peaked after 30 minutes and then 
rapidly went down (Carpenter, 1976). 
 In order to evaluate the post-activation behaviour of Egfr receptor as 
predicted by the simulator under different conditions, several simulations were 
carried out, adopting experimental conditions corresponding to various 
experiments taken from literature, in which Egfr phosphorylation levels were 
measured over time in various cell lines, after treatment with different 
concentrations of EGF. The simulation reported in Fig. 9A replicates an 
experiment by Hennig (2016), where Egfr phosphorylation was determined 
using phospho-selective antibodies in serum-starved HeLa cells challenged 
with 1.8 nM EGF. The simulated experiment (plot) resulted in predicted results 
comparable to those obtained through immuno-blotting (western blot). In Fig. 
9B and 9C similar validation tests are reported (1.8 nM EGF, 60-360 minutes), 
based on Egfr activation experiments performed in A549 and LNCaP cells by 
Wang (2014) and Martin-Orozco (2007), respectively. The simulation 
performed on the same cell lines predicted a rapid peak of the activated 
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Figure 8 - Receptor degradation and recycle. The effects of degradation and recycle of the 
activated receptor are shown at different concentrations of EGF (0,01nM on the left and 1nM 
on the right) in HeLa cells (Fig. 8A) and A549 cells (Fig. 8B). Three different forms of the 
receptor are plotted: the phosphorylated receptor (EgfEgfrp_2, red line), the Egfr-Grb2 
complex (EgfEgfrp_2.Grb2, blue l ine) and the Egfr-Grb2-Sos complex 
(EgfEgfrp_2.Grb2.Sos, green line).
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Figure 9 - Validation of the predicted behavior of activated Egfr. 
Stimulations of Egfr are simulated at different EGF concentrations and in 
different cell lines. In these experiments the Egfr phosphorylation level is 
measured at the indicated time after treatment with EGF in different cell lines. 
Three different forms of the receptor are plotted: the phosphorylated receptor 
(EgfEgfrp_2, red line), the Egfr-Grb2 complex (EgfEgfrp_2.Grb2, blue line) and 
the Egfr-Grb2-Sos complex (EgfEgfrp_2.Grb2.Sos, green line). In Fig. 9A HeLa 
cells are stimulated with 1.8 nM EGF for 30 minutes (western blot from Hennig 
2016). In Fig. 9B, A549 cells are stimulated with 1.8 nM EGF for 60 minutes 
(Wang 2017). In Fig. 9C LNCaP cells are stimulated with 10 nM EGF for 360 
minutes (Martin-Orozco 2007). In Fig. 9D HEK293 cells are stimulated with 1.8 
nM EGF for 60 minutes (Yang, 2018).



receptor at about 10-20 minutes followed by the same rapid decay showed by 
western blotting. Lastly, in Fig. 9D is reported an experiment performed by 
Yang (2018), where HEK293 cells were serum starved for 12h, then incubated 
with 1.8 nM EGF for the indicated durations: also in this case, the simulator 
predicted an activated receptor behaviour close to the results obtained by 
western-blotting. The results support the idea that the biochemical model is 
robust and reliable, as it is applicable to different cell lines, with results very 
close to those derived by means of biochemical assays. 

4.1.3 The Ras-Raf subsystem 
 The cascade subsystem describes the Ras activation processes by the 
activated receptor, and the start of the cascade activation, from Raf activation 
(Fig.10).  

Particular attention was paid in modelling the reactions leading to the 
activation of the Ras protein, also considering the concentrations of GDP and 
GTP in the process (Fig.11). In this way the model does not treat the receptor 
as a simple catalyst of a Ras activation reaction, but takes into account its 
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Figure 10 - Ras and Raf activation. The third subsystem is composed of 14 reactions. First, 
the Ras activation is modeled with 3 essential reactions: the activated receptor exchanges the 
GDP nucleotide on Ras though Sos; Ras bounds the GTP, concentrated in the cell at high 
levels; GAP protein enhances the hydrolysis of GTP in GDP on Ras. The regulation of  the 
activation level of these proteins depends on GTPase. Following, Ras-GTP starts the cascade, 
first by activating Raf. Phosphatases Pp2a provides the Raf dephosphorylation. Created with 
BioRender.com

http://BioRender.com


function as a nucleotide exchanger. It was modelled through three main 
reactions: 

1. The activated receptor complex, through Sos, facilitates the release of 
GDP nucleotides from Ras; 

2. Ras in turn mostly binds GTP, which is more concentrated in the 
cytosol; 

3. GAP protein, acting on Ras, enhances the following GTP hydrolysis 
which is then converted into GDP.  

Ras-GTP is now able to start the Mek1/2 cascade by phosphorylating  Raf. 
 This subsystem was simulated at two different EGF concentrations: 
0.01 nM and 1 nM. The results are shown in figure 12. The predicted pattern of 
Ras-GTP activation is clearly concentration-dependent, since higher EGF 
concentrations produce higher and earlier peaks (Fig. 12A). A similar pattern 
was predicted for the first kinase of the cascade, Raf, activated by Ras (Fig. 
12B).  
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Figure 11. Reactions flowchart of Ras-Raf activation.



 Also in this case, simulation results were validated by replicating 
experiments taken from literature and matching their results with the software 
predictions. In Fig. 13A the simulation replicated an experiment from Hennig 
(2016), where serum-starved HeLa cells were challenged with 1.8 nM EGF for 
in and Ras activation was determined via Ras-GTP affinity pulldowns. The 
simulation correctly predicted a transient Ras activation, according with the 
experiment reported. The same experiment was performed by Kiyatkin (2006) 
in HEK293 cells, stimulated with 20 nM of EGF for 60 minutes (Fig. 13B). 
The Raf activation was compared with experimental data from Tian-Rui Xu 
(2010), which describe the Raf-1 and BRAF kinetic activation in HEK293 cells 
stimulated with 1.8 nM EGF (Fig.13C). 
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Figure 12 - Simulation of Ras and Raf activation. Two different EGF concentration (0.01 
nM on the left, 1 nM on the right) were used to simulate Ras (RasGTP) and Raf (Rafp) 
activation.
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Figure 13 - Validation of Ras-Raf activation. In figure 13A, HeLa cells was stimulated 
with 1.8 nM EGF for 40 minutes (western blot from Hennig 2016). In Fig. 13B was 
reproduced the experiment of Kiyatkin (2006), which measured RasGTP was by affinity 
precipitation with Ras-Raf binding in HEK293 cells are stimulated with 20 nM EGF for 30 
minutes. In Fig. 13C HEK293 cells were stimulated with 1.8 nM EGF for the time indicated. 
Endogenous Raf-1 was immunoprecipitated (IP) and blotted (IB) for the presence of B-Raf 
(experimental data from Tian-Rui Xu 2010).



4.1.4 The Mek1/2-Erk1/2 subsystem 
Following the Ras and Raf activation, the cascade starts, where Mapkk1/2 and 
Erk1/2 are activated by sequentially phosphorylating each other. Phosphatases 
Pp2A and Dusp3 regulate this process by dephosphorylating these proteins. 
Lastly, Erk translocates to the nucleus (Fig. 14). 

In selecting the reactions needed to model this pathway, particular attention 
was paid to the description of the nuclear events involving Erk, in particular the 
trafficking and dephosphorylation of the activated protein (Fig. 15). This was 
especially important, since the next step would connect the level of Erk 
activation to its effects on proliferation and movement. 
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Figure 14 - Mek1/2 and Erk activation and regulation. Created with BioRender.com 

Mek

Dusp3 Mekpp

Erk.cyt

Erkpp.cyt

Dusp3

Rafp
P P

P P

Erkpp.nuc

Erk.nuc

r36

r37r38

r39

r41

r40

r44

r42

r43

Figure 15 - Reactions flowchart. Here are represented the reactions of Mapkk1/2 (Mek) 
activation to Mekpp, which then activates Erk to Erkpp.cyt. The activated Erk crosses the 
nuclear membrane (r42) to exert its effects. The model also contains a reaction of nuclear 
dephosphorylation of the activated Erk (r44).

http://BioRender.com


In order to test the subsystem, two simulations were carried out (Fig. 16) at 
different EGF concentrations (0.01 nM and 1 nM). The results show that the 
simulator reproduces, in agreement with other experimental data, an 

ultrasensitive behavior of the two kinases: in presence of small stimuli (0.01 
nM), the enzyme levels are low, suggesting a basic steady-state activation 
level, while, when cells are stimulated with high EGF concentrations, they 
show an upstroke of the response curve. This behavior is compatible with the 
physiological function of the kinase cascade of producing a signal 
amplification, in the sense that a small number of activated proteins cause the 
activation of greater numbers of target molecules. 
 Simulation results were then validated by replicating other experiments 
taken from literature, and comparing their results with software predictions. 
Pinilla-Macua (2016) measured the levels of phosphorylated Mek1/2 and 
Erk1/2 in HeLa cells, after incubation with 0,72 nM EGF. Likewise, Henning 
(2016) determined, through immunoblotting, Erk1/2 phosphorylation at 1,8 nM 
EGF. Lastly, Schoeberl (2002) tested 9nM EGF. In all cases, the predictions 
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Figure 16 - Simulation of Mapkk1/2 and Erk1/2 activation. Two different EGF 
concentration (0.01 nM on the left, 1 nM on the right) were used to simulate the Mapkk1/2 
and Erk activation. The plots show separately nuclear activated Erk (Erkpp.nuc, blue line) and 
cytosolic activated Erk (Erkpp.cyt, red line).



obtained by software match quite well (Fig. 17A,B,C), with all of these 
reported examples. 
 Experiments that show the effect of PD184352 and PD98059 on Erk1/2 
activation were compared with simulation results were the two molecules were 
used as inhibitors of Erk phosphorylation. In Figure 18A an experiment from 
Dokladda (2005) is reported, where HeLa Cells were pre-incubated with the 
indicated inhibitor concentrations and then stimulated with EGF. The software 
predicted results very similar to those obtained by Dokladda. 
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Figure 17 - Validation of cascade activation. In figure 17A, the replication of the 
experiment from Pinilla-Macua (2016), where HeLa cells were incubated with 0,72 nM EGF 
at 37°C for the indicated times. The phosphorylated species were measured through Western-
blotting. In Fig. 17B HeLa cells are stimulated with 1.8 nM EGF for 30 minutes (western blot 
from Hennig 2016). In Fig. 17C the results from Schoeberl (2002) are reported. 
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In complete contrast, PD184352 produced a dramatic inhibi-
tion of p44/p42 phosphorylation at the lowest concentration
used (0.5 lM, Fig. 3D), but did not produce any significant
activation or phosphorylation of AMPK, or phosphorylation
of ACC-1, at concentrations up to 4 lM (Fig. 3B).

3.4. U0126 and PD98059, but not PD184352, cause an increase
in cellular ADP:ATP and AMP:ATP ratios

Fig. 4 shows that U0126 and PD98059, at 20 and 50 lM,
respectively, (typical of concentrations used in the literature),
caused a 2-fold increase in the cellular ADP:ATP ratio and a
somewhat larger increase in the AMP:ADP ratio. By contrast,

PD184352 at a concentration of 1 lM, which is maximal for
the effect on p44/p42 phosphorylation, did not affect either
the ADP:ATP or AMP:ATP ratio.

4. Discussion

To our knowledge, the only previous report of an interaction
between the AMPK and MAP kinase pathways had been one
suggesting that activation of AMPK inhibits activation of Ras,
Raf-1 and Erk by IGF-1 [19]. We were therefore surprised to
find that U0126 and PD98059 caused a large activation of
AMPK that was associated with increased phosphorylation
of the activating phosphorylation site, Thr-172, and increased
phosphorylation of the downstream target, ACC-1. However,
the results in this paper show that this effect is not mediated via
inhibition of MAP kinase, but instead appears to be a non-spe-
cific effect on cellular energy status. Firstly, the concentrations
of U0126 and PD98059 required to cause AMPK activation
were higher than the concentrations required to inhibit p44/
p42 phosphorylation, particularly for U0126. Secondly, the
newer and more potent inhibitor PD184532 had no effect of
AMPK activation at concentrations where its effects on the
MAP kinase pathway were maximal. Finally, at concentra-
tions where they activate AMPK, U0126 and PD98059 (but
not PD184532) caused significant increases in the cellular AD-
P:ATP and AMP:ADP ratios, indicating that they activate
AMPK by disturbing the levels of cellular nucleotides. Fig. 2
shows that the effects of U0126 require the expression in the
cells of an active form of the upstream kinase, LKB1. This is
not unexpected because the major effect of AMP on the AMPK
system is to promote phosphorylation by the upstream kinase.
Other drugs such as AICA riboside, which is converted into an
AMP analogue inside the cell [20], or biguanides like metformin
and phenformin, which are inhibitors of complex I of the

Fig. 4. Effect of incubation with 20 lM U0126 (20 min), 50 lM
PD98059 (20 min) or 1 lM PD184352 (60 min) on the cellular
ADP:ATP and AMP:ATP ratios. Results are expressed relative to the
value obtained in controls lacking inhibitors. The ATP:ADP and
ATP:AMP ratios in control cells were 8.4 ± 0.2 and 102 ± 7,
respectively.

Fig. 3. (A,B) effects of increasing concentrations of PD98059 and PD184352 (60-min incubation) on the activity and phosphorylation (Thr-172) of
AMPK and the phosphorylation (Ser-80) of ACC1. (C,D) Effects of different concentrations of PD98059 and PD184532 on the phosphorylation of
p44 and p42 (Erk1/Erk2) in HEK-293 cells. The basal activity of AMPK in these experiments was 31 ± 4 pmol/min/mg of total lysate protein. Data in
(A) were fitted to the same equation as for Fig. 1A, and the continuous lines are theoretical curves drawn using the best-fit parameters.
Phosphorylation of AMPK was also determined in (B), but did not change and is not shown.
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Figure 18 - Simulation of Erk1/2 inhibitors. HeLa cells were pre-incubated for 60 minutes 
with the indicated concentrations of inhibitors, and then stimulated with 1nM EGF. The plot 
shows the levels of cytosolic activated Erk (Erkpp.cyt, red line) and of nuclear activate Erk 
(Erkpp.nuc, blue line). The experiment was taken from Dokladda (2005).



4.2 Proliferation and movement analysis 
The biochemical model was used to modulate cell proliferation and movement 
within a cell simulator, in order to create a system able to predict the behaviour 
of cultured cell populations. To this aim, two mayor steps were identified as 
necessary: 

1. setting up a relationship between the biochemical model of the cascade 
and a representation of the cell cycle organised as a set of species and a 
number of reactions describing their succession; 

2. creating a path through which the biochemical model is put in 
communication with the movement simulator, in order to perform 
analyses of proliferation and motility of an eukaryotic cell culture. 

4.2.1 Cell cycle modulation by activated Erk1/2 
Cell cycle is the series of events that take place in a cell and cause it to divide 
into two daughter cells. Erk1/2 is known to be an important factor able to 
modulate cell cycle progression, as  it plays a fundamental role in the transition 
from G0/G1 to S phase, via induction of Cyclin D1 transcription (Meloche 
2007). In order to simulate, within a tool for biochemical path simulation, the 
cell cycle of an eukaryotic cell, a reaction scheme was developed which 
reproduces the cell cycle phases as different species interconverting into each 
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Figure 19 - Cell Cycle reactions scheme. Created with BioRender.com

http://BioRender.com


other and ranging from 0 to 1 in concentration (Fig.19). This artificial system 
can relate activated nuclear Erk levels predicted by the biochemical model with 
G1/S phase switch through an intermediate species named CycD after cyclin D. 
 Three different culture conditions were used to simulate activation of 
the Erk1/2 cascade in HeLa cells (Fig.20): 0.001, 0.01 and 0.1 nM EGF 
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A EGF 0.001 nM 0.01 nM 0.1 nM

Figure 20 - Erk1/2 cascade activation. Three different cell culture condition 
were used to simulate the cascade activation: starvation (left), 10%FBS (center), 
stimulated with 0.1 nM EGF (right).



respectively corresponding to growth arrest by serum starvation, 10%FBS and 
EGF stimulation. Using starved and serum growth conditions, the cascade 
predicts a relatively stable level of activation, which is maintained for a few 
hours, under stimulation it shows an early upstroke followed by a decay. The 
predicted cell phases generate the cell cycles shown in Fig. 21. While in 
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Figure 21 - Cell cycle regulation by Erk1/2. HeLa cell cycle was 
predicted from Erk1/2 activation cascade under three different cell 
cutter condition: starvation (Fig. 21A), serum 10% FBS (Fig. 21B), 
stimulation with 0.1 nM EGF (Fig.21C).



starvation conditions the simulator does not predict a switch G1/S within the 
observation time (Fig. 21A), in serum-like conditions the predictsed phases 
take about 24 hours to complete a whole cycle. Under stimulated conditions, an 
accelerated cell cycle is generated which takes about 3 hours less to cycle, 
compared to the serum condition. These results appear to be consistent with 
experimental observations on cultured HeLa cells in the same conditions, and 
may be used to drive the cell simulation. 

4.2.2 Proliferation analysis  
 In order to test the ability of the biochemical model the modulate 
proliferation of synthetic cell cultures produced by the cell simulator (see 
methods), an interface between the two simulators was setup. The chosen 
solution was to make the biochemical simulator accessible through a web 
service, able to support the different features available within the MotoCell 
analyzer: query to the database of protein concentrations according to the cell 
type, building of the biochemical model, run execution and result retrieval. 
Through the web service, the movement simulator sends requests to the 
biochemical simulator and works on the basis of the information received in 
return. First, the movement simulator asks the web service to execute a pre-run 
segment by specifying biochemical model, cell line, run time, and the 
concentration of extracellular molecular species. For each cell, the web service 
executes the pre-run and returns a specific ID, which will be used, in the 
following query, to run subsequent segments, possibly introducing variations, 
such as the addition of a species or changes of the species concentrations. The 
results include cell cycle progression status that the simulator uses to predict 
the behaviour of  each individual cell. 
 In figure 22 three cell populations are presented, which were simulated 
with this system under three different experimental conditions. On the left the 
starved condition is represented, for which it is possible to see that the cells do 
not divide in 24h, since the initial number of cells remains essentially 
unchanged in subsequent frames. At the center there is a population simulated 
in 10% FBS serum conditions, which shows a division time of 24h: at the end 
of the experiment the number of cells is about double than the initial one. 
Finally, the condition on the right is run at a higher EGF concentration and 
produces a higher number of cells in 24 hours, corresponding to a division a 
faster division rate (about 21 hours). 
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To quantitatively analyze this difference in cell division speed, the simulation 
results were analysed in Motocell with the “proliferation” module. The results, 
reported in figure 23, show that the starved cells do not divide at all within 24 
h. Under serum or EGF-stimulated conditions, the cell division events show a 
typical sigmoid trend similar to that of naturally occurring cell populations, 
which may be effectively described by Weibull distribution curves 
corresponding to a t1/2 of 670 and 692 min, respectively. 
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Figure 22 - Cell proliferation simulation - Three cell populations were simulated, in three 
different experimental conditions for the indicated times: starved (left), 10%FBS (center), 
stimulated with 0.1 nM EGF (right).
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Figure 23 - Analysis of the proliferation. Quantitative analysis of the proliferation 
speed by Motocell’s module ‘prolifAnalyzer’ of three different cell population: starved 
(top), 10% FBS (center), stimulated with 0.1 nM EGF (bottom).



Figure 24 shows the growth curve obtain from cell populations simulated under 
the same conditions and followed for three days. Under EGF-stimulated  
conditions (blue curve), the cell population shows a faster growth rate than in 
serum  (red curve) and in starving  (black curve) condition. 

Figure 25 shows another experiment where a rescue from starvation was 
simulated. Cells were first simulated as living under starving conditions for 10 
hrs, after that cells where transferred under standard 10% FBS conditions 
(arrow): about 6 hrs later cells start to increase in number as cell duplication 
restarts. 
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Figure 24 - Growth curve analysis. Growth curves show the number of live cells plotted as 
a function of time for three different cell populations: starved (black), 10% FBS (red), 0.1 
nM EGF (blue).
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Figure 25 - Rescue experiment. The curve shows the number of cells plotted as a function 
of time. The arrow corresponds to the time when cells were transferred under standard 10% 
FBS conditions.



4.3 The simulator 
The simulator was developed as a plugin hosted within MotoCell (web site: 
MotoCell), a web application developed in the hosting laboratory, to study 
cultured cell movement and proliferation. Motocell behaves as a good 
development system, based an object-oriented programming logic and where 
good software integration with the R environment is readily available (see 
Materials and Methods). Within MotoCell, plugins are data analysers, which 
support many basic functions directed to the analysis of cel culture data. 

 The main object, BiocModAnalyzer, extends a common analyser object 
and contains most of the logic that enables the simulator to receive data and to 
connect to a database of protein concentrations in various cell lines, described 
under materials and methods.  
BiocModAnalyzer is extended by two specialized analyzers: 
1. DbAnalyzer, responsible for database maintenance and for reporting 

intermediate analyses during data processing;  
2. BiocModSimulAnalyzer, which obtains concentration data from the 

collection and implements model simulations for a given cell type and 
condition.  

The biochemical model is organised in three sheets: 
1. In a first sheet we have a list of all the molecules involved. For each 

entry are indicated the compartment and a key, that the system will use 
to obtain the initial concentration from the database. 

2. In a second sheet we have a list of all the possible compartments. Each 
compartment is associated with its own size value. 

58

Figure 24 - Scheme of the developed program. Red highlighted boxes indicates analyzers, 
while blue ones are referred to specialized objects. Created with BioRender.com

http://BioRender.com


3. In a third sheet is represented the model to be simulated. For any 
reaction are specified a reaction id, the reactants, the products, 
eventually a reaction modifier, and the kinetic parameters. 

At run time is stored and managed within a model object, which is generated 
starting from the three csv files, two of which are accessed via specialised 
objects: speciesBuilder, reactionBuilder. The first creates the species requested 
by the model and assigns to each its starting concentration; the second uses the 
content of the csv file, which contains the relations defining the model and 
converts them to the corresponding equations. All this information is sent back 
to the analyzer object which, in turn, passes them to the model object that 
constructs the backbone of the model according to the syntax expected by the 
SBMLR model simulator, runs it within the R environment and gives the 
results back to the analyzer, which eventually will show them within the 
necessary tables and graphs.  
 From the Motocell web interface it is possible to access the simulator. A 
dialog window allows to manage several parameters in order to set up the  
various simulation parameters. For example, it is possible: 

1. To choose the model to be used in the simulation; 
2. To run the simulation using concentrations or quantities for species; 
3. To choose the experimental data (proteomic or transcriptomics) to use 

as the database of species concentrations construction; 
4. To set the time run, time unit and the time step; 
5. To set the pathway activator (EGF) concentration; 
6. To set a pre-run time 

4.3.2 The Compartment model 
 The simulation tool allows the model to define compartments such as 
extracellular environment, cell, membrane, cytosol or nucleus. It is assumed 
that the cell volume is 1 and other compartments are expressed relative to it, 
for example 75% cytosol and 25% nucleus. The extracellular environment is 
also expressed relative to the cell: considering that in our experiments it is 
usual to seed 250,000 cells in 1 mL of culture medium, and that HeLa cell 
volume has been experimentally determined to be about 10-12 L, it can be 
assumed that the ratio between the extracellular volume available to a single 
cell is of the order of 4000:1. 
 The system is able to solve the model operating either with 
concentrations or with absolute quantities of the reacting species. In the first 
case, the system directly uses the concentrations obtained via the database 
considering a single compartment: cell. In the other case, the system first 
converts concentrations from the database into quantities by multiplying them 
for the cell size. The second order reactions and Michaelis-Menten reactions 
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are then solved relating the kinetic parameters to the compartment they take 
place into. For example, in a second order reaction where the receptor 
dimerizes with itself, the reaction is represented by the following equation: 

    

Where k, expressed in nM-1 s-1, is expressed in nanomolar by dividing for the 
compartment size where the reaction take place (vol); the reactants are express 
in nanomolar. Instead, in the reaction where Erk1/2 is phosphorylated by 
pMEK1/2: 

    

where Erk1/2 and pMEK1/2 are expressed in nanomolar, and vol is the 
compartment’s size where the reaction takes place. 
 Lastly, the system converts the resulting protein quantities into the 
concentration in the compartment where they are located, and graphically plots 
the results.  

4.3.3 Segments 
 To simulate long processes, where conditions may vary in terms of 
individual molecule presence and concentrations, the concept of simulation 
segments was introduced. 
This feature allows to simulate longer experiments, implementing all of the 
experimental condition most frequently used in a wet-lab setting, such as 
starvation, simulation with a determined concentration of EGF, addition of an 
inhibitor. In order to implement this feature, the software managing the model  
execution operates as follows: 

• the analyzer sends the input data to the model object, which constructs 
the model and sends it back to the analyzer; 

• the analyzer sets the model with the initial concentrations taken from 
the database and starts the first run; 

• after the first run is over, the analyzer updates the model with the 
resulting concentration, which are used as the initial conditions for the 
subsequent segment 

• for each segment the model is not reconstructed but just updated based 
on the previous run. 

From the Motocell interface, in the section dedicated to the biochemical model, 
a second window may be accessed which allows to split the simulation in up to 

v =
k

vol
* [EGF . EGFR] * [EGF . EGFR]

v = kcat
[ERK1/2] * [pMEK1/2]
(KM * vol ) + [ERK1/2]
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10 segments, in each of which it is possible to change activator concentration, 
or to add a new molecule, such as an inhibitor, setting its concentration. 
 The software development specifically foresees the execution of a pre-
run before the execution of the simulation. In the sheet containing the different 
species involved in the model, there are several species that at time zero do not 
have a defined concentration, as they are species subject to synthesis and or 
modification (for example, phosphorylation or cellular localization). The pre-
run has the function of defining a concentration for these species as well. The 
software allows to define both the duration and the concentration of EGF with 
which to perform the pre-run. 
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5. Discussion 
Several biochemical models built with a systems biology approach are 
available, and the majority of them studies the MAPK cascade. The search for 
reliable kinetic parameters describing how the reactions proceed is an essential 
step in constructing quantitative (biological) models. In the years, different 
technologies for studying in vitro enzymatic activities and reactions’ kinetics 
have been developed so far. For the purpose of this study it was chosen to 
extract all of the necessary information for the development and validation of 
the model from literature. The Erk1/2 cascade has been extensively studied,  
considering its central role in essential cellular events. Searching for “Erk1/2” 
and “Erk1/2 cancer” on PubMed gives more than 29k and 9k results 
respectively. Furthermore, different in silico studies concerning biochemical 
models of the Erk1/2 cascade are available, some of which were described in 
the Background section. Some of them studied Erk1/2 involvement in 
proliferation and cancer. These represented a point of reference in the 
construction of a model which has the aim to describe proliferation and 
motility of eukaryotic cell lines and tumor cells.  
 Anyway, modelling biochemical pathways presents some ineliminable 
difficulties. Models often contain a large number of kinetic parameters whose 
values have not been determined experimentally. In vitro measurements of 
parameters such as a binding constant can give values different from the real 
ones, because only a few species are considered and the experimental 
conditions differ from the in vivo events. This is especially true for extremely 
complex and extensive models like the one here described. In addition, kinetic 
models suffer from a tendential incompleteness, because many protein 
interactions cannot be included. They usually oversimplify the biological 
phenomenon they aim to describe, summarizing in a few reactions what in 
living cells depends on a far more rich network (Golikeri 1974). Additional 
challenges arise from the continue discover of novel interacting species, or new 
interactions between known constituents of the pathway (Vojtek 1998); 
therefore, in order to be effective, a model must also be flexible and capable of 
incorporating the new informations as soon as they emerge. Looking at this the 
other way around, the most important role of modeling is to identify missing 
pieces of the puzzle, since the inconsistencies with the experimental data will 
point at the critical points to unravel. The purpose of a biochemical model is 
not to substitute laboratory experiments, but to clarify them and overcome their 
limitations. It is also true that biochemical models share the same experimental 
errors with other methods, but the point is the combination of different 
techniques to achieve a more complete knowledge of the described events. 
Biochemical models are not supposed to return more precise data, but to allow 
a more comprehensive integration of what's currently known about cell 
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biology. For all of these reasons, this approach was chosen to understand how 
the Erk1/2 behaviour influences cell proliferation and migration over time. 
 Since experiments are conducted in different culture conditions with 
different cell lines and various techniques, a desirable feature of a model is the 
possibility to easily modify the input data. The software running the model was 
developed with this underlying idea: to make extremely easy the simulation of 
whichever pathway. It is sufficient to modify the three CSVs to simulate every 
kind of biochemical pathways, by giving informations about the compartments, 
the reactions and the species involved. This structure allows to simulate also 
other mathematical models of different pathways, and furnish an easy mode to 
bring improvements and changes to the model, without modifying the 
simulator code. This will allow in the future to describe other pathways that 
contribute to the regulation of the considered events (i.e. ERK5, AKT/PI3K). 
 In the model development, the different cellular compartments were 
taken into account. Generally speaking, a compartmental model is composed of 
a set of interconnected chambers; in each of them every component of the 
system is considered as homogeneous and at uniform concentration (Brauer 
2008). In this kind of models, biochemical reactions of transmembrane 
transport and binding processes are treated with first and second order kinetics 
respectively. This simplicity makes them easy to compute, because the set of 
ordinary differential equations describing them can be readily solved with 
numerical and sometimes analytical methods. However, the analysis of the 
compartmental models available in literature so far revealed that the 
compartments are merely descriptive, without concrete effects on the model. In 
contrast, to develop a strong and powerful model, it is of the utmost importance 
that both the protein concentrations and the reactions are related to the 
compartment where they are located. 
 In every mathematical model the concentration at time zero of many 
cellular species is set as equal to zero. This is especially true for species that 
are producted in a reaction, like the phosphorylated Erk or the nuclear Erk. 
However, a cell is not a test tube where chemical balances or all/nothing 
phenomena are established, but a living organism with dynamic homeostases. 
In order to have as realistic simulations as possible, it is necessary for the 
software to perform a preliminary run with very low levels of the stimulus  
before the simulation, which allows the system to reach a cell-like condition. 
Then, the simulation will proceed returning a more reliable approximation of 
the true biochemical events. All of the experiments performed in this study 
come after a 20 minutes pre-run at 0.001 nM EGF. 
 The first step in the construction of a biochemical model is the selection 
of the stimulating input. For the aims of this study it is essential to associate the 
kind of stimulus with a feature of a typical culture of eukaryotic cells, i.e. 
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species that are already present or can be added to the culture medium like 
glutamine, inhibitors or growth factors. The simulator of movement and 
proliferation is indeed able to take into account these elements, but also the 
gradient determined when one of these components is inserted. The chosen 
feature is the epidermal growth factor (EGF), a normal component of FBS. Its 
receptor, Egfr, is the main tyrosine kinase receptor activating the MAPK 
cascade. This is why it is the main growth factor receptor incorporated into 
Erk1/2 models. The Egfr system has been well-studied and is present at 
substantial levels in various cell types. 
 Another important point is that various models of Erk1/2 don't consider 
any degradation reaction, so the receptors remain constitutively activated. The 
models which take into account the receptor degradation have the pitfall of 
modelling it only as an irreversible constant flux, with the aim of creating a 
dose/response system. This is incompatible with the purpose of this study, 
which is the recreation of cellular events measured in the frame time of 24-48 
h, which the cell needs to replicate and move. As reported in literature, the 
receptor of epidermal growth factor undergoes two degradation mechanisms, 
one of which (CME) actually promotes the signal sustainment. Drawing from 
all of the resources available in the published literature, this is the first model 
capable of simulating both this mechanisms to better describe the biochemical 
substratum of cell proliferation and motility. A future perspective is the 
possibility of simulating over even longer durations, when the model will 
include also the reactions of synthesis and recycle of the main components of 
the pathway.  
 The other models generally treat Ras activation through mass action or 
Michaelis-Menten laws, where the receptor participates as a simple catalyst. 
The model here discussed instead proposes a different view, where the receptor 
fills its role as a guanine nucleotide exchange factor, taking into consideration 
GDP and GTP concentrations as well. This makes the model more realistic and 
gives space to further expand it by simulating different contexts like cellular 
quiescence. 
 The biochemical events describing the cascade activation, namely 
reactions of phosphorylation and dephosphorylation, are extremely simple and 
shared by all of the available models. This study focused also on another less 
investigated aspect, which is the array of events leading to the translocation of 
Erk to the nucleus to exert its biological effects. Only few in vitro 
measurements of the kinetic parameters of this reactions have been performed; 
to model it, the work of Fujioka (2005), in which the author collected them via 
fluorescent probes, was utterly useful. In addition to the determination of 
translocation rates, in that study a nuclear dephosphorylation rate of Erk was 
measured, which was implemented in this model. 
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 The connection between the biochemical model and the simulator of 
movement and proliferation allows to study, both quantitatively and 
qualitatively, how cells proliferate in different growth conditions. Results are in 
according to other experimental observations. Future expansions of this 
simulation system will allow to apply it to pathological context, such as tumour 
cells, in order to study its proliferation and migration behavior. 
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6. Conclusions 

 This study presents a computational model which simulates the Erk1/2 
cascade in response to the stimulation of Egfr by EGF interfaced with a 
simulator system that reproduces the behaviour of eukaryotic cell cultures. The 
system provides results that agree with the available experimental data in 
different cell lines, and can be used to run simulations over prolonged time 
frames that reproduce the classic eukaryotic cell cultures. Several novelties 
were introduced in the Erk1/2 biochemical modelling such as the 
implementation of a detailed system of internalization of the receptor, the 
introduction of compartments and the description of the trafficking of Erk 
between cytosol and nucleus. The model can easily be modified to simulate 
various contexts, like different concentrations of species or the presence of 
inhibitors. 
 This required the development of software to manage the simulator. It 
gives different opportunities such as the possibility to split the experiments in 
more segments or to set different experimental conditions. It presents a flexible 
and simple structure which can easily be adapted to other biochemical 
pathways for future studies. 
 Taking all of these points in consideration, this model opens up future 
perspectives for its use in investigations about the behaviour of various cancers 
in which the Erk1/2 or other pathways are altered. 
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Appendix 

1. Reactions 
 All of the biochemical reactions used in this model can be therefore 
divided into four main classes: 
1. Enzymatic activation/deactivation reactions modelled with a modified 

Michaelis-Menten law (for example the phosphorylation activating Erk1/2 
operated by Mek1/2); 

2. Binding/unbinding reactions, modeled with mass action law (for example 
the binding reaction between Egfr and EGF);  

3. Protein degradation, modelled with mass action law (mostly concerning the 
phosphorylated Egfr); 

 Several published models describe enzymatically catalized reactions 
through the Micahelis-Menten kinetics. When describing activation or 
deactivation of proteins through kinases and phosphatases, in order to consider 
both the modifier and its substrate, we introduced light changes of the 
Michaelis-Menten equation. The modified law is: 
 

     

where kcat is the number of enzymatic reactions occurring per second. In this 
way, this version is more adequate because the modifier’s affinity for its 
substrate is taken into account. 
 Inhibitors bind to enzyme following the same laws that govern ligand-
receptor interactions. This means enzyme inhibitors are subject to the same 
mass action kinetic principles from which Michaelis-Menten equations are 
derived (Walsh 2014). Our model is able to consider the effect of activators or 
noncompetitive inhibitors which can be added to the culture medium for 
experimental purposes. We already mentioned PD18 and PD98 in their 
capability to inhibit Mek1/2 activation. In these cases, an extra term was 
introduced: 

     

 
where ki is the inhibition constant and I is the inhibitor species. In the case of 
an activator, this was the equation implemented: 
 

     

v = kcat
[S ][modi f ier]

KM + [S ]

v = kcat
[S ]

KM + [S ]
Ki

Ki + [I ]

v = kcat
[S ]

KM + [S ]
[A]

Ka + [A]
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where ka is the activation constant, and A is the activator species. 

2. The model 
To include all the entities and their respective interactions useful to the target of 
this study, all the needed information were retrieved from KEGG (Kyoto 
Encyclopedia of Genes and Genomes) PATHWAY Database (Kanehisa 2004), 
on Kegg reference ko05200 (Fig. A1). 
 A biochemical model that describes the behavior of the Erk1/2 cascade 
in response to extracellular stimuli was developed. The model connects its 
outcome with a simplified model that reproduces the behavior of the cellular 
cycle. Globally, the model consist of 42 species and 54 biochemical reactions. 

N Reactants kon koff kcat KM Ref.

r1 Egf + Egfr -> EgfEgfr 6.2E-04 Berkers (1991)

r2 EgfEgfr -> Egf + Egfr 3.5E-04 Berkers (1991)

r3 EgfEgfr + EgfEgfr -> 
EgfEgfr_2

0.01 Kholodenko (1999)

r4 EgfEgfr_2 -> EgfEgfr + 
EgfEgfr

0.1 Kholodenko (1999)

r5 EgfEgfr_2 -> EgfEgfrp_2 1 Kholodenko (1999)

r6 EgfEgfrp_2 -> EgfEgfr_2 0.01 Kholodenko (1999)

r7 EgfEgfrp_2 + Shptp2 <-> 
EgfEgfr_2

69.3 3300 Zhong-Yin Zhang 
(1996)

r8 EgfEgfrp_2 + Grb2 -> 
EgfEgfrp_2.Grb2

3 Kholodenko (1999)

r9 EgfEgfrp_2.Grb2 -> 
EgfEgfrp_2 + Grb2

0.05 Kholodenko (1999)

r10 EgfEgfrp_2.Grb2 + Sos <-> 
EgfEgfrp_2.Grb2.Sos

0.01 Kholodenko (1999)

r11 EgfEgfrp_2.Grb2.Sos -> 
EgfEgfrp_2.Grb2 + Sos

0.06 Kholodenko (1999)

r12 EgfEgfrp_2.Grb2.Sos -> 
EgfEgfrp_2.endo

5E-04 Starbuck (1992)

r13 EgfEgfrp_2.Grb2 -> 
EgfEgfrp_2.endo

5E-04 Starbuck (1992)

r14 EgfEgfrp_2 -> 
EgfEgfrp_2.endo

5E-04 Starbuck (1992)

r15 EgfEgfrp_2.endo - > 
Egfr.endo, Egfr.endo

0.5

r16 Egfr.endo -> aa 0.9 Estimated on the base 
of Sigismund  (2008)
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r17 Egfr.endo -> Egfr 0.1 Estimated on the base 
of Sigismund  (2008)

r18 EgfEgfrp_2 + Cla <-> 
EgfEgfrp_2.cla

1.7E-05 Starbuck (1992)

r19 EgfEgfrp_2.Grb2 + Cla -> 
EgfEgfrp_2.cla

1.7E-05 Starbuck (1992)

r20 EgfEgfrp_2.Grb2.Sos + Cla 
-> EgfEgfrp_2.cla

1.7E-05 Starbuck (1992)

r21 EgfEgfrp_2.cla -> Cla + 
EgfEgfrp_2

0.0017 Starbuck (1992)

r22 EgfEgfrp_2.cla -> Cla + 
EgfEgfrp_2.Grb2

0.0017 Starbuck (1992)

r23 EgfEgfrp_2.cla -> Cla + 
EgfEgfrp_2.Grb2.Sos

0.0017 Starbuck (1992)

r24 EgfEgfrp_2.cla -> 
Egfrp_2.endo2, Cla.endo

0.017 Starbuck (1992)

r25 Egfrp_2.endo2 -> 
Egfr.endo2, Egfr.endo2

0.5

r26 Egfr.endo2 -> aa 9.7E-04 Starbuck (1992)

r27 Egfr.endo2 -> Egfr 3.67E-05 Starbuck (1992)

r28 Cla.endo -> Cla 0.0017 Starbuck (1992)

r29 RasGDP + 
EgfEgfrp_2.Grb2.Sos -> Ras

0.5 500 Bhalla (2002)

r30 Ras + GTP -> RasGTP 2.2E-03 Lenzen (1999)

r31 RasGTP -> Ras + GTP 23.6 Lenzen (1999)

r32 RasGTP -> RasGDP 2 Bhalla (2002)

r33 RasGTP + GAP -> RasGDP 0.1 172.41 Gideon (1992)

r34 Ras + RasGTP -> Rafp 1 500 Bhalla (2002)

r35 Rafp + Pp2a -> Raf 5 15700 Bhalla (2002)

r36 Mek + Rafp-> Mekpp 0.105 159.1 Bhalla (2002)

r37 Mekpp + Dusp -> Mek   2.4 36000 Yamaguchi (2002) 
from BRENDA

r38 Erk.cyt + Mekpp -> Erop.cyt 0.105 159.1 Bhalla (2002)

r39 Erkpp.cyt + Dusp -> Erk.cyt 2.4 36000 Yamaguchi (2002) 
from BRENDA

r40 Erk.cyt -> Erk.nuc 0.0086 Fujioka (2005)

r41 Erk.nuc-> Erk.cyt 0,018 Fujioka (2005)

r42 Erkpp.cyt -> Erkpp.nuc 0.0070 Fujioka (2005)

r43 Erkpp.nuc -> Erkpp.cyt 0.013 Fujioka (2005)

N Reactants kon koff kcat KM Ref.
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r44 Erkpp.nuc -> Erk.nuc 0.013 Fujioka (2005)

N Reactants kon koff kcat KM Ref.

Table A1 - Reactions and Kinetic Parameters. In order to be consistent with the database 
concentrations, all the concentration was converted to nano-molar (nM). Michaelis Menten 
constants are given in [nM], first order rate constants in 1/s and second order rate constants in 
[nM-1 s-1].
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Figure A1 - KEGG reference for the model development
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