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Abstract 

In the last decades, with the constant increase in world population, the fast reduction of 

fertile arable land and the deteriorating environmental conditions, optimization of agriculture has 

become a priority. The main focus is on increasing the final yield and protecting the crops from 

unfavourable growing conditions in a sustainable way. A possible solution to this problem is 

represented by biostimulants, bioactive substances of diverse origins. A very large number of new 

biostimulants enter the market every year. However, a thorough knowledge of the mode of action of 

the substances in different crops and in different environmental conditions is still lacking. Traditional 

testing methods are time-consuming, expensive and, in most cases, destructive. Therefore, in the last 

years high-throughput automated phenotyping platforms started to be considered an interesting 

alternative to traditional characterization assays, drawing the attention of biostimulant producers. 

Different cameras and sensors can be implemented into high-throughput phenotyping platforms, 

allowing to screen the effects of different substances on a large number of morpho-physiological 

plant traits in a fast, efficient, cost-effective and non-destructive manner.  

In our work, we developed a precise methodology to test the effects of a large set of protein 

hydrolysates on multiple plant species (wheat, Arabidopsis, lettuce and tomato) subjected to abiotic 

stresses (drought and salinity) at all phenological phases, from seed up to the crop maturity. A large 

number of morpho-physiological traits of the plants were analysed throughout their life cycle, before 

and after the application of the PHs substances.  

The original set of PHs has been subjected to an initial in vitro screening on Arabidopsis 

plantlets; the substances were applied as seed priming in three different concentrations. The best-

performing PHs in control and salt stress conditions have then been used for trials in planta, where 

they were applied as foliar spray. With the use of a Plant Biostimulant Characterization Index (PBC), 

we were able to categorize the substances into functional classes according to their mode of action, 

classifying them as Growth Promoters and /or Stress Alleviators. Leaves of the plants treated with 

the best- and worst-performing substances were collected and subjected to untargeted metabolomic 

analysis to elucidate the biochemical pathways activated by the PHs applications. 
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It was clear that the effects of the biostimulants on plants can vary depending on the mode 

and time of application, the growing conditions, the dose and the plant species they are applied to; 

therefore, before putting a new biostimulant on the market, it is essential to select the target crop 

species that could benefit from the treatment. High-throughput automated phenotyping platforms can 

be an extremely useful tool to speed up the testing process and precisely investigate the effects of the 

same substance on multiple morpho-physiological traits. 
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Introduction 

1. Overview and context 

Contemporary crop production is facing major challenges to feed 7 billion people while maintaining 

high productivity and quality standards, without overexploiting natural resources such as water and 

soil. Furthermore, alterations in weather patterns due to changes in climate are impacting crop 

productivity globally. Biostimulants have been proven to be beneficial to crops’ fitness, improving 

the final yield and the resistance to adverse environmental conditions. However, the effectiveness of 

biostimulants can vary, according to the crops they are applied to, the dose and the time of 

application. It is therefore important to test the mode of action of potential new substances in different 

conditions, concentrations and crops, before starting the commercialization of the products. High-

throughput automated phenotyping techniques can be extremely helpful in the validation phase; 

hence, the development of reliable, reproducible pipeline for the investigation of the mode of action 

of a substance is of fundamental importance.  

In this thesis, I am going to present: 

• A comprehensive literature review about the three main topics of my work: biostimulants, 

high-throughput automated phenotyping and abiotic stresses. – Chapters 2- Biostimulants, 0 - High-

throughput automated plant phenotyping and 4 – Abiotic stresses.  

• The studies characterising the mode of action of several biostimulants on different plant 

species (Arabidopsis, wheat, lettuce and tomato), applied at different phenological stages (seeds, 

seedlings and adult crops), both in control and stress conditions. Through the calculation of a Plant 

Biostimulant Characterization Index (PBC), the substances are classified as Growth Promoters, 

Stress Alleviators or Growth Inhibitors. 
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• The development of robust protocols for the application of different abiotic stresses on selected 

plant species. 

• The characterisation of morpho-physiological traits related to stress application and PHs 

administration in different plant species that were detected by high-throughput automated 

phenotyping techniques. 

• The results of metabolomic analysis of the plant tissues, performed in order to understand the 

molecular mechanisms triggered by the abiotic stresses and the biostimulants application.  

• The realization of a statistical analysis pipeline for the integration of complex omics data, with 

the purpose of identifying the relevant plant traits affected by the biostimulant treatments.  

2. Biostimulants 

The first mention of the term “biostimulant” can be found in the “Ground Maintenance” web journal 

(http://grounds-mag.com) in 1997, where Zhang and Schmidt from the Department of Crop and Soil 

Environmental Sciences of the Virginia Polytechnic Institute and State University defined them as 

‘materials that, in minute quantities, promote plant growth’. It was already clear at the time that crop 

plant production methods based only on improving agricultural technology (e.g., tillage, re-

cultivation, fertilization, irrigation, etc.) are limited due to the inability to effectively use the 

biological potential of the cultivated varieties (Posmyk and Szafrańska, 2016). Zhang and Schmidt 

explained the biostimulator action by hormonal effects and, secondly, by protection against abiotic 

stress by antioxidants. In the scientific literature, the word biostimulant was first defined by 

Kauffman et al. (2007), with modifications from the previous definition: ‘biostimulants are materials, 

other than fertilisers, that promote plant growth when applied in low quantities.’ Kauffman and co-

workers also attempt to summarize what biostimulants are, by introducing a classification: 

‘Biostimulants are available in a variety of formulations and with varying ingredients but are 

generally classified into three major groups on the basis of their source and content. These groups 

include humic substances (HS), hormone containing products (HCP), and amino acid containing 
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products (AACP). HCPs, such as seaweed extracts, contain identifiable amounts of active plant 

growth substances such as auxins, cytokinins, or their derivatives’. The word biostimulant was 

increasingly used by the scientific literature over the following years, expanding the range of 

substances and of modes of actions (Calvo et al., 2014; du Jardin, 2012). In fact, ‘biostimulant’ 

appears as a versatile descriptor of any substance beneficial to plants without being nutrients, 

pesticides, or soil improvers. The ‘European Biostimulants Industry Council’ (EBIC) in 2012 

provided a complete description of biostimulants as products “containing substance(s) and/or micro-

organisms whose function when applied to plants or the rhizosphere is to stimulate natural processes 

to enhance/benefit nutrient uptake, nutrient efficiency, tolerance to abiotic stress, and crop quality.” 

2.1 Categories of biostimulants 

Even though biostimulants can be categorized by source, this is not entirely correct as very substantial 

differences can exist between products that have the same origin (Yakhin et al., 2017). However, to 

simplify the introduction to biostimulants, we are going to categorize them according to their origin 

(Figure 1). 

 
Figure 1| Categories of biostimulants. Main categories of plant biostimulants and abiotic stressors they have proven 
effective against (from Van Oosten et al., 2017). 
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2.1.1 Humic and fulvic acids 

Humic substances (HS) are natural constituents of the soil organic matter, resulting from the 

decomposition of plant, animal and microbial residues, but also from the metabolic activity of soil 

microbes using these substrates. HS are categorized according to their molecular weights and 

solubility into humins, humic acids and fulvic acids (du Jardin, 2015). Regarding the sources of HS, 

they are extracted from naturally humified organic matter (i.e., from peat or volcanic soils), from 

composts and vermi-composts, or from mineral deposits (leonardite, an oxidation form of lignite) 

(du Jardin, 2015). Humic substances have been recognized for long as essential contributors to soil 

fertility, acting on physical, physico-chemical, chemical and biological properties of the soil.  

2.1.2 Seaweed extracts  

Seaweeds are applied to plants as extracts and as purified compounds, which include the 

polysaccharides laminarin, alginates and carrageenans and their breakdown products. Other 

constituents contributing to the plant growth promotion include micro- and macronutrients, sterols, 

N- containing compounds like betaines, and hormones (Craigie, 2011; Khan et al., 2009). Seaweeds 

can be applied on soils, in hydroponic solutions or as foliar treatments. In soils, their polysaccharides 

contribute to gel formation, water retention and soil aeration. Positive effects via the soil microflora 

are also described. Anti-stress effects are also reported and both protective compounds within the 

seaweed extracts, like antioxidants, and regulators of endogenous stress-responsive genes could be 

involved (Calvo et al., 2014). 

2.1.3 Inorganic compounds  

Chemical elements that promote plant growth but are not required by all plants are called beneficial 

elements (Pilon-Smits et al., 2009). The five main beneficial elements are Al, Co, Na, Se and Si, 

present in soils and in plants as different inorganic salts. These beneficial functions can be 

constitutive, like the strengthening of cell walls by silica deposits or expressed in defined 

environmental conditions, like pathogen attack for selenium and osmotic stress for sodium (du Jardin, 
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2015). Many effects of beneficial elements are reported by the scientific literature, which promote 

plant growth, the quality of plant products and tolerance to abiotic stress.  

2.1.4 Beneficial fungi 

Fungi interact with plant roots in different ways, from mutualistic symbioses to parasitism (Behie 

and Bidochka, 2014). Among the different forms of physical interactions and fungi taxa involved, 

the Arbuscule-Forming Mycorrhiza (AMF) are a widespread type of endomycorrhiza associated with 

crop and horticultural plants, where fungal hyphae penetrate root cortical cells and form branched 

structures called arbuscules (Bonfante and Genre, 2010; Behie and Bidochka, 2014). Other fungal 

endophytes, like Trichoderma spp. (Ascomycota) are able to live at least part of their life cycle away 

from the plant, to colonize roots and to transfer nutrients to their hosts (Behie and Bidochka, 2014).  

2.1.5 Beneficial bacteria 

With regard to the agricultural uses of biostimulants, two main types of bacteria should be 

considered: (i) mutualistic endosymbionts of the type Rhizobium and (ii) mutualistic, rhizospheric 

PGPRs (‘plant growth-promoting rhizobacteria’). PGPRs are multifunctional and influence all 

aspects of plant life: nutrition and growth, morphogenesis and development, response to biotic and 

abiotic stress, interactions with other organisms in the agroecosystems (du Jardin, 2015). 

2.1.6 Protein hydrolysates and other N-containing compounds 

Protein hydrolysates (PHs) are mainly produced by chemical and/or enzymatic hydrolysis of proteins 

contained in agro-industrial by-products from animal (i.e., leather, viscera, feathers, blood) or plant 

origin (i.e., vegetable by-products) (Maini, 2006; Schiavon et al., 2008; du Jardin, 2012). PHs have 

been identified to improve the performance of several horticultural crops, including increased shoot, 

and root biomass and productivity (Kunicki et al., 2010; Lisiecka et al., 2011; Paradikovic et al., 

2011; Colla et al., 2014; Ertani et al., 2014). Application of PHs to plant leaves and roots has been 

shown to increase Fe and N metabolism, nutrient uptake, and water and nutrient use efficiencies for 
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both macro and microelements (Cerdán et al., 2009; Ertani et al., 2009; Halpern et al., 2015). PHs 

could also interfere with the phytohormone balance of the plant, thereby influencing plant 

development due to the presence of bioactive peptides and precursors of phytohormone biosynthesis, 

such as tryptophan (Colla et al., 2014). Moreover, many scientific papers reported that the application 

of plant-derived PHs elicited auxin- and gibberellin-like activities and thus promoted crop 

performances (Schiavon et al., 2008; Ertani et al., 2009; Matsumiya and Kubo, 2011; Colla et al., 

2014). In addition, PH application has been also shown to avoid or reduce losses in production caused 

by unfavourable soil conditions and environmental stresses. These include thermal stress, salinity, 

drought, alkalinity, and nutrient deficiency (Botta, 2013; Cerdán et al., 2013; Ertani et al., 2013; 

Colla et al., 2014; Petrozza et al., 2014; Lucini et al., 2015; Visconti et al., 2015) (Figure 2). Overall, 

the effects of PHs are dependent on species/cultivar, environmental conditions, phenological stages, 

time and mode of applications (foliar vs. root) and leaf permeability to the biostimulant (Kauffman 

et al., 2007; Kunicki et al., 2010; Ertani et al., 2014). 

 

Figure 2|Protein hydrolysates. Main key mechanisms targeted by carbohydrate-, protein-, amino acid-, and lipid-based 

biostimulants (from Van Oosten et al., 2017). 
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Protein/peptides and free amino acid contents in PHs widely differ, according to the source of 

proteins. Besides amino acids and peptides, PHs contain other compounds that can contribute to the 

biostimulant action. These compounds include fats, carbohydrates, phenols, mineral elements, 

phytohormones and other organic compounds (e.g., polyamines) (Colla et al., 2015a). Moreover, 

plant-based PHs contain soluble carbohydrates and phenols, which play an important role in energy 

metabolism and oxidative stress defences. In contrast, animal-derived PHs lack carbohydrates, 

phenols and phytohormones. Mineral content is also affected by protein source, usually being higher 

in the products from plant-derived PHs (Colla et al., 2015a).  

2.1.6.1 Effects of protein hydrolysates on plant metabolism and physiology 

Amino acids and small peptides are absorbed by both roots and leaves and then translocated into the 

plant, as demonstrated by Watson and Fowden (1975), Soldal and Nissen (1978) and Matsumiya and 

Kubo (2011). Following root/foliar uptake, amino acids and peptides are transported from cell to cell 

and over long distances through the plant vascular system (xylem and phloem) to support plant 

metabolism and development. Amino acids represent in most plants the principal transport form for 

organic N, and they can be used directly for protein synthesis and other essential N compounds 

(Rentsch et al., 2007). Protein hydrolysates have also been shown to be effective in improving the 

enzymes involved in N and C metabolism (Ertani et al., 2013). Applications of PHs have been shown 

to promote the vegetative growth and macro- and micronutrient uptake in several horticultural crops, 

resulting in increased crop productivity (Halpern et al., 2015).  

2.1.6.2   Protein hydrolysates and abiotic stress tolerance 

The application of PHs and specific amino acids can induce plant defence responses and increase 

plant tolerance to a variety of abiotic stresses (Chen and Murata, 2008; Kauffman et al., 2007; Apone 

et al., 2010; Calvo et al., 2014). Several studies (Kauffman et al., 2007; Apone et al., 2010; Ertani et 

al., 2013) reported the positive effects exerted by PHs and amino acids in inducing secondary plant 

metabolism and increasing plant defence responses and tolerance to stresses, including salinity, 

drought and temperature and oxidative conditions. In a metabolomics study, Lucini et al. (2015) 

observed an increase of several secondary metabolites (e.g., terpenes, glucosinolates) after 
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application of a commercial plant-derived PH (Trainer®, commercialized by ItalPollina S.p.A., 

Rivoli Veronese, Italy) on lettuce plants grown under saline conditions. These secondary metabolites 

were involved in improving salinity tolerance of lettuce by modulating the signalling that activates 

defence pathways. 

The biostimulants effectiveness to counteract the adverse conditions depends on several factors, such 

as timing of application and the concentration of the substance used. Incorrect application timing and 

concentration rates, along with variability of the stress exposure, are the primary reasons for poor 

efficacies of the biostimulants (Fleming et al., 2019). Thus, the identification of the right time of 

biostimulant application is as important as the determination of the exact dose, in order to avoid 

waste of product, high production costs, and unexpected results (Bulgari et al., 2019). 

2.2 Biostimulants and phenotyping 

Considering all the above, it is easy to predict that biostimulants will have a huge importance in the 

future of agriculture. The biostimulants market was estimated to account for $2.6 billion in 2019 and 

is projected to reach $4.9 billion by 2025 at a Compound Annual Growth Rate (CAGR) of 11.24% 

during the forecast period. The primary drivers of this growth are: 

• the strong market demand for high-value crops across the globe; 

• the increasing need to support crop growth due to abiotic stress, arising from changing climatic 

conditions; 

• technological advancements by the key agricultural players in the world – such as India, 

Indonesia, Pakistan, Turkey, China, Brazil, Nigeria - that have led to high demand for biostimulant 

products (Biostimulants Market, 2020). 

However, as stated before, the major limiting step in process of implementation and the 

commercialization of new biostimulants are the limited resources for effective prediction of plant 
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specific responses to given biostimulant and therefore the challenge remains in unpredictable 

response of a crop to the specific substance. In fact, the mode of action of PHs has been proven to be 

dependent not only on the species the biostimulants are applied to, but also on the dose, the time and 

mode of application, and also the environmental conditions (Kauffman et al., 2007; Kunicki et al., 

2010; Ertani et al., 2014). Therefore, it is crucial to go through an in-depth testing of the product, 

before thorough validation and initiation of the commercialization process.  

In the last 5 years, high-throughput automated phenotyping techniques have gained a massive 

popularity in the biostimulant field, as means to unravel the mode of action of biostimulants in a fast 

and precise way. The first publication referring to keywords “biostimulants” and “phenotyping” are 

used together is a review from Arioli and co-workers (2015). In this review, they focus on the use of 

seaweed extracts in Australian agriculture, pointing out that phenotyping is an extremely promising 

technique to investigate optimal application rates and timing of application of biostimulants on 

plants. However, with the term “phenotyping” they refer only to the use of time-lapse photography 

to follow the development of root and shoot biomass after the application of the biostimulants. Two 

years later, in 2017, Burrell and co-workers developed the ‘Microphenotron’ platform, once again to 

unravel the effects of several biostimulant compounds on the root and shoot development of 

Arabidopsis plantlets. In their review from 2018, Rouphael and co-workers pointed out that the 

application of high-throughput automated technology in the biostimulant field has been extremely 

limited, referring only to a work from Petrozza et al. (2014), where tomato plants subjected to drought 

stress and treated with a commercial biostimulant were monitored using visible light (RGB), 

fluorescence, and near infra-red (NIR) cameras. The following 2 years have seen a steady rise in the 

number of peer-reviewed papers (Figure 3) focusing on high-throughput automated phenotyping 

technology to investigate the effects of biostimulants on different crops – tomato (Danzi et al., 2019; 

Mutale-joan et al., 2020), pepper (Dalal et al., 2019), soybean (Briglia et al., 2019), wheat (Danzi et 

al., 2019; Ben-Jabeur et al., 2020) and maize (Akhtar et al., 2020) – with a main emphasis on the 

alleviation of the effects of abiotic stresses on the final yield.  
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The main aim of this doctoral work is to add a valuable contribute to the field of PHs functional 

characterisation in plants, shedding light on the enormous potential of high-throughput automated 

phenotyping technology in the biostimulants field. 

 

2.2.1 Plant Biostimulant Characterization (PBC) Index.  

To estimate the mode of action of the PHs in a clear-cut way, in our work we used the Plant 

Biostimulant Characterization (PBC) index, developed by Ugena and co-workers (2018). The aim of 

the PBC index is to unambiguously evaluate the mode of action of a specific substance, allowing to 

investigate the outcome on multiple parameters at once and to compare the effects of different doses 

in diverse growing conditions. To obtain the PBC index, it is necessary to calculate the log2 of the 

ratio between treated and untreated plants for the chosen morpho-physiological parameters and for 

each concentration of the compounds and growth conditions (control or stress). The sum of the 

obtained values corresponds to a single numeric value that could categorize the compounds in a 

 

A. B. 

Figure 3| Biostimulants and phenotyping. Number of publications per year of publishing (A) and number of citations for the publications 
(B) having both “phenotyping” and “biostimulants” as keywords, for the last 5 years (from Web of Science, 2021). 
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straight-forward way (Figure 4): if positive, the effect of the substance is biostimulant-like; if 

negative, the effect is inhibiting. 

  

Figure 4| Plant Biostimulant Characterization Index. Scheme that illustrates the steps for calculating the PBC Index of a 
substance. 
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3. High-throughput automated plant phenotyping 

3.1 History of plant phenotyping 

In 2020, the International Plant Phenotyping Network (IPPN) has defined plant phenotyping as “the 

comprehensive assessment of complex plant traits such as growth, development, tolerance, 

resistance, architecture, physiology, ecology, yield, and the basic measurement of individual 

quantitative parameters that form the basis for more complex traits.” Plant phenotyping investigates 

the combined effect of the genotype and the environment on the plant phenotype, that is, the complex 

of all its quantitative and qualitative observable traits (biomass, root morphology, leaves and fruits 

characteristics, yield-related traits). The term “phenotype” was coined by the Danish plant scientist 

Wilhelm Johannsen (1857-1927), that performed experiments on the heritability of seed size in beans 

(Walter et al., 2015). Johannsen also stated that natural history has always been based on the 

observation of the phenotypes, long before this term was even invented. The observation of plant 

phenotype can be traced back to the first farmers that, around 12000 years ago, were already selecting 

the wild crops to domesticate according to their observable features (such as the increase in both seed 

size and number) (Vergauwen and De Smet, 2017), with no knowledge of the underlying genetic 

components that contributed to these qualities. However, the term ‘phenotyping’ begun to be used 

only in the 1960s. At the time, the measurement of morpho-physiological traits on plants was 

conducted with manual, time-consuming and often destructive methods.  

The first semi-automated and non-destructive instrument for the measurement of plant’s growth was 

most probably the auxanometer, developed by the German botanist and plant physiologist Julius von 

Sachs (1832-1897), with the objective of measuring the growth of plants during short periods (Beach, 

1914). In the following years Von Sachs’ assistant, Wilhelm Pfeffer (1845-1920), described a new 

method for the use of photography to study plant movements and growth (Pfeffer, 1907), developing 

the first method for an image-based, non-destructive method of plant phenotyping. In the wake of 

this idea, during the 1980s and 1990s several sensors and computer vision tools have been developed 

and became fundamental for quantifying plant traits with increasing accuracy. Image and time-lapse 

analysis have been used for growth analysis of in-vitro plants (Motooka et al., 1991; Smith and 



Introduction  

 

 

 

 

28 

Spomer, 1987) or for the measurement of elongation and movements of roots and shoots (Care et al., 

1998; Gordon et al., 1992).  

In the last years, further steps toward precision and automatization in measurement have been made, 

with the development of high-throughput phenotyping platforms. These platforms use robotics, 

precise environmental control and imaging technologies to assess plant growth and performance (Li 

et al., 2014). Different cameras and sensors can be implemented into high-throughput phenotyping 

platforms, with the objective of investigating plants’ phenotyping through the interaction between 

light and plants such as reflected photons, absorbed photons, or transmitted photons. A broad range 

of imaging cameras covering different portions of the electromagnetic spectrum is available to assay 

non-invasively a discrete number of plant traits. 

3.2 Sensors  

Plant phenotyping based on spectral reflection information relies on the properties of the light 

reflected, absorbed or transmitted by the tissues of the plant. The canopy spectral signature is 

described by the ratio of the intensity of reflected light to that of the illuminated light for each 

wavelength in visible (400–750 nm), near-infrared (750–1200 nm) and shortwave infrared (1200–

2400 nm) spectral regions. The way healthy plants interact with electromagnetic radiation is different 

from that of suffering or unhealthy plants; therefore, the measurement of the light reemitted or 

absorbed by plants in different wavelengths provides valuable information on plants’ properties, 

especially those that cannot be observed by naked eye (Li et al., 2014).  

Different sensors have been developed to measure the interaction of plant tissue with light at different 

wavelengths, in controlled or semi-controlled environment (e.g., growth chambers, greenhouses) or 

field conditions. Our trials were exclusively performed in growth chambers and greenhouses; 

therefore, in this section we are not discussing the use of imaging sensors in field phenotyping 

(Figure 5).  
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3.2.1 RGB cameras 

The visible band cameras (400-700 nm) are commonly defined as RGB (Red, Green and Blue) 

cameras, since the raw data of an image is typically presented in spatial matrices of intensity values 

corresponding to photon fluxes in the red (~600 nm), green (~550 nm), and blue (~450 nm) spectral 

bands of visible light. In RGB images, plant leaves appear green because green light (500–560 nm) 

is less efficiently absorbed by chlorophylls a and b than red or blue light, and therefore green light 

has a higher probability to become diffusely reflected from cell walls than red or blue light (Virtanen 

et al., 2020). RGB image data is most commonly used to measure plant size and biomass, but also 

colour, shape and leaf movements (Pandey et al., 2017). In fact, image-processing algorithms are 

used to identify pixels that are plant-derived, and the identified object is used for measuring 

morphological (shape, structure), geometric (length, area), and color properties of each plant 

(Fahlgren et al., 2015). Repeated RGB imaging throughout the plant life cycle can provide 

information about the growth rate of the plant and can be used to estimate the sum of stress response 

mechanisms. RGB imaging has been used to monitor plant responses to salinity (Awlia et al., 2016; 

Atieno et al., 2017; De Diego et al., 2017), drought (Berger et al., 2010; Neilson et al., 2015; Fisher 

et al., 2016), cold (Humplík et al., 2015a), heat (Gao et al., 2020; Abdelhakim et al., 2021), nutrient 

deficiency (Zhao et al., 2005; Naik et al., 2017) and a series of other abiotic stresses.  

Figure 5| Cameras used in plant phenotyping and their wavelengths. Principal sensors used in plant phenotyping and the 
light wavelengths they are able to measure (from Kolhar and Jagtap, 2021). 
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3.2.2 Chlorophyll fluorescence imaging 

Chlorophyll fluorescence is a non-invasive measurement of photosystem II (PSII) activity. Because 

of the high sensitivity of PSII to environmental conditions and biotic and abiotic stresses and 

increased availability of the suitable technological solutions, the measurement of chlorophyll 

fluorescence has become more and more common. Chlorophyll fluorescence is based on the principle 

that the light absorbed by plants has to either be used up completely or dissipated, to avoid oxidative 

damages to the tissues. This process is called energy “quenching” (Ruban, 2016). In quenching, light 

adsorbed can be either used to perform photosynthesis (photochemical quenching), dissipated as 

heat (non-photochemical quenching) or re-emitted as light in the red wavebands (chlorophyll 

fluorescence or chlorophyll quenching) (Figure 6). These three processes occur in competition; 

hence, the measurement of the light re-emitted in longer wavebands can provide information about 

the amount of light used for photosynthesis (Baker, 2008).  

Figure 6|Photosystem II and usage of light. Simple model of the three possible fates of light energy absorbed by 

photosystem II (PSII) (from Baker, 2008). 

Cameras for the detection of chlorophyll fluorescence in high-throughput automated phenotyping 

platform belong mostly to the category of the Pulse Amplitude Modulated (PAM) Fluorometers. 

With this instrument, an initial light pulse, of an intensity too low to induce photosynthesis but high 
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enough to elicit a minimum value for chlorophyll fluorescence (F0) is followed by a series of rapid 

pulses of very high intensity saturating light that overwhelm the acceptor pools, resulting in a rapid 

increase in fluorescence due to a lag phase before CO2 fixation process occurs; this event leads to 

sequential quenching of fluorescence by activation of quenching mechanism (photochemical and 

non-photochemical) (Ritchie, 2008). In healthy and non-stressed dark-adapted plants there is no 

NPQ; therefore, the maximal possible value for fluorescence, Fm, is recorded. The difference between 

F0 and Fm is the variable fluorescence, Fv. Fv/Fm quantifies the maximum quantum yield of PSII. For 

unstressed leaves, the value of Fv/Fm is highly consistent, with values of ~0.83 (Murchie and Lawson, 

2013). 

A leaf in continuous actinic light has a fluorescence level termed F’, which rises to the maximal 

fluorescence level, Fm’, when the leaf is exposed to a brief saturating light pulse. The difference 

between Fm’ and F’ is designated Fq’ (Baker, 2008). Measurements of Fq’/Fm’ (also defined as 

φPSII in literature) provide a rapid method to determine the PSII operating efficiency under different 

light conditions. Another important fluorescence parameter is represented by Fv’/Fm’ (where Fv’ 

corresponds to F0’-Fm’), that estimates the maximum quantum yield of PSII photochemistry that 

can be achieved in the light-adapted leaf (Baker, 2008). While Fv’/Fm’ can be used to evaluate the 

contribution of changes in non-photochemical quenching to changes in PSII operating efficiency, 

levels of nonphotochemical quenching are often assessed by the parameter NPQ. NPQ is calculated 

from (Fm/Fm’) − 1 and since it compares non-photochemical quenching from a dark-adapted leaf at 

Fm to that at Fm’ for the leaf exposed to actinic light, it can only be measured for dark-adapted samples 

(Baker, 2008). 

The modulated measuring systems proved to be reliable enough to have been used without 

undergoing any substantial changes for a relatively long period of time (Schreiber et al., 1986). Then, 

the application of Charge-Coupled Device (CCD) cameras to chlorophyll fluorescence, that 

combined the kinetic capability of the PAM Fluorometer with high-resolution imaging of the plants 

(Nedbal, 2000), has allowed to record the photosynthetic activity of a leaf, allowing the study of 

heterogeneity on leaf lamina and the screening of a large numbers of samples (Guidi and 

Degl’Innocenti, 2011). The FluorCam devices, developed by PSI in 1996, represent the first 

commercially available fluorescence imaging systems and it was firstly described by Nedbal and co-
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workers in 2000. FluorCam work with weak modulated measuring light in combination with 

saturating light flashes and actinic light (light that drives photosynthetic electron transport) according 

to the PAM-principle and thereby enable the separation of photochemical and non-photochemical 

fluorescence quenching processes (Tschiersch et al., 2017).  

Imaging-based devices for chlorophyll fluorescence measurement were successfully used to monitor 

the effects on photosynthetic efficiency of abiotic stresses, such as high light (Barczak-Brzyzek et 

al., 2017; Serôdio et al., 2017), drought (Yao et al., 2018; Marchetti et al., 2019; Abdelhakim et al., 

2021), salinity (Awlia et al., 2016; Adhikari et al., 2019), high or low light intensity (Shin et al., 

2021; Novák et al., 2021) and sub-optimal temperatures (Abdelhakim et al., 2021; Novák et al., 

2021). 

3.2.3 Thermal imaging 

IR thermography ‘visualises’ surface temperature distribution of an object by focusing the longwave 

radiation (~8–14 mm wavelength range) emitted by the object onto a temperature sensitive detector 

(Sirault et al., 2009). The detection of thermal infrared emissions by plants has long been used for 

studies on crops’ surface temperature, as indicator of water or nutrients stress and stomatal 

conductance (Jones, 2004; Jones et al., 2009; Maes and Steppe, 2012); in fact, a major determinant 

of leaf temperature is the rate of evaporation or transpiration from the leaf. The cooling effect of 

transpiration arises because a substantial amount of energy is required to convert liquid water to 

water vapour, and this energy is then taken away from the leaf in the evaporating water and, thus, 

cools it (Jones et al., 2009). Stomatal closure is known to be a sensitive response to soil water deficit, 

occurring even in the absence of any change in plant water status, as a result of root signalling (Davies 

et al., 2000). However, the traditional methods of measuring stomatal conductance (using porometers 

or infra-red gas analysers) are time-consuming, labour-intensive, and only give point measurements 

(Grant et al., 2007). Thermal imaging systems, on the other hand, allow rapid and non-invasive 

collection of data, integrated over the area of individual leaves or entire canopies. They may reveal 

spatial heterogeneity within or between leaves, and can be used repeatedly on the same leaves to 

monitor responses over time, without affecting the natural behaviour of the leaves. The increase in 
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temperature is an early symptom of stress on crops, and its measurement has been used to detect the 

effects of heat (Janka et al., 2013; Abdelhakim et al., 2021), salinity (Sirault et al., 2009; Siddiqui et 

al., 2014) and drought (Grant et al., 2007; Munns et al., 2010; Martynenko et al., 2016; Lee et al., 

2019) on different plant species.  

3.2.4 HyperSpectral Imaging 

The term “hyperspectral imaging” was first mentioned by Goetz et al. (1985) in a work focusing on 

remote sensing (i.e., the observation of a target by a device without physical contact). The real story 

of hyperspectral imaging applied to plants began in 1987, when Alexander Goetz and his colleagues 

of the NASA’s Jet Propulsion Laboratory (JPL), developed their hyperspectral Airborne 

Visible/Infrared Imaging Spectrometer, AVIRIS. AVIRIS was the first imaging spectrometer to 

measure the solar reflected spectrum from 400 nm to 2500 nm with 10 nm intervals (Green, 1998). 

Because of that first device and the similar ones that followed, a common definition of hyperspectral 

imaging is the simultaneous acquisition of spatial images in many spectrally contiguous bands 

measured from a remotely operated platform (Schaepman, 2007). The combined nature of imaging 

and spectroscopy in a hyperspectral imaging enabled this system to simultaneously provide physical 

and geometrical features of the product (i.e., shape, size, appearance, and colour) as well as the 

chemical composition of the object through spectral analysis (Elmasry et al., 2012). A spectral image 

(that can be hyperspectral, multispectral or ultraspectral) is a stack of images of the same object, each 

at a different spectral narrowband. The difference between these classes is the number of bands and 

the form of the spectrum obtained. The numbers of spectral bands in case of multispectral imaging 

systems are very few (normally less than 10 bands), while hundreds of contiguous and regularly 

spaced bands are the main feature of hyperspectral images (Elmasry et al., 2012). Therefore, 

multispectral imaging systems do not provide a real spectrum in every image pixel; meanwhile each 

pixel in the hyperspectral image has a full spectrum (Ariana and Lu, 2008). 

Usually, not all the wavelengths that compose the spectrum are informative in plant science. Useful 

spectral regions have been identified, such as the transition from red to near-infrared, the peak of 

green reflectance, and the water absorption bands around 970 nm, 1600 nm and 2100 nm (Fiorani et 
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al., 2012). These spectral features can be used to quantify vegetation indices that usually relate the 

reflected intensity of a reference band to that of spectral bands responding to specific characteristics 

of plants or canopies. Two of the most commonly used indices are the normalized difference 

vegetation index (NDVI) comparing the red and the near infrared reflectance (closely related to leaf 

chlorophyll content) and the photochemical reflectance index (PRI) that correlates with the 

functional status of non-photochemical energy protection (Fiorani et al., 2012). Spectral indices 

proved to be an excellent instrument for detection of abiotic stresses on crops, such as low nitrogen 

availability (Zhao et al., 2005) and salinity (Lara et al., 2016; El-Hendawy et al., 2017; Sytar et al., 

2017), as well as for the estimation of nitrogen content (Thorp et al., 2017; Ye et al., 2019; Banerjee 

et al., 2020).  

3.2.5 Integrative phenotyping 

The three main traits of a plant phenotyping system, as described by Dhont and co-workers in their 

review from 2013, are: 

1. throughput: number of individuals that can be analysed for specific trait/s in a certain span 

of time. In this case, the adjective “high-throughput” refers to platforms that can image 

hundreds of plants per day; 

2. resolution: it can be either spatial, referring to the level of organization of the subject chosen 

for the analysis – from a single cell to an entire plant population – or temporal, referring to 

the time intervals at which the measurements are repeated, and for how long; 

3. dimensionality: it refers to the diversity of phenotypic traits measured at different spatial 

and temporal resolutions and in different categories, such as plant structure, physiology, and 

performance (Großkinsky et al., 2015).  

Dimensionality is especially interesting when working with complex high-throughput automated 

phenotyping platforms. In fact, the users can choose between a single imaging method or an 

integrative approach, signifying simultaneous use of some or all the sensors available in the system 

(Kolhar and Jagtap, 2021). The use of single sensors enables the measurements of simple traits but, 
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from a technical point of view, shows limitations in the determination accuracy of more complex 

traits (Busemeyer et al., 2013). 

While traditional phenotyping mostly focused on yield and yield-related traits, plant scientists are 

now focusing on adaptive and evolutionary traits of crops to external stressors (Pratap et al., 2019). 

Therefore, fusing multiple data (e.g., colour data, morphological data, spectral data and so on) 

provided by several sensors will provide a more complex response to the question addressed by the 

researchers regarding plant growth, development, responses to environment, as well as selection of 

appropriate genotypes in molecular breeding strategies (Humplík et al., 2015b). The combinate use 

of multiple sensors offers opportunities to identify spectral markers associated with early signs of 

plant physiological responses (Mochida et al., 2018). For this reason, many studies have already 

combined spectral data obtained from different imaging sensors. RGB imaging combined with 

kinetic chlorophyll fluorescence imaging was used on Arabidopsis plantlets under salt stress (Awlia 

et al., 2016) and on barley subjected to drought (Marchetti et al., 2019). The further integration of 

thermal imaging has recently helped researchers investigate the effects of heat stress on crops (Gao 

et al., 2020; Abdelhakim et al., 2021). Integrated phenotyping techniques were also used to study the 

effects of biostimulants in terms of early detection of plant physiological stresses (Petrozza et al., 

2014). The use of multiple sensors can also be used for more complex applications: for example, Shi 

and co-workers (2020) have developed an algorithm that uses thermal imaging in combination with 

RGB imaging for monitoring fruit surface temperature to manage apple sunburn. 

The integration of the information provided by the aforementioned imaging sensors allows a more 

in-depth analysis of plant structural characteristics, but also requires high-speed computers (Omari 

et al., 2020) and generates a huge quantity of multi-dimensional phenotypic data (Li et al., 2020). 

3.3 Integration of phenomics with metabolomics 

Metabolomics is defined as the comprehensive study of metabolites, small molecules (≤1500 Da in 

size) which participate in different cellular events in a biological system (Yang et al., 2021). 

Metabolomics is particularly important in plant systems, because plants produce more metabolites 
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than either animals or microbes. The secondary metabolites produced by plants are helpful in 

responses to environmental stress. Thus, metabolomics is a promising area in stress-physiology, 

focusing on plant response to numerous abiotic stresses in relation to their metabolite changes 

(Brunetti et al., 2013) and providing a comprehensive understanding of the biochemical status of an 

organism, e.g., to inform on the processes involved in disease progression or environmental 

adaptation (Hamany Djande et al., 2020). It is therefore clear why, in the late years, there is growing 

interest in combining phenomics data with other “-omics” data, such as metabolomics (Yang et al., 

2021).  However, one current challenge is integrating additional technologies to provide a multi-

omics approach to study biological mechanisms and their response to environmental stresses for 

important agronomic traits (Moreira et al., 2020); in fact, the bigger the amount of data, the more 

challenging the statistical analysis and the interpretation of the results. For phenotyping projects that 

engage several hundred samples, it can be useful to use more oriented analysis. Preliminary 

metabolomics work might indicate which substances are the main contributors to the phenotype of 

interest and lead to a focused analysis that is more productive and cost effective for phenotyping than 

previous methods (Sytar et al., 2018). In general, the term ‘metabolomics’ covers two basic 

approaches. First, the non-targeted approach, which aims to determine as many compounds in the 

sample as possible. This approach may lead to discoveries of new active molecules, but it is slower 

and more expensive than the second approach. The second, targeted, approach aims at research for 

practical applications, such as food or pharmaceutical needs, targeting a single, or relatively narrow, 

well-defined group of compounds (e.g., amino acids, phenolics) (Verpoorte et al. 2005). Depending 

on the target metabolites, several possible non-invasive techniques may be used in the early stages 

of metabolomics research.  

3.4 Future of plant phenotyping 

Integrative phenotyping, either if it means to integrate data from different sensors or from different 

“-omics” technologies, generate a huge amount of data. Therefore, according to the experts, the future 

progress in image-based plant phenotyping will require a combined effort in image processing for 

feature extraction and machine learning for data analysis (Ubbens and Stavness, 2017). In fact, the 

application of computer vision and pattern recognition technologies to plant phenotyping can reduce 
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the work intensity of the scientists. Machine learning methods are already used for simple image-

based tasks, such as object detection and localization or image classification (LeCun et al., 2015). 

However, more complex tasks such as leaf/fruit counting, injury ratings, disease detection and age 

estimation add a higher level of abstraction which requires a more complicated image processing 

pipeline; furthermore, at the present time the image-based phenotyping tools are often also only 

applicable for processing pictures of individual plants taken under highly controlled conditions. In 

response to the limited flexibility of classical image processing pipelines for complex phenotyping 

tasks, machine learning techniques are expected to take a prominent role in the future of image-based 

phenotyping (Tsaftaris et al., 2016). Algorithms based on deep learning, an emerging subfield of 

machine learning, often show more accurate performance compared with traditional approaches to 

computer vision-based tasks, including plant identification (Mochida et al., 2018). Furthermore, deep 

learning simplifies the process of extracting phenotypic features and improves plant phenotyping 

applications greatly. However, at the present time these technologies show several limitations, such 

as the availability of high-quality image to train the algorithm, and the robustness of said algorithms, 

that do not generalize well due to the large differences in colour, shape, size and other characteristics 

between different detection objects (Li et al., 2020). The future research in the field is therefore aimed 

at collecting better and more diverse material for the training of more complex and robust algorithms.  
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4. Abiotic stresses 

Agriculture is one of the most climate-dependent socio-economic sectors, since most of the 

agriculture productivity and quality are directly dependent on different climatic factors (McArthur, 

2016). In fact, around 60–70% of the global yield losses in agriculture are estimated to be attributable 

to abiotic stresses (Yakhin et al., 2017). In agriculture, an abiotic stress is defined as environmental 

conditions that reduce growth and yield of a crop below optimum level (Cramer et al., 2011). Plant 

responses to abiotic stresses can be elastic (reversible) and plastic (irreversible) (Skirycz and Inze, 

2010). In addition, the level and duration of stress (acute vs chronic) can have a significant effect on 

the complexity of the response (Tattersall et al., 2007). The most severe abiotic stresses, namely the 

ones that cause most of the damages to the main crops, are related to water scarcity and high salinity 

content of irrigation waters (Vernieri et al., 2006).  

4.1 Drought stress 

Water deficiency, assumed to be soil and/or atmospheric water deficit, is a severe environmental 

stress, and has a negative impact on crop yields worldwide (Pennisi, 2008). Due to the increasing 

water needs required by agriculture, pollution of natural water resources, and climate change 

scenarios, for the next few years, issues related to water scarcity and reduction of irrigation water 

availability could became preponderant (Ferrara et al., 2011). The severity of drought is 

unpredictable as it depends on many factors such as occurrence and distribution of rainfall, 

evaporative demands and moisture storing capacity of soils (Wery et al., 1994). Water deficit is a 

multidimensional stress affecting plants at various levels of their organization (Yordanov et al., 

2000). Thus, the effects of stress are often manifested at morpho-physiological, biochemical and 

molecular level (Aimar et al., 2011).  

Stomatal closure, together with leaf growth inhibition, are among the earliest responses to drought, 

protecting the plants from extensive water loss, which might result in cell dehydration and death 



Introduction  

 

 

 

 

39 

(Chaves et al., 2003).  It is clear that stomata close progressively as drought progresses, followed by 

a parallel decline in net photosynthesis. Drought stress affects photosynthesis also through damages 

to the photosynthetic apparatus and reduction in the activities of Calvin cycle enzymes, which are 

important causes of reduced crop yield (Monakhova and Chernyadèv, 2002). However, there are 

various morphological, biochemical and physiological mechanisms that plants can use to maintain 

growth in conditions of low water supply (Berger et al., 2010). Classically, plant resistance to drought 

has been divided into escape, avoidance and tolerance strategies (Levitt, 1972; Turner, 1986). Plants 

that escape drought exhibit a high degree of developmental plasticity, being able to complete their 

life cycle before physiological water deficits occur (Chaves et al., 2003). While natural selection has 

favoured mechanisms for adaptation and survival, breeding activity has directed selection towards 

increasing the economic yield of cultivated species. Minimizing the ‘yield gap’ and increasing yield 

stability under different stress conditions are of strategic importance in guaranteeing food for the 

future (Khan et al, 2015).  

In our work, we have analysed the responses to drought stress of lettuce and tomato. 

Lettuce (Lactuca sativa L.) is a leaf-edible vegetable that shows extreme sensitivity to drought due 

to shallow root system (Knepper and Mou, 2015) and high-water content (95 to 97%). Apart from 

the reduction of cell elongation, interruption of the water flow may also lead to changes in root 

morphology, such as decrease in specific root length and surface area, with a consequent reduction 

in nutrient uptake capacity. Due to drought stress, final biomass and final yield of lettuce could be 

seriously reduced. Most commercial tomato (Lycopersicum esculentum Mill.) cultivars are drought 

sensitive at all stages of plant development, with seed germination and early seedling growth being 

the most sensitive stages (Foolad et al., 2003). The amount of water required daily for tomato in 

different growing systems varies from 0.89 to 2.31 m3/plant/day (Tiwari, 2003).  

Losses in agricultural yield due to water stress probably exceed the losses inflicted by all other causes 

combined. Therefore, at present, with the aim of improving agricultural yield within the earth’s 

limited resources, it is necessary to make the plants robust enough to give a high yield when growing 

in stressed or sub-optimal environments (Sánchez-Rodríguez, 2010).  
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4.2 Salinity stress 

Salinity is a soil condition characterized by a high concentration of soluble salts. Soils are classified 

as saline when the ECe is 4 dS/m or more (USDA-ARS. 2008), a value that significantly reduces the 

yield of most crops. Because NaCl is the most soluble and widespread salt, it is not surprising that 

all plants have evolved mechanisms to regulate its accumulation and to select against it in favour of 

other nutrients commonly present in low concentrations, such as K+ and NO3
− (Munns, 2005). 

Agricultural productivity is severely affected by soil salinity because salt levels that are harmful to 

plant growth affect large terrestrial areas of the world (Yamaguchi and Blumwald, 2008). It was 

estimated that about 20% (45 million ha) of irrigated land, producing one-third of the world’s food, 

is salt-affected (Shrivastava and Kumar, 2015). Soil salinity affects an estimated 1 million hectares 

in the European Union, mainly in the Mediterranean countries, and is a major cause of desertification 

(Machado and Serralheiro, 2017). Low rainfall, high evaporation, poor water management and the 

indiscriminate use of huge quantities of chemical fertilizers have also exacerbated growing 

concentrations of salts in the rhizosphere (Mahajan and Tuteja, 2005). It has been estimated that more 

than 50% of the arable land would be salinized by the year 2050 (Jamil et al., 2011). 

Most of the vegetable crops are glycophytes and, therefore, highly susceptible to soil salinity 

(Shannon and Grieve, 1999). Moreover, the salinity response of crops throughout their growth cycle 

may change in relation to several interacting variables, such as the plant developmental stage, the 

salt concentration and the time of exposure (Munns, 2002). The general effect of salinity is to reduce 

the growth rate (Shannon and Grieve, 1999). Soil salinity stresses plants in two ways: high 

concentrations of salts in the soil make it harder for roots to extract water (osmotic effect), and high 

concentrations of salts within the plant can be toxic (ionic effect). In the first, osmotic phase, which 

starts immediately after the salt concentration around the roots increases to a threshold level, the rate 

of shoot growth falls significantly. In the second, ionic phase, toxic concentrations of salts take time 

to accumulate inside plants before they affect plant function (Munns and Tester, 2008). The most 

readily measurable plant response to salinity is a decrease in stomatal aperture. Stomatal responses 

are undoubtedly induced by the osmotic effect of the salt outside the roots (Fricke et al., 2004). A 

decrease in maximum quantum yield of PSII and an increase in non-photochemical quenching have 
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been recorded in a number of species subjected to salinity stress, such as barley and maize (Kalaji 

and Rutkowska, 2004).  

Plants differ greatly in their tolerance of salinity. While some have relative resistance, others are 

sensitive to even low levels of salinity (Afzal et al., 2005). Lettuce is a leafy vegetable considered as 

“moderately sensitive” to the effects of salinity, with tolerance differing significantly between 

varieties (Maas, 1990). The production is proven to decline by approximately 13% by each unit of 

increase in salinity threshold, which is 1.3 dS m-1 (Maas, 1986). On the other hand, a moderate 

salinity stress is proved to improve the fruit quality of tomato by increasing the level of total soluble 

solids, including sugars, organic acids, and amino acids in fruits (Krauss et al., 2006; Saito et al., 

2008), but to also reduce the final fruit yield (Saito and Matsukura, 2015). However, it was found 

that short-term (<21 days) salinity stress during any of the growth stages did not affect tomato 

growth, and during the vegetative stage did not affect yield. Salinity stress during the flowering and 

fruiting stages caused a reduction in tomato yield, which was due to a reduction in the number of 

fruits produced, rather than the fruit size (Zhang et al., 2016).  
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Aim of the thesis 

This doctoral work was performed in the frame of the European Union’s Horizon 2020 research and 

innovation program “Solar Energy to Biomass (Se2B) - Optimisation of light energy conversion in 

plants and microalgae”, funded by the Marie Skłodowska-Curie grant agreement No 675006 and in 

frame of the PRIN project no. 2017FYBLPP “Use of Protein-HydrOlysates as BiOstimulants of 

vegetable cropS: elucidating their mode of action and optimizing their effectiveness through a 

multidisciplinary approach – PHOBOS”, funded by the Italian Ministry of Education, Universities 

and Research.  

The main aim of the work was to develop and validate an effective and reproducible protocol to 

characterize the mode of action of biostimulants of diverse origins on crops by using high-throughput 

automated plant phenotyping and to validate this evaluation through metabolomic analysis. The 

experimental work was conducted mainly in the Research Centre of Photon Systems Instruments 

(PSI, Drasov, Czechia) using different automated phenotyping platforms developed by PSI itself and 

partially in the Centre of the Region Haná for Biotechnological and Agricultural Research (Czech 

Advanced Technology and Research Institute, Olomouc, Czechia) in the group of Dr. Lukáš Spíchal.  

Metabolomic analysis have been conducted in the Department for Sustainable Food Process 

(DiSTAS, Catholic University of the Sacred Heart, Piacenza, Italy) by the group of Prof. Luigi 

Lucini.  

The main goal of this work was to test the activity of a set of biostimulants on different plant species 

(wheat, Arabidopsis, lettuce and tomato), applying the biostimulants in different doses by using 

different methods of application and primarily quantitatively evaluating their mode of action 

throughout the entire life cycle of the plants. The presented approach can be divided into three phases, 

referring to the developmental stage of the plant at which the biostimulants were applied and the 

mode of action was assessed (Figure 7):  
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1. Seed stage referring to germination assay on wheat seeds; seeds coated with different 

biostimulants in 2 doses were cultivated in control conditions and subjected to salt stress – Results, 

Chapter 1; 

2. Seedling stage referring to in-vitro assay on Arabidopsis plantlets; plantlets originated by 

seeds primed with 11 different biostimulants in 4 doses were cultivated in control conditions and 

subjected to salt stress – Results, Chapter 2; 

3. Mature crops stage referring to assays on plants of lettuce and tomato at vegetative phase, 

either sprayed or watered with solutions of 11 biostimulants in 1 dose and subjected to drought or 

salt stress – Results, Chapter 3. 

Using an array of image-based sensors implemented in the PlantScreenTM phenotyping platform of 

PSI Research Centre, different morpho-physiological traits were analysed in the given assay stage, 

crop and condition. The values of the treated plants were then compared to the controls, to 

quantitatively evaluate the response of the plants to different abiotic stresses and the relative 

variations in mode of action of the different biostimulants in the given environmental conditions. 

Figure 7| From seeds to crops. The three different stages of the doctoral work: observation of the biostimulants effects on 
seeds, seedlings and mature crops. 
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The sum of each normalized trait in each concentration of the substance and growing condition 

(control and stress) was then used for the calculation of the Plant Biostimulant Characterization Index 

(PBC). Developed by Ugena and co-workers (2018), this index focuses on a straight-forward 

characterization of the mode of action of each substance. According to the PBC value we could 

effectively categorise the biostimulant substances as:  

1. growth promoter; 

2. growth inhibitor; 

3. stress alleviator 

4. growth promoter and stress alleviator. 

The best performing compounds were further characterised by in-depth targeted and untargeted 

metabolomic analysis of the plants treated with the given substance, concentration and condition.  

Finally, the complex sets of data obtained from the two omics approaches were integrated with the 

help of multivariate statistical analysis in order to extract the relevant information and identify the 

morpho-physiological traits that were influenced the most by the PHs applications, also highlighting 

the different responses of the two species.   
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Results 

1. Chapter 1 

Seed – Emergence assay in coated wheat seeds 

1.1   Introduction 

In annual plants life cycle, seedling emergence is the most fragile phase. Many environmental factors 

can influence emergence time, therefore impacting on plant survival and growth (Mercer et al., 

2011). It is hence clear that this phase is particularly vulnerable to environmental stresses; one among 

them, soil salinity (Zhang et al., 2010). High osmotic pressure of the soil, caused by an elevate salt 

concentration in the soil solution, creates a condition similar to drought, in which water can hardly 

be extracted from the soil. This reduces the seeds capacity for imbibition, therefore delaying or 

hindering their germination. Furthermore, the absorption of excess Na+ and Cl− ions causes toxicity 

in the plantlets tissue, deterring the cells division and, therefore, the possibilities of successful 

establishment of the seedlings (Mwando et al., 2020).  

To increase the germination rate, even in adverse environmental conditions, it is essential to improve 

the seeds quality. One of the most common methods to increase seeds viability is seed coating, a 

technique proven to improve emergence and establishment of vegetables (Serena et al., 2012). 

Coating mixtures used on seeds may contain fungicides, fertilizers or biostimulants (Qiu et al., 2020). 

Commonly applied biostimulants include microbial inoculants, beneficial bacteria and fungi, 

nitrogen containing compounds, biopolymers, and plant extracts (Rouphael and Colla, 2018). If 

compared with the most common method of biostimulants application, foliar spray, seed coating 

provides an opportunity for reduced application rate per hectare, reducing the human labour and time 

needed for repeated foliar applications (Amirkhani et al., 2016). Furthermore, it allows to investigate 
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the effects of the biostimulants when they are applied in a very early phase, prior the emergence of 

the plantlet, and to evaluate their effect on a very delicate phenological stage.  

However, manual scoring of seeds germination rate is time-consuming and laborious. To increase 

the scoring rate and make the process more effective and precise, Ugena and co-workers (data 

unpublished) used an automated plant phenotyping platform equipped with a RGB camera to develop 

a high-throughput bioassay that monitors seedling emergence under saline conditions by automated 

detection of the first appearance of a coleoptile (first green pixel). They further focused on different 

aspects of the emergence phase: final germination rate, time lag and emergence synchronicity, 

developing a multidimensional analysis of the emergence curves. They optimized their method using 

seeds primed with single stress-related molecules (spermine, spermidine and putrescine) applied at 

different concentration.  

We have adjusted the methodology developed by Ugena et al. for the screening of a population of 

seeds coated with complex biostimulant compounds. The biostimulants used were carefully selected 

protein hydrolysates of plant origin (soybean or pea), algae extracts (Ascophyllum nodosum) and 

extracts from beneficial fungi (mycorrhizal fungi and Trichoderma atroviride). The coated seeds 

were cultivated for 12 days in controlled environmental conditions after being watered either with 

plain water or a 150 mM NaCl solution. The seeds were scored twice a day using PlantScreenTM 

XYZ System, a RGB camera mounted on robotic arms that moves on the Cartesian axes. The RGB 

images were then analysed to monitor the emergence and the early growth of the plantlets. Using this 

very simple and rapid scoring approach, in the frame of two weeks we could classify the substances 

as Germination Promotors or Stress Alleviators, according to their effects on the emergence of the 

coated seeds. We were able to identify one of the newly-developed biostimulant as the best 

performing substance, both in control and in salt stress conditions. In our work, we show that our 

multidimensional analysis of the emergence curves provides useful information related to the 

response of the wheat population to the coating with 6 different biostimulants, over a range of 

concentrations, in control and salt stress conditions.  
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1.2  Materials and methods 

6 biostimulants of different origins, provided by Hello Nature Inc. (former Italpollina), were applied 

as film coating on seeds of Triticum aestivum cv Bandera. The 6 products, diluted in water at different 

concentrations, were sprayed on the seeds using 2 L of solution per 100 kg of seeds. The description 

and the concentrations of the substances used for the coating are listed in Table 1.  

Table 1| List of biostimulants used for seeds coating. The substances are listed according to the letter code 

used in the trial. Origin and concentration of each substance are included. 

 

300 seeds coated with each substance in given dose were distributed between two square Petri dishes 

containing water-soaked filter paper and stratified in the dark at 4°C for 16 hours. Afterwards, 26 

nursery trays TEKU IP 3050/160 T provided with 110 holes, each one filled in with soil (Substrate 

2, Klassmann Deilmann, Geeste, Germany), were cut to fit into hydroponic inserts for standard 

PlantScreenTM measuring trays Figure 1).  

Code Composition Concentrations Description
80 g/100 kg of seeds

160 g/100 kg of seeds

80 ml/100 kg of seeds

320 ml/100 kg of seeds

80 ml/100 kg of seeds

320 ml/100 kg of seeds

80 ml/100 kg of seeds

320 ml/100 kg of seeds

80 ml/100 kg of seeds

320 ml/100 kg of seeds
A Ascophyllum nodosum Experimental product

H
Protein hydrolysate from 
legumes + plant extract

320 ml/100 kg of seeds
Commercial product 

(Heptamin®)

B Pea seeds extract Experimental product

TA
Soybean extract + 

Ascophyllum nodosum
Experimental product

C
Mycorrhizal fungi and 

Trichoderma atroviride
Commercial product 

(Coveron®)

T Soybean extract
Commercial product 

(Trainer ®)
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After the sowing of the seeds, one per hole, each tray was watered from the bottom up to its full field 

capacity, either with tap water or with a saline solution (150 mM NaCl). Afterwards, all trays were 

given 1 L of tap water every third day until the end of the experiment.  

 

Figure 1|Seeds preparation. On top: stratified coated seeds on wet filter paper: On bottom: nursery tray with 110 holes 

filled with Klassman 2 substrate, in which the seeds were then sown. 

1.3.1 Phenotyping protocol and growing conditions 

One hour after the first watering, the trays were moved into the OloPhen platform that uses 

PlantScreenTM XYZ System (Photon Systems Instruments, Drasov, Czech Republic), installed in a 

growth chamber with a controlled environment and cool-white LED lights. The environmental 

conditions were 22◦C/20◦C in a 16/8 h light/dark cycle, an irradiance of 120 µmol photons of PAR 

m−2 s−1 and a relative humidity of 60%.  
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The PlantScreenTM XYZ system consists of a robotically driven arm holding an RGB camera that 

moves on the Cartesian axes and a growing table with a total area of approximately 7 m2, where the 

trays were positioned in fixed places. The XYZ robotic arm was automatically moved above the 

growing table to take RGB images of the single trays from the top (Figure 2). Starting from the first 

measure, RGB pictures were taken every second hour over the twelve days of the experiment.  

1.3.2 Destructive measurements 

After the last RGB imaging, we measured the heights at the collar of 15 random plants per tray. After 

that, all the plants were cut at the collar level and weighted, put into paper bags and placed in the 

dryer at 105°C for 3 days. The dry weights were then measured. 

1.3.3 Data analysis 

The RGB pictures were automatically stored in PlantScreen XYZ database, exported by PlantScreen 

Data Analyzer software and analysed using an in-house software routine implemented in MatLab 

R2015, that subtracted the background in order to evaluate only the green pixels belonging to the 

plants’ surface. For each seed, the time of emergence (i.e., the moment of the coleoptile appearance) 

Figure 2| Experimental setup.  Image of the phenotyping trays containing the seeds, randomized on the growing table in 
the OloPhen platform (courtesy of Nuria De Diego).  
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was recorded. The seeds were considered germinated when the first green pixel was detected in the 

RGB image. Some seedlings may have not emerged at all until the end of the experiment. 

1.3.4 Evaluation of the germination curves and derived parameters  

Data about seeds germination differ from other types of biological data. For example, in a population 

of seeds, some of them remain non-germinated when the experiment ends, and there is no way to 

know when these seeds would have germinated if the experiment had continued indefinitely (Ugena 

et al., unpublished). Therefore, instead of the more broadly used logistic curve, we used the Gompertz 

curve, that is one of the most frequently used sigmoid models fitted to growth data (Tjørve and 

Tjørve, 2017). Paine et al., in their work from 2012, claim that the Gompertz model fits better than 

linear growth models in the case of plants communities, since it assumes a final asymptotic phase 

due to the resource-limited growth of populations. In the Gompertz model, RGR declines 

exponentially over time; this means that convex part of the emergence curve (around the time of 

emergence of the fastest seeds) tends to proceed faster than the concave part of the emergence curve 

(around the time of emergence of the slowest seeds). This curve is non-symmetrical and it can be 

generalized to allow non-zero initial masses and variation in the inflection point, and it is therefore 

particularly suitable to survival analysis such as germination trials.  

Our Gompertz curve corresponds to the equation: 

y (t) = A exp (-x (t)) (1) 

and it consists of an initial exponential phase, an approximately linear phase (which contains the 

inflection point), and a finally asymptotic phase, in which the curve approaches a constant (the final 

number of seeds emerged). 

Three main traits can be extrapolated from the Gompertz curves:  
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1. the emergence rate in the last day of measurement, corresponding to A in the equation (1) – 

it is obtained dividing the number of actually germinated seeds in a tray by the total number of seeds 

in the tray; 

2. the time lag, the amount of time occurring between the germination of half of the control seeds 

and half of the treated seeds, corresponding to t in the equation (1) – it is estimated by subtracting 

the time when 55 untreated seedlings had emerged under control conditions (0) from the time the 

treated seedlings emerged; 

3. the speed or synchronicity of emergence, represented by the coefficient k in the equation (1) 

– it corresponds to the slope of the Gompertz curve.  

1.3.5 Plant Biostimulant Characterization (PBC) Index 

For the calculation of the PBC index, we considered the three parameters extracted from the 

emergence curve: the Emergence Rate, the Speed and the Time Lag (Table 2). 

Table 2|PBC Index traits. List of the parameters extracted from the emergence curve and used for the calculation of the 

Plant Biostimulant Characterization Index. 

To obtain the PBC index, we first calculated the log2 of the ratio between coated and uncoated seeds 

for the first two parameters (emergence rate and speed) for both concentrations of the compound and 

growth conditions (control or salt stress). For the time lag, the difference was estimated by 

Parameter Unit Definition 

Emergence rate % Percentage of seeds germinated per each tray in the 

last day of phenotyping. 

Time lag days Time elapsed between the germination of 55 control 

seeds and 55 coated seeds. 

Speed or synchronicity of 

emergence 

arbitrary 

unit 
Slope of the emergence curve. 
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subtracting the time when 55 uncoated seeds had germinated under control conditions (designated as 

0) from the time the coated seeds under control or salt stress conditions emerged.  

1.3.6 Statistical analysis 

One-way analysis of variance (ANOVA) with post hoc Tukey’s Honest Significant Difference 

(HSD) test (p < 0.05) was used for statistical differences in phenotyping data, using the MVApp 

application (mmjulkowska/MVApp: MVApp.pre- release_v2.0; Julkowska et al., 2019). 

1.3 Results  

1.4.1 Coating of seeds with diverse biostimulants differently modulate emergence parameters under 

salinity stress conditions 

Emergence of the seeds was scored twice a day using PlantScreenTM XYZ System by a RGB camera.  

Plant objects were segmented using the image processing pipeline and sum of the plants for given 

treatment was used to develop empirical emergence curves characterising cumulative number of 

seeds germinated over time. A Gompertz curve was created per each treatment and dose of 

biostimulants, for seeds growing in control (Figure 3) and salt stress conditions (Figure 4). In each 

graph, lower and higher dose of each substance are compared to the untreated control.   
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A. B. C. 

Figure 3| Empirical emergence curves.  Cumulative number of seeds germinated over time in control conditions. A.) Comparison between uncoated seeds and seeds coated with the substance 

C in the concentrations 80 g/100 kg and 160 g/100 kg. B) T in the concentrations 80 ml/100 kg and 320 ml/100 kg, C) B in the concentrations 80 ml/100 kg and 320 ml/100 kg (C.), TA in the 

concentrations 80 ml/100 kg and 320 ml/100 kg (D.), A in the concentrations 80 ml/100 kg and 320 ml/100 kg (E.) and H in the concentration 320 ml/100 kg (F.) Time 0 corresponds to the 

moment when half of the control seeds were germinated. 

D. E. F. 
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Figure 4| Empirical emergence curves. Cumulative number of seeds germinated over time in salt stress conditions. A.) Comparison between uncoated seeds and seeds coated with the substance 

C in the concentrations 80 g/100 kg and 160 g/100 k, B) T in the concentrations 80 ml/100 kg and 320 ml/100 kg, C) B in the concentrations 80 ml/100 kg and 320 ml/100 kg (C.), TA in the 

concentrations 80 ml/100 kg and 320 ml/100 kg (D.), A in the concentrations 80 ml/100 kg and 320 ml/100 kg (E.) and H in the concentration 320 ml/100 kg (F.) Time 0 corresponds to the moment 

when half of the control seeds were germinated. 

 

A. B. C. 

D. E. F. 
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From each emergence curve, corresponding to a different biostimulant substance, dose of application 

and growing condition, we were able to extract three descriptive traits: Emergence rate, Speed and 

Time lag (Table 3). 

Table 3| Emergence parameters. Table showing the three main parameters extrapolated from the germination curves: 

final emergence rate in the last day of measurement, time lag and speed or synchronicity of emergence. In blue, the values 

that were improved by the seeds coating; in red, parameters that were negatively affected by the coating.   

 

From the curves it is clear that, under control conditions, seeds coating did not yield significant 

improvements to the considered parameters, with very few exceptions. The final emergence rate was 

only slightly increased by the biostimulant A in its highest concentration (Figure 3– E; Table 3). 

The speed, i.e., synchronicity of germination, was increased by the biostimulant B in its highest 

concentration (320 ml/100 kg of seeds), while the time lag was generally unaffected. Only the 

biostimulant B, in its lowest concentration, had the effect of reducing the time lag (Figure 3– C), 

while the other substances had small or no effects. 

In salt stress conditions, the effects of the biostimulants coating were more evident. Final emergence 

rate was not an informative parameter, since in the uncoated seeds was close to 100%, while always 

slightly lower for the coated seeds (Figure 4; Table 3), reaching a minimum of 91.2% in the seeds 

coated with the biostimulant H (Figure 4 - F). On the other hand, all the coated seeds showed a 

higher synchronicity of germination when compared with the uncoated seeds, in which the value was 

reduced of the 36% if compared to the uncoated seeds growing in optimal conditions. Even in this 

Substances Concentrations
Control NaCl Control NaCl Control NaCl

- - 97.6 99.9 11 7 - 0.17

80 g/100 kg 97.3 96.7 12 7.3 0.02 0.16

160 g/100 kg 98.1 95.2 13.1 9 0 0.29

80 g/100 kg 97 95.2 10.3 9 0.12 0.29

320 g/100 kg 97.6 93.3 11.7 8.2 -0.01 0.28

80 g/100 kg 95.4 95.6 9.8 11.2 -0.02 0.26

320 g/100 kg 94.3 97.8 14.7 11.6 -0.01 0.21

80 g/100 kg 96.2 99.2 11.6 7.6 0.06 0.11

320 g/100 kg 96 97 11.2 10.6 0.09 0.28

80 g/100 kg 97.6 98 11.4 10.7 0.09 0.29

320 g/100 kg 98.4 97.5 11.3 9 0.11 0.28

H 320 g/100 kg 96.9 91.9 11 11.3 0.04 0.27

B

TA

A

Emergence rate Speed Time lag

C

T
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case, the biostimulant B in its highest concentration (320 ml/100 kg of seeds) had positive effect on 

the synchronized germination. 

The last parameter, time lag, which defines the amount of time occurring between the germination 

of half of the control seeds and half of the treated seeds, was significantly reduced only by the 

compound TA in its lowest concentration (Figure 4– D), if compared to the uncoated control in the 

same growing conditions. All the other compounds and doses delayed the emergence of the seeds if 

compared to the untreated controls. The time lag values were especially increased by T and A, and 

the highest concentration of C (Figure 4; Table 3).  

1.4.2 Final weights and heights of the seedlings are not influenced by the seed coating 

 
Figure 5| Final seedlings heights. Final heights at the collar of 15 random seedlings per each combination of biostimulant 
and concentration, of the seedlings growing in control (A.) and salt stress conditions (B.). The values represent the average 
of 15 repetition per treatment, error bars represent standard deviation. 
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After the last RGB measurements of the seedlings, we manually scored the heights of 15 random 

plantlets per each tray. As shown in Figure 5, we could not detect any significant differences and 

seedlings height did not prove to be an informative trait. In salt stress conditions, the heights of the 

uncoated seedlings were 3% lower than those of the plants in control conditions. The coating did not 

cause any difference in height, neither in control nor in salt stress conditions (Figure 5). 

After measuring the heights, all the emerged plantlets were cut at the collar and the weight of the 

total biomass was recorded for each growing condition, biostimulant and concentration used for seed 

coating. Since the number of germinated seeds was not the same in each tray, the total weight in itself 

was not a reliable parameter. Therefore, we calculated the approximate weight of a single plantlet, 

dividing the total weight of plantlets harvested for given treatment by the number of emerged 

seedlings per tray. In control conditions, the fresh weight of the emerged seedlings was not 

significantly influenced by most of the seed coatings. The substance C, in its lowest concentration, 

slightly increased the final weight (+4.6%) if compared to the uncoated seeds in the same growing 

conditions, but the difference was not significant. On the other end, the weight of the plantlets treated 

with the substance T in the 80 ml/100 kg dose was significantly lower (-11%) (Figure 6-A). 
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In salt stress conditions, the coated seeds had lower final weights if compared to the uncoated control. 

The more relevant reduction in fresh weight was recorded for the treatment TA in the low 

concentration (-20%) (Figure 6-B). 

 

 

Figure 6|Final fresh weights. Fresh weights of the final vegetal biomass per each combination of biostimulant and 
concentration, of the seedlings growing in control (A.) and salt stress conditions (B.). The values are obtained dividing the 
total fresh weight of each tray by the number of germinated seeds. Error bars represent standard error.  
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No significant differences between treatments could be spotted in the dry weight. In general, the 

values were slightly lower for the coated seeds. The final dry weight was especially reduced by the 

substance T in its lowest concentration (-14%) in control conditions, and by the compound C (160 

ml/100kg) in salt stress conditions (-11%) (Figure 7-A, B).  

1.4.3 Characterization of different compounds by using the Plant Biostimulant Characterization 

Index 

For a better visualization of the calculated values, the log2 values obtained per each of the three 

parameters (emergence rate, speed and time lag), for each compound, concentration of the compound 

 
 

Figure 7| Final dry weights. Dry weights of the final vegetal biomass per each combination of biostimulant and 
concentration, of the seedlings growing in control (A.) and salt stress conditions (B.). The values are obtained dividing the 
total fresh weight of each tray by the number of germinated seeds. Error bars represent standard error. 
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and growth conditions (control or salt stress) were represented in a parallel coordinate plot (Figure 

8).  

 
Figure 8| Characterization of the plant biostimulants. Parallel coordinate plots of the 3 main traits (final emergence rate, 
speed or synchronicity of emergence and time lag) of the wheat seeds coated with the 6 different biostimulants in control 
(A) and salt stress conditions (B). 
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By means of this visualisation, we could confirm that in control conditions the final emergence rate 

was not a very informative trait, because there was almost no difference between the coated and 

uncoated seeds, neither in control nor in salt stress conditions. On the contrary, the speed of 

emergence was greatly increased by the coating with most of the substances, especially B (320 

ml/100 kg) in both growing conditions, while the lower concentration of the same compound has 

reduced the synchronicity of germination in control conditions. In salt stress conditions, coated seeds 

always showed a higher synchronicity of germination, if compared to the uncoated one (Figure 8 A-

B). 

The last parameter, time lag, was in general not positively influenced by the seed coating, The 

coating with the biostimulant B in its higher concentration slightly accelerated the seedlings 

emergence in control conditions, while all the other substances caused a delay in germination if 

compared to the untreated seeds (Figure 8 A). In salt stress conditions, all the seedlings coming from 

coated seeds emerged later than the untreated controls (Figure 8 B). 

The three parameters (final emergence rate, speed of emergence, time lag) obtained per each 

combination of biostimulant, concentration and growing condition were then summed up to calculate 

the PBC index, ending with a single numeric value that could categorize the compounds in a straight-

forward way. The value obtained could be negative (red) or positive (blue), providing information 

regarding the effects of the substance on the seedlings’ emergence compared to the respective 

controls (uncoated seeds in control or salt stress conditions). The value of the PBC index helped us 

to categorize the compounds, according to their mode of action, into substances that promoted 

emergence [positive values (blue) in coated seeds germinated in control conditions], substances that 

had alleviating effect in stress conditions referred to as stress alleviator [positive values (blue) in 

coated seeds germinated in salt stress conditions], or both acting as stress alleviator and growth 

improver [positive values in coated seeds both in control and stress conditions]. 
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Table 4| PBC index. Table showing the PBC index of each substance, in each concentration and growing condition. 

Highlighted in blue, the positive values for substances who improved the growing performances of the coated seeds if 

compared to the controls; highlighted in red, negative values corresponding to substances who worsened the seeds’ 

performances. The darker the colour, the further the value from the uncoated control (corresponding to 0).  

 

Our data clearly suggest that B substance (the pea seeds extract) in the dose 320 g/100 kg was the 

best performing biostimulant, clearly improving the vitality of the seeds both in control and salt stress 

conditions ( 

Table 4). Other substances proved to be beneficial as well, but their effect was dependent on the 

concentration used and on the growth conditions. For example, as the values of the PBC index clearly 

show, C was acting as a germination inducer in control conditions, especially in its higher 

concentration (160 g/100 kg), but it did not have any beneficial effects in salt stress conditions. 

Instead, in saline environment A and T in their lowest concentrations increased the fitness of the 

seedlings. Interestingly, in our experimental conditions the commercial compound T proved to be 

the substance with most growth inhibiting effects in control conditions, especially in high dose. In 

saline conditions, a contrasting response was detected with stress alleviating response in lower dose 

of the biostimulant and growth inhibiting response in higher dose of biostimulant. 

Substance Concentration Control NaCl
80 g/100 kg 0.18 -0.23

160 g/100 kg 0.27 -0.26

80 g/100 kg -0.4 0.29

320 g/100 kg 0 -0.43

80 g/100 kg -0.23 0.08

320 g/100 kg 0.29 0.28

80 g/100 kg -0.15 -0.28

320 g/100 kg -0.09 0.07

80 g/100 kg -0.01 0.31

320 g/100 kg -0.1 -0.01

H 320 g/100 kg -0.07 0.22

C

T

B

TA

A
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1.4 Discussion 

The coating with plant-derived (Rady et al., 2018) or microbial-based biostimulants (Ma et al., 2018) 

has long been proved as treatment increasing the seeds germination and early establishment of 

seedlings in adverse environmental conditions (Campobenedetto et al., 2020). Nevertheless, in most 

of the studies biostimulants are applied primarily as foliar spray on fully-developed plants, while 

very little in-depth research has been conducted on the mode of action of biostimulants used for seed 

treatments (Amirkhani et al., 2016). The few works available on this matter mainly focus on the 

germination rate and final biomass and was measured with manual methods at a single timepoint 

(Wilson et al., 2018; Amirkhani et al., 2019; Qiu et al., 2020). In our work, we used the method 

developed by Ugena and co-workers (unpublished) – previously used to evaluate the seed priming 

effects of specific polyamines - to test the mode of action of complex compounds applied as seeds 

coating by screening the growth performance of the plants in high throughput by automated 

phenotyping platform. Compared to more traditional approaches, our model allowed to follow the 

germination of the seeds for a longer period of time, taking in account the germination of delayed 

seeds and the synchronicity of seeds germination, that could be easily missed when performing 

manual, one-time point observations. With the use of a simple RGB camera, we were able to obtain 

high-precision information related to the seed’s germination and the early establishment of the 

seedlings, developing a fast and highly-reproducible protocol that requires little human work and that 

could be easily adapted to different crops, coating substances and growing conditions.  

The cumulative number of germinated seeds over time was displayed using a Gompertz curve, that 

better fits to the empirical emergence curve if compared to the traditional exponential models. From 

the Gompertz curve, we could extract three traits related to the germination: final emergence rate, 

time lag (defined as Time elapsed between the germination 50% of the control seeds and 50% of the 

coated seeds) and emergence synchronicity. Finally, the PBC index was used to summarize the 

effects of the substances on the three parameters at the same time. By using the PBC index we were 

able to classify the substances as growth improvers, inhibitors, stress alleviators or both. Finally, we 

characterized the biostimulant B as the best performing substance in both optimal and sub-optimal 

growing conditions. The biostimulant B was a pea seeds extract, an experimental substance tested 

for the biostimulant properties for the first time in our trial. Pea seeds, like other legumes, are 
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extremely rich in flavonoids (Troszyńska et al., 2001), secondary metabolites with low molecular 

weight, involved in plant physiological functions, often demonstrating protective effects against 

biotic and abiotic stresses (Shah and Smith, 2020) including salinity stress in tobacco (Chen et al., 

2019). Flavonoids, in fact, have important roles in the resistance to oxidative damage caused by ROS 

during plant growth and abiotic stresses (Agati et al., 2012). Furthermore, there is evidence that 

flavonoids play a role in interrupting seed dormancy and promoting germination, also in optimal 

growing conditions (Shirley, 1998).  

While the pea seeds extract was the only substance that improved both the germination of the seeds 

and their resistance to stress, other compounds were also beneficial to the seeds, but only in one of 

the two growing conditions. In control conditions, the germination was improved by the substance 

C in both concentrations. C corresponded to the commercial product Coveron®, a mixture of spores 

of arbuscular mycorrhizal fungi and of Trichoderma atroviridae. In a previous study, the coating of 

wheat seeds with Coveron® significantly reduced the mean emergence time by 33.3%, if compared 

to the uncoated controls, while the final germination rate was not affected (Colla et al., 2015b). These 

observations are coherent with what we experienced in our work.  

In salt stress conditions, the highest PBC index was recorded for the biostimulant A, referring to 

isolate of an endophytic fungus, Trichoderma atroviridae. Biopriming of seeds with Trichoderma 

was previously shown to improve seed performance in many crops (Howell, 2003). More 

specifically, Trichoderma species are known to release a variety of compounds that induce resistance 

responses to biotic and abiotic stresses (Kumar et al., 2016); for example, they are able to produce 

indole-3-acetic acid (IAA) under salt stress, enhancing salt tolerance of seeds (Oljira et al., 2020).  

In our trial we also include the commercial compound Trainer® (the biostimulant T) as an internal 

control. Many studies demonstrated that the application of Trainer® to crops (lettuce, corn, tomato) 

increased marketable yield, biomass accumulation, N uptake, N, P and chlorophyll content and root 

development (Colla et al., 2013; Colla et al., 2014; Ertani et al., 2013; Lucini et al., 2015). However, 

in our study the coating of the seeds with Trainer® did not improve germination or early development 
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of the seedlings in control conditions. On the other hand, Trainer® increased the tolerance to salinity of the seedlings when 

supplied in its lower concentration (80 g/100 kg;  

Table 4). This is coherent with the observations made by Ertani and co-workers on corn in 2013.  

1.5  Conclusions 

In summary, our study presents a simple high-throughput method for rapid and effective testing of 

biostimulants of multiple origins as seeds coating under different growing conditions. The results 

proved that this pipeline could be very useful in comparing the effects of multiple substances at 

different concentrations, reducing the time and the human work usually needed for the traditional 

germination assays. Furthermore, we show that use of the Gompertz model provides information on 

many aspects of the emergence phase that are extremely important when screening a big population 

of seeds. The method can be easily reproduced allowing to test the performances of many 

biostimulants coating on different crop species, growing under a variety of abiotic stresses.   
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2. Chapter 2 

Seedlings – In vitro Arabidopsis assay 
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ABSTRACT 

The use of plant biostimulants contributes to more sustainable and environmentally friendly farming 

techniques and offers a sustainable alternative to mitigate the adverse effects of stress. Protein 

hydrolysate-based biostimulants have been described to promote plant growth and reduce the negative 

effect of abiotic stresses in different crops. However, limited information is available about their 

mechanism of action, how plants perceive their application, and which metabolic pathways are 

activating. Here we used a multi-trait high-throughput screening approach based on simple RGB imaging 

and combined with untargeted metabolomics to screen and unravel the mode of action/mechanism of 

protein hydrolysates in Arabidopsis plants grown in optimal and in salt-stress conditions (0, 75, or 150 

mM NaCl). Eleven protein hydrolysates from different protein sources were used as priming agents in 

Arabidopsis seeds in three different concentrations (0.001, 0.01, or 0.1 µl ml-1). Growth and 

development-related traits as early seedling establishment, growth response under stress and 

photosynthetic performance of the plants were dynamically scored throughout and at the end of the 

growth period. To effectively classify the functional properties of the 11 products a Plant Biostimulant 

Characterization (PBC) index was used, which helped to characterize the activity of a protein hydrolysate 

based on its ability to promote plant growth and mitigate stress, and to categorize the products as plant 

growth promoters, growth inhibitors and/or stress alleviator. Out of 11 products, two were identified as 

highly effective growth regulators and stress alleviators because they showed a PBC index always above 

0.51. Using the untargeted metabolomics approach, we showed that plants primed with these best 

performing biostimulants had reduced contents of stress-related molecules (such as flavonoids and 

terpenoids, and some degradation/conjugation compounds of phytohormones such as cytokinins, auxins, 

gibberellins, etc.), which alleviated the salt stress response-related growth inhibition.  

Keywords: Protein hydrolysates; automated phenotyping; secondary metabolism; metabolomics; plant 

biostimulant characterization index; salinity; stress-related molecules. 
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INTRODUCTION 

Nowadays, the actual yield from the main crops worldwide accounts for less than half of its potential 

because of the effects of abiotic stresses on plants (Bulgari et al., 2019). Among them, one of the most 

concerning condition is represented by salinity stress that decreases the quantity and quality of the final 

yield (Shahbaz and Ashraf, 2013; Yamaguchi and Blumwald, 2005), because most of the high-value 

agricultural crops are sensitive to salinity (Shannon and Grieve, 1999). Salinity stress generally occurs 

in those areas where the concentration of salt – most commonly sodium chloride (NaCl) - in the soil or 

in the groundwater is higher than the crop threshold sensitivity (Colla et al., 2010). This occurs especially 

in parts of the world where most of the agricultural areas are close to the sea, like in the Mediterranean 

basin (Viégas et al., 2001). Soil or water salinity can affect plants in different ways, from increasing the 

soil osmotic pressure to hindering the regular plant nutrition (Machado and Serralheiro, 2017). Plant 

biostimulants represent an eco-friendly and useful tool improving plant tolerance to abiotic adversities, 

like salinity (Colla et al., 2017a). According to the European Biostimulant Industry Council, in the EU 

alone, the economic value of biostimulants is estimated to be between 200 and 400 million euros. 

However, despite the high economic potential of these substances, few well-characterized products are 

commercially available. The main problem is represented by the limited knowledge about their mode of 

action, mainly because they are formulated from complex, diverse, and heterogeneous materials (Brown 

and Saa, 2015). For this reason, plant biostimulants are usually classified more according to the plant 

response they cause than by their composition. In fact, “plant biostimulants” is a hypernym used to 

describe very different substances such as seaweed extracts, humic and fulvic acids, animal and vegetal-

based protein hydrolysates, rather than microorganisms like mycorrhizal fungi and rhizospheric bacteria 

(Colla and Rouphael, 2015; Carillo et al., 2020). Among all the existing plant biostimulants, protein 

hydrolysates (PHs) are recently gaining big popularity. They are mixtures of amino acids with oligo- to 

polypeptides derived from the partial hydrolysis of protein-rich sources either from plant or animal 

origin. The application of PHs goes from foliar spray or substrate drench to adult plants (Lucini et al., 

2015; Sestili et al., 2018) to seed priming, which increases abiotic stress tolerance by reprograming the 

plant metabolism during the germination stages (Mahdavi, 2013; Sharma et al., 2014; Pichyangkura and 
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Chadchawan, 2015; Van Oosten et al., 2017). Many studies have proven the efficacy of PHs in improving 

the quantity and quality of the yield, especially under abiotic stress or limiting conditions (Ertani et al., 

2009; Colla et al., 2015a; du Jardin, 2015). Indeed, they have been reported to exert multiple benefits in 

plants under sub-optimal conditions, including mitigation of oxidative imbalance, elicitation of 

osmolytes and modulation of secondary metabolism (Lucini et al., 2015). Therefore, PH-based 

biostimulant treatments modify plant metabolism and physiology for maximizing biomass yield under 

globally changing environmental conditions (Dudits et al., 2016). 

In past years, significant advances were made in understanding the mode of action and in-depth 

characterization of biostimulants through combining omics-based methodological approaches (Rouphael 

et al., 2018b). It was clearly demonstrated that by combining multiple omics technologies, including the 

high-throughput phenotyping, new functional perspectives in the biostimulant field are emerging, 

allowing for the discovery, evaluation, and accelerated development of innovative biostimulants (Povero 

et al., 2016; Bulgari et al., 2017; Rouphael and Colla, 2018; Ugena et al., 2018; Briglia et al., 2019; Dalal 

et al., 2019; Paul et al., 2019b).  

Precise and accurate assessment of the variation in plant morpho-physiological traits over time is crucial 

for unraveling and quantifying the biostimulant activity of different substances. Image-based automated 

plant phenotyping techniques increase both the speed and the accuracy of measurements (Rouphael et 

al., 2018b). Plant phenotyping platforms are automated systems normally operating in a fully-controlled 

growing chamber or in semi-controlled conditions such as greenhouses. Different sensors can be 

implemented into the plant phenotyping platform, allowing the user to monitor simultaneously multiple 

morpho-physiological plant traits in a non-destructive way. Additionally, the high number of variants 

and the possibility of repeated measurements from the same individuals in different phases of their 

growth enable the user to compare the plant development under different growth conditions and 

treatments, at the same time reducing costs and human labor, thus speeding up the process (Rouphael et 

al., 2018b). As demonstrated previously by Ugena et al. (2018), multi-trait high-throughput screening 

(MTHTS) based on the semi-automated analysis of Arabidopsis seedlings growth provides a powerful 
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tool for fast and large-scale discovery of new potential biostimulants, including characterization of their 

mode of action under optimal and stress conditions. The objective of the experiment was to use a multi-

trait high-throughput screening approach based on simple RGB imaging and combined with untargeted 

metabolomics to screen and elucidate the mode of action/mechanisms of protein hydrolysates in 

Arabidopsis plants grown in optimal and in salt-stress conditions. 

MATERIALS AND METHODS 

Characterisation of the Protein Hydrolysates Tested 

Eleven PHs were tested in the trial. Three of them were commercial products obtained by thermal-

chemical hydrolysis of animal-derived proteins (Siapton® (I) commercialized by Sumitomo Chemical 

Italia S.r.l., Milano) or enzymatic hydrolysis of vegetal-derived proteins (Trainer® (D), and Vegamin® 

(H) commercialized by Hello Nature (former Italpollina S.p.A.,Rivoli Veronese, Italy). The other eight 

PHs were obtained from vegetal proteins by enzymatic hydrolysis as described previously (Colantoni et 

al., 2017; Ceccarelli et al., 2021). Plant biomass from Fabaceae (A, G, O), Malvaceae (C), Brassicaceae 

(F), Solanaceae (B), and Graminaceae (E, P) were used as protein sources for the other eight PHs. For 

chemical characterization, the total C and N were determined in triplicate through an elemental analyser 

(Elemental vario MAX CN, Langenselbold, Germany). Thereafter, the different PH were 2-folds diluted 

in methanol, filtered through a 0.2 membrane, and then the phytochemical profile characterized by mass 

spectrometry as reported by Senizza et al. (2020). 

Plant Material and Growing Conditions  

Arabidopsis thaliana (accession Col-0) seeds were sterilized and sown as described by De Diego et al. 

(2017) in Murashige-Skoog (MS) medium (Murashige and Skoog, 1962) (pH 5.7) using 0.6% Phytagel 

(Sigma–Aldrich, Germany) as a gelling agent. To investigate the effect of biostimulants on the growth 

of Arabidopsis plantlets, the eleven PHs were dissolved in demineralized water and added to the growing 
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media for seed priming at concentrations of 0.001, 0.01, or 0.1 µl ml-1. The plates containing the different 

media and the seeds were maintained at 4 °C for 3 days and then transferred into a growth cabinet to 

maintain temperature and humidity setpoints (22 °C, 55% RH, 16/8 h light/dark photoperiod with an 

irradiance of 120 µmol photons of PAR m−2 s−1). 

Three days after germination, the seedlings were transferred into 48-well plates filled with 1× MS 

medium, either plain or enriched with NaCl for two salinity levels (75 and 150 mM NaCl) as described 

by Ugena et al. (2018). A total of 96 seedlings (two plates) per variant as biological replicates were used. 

The protocol schematized in Figure 1 describes the experimental workflow.  

High-throughput Automated Phenotyping 

The plates were then transferred to the OloPhen platform (CRH Olomouc, Czechia). A generalized 

randomized block design was used for the random positioning of the plates in a cabinet equipped with 

the PlantScreenTMXYZ system. The growth conditions were set to a regime of 22 °C /20 °C, 60% RH, 

and a 16/8 h light/dark cycle., while irradiance was set to 120 µmol photons of PAR m−2 s−1 (De Diego 

et al., 2017). Imaging was carried out twice per day (at 10:00 a.m. and 4 p.m.) for a period of 7 days (De 

Diego et al., 2017). 

RGB imaging 

RGB images from each plate were automatically stored in PNG format by PlantScreenTM XYZ 

(resolution 2500 × 2000 pixels) and analysed using an in-house software implemented in MatLab R2015 

(De Diego et al., 2017). The total number of green pixels was used to assess the total green area for each 

well of the plate, further referred to as the projected shoot area. The daily pictures of the single 48-well 

plates were then used to monitor the increase in the rosette area throughout the whole period. The 

Relative Growth Rate was calculated using the following formula: 
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RGR = [ln(projected shoot area)ti − ln(projected shoot area)ti−1]/(ti − ti − 1) 

where t is the time, expressed in days.  

The value of the projected rosette area from the last day of imaging was lastly used for the calculation 

of the Coefficient of Variance, which provides information about the size homogeneity of the seedlings 

on the final day of the experiment for all the treatments at all the growth conditions tested.  

For the salt stress variants, a fourth growth-related parameter was introduced: Survival Rate, representing 

the percentage of seedlings per plate still alive on the last day of phenotyping. A seedling was considered 

alive if at least 100 green pixels could be detected in the corresponding well (De Diego et al., 2017). 

Chlorophyll Fluorescence Measurement 

After the last RGB measurement (day 7, 10:00 a.m.), the plates were taken out of the OloPhen platform, 

and the perforated transparent foils were removed from each plate. Six plates at a time were randomly 

put onto a customized blue tray to perform kinetic chlorophyll fluorescence (ChlF) measurements of 

each plate, using FluorCam FC-800MF pulse amplitude modulated (PAM) chlorophyll fluorometer 

(Photon Systems Instruments, Drasov, Czechia) incorporated into a PlantScreenTM Conveyor System. 

After a 15 min dark-adaptation period in the adaptation tunnel, the trays were automatically transported 

by the conveyor belt to the ChlF imaging light-isolated cabinet. The changes of the photosynthesis-

related parameters in Arabidopsis seedlings were measured at different photon irradiances using the light 

curve protocol (Henley, 1993; Rascher et al., 2000). The light curve protocol with four actinic light 

irradiances (cool-white actinic light at 95, 210, 320, 440 µmol m-2s-1) was used as described in Awlia et 

al. (2016) with a duration of 60 s, to quantify the photosynthetic efficiency. Fluorescence data were 

elaborated by the FluorCam7 Software (Photon Systems Instruments, Drasov, Czechia) as described by 

Tschiersch et al. (2017). Automation of plant masks for the single plantlets was difficult because of their 

small dimensions and the feeble or absent fluorescence emitted by dying or dead seedlings, especially in 
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severe salt stress conditions. Thus, plant masks were drawn manually, using the manual image 

segmentation in Fluorcam7, whereas background subtraction and calculations were performed 

automatically. The basic ChlF parameters were derived from fluorescence transient states (i.e., Fo, Fm, 

Fm’, Ft, Fv, and Fp) and used to calculate plant photosynthetic performance parameters (Fv/Fm, 

Fv´/Fm´, NPQ and ΦPSII). 

Untargeted Metabolomic Analysis 

Arabidopsis rosettes were freeze-dried at harvest the material from controls and primed with the best-

performing substances was then used for metabolomics as described by Senizza et al. (2020). In brief, 

samples (10 mg) were extracted in 2 ml of a methanol-water (80:20, v/v) mixture using ultrasounds 

(Fisher Scientific model FB120, Pittsburgh, PA, USA) at 80% amplitude. After that, the extracts were 

filtered through a 0.22 μm membrane and plant metabolites analysed by liquid chromatography 

quadrupole-time-of-flight mass spectrometry (UHPLC/QTOF) (Lucini et al., 2018). In summary, 

positive polarity and SCAN mode (100–1000 m/z range) at 30,000 FWHM were used. Chromatography 

used a water and methanol binary elution mixture (from 5% to 90% methanol, 35 min run time) flowing 

at 220 μl min−1 and an Agilent Zorbax Eclipse-plus column (75×2.1 mm i.d., 1.8 μm). The software 

Profinder B.07 (Agilent Technologies) was used for features deconvolution, alignments and the 

following annotations using accurate mass, isotope spacing and isotope ratio (Rouphael et al., 2016). 

The reference database was PlantCyc 9.6 (Plant Metabolic Network, http://www.plantcyc.org). The 

annotation process corresponded to Level 2 (putatively annotated compounds) of the COSMOS 

Metabolomics Standards Initiative (Salek et al., 2015). Compounds were finally filtered to only retain 

those present in 100% of replicates (N=4) within at least one treatment. 
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 Figure 1| Scheme of experimental protocol for high-throughput screening of biostimulant impact on Arabidopsis growth in 
control and salinity conditions. A) After sterilization seeds were germinated in 0.5× MS mixed with 11 different protein 
hydrolysates at three concentrations (0.001, 0.01 and 0.1 ml/ml). 4 days after cold stratification, seedlings of similar 
developmental stage were transplanted into 48-well plates with fresh MS medium either simple or supplemeted with NaCl (75 
mM or 150 mM). B) Plates were placed for 7 days to the cultivation chamber with XYZ PlantScreenTM System used for daily 
(am and pm) automatic RGB imaging and growth analysis. At the end of the phenotyping period, the plates were used for the 
measurement of the chlorophyll fluorescence. C) Following the last measurement, the plantlets treated with the best-
performing biostimulants including the controls were harvested, freeze-dried and used for subsequent metabolomic analysis.  
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Data Analysis 

One-way analysis of variance (ANOVA) with post hoc Tukey’s Honest Significant Difference (HSD) 

test (p < 0.05) was used for statistical differences in phenotyping data, using the MVApp application 

(mmjulkowska/MVApp: MVApp.pre- release_v2.0; Julkowska et al., 2019). Correlation matrices and 

the significance were also performed in RStudio (Version 1.1.463 – © 2009–2018 RStudio, Inc.) using 

the packages factoextra, FactoMineR and corrplot. 

Data from metabolomics were interpreted in Mass Profiler Professional B.12.06, (Agilent Technologies) 

as reported by Lucini et al (2018). Log2 transformation and normalization at the 75th percentile were 

carried out prior to naive elaboration through unsupervised hierarchical cluster analysis (HCA - Wards 

agglomerative algorithm of the Euclidean distances). Then, Volcano Plot analysis (p<0.01, fold-change 

>10; Bonferroni multiple testing correction) was used to identify differential metabolites in pairwise 

comparisons between treatments. These compounds were interpreted by the Omic Viewer Pathway Tool 

of PlantCyc (Stanford, CA, USA) to identify the pathways and metabolic classes elicited by the 

treatments (Caspi et al, 2013). 

After that, OPLS-DA supervised analysis was performed in SIMCA 16 (Umetrics, Sweden) at default 

parameters. CV-ANOVA (p< 0.01) and permutation testing (n = 200) were used for model validation 

and to exclude overfitting, respectively. Fitness parameters were also calculated and Hotelling’s T2 

applied to exclude outliers. Subsequently, VIP analysis was used to objectively identify the most 

discriminant metabolites. 
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RESULTS 

Selection and Characterisation of the Protein Hydrolysates  

Eleven PHs from different natural sources were selected and used for the study. Three of the PHs were 

previously characterised and are commercially available products (Trainer®, Vegamin® and Siapton®, 

here referred to as D, H and I, respectively). The other eight PHs were obtained by enzymatic hydrolysis 

of plant-derived proteins and were together with the three commercial products characterised by 

quantitative analysis of total nitrogen and carbon. Total nitrogen in the PHs ranged between 22.2 to 95.1 

g per kg of product, while total carbon content varied between 170.5 to 281.9 g per kg of product (Figure 

2). The highest value of nitrogen was found in I, while H had the lowest nitrogen content. Total carbon 

was also highest in I, while the biostimulant A exhibited the lowest carbon concentration value. The N 

and C content of PHs had a positive linear correlation (r = 0.884**). The untargeted analysis of the PHs 

revealed a broad chemical diversity that included amino acids and their derivatives, as well as other N-

Figure 2| Total nitrogen and total carbon. Total nitrogen and carbon content of the 11 protein hydrolysates selected for seed 
priming. 
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containing compounds (mainly alkaloids), carbohydrates (mono- to oligosaccharides), and 

phenylpropanoids. Relatively less polar compounds such as fatty acids and phospholipids-related 

compounds, carotenoids and xanthophylls, steroids and terpenoids were also represented 

(Supplementary Table S1). A data reduction approach based on the fold-change-based heatmap 

clustering was used to hierarchically describe the similarity and the difference in the whole 

phytochemical profile across the different PH (Supplementary Figure S1). In detail, the unsupervised 

clustering highlighted two main clusters, one including PH A to D and another including the products E, 

F, G, O and P. The product H was distinct from these two macro-clusters, and the PH I was completely 

apart. 

Multi-Trait High-Throughput Screening of Arabidopsis rosette growth for the 

characterization of the different PHs derived biostimulants 

The Multi-Trait High-Throughput Screening (MTHTS) described by Ugena et al. (2018) was optimized 

for determining the mode of action of selected PHs that were here applied as priming agents (Figure 1). 

The seedlings from non-primed and primed seeds with different concentrations (0.001, 0.01, or 0.1 µl 

ml-1) of PHs (Supplementary Table S2) were grown in control conditions and two intensities of salt-

stress conditions. Six protein hydrolysates were evaluated in the first experimental round (A-F) and 5 in 

the second (G-P) round. 1st round counted 114 plates (5,472 seedlings) and the 2nd round consisted of 96 

plates (4,608 plantlets), respectively. All plants were imaged by an RGB camera twice per day (at 10:00 

a.m and 4 p.m.) for seven consecutive days.  

Using the automated image analysis described by De Diego et al. (2017), we could quantify a variety of 

growth dynamics related traits such as rosette area and relative growth rate, together with homogeneity 

of the population (Weiner and Thomas, 1986; De Diego et al. 2017; Ugena et al., 2018). 

First, we verified the reproducibility of the two rounds of the experiment, comparing the growth-related 

parameters of the control groups from the two rounds. Only a 2% difference between the final dimensions 



Results  

 

 

 

 

79 

of the control plants in the first and the second round was observed (Rosette size of 2362 and 2318 pixels, 

respectively). This result corroborated the very high level of reproducibility of the experimental protocol 

used in our platform as demonstrated De Diego et al. (2017). Further, we validated the screening assay 

with commercial product Trainer® (Hello Nature, Rivoli Veronese, Italy), here defined as substance D, 

that was previously characterised as growth improving substance (Figure 3) (Sestili et al., 2018).  

Overall, our phenotyping data showed that the improved growth of the Arabidopsis seedlings primed 

with PHs was not only product-dependent but also dose-dependent under optimal growth conditions 

(Figure 4A and Supplementary Table S2). The priming with all tested concentrations of C and B 

proved to be especially beneficial to the plant’s fitness, improving plant growth with better RGR under 

all growth condition, ending with a higher increase of the projected rosette area under control conditions 

(Figure 4A, Supplementary Table S2, and Supplementary Figure S2). In contrast, the impact on 

plant growth of the substances I and O was extremely dose-dependent (Figure 4A, Supplementary 

Table S2 and Supplementary Figure S2). For example, when the plants were primed with I product 

and grown under optimal (control) conditions, the best response was observed in the highest 

concentration of the substance (0.1 µl ml-1). In contrast, O product had the best effect when the lowest 

dose was used as a priming agent, while the highest concentration caused the opposite effect and resulted 

in the reduction of the final rosette area (Figure 4A, Supplementary Table S2 and Supplementary 

Figure S2). As expected, O is not the only substance that proved to be growth-inhibiting and/or toxic to 

the plants at a very high dose. The same detrimental effect was observed in groups primed with A, B, F, 

G and P. In summary, from our data, it is possible to identify the substances C and D (Trainer®) as the 

best growth promoters. 
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Influence of the Protein Hydrolysates Applied as Seed Priming on Rosette Growth and 

Survival in Salt Stress Conditions 

Thanks to the capacity of the OloPhen platform, we were able to evaluate the effect of our substances 

under two levels of salt stress: moderate (75 mM NaCl) and severe (150 mM NaCl). The two NaCl 

concentrations were selected based on the work from De Diego et al. (2017). As a main result, we 

observed that for the seedlings primed with PHs, independently of the origin of the substances used for 

the priming, the stress-induced growth inhibition was usually alleviated so in many cases bigger 

Arabidopsis rosettes and RGR were observed. However, the effects of the PHs on the seedlings were 

extremely dose-dependent and dependent on the severity of the salt stress applied.  

Figure 3 | Top view RGB pictures of the 48-well plates and projected rosette area (pixels) of seedlings from seeds primed with 
D compound. RGB image of an individual 48-well plate at the first and the last day of the experiment, containing non-primed 
Arabidopsis seedlings or primed with the “D” product grown under control, moderate (75 mM NaCl) or severe (150 mM NaCl) 
salt stress conditions (A). Increase in projected rosette area (pixels) throughout the 7 days of the experiment for the same 
seedlings primed with D product (Trainer®) under control, moderate (75 mM NaCl) or severe (150 mM NaCl) salt stress 
conditions (B). 
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At 75 mM NaCl, only 3 of the 11 substances (C, D and O) significantly increased the final projected 

rosette area compared to the non-primed seedlings (Figure 4B, Supplementary Table S2 and 

Supplementary Figure S3). The beneficial effect of C, D and O was significant over all concentrations 

tested, resulting in dose-independent stress alleviating action. Interestingly, C’s improving effect was 

more noticeable in the lowest concentration (0.001 µl ml-1), whereas for D in the highest concentration 

(0.1 µl ml-1). This result suggested that these two products varied in the mode of action for mitigating 

the negative effects of salt stress. Similarly, only the seed priming with any of the concentrations of C or 

D (Trainer®) improved the RGR values showing that only 2 of the PHs used (C and D) behaved as stress 

alleviators (Figure 4B, Supplementary Table S2 and Supplementary Figure S3), with higher values 

for 0.001 µl ml-1 in C and 0.1 µl ml-1in D. Interestingly, E and I (Siapton®) had an inhibiting effect on 

RGR, reducing this parameter in all three concentrations.  

For the salt stress variants, a third growth-related parameter was introduced; the survival rate (%) was 

calculated on the last day of the experiment. The survival rate of the seedlings was not seriously 

compromised in moderate salt stress conditions (~100%) (Figure 4B and Supplementary Table S2). 

At 150 mM NaCl, no substance caused an increase in the final area (Figure 4C, Supplementary Figure 

S4 and Supplementary Table S2). However, the RGR was improved by the seed priming with D and 

P substances. D acted as a stress alleviator in all concentrations, especially with 0.01 µl ml-1 dose, 

whereas P substance only improved the RGR when the highest concentration (0.1 µl ml-1) was used. 

Contrarily, E and F inhibited the growth of the seedlings in all concentrations. Severe salt stress also 

reduced the survival rate of the seedlings, with values around 95% for unprimed plants. The seed priming 

with B, C, D and O maintained higher survival rates but the effect was present in a dose-dependent 

manner (Supplementary Table S2); the most effective concentration for C and D (Trainer®) was 0.001 

µl ml-1, while for B and O was 0.1 µl ml-1. Remarkably, the seeds priming with E and F at all 

concentrations had a reduced survival rate.  
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Influence of Seed Priming with Protein Hydrolysates on Seedlings Homogeneity 

Despite the two selection steps for the plant material (seed size and seedling size at the transfer moment), 

some variability between seedlings is always present. However, the level of variability in the population 

can be modified by the growth conditions and/or priming agents (De Diego et al. 2017; Ugena et al. 

2018).  

For that, we evaluated the effects of the priming with the different PHs on the plant-to-plant variability. 

The coefficient of variation (CV = standard deviation/mean) was used as a standard measurement of 

relative variation (Weiner and Thomas, 1986) and calculated on the last day of phenotyping, before the 

harvest. In control conditions, O was the only substance that improved the homogeneity of the seedlings, 

Figure 4| Characterization of the 11 plant biostimulants. Parallel coordinate plot of the traits (Projected Rosette Area, Relative 
Growth Rate, Coefficient of Variance, Survival Rate and Slope of the Growth Curve) obtained from the Multi-trait HTS of 
Arabidopsis seeds primed with the PHs at three concentrations (0.001, 0.01 and 0.1 ml/ml) and grown in control (A) under 
moderate (75 mM NaCl) (B) or severe (150 mM NaCl) (C) salt stress conditions. 



Results  

 

 

 

 

83 

except when it was applied at the highest concentration. In conditions of moderate salt stress, the CV 

was reduced by C in the 0.001 µl ml-1 concentration and by E in the 0.01 µl ml-1concentration compared 

with their respective control. In severe stress conditions, the highest variability occurred, probably 

because most of the seedlings stopped growing in the early phase of the experiment (Figure 4C and 

Supplementary Table S2). In this case, the substances B (in the 0.1 µl ml-1concentration), D (0.001 µl 

ml-1), H (0.01 µl ml-1) and O (0.1 µl ml-1) improved the uniformity of the plantlets significantly (Figure 

4C and Supplementary Table S2). 

Evaluation and Classification of the Substances through the Plant Biostimulant 

Characterization Index 

In order to uniquely classify the 11 PHs according to their effect on seedlings as growth promoters and/or 

stress alleviators, we used the Plant Biostimulant Characterization (PBC) index developed by Ugena et 

al. (2018). This index considers the five parameters previously mentioned: Projected Rosette Area on 

the last day of measuring, Relative Growth Rate throughout the entire period of the experiment, 

coefficient of variance in the final day of the experiment, the slope of the growth curve, and the final 

survival rate for the variants grown under salt stress conditions. The log2 of the ratio between primed 

and unprimed seedlings was calculated for each of the five parameters, the concentration of the PHs 

(0.001, 0.01 or 0.1 µl ml-1) and growth conditions [optimal (control), moderate salt stress (75 mM NaCl) 

or severe salt stress (150 mM NaCl)], values that concur with those represented in the parallel plot 

(Figure 4). As example, for the A substance at 0.001 µl ml-1 applied to the plants growing in moderate 

salt stress conditions (75 mM NaCl), the log2 of the analysed traits were: for final area [log2 (1184.25/ 

947) = 0.3225], for RGR [log2 (0.20/0.18) = 0.1448], for CV [-log2 (53.5665071/ 55.38435406) = -

0.0481, as it is a negative trait], for survival [log2 (95.83/100) = -0.0614] and for slope [log2 

(149.1805556/106.3796296) = 0.4878]. The five values obtained were then summed up to calculate the 

PBC index, ending with a single numeric value that could categorize the compounds in a straight-forward 

way. The value obtained for the single compound, concentration and growth condition could be negative 

(red) or positive (blue), telling us if this specific combination was beneficial in terms of plant 
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performance in the given conditions compared to the respective control variant (from non-primed seeds) 

(Table 1). Additionally, the obtained values allowed us to divide the compounds into three groups; plant 

growth promotor [only positive values (blue) in primed seedlings grown under control conditions], 

stress alleviator [only positive values (blue) in primed seedlings grown under stress conditions], or both 

[positive values in primed seedlings under control and stress conditions].  

Overall, our data clearly suggest that C and D (Trainer®) were the best biostimulants in all their 

concentrations and growth conditions, acting both as plant growth promotors and salt stress alleviators. 

C was especially effective as stress alleviator in the 75 mM NaCl-enriched media, with a PBC value 

208% (for 0.001 µl ml-1), 129% (for 0.01 µl ml-1) and 335% (for 0.1 µl ml-1) higher than the non-primed 

seedlings. On the contrary, D (Trainer®) had a better stress-alleviating effect on the plants growing in 

150 mM NaCl- enriched media, with a PBC value 108% (for 0.001 µl ml-1), 276% (for 0.01 µl ml-1) and 

221% (for 0.1 µl ml-1) higher than the non-primed variant.  

Some of the remaining substances proved to be effective as well, although in a concentration and growth 

condition-dependent manner. For example, as the PBC index shows (Table 1A), the substance O can be 

classified as a growth promotor when applied at the two lower concentrations. At the same time, the 

highest dose was even detrimental to the plantlets’ development in control conditions. The substance B, 

however, can be classified as a stress alleviator but when used in high doses it was inhibiting the growth 

when plants were grown in 75 mM NaCl-enriched media (Table 1B). E and F were the worst performing 

substances, inhibiting the growth of the seedlings in all concentrations and growing conditions and 

especially under 150 mM NaCl salinity conditions (Table 1C).  

 

 

 



Results  

 

 

 

 

85 

 

 

Table 1|Plant Biostimulant Characterization (PBC) index. The PBC index (related to each control) calculated as the sum of 
the log2 of the ratio between control and primed seedlings for the five main traits extracted from the RGB images (Parallel 
plot, Figure 2) measured under control (A), moderate (B) and severe salt stress conditions (C). Red colour and blue colour 
mean worse and better performance than the non-primed variants, respectively. 
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Influence of Protein Hydrolysates on Photosynthetic Performance 

To verify the effect of the priming on the photosynthetic performance of the seedlings, a range of ChlF 

parameters was measured using the PAM method and light curve quenching kinetics on the last day of 

the experiment, after the RGB imaging for all the plates was completed. A set of fluorescence parameters 

reflecting the photosynthetic function of PSII were calculated (Supplementary Table S3). The 

maximum quantum yield of photosystem II in dark-adapted (Fv/Fm) was used to characterise 

photosynthetic performance of the control and stressed seedlings (Supplementary Figure S5). Fv/Fm 

was shown to be a robust indicator of plant stress (Rousseau et al., 2013; Wang et al., 2016; Wu et al., 

2018) and especially of salt stress (Lucini et al., 2015; Simko et al., 2016; Adhikari et al., 2019). In our 

experiment, the value of Fv/Fm was significantly reduced in the plants grown in the 150 mM NaCl-

enriched media, but not under moderate salt stress (Supplementary Figure S5). Overall, the seedling’s 

photosynthetic efficiency belonging to the moderate stress group was not severely compromised 

(Supplementary Figure S5 and Supplementary Table S3). Only the seedlings primed with 0.01 µl ml-

1 and the 0.1 µl ml-1 H, or with a 0.1 µl ml-1 solution of A and O improved the Fv/Fm under moderate 

stress conditions. The seed priming with the highest concentration of the substance F was even able to 

increase the value Fv/Fm higher than the values observed in the non-primed seeds grown under optimal 

conditions in control conditions (Supplementary Figure S5 and Supplementary Table S3). Contrarily, 

B at the 0.001 ml-1 concentration negatively affected the photosynthetic performances of the seedlings 

in moderate stress conditions, reducing the Fv/Fm values to those observed in the plants grown under 

severe salt stress (150 mM NaCl) (Supplementary Figure S5 and Table S3). 

Finally, to understand how the fluorescence parameters conditioned plant growth under the three 

different growth conditions studied, we performed three different correlation matrices using the 

phenotyping data per well plate (a total of 70 plates per growth condition) (Figure 5). As a result, there 

was not a clear correlation between the growth parameters (rosette size and RGR) with the fluorescence 

parameters under control and moderate salt stress conditions (Figure 5A and B). However, under severe 

stress conditions the RGR was positively correlated with higher Fv’/Fm’ (*p < 0.05) and negatively with 
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NPQ (*p < 0.05) (Figure 5C), showing that under severe salt stress a higher photosynthetic efficiency 

related with the RGR and hence, the plant growth and final rosette size.   

Metabolomics insights into the Mode of Action of Selected Protein Hydrolysates 

Once the best performing substances were identified according to the PBC index (C and D), we carried 

out a non-targeted metabolomic analysis based on UHPLC-ESI/QTOF-MS. The priming seedlings from 

these treatments, together with their respective controls were collected at the end of the phenotyping 

experiment. The metabolic analysis also included the three studied growth conditions [optimal growth 

conditions (control), and moderate (75 mM NaCl) or severe (150 mM NaCl) salt stress], in which 

seedlings from non-primed or primed seeds with the substance C (Malvaceae-derived PH) or D 

(Trainer®) were compared. The lowest concentration (0.001µl/l) was selected for the analysis of 

Arabidopsis seedlings grown under control and moderate stress conditions for two main reasons; this 

concentration presented the highest PCB index values in both substances (Table 1) and because the use 

of lower concentration has economic benefits. However, under severe salt stress the highest 

concentration 0.1µl/l of D and C was analysed because it showed the best performance in the 

phenotyping data (Table 1). The whole list of metabolites annotated, together with individual 

abundances and composite mass spectra, is provided as supplementary material (Supplementary Table 

S4). 

The unsupervised hierarchical clustering indicated different metabolic profiles when comparing non- 

primed or primed seedlings, as thereafter confirmed by the supervised OPLS-DA modelling (Figure 6). 

The clustering built from the fold-change based heatmap (Figure 6A) highlighted two main clusters: a 

first including the seedlings primed with the D substance under the three tested growth conditions, and 

a second cluster with the non-primed seedlings and those primed with the C substance. This last cluster 

was also divided into two subclusters that separated the non-primed seeds from the primed ones with 

substance C, independent of the growing conditions. These results indicated that the main clustering 

factor was the type of priming agent used. 
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To corroborate these results, we performed an OPLS-DA supervised multivariate analysis, in which the 

two substances were independently compared to the non-primed seeds (controls) under the three tested 

growth conditions (Figure 6B and C). In both analyses, the results provided a score plot in agreement 

with hierarchical clustering, showing that the priming agent is the principal factor separating the samples 

followed by the growth conditions (Figure 6B and C). The investigation of the most discriminant 

compounds in both OPLS-DA models (i.e., variables of importance in projection—VIP analysis) was 

then carried out. The Supplementary Table S5 includes two columns (one for the substance C and 

another for the substance D) reporting the discriminant metabolites identified (VIP score >1.3). Overall, 

from the comparison between non-primed seeds and the seeds primed with the C or D substance (Sheets- 

VIPs markers C or VIPs markets D) 97 and 127 compounds were identified, respectively. Due to this 

different metabolic profiling between the plants from seeds primed with C or D substance, we also carried 

out an additional OPLS-DA and identified the most discriminant compounds that differed between these 

two treatments. As an outcome, a total of 253 compounds were identified (Supplementary Table S6), 

confirming that C and D substances affected in different ways the seeds and hence the plant growth. For 

example, only the D-primed seedlings increased compounds such as -solanine, guaiacol or plant 

hormones-related compounds such as gibberellin 34, the brassinosteroids 6-deoxo-24-epicathasterone 

and campest-5-en-3-one, the sugar maltose or some flavones such as baicalin and 7-hydroxyflavone, 

among others (Supplementary Table S6). However, C but not D increased certain sesquiterpenoids 

such as curcuquinone or the main precursor for the synthesis of the aromatic amino acids, shikimate, 

relevant pathway controlling plant growth and development (Tzin and Galili, 2010), or the metabolite 

meso-diaminopimelate, substrate for the synthesis of L-lysine (Crowther et al. 2019) (Supplementary 

Table S5). 

To go further with the study of the mode of action, we inferred the biochemical processes that these two 

substances are activating in the Arabidopsis seedlings to modulate plant growth and promote stress 

alleviation. To this aim, the discriminating compounds were compared in each growth condition by 

Volcano Plot analysis (Figure 7 and Supplementary Table S7). First of all, the different compounds 

were grouped in functional classes; synthesis of amino acids, nucleotides, carbohydrates, fatty acids or 



Results  

 

 

 

 

89 

lipids, hormones, cofactor synthesis with the metabolites related to secondary metabolism being the most 

represented in all the growth conditions, especially in the case of Trainer ® (D) (Figure 7). Secondly, 

the compounds that differ the most (opposite behaviour as in one up accumulated and in another one 

without changes or down accumulated) between the two PHs were identified (Supplementary Table 

S6). As an example, when the plants primed with D substance were grown under moderate salt stress 

(75 mM NaCl), secondary metabolites such as flavonoids and terpenes decreased.  

A similar profile was observed when plants were grown under severe salt stress conditions (150 mM 

NaCl) (Figure 7C). However, in this case many derivate forms of plant hormones such as benzyladenine-

7-glucoside, 16,17-dihydro-16-17-dihydroxy gibberellin 12 and methylgibberellin 4, the IAA-derivate 

4-(indol-3-yl)butanoyl--D-glucose or the brassinosteroid castasterone were highly reduced in the 

seedlings primed with D substance but not with C, compared to the plants coming from non-primed 

seeds.  Altogether, it is clear that being both PH products, including when they are from the same type 

of botanical material but not the same family, their application to the plants affect different metabolic 

thways, including the phytohormone balance, that finally condition the plant response to the environment 

in which is grown. 
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Figure 5|Hierarchical cluster analysis (A); OPLS-DA of the two best performing protein hydrolysates, C (B) and D (C). 
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DISCUSSION  

Sustainable approaches able to promote plant growth and enhance crop productivity represent a priority 

in modern agriculture (Xu and Geelen, 2018). Protein hydrolysates, as natural products mainly deriving 

from agricultural waste and able to reduce dependency on chemical fertilizers, are therefore of great 

Figure 6| Products of biosynthesis in the rosettes’ tissues: plants treated with the lowest concentration of both PHs and 
unprimed control (A); plants treated with the highest concentration of C and D in the 75 mM NaCl-enriched media and 
unprimed control (B); plants treated with the highest concentration of C and D in the 150 mM NaCl-enriched media and 
unprimed control (C). 
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interest. However, due to the diverse origins of the biostimulants, their manufacturers require fast and 

efficient tools for identifying and characterizing new functional biostimulants and to identify their mode 

of action (Ugena et al., 2018). In the last years, platforms for high-throughput automated phenotyping 

have been frequently used for fast and highly reproducible screenings of the effects of potential 

biostimulants on growth-related traits of plants, both in control and stress conditions (Rahaman et al., 

2015; De Diego et al., 2017; Ugena et al., 2018; Paul et al., 2019a; Paul et al., 2019b). However, most 

platforms are limited in their capacity of measuring a large number of individuals (or variants) at the 

same time. In contrast, the comparison between plants primed with different doses of biostimulants and 

growing in diverse stress severities is fundamental to prove the effectiveness of the substances as 

biostimulants and elucidate their mode of action. The biostimulant activity of a product, in fact, is 

strongly dependent on the severity of the stress applied to the plant (Bulgari et al., 2019) as well as on 

the time of exposure; therefore, the beneficial effects of a substance can vary with the concentration and 

time of exposure of the plants to the stress (Colla et al., 2010). Transferring to in-vitro conditions using 

a model plant such as Arabidopsis allows increasing the number of treatments and replicates (De Diego 

et al., 2017). Starting from these premises, we followed the same protocol described by Ugena et al. 

(2018). The effects of potential biostimulant substances were tested on Arabidopsis seedlings grown 

under optimal conditions and salt stress in two different intensities (75 mM and 150 mM NaCl). 

However, instead of using single compounds such as polyamines, we tested the effects of 11 complex 

products based on protein hydrolysates from different natural origins, applied in three different 

concentrations (0.001, 0.01 and 0.1 µl ml-1) as seed priming agents. Priming induces preliminary 

germination (Jisha et al., 2012; Paparella et al., 2015), enhances synchronized germination, promotes 

plant growth (Bryksová et al. 2020) and can elicit resilience to stressors (Conrath, 2011; Paparella et al., 

2015). Priming can improve seed performance, ensure higher uniformity among the seeds, result in faster 

and better. Priming finds application particularly in vegetables like carrot, onion, celery, lettuce, endive, 

pepper and tomato (Paparella et al., 2015). This is why in our study the seed priming with PHs-based 

substances was used instead of mixing them into the media, so the amount of the substances used for the 

priming is highly reduced saving product and costs, and of course reducing the potential toxicity of the 

high dosages. As corroboration, we could see that the seed priming with the high dosages of some PHs-
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based substances inhibited plant growth (Table 1 and Figure 4) but did not kill the plants as happened 

in previous studies in which the substances were applied to the growth media (data not shown). 

Simple RGB daily pictures were able to provide us with plenty of information related to the plants’ 

growth and fitness using the MTHTS approach: starting from the mere dimensions of the plants, we 

could calculate the slope of the growth curve, the RGR, the Coefficient of Variance and the Survival 

Rate in salt stress conditions. Exactly as described by Ugena et al. (2018), the phenotyping traits were 

used to calculate the Plant Biostimulant Characterization (PBC) index, which ended with a single number 

making easier the characterization of each biostimulant according to their mode of action: growth 

promotor/inhibitor and/or stress alleviator. Thus, the PBC index showed that the effects of the substances 

on plants was not only dependent of the PH substance tested but also dose dependent. For most of the 

substances, the highest concentration (0.1 µl ml-1) was not beneficial or reduced plant growth (Table 1 

and Figure 4). It is known that PHs contain carbohydrates, amino acids, and lipids that may improve 

crop fitness, acting as plant growth regulators (growth promoters) in the absence of any external stress, 

due to the presence of bioactive peptides (Colla et al., 2014, 2015a) with a range of phytohormone-like 

activities (Ito et al., 2006; Kondo et al., 2006). PHs may as well increase plant tolerance to abiotic stresses 

(Van Oosten et al, 2017) because certain amino acids affect the ion fluxes across membranes, most 

having a positive effect on reducing NaCl-induced potassium efflux (Cuin and Shabala, 2007). However, 

when PHs based substances are applied to the plants at high dosages an excess of free amino acids or 

phenols can have the opposite effect and induce growth retardation (Cerdán et al., 2009; Muscolo et al., 

2013; Ertani et al., 2018), explaining the inhibitory effect observed in some of the variants. Only the 

substances C and D improved plant growth under control and stress conditions, including when they 

were applied in high concentration, with better results in the case of D, our positive control. In this regard, 

Trainer® has been demonstrated to improve the growth of many crop species and to mitigate the 

deleterious effects of salt stress (Colla et al., 2014; Lucini et al., 2015; Rouphael et al., 2017b; Di Mola 

et al., 2019a; Luziatelli et al., 2019; Paul et al., 2019a). Altogether, we showed that the MTHTS of 

Arabidopsis rosette growth is an advantageous and fast approach to test new biostimulants under a wide 

range of concentrations and growth conditions. Besides, our results are comparable with those obtained 
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in other interesting plant species including crops with agronomical interest, confirming the biological 

translation of the results obtained in Arabidopsis to them. The PHs-derived biostimulants C and D have 

in common the plant origin but differ in the plant family from which they are produced (Malvaceae and 

Fabaceae, respectively). 

At the end of the experiment, chlorophyll fluorescence measurement of all the plants have also been 

performed and the light curve protocol (Henley, 1993; Rascher et al., 2000) was used as it was proven 

to be especially effective in providing detailed information on plant adaptation to adverse conditions 

(Brestic and Zivcak, 2013; Awlia et al., 2016). As a result, we observed that the maximum quantum yield 

of PSII photochemistry in the dark-adapted state (Fv/Fm) was reduced in salt stress conditions, especially 

in the 150 mM NaCl-enriched media. This is coherent with previous works (Baker and Rosenqvist, 2004; 

Awlia et al., 2016), where Fv/Fm proved to be a robust parameter, being affected only under severe stress. 

Additionally, the seed priming with some PHs based substances at certain concentrations also improved 

the Fv/Fm under optimal and salt stress conditions (Supplementary Figure S5 and Supplementary 

Table S3). This is in agreement with previous experiments, in which the use of plant-derived PHs 

promoted photosynthetic efficiency and increased the accumulation of photosynthetic pigments (Yakhin 

et al., 2017). However, this effect was not very remarkable in the case of the best performing PH (D). A 

possible explanation is that this product did not influence the light phase of the photosynthesis 

(fluorescence parameters) but could increase the dark phase of the photosynthesis and hence, the 

efficiency of the plant, as has been described previously in PHs treated lettuce (Xu and Mou, 2017) 

Another explanation for this result can relate to the broad metabolic reprogramming induced by PHs. 

For example, the seedlings primed with D substance accumulated higher levels of maltose compared to 

the controls. Maltose is a soluble sugar and the major starch‐degrading product (Thalmann and Santelia, 

2017). Starch degradation (a common plant stress response) is the main mechanism D- primed plants 

used, resulting in accumulating certain soluble sugars, especially maltose (Supplementary Table S5). 

As corroboration of the beneficial maltose accumulation, its exogenous application in wheat plants 

improved plant growth, yield and some biochemical components when grown under drought conditions 
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(Ibrahim and Abdellatif, 2016). The Arabidopsis seedlings primed with D substance also displayed lower 

levels of flavonoids and terpenoids. These compounds are mainly accumulated in plants under stress 

condition resulting in reactive oxygen species (ROS) production (D’Amelia et al. 2018; Sharma et al. 

2019a). Altogether, we suggest that the reduced presence of flavonoids and terpenoids pointed to the D-

primed seedlings as healthier plants with lower levels of ROS that allow the plants to grow better. Finally, 

recent studies have shown strong crosstalk between flavonoids and some plant growth regulators such 

auxins and cytokinins, controlling biological processes such as nodulation in Medicago truncatula and, 

hence, plant growth (Ng et al. 2015). In this regard, the D-treated plants showed a clear reduction in 

many products of degradation or conjugation (mainly related to inactivation) of cytokinins, auxins and 

brassinosteroids. Thus, they could maintain the levels of the active phytohormone forms to preserve the 

general homeostasis of the plants. In this regard, both the activation and inactivation of cytokinin 

degradation genes have been mentioned to give plant stress tolerance (Vojta et al. 2016; Prerostova et 

al., 2018). In Arabidopsis, for example, the inducible 35S: CKX plants were approximately half those of 

WT plants under well-watered conditions, their rosette growth rates were actually more sensitive to soil 

drying, and they recovered more slowly after re-watering (Prerostova et al., 2018). These results are in 

accordance with the better growth of the D-treated Arabidopsis seedlings and the reduced benzyladenine-

7-glucoside levels. Finally, these seedlings also accumulated brassinosteroid precursors such as 6-deoxo-

24-epicathasterone and campest-5-en-3-one and reduced the formation of castasterone. Brassinosteroids 

(BRs) are a category of plant steroid hormones having multiple roles in plant growth, development, and 

stress responses (Ahammed et al., 2020). In fact, the accumulation of castasterone has been related to 

plant stress response and detoxification under metal and pesticide stress (Sharma et al., 2019b; Ahammed 

et al., 2020). Interestingly, brassinosteroids have been reported to modulate plant growth and stress 

management, including under saline conditions (Vidya Vardhini, 2017). This suggests a lower level of 

castasterone indicated that the plants experienced new homeostasis in which the effect or toxicity induced 

by salt stress is reduced. Our findings indicate that this modulation of brassinosteroids might be the 

consequence of an improved resilience towards salinity induced by the biostimulants in our plants.  

CONCLUSIONS 
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The present study presented a complex pipe-plan to select and understand the mechanism of action of 11 

PHs-substances used as priming agents. The results demonstrated that the high-throughput phenotyping 

approach, such as MTHTS of Arabidopsis rosette, is a valuable tool to compare a high number of 

biostimulants at different concentrations in plants grown under different conditions (with and without 

stress). This approach has proven to be able to accelerate the selection of the best performing substances 

in a highly effective manner. Besides, the obtained results corroborated the biological translation from 

Arabidopsis to other crops with agronomical interest. Additionally, the combination of the phenomics 

with untargeted metabolic analysis revealed that the priming with the best-performing substance 

modifies the plant homeostasis thus promoting growth and allowing a higher survival by reducing the 

oxidative damages induced by the stress and by regulating the crosstalk between different plant 

hormones. Finally, this approach can help to accelerate the selection and characterization of new 

biostimulants that make the plants more efficient and more resistant to stress. Further studies will be 

performed using model crops to go further in the understanding of the mode of action of PHs based 

biostimulants. 

AUTHORS CONTRIBUTIONS  

YR, LL and GC prepared and selected the protein hydrolysates. MS, NDD, LS and KP designed the 

phenotyping experiments. MS and LU performed the phenotyping experiments. MS and NDD performed 

the image processing, and image-based data analysis. LL, BM-M and LZ carried out the untargeted 

metabolomics. LL, BM-M and NDD analysed the metabolomic results. All authors discussed the results 

and contributed to writing the manuscript. 

FUNDING 

This work was supported by European Union’s Horizon 2020 Research and Innovation Program under 

the Marie Skłodowska- Curie grant agreement no. 675006, by Italian Ministry of Education, University 

and Research (MiUR) under the PRIN ‘PHOBOS’ (no. 2017FYBLPP), by the project “Plants as a tool 



Results  

 

 

 

 

97 

for sustainable global development” (registration number: CZ.02.1.01/0.0/0.0/16_019 /0000827) within 

the program Research, Development and Education (OP RDE) and by European Regional Development 

Fund-Project “SINGING PLANT” (No. CZ.02.1.01/0.0/0.0/16_026/0008446) with a financial 

contribution from the Ministry of Education, Youths and Sports of the Czech Republic through the 

National Programme for Sustainability II funds.  

ACKNOWLEDGEMENTS 

We thank Hello Nature Company (Rivoli Veronese, Italy) for helping in the development of tested 

protein hydrolysates. We also thank Jana Nosková from the Centre of the Region Haná (Olomouc, 

Czechia) for her help with the preparation of the plant material and the implementation of the experiment. 

This work is a result of a postdoctoral contract for the training and improvement abroad of research staff 

(Begoña Miras-Moreno; 21252/PD/19) financed by the Consejería de Empleo, Universidades, Empresa 

y Medio Ambiente of the CARM, through the Fundación Séneca-Agencia de Ciencia y Tecnología de la 

Región de Murcia (Spain). 

 

 

 

 

 

 



Results  

 

 

 

 

98 

Supplementary Figures 
Supplementary Figure S1| Growth of the plants in control conditions following the priming 

with the set of protein hydrolysates. Projected rosette area (pixels) of Arabidopsis seedlings 

primed with the 11 protein hydrolysates (A-P) at three concentrations (0.001, 0.01 and 0.1 

ml/ml) and grown for 7 days in 48-well plates under control conditions. Rosette area was 

extracted from RGB images acquired twice a day (am and pm) over the period of 1 week. Values 

represent the average of the 96 biological replicates per treatment, error bars represent standard 

error. 
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Supplementary Figure S2| Growth of the plants in moderate salt stress conditions following the 

priming with the set of protein hydrolysates. Projected rosette area (pixels) of Arabidopsis 

seedlings primed with the 11 protein hydrolysates (A-P) at three concentrations (0.001, 0.01 and 0.1 

ml/ml) and grown for 7 days in 48-well plates under moderate (75 mM NaCl) salt stress conditions. 

Rosette area was extracted from RGB images acquired twice a day (am and pm) over the period of 1 

week. Values represent the average of the 96 biological replicates per treatment, error bars represent 

standard error. 
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Supplementary Figure S3| Growth of the plants in severe salt stress conditions following the priming with 

the set of protein hydrolysates. Projected rosette area (pixels) of Arabidopsis seedlings primed with the 11 protein 

hydrolysates (A-P) at three concentrations (0.001, 0.01 and 0.1 ml/ml) and grown for 7 days in 48-well plates under 

severe (150 mM NaCl) salt stress conditions. Rosette area was extracted from RGB images acquired twice a day 

(am and pm) over the period of 1 week. Values represent the average of the 96 biological replicates per treatment, 

error bars represent standard error. 
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Supplementary Figure S4| Maximum quantum yield of PSII photochemistry in the dark-adapted state 

(Fv/Fm) of the Arabidopsis seedlings. Graphs show the maximum quantum yield of the plantlets after 7 days of in 

control, moderate (75 mM NaCl), and severe (150 mM NaCl) salt stress conditions. Seedlings were primed with 

the 11 protein hydrolysates at three concentrations (0.001, 0.01 and 0.1 ml/ml). Values represent the average of the 

96 biological replicates per treatment, error bars represent standard error. Different letters are used to indicate the 

significant differences between the accessions and conditions as tested with one-way ANOVA with post hoc 

Tukey’s test (p < 0.05). 
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Supplementary Figure S5| OPLS-DA C vs D (including all the concentrations).   
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Supplementary Table S1 | List and characterisation of the protein hydrolysate compounds selected for seed priming.  
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Supplementary Table S2| Growth-related parameters extracted from the RGB images. Values for the Slope of the growth curve, projected rosette area (pixels) 

in the last day of measurement, RGR (pixel pixel
-1

 day
-1

) for the entire period of the experiment and survival rate (%) estimated at the last day of the trial. The values 

displayed correspond to Arabidopsis seedlings from non-primed seeds or primed with 11 different PHs at 3 concentrations (0.001, 0.01 and 0.1 ml/ml) grown under 

control (A), moderate (B) and severe salt stress conditions (C).                            
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Supplementary Table S3| Fluorescence related parameters. Values of the maximum quantum yield of PSII photochemistry in the dark-adapted state (Fv/Fm), the 
maximum quantum efficiency in light-adapted state (F’v/F’m), the steady-state non-photochemical quenching (NPQ) and the steady-state operating efficiency of PSII 
in the light (𝝫PSII) in the last day of the trial of the experiment. The values displayed correspond to plantlets treated with all the 11 PHs, in the 3 concentrations (0.001, 
0.01 and 0.1 ml/ml), in control (A), moderate (B) and severe salt stress conditions (C).  
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3. Chapter 3  

Mature crops – In-planta lettuce and tomato trials  

The final part of our project focused on the evaluation of the mode of action of PH-based biostimulants 

on morpho-physiological traits of mature crops. We selected two species, lettuce – a leafy crop – and 

tomato – a fruit crop, extremely different in their growth patterns, commercial purpose and reaction to 

abiotic stresses. 

Preliminary trials were performed on lettuce and tomato plants grown in control conditions and subjected 

to drought stress and salt stress, in order to create a protocol for the cultivation and the phenotyping of 

the two species in the given conditions.  

In a second part of the work, selected cultivars of lettuce and tomato were subjected to salinity stress. 7 

biostimulants out of the original 11, selected for their performances from the in-vitro assay (Chapter 2), 

were applied weekly as foliar spray. The mode of action of each of them was then evaluated by using 

the PBC index and by performing non-targeted metabolomic analysis on the harvested tissue. 

3.1 Drought stress 

3.1.1 Lettuce  
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Lettuce reaction to drought stress: automated high-throughput phenotyping 

of plant growth and photosynthetic performance 
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1PSI (Photon System Instruments), spol. s r.o, Drasov, Czech Republic; 2Department of Agriculture and 
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of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy. 
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Abstract 

The unavailability of fresh water is one of the main concerns for horticulture nowadays and it is supposed 

to get worse in the next future. Some crops are more vulnerable than others to drought stress such as 

leafy vegetables. It is therefore essential to identify and select varieties that can overcome this kind of 

abiotic stress with limited or no substantial reduction in final yield, and to do it in a fast and effective 

way. High throughput phenotyping combined with advances in genome sequences provide efficient and 

reproducible approaches that are facilitating the discovery of genes and varieties with improved plant 

performance under sub-optimal conditions. Drought resistance of two different Salanova® cultivars, 

Aquino (green butterhead) and Barlach (red butterhead), was tested, by using PlantScreenTM, a high-

throughput non-invasive imaging platform developed at Photon Systems Instruments (PSI, Czech 

Republic). The two cultivars performed similarly in both control (70% soil water content) and mild 

drought stress conditions (40% soil water content). The results demonstrated that Aquino grew faster in 

control conditions at early growth phase, while in later phase it is the red Barlach that reached larger 

biomass. In drought conditions growth performance of both cultivars was rapidly compromised. 

However, Barlach cultivar grew better and had improved biomass in both control and mild-drought stress 

conditions in comparison with Aquino cultivar. Light curve protocol was used to address light use 

efficiency of the two cultivars. Interestingly, we observed a rapid decline in PS II operating efficiency 
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already three days upon mild drought stress initiation. Nevertheless, there was no obvious difference in 

the performances between the two cultivars. In conclusion, the results of quantitative analysis of plant 

growth and photosynthetic performance, allowed to set up a protocol for high-throughput image-based 

analysis of different morpho-physiological traits associated with the early phase of drought response. 

INTRODUCTION 

In nature, water is usually the most limiting factor for plant growth. A plant responds to a lack of 

water by halting growth and reducing photosynthesis and other plant processes in order to reduce water 

use (Khan et al., 2015). Lettuce is a leaf-edible vegetable that shows extreme sensitivity to drought due 

to shallow root system and high-water content. Furthermore, as a leafy green crop consisting of 95% to 

97% water that depends on high soil water potential to maintain cell turgor for palatability, lettuce 

production could continue to face costly yield losses as water supplies continue to diminish. Lettuce is 

broadly grown also hydroponically (Barbosa et al., 2015); however, range of disadvantages are reported 

as e.g. high initial costs (Aires, 2018). Furthermore, organic greenhouse production in European Union, 

bans hydroponic production and allows organic cultivation only in soil (Gomiero, 2018). Improving 

lettuce tolerance to low water conditions in conventional soil cultivation is thus becoming a priority 

(Eriksen et al., 2016), since hydroponics is still not the ideal alternative. Breeders’ efforts are focused on 

minimizing the gap between yield potential and yield under stress (Cattivelli et al., 2008) through the 

screening of new, more robust cultivars. Traditional plant phenotyping tools, which rely on manual 

measurement of selected traits from a small sample of plants, have very limited throughput and therefore 

prevent comprehensive analysis of traits within a single plant and across cultivars (Furbank and Tester, 

2011). On the contrary, high-throughput integrative phenotyping facilities provide an opportunity to 

combine various methods of automated, simultaneous, non-destructive analyses of plant growth, 

morphology and physiology, providing a complex picture of the plant growth and vigour in one run, and 

repeatedly during the plant’s life-span (Humplik et al., 2015). Automated phenotyping approaches 

provide tools for effective quantitative estimation of the genetic variability of yield, biomass 

accumulation and underlying processes in a variety of environmental scenarios (Tardieu et al., 2017). 

Here we used non-destructive imaged-based phenotyping technology to screen for mild-drought stress 

resistance of two different Salanova® cultivars, Aquino (green butterhead) and Barlach (red butterhead). 

We optimized the protocol to evaluate plant growth, color and photosynthetic traits by using 

PlantScreenTMSystem, a high-throughput non-invasive imaging platform developed at Photon Systems 

Instruments (PSI, Czech Republic).  
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MATERIALS AND METHODS 

Plant material, growth conditions and treatments 

The trial was carried out in the PSI Research Center (Drasov, Czech Republic). The seeds of two 

cultivars of Lactuca sativa L. var. capitata (Salanova® Aquino and Barlach) were sown in 250 mL-pots 

filled in with Klassman 2 substrate. The seeds were cultivated in Walk-in FytoScope chamber (PSI, 

Czech Republic) at 23 °C Day and 19 °C night, 60% relative humidity and 12 h light-12 h dark regime 

(250 mol m-2 s-1 white light, 5.5 mol m-2 s-1 far-red light). Plants were watered every second day using 

the Weighing and Watering station of PlantScreenTM Compact System. The experiment was designed as 

a combination of two different watering regimes. 18 DAS (days after sowing), plants were divided into 

control plants (70% of soil water content (control, C)) and mild-drought stressed plants (40% of soil 

water content (drought, D)). Plants were arranged in blocks in a randomized design with 14 plants per 

each cultivar and treatment.   

High-throughput phenotyping 

All the plants were automatically phenotyped every second day in PlantScreenTM Compact System 

(PSI, Czech Republic) for a period of 36 days, starting from the 11th day after sowing (DAS; referred to 

as 1st day of phenotyping (1 DoPh)) until 47 DAS (36 DoPh). Phenotyping protocol consisted of kinetic 

chlorophyll fluorescence (ChlF) imaging measurement for photosynthetic performance analysis and top 

view Red Green Blue (RGB) imaging for color, morphological and growth analysis, as described in 

Awlia et al. (2016). Plants were randomized in trays that were manually loaded into the PlantScreenTM 

Compact System. Trays on conveyor belts were transported within PlantScreenTM from dark/light 

acclimation chamber towards the individual light-isolated imaging cabinets and watering and weighing 

unit by a moving belt toward individual imaging and handling units. The phenotyping protocol was 

programmed to always start at the same time of the diurnal cycle. A single round of measuring consisted 

of an initial 15 min dark-adaptation period inside the acclimation chamber, followed by ChlF and RGB 

imaging, weighing and watering. Kinetic chlorophyll fluorescence (ChlF) measurements were acquired 

using an enhanced version of the FluorCam FC-800MF pulse amplitude modulated (PAM) chlorophyll 

fluorometer (PSI, Czech Republic) (Awlia et al., 2016). Photosynthetic performance in the plants was 

assessed by quantifying the rate of photosynthesis at different photon irradiances using the light curve 

protocol as described in Paul et al. (2019). Plant specific pixels and color were derived from RGB images 

and range of fluorescence parameters characterizing plant photosynthetic performance were calculated 

from the measured fluorescence transient states by ChlF imaging (Awlia et al., 2016). The PlantScreenTM 
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Analyzer software (PSI, Czech Republic) was used to automatically process the raw data. At 32 DoPh 

(day of phenotyping), fresh and dry mass per plant were determined. 

Statistical analysis 

The statistical analysis of the experimental data was performed using one-way analysis of variance 

(ANOVA) with post hoc Tukey's Honest Significant Difference (HSD) test (P-value < 0.05), in an open-

source online platform for multivariate analysis based on R, MVApp, which allows interactive data 

curation, in-depth data analysis and customized visualization. 

Results and discussion 

Visible RGB imaging to assess the effect of mild-drought stress on plant growth dynamics 

Visible RGB digital color imaging was used for the assessment of range of visual traits as growth 

status and color properties (data not shown) in control plants and plants subjected to mild-drought stress 

(Fig.1A). As shown in figure 2 projected top area measured as number of plant specific pixels is rapidly 

reduced in both cultivars as consequence of mild-drought stress. Barlach and Aquino cultivars performed 

similarly in both control and stress conditions, however it seemed that Barlach (Fig.2B) is significantly 

more sensitive to mild-drought stress conditions as the growth reduced in stress variant earlier then in 

Aquino. However, at the end of the trial Barlach plants reached higher area values than Aquino ones and 

the trend was observed for both control and stress conditions (Table 1). The image-based data were in 

agreement with destructive plant biomass assessment by fresh and dry weight analysis showing reduction 

of 30-40% at the end of the experiment (data not shown). We further calculated plant water concentration 

(PWC) according to the equation of Gonzalez and Gonzalez-Vilar (2003) and could show that by end of 

the phenotyping PWC was significantly higher for Barlach than Aquino in both watering regimes (sub-

Fig. 2B). 
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A. B. 

B. 

Figure 1| RGB images and ChlF images for control and mild-drought stressed lettuce plants prior and upon the application of 
the two different watering regimes. A) Color segmented top view Red Green Blue (RGB) images. B) False-color images of 
maximum fluorescence values in dark-adapted state (Fm). DoPh refers to Day of Phenotyping. 

Figure 2| Growth performance of lettuce plants. Projected top view area over time for Aquino (A) and Barlach (B) lettuce plants grown 
in control (blue) and mild-drought stress (red) conditions. The values represent average of 14 biological replicates per cultivar and 
treatment. Error bars represent standard deviation. Significant differences are indicated: * (P<0.05), ** (P<0.01), *** (P<0.001). In the 
sub-figures, plant water concentration of Aquino (A) and Barlach (B) lettuce plants grown in control (blue) and mild-drought stress (red) 
conditions. Significant differences (P<0.05) are indicated by different letters; groups that share a common letter do not have significantly 
different means. 
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High-throughput Phenotyping of Photosynthetic Performance in Lettuce Plants  

Table 1| Values of projected top view area over time for ‘Aquino’ and ‘Barlach’ lettuce plants grown in control and mild-
drought stress conditions. 
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Chlorophyll fluorescence imaging is broadly used in plant biology as rapid non-invasive 

measurement of Photosystem II (PSII) activity. PSII activity is very sensitive to a wide range of stimuli, 

therefore chlorophyll fluorescence imaging is used as rapid indicator of plant photosynthetic 

performance in different developmental stages, and in response to environmental changes (Murchie and 

Lawson, 2013). To assess the physiological status of lettuce plants treated during the growth in control 

and mild-drought stress conditions, we used the automated chlorophyll fluorescence imaging setup as 

described in Awlia et al. (2016) and quantified the rate of photosynthesis at different photon irradiances 

using the light curve protocol (Henley, 1993; Rascher et al., 2000). As shown in figure 3 we observed 

rapid decline in PS II operating efficiency upon mild drought stress initiation that was occurring prior 

growth reduction. When we compared the photosynthetic performance of the two cultivars, we could not 

observe any significant differences. Nevertheless, it seemed that in Barlach (Fig.3B) reduction of PSII 

efficiency occurred earlier than in Aquino (Fig. 3A) that would correlate with was faster growth 

reduction in Barlach stressed plants detected by RGB imaging. This could probably be linked to the 

higher water content of Barlach as plants can endure drought conditions by avoiding tissue dehydration, 

while maintaining tissue water potential as high as possible, or by tolerating low tissue water potential 

(Chaves et al., 2003). Water loss is mainly minimized by closing stomata; however, stomata closure 

reduces CO2 absorption and thus impact on photosynthesis and plant growth (Osakabe et al., 2014). 

 

CONCLUSIONS 

In this study we show that dynamic monitoring of multiple quantitative traits by high-throughput 

phenotyping approach provides powerful tool for screening plant responses to mild-drought stress in two 

lettuce cultivars. Overall growth and photosynthetic performance were similar in both cultivars even if 

A. B. 

Figure 3| Photosynthetic performance of the lettuce plants. Quantum yield of photosystem II (ΦPSII), defined as the ratio between the 
amount of light emitted and the amount used by the photosynthetic process, over time for Aquino (A) and Barlach (B) lettuce plants 
grown in control (blue) and mild-drought stress (red) conditions. The values represent average of 14 biological replicates per cultivar and 
treatment. Error bars represent standard deviation. Significant differences are indicated: * (P<0.05), ** (P<0.01), *** (P<0.001). 
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at the later and final phase of the experiment Barlach cultivar grew better and had improved biomass in 

both control and mild-drought stress conditions. Red lettuce varieties have been characterized by a higher 

content of hydroxycinnamic acids, flavones, flavonols and anthocyanins compared to the green varieties 

of lettuce plants (Llorach et al., 2008) and it is well-known that polyphenolic compounds such as 

phenolic acids, flavonoids, proanthocyanidins and anthocyanins play an important role in reducing the 

detrimental effects of abiotic stress, such as drought and salinity (Hichem et al., 2009). Integrating 

thermal imaging into the pipeline together with quantification of water and transpiration use efficiency 

would be an important and interesting further step in more comprehensive characterization of plant 

performance in the limited water availability conditions.  
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3.1. 2 Tomato part I – Control conditions 
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Abstract 

Designing and developing new biostimulants is a crucial process which requires an accurate testing of 

the product effects on the morpho-physiological traits of plants and a deep understanding of the 

mechanism of action of selected products. Product screening approaches using omics technologies have 

been found to be more efficient and cost effective in finding new biostimulant substances. A screening 

protocol based on the use of high-throughput phenotyping platform for screening new vegetal-derived 

protein hydrolysates (PHs) for biostimulant activity followed by a metabolomic analysis to elucidate the 

mechanism of the most active PHs has been applied on tomato crop. Eight PHs (A-G, I) derived from 

enzymatic hydrolysis of seed proteins of Leguminosae and Brassicaceae species were foliarly sprayed 

twice during the trial. A non-ionic surfactant Triton X-100 at 0.1% was also added to the solutions before 

spraying. A control treatment foliarly sprayed with distilled water containing 0.1% Triton X-100 was 

also included. Untreated and PH-treated tomato plants were monitored regularly using high-throughput 

non-invasive imaging technologies. The phenotyping approach we used is based on automated 
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integrative analysis of photosynthetic performance, growth analysis, and color index analysis. The digital 

biomass of the plants sprayed with PH was generally increased. In particular, the relative growth rate 

and the growth performance were significantly improved by PHs A and I, respectively, compared to the 

untreated control plants. Kinetic chlorophyll fluorescence imaging did not allow to differentiate the 

photosynthetic performance of treated and untreated plants. Finally, MS-based untargeted metabolomics 

analysis was performed in order to characterize the functional mechanisms of selected PHs. The 

treatment modulated the multi-layer regulation process that involved the ethylene precursor and 

polyamines and affected the ROS-mediated signalling pathways. Although further investigation is 

needed to strengthen our findings, metabolomic data suggest that treated plants experienced a metabolic 

reprogramming following the application of the tested biostimulants. Nonetheless, our experimental data 

highlight the potential for combined use of high-throughput phenotyping and metabolomics to facilitate 

the screening of new substances with biostimulant properties and to provide a morpho-physiological and 

metabolomic gateway to the mechanisms underlying PHs action on plants. 

 

Keywords: protein hydrolysates, integrative image-based high-throughput phenotyping, metabolomics, 

morpho-physiological traits, functional biostimulant characterization, ROS signalling. 
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INTRODUCTION 

Over the past decade, interest in plant biostimulants (PBs) has been on the rise, compelled by the growing 

interest of researchers, private industry and farmers in integrating these products in the array of 

environmentally-friendly tools that secure improved crop productivity and yield stability under 

environmental stressor (Ertani et al., 2012, 2013; Haplern et al., 2015; Colla et al., 2017a; Yakhin et al., 

2017; Rouphael et al., 2017a, b, 2018). Based on the new EU regulation, PBs are defined as ‘CE marked 

products which stimulate plant physiological processes independently of their nutrient content by 

improving one or more of the following characteristics of the plant rhizosphere or phyllosphere: nutrient 

use efficiency, tolerance to abiotic stress, crop quality, availability of confined nutrients in the soil and 

rhizosphere, humification and degradation of organic compounds in the soil’ (European Commission, 

2016). Protein hydrolysates (PHs) are an important category of PBs which are produced by chemical, 

enzymatic or by combining chemical and enzymatic hydrolysis of proteins from animal or plant source 

(Niculescu et al., 2009; Ertani et al., 2009, 2017; Calvo et al., 2014; Colla et al., 2015a, 2016, 2017a, b). 

Over the past ten years, plant-derived PHs produced through enzymatic hydrolysis have received huge 

interest from farmers due to their high agronomic value and the lack of limitation in their application on 

organically-produced crops (Colla et al., 2014; Nardi et al., 2016). PH-based biostimulants can be applied 

to plants through foliar application or soil/substrate drenching. PHs sprayed in foliar way reach 

mesophyll cells by absorption through cuticle, epidermal cells and stomata (Fernández and Eichert, 

2009) while in drench application, the absorption occurs through root epidermal cells and gets 

redistributed through xylem (Subbarao et al., 2015). PHs can also be applied as seed treatments especially 

for field crops such as wheat, corn, and soybean (Rouphael et al., 2018a). PH application stimulates plant 

uptake of macro and micronutrients and helps in rapid plant growth and biomass accumulation, 

interfering with the carbon and nitrogen metabolic activities (Ertani et al., 2009, 2016; Colla et al., 

2017a). PHs can also improve crop tolerance to abiotic stresses such as drought, salinity, and thermal 

stress (Ertani et al., 2013; Colla et al., 2017a). Therefore, improving metabolic and physiological traits 

by PH-based biostimulant treatments provides novel strategies for maximizing biomass yield (Dudits et 

al., 2016). Development of highly effective PH-based biostimulants requires an accurate evaluation of 

the effects of candidate products on morpho-physiological traits of selected crops during different 

developmental stages and environmental conditions. As conventional screening methods are time 

consuming, destructive (e.g., fresh and dry weight estimation), labour intensive and expensive, high-

throughput plant phenotyping procedures were recently proposed as effective and high-precision tools 

for product screening in order to increase the probability of finding new bioactive substances in a more 
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cost- and time-effective manner (Povero et al., 2016; Ugena et al., 2018; Rouphael et al., 2018b). 

‘Phenomics’ as a technological tool considers systematic management of complex traits in genome (G) 

× environment (E) interactions (Houle et al., 2010). Plant phenotyping systems are fully-automated 

robotic systems usually installed in a controlled environment or in semi-controlled greenhouse 

conditions. The phenotyping platforms are designed to ensure not only non-invasive monitoring of plants 

in throughput of few up to several hundreds of plants, but also provide means for automated cultivation 

and handling of the plants such as automated watering/weighing or nutrient delivery units (Fahlgren et 

al., 2015; Großkinsky et al., 2015). High-throughput phenotyping systems, which can capture plant 

growth, morphology, colour and photosynthetic performance using RGB and chlorophyll fluorescence 

(ChlF) imaging tools, are highly promising and essential tools for dissecting physiological components 

in product screening and for dynamic quantitative analysis of plant growth and physiological 

performance (Rahaman et al., 2015; Awlia et al., 2016; Rouphael et al., 2018b). RGB imaging is used to 

estimate the true color of each pixel and by using image processing algorithms for identification of plant-

derived pixels. For identified plant objects, morphological and geometrical features are quantified 

including colour properties (Rahaman et al., 2015). The pixel number-based assessment of plant volume 

or total leaf area correlates with fresh and dry weight of above ground plant biomass and can be thus 

used to evaluate green/fresh weight of the plants without cutting and measuring them (Feher- Juhasz et 

al., 2014; Fahlgren et al., 2015). Further image-based automated phenotyping permits time-series 

measurements that are necessary to follow the progression of growth performance and stress responses 

on individual plants.  

Chlorophyll fluorescence is a popular technique in plant physiology used for rapid non-invasive 

measurement of photosystem II (PSII) activity. PSII activity is very sensitive to a range of biotic and 

abiotic factors and therefore the chlorophyll fluorescence technique is used as a rapid indicator of 

photosynthetic performance of plants in different developmental stages and/or in response to changing 

environment (Baker, 2008). The advantage of chlorophyll fluorescence measurements over other 

methods for monitoring stresses is that changes in chlorophyll fluorescence kinetic parameters often 

occur before other effects of stress are apparent (Murchie and Lawson, 2013). Chlorophyll fluorescence 

imagers integrated in high-throughput phenotyping platforms are becoming important tools for rapid 

screening for better photosynthetic performance and characterization of a plant´s ability to harvest light 

energy, which is directly related to plant biomass formation and plant architecture (Tschiersch et al., 

2017).  
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Nonetheless, the comprehension of biochemical processes and physiological functions underlying 

the changes observed at phenotype level is of primary relevance to scientifically demonstrate and support 

the use of plant biostimulants, likely providing some clues on the best scenarios where these products 

can be used. It is expected that in the near future, provided that a regulatory framework will be 

implemented at least in the EU and USA, the information on mechanism/mode(s) of action will support 

biostimulants authorization and implementation. In this regard, metabolomics is being proposed as a 

close link between an organism’s genotype and phenotype (Lamichhane et al., 2018), including plant-

environment interactions (Feussner et al., 2015). In fact, recent advances in metabolomics, data treatment 

and multi-variate statistics offer the possibility to achieve a rather inclusive phytochemical profile in 

biological systems, including plants, thus opening new opportunities (Meier et al., 2017; Tsugawa, 

2018). This makes metabolomics a promising tool to elucidate, among others, the mode of action rather 

than the physiological processes involved in plant response to biostimulants. 

Taking this background into consideration, the aim of this study was to unravel the morphological, 

physiological and biochemical mechanisms of action for protein hydrolysate-based biostimulants on 

tomato plants at early stage of growth (i.e., vegetative growth) by combining novel high-throughput plant 

phenotyping approach and metabolomics. Untreated and treated tomato plants were compared in terms 

of photosynthetic performance through kinetic chlorophyll fluorescence, and plant growth dynamics via 

RGB imaging by using high-throughput and non-invasive imaging technologies developed at Photon 

Systems Instruments (PSI, Czech Republic). Metabolomics analysis was performed to understand the 

mode of action of the best performing substances in improving plant growth. Evaluation of biostimulant 

activity at early growth stages of fruiting crops such as tomato can provide useful information for 

improving crop yield under field conditions. Crop traits like early vigour are associated with earliness of 

fruit maturity and high shoot biomass accumulation which have been often positively linked to increased 

yield of tomato crop (Kumar et al., 2015; Rouphael et al. 2017c). Finally, this study was also aimed to 

set up a methodology for screening plant biostimulants by combining an advanced phenotyping platform 

and metabolomic analysis. 

 

MATERIALS AND METHODS 

Plant Material and Growing Conditions 
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Seeds of tomato (Solanum lycopersicum L. - Hybrid F1 Chicco Rosso) were sown in trays with 100 ml 

size of pots containing freshly sieved soil (Substrate 2, Klasmann-Deilmann GmbH, Germany) watered 

to full soil-water holding capacity. Trays with seeds were stratified for 2 days at 4°C in the dark. Trays 

were then transferred to a climate-controlled chamber (FytoScope FS_WI, PSI, Drásov, Czech Republic) 

with cultivation conditions set at 16 h day/8 h night regime, temperature set at 22 °C day/20 °C night, 

relative humidity set at 60% and light intensity set at 250 µmol photons m-2 s-1 for cool-white LED and 

5.5 µmol photons m-2 s-1 for far-red LED lighting (Figure 1A). 

Plant Handling and Biostimulant Treatment 

Prior initiation of automated phenotyping protocol, tomato plants were manually watered. Seven- and 

14-day-old plants were watered to full saturation with fertilizers: 1.04 g L-1 calcium nitrate (15.5% N; 

28% CaO), 0.04 g L-1 ammonium nitrate (34% N), 0.14 g L-1 monopotassium phosphate (52% P2O5, 34% 

K2O), 0.18 g L-1 potassium sulfate (50% K2O, 45%SO3), 0.5 g L-1 magnesium sulfate (10%N, 16% 

MgO), and 0.5 ml L-1 FloraMicro (5% N, 1% K2O, 5% Ca, 0.01% B, 0.001% Cu, 0.1% Fe, 0.05% Mn, 

0.0008% Mo, 0.015% Zn).  

Twenty-one-day-old plants reaching third true leaf stage were transplanted into 3 L pots filled with 

a mixture of Substrate 2 Klasmann soil and river sand in 3:1 ratio. Pots with soil mixture were prepared 

one day in advance of transplantation and were automatically watered in PlantScreenTM Modular System 

to ensure soil moisture reaching 60% container capacity. For optimizing container capacity, one set of 

soil pots was dried for 3 days at 80oC and another set was saturated with water and left to drain for 1 day 

before weighing 100% water holding capacity (Awlia et al., 2016). Following transplantation, plants 

were regularly watered to defined reference weight (60% container capacity) automatically in 

PlantScreenTM Modular System.  

Plants were randomly distributed into nine groups with six biological replicates per group. Eight 

types of plant-derived protein hydrolysates (A-G, I) were provided by Italpollina Company (Rivoli 

Veronese, Italy). PHs were obtained by the advanced technology LISIVEG which is based on enzymatic 

hydrolysis of seed-derived proteins from different plant sources belonging to families of Leguminosae 

and Brassicaceae. Total nitrogen of each PH was as follow: 5.2% (A), 4.6% (B), 3.7% (C), 4.2% (D), 

4.3% (E), 4.2% (F), 4.0% (G), 5% (I). PHs (A-G) were non-commercial products whereas I was a 

commercial biostimulant named ‘Trainer®’ derived from legume seeds. All PHs were foliarly sprayed 

in a water solution containing a non-ionic surfactant Triton X-100 at 0.1%. A control group sprayed with 
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distilled water containing 0.1% Triton X-100 was also included. Foliage sprays were performed twice: 

5 DAT (days after transplantation) referred to as Treatment 1 (T1) and 12 DAT referred to as Treatment 

2 (T2). For 24 hours prior to and post spraying, humidity in the cultivation chamber was kept at 85% 

relative humidity. For foliar spray treatments, 2 ml of given PH was diluted in 500 ml distilled water 

with 0.1% Triton X-100 and 60 ml of solution was applied by homogenous foliar spray over the entire 

plant surface per plant replica. Soil of each pot was covered with aluminum foil during and upon spraying 

and was removed prior to the next phenotypical analysis in PlantScreenTM Modular System (Figure 1B). 

Right after foliar spray treatment, plants were taken back to FytoScope FS-WI. 
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Phenotyping Protocol and Imaging Sensors 

Figure 1| Schematic overview of cultivation protocol and automated phenotyping protocol. A) Plants were cultivated for 20 
days prior to transplantation in control conditions (FS-WI, PSI, Czech Republic) and were further kept in the same conditions 
for the next 19 days (DAT, days after transplantation). Eight types of protein hydrolysates (A-G, I) plus control treatment were 
applied twice to tomato plants by spraying 5 and 12 days after transplantation. Plant phenotypic measurements were 
performed during the experiment using PlantScreen™ Modular System installed in semi-controlled greenhouse environment 
conditions in PSI Research Center (PSI, Drásov, Czech Republic). B) Plant handling and automated phenotyping protocol. 
Tomato plants were transferred to PlantScreenTM Modular System and automated phenotyping protocol was initiated. Prior 
to and following the protein hydrolysates application, plants were regularly screened using the calibrated top and side view 
RGB camera and kinetic chlorophyll fluorescence camera for photosynthetic performance quantification. Plants were regularly 
watered and weighed using the automated watering and weighing station. 
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Plant phenotypic measurements were performed using PlantScreen™ Modular System installed in semi-

controlled greenhouse environment conditions in PSI Research Center (PSI, Drásov, Czech Republic). 

The platform was operated in a closed imaging loop that is within climatized environment with 

temperature ranging between 21-24 °C. The platform is equipped with four robotic-assisted imaging 

units, automatic height measuring light curtain unit, an acclimation tunnel, and a weighing and watering 

unit. Plants set in individual transportation disks were transported to the individual units by a moving 

belt toward individual imaging and handling units. Twenty-two-day-old plants were randomly 

distributed into six batches, each batch containing 11 plants. Plant imaging started 1 DAT (day 1 of 

phenotyping) and continued until 15 DAT (day 15 of phenotyping). Plants were imaged using the 

following protocol. Briefly, plants were manually transferred from the climate-controlled growth 

chamber to the manual loading station of the PlantScreen™ Modular System, transported to the 

acclimation tunnel through an automatic height measuring unit and dark adapted in an acclimation tunnel 

for 15 minutes prior to imaging. Successively, plants were automatically phenotyped for around 30 

minutes per batch using kinetic chlorophyll fluorescence imaging measurement for photosynthetic 

performance analysis and top view and multiple angle side view Red Green Blue (RGB) imaging for 

morphological and growth analysis. Finally, plants were automatically transported to the watering and 

weighing unit for maintaining precise soil water holding capacity at 60%. After the end of the 

phenotyping protocol, plants were manually moved back to the climate-controlled growth chamber until 

the subsequent phenotyping day. Using the automatic timing function of PlantScreen™ Scheduler (PSI, 

Drásov, Czech Republic), the phenotyping protocol was programmed to always start at the same time of 

the diurnal cycle (after 3 hours of illumination in the climate-controlled growth chamber). Phenotyping 

protocol was recorded twice prior to biostimulant application in days 1 and 3 (pre-T measurements); 

three times post first biostimulant application in days 6, 8, 10 (post T1 application) and twice post second 

biostimulant application in days 13 and 15 (post T2 application). The acquired images were 

automatically processed using Plant Data Analyzer (PSI, Drásov, Czech Republic) and the raw data 

exported into CSV files were provided as input for further analysis. 
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Figure 2| Color segmented side view Red Green Blue (RGB) images of tomato plants prior to and upon PHs 
application. A) Side view (120°) RGB image of the tomato plants over the time of phenotyping period (D1-D15). B) 
Projected shoot area over time of phenotyping period. Values represent the average of six biological replicates per 
treatment. Error bars represent standard deviation. T1 and T2 correspond to days of protein hydrolysates application 
by foliar spraying. C) Digital biomass quantified over time of phenotyping period. Values represent the average of six 
biological replicates per treatment. Error bars represent standard deviation. T1 and T2 correspond to days of protein 
hydrolysates application by foliar spraying. D) Comparison of relative growth rate for the different treatments quantified 
over phenotyping period following the protein hydrolysate treatments (DAT 6-DAT 15). Values represent the average of 
six biological replicates per treatment. Error bars represent standard deviation. 
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Kinetic Chlorophyll Fluorescence Imaging 

Kinetic chlorophyll fluorescence (ChlF) measurements were acquired using an enhanced version of the 

FluorCam FC-800MF pulse amplitude modulated (PAM) chlorophyll fluorometer (PSI, Czech Republic) 

(Awlia et al., 2016) with an imaging area in top view position of 800 × 800 mm as described in Tschiersch 

et al. (2017). Photosynthetic performance in the plants was assessed by quantifying the rate of 

photosynthesis at different photon irradiances using the light curve protocol (Henley, 1993; Rascher et 

al., 2000) which was proven to provide detailed information on ChlF under stress, information on 

photosynthetic performance in many studies dealing with plants’ stress and to quantify the rate of 

photosynthesis at different light irradiances (Digruber et al., 2018) (Supplementary Figure 1). Protocol 

described previously (Awlia et al., 2016) was optimized for the tomato plants from early to later 

developmental stage. Finally, three actinic light irradiances (Lss1- 170 µmol photons m-2 s-1, Lss2 – 620 

µmol photons m-2 s-1, Lss3 - 1070 µmol photons m-2 s-1) with a duration of 30 seconds in the light curve 

protocol were used to quantify the rate of photosynthesis.  
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Figure 3| Photosynthetic performance of tomato plants visualized by kinetic chlorophyll fluorescence imaging in all protein 
hydrolysate treatments. Representative images of chlorophyll fluorescence for tomato plants prior to and upon PHs treatment.  
False-color images of maximum fluorescence value (FM) for tomato plants over phenotyping period (days 1-15) are shown. 
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Visible RGB Imaging  

To assess digital biomass of the plants, RGB imaging was done from top view (RGB2) and side view 

from multiple angles (RGB1) (Supplementary Figure 2). The RGB imaging unit implemented in 

PlantScreenTM Modular System is a light isolated box equipped with a turning table with precise angle 

positioning, two RGB cameras (top and side) mounted on robotic arms and each supplemented with 

LED-based lighting source to ensure homogenous illumination of the imaged object. Imaged area in top 

view position is 800 × 800 mm, imaged area from side view is 1205 mm × 1005 mm (height × width). 

Here we acquired side view images from three different angles (0°, 120°, 240°) for side view RGB 

analysis. RGB images (resolution 2560 × 1920 pixels) of the plants were captured using the GigE uEye 

UI-5580SE-C - 5 Megapixels QSXGA Camera with 1/2” CMOS Sensor (IDS, Germany) from top and 

side view. For side view projections, line scan mode was used with a resolution –2560 × 2956 px/scan, 

200 lines per second. Lighting conditions, plant positioning and camera settings were fixed throughout 

Figure 4| Spider plots of photosynthetic parameters deduced from kinetic chlorophyll fluorescence imaging on whole plant 
level in all treatments. Minimal fluorescence in dark-adapted state (Fo), maximum fluorescence in dark-adapted state (Fm), 
maximum quantum yield of PSII photochemistry for the light-adapted state (Fv´/Fm´), the photochemical quenching coefficient 
that estimates the fraction of open PSII reaction centers (qP), steady-state non-photochemical quenching (NPQ) and electron 
transport rate (ETR) were measured using the light curve protocol for tomato plants prior to and upon PHs treatments. The 
data are shown for the protein hydrolysate treated plants after normalization to respective values obtained in the control 
treatment at various time points of phenotyping period. Data are mean of six independent plants per treatment. Lss1, Lss2 
and Lss3 represent actinic photon irradiance measurements taken at 170, 620 and 1070 µmol photons m-2s-1, respectively. 
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the experiment. Raw RGB images were processed as described previously (Awlia et al., 2016) with some 

modifications for side view RGB image processing algorithms. Projected shoot area (PSA) for side view 

was calculated as average of plant specific pixels extracted from three side view images acquired from 

0°, 120° and 240° angles. PSA extracted from top and side view projections was used to estimate shoot 

biomass. Briefly side view and top view RGB images of the plants were used for calculation of plant 

volume, using the formula from Klukas et al. (2014): 

𝑉 = √𝐴𝑠 (𝑎𝑣𝑒𝑟𝑎𝑔𝑒)
2  𝑥 𝐴𝑡

2 

where As and At are the projected areas from side-view (at different angles) and top-view images, 

respectively. Volume was termed as “digital biomass,” as reported in a work from Rahaman et al. (2017). 

Digital biomass was used to calculate relative growth rate (RGR) between two timepoints T1 and T2 as 

follows:  

𝑅𝐺𝑅 = (ln 𝑊2 − ln 𝑊1) (𝑇2 − 𝑇1)⁄  

In addition, height and width of the plants were calculated from the binary side view images. For shoot 

greenness evaluation, six hues of green were automatically generated using as input images all the 

original RGB images captured during the phenotyping period (DAT1 – DAT15). These six most 

representative hues were selected and used to estimate the variations in shoot colors and are shown in 

RGB color scale as a percentage of the shoot area (pixel counts). 

Sample Harvest 

Ninteen DAT (19th day of phenotyping) plant material was harvested. For metabolomic analysis of 

tomato plants treated with biostimulants A, B, I and control plants third and fourth fully expanded leaves 

from the top of each plant were harvested. The non-commercial biostimulants A and B were selected for 

the metabolomic analysis based on the higher morpho-physiological traits and were compared to the 

commercial biostimulant (I) as well as to the untreated control treatment. Final biomass of each plant 

was determined by measuring fresh weight and dry weight of remaining shoot in a ventilated oven at 

65°C until constant weight. 

Untargeted Metabolomics 
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Leaf samples (1.0 g) were extracted using an Ultra-Turrax (Ika T-25, Staufen, Germany), in 10 mL of 

0.1% HCOOH in 80% aqueous methanol. The extracts were centrifuged (12000 × g), then filtered 

through a 0.22 m cellulose membrane directly into amber vials for analysis. Thereafter, untargeted 

metabolomics were carried out through an UHPLC chromatographic system coupled to a hybrid 

quadrupole-time-of-flight mass spectrometer (UHPLC/QTOF-MS). The metabolomic platform included 

a 1290 ultra-high-performance liquid chromatograph, a G6550 iFunnel Q-TOF mass spectrometer and a 

JetStream Dual Electrospray ionization source (all from Agilent technologies, Santa Clara, CA, USA). 

The analysis was carried out as previously described (Rouphael et al., 2016). Briefly, chromatographic 

separation was achieved in reverse phase mode, using an Agilent Zorbax Eclipse-plus C18 column (100 

× 2.1 mm, 1.8 μm) and a linear gradient (5% to 95% methanol in water, 34 min run time) foe elution, 

with a flow of 220 μL min-1 at 35°C. The mass spectrometric acquisition was done in positive polarity 

and extended linear dynamic range SCAN (100–1000 m/z). 

Features deconvolution and post-acquisition processing were done in Agilent Profinder B.06. After 

mass and retention time alignment, compounds annotation was achieved using the ‘find-by-formula’ 

algorithm based on monoisotopic accurate mass, isotopes spacing and isotopes ratio, with a mass 

accuracy tolerance of < 5 ppm. The database PlantCyc 12.5 (Plant Metabolic Network, 

http://www.plantcyc.org; released April 2018) was used for annotation purposes. Based on the strategy 

adopted, identification was carried out according to Level 2 (putatively annotated compounds) of 

COSMOS Metabolomics Standards Initiative (http://cosmos-fp7.eu/msi). 

A filter-by-frequency post-processing filter was applied to retain only those compounds that were 

present in 75% of replications within at least one treatment. The classification of differential compounds 

into biochemical classes was carried following PubChem (NCBI, https://pubchem.ncbi.nlm.nih.gov/) 

and PlantCyc information. 

Data Management and Statistical Analysis 

The data processing pipelines Plant Data Analyser (PSI, Drásov, Czech Republic) includes pre-

processing, segmentation, feature extraction and post-processing. Values for projected shoot area were 

calculated from images taken in the visible light spectrum and correspond to volume estimation which 

were used as a proxy for the estimated biomass of the plants. Data were processed using MVApp 

application (mmjulkowska/MVApp: MVApp.pre-release_v2.0; Julkowska et al. unpublished). Using the 

http://cosmos-fp7.eu/msi
https://pubchem.ncbi.nlm.nih.gov/
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MVApp, outliers were identified with the interquartile range rule as plants whose volume had a value 

1.5 times away from the mean. Those plants were removed from the data set. Statistical differences 

between treatments and time points were determined by one-way analysis of variance (ANOVA) with 

post hoc Tukey's Honest Significant Difference (HSD) test (P-value < 0.05) performed using appropriate 

scripts in MVApp tool. Data are displayed as mean ± standard deviation of the six independent plants 

per treatment. 

Interpretation of metabolomic data was formerly carried out using Mass Profiler Professional 

B.12.06 as previously described (Salehi et al., 2018). Briefly, compound abundance was Log2 

transformed and normalized at the 75th percentile and baselined against the median. Unsupervised 

hierarchical cluster analysis was formerly carried out using the fold-change based heatmap, setting 

similarity measure as ‘Euclidean’ and ‘Wards’ linkage rule. Thereafter, the dataset was exported in 

SIMCA 13 (Umetrics, Malmo, Sweden), UV-scaled and elaborated for Orthogonal Projections to Latent 

Structures Discriminant Analysis (OPLS-DA) modeling. This latter multivariate supervised statistic 

allowed separating variance into predictive and orthogonal (i.e., ascribable to technical and biological 

variation) components. Outliers were excluded using Hotelling’s T2 and adopting 95% and 99% 

confidence limits, for suspect and strong outliers, respectively. Model cross validation was done through 

CV-ANOVA (p< 0.01) and permutation testing (N=300) was used to exclude overfitting. Model 

parameters (goodness-of-fit R2Y and goodness-of-prediction Q2Y) were also produced. Finally, Variable 

Importance in Projection (VIP) analysis was used to select the metabolites having the highest 

discrimination potential. A subsequent fold-change analysis was performed from VIPs to identify extent 

and direction of the changes in accumulation related to the biostimulants. 
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RESULTS AND DISCUSSION 

High-Throughput Phenotyping of Tomato Plant Growth  

Visible light Red Green Blue (RGB) digital imaging based on using cameras sensitive in visible spectral 

range (400 – 750 nm) allows non-invasive dynamic quantification of shoot biomass, measurement of a 

wide range of plant morphological parameters and analysis of shoot colour. Multiple angle side view 

images (Figure 2, Supplementary Figure 2) and simple image stacks acquired from top view were used 

to calculate plant volume that is an approximate of digital biomass of the plants throughout the cultivation 

Figure 5| Unsupervised hierarchical cluster analysis carried out from metabolomic profiles following application of selected protein 
hydrolysates. Dendrograms were produced on the basis of fold-change heat-maps using metabolites profile gained from UHPLC-
ESI/QTOF untargeted metabolomic profiling. The Wards’ linkage rule and Euclidean similarity were chosen to produce dendrograms. 
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period. Regularly acquired multiple time points measurements were used to asses dynamic changes in 

plant morphology, colour and calculate growth rates.  

In general, tomato plants treated with PHs showed better shoot biomass production in comparison 

with the untreated control plants (Figure 2). Top view projected shoot area was increased in tomato 

plants treated with PHs A and E post first foliar treatment (Supplementary Table 1). For A treatment 

this correlated with PSA extracted from multiple angle side view RGB images (Supplementary Table 

2) with B treatment improving the PSA in period between the two foliar treatments. In terms of 

morphological features extracted from both top and side view images such as compactness, height and 

width of the plants, treatments A, B, D, E and F gave an increase of height and width of plants 

(Supplementary Tables 3 and 4). The digital biomass of the plants sprayed with PHs increased (Figure 

2C), especially in the case of A treatment where the improved growth performance was significantly 

compared to untreated control plants from the eighth day of phenotyping, three days post first foliar 

spraying, respectively (Supplementary Tables 5). The same trend was recorded when the growth 

dynamics was considered by evaluating plant growth rates. We quantified relative growth rates from 

DAT6 – DAT15 representing growth performance of the plants following the two PH treatments that 

were applied on DAT5 and DAT12 (Figure 2D). For A, E and I treatment, growth rates were improved 

when compared to control plants, however the effect of A and E treatment could not be discriminated 

from the effects of the other PHs. Interestingly, the treatment I was identified as the one with highest 

growth rate among all PHs. Overall, among all treatments, the best growth performance trend in terms 

of biomass and growth rate was observed for tomato plants treated with treatment A, whereas tomato 

plants treated with PH named C were smaller with slower growth dynamics. This further correlated with 

analysis of dry and fresh weights of tomato shoots that were harvested following the end of the 

phenotyping period (r=0.87* and 0.85* for fresh and dry weight, respectively). 

We further evaluated the variation in shoot green colours over the phenotyping period by using 

greenness hue abundance automatically computed from colour-segmented RGB images 

(Supplementary Figure 3). We calibrated the analysis algorithms by using RGB images from all 

treatments and all days of phenotyping as described previously in Awlia et al. (2016). Dynamic changes 

in green hues during the plant growth were observed, however no significant differences in the green 

hues were detected between the treatments (Supplementary Table 6).  
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High-Throughput Phenotyping of Photosynthetic Performance in Tomato Plants  

Chlorophyll fluorescence imaging has become one of the most powerful and popular tools in plant 

biology for rapid non-invasive measurement of Photosystem II (PSII) activity. Because PSII activity is 

very sensitive to a wide range of stimuli, chlorophyll fluorescence imaging can be used as rapid indicator 

of plant photosynthetic performance in different developmental stages, and in response to environmental 

changes (Murchie and Lawson, 2013). 

To assess the physiological status of tomato plants treated with the biostimulants, we used the 

automated chlorophyll fluorescence imaging setup (Figure 3, Supplementary Figure 1) and quantified 

the rate of photosynthesis at different photon irradiances using the light curve protocol (Henley, 1993; 

Rascher et al., 2000). From the measured fluorescence transient states, the basic ChlF parameters were 

derived (i.e., Fo, Fm, Ft, Fv), which were used to calculate range of parameters characterizing plant 

photosynthetic performance (i.e., Fv
´/Fm

´, NPQ, qP, ΦPSII) (for overview refer to Paul et al., 2011; Awlia 

et al., 2016; Tschiersch et al., 2017). In addition, ETR parameter was calculated which refers to 

Figure 6.  
 

Figure 6| Score plot of Orthogonal Projection to Latent Structures Discriminant Analysis (OPLS-DA) supervised modeling 
carried out on metabolomic profiles following application of selected protein hydrolysates. The variation between groups 
was separated into predictive and orthogonal components (i.e., that ascribable to technical and biological variation). The OPLS 
model was cross-validated using CV-ANOVA (p < 0.01) and permutation tested to exclude over fitting. Furthermore, the 
presence of outliers was investigated according to Hotelling’s T2 method (i.e., the distance from the origin in the model) using 
95% and 99% confidence limits for “suspect” and “strong” outliers, respectively. The pattern observed in the score plot was 
used to identify discriminant compounds based on Variable of Importance in projection (VIP) analysis. 
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photosynthetic electron transport rate of photosystem II and indicates the efficiency of linear electron 

flow route in the photosynthetic machinery for producing energy rich molecules ATP and NADPH. 

We selected six of the parameters to characterize dynamically photosynthetic function of PSII in the 

tomato plants prior to and post biostimulant treatment: the minimal level of fluorescence measured in 

dark-adapted state (Fo), the maximum level of fluorescence measured in dark-adapted state (Fm), the 

maximum quantum yield of PSII photochemistry in the light-adapted state (Fv
´/Fm

´), the photochemical 

quenching coefficient that estimates the fraction of open PSII reaction centers (qP), steady-state non-

photochemical quenching (NPQ) and PS II operating efficiency (ΦPSII) used for calculation of electron 

transport rate (ETR). ETR is a process correlated to the quantum yield of the CO2 assimilation 

mechanisms and to the overall photosynthetic capacity of the plants (Genty et al., 1989). As shown in 

Figure 4, the selected fluorescence parameters varied partially between the individual days following 

the PH treatment, however we could not observe any trend among the treatments. In addition, we were 

not able to detect any significant changes in the ChlF parameters assessed (Supplementary Table 7). 

This was the case for all treatments at any photon irradiances used.  

Kinetic chlorophyll fluorescence imaging used for non-invasive quantitative analysis of PSII 

fluorescence emission is especially suited to monitor physiological traits via changes in photochemistry. 

In the field of automated high-throughput phenotyping, PAM Chl fluorescence imaging is still not widely 

used in the imaging sensor platforms, however a range of studies already demonstrated the broad 

potential of the technique to measure quantitatively physiological state of the plants and to diagnose the 

reactions of the plants to stress even before visible symptoms become apparent (Paul et al., 2011; Awlia 

et al., 2016; Tschiersch et al., 2017). Biostimulants have shown to increase photosynthetic efficiency, 

improve the efficiency of light utilization and dissipation of excitation energy in PSII antennae as well 

as an increase in photosynthetic pigments (Yahkin et al., 2017). The fact that in our case the application 

of the PHs did not result in improved photochemistry parameters, although the biomass of the 

biostimulant treated plants increased, might be associated with the beneficial action of PHs on stomatal 

conductance rather than on the PSII directly. This might improve net CO2 assimilation rate and 

consequently biomass production. Another putative mechanism involved in the stimulation of plant 

growth and productivity of PH-treated tomato plants could be the occurrence of smaller and more 

responsive stomata that are proposed to be able to sustain higher photosynthetic activities (Rouphael et 

al., 2017d).   
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Metabolomics Analysis of Tomato Leaves for Understanding the Mode of Action of 

Selected PHs  

A metabolomic approach was used, following phenotyping analysis, aimed to strengthen at the molecular 

level the effects of the PHs on morpho-physiological traits and plant growth. Indeed, the understanding 

of the mechanisms through which PHs act on a plant can effectively support their actual implementation 

into agricultural practices and possibly suggest specific contexts for their optimal and profitable use. 

With this aim, an untargeted UHPLC/QTOF-MS analysis was performed and multi variate statistics used 

to point out similarities/dissimilarities among metabolomic profiles of the PH-treated plants. The 

combination of a high-performance untargeted profiling, together with a rather comprehensive database 

(PlantCyc), resulted in a large dataset (overall, almost 1600 compounds annotated). A large chemical 

diversity was represented within the dataset, including compounds from a wide variety of biochemical 

classes and metabolic processes. The whole dataset, together with individual compounds’ abundance and 

composite mass spectra, is provided in supplementary material (Supplementary Table 8). 

As a first step of interpretation, a fold-change based hierarchical clustering was carried out (Figure 

5). This unsupervised approach allowed producing two main clusters, one comprising all replications 

from the control and another including all PH-treated samples. In this latter, two further sub-clusters 

were evident, with products A and B being mixed together and with treatment I representing a separate 

sub-cluster. This unsupervised (i.e., naïve) classification of metabolomic profiles, based on individual 

fold-change values for each compound annotated, suggested that the PH treatments imposed a change in 

the plant metabolomic profile, and that treatments A and B induced a more comparable effect whereas 

treatment I had a more distinctive effect. 

To better identify the specific responses induced in plants following the PH treatments, a supervised 

OPLS-DA multivariate modelling was carried out. This discriminant analysis approach allows 

discriminating among groups into score plot hyperspace, by separating predictive and orthogonal 

components (i.e., those components ascribable to technical and biological variation) of variance. Looking 

at the OPLS-DA score plot (Figure 6), the outcome of this supervised approach was in agreement with 

hierarchical clusters. Indeed, the control clustered in a separate region of score plot hyperspace, treatment 

with products A and B were separated but still closer to each other, and treatment I was confirmed to 

have the most distinctive profile. The model parameters of the OPLS-DA regression were excellent, 

being R2Y and Q2Y 0.94 and 0.63, respectively. The model was validated (CV-ANOVA P = 0.009) and 



Results  

 
137 

overfitting could be excluded through permutation testing (N = 100). Furthermore, the Hotelling’s T2 

showed that suspect and strong outliers could be excluded. Given the more than acceptable model 

parameters, the variable selection method called VIP (Variable Importance in Projection) was used to 

explain the differences observed. The most discriminating compounds (i.e., the markers possessing a 

VIP score > 1.4) were exported and subjected to fold-change analysis against the control, to identify the 

trends of regulation altered by the treatments. The discriminant compounds, together with their VIP score 

and fold-change values, were grouped into chemical classes and are provided in Table 1. Interestingly, 

few biochemical classes included the most of discriminant metabolites. In more detail, low molecular 

weight phenolic compounds, poly-hydroxy fatty acids, membrane lipids (glyco- and phospholipids), 

hydroxy-carotenoids and phytohormones (polyamines) were the most represented.  

From an overall perspective, the metabolomic changes imposed by the PH treatment can be 

correlated to relatively few processes, all of them converging toward the ROS-related plant signalling 

network. Among plant growth regulators, 1-aminocyclopropane-1-carboxylate (ACC), i.e. the direct 

precursor of ethylene, was found up accumulated in treated plants. Considering that ethylene is not 

detectable by our metabolomic approach, the increase of ACC suggests and increase in ethylene itself. 

The effects of ethylene on growth and development have been found to vary, depending on other 

phytohormone profile, CO2 and light (Small and Degenhardt, 2018). Although usually related to 

senescence and fruit ripening, ethylene has been reported to play many other regulations in plants, 

including flowering and overall plant growth, cell division and root initiation, as well as modulation of 

secondary metabolites light (Schaller, 2012; Small and Degenhardt, 2018). In fact, at relatively low 

concentration, ethylene has been reported to stimulate leaf growth (Dubois et al., 2018) and to promote 

yields (Habben et al., 2014). Scientific evidence suggests that such ethylene-dependent regulation of 

plant growth is related redox signalling pathways (Caviglia et al., 2018). 

Notably, polyamine conjugates (namely sinapoyltyramine and triferuloyl spermidine, both up 

accumulated in treated plants) were additional plant growth regulators being induced by the treatments. 

Polyamines are preferentially detected in actively growing tissues and have been implicated in the control 

of cell division, embryogenesis, root formation, fruit development and ripening, and responses to biotic 

and abiotic stresses (Kumar et al., 1997; Gill and Tuteja, 2010; Agudelo-Romero et al., 2013; Rouphael 

et al., 2016). However, these metabolites are also reported to affect H2O2 signature under salt stress 

(Gémes et al., 2017) in a coordinate manner with ethylene (Hou et al., 2013).  
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Even though a clear trend could not be observed, a wide alteration of the profile of membrane lipids 

was observed in our experiments. Such modulation might be the consequence of the altered signature in 

signalling compounds and antioxidants. Nevertheless, it is important to consider that membrane lipids 

play an important role in secondary signalling cascades which control plant adaptation processes (Hou 

et al., 2016). The concurrent changes in antioxidant compounds such as phenolics and carotenoids, 

suggests a fine tuning of the ROS-mediated signalling in tomato following application of the 

biostimulants. Indeed, such secondary metabolites are well known to play a pivotal role in plant defence 

against oxidative stress (Shalaby and Horwitz, 2015; Lucini et al., 2018; Rouphael et al., 2018a). Such 

interplay between polyamines, ROS and ethylene was reported to alleviate the decrease of plant biomass 

under stress conditions (Gémes et al., 2017) and might have had a role also in our experiments. 

Consistently with our findings, it is interesting to note that such support to biomass accumulation was 

not related to photosynthetic efficiency (Gémes et al., 2017) and was linked to the accumulation of 

phenolic compounds (Gémes et al., 2016).  

Unlike mammals, plants produce the most of ROS in chloroplast, under a controlled multi-level 

antioxidant-scavenging system that includes thiols, antioxidant enzymes and low molecular weight 

antioxidants to manage their accumulation and transmit oxidative signals. While the concept that 

deleterious and irreversible oxidation driven by ROS is embed in literature, the scientific consensus is 

now shifting towards the recognition of the positive roles of ROS as essential components of chloroplast-

nucleus retrograde signalling pathways (Foyer et al., 2017, Foyer, 2018). Since H2O2 is relatively more 

stable than superoxide and singlet oxygen (both having short half-lives), this compound is believed the 

likely candidate to diffuse over any distances within the cell. Such redox signals interact with the 

phytohormone signalling network to regulate plant growth and defence processes (Foyer, 2018). This 

production of ROS is essential not only to convey communication regarding the redox pressure within 

the electron transport chain, but also to trigger short-term genetic responses (Foyer, 2018). 

Within this redox-mediated multi-layer signalling process, carotenoids (together with glutathione 

and tocopherols) are among the most effective 1O2 scavengers; in fact, alteration in carotenoid oxidized 

forms has been recorded in our experiments. Coherently, the down accumulation of pheophorbide a, i.e. 

a precursor of chlorophylls, is a known process plant uses to control ROS production in the 

photosynthetic organs, given the fact that the photoreduction of oxygen to the superoxide radical is 

related to a reduced electron transport in PSI (Ghandchi et al., 2016) Although the link between the 

application of our PHs and biostimulants activity tomato could not be fully elucidated, a general 

consensus towards ROS-phytohormone interplay can be postulated, based on the differential metabolites 
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identified by metabolomics. Such multi-level signalling might have played a role in determining the 

differences in growth observed through phenotyping. 

CONCLUSIONS 

The use of PBs in particular plant-derived protein hydrolysates (PHs) in agriculture has greatly increased 

in the last decade mostly due to their multifaceted properties. Highly efficient and effective PH-based 

biostimulant products can be obtained using the ‘omics’ sciences. A novel approach based on the use of 

high-throughput phenotyping technologies and metabolomics was successfully tested on tomato crop for 

identifying new PHs with biostimulant activity and for studying the PH effects on plants at the molecular 

level. Dynamic monitoring of plant performance by high-throughput phenotyping system has proven to 

be a powerful tool for substance screening on the basis of morpho-physiological traits quantification. 

The effects of PHs on tomato phenotype were more evident on digital biomass. Metabolomics followed 

by multivariate analysis allowed elucidating the metabolic signatures imposed by the specific PH 

treatments at the molecular level. PH treatments affected the metabolic profile of tomato leaves via the 

modulation of a complex signalling process that involved the direct precursor of ethylene and polyamine 

conjugates. The coordinated action of plant growth regulators together with antioxidant compounds such 

as carotenoids and phenolics, might have affected the ROS-mediated signalling pathways. Although 

further assays under defined conditions would strengthen our findings, the discriminant compounds 

pointed out by this approach suggest that treated plants might experience a metabolic reprogramming 

following the application of the tested biostimulants.
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Table 1| Discriminant metabolites as identified by Variables of Importance in Projection (VIP) analysis following OPLS-DA modelling on metabolomic profile of treated plants. 
Discriminant metabolites (VIP > 1.4) are provided together with individual scores, their standard error (SE) and metabolite fold-change (FC) Log values, as compared to control; 
missing values denote fold-change values < 1.5. 

Class Metabolite 

VIP score  [A] vs [control]  [B] vs [control]  [I] vs [control] 

score SE Log FC 
Regulat

ion 
    Log 

FC 
Regulat

ion 
Log 
FC 

Regulat
ion 

Phenolics 3.5-dihydroxyanisole 1.409 0.769       
 1.3.5-trimethoxybenzene 1.405 0.286 2.8 up 5.5 up 1.7 up 

 4-hydroxybenzaldehyde 1.418 0.820       
 3.6.7.4'-tetramethylquercetagetin 3'-O-beta-D-glucoside 1.540 0.883       
 3-phenylpropanoate 1.457 0.308 0.3 up 5.5 up 1.7 up 

 3-hydroxybenzaldehyde 1.418 0.820       
 gallocatechin 1.372 0.548 0.2 up 3.6 up 4.5 up 

 leucocyanidin 1.372 0.548 0.2 up 3.6 up 4.5 up 

 epigallocatechin 1.372 0.548 0.5 up 3.6 up 4.3 up 
Glucosinol
ates 3-(7'-methylthio) heptylmalate 1.308 0.304 3.1 up 1.2 up 1.8 up 

 2-(7'-methylthio) heptylmalate 1.308 0.304 3.7 up 1.2 up 1.8 up 
Lipids oleate 1.367 0.497 -29.4 down 0.2 up 3.9 up 

 colneleate 1.515 0.219 -3.9 down -4.0 down 2.0 up 

 4-coumaryl alcohol 1.456 0.313 0.3 up 5.5 up 1.7 up 

 germacra-1(10).4.11(13)-trien-12-ol 1.315 0.777 -8.7 down -5.1 down 0.4 up 

 dammarenediol II 1.428 0.899 6.2 up 6.2 up 6.0 up 

 1-16:0-2-18:3-diacylglycerol-trimethylhomoserine 1.365 0.919 1.0 up 1.1 up 0.7 up 

 1-16:0-2-18:2-digalactosyldiacylglycerol 1.394 1.122       
 sitosterol 1.317 1.095 -0.5 down -1.1 down -0.5 down 

 (12Z.15Z)-9.10-epoxyoctadeca-12.15-dienoate 1.515 0.219 -3.9 down -4.0 down 2.0 up 

 An epoxy-octadeca-dienoate 1.515 0.219 -3.9 down -4.0 down 2.0 up 

 A dihydroxyoctadeca-dienoate 1.371 0.724 0.6 up -0.4 down 1.5 up 

 9.10-12.13-diepoxyoctadecanoate 1.316 0.617 11.6 up 1.2 up 6.9 up 
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 16-alpha-hydroxygypsogenate-28-beta-D-glucoside 1.319 0.684 0.6 up 8.8 up 1.5 up 

 2-hydroxyhexadecanoate 1.413 0.883       
 2-trans-6-trans-farnesyl monophosphate 1.397 0.571 4.5 up 4.6 up 0.7 up 

 geranyl monophosphate 1.376 0.378 3.2 up 3.1 up 1.6 up 

 (9S)-HPODE / (13S)-HPODE 1.371 0.724 0.6 up -0.4 down 1.5 up 

 3--beta;-D-galactosyl-sn-glycerol 1.369 1.015       
 a 2-acyl-sn-glycero-3-phosphoethanolamine (n-C14:1) 1.357 0.447 3.1 up 9.4 up 1.9 up 

 a 1-acyl-sn-glycero-3-phosphoglycerol (n-C14:1) 1.346 0.288 -0.4 down -0.4 down -1.8 down 

 3.4-dihydroxy-5-iall-trans/i-hexaprenylbenzoate 1.323 0.679 -3.1 down 9.3 up 6.1 up 

 
4.4-dimethyl-5-alpha-cholest-7-en-3-beta-ol / 4.4-dimethyl-5-
alpha-cholesta-8-en-3-beta-ol 1.317 1.095 -0.5 down -1.1 down -0.5 down 

 1.2-dipalmitoyl-phosphatidylglycerol-phosphate 1.317 0.506 -9.4 down -7.5 down 1.4 up 

 (6E)-8-oxogeranial 1.315 0.666 -1.8 down -1.8 down -1.5 down 

 (2E.6E)-farnesal 1.315 0.777 -8.7 down -5.1 down 0.4 up 

 
4-alpha-carboxy-4-beta-methyl-5-alpha-cholesta-8-en-3-beta-
ol 1.312 0.670             

Carotenoid
s 4-methylocta-2.4.6-trienedial 1.456 0.313 0.6 up 5.5 up 1.7 up 

 
5.6-epoxy-3-hydroxy-5.6-dihydro-12'-apo-beta;-caroten-12'-
al 

1.500 0.534 
-

0.286462
78 down -1.0 down -1.3 down 

 18'-hydroxy-chi; chi;-caroten-18-oate 1.304 0.646 -9.2 down -1.5 down -1.5 down 
Hormones 1-aminocyclopropane-1-carboxylate 1.419 0.241 2.9 up 2.9 up 1.8 up 

 salicylaldehyde 1.418 0.820       
Others triferuloyl spermidine 1.503 0.350 0.6 up 2.8 up 1.7 up 

 sinapoyltyramine 1.516 0.366 0.6 up -0.4 down 1.8 up 

 thiamin 1.450 0.539 4.6 up 4.5 up 0.4 up 

 S-adenosyl 3-(methylthio) propylamine 1.431 0.440 -6.1 down 9.2 up 6.1 up 

 methyl-1.4-benzoquinone 1.418 0.820       
 N-acetylneuraminate 1.384 0.363 -1.4 down -1.5 down -1.5 down 

 menaquinol-8 1.367 0.491       
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 pyropheophorbide a 1.361 0.302 -1.1 down -1.0 down -1.2 down 
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Supplementary Figures 

Suppl. Fig. 1| Schematic of the kinetic ChlF protocol in the PlantScreenTM Modular System. ChlF kinetics 

were captured with a PAM-based chlorophyll fluorometer. Images of the individual transient states were 

recorded. Corresponding frames were averaged for the measured parameters (Fo, Fm, Fm’, Ft, and Fp) or 

calculated from the captured frames to compute the relative parameters such as Fv/Fm, ΦPSII, Fv ´/Fm ´, 

NPQ and others. Automated ChlF image processing consisted of image segmentation by mask application, 

background subtraction and feature extraction. The signals from all pixels of each segment were averaged at each 

given time point. MF refers to the measuring flash, and yellow arrows indicate the saturation pulses that 

transiently saturated the electron transport chain. Lss1, Lss2 and Lss3 represent actinic photon irradiance 

measurements taken at 170, 620 and 1070 µmol photons m- 2 s-1, respectively. 
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Suppl. Fig. 2. Schematic of top and side view RGB image processing. Original RGB images were 

automatically processed using the PlantScreen™Analyzer software to correct for barrel distortion caused by the 

fisheye lens, subtract the background and crop to isolate the plants within the imaged area, producing a 

binary (black and white) image. The binary images represent the plant surface (white) and background 

(black). Non-plant pixels, such as pots, were automatically removed to extract only plant pixels. 

Morphological analysis was conducted after separating the background from the plant shoot tissue. To 

evaluate color of plant shoot, RGB images were color-segmented to extract the green hues.  
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Suppl. Fig. 3. Variation in shoot colors of tomato plants. Dynamic relative changes in greenness hue 

abundance over the phenotyping period in control tomato plants and plants treated with protein hydrolysates 

(A-G, I). The six most representative color hues are shown in RGB color scale as percentage of the shoot area 

(pixel counts) of six biological replicates per treatment. 

 



Results  

 

 

146 

Suppl. Table 1 - Projected shoot area (PSA) of the tomato plants extracted from top view RGB images starting 3 days after the first PH application (day after 

transplanting, DAT = 8). Values are expressed as number of green pixels and represent the average of six biological replicates per treatment ± standard deviation. 

Within the same row and for the specified day different letters indicate significant difference according to one-way ANOVA post-hoc Tukey’s test (p<0.05). 

 

Suppl. Table 2 - Projected shoot area (PSA) of the tomato plants extracted from top view RGB images starting 3 days after the first PH application (day after 

transplanting, DAT = 8). Values are expressed as number of green pixels and represent the average of six biological replicates per treatment ± standard deviation. 

Within the same row and for the specified day different letters indicate significant difference according to one-way ANOVA post-hoc Tukey’s test (p<0.05). 
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Suppl. Table 3 - Width of the tomato plants extracted from multiple side view RGB images starting 3 days after the first PH application (day after transplanting, 

DAT = 8). Values are expressed as number of green pixels and represent the average of six biological replicates per treatment ± standard deviation. Within the same 

row and for the specified day different letters indicate significant difference according to one-way ANOVA post-hoc Tukey’s test (p<0.05). 
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Suppl. Table 4 - Height of the tomato plants extracted from multiple side view RGB images starting 3 days after the first PH application (day after transplanting, 

DAT = 8). Values are expressed as number of green pixels and represent the average of six biological replicates per treatment ± standard deviation. Within the same 

row and for the specified day different letters indicate significant difference according to one-way ANOVA post-hoc Tukey’s test (p<0.05). 

 

Suppl. Table 5 - Digital biomass of tomato plants treated with different protein hydrolysates starting 3 days after the first PH application (day after transplanting, 

DAT = 8). Values are expressed as number of green pixels and represent the average of six biological replicates per treatment ± standard deviation. Within the same 

row and for the specified day different letters indicate significant difference in digital biomass, according to one-way ANOVA post-hoc Tukey’s test (p<0.05). 
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Suppl. Table 6 - Variation in shoot colours of tomato plants treated with different protein hydrolysates at 15 days after transplanting. The values for 6 most 

representative colour hues are shown as percentage of the shoot area (pixel counts). Values represent the average of six biological replicates per treatment ± standard 

deviation. Within the same row and for the specified day different letters indicate significant difference according to one-way ANOVA post-hoc Tukey’s test (p<0.05). 

 

Suppl. Table 7 - Photosynthetic performance of tomato plants at 15 days after transplanting. Photosynthetic parameters deduced from kinetic chlorophyll fluorescence 

imaging on whole plant level in all protein hydrolysate treatments. Minimal fluorescence in dark-adapted state (Fo), maximum fluorescence in dark-adapted state (Fm), 

maximum quantum yield of PSII photochemistry for the dark-adapted (Fv/Fm), the photochemical quenching coefficient that estimates the fraction of open PSII reaction 

centers (qP), steady-state non-photochemical quenching (NPQ) and electron transport rate (ETR) were measured using the light curve protocol for tomato plants prior 

and upon PHs application. Values represent the average of six biological replicates per treatment ± standard deviation. Within the same row and for the specified day 

different letters indicate significant difference according to one-way ANOVA post-hoc Tukey’s test (p<0.05). Lss1, Lss2 and Lss3 represent actinic photon irradiance 

measurements taken at 170, 620 and 1070 µmol photons m-2s-1 PAR values respectively 
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3.1.3 Tomato II – Drought stress 
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Abstract 

Plant-derived protein hydrolysates (PHs) are an important category of biostimulants able to increase 

plant growth and crop yield especially under environmental stress conditions. PHs can be applied as 

foliar spray or soil drench. Foliar spray is generally applied to achieve a relatively short-term response 

whereas soil drench is used when a long-term effect is desired. The aim of the study was to elucidate the 

biostimulant action of PH application method (foliar spray or substrate drench) on morpho-physiological 

traits and metabolic profile of tomato grown under limited water availability. An untreated control was 

also included. A high-throughput image-based phenotyping (HTP) approach was used to non-

destructively monitor the crop response under limited water availability (40% of container capacity) in 

controlled environment. Moreover, metabolic profile of leaves was determined at the end of the trial. 

Dry biomass of shoots at the end of the trial was significantly correlated with number of green pixels, 

(R2= 0.90) projected shoot area, respectively. Both drench and foliar treatments had a positive impact on 

the digital biomass compared to control while photosynthetic performance of the plants we slightly 

influenced by treatments. Overall drench application under limited water availability more positively 

influenced biomass accumulation and metabolic profile than foliar application. Significantly higher 

transpiration use efficiency was observed with PH-drench applications indicating better stomatal 

conductance. The MS-based metabolomic analysis allowed identifying distinct biochemical signatures 

in PH-treated plants. Metabolomic changes involved a wide and organized range of biochemical 

processes that included, among others, phytohormones (notably a decrease in cytokinins and an 

accumulation of salicylates) and lipids (including membrane lipids, sterols and terpenes). From a general 

perspective, treated tomato plants exhibited an improved tolerance to ROS-mediated oxidative 

imbalance. Such capability to cope with oxidative stress might have resulted from a coordinated action 

of signaling compounds (salicylic acid and hydroxycinnamic amides), radical scavengers such as 

carotenoids and prenyl quinones, as well as a reduced biosynthesis of tetrapyrrole coproporphyrins. 

 

Keywords: protein hydrolysates; high-throughput phenotyping; metabolomics; morpho-physiological 

traits; foliar spray; drench application. 



Results  

154 

 

INTRODUCTION 

Competition among agriculture, industry and cities for limited water supplies is already constraining 

development efforts in many countries. As populations expand and economies grow, the competition for 

limited supplies will intensify and so will conflicts among water users. Agriculture is not only the world's 

largest water user in terms of volume, it is also a relatively low-value, low-efficiency and highly-

subsidized water user (Rouphael et al., 2012).  

These facts are forcing farmers to grow crops with diminishing water supplies. Limited water 

availability can affect morphological, physiological, biochemical and molecular processes in plants, 

resulting in growth depression and yield reduction (Liu et al., 2014; Kumar et al., 2017). Under these 

conditions, the application of plant biostimulants can help crops to use water more efficiently by 

changing the root to shoot ratio, the plant metabolism and hormonal balance (Ertani et al., 2012, 2016; 

Colla et al., 2017; Rouphael and Colla, 2018).  

Protein hydrolysates (PHs) represent an important category of plant biostimulants that have been 

extensively used for improving crop yield and quality especially under abiotic stress conditions such as 

limited water, salinity and heavy metals (Ertani et al., 2009; Colla et al., 2015a; du Jardin et al., 2015). 

PHs could directly stimulate carbon and nitrogen metabolism and could indirectly enhance nutrient 

availability of substrates and increase nutrient uptake as well as nutrient-use efficiency in plants (Haplern 

et al., 2015; Colla et al., 2017b; Rouphael et al., 2017b). PHs can be applied by foliar spray or substrate 

drench affecting molecular and physiological crop response in a different way (Lucini et al., 2015; Sestili 

et al., 2018). In a recent study, substrate drench applications of a plant-derived PH were more effective 

to improve plant growth and total N uptake than foliar sprays in tomato (Sestili et al., 2018). In the same 

study, the application method (drench or foliar) of the plant-derived PH affected the expression of genes 

encoding ammonium and nitrate transporters differently as well as seven enzymes involved in N 

metabolism of tomato (Sestili et al., 2018).  

A successful evaluation of biostimulant activity of PHs requires an accurate measurement of morpho-

physiological traits of plants over time. Use of advanced image-based automated phenotyping platforms 

offers opportunities to both increase the speed at which these measurements are collected as well as the 

accuracy of measurements (Povero et al., 2016). Dynamic screening of plants can be done for multiple 
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morpho-physiological traits related to growth, yield, and performance throughout their development or 

onset, progression, and recovery from abiotic stress (Petrozza et al., 2014). Functional action and 

characterization of PHs in plants can be thus monitored with high precision and in high resolution in 

each phase of plant development and/or plant response to environmental conditions, depending on the 

target substance application or type of experimental layout (Rouphael et al., 2018a). Range of morpho-

physiological traits can be monitored in a fully automated, high-resolution and high-sensitivity manner. 

A key descriptive parameter in plant physiology, except of root analysis, is the shoot growth of the plants 

and quantitative and qualitative dynamic assessment of growth performance by RGB imaging was used 

to characterize range of traits such as shoot biomass or yield (Li et al., 2014; Humplik et al., 2015). Non-

invasive monitoring of plant photosynthetic activity is also critical for understanding the physiological 

and metabolic condition, as well as its susceptibility to various stress conditions (Gorbe and Calatayud, 

2012; Petrozza et al., 2014; Paul et al., 2016). Pulse amplitude modulation based kinetic chlorophyll 

fluorescence imaging is a broadly applied technique used to understand the plant phenology in response 

to external stimuli or agents (Murchie and Lawson, 2013). In a high-throughput phenotyping set-up, 

modern imaging systems (FluorCam, PSI) were recently successfully used to monitor dynamically PSII 

parameters and electron flow dynamics at the whole plant level (Humplik et al., 2015b; Awlia et al., 

2016; Tschiersch et al., 2017). Usage of automated photosynthetic phenotyping approaches helps us to 

screen and characterize PHs real time interaction throughout the grow regime. Water taken up by plants 

or plant water content is a key to understand the efficiency with which plants are able to regulate stomatal 

conductance and CO2 fixation. Water content in plants is the result of the equilibrium between root water 

uptake and shoot transpiration (Berger et al., 2010). Thermoimaging has been used in high-throughput 

phenotyping platforms to monitor plant transpiration rate and transpiration use efficiency (Kaňa and 

Vass, 2008; Paul et al., 2016).  

Besides in plant phenotyping, metabolomics offers unique opportunities to understand the mode of 

action of PHs on crops and to identify biomarkers of biostimulant action. For instance, Lucini et al. 

(2015) identified several differentially expressed key metabolites associated with osmotic adjustment, 

oxidative stress mitigation and hormone network in PH-treated lettuce plants exposed to salt stress. 

Considering that tomato is the most important crop grown in the world, an experimental trial was 

performed to evaluate the effect of a plant-derived PH applied through foliar spray or substrate drench 

on morpho-physiological traits and metabolic profile of tomato plants grown under limited water 

availability in controlled environment. 
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MATERIALS AND METHODS 

Plant Material and Growing Conditions 

Seeds of tomato (Solanum lycopersicum L. - Hybrid F1 Chicco Rosso) were sown in trays with size of 

pots of 100 ml each containing freshly sieved substrate (Substrate 2, Klasmann- Deilmann GmbH, 

Germany) which was already watered to water holding capacity. Trays with seeds were kept for two days 

at 4 °C in the dark. Trays with seeds were placed in the controlled growth chamber (FS-WI, PSI, Czech 

Republic) at 16 h day/8 h night regime, 22 °C Day/20 °C night, 60% relative humidity and with cool-

white LED (250 µmol photons m-2 s-1) and far-red LED (5.5 µmol photons m-2s-1) lighting. 

Fertigation and Watering Protocol 

Prior to plant transplanting into 3 L pots, trays were uniformly watered at 6, 7, 12 and 14 days after 

placement of trays in controlled growth chamber. On day 7 and day 14, plants were fertigated with a 

solution containing: 1.04 g L-1 calcium nitrate (15.5% N; 28% CaO), 0.04 g L-1 ammonium nitrate (34% 

N), 0.14 g L-1 monopotassium phosphate (52% P2O5, 34% K2O), 0.18 g L-1 potassium sulphate (50% 

K2O, 45%SO3), 0.5 g L-1 magnesium sulphate (10%N, 16% MgO), and 0.5 ml L-1 FloraMicro (5% N, 

1% K2O, 5% Ca, 0.01% B, 0.001% Cu, 0.1% Fe, 0.05% Mn, 0.0008% Mo, 0.015% Zn).  

Twenty-day-old plants were selected with uniform growth characteristics and transplanted into 3 L 

pots (mixture of Substrate 2 Klassman soil and river sand in 3:1 ratio was used). The pots were labelled 

with unique identification codes for each plant replicate and treatment. For determining the water content 

at container capacity, one set of substrate pots was dried for three days at 80 oC and another set was 

saturated with water and left to drain for one day before weighing 100% water holding capacity (Awlia 

et al., 2016). Water content at container capacity was calculated as the difference between substrate 

weight at water holding capacity and dried substrate. On the day before transplantation, soil was 

prepared, and moisture content was adjusted to 60% of container capacity. Twenty-one-day-old plants 

were transplanted into the prepared substrate mixture with 60% of container capacity. Following the 

transplantation plants were regularly watered to reference weight (40% of container capacity) defined as 
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low water availability condition by using automated watering and weighing unit of PlantScreenTM 

Modular System.  

Plant Identification and Biostimulant Treatments 

Plants were randomly distributed into three groups with six biological replicates per group. Three groups 

each containing six plants were identified as: no application, foliar application and drench application of 

PH. Each plant was labelled with a unique barcode identifier used for registration of the plants in the 

PlantScreenTM Modular System. Plant-derived protein hydrolysate (PH) biostimulant Trainer® was 

provided by Italpollina Company (Rivoli Veronese, Italy). The plant-derived protein hydrolysate 

Trainer® is a commercial PH obtained through enzymatic hydrolysis of proteins derived from legume 

seeds. It contains 50 g kg−1 of N as free amino acids, and soluble peptides (Rouphael et al., 2018a). The 

aminogram of the product in g kg−1 was: Ala (12), Arg (18), Asp (34), Cys (3), Glu (54), Gly (12), His 

(8), Ile (13), Leu (22), Lys (18), Met (4), Phe (15), Pro (15), Thr (11), Trp (3), Tyr (11), Val (14).  

The PH was applied either as foliar spray or substrate drench (Supplementary Figure 1B) as water 

solution containing a non-ionic surfactant Triton X-100 at 0.1%. A control group (no application) was 

sprayed with distilled water containing 0.1% Triton X-100. PH application was performed twice: 5 days 

after transplanting (DAT) referred as Treatment 1 (T1) and 12 DAT referred to as Treatment 2 (T2). For 

24 hours prior to and post spraying, humidity in the cultivation chamber was kept at 85% relative 

humidity. For foliar spray treatments, 2 ml of PH was diluted in 500 ml distilled water with 0.1% Triton 

X-100 and 60 ml of solution was applied by homogenous foliar spray over the entire plant surface per 

plant replica. Substrate of each pot was covered with aluminium foil during and upon spraying and was 

removed prior to the next phenotypical analysis in PlantScreenTM Modular System. For drenching 

treatment, 4 ml of biostimulant was diluted in 1000 ml of 0.1% triton and 60 ml per plant replicate was 

applied by drenching. At both PH application times (T1 and T2), plants in control treatment and those 

foliarly sprayed with PH were irrigated with 60 ml of water each to avoid changes of substrate water 

status in comparison with plants treated by drench application of PH. Right after PH treatment, plants 

were taken back to FytoScope FS-WI. 
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High-throughput Plant Phenotyping Protocol and Imaging Sensors 

Plant phenotypic measurements were performed using PlantScreen™ Modular System (PSI, Drásov, 

Czech Republic) installed in semi-controlled greenhouse environment conditions in PSI Research Center 

(PSI, Drásov, Czech Republic). The platform was operated in closed imaging loop located in climatized 

environment with temperature ranging between 21-24 °C.  The platform is equipped with four robotic-

assisted imaging units, automatic height measuring light curtain unit, an acclimation tunnel, and a 

weighing and watering unit. Plants placed in individual transportation disks were transported by moving 

belt towards individual imaging units and watering and weighing station.  

Twenty-two-day-old plants were randomly distributed into three batches, each batch containing 12 

plants. Plant imaging started with 22-day-old plants (1 DAT, day 1 of phenotyping) and continued for 

15 days (15 DAT, day 15 of phenotyping). Plants were imaged using the following protocol. Briefly, 

plants were manually transferred from the climate-controlled growth chamber to the manual loading 

station of the PlantScreen™ Modular System and were transported through the acclimation tunnel with 

automatic height measuring unit. Prior to the imaging, plants were dark adapted in acclimation tunnel 

for 15 minutes. Each batch of plants was automatically phenotyped for around 30 minutes by using 

kinetic chlorophyll fluorescence imaging measurement for photosynthetic performance analysis, top 

view and multiple angle side view Red Green Blue (RGB) imaging for morphological, growth and color 

analysis, and finally thermal imaging unit for plant surface temperature quantification (Supplementary 

Figure 1A). Following the imaging, plants were automatically transported to watering and weighting 

unit for maintaining precise soil water holding capacity. After completion of the phenotyping protocol, 

plants were manually moved back to the climate-controlled growth chamber until the subsequent 

phenotyping day. We used the automatic timing function of PlantScreen™ Scheduler (PSI, Drásov, 

Czech Republic) to schedule the initiation of the phenotyping protocol at the same time of the diurnal 

cycle (after three hours of illumination in the climate-controlled growth chamber). The phenotyping data 

were acquired twice prior to biostimulant application in days 1 and 3 (pre-T measurements); three times 

post first biostimulant application in days 6, 8, 10 (post T1 application) and twice post second 

biostimulant application in days 13 and 15 (post T2 application). The acquired images were 

automatically processed using Plant Data Analyzer (PSI, Drásov, Czech Republic) and the raw data 

exported into CSV files were provided as input for further analysis. 
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Kinetic Chlorophyll Fluorescence Measurement 

Kinetic chlorophyll fluorescence (ChlF) measurements were acquired using an enhanced version of the 

FluorCam FC-800MF pulse amplitude modulated (PAM) chlorophyll fluorometer (PSI, Czech Republic) 

with an imaging area in top view position of 800 × 800 mm, as described in Tschiers et al. (2017). We 

assessed the photosynthetic performance in the plants by quantifying the rate of photosynthesis at 

different photon irradiances using the light curve protocol (Henley, 1993; Rascher et al., 2000). The 

measuring protocol described previously (Awlia et al., 2016) was optimized for the tomato plants from 

early to later developmental stage. For the light curve characterization, three actinic light irradiances 

(Lss1- 170 µmol photons m-2 s-1, Lss2 – 620 µmol photons m-2 s-1, Lss3 - 1070 µmol photons m-2 s-1) 

were used with a duration of 30 seconds in order to quantify the rate of photosynthesis.  

From the fluorescence data, a range of parameters was extracted as described in detail by Awlia et 

al. (2016). Additionally, 1-qP was calculated that reflects proportion of PSII reaction centers that are 

closed (Maxwell and Johnson, 2000; Na et al., 2014). 

Visible RGB Imaging  

To assess digital biomass of the plants, RGB imaging was done from top view (RGB2) and side view 

from multiple angles (RGB1). RGB imaging unit is light isolated box equipped with turning table with 

precise angle positioning, two RGB cameras (top and side) mounted on robotic arms and each 

supplemented with LED-based lighting source to ensure homogenous illumination of the imaged object.  

Projected shoot area parameter, together with regularly determined weight of the plants, was used to 

estimate transpiration use efficiency (TUE). TUE was defined by the ratio of aboveground biomass 

produced per unit of water transpired and depends on the characteristics of the plants and on the 

environment where the plants grow (Al-Tamimi et al., 2016). TUE was estimated from transpiration 

defined by measures of water loss and growth from PSA by plant-specific pixel counts quantification. 
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Thermal Imaging  

To assess leaf surface temperature of the plants, thermal imaging unit based on side view imaging was 

used. Thermal imaging unit incorporated in the PlantScreen™ System consists of light isolated box with 

one side view camera mounted on robotic arm, precise plant positioning and background heated wall 

with integrated temperature sensor to increase contrast for image processing step. Imaged area is 1205 

mm × 1005 mm (height × width). To assess spatio-temporal variations in temperature over plant surface 

we used FLIR A615 thermal camera with 45° lens and resolution 640 × 710 pixels, with high-speed 

infrared windowing option and <50 mK thermal sensitivity (FLIR Systems Inc., Boston, MA, USA). The 

thermal images were acquired in line scan mode with each image consisting of 710 pixels with scanning 

speed of 50 Hz (lines per second). Thermal images were acquired in darkness. Image acquisition 

conditions, plant positioning and camera settings were fixed throughout the experiment. Leaf surface 

temperature of each plant was automatically extracted with Plant Data Analyzer software (PSI, Drásov, 

Czech Republic) by mask application, background subtraction and pixel-by-pixel integration of values 

across the entire plant surface area. To minimize the influence of the environmental variability and the 

difference in the image acquisition timing among individual plants, the raw temperature of each plant 

(°C) was normalized by the actual background temperature and expressed as ΔT (°C).  

Sample Harvest and Metabolomic Analysis 

Plant material was harvested 19 DAT for metabolomic analysis by harvesting and combining the 3rd and 

4th fully expanded leaves from the top of each plant. Additionally, final biomass of each plant was 

determined by measuring fresh weight and dry weight of remaining shoot. 

Plant samples were homogenized in pestle and mortar using liquid nitrogen, and then an aliquot (1.0 

g) was extracted in 10 mL of 0.1% HCOOH in 80% aqueous methanol using an Ultra-Turrax (Ika T-25, 

Staufen, Germany) (Borgognone et al., 2016). The extracts were centrifuged (12000 × g) and filtered 

into amber vials through a 0.22 m cellulose membrane for analysis. Thereafter, metabolomic analysis 

was carried out through a UHPLC liquid chromatographic coupled to a quadrupole-time-of-flight mass 

spectrometer (UHPLC/QTOF-MS). The metabolomic facility included a 1290 ultra-high-performance 

liquid chromatograph, a G6550 iFunnel Q-TOF mass spectrometer and a JetStream Dual Electrospray 

ionization source (all from Agilent technologies, Santa Clara, CA, USA). The untargeted analysis was 
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carried out as previously described (Rouphael et al., 2016). Briefly, reverse phase chromatography was 

carried out on an Agilent Zorbax Eclipse-plus C18 column (100 × 2.1 mm, 1.8 μm) and using a 34 min 

linear elution gradient (5% to 95% methanol in water, with a flow of 220 μL min-1 at 35 °C). The mass 

spectrometric acquisition was done in SCAN (100–1000 m/z) and positive polarity. 

Features deconvolution and post-acquisition processing were done in Agilent Profinder B.06. Mass 

and retention time alignment followed by a filter-by-frequency post-processing filter were done to retain 

only those compounds that were present in >75% of replications within at least one treatment. 

Compounds annotation was done using the ‘find-by-formula’ algorithm, i.e., using monoisotopic 

accurate mass, isotopes spacing and isotopes ratio, with a mass accuracy tolerance of < 5 ppm. The 

database PlantCyc 12.5 (Plant Metabolic Network, http://www.plantcyc.org; released April 2018) was 

used for annotation purposes. Based on the strategy adopted, identification was carried out according to 

Level 2 (putatively annotated compounds) of COSMOS Metabolomics Standards Initiative 

(http://cosmos-fp7.eu/msi). The classification of differential compounds into biochemical classes was 

carried following PubChem (NCBI, https://pubchem.ncbi.nlm.nih.gov/) and PlantCyc information. 

Data Management and Statistical Analysis  

For automatic image data processing, we used the data processing pipeline Plant Data Analyzer (PSI, 

Drásov, Czech Republic), which includes pre-processing, segmentation, feature extraction and post-

processing of acquired images. Values for projected shoot area were calculated from images taken in the 

visible light spectrum and correspond to plant volume estimation. The plant volume was used as a proxy 

for the estimated biomass of the plants. Data were processed using MVApp application. Statistical 

differences between treatments and time points were determined by one-way analysis of variance 

(ANOVA) with post hoc Tukey's Honest Significant Difference (HSD) test (P-value < 0.05) performed 

using appropriate scripts in MVApp tool. Data are displayed as mean ± standard error of the six 

independent plants per treatment.  

Elaboration of metabolomic data was carried out using Mass Profiler Professional B.12.06 as 

previously described (Salehi et al., 2018). Briefly, compounds’ abundance was Log2 transformed and 

normalized at the 75th percentile, then baselined against the median. Unsupervised hierarchical cluster 

analysis was carried out using the fold-change based heatmap, setting similarity measure as ‘Euclidean’ 

http://cosmos-fp7.eu/msi
https://pubchem.ncbi.nlm.nih.gov/
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and ‘Wards’ linkage rule. Thereafter, the dataset was exported into SIMCA 13 (Umetrics, Malmo, 

Sweden), Pareto-scaled and elaborated for Orthogonal Projections to Latent Structures Discriminant 

Analysis (OPLS-DA). This latter supervised statistic allowed separating variance into predictive and 

orthogonal (i.e., ascribable to technical and biological variation) components. Outliers were excluded 

using Hotelling’s T2 and adopting 95% and 99% confidence limits, for suspect and strong outliers, 

respectively. Model cross validation was done through CV-ANOVA (p < 0.01) and permutation testing 

(N=300) was used to exclude overfitting. Model parameters (goodness-of-fit R2Y and goodness-of-

prediction Q2Y) were also produced. Finally, Variable Importance in Projection (VIP) analysis was used 

to select the metabolites having the highest discrimination potential. A subsequent fold-change analysis, 

as well as two-way ANOVA, were finally performed from VIPs to identify extent and direction of the 

changes in accumulation related to the use of the biostimulants.  

Chemical Similarity Enrichment Analysis (ChemRICH) was finally performed on VIP metabolites 

to critically highlight the chemical nature of the discriminant compounds, as previously described 

(Showalter et al., 2018). Such enrichment analysis is based on chemical similarities and used Tanimoto 

substructure chemical similarity coefficients to cluster metabolites into non-overlapping chemical 

groups. In our elaborations, OPLS-DA VIP scores were used instead of individual p values, and the 

regulation (up or down accumulation) of discriminant metabolites was compared across treatments 

following chemical enrichment. The online web-app tool (http://chemrich.fiehnlab.ucdavis.edu) was 

used for this analysis. 

RESULTS  

Advanced Integrative Simultaneous Analysis of Morpho-Physiological Traits  

Integrative phenotyping facilities provide an opportunity to combine various methods of automated, 

simultaneous, non-destructive analyses for assessment of plant growth, morphology and physiology. 

Here we used the PlantScreenTM Modular System (PSI, Czech Republic) available in PSI Research 

Center (Drásov, Czech Republic) for simultaneous analysis of multiple morpho-physiological traits in 

tomato plants treated with plant-derived protein hydrolysate (PH) biostimulant substances 

(Supplementary Figure 1A). Tomato plants were cultivated in control conditions and were phenotyped 

by using RGB imaging to capture plant growth dynamics, morphology and color, by chlorophyll 

http://chemrich.fiehnlab.ucdavis.edu/
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fluorescence (ChlF) imaging to quantify photosynthetic performance and by thermal imaging to analyze 

leaf surface temperature prior to and following the PH treatment (Figure 1). Finally, automated watering 

and weighing unit was used to maintain constant low water availability conditions in the tomato plants 

treated with PH by both drenching and spraying application (Supplementary Figure 1B).  

Visible RGB Imaging to Assess the Effect of PH on Plant Growth Dynamics  

Visible RGB digital color imaging was used for the assessment of range of visual traits in control plants 

(no application) and plants treated with PH by either drenching (drench application) or spraying 

application (foliar application) (Figures 1A, B). RGB imaging was used to quantify the effect of the PH 

on growth status, biomass accumulation and color of tomato plants cultivated under limited water 

availability condition (Figure 2A). Simple image stacks acquired from top view and two side view 

images were used to extract and calculate shoot volume as proxy of shoot digital biomass and quantify 

shoot color throughout the cultivation period. The morphological traits were assed dynamically and were 

used to calculate growth rates (Figure 2B). 

The analysis of the above-mentioned traits revealed that tomato plants cultivated under low water 

availability conditions and treated with PH either by spraying or drenching grew better than control 

plants. The best performing plants treated with PH were those where PH was applied as substrate drench. 

At the end of the phenotyping period the digital shoot biomass was significantly increased (Figure 2A; 

Supplementary Tables 1, 2 and 3) as well as the height and width of the plants (Supplementary Tables 

4 and 5). In addition, the growth rate calculated over the entire phenotyping period was also strongly 

enhanced in drench treated plants compared to foliarly sprayed ones under water limited availability 

(Figure 2B) suggesting that overall growth performance of the plants was improved following the 

drenching application of PH. The image-based data could be further confirmed by destructive plant 

biomass assessment as both fresh and dry weight of the PH-treated plants harvested at the end of the 

experiment was increased (Supplementary Figure 2A). Measurements of projected shoot area obtained 

using HTP imaging approach were strongly correlated with fresh and dry weights of the plants and there 

was no indication of any deviation from a linear relationship even at the highest biomasses measured in 

this experiment (Supplementary Figures 2B and 2C).  
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The variation in shoot color of the tomato plants over the phenotyping period was assessed by 

quantification of greenness hue abundance from the color segmented RGB images (Supplementary 

Figure 3). The analysis algorithms were calibrated by using RGB images from all treatments and all 

measurements as described previously (Awlia et al., 2016). Some minor changes were observed in the 

analyzed green hues, but no clear trend could be observed except of slight increase in darker green hues 

at the end of phenotyping period for drench application variant (Supplementary Table 6).  

Mining the Biostimulant Action on Photosynthetic Performance  

To assess the effect of PH application on photosynthetic performance of tomato plants in water limiting 

conditions, chlorophyll fluorescence measurements were acquired using automated chlorophyll 

fluorescence imaging set-up (Figure 1C, Supplementary Figure 1). The rate of photosynthesis at 

different photon irradiances was quantified using the light curve protocol reported by Henley (1993) and 

Rascher et al. (2000). From the measured fluorescence transient states, the basic ChlF parameters were 

derived (i.e., Fo, Fm, Ft, Fv), which were used to calculate range of parameters characterizing plant 

photosynthetic performance (i.e., Fv/Fm, NPQ, qP, ΦPSII) (for overview refer to Paul et al., 2011; Awlia 

et al., 2016; Tschiersch et al., 2017). In addition, 1-qP and ETR parameters were calculated, which refer 

to proportion of closed PSII reaction centers (Maxwell and Johnson, 2000) and photosynthetic electron 

transport rate of photosystem II and indicates the efficiency of linear electron flow route in the 

photosynthetic machinery for producing energy-rich molecules ATP and NADPH, respectively. 

Few of the parameters were selected to dynamically characterize the photosynthetic function of PSII 

in the tomato plants prior to and after the biostimulant treatment under limited water availability (Figure 

3); the maximum quantum yield of PSII photochemistry in the dark-adapted state (Fv/Fm), the 

photochemical quenching coefficient that estimates the fraction of open PSII reaction centers (qP), 

steady-state non-photochemical quenching (NPQ) and electron transport rate (ETR) correlating to the 

quantum yield of the CO2 assimilation mechanisms and to the overall photosynthetic capacity of the 

plants (Genty et al., 1989). No significant changes of those parameters between the control and PH-

treated plants (Figure 3, Supplementary Table 7) were recorded during the phenotyping period. 

However, minor dynamic changes in lower actinic irradiance of the 1-qP parameter were observed at the 

end of the phenotyping period on day 15 (Supplementary Figure 4). 1-qP was used as indicator of 

closed PSII reaction center and as an estimate of the relative PSII excitation pressure to which an 
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organism is exposed (Maxwell and Johnson, 2000) suggesting that PH application induced a higher redox 

status than control treatment resulting in slightly lowered electron transport rates (ETR) 

(Supplementary Figure 4). 

 

 

Figure 1| Non-invasive image-based phenotypical analysis of PHs treated and control tomato plants grown under water 
limiting conditions by using PlantScreenTM Modular System. A) Color segmented side view RGB images of the tomato plants 
over the time of phenotyping period (D1-D15). B) Color segmented top view RGB images of the tomato plants. C) False-color 
images of maximum fluorescence value (Fm) of tomato plants captured by kinetic chlorophyll fluorescence imaging. D) False 
color side view images of plant leaf surface temperature captured by thermal camera. 
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Thermal Infrared Imaging for Monitoring Shoot Temperature and Leaf Transpiration 

Plant water status is determined by the equilibrium between root water uptake and shoot transpiration 

(Berger et al., 2010). Under limited water availability in tomato seedlings, triggering of shoot 

transpiration and root respiration has been carried out by commercial PH provided to the plant by foliar 

and drenching application, respectively. Imaging thermography approach was used to measure the whole 

plant temperature in automated manner and the image data were utilized to assess the leaf transpiration 

of plants (Figure 1D).  

 

Figure 2| Growth performance of PHs treated and control tomato plants. A) Digital biomass quantified over time of 
phenotyping period. Values represent the average of six biological replicates per treatment. Error bars represent standard 
deviation. T1 and T2 correspond to days of protein hydrolysate application by foliar spraying or substrate drench. B) 
Comparison of relative growth rate for the different treatments quantified over phenotyping period following the protein 
hydrolysate treatments. Values represent the average of six biological replicates per treatment. Error bars represent standard 
deviation. Different letters indicate significant difference according to one-way ANOVA post-hoc Tukey’s test (p<0.05). 
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To minimize the influence of the environmental variability and the difference in the image 

acquisition timing among individual plants, the raw temperature of each plant (°C) was normalized by 

the actual background temperature and expressed as ΔT (°C) (Paul et al., 2016). Experimental data 

showed that leaf surface temperature of the tomato plants was not influenced by PH treatment, and no 

difference compared to control plants was observed throughout entire phenotyping period 

(Supplementary Figure 5A). TUE increased in drenching PH-treated plants in comparison with foliar 

and control treatments (Supplementary Figure 5B). 

A strong correlation was reported between plant transpiration rate and stomatal conductance (Berger 

et al., 2010). As stomatal conductance is the measure of the CO2 entering or leaving the stomata of a 

leaf, higher TUE observed in PH-drench application suggests that more CO2 might get fixed and generate 

more organic matter thereby increasing in biomass compared to other treatment methods. 

Metabolomic Profiles 

An untargeted UHPLC/QTOF-MS metabolomic analysis was carried out to elucidate the molecular 

mechanisms underlying the effect of PH application on leaves of tomato plants grown under limited 

Figure 3| Photosynthetic performance of the tomato plants treated or untreated with protein hydrolysate. Range of 
photosynthetic parameters were deduced from kinetic chlorophyll fluorescence imaging prior to and following the PH 
treatments. The photochemical quenching coefficient that estimates the fraction of open PSII reaction centers (qP), maximum 
quantum yield of PSII photochemistry for the dark-adapted state (FV’/FM’), and electron transport rate (ETR) were measured 
using the light curve protocol. Data are mean of six independent plants per treatment. Measurements at three actinic photon 
irradiance intensities were acquired. Measurements were taken at 170, 620, and 1,070 µmol photons m−2 s−1, respectively. 
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water availability. Multivariate statistics from the metabolomic dataset pointed out 

similarities/dissimilarities among phytochemical profiles. The use of an untargeted profiling followed 

by annotation on the basis of a comprehensive database (namely PlantCyc) produced over 1900 

compounds annotated, overall. These compounds exhibited a large chemical diversity and included 

metabolites from a wide range of biochemical classes and metabolic processes.  

The first step of interpretation was a hierarchical clustering, produced from the fold change-based 

heatmap according to Euclidean distances. This unsupervised clustering approach allowed describing 

similarities/dissimilarities among treatments, as shown in Figure 4. As provided, two main clusters were 

generated-one comprising drench application and the other including foliar application and control. In 

this latter cluster, two distinct sub-clusters could be identified, thus indicating different metabolic profiles 

between foliar application of the biostimulant and control plants. Even though the application of PHs 

resulted in distinctive profiles in tomato under limited water availability, the naïve (unsupervised) 

hierarchical clustering of metabolomic signatures suggested that the application method of the PH was 

an additional and relevant factor determining the actual difference in such phytochemical profiles. 

A consistent outcome could be produced through the supervised OPLS-DA multivariate modelling. 

This analysis allowed separating predictive and orthogonal components (i.e., those components 

ascribable to technical and biological variation) of variance. Therefore, OPLS-DA effectively 

discriminated among the three groups into the score plot hyperspace. The OPLS-DA score plot (Figure 

5) indicated a complete separation among control, foliar and drench applications. The model parameters 

of the OPLS-DA regression were excellent, being R2Y and Q2Y 0.99 and 0.94, respectively. The model 

was validated (CV-ANOVA P = 2.47 10-10) and overfitting could be excluded through permutation 

testing (N = 100). Validation through misclassification table indicated a 100% model accuracy (Fisher’s 

probability 3.5 10-7). Furthermore, the Hotelling’s T2 allowed excluding suspect and strong outliers. 

Given the validated model outcomes, the variable selection method called VIP (Variable Importance in 

Projection) was used to identify compounds explaining the differences observed. The discriminating 

compounds having a VIP score > 1.25 were exported and subjected to fold change analysis to identify 

the trends of regulation altered by the treatments. Thereafter, one-way ANOVA (Tukey post hoc) was 

used to describe significance of the differences. The discriminant compounds, together with their VIP 

score, P and fold change values, were grouped into chemical classes to facilitate the discussion of results 

(Table 1). 
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Notably, relatively few biochemical classes included the most of discriminant metabolites. In more 

details, lipids (including membrane lipids, sterols, carotenoids and other terpenes) were the most 

represented class of compounds among VIP discriminants, followed by phytohormones, polyamine 

conjugates, prenyl quinones and chlorophyll-related compounds. Among hormones, brassinosteroids, 

indole-conjugates, salicylate, cytokinins and two gibberellins were identified among discriminant 

compounds among the treatments (Table 1). Furthermore, abietane diterpene resin acids, as well as 

pteridins and few other compounds could be outlined by VIP analysis. Interestingly, two osmolytes 

(trehalose and glycine betaine) were identified among VIP discriminants (Table 1). 

The following chemical enrichment analysis carried out in chemRICH highlighted sterols 

(cholestanes, cholestadienols, and hydroxycholesterols), carotenoids, unsaturated fatty acids and 

phosphatidic acids, terpenes and coproporphyrins as the most represented chemical groups 

(Supplementary Figure 6). The analysis, carried out separately for each application method (foliar or 

drench as compared to control), represented differences in accumulation for the selected metabolites. 

Most of the classes reported exhibited a down accumulation following biostimulants treatment, as 

compared to control, except for terpenes (foliar application treatment) and unsaturated fatty acids (drench 

application treatment). 
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DISCUSSION 

Biostimulant effect on sink and source organs is clearly visible in this study. PH biostimulant is directly 

entering sink areas like the roots through drenching application, while the same biostimulant, foliarly 

sprayed, directly enters the source region, the shoot and leaves. This may be reflected in photosynthetic 

and physiologic functions, differently. Regulation of stomatal function is an important mechanism in 

dealing with the adverse consequences of limited water availability. The typical response of plants to 

water limitation is stomatal closure through which the amount of water loss through transpiration can be 

decreased. On the other hand, water stress-induced closing of stomata also limits CO2 uptake; therefore, 

it decreases the efficiency of net photosynthesis. Drenched PH application affected the physiological and 

Figure 4| Unsupervised hierarchical cluster analysis (Euclidean similarity; linkage rule: Ward’s) carried out from metabolite 
profiles in tomato leaves, as gained from UHPLC/QTOF-MS untargeted metabolomics. Compounds intensity was used to 
produce fold change-based heat maps, based on which clustering was done. 
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metabolic activity of plants. This could be due to enhanced stomatal conductance activity of drench 

application of PH through sink region. Moreover, tomato plants drenched with PH obtained a more 

favourable balance between carbon gain and water loss as shown by the increase of TUE 

(Supplementary Figure 5B). The reduced CO2 uptake imposed by limited water availability causes an 

imbalance between PSII activity and the following carbon assimilation via the Calvin cycle, thus 

increasing the excitation energy on PSII and inducing photodamage (Baker and Rosenqvist, 2004).  

Furthermore, it is known that the water-related osmotic stress generates a secondary oxidative stress. 

Reactive Oxygen Species (ROS) are produced via incomplete reduction of oxygen (O2
•-) and are known 

as signaling molecules integrated with hormone signaling networks (Foyer, 2018). As provided in Table 

1, the specific application mode for the PH biostimulant imposed a wide variation of phytohormones 

profile. Two brassinosteroids (teasterone and cathasterone), a class of sterol-like hormones linked to 

several signaling networks including abiotic stress response, cell wall development and lignification, 

were detected. In more detail, brassinosteroids are reported to be involved in water stress resistance and 

osmotic stress-induced stomatal closure as well as to mediate ROS formation, jasmonate signaling and 

abscisic acid (ABA) response (Lee et al., 2018; Lucini et al., 2018). ABA and cytokinins antagonistically 

regulate environmental stress responses in plants, and their integrated and coordinated action modulates 

drought stress response (Huang et al., 2018). Indeed, cytokinins were down-accumulated, following both 

foliar and drench application. In plants, cytokinin signaling involves a canonical two-component system 

which comprises histidine kinases and histidine phosphotransfer proteins. Considering that cytokinin 

signaling components have been shown to act as negative regulators of plant tolerance to limited water 

availability (Huang et al., 2018), the trend observed following biostimulants application might represent 

a significant contribution in water stress resistance. Salicylic acid is another phytohormone playing a 

pivotal role in mediating water stress response via modulation of ROS production and redox state (La et 

al., 2019). Salicylic acid together with jasmonate have also been found to enhance water stress tolerance 

in plants (Li et al., 2018). The application of the PH biostimulant imposed a marked up-accumulation of 

salicylate, thus potentially modulating with ROS accumulation, ROS-mediated signaling and tolerance 

to low water availability. Indeed, salicylate mediates redox balance with an antagonistic depression of 

abscisic acid (La et al., 2019). Auxins are well-known phytohormones that promote root initiation and 

delay plant senescence (Li et al., 2018); interestingly, two conjugated forms (i.e., storage forms) of 

indoleacetic acid were found down-accumulated following both PH treatments. 
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Besides affecting hormones profile, limited water availability conditions impair the consumption of 

reduction equivalents for CO2 fixation, thus resulting in an oversupply of NADPH. Therefore, metabolic 

processes are expected to push toward the synthesis of highly reduced compounds (Radwan et al., 2017). 

With this regard, the increase in farnesyl diphosphate and triterpenes is not surprising. Consistently, 

Nasrollahi et al. (2014) reported a drought-induced accumulation of triterpenes.  

Several other lipids, including membrane lipids and carotenoids, were modulated by biostimulant 

application under limited water availability conditions. Although a clear trend could not be outlined, 

membrane lipids are known to be altered under plant stress conditions and to play a role in plant 

adaptation to stress (Allakhverdiev et al., 2001; Lucini et al., 2015; Rouphael et al., 2016). These 

membrane components are involved in the production of signaling molecules and they are regulated by 

plant signaling under abiotic stress (Hou et al., 2016). Indeed, lipid-dependent signaling cascades 

contribute to trigger plant adaptation processes (Hou et al., 2016). 

In the current study, hydroxycinnamic amides (two tyramine derivatives, a serotonin and a 

spermidine conjugates) were also induced by biostimulants application. This accumulation was observed 

for tyramine conjugates. It is interesting to note that biogenic amines and their hydroxycinnamic amides 

act in plants by interacting with phytohormone crosstalk together with mediating root growth and ROS 

signaling (Mukherjee, 2018). In particular, tyramine hydroxycinnamic amides are said to also stimulate 

wound healing and suberization processes (Voynikov et al., 2016). Nonetheless, exogenous polyamines 

are reported to alleviate the drought-induced detrimental effects as well as to alter auxins, zeatin, 

gibberellins, salicylic acid and jasmonate (Li et al., 2018). Abietane diterpene resin acids were also 

stimulated by the treatment, in particular concerning palustric acid intermediates. These diterpenes are 

reported to function as antioxidants to protect membranes from oxidative stress (Munné-Bosch et al., 

1999) and to display antibacterial and antifungal activity (Helfenstein et al., 2017).  

An osmolyte, namely the trehalose, was found to be up-accumulated following biostimulants 

treatment under water scarcity. Indeed, the accumulation of sugars, predominantly trehalose, is a known 

protection mechanism in plants experiencing abiotic stresses, since they contrast protein denaturation, 

scavenge free radicals, and stabilize biological membranes (Asaf et al., 2017; Farooq et al., 2018). 

Trehalose, in particular, is able to bind to the polar region of membranes to scavenge the ROS (Farooq 

et al., 2018). 
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The involvement of prenyl quinones, generally found up-accumulated, suggests the enrollment of 

both signaling and antioxidant functions under oxidative stress. The chloroplastic pool of these 

compounds is related to the oxidation by the cytochrome b6f complex as well as to other thylakoid 

electron transfer pathways. The modulation of such prenyl quinones has been related to their function as 

signaling molecules in chloroplast-to-nucleus signal transduction and is involved in plant acclimation to 

stress (Kruk et al., 2016). Finally, among others, intermediates (tetrapyrrole coproporphyrins) and 

catabolites (pheophorbide a) of chlorophyll biosynthetic pathway(s) were identified among VIP 

discriminants. The formers were down-accumulated in treated plants, whereas an opposite trend could 

be observed for pheophorbide a. Ghandchi et al. (2016) reported that the degradation of chlorophyll to 

non-fluorescent pigments is a transcriptionally regulated intricate process that varies during the plant life 

cycle. These authors also suggested that the activity of the degrading enzyme pheophorbide a oxygenase 

(PAO) is altered by drought. Nonetheless, it is important to consider that chlorophyll intermediates play 

a pivotal role also in ROS signaling and production. Photoreduction of oxygen to the superoxide radical 

is related to a reduced electron transport in PSI and to a reaction linked to the photorespiratory cycle 

occurring in the peroxisome. This second process is enhanced under drought because of the limited 

availability of CO2. Unlike mammals (where ROS are mainly produced in mitochondria), plants produce 

singlet oxygen mainly in thylakoids by chlorophyll and its tetrapyrrole intermediates in the presence of 

light. These compounds are partially hydrophobic and are therefore associated with the thylakoid 

membranes which do not form pigment protein complexes. Considering that most carotenoids are located 

in the pigment-protein complexes, they are spatially far from tetrapyrroles and therefore they are poorly 

effective in quenching their triplet states (Tripathy and Oelmüller, 2012). Therefore, coproporphyrins act 

as photosensitizers and their accumulation leads to light-dependent necrosis in plant (Hu et al., 1998; 

Ishikawa et al., 2001). On this basis, it can be postulated that the biostimulants-related down-

accumulation of coproporphyrins under limited water availability can represent a key factor to mitigate 

ROS imbalance and to improve drought tolerance. Moreover, photosynthetic organisms can dissipate 

excess energy via non-photochemical quenching to avoid singlet oxygen formation; carotenoids play a 

crucial role in such non-photochemical quenching (Tripathy and Oelmüller, 2012). These findings 

suggest a complex and coordinated regulation of ROS under limited water availability involving both 

isoprenoid quinones and tetrapyrrole intermediates. Consistently, several carotenoids, as well as their 

epoxy- and diol-derivatives were down-accumulated in biostimulant-treated tomato plants. These 
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findings support and strengthen our previous evidences related to an improved capability of PH-treated 

tomato plants to cope with ROS-mediated oxidative stress. 

CONCLUSIONS 

Our findings indicate that protein hydrolysate (PH) application on tomato plants can be considered as a 

sustainable crop enhancement technology for agricultural productivity under water-limited conditions. 

Mining of variations in growth dynamics and physiological responses were clearly qualitatively and 

quantitatively phenotyped using high-throughput phenomic tools. Morpho-physiological data suggests 

that PH application, especially using substrate drench method, can be recommended as a highly 

sustainable approach under less water available conditions. PH application in drenching mode causes 

plants to transpire more and increase stomatal conductance leading to a better TUE; however light 

absorption parameters were unaffected by inducing higher redox status. The UHPLC-QTOF-MS 

metabolomic approach allowed identifying the molecular bases of the improved water stress tolerance 

following biostimulants treatment. Our approach identified a distinct metabolic signature imposed by 

Figure 5| Score plot of Orthogonal Projection to Latent Structures Discriminant Analysis (OPLS-DA) supervised analysis carried 
out from metabolite profiles in tomato leaves as gained from UHPLC/QTOF-MS untargeted metabolomics. 



Results  

175 

 

drench or foliar application of the PH under limited water availability in tomato, as highlighted by both 

unsupervised hierarchical clustering and supervised discriminant analysis. These outcomes supported 

and integrated phenomic outcomes, indicating the biochemical processes implicated in the enhanced 

tolerance to limited water availability following biostimulants application. In more detail, a wide and 

organized range of metabolic processes was involved in response of tomato plants to PH treatments. 

Phytohormone profile was significantly affected, even though the most represented among differential 

compounds were lipids (including membrane lipids, sterols and terpenes). As a general overview, PH-

treated tomato plants exhibited an improved tolerance to ROS-mediated oxidative imbalance. Such 

tolerance involved a coordinated action of salicylic acid, hydroxycinnamic amides signaling, carotenoids 

and prenyl quinones radical scavenging, as well as reduced tetrapyrrole biosynthesis. 
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Table 1| Metabolites discriminating biostimulant-treated tomato plants (foliar and drench application) from control; results were gained from UHPLC/QTOF-MS untargeted 
metabolomics followed by OPLS-DA supervised statistics. Compounds are grouped in biochemical classes and are presented with their individual VIP score and standard error (SE), 
as well as p value (one-way ANOVA, Bonferroni multiple testing correction) and Log of fold change values. NS: not significant (p > 0.05). Missing values denote fold-change values 
< 1.5. 

Compound VIP score 
VIP 
SE p value 

Log FC  
(foliar appl. vs 

control) 
Log FC (drench 
appl. vs control) 

Lipids a 1-acyl-sn-glycero-3-phosphoethanolamine (n-C14:1) 1.42 0.21 1.41E-24 -17.65 down -17.38 down 

 (5Z)-(15S)-11-alpha;-hydroxy-9,15-dioxoprostanoate 1.41 0.27 1.41E-24 -19.81 down -19.55 down 

 1-palmitoyl-2-vernoloyl-phosphatidylcholine 1.39 0.20 2.48E-02 0.18 up -8.64 down 

 1-18:1-2-trans-16:1-phosphatidylglycerol 1.39 0.44 2.07E-05 -1.38 down 0.05 up 

 dipalmitoyl phosphatidate 1.36 0.37 9.07E-05 0.18 up 0.38 up 

 phytosphingosine 1-phosphate 1.36 0.31 6.43E-23 -0.38 down -21.52 down 

 arachidoyl dodecanoate 1.36 0.28 NS - - 0.20 up 

 

14-oxolanosterol / 4-alpha-formyl,4-beta,14-alpha-dimethyl-9-
beta,19-cyclo-5-alpha-cholest-24-en-3-beta-ol 1.35 0.31 

1.19E-03 0.13 up -15.58 down 

 all-trans-heptaprenyl diphosphate 1.33 0.50 3.09E-21 0.34 up 18.12 up 

 sphinganine 1-phosphate 1.33 0.36 9.11E-22 -0.37 down -21.38 down 

 4-alpha-formyl-stigmasta-7,24(241)-dien-3-beta-ol 1.35 0.31 1.19E-03 0.13 up -15.58 down 

 stearate 1.35 0.57 5.09E-03 13.73 up -2.40 down 

 9,10-epoxy-18-hydroxystearate 1.35 0.55 NS 11.39 up 10.34 up 

 (9Z)-12,13-dihydroxyoctadeca-9-enoate 1.35 0.55 2.68E-02 11.39 up 10.34 up 

 1-18:3-2-18:3-monogalactosyldiacylglycerol 1.34 0.38 NS -1.73 down -8.88 down 

 1-18:2-2-18:2-monogalactosyldiacylglycerol 1.35 0.32 NS -1.69 down -4.66 down 

 1-18:3-2-16:2-monogalactosyldiacylglycerol 1.28 0.34 3.23E-02 -14.89 down -3.58 down 

 1-18:2-2-16:1-phosphatidate 1.31 0.17 6.84E-05 -2.95 down -18.17 down 

 vernoleate 1.38 0.33 4.67E-03 13.71 up 12.14 up 

 (9R,10S)-dihydroxystearate 1.34 0.15 NS 4.32 up -0.16 down 
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 (9S,10S)-9,10-dihydroxyoctadecanoate 1.34 0.15 NS 4.32 up -0.16 down 

 4-hydroxybutanoate 1.37 0.32 1.01E-08 0.14 up 3.28 up 

 9-cis-10'-apo-beta-carotenal 1.27 0.44 8.61E-04 -10.72 down -19.94 down 

 farnesyl diphosphate 1.27 0.47 4.12E-05 0.63 up 1.61 up 

 epsilon, epsilon-carotene-3-diol / beta-carotene 15,15' epoxide 1.31 0.42 1.57E-03 -17.52 down -17.62 down 

 all-trans-4,4'-diapolycopene 1.33 0.36 3.24E-12 0.05 up -7.17 down 

 lutein 1.24 0.35 6.84E-05 3.42 up -15.52 down 

Resin acids palustradienal 1.51 0.37 0.00E+00 23.29 up 4.07 up 

 dehydroabietadiene 1.36 0.54 3.75E-04 1.31 up 0.57 up 

 levopimaradiene / palustradiene / abieta-7,13-diene 1.39 0.35 1.57E-03 1.46 up 0.22 up 

Triterpenes glycyrrhetinate / gypsogenin 1.39 0.22 3.24E-12 0.20 up -6.76 down 

 betulinic aldehyde / ursolic aldehyde / 11-oxo-beta-amyrin 1.35 0.31 1.19E-03 0.13 up -15.58 down 

Hormones gibberellin A98 1.36 0.24 9.07E-24 0.03 up -18.86 down 

 indole-3-acetyl-phenylalanine 1.34 0.34 1.04E-21 -0.42 down -19.73 down 

 indole-3-butyryl-glucose 1.34 0.35 3.97E-22 -0.28 down -20.55 down 

 a jasmonoyl-phenylalanine 1.33 0.32 1.59E-21 -0.42 down -20.51 down 

 salicylate 1.29 0.57 NS 13.26 up 18.76 up 

 dihydrozeatin-7-N-glucose / dihydrozeatin-9-N-glucose 1.29 0.35 6.30E-05 -3.68 down -21.15 down 

 
isopentenyladenine-9-N-glucoside / isopentenyladenine-9-N-
glucoside 1.29 0.37 6.30E-05 -3.45 down -19.71 down 

 gibberellin A4 / gibberellin A20 1.25 0.62 1.80E-03 0.77 up 0.39 up 

 7-oxateasterone 1.30 0.41 2.59E-21 - - -20.97 down 

 cathasterone 1.25 0.66 8.05E-03 2.30 up -12.73 down 

Osmolytes alpha,alpha-trehalose 1.40 0.37 3.68E-02 14.23 up 0.62 up 

 glycine betaine 1.33 0.49 1.49E-02 -0.57 down -0.23 down 

Polyamines triferuloyl spermidine 1.28 0.18 NS -2.29 down -9.75 down 

 feruloylserotonin 1.34 0.35 1.96E-22 -0.15 down -19.56 down 
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 serotonin 1.29 0.41 3.35E-20 -0.30 down -18.65 down 

 p-coumaroyltyramine 1.31 0.46 0.001 3.51 up -11.96 down 

 sinapoyltyramine 1.34 0.18 0.001 18.77 up 0.60 up 

Pteridins 2-amino-6-carboxamido-7,8-dihydropteridin-4-one 1.31 0.47 1.97E-02 9.34 up 10.70 up 

 5,10-methylenetetrahydropteroyl mono-L-glutamate 1.25 0.25 6.51E-04 -6.33 down -18.05 down 

 10-methyl-5,6,7,8-tetrahydropteroylglutamate 1.37 0.41 1.91E-22 -17.33 down -17.06 down 

Chlorophyll red chlorophyll catabolite 1.33 0.28 NS 6.73 up 20.70 up 
 coproporphyrinogen III 1.32 0.40 0.001 -0.66 down -0.87 down 

 coproporphyrin III 1.34 0.42 0.001 -0.84 down -0.54 down 

 pyropheophorbide a 1.31 0.32 NS 0.35 up 0.83 up 

 coproporphyrin I 1.26 0.72 0.001 -1.11 down -0.99 down 

Quinones phylloquinone 1.31 0.37 NS - - -5.22 down 

 demethylphylloquinol 1.35 0.31 1.19E-03 0.13 up -15.58 down 

 2-heptyl-3-hydroxy-4(1H)-quinolone 1.35 0.41 NS 16.38 up 22.27 up 

 3''-hydroxy-geranylhydroquinone 1.34 0.66 1.17E-04 15.86 up 0.60 up 

Others (S)-coclaurine 1.43 0.41 6.24E-05 2.20 up 1.11 up 

 coumarinic acid-beta-D-glucoside 1.46 0.17 3.36E-22 -19.86 down -0.78 down 

 3-methoxy-4-hydroxy-5-hexaprenylbenzoate 1.40 0.16 7.52E-12 0.17 up -6.09 down 

 a 6-hydroxy-5-isopropenyl-2-methylhexanoate 1.39 0.25 6.70E-05 8.10 up 7.56 up 

 casbene 1.39 0.35 1.57E-03 1.46 up 0.22 up 

 N,N-dihydroxy-L-isoleucine 1.36 0.21 6.93E-10 -0.17 down -2.53 down 

 secologanin 1.36 0.35 8.83E-04 -0.99 down -0.38 down 

 adenosine pentaphosphate 1.35 0.28 0.00E+00 16.57 up 16.17 up 

 3-hydroxy-16-methoxy-2,3-dihydrotabersonine 1.34 0.33 3.57E-22 -0.45 down -22.12 down 

 thymidine 1.34 0.52 1.30E-19 -17.85 down -17.59 down 

 L-valine 1.33 0.49 NS -0.57 down -0.23 down 
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Supplementary Figures 

Suppl. Fig. 1. Schematic overview of plant handling and phenotyping protocol. A) Plant phenotyping was 

carried out in PlantScreenTM Modular System installed in semi-controlled greenhouse environment conditions 

in PSI research Center (PSI, Drásov, Czech Republic). Tomato plants were transferred from controlled 

environment to phenotyping system and automated phenotyping protocol was initiated. Plants were regularly 

screened using kinetic chlorophyll fluorescence imaging unit, calibrated RGB camera for top and multiple-

angle side projections and thermal imaging unit. Low irrigation level watering regime was maintained by      

regular weighing and watering (WW) of the plants by automated WW unit. B) Protein hydrolysate biostimulant 

application protocol. Tomato plants were treated with PHs either by spraying (foliar application) or by 

drenching (drench   application).   Following   the   PHs application, plants were transferred back to control 

environment and were kept in high humidity conditions for the following 24 hours. 
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Suppl. Fig. 2. Destructive biomass quantification and correlation with digital biomass. A) Fresh and dry 

weight of tomato shoots harvested following the end of the phenotyping period (day 19).   Values represent 

the average of six biological replicates per treatment. Error bars represent standard deviation. Different 

letters indicate significant difference according to one-way ANOVA post-hoc Tukey’s test (p<0.05). B) 

Correlation of digital shoot biomass (px) acquired on day 15 with fresh weight (g) of tomato plants harvested 

on day 19 of phenotyping period. B) Correlation of digital shoot biomass (px) acquired on day 15 of 

phenotyping period with dry weight (g) of tomato plants harvested at the end of phenotyping period.  
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Suppl. Fig. 3. Variation in shoot colors of tomato plants prior to and following the biostimulant 

treatment. Dynamic relative changes in greenness hue abundance over the phenotyping period in control 

tomato plants and plants treated with PH either by spraying or drenching. The six most representative color 

hues are shown in RGB color scale as percentage of the shoot area (pixel counts) of six biological replicates 

per treatment. 
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Suppl. Fig. 4. Photosynthetic performance of the tomato plants. The photochemical quenching 

coefficient that estimates the fraction of closed PSII reaction centers (1-qP), steady-state non- photochemical 

quenching (NPQ) and electron transport rate (ETR) were measured using the light curve protocol. Data are 

mean of six independent plants per treatment. Measurements at three actinic photon irradiance intensities 

were acquired. Measurements were taken at 170, 620 and 1070 µmol photons m-2s-1, respectively. 
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Suppl. Fig. 5. Leaf temperature quantification and estimation of transpiration use efficiency (TUE) in 

tomato plants prior to and following PH treatment. A) Leaf temperature was quantified by thermal 

imaging. To minimize the influence of the environmental variability and the difference in the image 

acquisition timing among individual plants raw temperature of each plant (°C) was normalized by the actual 

background temperature. Temperature of leaves of the plants was determined as difference relative to the 

surrounding air temperature and was expressed as ΔT (°C). Air temperature data were obtained from a 

reference surface, which is in thermal equilibrium with air in the background of the plant. B) TUE was 

estimated from transpiration and growth, measured by water loss and pixel counts over the whole 

experimental period, respectively. Values represent the average of six biological replicates per treatment. 

Error bars represent standard deviation. Different letters indicate significant difference according to one- 

way ANOVA post-hoc Tukey’s test (p<0.05). 



Results  

 

 

185 

Suppl. Fig. 6. Chemical Similarity Enrichment Analysis (ChemRICH) carried out from discriminant 

metabolites in biostimulant-treated tomato plants. Enrichment analysis is based on chemical similarities and 

uses Tanimoto substructure chemical similarity coefficients to cluster metabolites into non-overlapping 

chemical groups. Distinct analyses were performed for foliar (A) and drench application (B).  
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Suppl. Table 1. Projected shoot area (PSA) of the tomato plants cultivated under limited irrigation and subjected to treatment by PH either by spraying or drenching. PSA values 

were extracted from multiple side view RGB images and are expressed as number of green pixels and represent the average of six biological replicates per treatment ± standard 

deviation. Within the same row and for the specified day different letters indicate significant difference according to one-way ANOVA post-hoc Tukey’s test (p<0.05). 

Suppl. Table 2. Projected shoot area (PSA) of the tomato plants cultivated under limited irrigation and subjected to treatment by PH either by spraying or drenching. PSA values 

were extracted from top view RGB images and are expressed as number of green pixels and represent the average of six biological replicates per treatment ± standard deviation. 

Within the same row and for the specified day different letters indicate significant difference according to one-way ANOVA post-hoc Tukey’s test (p<0.05). 
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Suppl. Table 3. Digital biomass of tomato plants cultivated under limited irrigation and subjected to treatment by PH either by spraying or drenching. Values are expressed as 

number of green pixels and represent the average of six biological replicates per treatment ± standard deviation. Within the same row and for the specified day different letters 

indicate significant difference in digital biomass, according to one-way ANOVA post-hoc Tukey’s test (p<0.05). 

 

Suppl. Table 4. Width of the tomato plants extracted from multiple side view RGB images of the tomato plants cultivated under limited irrigation and subjected to treatment by 

PH either by spraying or drenching. Values are expressed as number of green pixels and represent the average of six biological replicates per treatment ± standard deviation. Within 

the same row and for the specified day different letters indicate significant difference according to one-way ANOVA post-hoc Tukey’s test (p<0.05). 
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Suppl. Table 5. Height of the tomato plants extracted from multiple side view RGB images of the tomato plants cultivated under limited irrigation and subjected to treatment by 

PH either by spraying or drenching. Values are expressed as number of green pixels and represent the average of six biological replicates per treatment ± standard deviation. Within 

the same row and for the specified day different letters indicate significant difference according to one-way ANOVA post-hoc Tukey’s test (p<0.05). 

 

Suppl. Table 6. Variation in shoot colours of tomato plants cultivated under limited irrigation and subjected to treatment by PHs either by spraying or drenching. The values for 6 

most representative colour hues are shown as percentage of the shoot area (pixel counts). Values represent the average of six biological replicates per treatment ± standard deviation. 

Within the same row and for the specified day different letters indicate significant difference according to one-way ANOVA post-hoc Tukey’s test (p<0,05). 
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3.2 Salinity stress 

3.2.1 Lettuce and tomato 
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ABSTRACT 

Plant phenomics is becoming a common tool employed to characterize the mode of action of 

biostimulants. A combination of this technique with other omics such as metabolomics can offer a 

deeper understanding of a biostimulant effect in planta. However, the most challenging part then is 

the data analysis and interpretation of the omics datasets. In this work, we present an example of how 

different tools based on multivariate statistical analysis can help to simplify the omics data and 

extract the relevant information. We demonstrate this by studying the effect of protein hydrolysate 

(PH)-based biostimulants derived from different natural sources in lettuce and tomato plants grown 

in controlled conditions and under salinity. The biostimulants induced different phenotypic and 

metabolomic responses in both crops. In general, they improved growth and photosynthesis 

performance under control and salt stress conditions, with better performance in lettuce. To identify 

the most significant traits for each treatment, a random forest classifier was used. Using this 

approach, we found out that in lettuce biomass-related parameters were the most relevant traits to 

evaluate the biostimulant mode of action, with a better response connected mainly to plant hormone 

regulation. However, in tomatoes, the relevant traits were related to chlorophyll fluorescence 

parameters in combination with certain antistress metabolites that benefit the electron transport chain 

such as 4-hydroxycoumarin and vitamin K1 (phylloquinone). Altogether, we show that to go further 

in the understanding of the use of biostimulants as plant growth promotors and/or stress alleviators, 

it is highly beneficial to integrate more advanced statistical tools to deal with the huge datasets 

obtained from the –omics to extract the relevant information. 

Keywords: high-throughput phenotyping, Lactuca sativa L., metabolomics, multivariate salt stress, 

secondary metabolism, Solanum lycopersicum L., statistical analysis,  vegetal-based protein 

hydrolysates 
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INTRODUCTION 

Changes in climate patterns are dramatically influencing some agricultural areas, and with 

special impact in arid, semi-arid, and coastal agricultural areas (Corwing, 2021). Soil salinity 

already covers 20% of total cultivated, and 33% of the irrigated agricultural lands worldwide and 

is expected to increase at a faster rate than now by the year 2050 (Central Soil Salinity Research 

Institute (CSSRI), 2014) (Mukhopadhyay et al. 2021). The high salt concentration in the soil 

reduces plant growth and hence yield in two ways: increasing the osmotic potential of the soil 

solution, making it harder for the plant to extract water, and accumulating into the root and shoot 

tissue at a concentration that can be toxic for the plant (Munns and Tester, 2008). The extent of 

salinity damage to the fitness and final yield of the crop can change accordingly to the species. 

For example, lettuce (Lactuca sativa L.) reduces plant growth and yield under salt stress 

conditions (Moncada et al., 2020). However,  whereas tomatoes (Solanum lycopersicum L.) can 

maintain the fruit yield and increase their quality under moderate stress (Meza et al. 2020), severe 

salt stress reduced tomato growth and provokes severe damages, especially in young seedlings 

(Ali et al. 2021). 

To reduce the yield loss connected to salinity, scientists are moving towards the selection of more 

tolerant genotypes, through breeding, genetic engineering, and marker-assisted selection (MAS) 

(Munns and James, 2000; Yamaguchi and Blumwald, 2005). However, these methods are 

expensive, time-consuming, and, in the case of genetic engineering, received with suspicion by 

the general public (Yamaguchi and Blumwald, 2005; Halford and Shewry, 2000). A more 

sustainable alternative is represented by the use of protein hydrolysates (PHs), a class of non-

microbial plant biostimulants obtained from the partial hydrolysis of protein sources of plant or 

animal origin (Colla and Rouphael, 2015). Many works from the last years have enlightened the 

effects of PHs as stress alleviators on different crops growing in saline conditions (Van Oosten 

et al., 2017; Dell’Aversana et al., 2020; Di Mola et al., 2021). Nonetheless, it is important to 

remember that the effects of the PHs on crops can vary with the plant species or varieties, the 

time of the application, and the dose (Lisiecka et al, 2011). 

Before a new potential PH-based biostimulant is put on the market, it is, therefore, essential to 

test its effects in multiple conditions and on different crops. High-throughput automated 

platforms for plant phenotyping have proven to improve and speed up the biostimulant testing 

process (Rouphael et al., 2018). Different sensors can be implemented in high-throughput 

phenotyping platforms, allowing the user to monitor the effects of the PHs applications on many 
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morpho-physiological traits, throughout the entire crop life cycle (Paul et al, 2019a, 2019b). As 

a result, we can define in which crop, developmental stage, and dosage the application is 

recommended. Besides, a deeper physiological study allows the characterization of their mode 

of action; information that can be used for further possible applications.  

The use of other -omic approaches such as metabolomics allows studying the biostimulant effect 

in a more complex manner, supporting and integrating the phenomics data to better understand 

the biochemical processes activated in the plants by the biostimulants application. However, the 

data analysis and interpretation of the complex omics datasets can become another challenging 

bottleneck. Here, we investigated the mechanism of action of a set of 7 PHs in lettuce and tomato 

subjected to early and late salinity stress. We hypothesise that salinity will reduce plant growth 

and change the physiology of the plant in tomato and lettuce. However, the PH application will 

ameliorate the salt negative effect in both plant species. Besides, a deep data analysis using 

advanced statistical tools will allow us i) to understand better the effect of the PHs on two species, 

lettuce and tomato, selected for their economic importance, their distinct architecture, and 

purpose, and their different sensitivity to salinity stress, ii) to evaluate the biological translation 

from the results obtained in PHs-primed Arabidopsis grown under salt stress (Sorrentino et al., 

2021) to other crops under similar growing conditions, and iii) to demonstrate the necessity of 

the use of statistical approaches to simplify complex omic datasets allowing identification of the 

traits relevant for the understanding of a biostimulant mechanism of action.  

MATERIALS AND METHODS 

Plant Material and Growing Conditions  

Seeds of Lactuca sativa L. var. capitata (Salanova® cv Aquino) and Solanum lycopersicum L. 

cv MicroTom were sown in 250 ml pots filled with 235 g of a mixture of sieved peat (Substrate 

2, Klasmann-Deilmann GmbH, Geeste, Germany) and river sand in 1:1 proportion. All the pots 

were watered up to 55% of the soil relative water content (SRWC). The water holding capacity 

of the substrate was calculated as described by Junker et al. (2015). The covered pots were 

stratified at 4°C in the dark for two days. After that, the pots were moved to a climate-controlled 

growth chamber (FS-WI, Photon Systems Instruments, Czechia) under long day conditions (16 

h light/8 h dark). The climate conditions in the growth chamber were set at 21/19 °C for day/night 

temperature with 60% relative humidity (RH) and 120 μmol m−2 s−1 cool-white LED (6500 K) 
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and 5.5 μmol m−2 s−1 far-red LED (735 nm) lighting. These conditions were kept constant 

throughout the entire experiment. The pots were kept covered with a plastic lid for the first 24 h 

to maintain the soil moisture, and then it was removed.  

Selection of the Plants 

Eight days after lettuce stratification and ten days after tomato stratification, when most of the 

germinated seedlings had reached the 2-true-leaf stage, a top view RGB picture of all plantlets 

was taken using the top view RGB2 camera in the PlantScreenTM Compact system (Photon 

Systems Instruments, Brno, Czech Republic). The plants with area between the 1st and the 4th 

quartile of the normal distribution of the population were used for the experiment. In tomato 

experiment, each variant counted 6 plantlets as biological replicates, with a total of 96 plants. 

For the lettuce experiment each variant counted 8 plantlets as biological replicates, with a total 

of 128 plants.  

High-throughput Phenotyping 

To investigate the effects of PHs application on the morpho-physiological parameters of lettuce 

and tomato grown under salt stress conditions, trays containing two pots with one plantlet each 

were automatically transported within PlantScreenTM Compact System on conveyor belts 

between the light-isolated imaging cabinets, weighing and watering station and the dark/light 

acclimation chamber. The trays were measured thrice a week, ending with 10 phenotyping 

rounds distributed in 21 days for lettuce and 24 days for tomato (Figure 1), with the starting 

point before the first salt application (Day of Phenotyping 1, henceforth defined as DoP 1). The 

phenotyping protocol used was the same for both crops. Physiological measurements 

[Chlorophyll Fluorescence (ChlF) and Thermal Imaging (IR)], being sensitive to circadian 

rhythm regulation mechanisms (Cano-Ramirez and Dodd, 2018) were always performed in the 

morning. A single round measuring protocol consisted of an initial 15 min light-adaptation period 

inside the acclimation chamber, followed by IR and red-green-blue (RGB) top view imaging 

(RGB2). Next 15 min dark-adaptation was applied, followed by chlorophyll fluorescence kinetic 

imaging, RGB side view imaging (RGB1) and weighing and watering (Figure 1A). Due to the 

limited capacity of the phenotyping system, for the lettuce experiment the trays were divided 

into 3 blocks with 16 trays each. Measuring round for one block lasted for 2 h and 45 min. The 
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PlantScreenTM Analyzer software (PSI, Czech Republic) was used to automatically process, re-

analyse and export the data. 

Biostimulants Selection and Application 

Seven PHs obtained by enzymatic hydrolysis of vegetal-derived proteins were selected from a 

batch of eleven PHs, previously screened for their mode of action (Sorrentino et al., 2021), and 

used for the experiment. They included PHs from different plant sources belonging to the 

botanical families of Fabaceae (O), Malvaceae (C), Brassicaceae (F), Solanaceae (B), and 

Graminaceae (P) and two commercial products (Trainer® (D), and Vegamin® (H), 

commercialized by Hello Nature Inc. (former Italpollina) (Anderson, IN, United States) used as 

positive controls. The PH were obtained through enzymatic hydrolysis of the dry biomass and 

were then analysed for their total nitrogen and carbon content; for detailed description of the 

procedure, see Sorrentino et al. (2021) and Ceccarelli et al. (2021).  

Biostimulants were applied to leaves through spraying once a week, using only distilled water 

for the controls or the given PH in a concentration of 3ml/l for the treated plants. A total of 4 

foliar applications of PHs were done throughout the experiment (Figure 1B). The first spraying 

(priming) was performed one day before the first salt application. Two hours before and after the 

spraying of the plants, the Relative Humidity in the growing chamber (FS-WI) was increased up 

to 80%, in order to promote the stomata opening.  

Due to the limited capacity of the phenotyping platform, the lettuce experiment was divided into 

two rounds, each consisting of 64 plants; the substances B, C and F were tested in the first round, 

while D, H, O and P in the second round. 

Watering and Salt Treatment 

All the pots were watered after each phenotyping round up to 55% SRWC with a modified 

Hoagland solution [0.36 g/l Ca (NO3)2, 0.1 g/l KH2PO4, 0,80 g/l KNO3, 0,04 g/l NH4NO3, 0,13 

g/l MgSO4 and 0,01 mg/l of MIKROM fertilizer (Cifo Srl, S.Giorgio di Piano (BO), Italy)], using 

the Weighing and Watering station in the PlantScreenTM Compact. The solution was freshly 

prepared before each watering round and pH was adjusted to a value of 5.7.   
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Starting from 2 weeks after stratification, the plants belonging to the stress group were twice a 

week subjected to salt application, ending with 6 applications for both crops (Figure 1B). In the 

lettuce assay, our objective was to reach a concentration of 40 mM NaCl in the soil, 

corresponding to a moderate stress (Freitas et al., 2019). In order to avoid osmotic shock to the 

plants and NaCl accumulation in the soil, all the pots were first watered up to 55% of SRWC 

with plain nutrient solution. The plants belonging to the stress group were then given 40 ml each 

of an 80 mM NaCl (8,7 mS/cm) solution. In the end, after a couple of hours from the salt 

application, all the plants were watered again, up to 100% of their SRWC, in order to create 

drainage of the solution from the pot. The same setup was used with tomato, but in this case the 

salt solution increased to 120 mM NaCl (14 mS/cm) in order to reach a concentration of around 

60 mM NaCl in the pot, corresponding to a moderate salt stress (Meza et al., 2020) (Figure 1B). 

The selection of the two used NaCl concentrations was the result of several preliminary tests 

conducted on both crops (data not shown).  

Imaging Protocol and Data Analysis

RGB imaging 

RGB imaging using high-resolution top-view and side-view RGB cameras and optimized image 

segmentation algorithm for automated analysis was used to calculate the number of plant-specific 

pixels throughout the whole experiment. The RGB images were processed as described by Awlia 

et al. (2015) and Paul et al. (2019a, 2019b).  

Projected shoot area (PSA) from top (PSAtop) and side view (PSAside) was used to calculate the 

Digital Biomass (DM) of each plant (Rahaman et al., 2017): 

 

Digital Biomass, corresponding to the approximate volume, was then used to calculate the 

Relative Growth Rate (RGR), where 𝑇1 and 𝑇2 indicates the time interval (days) and  𝐷𝑀1, 𝐷𝑀2 

the corresponding digital biomass:  

(ln 𝐷𝑀2 − ln 𝐷𝑀1)/(𝑇2 − 𝑇1) 
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RGR was calculated twice during the experiment: from DoP 0 to DoP 12 (Early Phase) for both 

crops, and from DoP 12 to DoP 21 for lettuce plants or to DoP 24 for tomato plants (Late Phase).  

ChlF imaging 

To assess the effects of salt stress and biostimulants application on the photosynthetic 

performance of the plants, ChlF measurements were acquired using an enhanced version of the 

FluorCam FC-800MF pulse amplitude modulated (PAM) chlorophyll fluorometer incorporated 

into the PlantScreenTM Compact System (for more details, see Henley, 1993). After 15 min of 

dark adaptation, the light curve protocol as described in Awlia et al (2016) was used to quantify 

the rate of photosynthesis at different photon irradiances (Rascher et al., 2000). Four actinic light 

irradiances [Lss (Light steady state) 1: 180 µmol m-2 s-1; Lss2: 480 µmol m-2 s-1; Lss3; 780 µmol 

m-2 s-1 and Lss4: 1080 µmol m-2 s-1] with a duration of 60 s were used to quantify the rate of 

photosynthesis. The raw data were automatically processed using the PlantScreenTM Analyser 

software (PSI, Brno, Czech Republic). From the measured fluorescence transient states, the basic 

ChlF parameters were derived (i.e., F0, Fm, Ft, and Fv), which were used to calculate a range of 

parameters characterizing plant photosynthetic performance (i.e., Fv/Fm, Fv’/Fm’, NPQ and 

ФPSII). We chose to evaluate the parameters obtained after the exposure of the plants to the light 

of intensity 480 µmol m-2 s-1 (Lss2), since they provide the highest discriminative power between 

control and stress plants.  

Thermal imaging 

To determine the leaf temperature of the plants, we used the thermal imaging unit implemented 

into the PlantScreenTM Compact system, that allows to assess the canopy temperature from top 

view. The thermal imaging unit incorporated in the PlantScreenTM Compact System consists of 

a light-isolated box with one top view camera mounted on a static frame and a temperature sensor 

to increase contrast for the image processing step. The imaged area is 440 x 340 mm (height × 

width). To assess spatio-temporal variations in temperature over plant surface, we used FLIR 

A615 thermal camera with 45◦ lens and resolution 640 ×480 pixels, with high-speed infrared 

windowing option and<50mK thermal sensitivity (FLIR Systems Inc., Boston, MA, United 

States). Canopy temperature of each plant was automatically extracted with PlantScreenTM 

Analyser software (PSI, Brno, Czech Republic) by mask application, background subtraction, 

and pixel-by-pixel integration of values across the entire plant surface area.  
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In order to minimize the influence of the differences in environmental conditions and in image 

acquisition timing among individual plants, the average canopy temperature of each plant (Tavg) 

was normalized with the actual temperature inside the Thermal Imaging box and expressed as 

canopy temperature depression, or T (°C) (Hou et al., 2019).  

 

Untargeted Metabolomic Analysis 

At the end of the experiment, at DoP 21 and 24 in lettuce and in tomato, respectively, the third 

true leaf of each plant was harvested and freeze-dried. The material from control plants and from 

plants treated with the 7 PHs were used for the metabolomic analysis. Lyophilized plant material 

(50 mg for lettuce and 250 mg for tomato) was extracted in twenty volumes (w/v) of 

methanol/water solution (70:30, v/v) acidified with 0.1% formic acid by Ultra-Turrax (Polytron 

PT, city, Switzerland), centrifuged and then filtered through a 0.22 μm membrane as previously 

reported (Paul et al, 2019a, 2019b). Untargeted metabolomics was performed using a 6550 

iFunnel quadrupole-time-of-flight mass spectrometer and a 1200 series ultra-high-pressure liquid 

chromatographic system (UHPLC-ESI/QTOF-MS) from Agilent Technologies (Santa Clara, 

CA, USA), as previously described (Miras-Moreno et al., 2021). Briefly, 6 μl were injected and 

reverse-phase chromatography applied under a water-acetonitrile gradient elution (6% to 94% 

acetonitrile in 33 min). The mass spectrometer worked in positive ionization (ESI+) and SCAN 

mode for the acquisition of accurate masses ranging from 100 to 1200 m/z. Four replicates were 

analyzed for each treatment and samples were randomly sequenced. Quality Controls (QCs) were 

prepared by pooling all the extracts and were analyzed throughout the chromatographic sequence 

using the same chromatographic conditions as samples but acquired in data dependent MS/MS 

mode (1 Hz, 50–1200 m/z, 12 precursors per cycle), at different collision energies (10, 20 and 

40 eV).  

Agilent Profinder B.07 (Agilent Technologies) software was used for mass (5-ppm tolerance) 

and retention time (0.05 min maximum shift) alignment, as well as to process all the mass 

features from UHPLC-ESI/QTOF-MS raw data. The combination of monoisotopic mass, 

isotopes accurate spacing and isotope ratio was used for annotation, using the PlantCyc 12.6 

database (Plant Metabolic Network, http://www.plantcyc.org) as previously reported (Pretali et 

al., 2016; Schläpfer et al., 2017). Only those compounds identified in 75% of the replications 

http://www.plantcyc.org/
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within at least one treatment were retained. Thereafter, MS/MS confirmations from QCs was 

carried out using the software MS-DIAL 4.24 (Tsugawa et al., 2015) formerly using MS/MS 

experimental spectra available in the software (Mass Bank of North America) and then using 

MS-Finder in-silico fragmentation (Tsugawa et al., 2016). The annotation process corresponded 

to level 2 of confidence as set out in COSMOS Metabolomics Standards Initiative (Salek et al., 

2015). 

Statistical Analysis 

For the phenotyping data, statistical differences between treatments and time points were 

determined by Mixed model analysis (McCulloch and Searle, 2000; Boisgontier and Cheval, 

2016) and multiple pairwise comparisons using post hoc Tukey’s test (P-value < 0.05). The 

statistical analysis was implemented in R studio (R GUI 4.0.3) using the “lmer” and “emmeans” 

packages (R Core Team, 2014; Bates et al., 2015; Russell, 2020). Then, to define the specificities 

of each crop and their response to the foliar application with PHs, in order to go further in the 

mode of action, a hierarchical clustering was applied with the use of “Ward’s” linkage method 

to find similarities between (crop, growth conditions and the best and worse performed 

biostimulant) and identify clusters (Saxena, 2017). Finally, random forest classification was 

applied also to identify significant variables for treatment classification (Qi, 2012). 

Concerning metabolomics, the software Agilent Mass Profiler Professional B.12.06 (from 

Agilent Technologies, Santa Clara, CA, USA) was used for data normalization and baselining 

(Mimmo et al., 2017), and then unsupervised hierarchical cluster analysis (HCA) based on fold-

change heatmaps (Squared Euclidean distance) used to naively describe patterns across 

treatments. Thereafter, supervised multivariate statistics were performed in SIMCA 13 

(Umetrics, Malmo, Sweden), where orthogonal projection to latent structures discriminant 

analysis (OPLS-DA) was carried out. Each supervised model (separate models for tomato and 

lettuce, and then a comprehensive model for salt-stressed versus control plants) was validated by 

CV-ANOVA, checked for overfitting by permutation testing (N=200) and then inspected for 

goodness-of-fit (R2Y) and prediction ability (Q2Y). After that, variable importance in projection 

(VIP) ranking was used to identify the most discriminant compounds in each OPLS-DA model. 

Finally, ANOVA (P-value  < 0.01, Bonferroni multiple testing correction) and fold-change 

(FC) analysis (FC ≥ 1.3) were combined into Volcano Plots, and differential compounds 
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imported into the Omic Viewer Pathway Tool of PlantCyc (Stanford, CA, USA) software (Caspi 

et al., 2013) for biochemical interpretations.  

 

 

RESULTS 

Development of the Experimental Protocol for Salt and Biostimulants Applications 

To characterise effectively the outcome of biostimulants applications on lettuce and tomato 

performance in the early vegetative growth phase, we first optimized the experimental protocol 

for plant cultivation, mild-salt stress application and the stress response quantification. This was 

done for each crop separately as they are very diverse in their tolerance to salinity, with lettuce 

being more sensitive than tomato (Figure 1). Therefore, two different concentrations of NaCl in 

the nutrient solution were used to water the plants as described in M&M. Lettuce and tomato 

plants were grown for 35 and 39 days, respectively, and this period corresponded to the complete 

head maturation in lettuce and the beginning of the flowering stage in tomato.   

The PHs were given via foliar application to the plants, by uniformly spraying the leaves with 

solutions with concentration of 3 ml/l each (Figure 1) (Di Mola et al., 2019a, 2019b). The 

morpho-physiological traits of the plants were quantified dynamically throughout the trial, in 

order to monitor the growth performance and physiological status of the plants during the 

development and salt stress response. As a result, we could clearly distinguish two periods in the 

experiment, an early and late phase, in which the response of the plants to the salt stress and the 

interaction with the biostimulants applications were clearly diverse. It is well-known that plants 

response to salt stress in in two phases (Ugena et al., 2018): a rapid, osmotic phase, here described 

as early phase (DoP 0-12) and a slower, ionic phase due to the ion toxicity, referred to as late 

phase (DoP 12-21 in lettuce or DoP 12-24 in tomato) (Figure 2).  

Lettuce and Tomato Plants Have Different Physiological Response to Mild Salinity  
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In lettuce, salt stress treatment resulted in obvious reduction of plant growth in the later phase of 

the experiment with obvious growth inhibition after 4 salt applications salt stress imposition 

resulted in a visible reduction of plant growth performance only in the late phase of the stress 

(after DoP 14), (Figure 2 A1, A2). In both rounds of the lettuce trial similar biomass reduction 

was observed with 35% and 29% digital biomass (DB) reduction, respectively (Supplementary 

Figure S1 A1-B1). We further assessed other morphological parameters such as roundness, 

compactness and slenderness of the leaves (SOL) showing that they do not differ between the 

rounds, but clearly differed between controls and salt stressed plants in the late phase with salt 

treated lettuce plant being less compact and round (Figure 2 A1 and Supplementary Figure S1 

A-B).  

The photosynthetic performance of the plants during the development and with the progression 

of the salt stress was also affected (Figure 2 A3 and Supplementary Figure S1 C-D). In the 

two rounds analysed, the most significant differences were observed in the late phase between 

the controls and NaCl-treated lettuce plants. We show that the maximum quantum yield of PSII 

photochemistry for the light-adapted (Fv’/Fm’) state and PSII operating efficiency (ФPSII) was 

significantly reduced in the treated plants, whereas the non-photochemical quenching (NPQ) was 

increased compared to the controls (Figure 2 A3 and Supplementary Figure S1 C-D). 

Altogether, our data demonstrate that in lettuce only late phase of salt stress imposition (after 

DoP12) was important to detect differences in growth and fluorescence related parameters 

between treatments. 

In tomato plants, the growth of the plant was not affected by the mild salt stress (Figure 2 B1-

B2). The remaining morphological parameters did not show differences between control and salt 

stress, except of higher slenderness of the leaves (SOL) in salt-stressed plants during the 

transition from the early to late phase (Supplementary Figure S2 A1-A4). Regarding the 

physiology, however, there were significant differences in several fluorescence related 

parameters at the end of the early phase and late phase of the salt stress (Figure 2 B3 and 

Supplementary Figure S2 B). In salt stressed tomato plants we observed a significant reduction 

in Fv’/Fm’ and ФPSII and increased NPQ values compared to the controls.  

Protein Hydrolysates Specifically Improve Growth Performance of Lettuce Plants 



Results  

 

 

203 

As following step, we analysed how the foliar application of selected PHs could modify the 

responses observed in salt stressed and non-stressed plants. In lettuce plants, the substance P 

increased the DB at the late phase of stress after 3 foliar applications under both growth 

conditions (DoP13) (Figure 3 A1-2, Supplementary Figure S3 B1 and Supplementary Table 

S1 A-B). The substances D and H also improved the DB, but only when plants were grown under 

salt stress conditions. Other morphological traits such as roundness, compactness or SOL did not 

change (Supplementary Figure S3 A2-A4, B1-B4 and Supplementary Table S1 A-B). 

Similarly, the foliar application with substance P increased the relative growth rate (RGR) of the 

plants in the early phase under control conditions (Figure 3 A and Supplementary Figure S6 

A1-A2). Other PHs did not modify the RGR of the plants compared to their respective controls 

(salt or control) in both early and late phase. Interestingly application of the PHs resulted in the 

increase of the final plant biomass (Supplementary Figure S6 B-C), especially the dry weight 

of the aerial part of the plants, when the substances B, C, F and P were applied to plants grown 

under control and salt stress conditions, or when the substances O was applied under control 

conditions. 

The application of biostimulants had mild impact on the photosynthetic performance of the 

lettuce plants both under control and salt stress conditions. We show that the plants treated with 

the substances P and H have increased Fv’/Fm’ and PSII values both under control and stress 

conditions, while we observed reduced NPQ levels along the experiment (Figure 3 A, 

Supplementary Figure S3 C-D and S4 C-D and Supplementary Table S2 A).  

In tomato plants, the application of PHs did not have any effect on the morphological traits; the 

differences in DB, RGR, fresh and dry weight were only due to the growth conditions. DB, as 

well as fresh weights of the plants, were similar in PHs treated plants and control plants during 

both phases of the experiment (Figure 3 B, Supplementary Figure S5 A-B, Supplementary 

Figure S7 and Supplementary Table S1 C). Similarly, no significant improvement of the 

photosynthetic efficiency of the plants was observed in tomato plants sprayed with PHs in any 

growth conditions (Figure 3 B, Supplementary Figure S5 C-D and Supplementary Table S2 

C).  

We have further analysed the impact of PHs applications on the leave surface temperature profile 

of both crops using thermal image analysis. The salt stress significantly increased the temperature 

of the leaf surface in lettuce but not in tomato plants (Supplementary Figure S8). Similarly, the 

changes of the temperature by the application with biostimulants was more visible in lettuce than 
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tomato plants. We show that the lettuce plants treated with the substances C and F had 

significantly reduced surface temperature when grown both under control and stress conditions 

(Figure 3 A, Supplementary Figure S8 A-B and Supplementary Table S3 A). In tomato, the 

biostimulants reduced the temperature of the leaf surface after the first application in plants under 

control and salt stress conditions. However, in the late phase they increased the temperature over 

the respective control in almost all the cases (Supplementary Figure S8 C and Supplementary 

Table S3A).  

Investigating the Mode of Action of the PHs Through the Plant Biostimulant 

Characterization Index 

To simplify the results and to identify the specific mode of action of each of the 7 PHs, we used 

the Plant Biostimulant Characterization (PBC) index as described previously (Ugena et al., 2018; 

Sorrentino et al., 2021). For the calculation of the PBC indexes, we selected the five traits (DB, 

RGR, Fv’/Fm’, ФPSII and ΔT) that provided the highest discriminative power between the 

different treatments (Supplementary Table S1, S2 and S3). The PBC indexes for the Early 

Phase (from DoP 0 to 12) and the Late Phase (from DoP 12 to 21 in lettuce or from DoP 12 to 

24 in tomato) were calculated independently since we could clearly observe different responses 

of the plants treated with the 7 PHs in the two phases. To determine the index value, the log2 of 

the ratio between the biostimulant treated plants and untreated ones was determined for each 

crop and growth conditions, and then represented in parallel plots (Figure 3). Then, the five 

obtained values represented in each parallel plots were summed to end with a unique number 

that represents the PBC index (for further detail see Sorrentino et al. 2021), which was included 

in the Table 1. The calculated PBC index for each compound, growing condition and phase of 

the trial could be negative (red) or positive (blue), providing information about the mode of 

action of that specific combination (Table 1). More in detail, the substances with positive PBC 

indexes (darker blue) in control conditions are characterized as plant growth promotor, whereas 

the negative (darker red) are plant growth inhibitors. Overall, our data clearly show that in lettuce 

plants, the substance P was both the best Growth Promotor and Stress Alleviator, improving the 

fitness of the plants in all growing conditions and in both stages of the trial. The second best was 

H, while the absolute worst was B (Table 1 A). Some of the other PHs proved to be beneficial 

to the crop only in a specific growing condition and/or phase of the trial. For example, F showed 

an effect as Growth Promotor, but only in the Late Phase of the experiment, while O acted as a 

Stress Alleviator in the Early Phase, but its effect fainted in the Later Phase (Table 1 A). 
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For tomato, the absolute best performer was the substance O, followed by D, F and H, all acting 

as a Growth Promotor and as a Stress Alleviator. Contrarily, the plants treated with the substance 

B showed the worst performances, especially in salt stress conditions (Table 1 B).  

The results obtained from the PBC index were also corroborated by a cluster analysis performed 

with the complete phenotyping data set (Figure 4). In lettuce, the plants treated with H and P 

were located in an independent cluster divided in two subclusters due to the growth conditions 

(control or salt) but independent of the stress and unstressed control plants (Figure 4 A). 

Contrarily, the rest of substances were located with their respective controls that were only 

separated by the stress effect (Figure 4 A and B).  In tomato plants, except for the substances B 

and C, all PHs were beneficial for the plant fitness, especially when they were grown under salt 

stress conditions (Figure 4 C). Altogether, we could conclude that H and P were the best Plant 

Growth Promotors and Stress alleviators, whereas B was more a plant growth inhibitor. 

The Applications of PHs Activate Different Metabolic Pathways in Lettuce and 

Tomato Plants  

An untargeted metabolomic analysis (UHPLC/QTOF-MS) was performed to understand the 

molecular mechanisms triggered by PH treatments in tomato and lettuce plants grown under 

either control or salinity conditions. The untargeted profiling allowed putatively annotating more 

than 2000 compounds; the whole list of metabolites, together with composite mass spectra and 

individual abundances are provided as supplementary material (Supplementary Table S5A for 

lettuce, S5B for tomato). The metabolomics dataset included a broad biochemical diversity, 

including metabolites from a large range of metabolic processes of primary and secondary 

metabolism. Multivariate statistics were applied on the metabolomic dataset highlighted 

similarities/dissimilarities among the metabolomic profiles across treatments. At first, 

unsupervised and supervised statistics were carried out separately considering metabolomics 

datasets from lettuce and tomato. These statistics served as a first step of interpretation to point 

out similarities/dissimilarities among all treatments. 

When the lettuce plants were analyzed, the unsupervised fold-change based hierarchical 

clustering output (Figure 5A) naively evidenced that within each trial (first for PHs B, C, F and 

second for D, H, O, P) salinity application was the main clustering factor. Nevertheless, the score 

plot from the supervised OPLS-DA multivariate modeling (Figure 5B) allowed to efficiently 
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discriminate among the different groups of treatments whereas control samples from the two 

different trials merged into the score-plot. The model was validated (P-value <0.001), parameters 

of the OPLS-DA were excellent (R2Y = 0.983, Q2Y = 0.935), and overfitting was avoided 

through permutation testing. Therefore, discriminants compounds (VIP score > 1.2 - 

Supplementary Table S6A) were exported and considered. Overall, primary and secondary 

metabolites were equally represented among the VIP discriminants. In more detail, the most 

represented primary metabolites included carbohydrates, membrane lipids, hormones (mainly 

brassinosteroids, a cytokinin and two gibberellins) and electron-carriers (quinol and quinones). 

Among secondary metabolites, the most represented compounds were phenylpropanoids, 

alkaloids and isoprenoids. Exploring the OPLS-DA score plot (Figure 5 B), the variants showed 

a clear distributed through all score space with a clear separation between stressed and non-

stressed plants treated with the same PHs. Under non-saline conditions, the plants treated with 

B, C, and F presented metabolomic signatures similar to the untreated control, depicting a 

separated group of response. However, a second group formed by the plants treated with H, O 

and P, corresponding to the best performing biostimulants according to the phenotyping data, 

formed an independent group under control and salt stress conditions (Figure 5 B).  

Different results were obtained in tomato plants. As a preliminary approach, unsupervised HCA 

(Figure 6 A) suggests that salinity did not have a primary effect on metabolic signatures. In fact, 

tomato samples clustered in two main groups, distinguishing PH treatments, with a cluster 

including O, P, F and H, and a second group composed by the plants treated with the substance 

B and C, more similar to untreated controls. These results were furtherly confirmed by the OPLS-

DA supervised statistics, which allowed separating better the samples in the score space 

according to the combined treatments (Figure 6 B). The model parameters of the OPLS-DA 

were excellent (R2Y = 0.981, Q2Y = 0.941), validation was adequate (P-value <0.001) and 

overfitting could be excluded by permutation testing. Discriminants compounds (VIP score > 1.1 

- Supplementary Table S6B) mainly related to secondary metabolism (phenylpropanoids and 

to a lesser extent terpenoids and alkaloids), cofactors/electron carriers, and phytohormones 

(gibberellins, brassinosteroids, jasmonate, and IAA-conjugates). Primary metabolites range from 

carbohydrates, lipids, organic acids and nucleic acid components. OPLS-DA evidenced that 

some PHs (O, P, H, D) were better able to minimize the differences between stressed and non-

stressed plants, so the plants were grouped together independently of the plant growth conditions. 

This feature might imply a hierarchically stronger effect of the biostimulant above the salt-stress, 

and thus the ability of these PHs to well-play as stress alleviator on plant metabolism (Figure 

6B). 
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Biochemical Insights on the Metabolomic Reprogramming Triggered by the Best 

and the Worst Performers PHs 

To understand further the differences between the mode of action of good and bad performing 

biostimulants, we analyzed the plants treated with the best substance, H as plant growth promotor 

and stress alleviator and with the worst, B as growth inhibitor (according to the PBC indexes and 

the cluster analysis (Figure 3 and 4, Table 1). The two corresponding sub-datasets were then 

considered, including 669 compounds for lettuce and 1090 for tomato. The HCA confirmed the 

strongest effect of salinity above PH-treatments in lettuce, whereas PHs had a hierarchically 

stronger effect on tomato (Supplementary Figure S9A-B). Indeed, for lettuce, the two main 

clusters divided stressed from non-stressed plants, even though the metabolic profiles of control 

plants were more similar to B-treated plants. On the other hand, the metabolic signatures of 

tomato samples merged in two main clusters, one including H-treated plants and a second cluster 

grouped controls and B-treated. Consistent results were obtained by OPLS-DA where the 

separation of treatments could be observed in the score plot hyperspace (Supplementary Figure 

S9A-B). The OPLS-DA model was robust, being R2Y= 0.996 and Q2Y=0.987 in lettuce (P-

value <0.001) and R2Y=0.996 and Q2Y=0.977 in tomato (P-value <0.001). Thereafter the 

Volcano plot analysis (P-value < 0.01, FC ≥ 1.3) was applied to identify differential compounds. 

Overall, we evidenced that 414 (in lettuce, Supplementary Table S7A) and 261 compounds (in 

tomato, Supplementary Table S7B) were significantly modulated by treatments, compared to 

control. The Pathway Tool analysis from PlantCyc was applied to simplify the interpretation in 

terms of plant metabolism. Figure 7 A and figure 8 A show the biosynthetic processes 

modulated by treatments, along with cumulate FC values. Overall, biosynthesis processes related 

to secondary metabolism were generally decreased in both crops (Figure 7 B, Figure 8 B), 

except for tomato plants treated with PH B under non-stress conditions. In both species, N-

containing compounds (mostly alkaloids), phenylpropanoids and terpenes underwent the most 

evident modulation. In lettuce, several membrane lipids were impaired, such as long-chain fatty 

acid (also in the epoxy form) and sterols. Phytohormones were broadly affected by the treatments 

in lettuce, whereas in tomato we evidenced a weaker impact (Figure 7 C, Figure 8 C). The main 

modulations concerned gibberellins, which decreased in both crops. In treated lettuce, a 

reduction of brassinosteroids, auxin-conjugates (IAA-Ile, IAA-Leu, IAA-Asp) and N-

glycosylated cytokinins were observed. The ethylene precursor (1-aminocyclopropane-1-

carboxylate, ACC) down-accumulated only in control plants of lettuce treated with H-substance. 

In tomato, changes in cytokinin content with mainly accumulation of trans-zeatin-O-glucoside-
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7-N-glucoside in response to PH B (either under control or salt stress) and in H-treated plants 

grown under control conditions were also detected.  

Similar results were obtained when the effect of the two PHs (B and H) was investigated in 

respect of their ability as growth improver and stress alleviator by independently explore on non-

stressed and stressed plants. Two different OPLS-DA models were validated regardless of the 

plant species, one considering metabolomics data from salt-stressed plants and the other 

including non-stressed plants (Supplementary Figure S10 A-B). Validation parameters were 

excellent in both models, showing a R2Y= 0.992 and Q2Y=0.964 (P-value =1.57 e-17) for non-

stressed samples and R2Y= 0.996 and Q2Y=0.949 (P-value =6.41 e-15) for samples grown under 

salt stress. The strongest discriminant compounds were selected from each model by means of 

the VIP method (VIP score > 1.20). A total of 310 (salinity, Supplementary Table S8-A) and 

333 (control, Supplementary Table S8-B) metabolites were considered and exported along with 

their FC values into the Omic Viewer Pathway Tool of PlantCyc for interpretations 

(Supplementary Figure S11A-C, Supplementary Figure S12 A-C). This analysis evidenced 

that about half of the total discriminant compounds are classified as secondary metabolites. 

However, whereas B substance downregulated the accumulation, H promoting the accumulation 

of secondary metabolites (phenylpropanoids, terpenes and N-containing compounds) and others 

such as fatty acid/lipids, cofactors and electron carriers.  

Regarding phytohormones, several discriminant compounds were differentially modulated by 

the two PHs. Under non-stress conditions, brassinosteroids (3-dehydroteasterone and (22S,24R)-

22-hydroxy-5α-ergostan-3-one) strongly down-accumulated in response to PH B but not to PH 

H, which on the other hand remarkably induced a strong accumulation of methyl (indol-3-yl) 

acetate (MeIAA), a storage form of IAA. Among cytokinins, two glycosylated forms of trans-

zeatin accumulated by H applications, whereas only one (trans-zeatin-7-N-glucoside) in 

response to B. PH-treated plants caused a depletion in the ethylene precursor (1-

aminocyclopropane-1-carboxylate) but PH H had the strongest effect. Under salinity conditions, 

MeIAA showed the same modulations recorded in control plants. The only cytokinin found as 

discriminant (cis-zeatin) accumulated in response of PH H. 

Integrative Analysis of Phenomic and Metabolomics Datasets 
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The multivariate generalization of the squared Pearson correlation coefficient was investigated 

through co-inertia (CIA), in terms of global similarity between the integrated phenotyping and 

metabolomic datasets (Supplementary Figure S13). The overall correlation between the two 

datasets was expressed as RV coefficient. This is a measure of global similarity between the 

datasets and assumes values between 0 and 1. The closer to 1 the higher the similarity between 

the datasets (Robert & Escoufier, 1976). The overall similarity in structure between phenotyping 

and metabolomics data was higher in lettuce than in tomato, with a RV coefficient equal to 0.37 

and 0.29, respectively. However, the obtained RV for both crops reflected the lack of joint 

structure in these two datasets (phenomics and metabolomics). Altogether, we could say that 

according to the low synchrony obtained between the phenotypical and metabolomics data after 

CIA analysis, the changes in the metabolic content doesn’t define the phenotype of the plants. 

To deal with this low concordance between the two datasets, we decided to work with the 

phenotypical and metabolomic data obtained from the plants treated with the substance H as 

plant growth promotor and stress alleviator, and with the substance B that worked as growth 

inhibitor in both lettuce and tomato plants. As first step, we used the random forest classification 

method to identify the most important phenotyping traits for each species. As result, in lettuce 

the importance was mainly focused in morphological traits, whereas in tomato the physiology 

was most relevant (Supplementary Table S4 A and B). Concretely, the volume represented as 

DB was the parameter with the highest discriminative power between treatments, followed by 

the physiological parameter WUE, related to water balance. However, in tomato, the most 

important parameters were related to the photosynthetic performance of the plant, with QY_max 

and QY_Lss4 as the main ones. Clearly, the two crops respond different way to the changes in 

the growth conditions, where is included not only the growth conditions but also whatever 

treatment applied. Once defined the main phenotypical traits, the correlated metabolites (p< 0.05) 

were identified performing correlation matrix (Supplementary Table S9 A and B).  For lettuce, 

many secondary metabolites, including alkaloids, terpenoids and phenols or certain metabolites 

involved in amino acid metabolism (mainly degradation compounds) were negatively correlated 

with the volume of lettuce plants. However, this phenotyping trait was positively correlated with 

IAA, IAA-Asp and L-arginino-succinate among others. In tomato, however, QY_max was 

positively correlated to certain secondary metabolites such as the phenol 4-hydroxycoumarin, 

and the vitamin K1 (phylloquinone) among others, and the carbohydrate D-erythrose 4-

phosphate.  

DISCUSSION 
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In the last years, the use of plant phenotyping approaches is becoming an efficient tool for 

characterizing the mode of action of biostimulants obtained from many different sources and in 

many plant species (Briglia et al., 2019; Danzi et al., 2019; Akhtar et al., 2020; Mutale-joan et 

al., 2020). Non-invasive approaches allow the simultaneous study of the crops grown under 

different growth conditions treated with biostimulant substances for better understanding of their 

mode of action. To this end, our study could be another example of this type of studies. We show 

that two distance crops such as lettuce and tomato differ in the response to salt stress alone or to 

the interaction between the stress and the application of PHs based biostimulants. The PH 

application modified the kinetics of the curves for the different phenotyping traits, including 

plant growth, fluorescence related parameters and thermal imaging, separated the plant response 

in early and late phase, being more evident for lettuce than for tomato plants (Supplementary 

Figures S1-8). However, the effect was different for both crops, and from the one obtained in 

previous studied performed in Arabidopsis (Sorrentino et al., 2021). Whereas in lettuce the 

biostimulant application induced changes during the early phase and after few applications, in 

the case of tomato the changes were mainly visible at late phase.  

To go further in the understanding of the biostimulant mode of action we probed the combination 

of phenotyping experiments with other omics, especially metabolomics, which can give 

additional information. In this context, the most difficult part is the data management, as both –

omics approaches are ending with a huge amount of data to process and interpret. Thanks to the 

fast evolution of the data analysis based on the multivariate statistical analysis, this is possible, 

and this aims to be a good example of such approach. For that, the first step done was the 

clustering of the variants analyzed independently for both lettuce and tomato using phenomic 

data (Figure 4). The high dimensionality of the data is a characteristic that creates many 

challenges in clustering and data analysis in general. The clustering tree is defined by the analysis 

of the LK norm distances that depend on the value of K (Euclidean, Manhattan, Minkowski etc.). 

The most often Lk norm used is Euclidean distance. In this regard, Aggarwal and co-workers 

(2001) showed some interesting results comparing different LK norm distances. More 

specifically, they stress that the meaningfulness of LK norm (K=1 for Manhattan, K=2 for 

Euclidean etc.) is worse on high dimensions. This means that the Manhattan distance is preferred 

in situations where the number of traits (metabolomics or phenomics) is considerably large. That 

is the reason why Euclidean and Manhattan distances were both examined in this study. 

However, in this case, the results were not significantly different for both lettuce and tomato. 

One of the reasons for this result could be that there was a clear different response of the plant 

when the H or B substance was applied.  
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As second step after the performance of the metabolic analysis and data processing, the 

concordance between both datasets (phenomics + metabolomics) was performed using COI 

analysis. This tool is becoming a particularly attractive method for the identification of 

relationships between large datasets, but it is mainly used in ecology or genetics (Bady et al. 

2004; Genitsaris et al., 2016; Devarajan et al., 2021). However, there are not any case studies 

using this tool for integrating phenotyping data with other omics. In our study, we observed low 

values of the RV coefficient between both datasets (phenomics + metabolomics). 

(Supplementary Figure S13). This would mean that the metabolic profiling cannot explain the 

phenotypes of the plants making the integration of both data more difficult One of the reasons 

for this could be that the most of modulated metabolites were secondary metabolites, including 

alkaloids, phenylpropanoids and terpenes (Figure 7, Figure 8, Suppl. Table S7). On the 

contrary, relevant molecules such as plant growth regulators are not so abundant and mainly 

appeared in lettuce. For example, in lettuce plants there was a clear reduction of the conjugated 

forms of IAA, most probably to maintain the pool of IAA and thus allow the plant growth 

(reviewed by Ludwig-Müller et al., 2011). Besides, the precursor the ethylene, ACC, was also 

reduced in lettuce plants treated with the H substance. It could mean that the H application is 

able to reduce the ethylene synthesis and with that, its negative effects, (e.i. growth inhibition). 

However, recent studies also showed that ACC itself is enough to reduce the plant growth 

(Vanderstraeten et al., 2019)  

To solve the low concordance between the phenotyping and metabolomic data, we decided to 

identify the most significant traits for each treatment (or treatment + biostimulant) among the 

phenotyping traits identified. For that, we used a random forest classifier. Such tool is mainly 

used in plant science for machine learning approaches applied in the image analysis (Barradas et 

al., 2021; Singh et al., 2016), but it has never been used for characterizing the biostimulant mode 

of action. Apart from a powerful classification method, the random forest has the advantage of 

revealing the significance of the traits used for identifying (classifying) treatments. This is done 

by means of the decrease in classification accuracy if a specific variable – trait is removed. The 

random forest classifiers applied for lettuce and tomato have high accuracy percentages (>95%), 

which makes them valid for the interpretation of the significant traits. The significant traits found 

for lettuce were the volume (based on the DB) and WUE. The most relevant result was the 

volume positively correlating with the IAA levels (Supplementary File S9). Higher IAA levels 

in leaves can improve cell extensibility and consequently induce the leaf growth (Veselov et al., 

2002). Additionally, under stress conditions, the IAA accumulation can be a stress tolerance 

mechanism that permit the plant to keep growing (De Diego et al., 2012). Besides, this result 
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could also explain the aforementioned reduction of the conjugated IAA metabolites observed in 

the plants treated with the H substance, and hence, their better growth under both control and 

stress conditions. The amide-linked IAA-amino acid conjugates are considered reversible storage 

forms with no or low biological activity (Mellor et al, 2016), with the Gretchen Hagen3 (GH3) 

family of auxin-inducible acyl amido synthetases as the enzymes converting IAA to IAA-amino 

acids. Thus, we could think that the application of the substance H in lettuce downregulated the 

activity of GH3 to reduce auxin-conjugates and maintain the IAA levels as a stress response 

strategy. 

In tomato, the most important trait was the QY_max, which was positively correlated to D-

erythrose 4-phosphate (Supplementary File S9), an intermediate in the pentose phosphate 

pathway and the Calvin cycle that serves as a precursor in the shikimate pathway (Billakurthi 

and Schreier, 2020). This result could also explain the positive correlation with other metabolites 

product of this pathway such as 4-hydroxycoumarin, and the vitamin K1 (phylloquinone). The 

hydroxycoumarins have been described as efficient antibacterial compounds that can improve 

plant stress resistance (Yang et al., 2018). The vitamin K1 has been detected inside thylakoid 

membranes as an electron carrier and key element within the photosystem I redox chain 

(reviewed by Lüthje et al., 2013) suggesting that it can serve as a mobile carrier transferring 

electrons across the plasma membrane and as contributing to maintenance of a suitable redox 

state of some important proteins embedded in the plasma membrane with protective functions 

against stress. The better performance in tomato plants can thus be related to the use of D-

erythrose 4-phosphate as precursor for the synthesis of antistress compounds from the shikimate 

pathway.  

CONCLUSIONS 

We assume that PH-based biostimulants improve plant growth and salt stress response in crops 

such as lettuce and tomato through different mechanisms. For better understanding of the mode 

of action it was necessary to use powerful statistical tools, which helped to simplify the results 

and, hence, their interpretation. Thus, we observed that for lettuce the most interesting traits to 

study the PHs based biostimulants are those representing the aerial biomass (i.e.volume).   

These were correlated with altered levels of certain phytohormones such as auxin and ethylene 

and consequently with plant growth. However, in tomato the chlorophyll fluorescence related 
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parameters were the most relevant defining the plant growth capacity and salt stress tolerance 

affecting also the stress related metabolites from the shikimate pathway. We believe that these 

results corroborated the relevant role of the multivariate statistical analysis as a further step to 

uncover relevant traits and metabolites for a deeper understanding of the biostimulant mode of 

action. 
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Table 1| Classification of the 7 PHs with PBC index. PBC index values for each substance, in Early (0-12 Days of Phenotyping for both crops) and Late Phase of the experiment 
(21-21 Days of Phenotyping in lettuce, 12-24 Days of Phenotyping in tomato). PBC index of the 7 PHs in lettuce plants, in control and salinity conditions (A). PBC index of the 
7 PHs in tomato plants, in control and salinity conditions (B). White corresponds to 0, positive values are highlighted in blue and negative values are highlighted in red; the 
farther the value from 0, the darker is the corresponding hue.   
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Figure Captions 

Figure 1|Scheme of plant cultivation and phenotyping protocol. Plants were manually transferred from cultivation chamber to PlantScreenTM Compact System for imaging using four 
different sensors (thermal camera, chlorophyll fluorescence and top and side RGB). Resulting false–color and segmented images and list of extracted parameters obtained from the sensors 
are shown (A). Timeline of plant cultivation (yellow bar) and phenotyping protocol (blue bar). Green dots show four time points of the foliar application for the selected biostimulants and the 
orange dots show six timepoints for the salt treatment (B). 
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Figure 2| Salinity response in tomato and lettuce plants. RGB top view colour-segmented images of lettuce (A1) and tomato (B1) control and salinity stressed plants over the time-course of the 
experiment. Digital biomass (DB) of the lettuce (A2) and tomato (B2) plants. Maximum quantum efficiency of photosystem II in the light-adapted state (Fl’/Fm’) for lettuce (full line, A3) and tomato 
(dashed line, B3) plants. Values represent the average of 8 (lettuce) and 6 (tomato) biological replicates per treatment, error bars represent standard deviation. The significant differences between 
control and salt treatment are indicated with *, ** and *** for p-values below 0.05, 0.01 and 0.001, respectively. Data and images shown are from the 1st round of the lettuce experiment. 
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Figure 3| Characterization of the biostimulants effect on performance of tomato and lettuce plants grown in control and salinity conditions. Parallel coordinate plots of the 5 main morpho-

physiological parameters (Digital Biomass, RGR, Fv’/Fm’, ФPSII and T) are shown for lettuce plants grown in control (full lines, A1) and salt stress conditions (dotted lines, A2) and for tomato 
plants grown in control (dashed lines, B1) and salt stress conditions (dotted and dashed lines, B2). The values represent the log2 of the ratio between the plants treated with the 7 PHs and their 
respective controls; the sum of the resulting 5 values corresponds to the PBC index, used for the characterization of the PHs. Data are shown for early (0-12 Days of Phenotyping) and late phase 
(12-21 Days of Phenotyping) of the plant growth.    
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Figure 4| Cluster Dendrograms for all phenotypical data. Cluster analysis of the lettuce plants treated with 7 different PHs and grown under control and salt stress conditions (A and B). Cluster 
analysis of the tomato plants treated with the 7 PHs under control and salt stress conditions (C). 
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Figure 5| Metabolomic analysis of lettuce plants. Unsupervised hierarchical cluster analysis carried out from UHPLC-ESI/QTOF-MS metabolomics analysis of lettuce plants after 7 PHs (i.e., 
biostimulant) applications, under control and salt stress (NaCl) conditions. The fold-change based heat map was used to build hierarchical clusters (linkage rule: Ward; distance: Euclidean) (A). 
Score plot of orthogonal projection to latent structures discriminant analysis (OPLS-DA) supervised modelling carried out on untargeted metabolomics profiles of lettuce plants after 7 PHs 
application, under control and salt stress (NaCl) conditions (R2Y = 0.98, Q2Y = 0.93) (B). 
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Figure 6| Metabolomic analysis of tomato plants. Unsupervised hierarchical cluster analysis carried out from UHPLC-ESI/QTOF-MS metabolomics analysis of lettuce plants after 7 PHs (i.e., 
biostimulant) applications, under control and salt stress (NaCl) conditions. The fold-change based heat map was used to build hierarchical clusters (linkage rule: Ward; distance: Euclidean) (A). 
Score plot of orthogonal projection to latent structures discriminant analysis (OPLS-DA) supervised modelling carried out on untargeted metabolomics profiles of lettuce plants after 7 PHs 
application, under control and salt stress (NaCl) conditions (R2Y = 0.98, Q2Y = 0.94) (B). 
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Figure 7| Metabolites in lettuce plants. Metabolic processes (A), secondary metabolism (B) and (C) hormone biosynthesis impaired by treatments in lettuce plants compared to control 
samples.  Differential metabolites from the Volcano analysis (P-value < 0.01, FC ≥ 1.3) were elaborated using the Omics Viewer Dashboard of the Plant Cyc pathway Tool software 
(www.pmn.plantcyc.com).  The large dots represent the average (mean) of all log Fold-change (FC) for metabolites, and the small dots represent the individual log FC for each metabolite. 
The x-axis represents each set of subcategories, while the y-axis corresponds to the cumulative log FC. FA/Lipid:  fatty acids and lipids; Amine:  amines and polyamines; Cofactor:  cofactors, 
prosthetic groups, electron carriers, and vitamins; FA Derives:  fatty acid derivatives; N-containing:   Nitrogen-containing   secondary   metabolites; S-containing:   Sulfur-containing secondary 
metabolites; Sugar Derives: sugar derivatives. 
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Figure 8| Metabolic processes (A), secondary metabolism (B) and (C) hormone biosynthesis impaired by treatments in tomato plants compared to control samples.  Differential metabolites 
from the Volcano analysis (P-value < 0.01, FC ≥ 1.3) were elaborated using the Omics Viewer Dashboard of the Plant Cyc pathway Tool software (www.pmn.plantcyc.com).  The large dots 
represent the average (mean) of all log Fold-change (FC) for metabolites, and the small dots represent the individual log FC for each metabolite. The x-axis represents each set of subcategories, 
while the y-axis corresponds to the cumulative log FC. FA/Lipid:  fatty acids and lipids; Amine:  amines and polyamines; Cofactor:  cofactors, prosthetic groups, electron carriers, and vitamins; 
FA Derives:  fatty acid derivatives; N-containing: Nitrogen-containing   secondary   metabolites; S-containing: Sulfur-containing secondary metabolites; Sugar Derives: sugar derivatives. 
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Supplementary Material 

Supplementary Figure S1|Morphological and physiological parameters of lettuce plants in control and stress conditions. Variations throughout time of the digital biomass 

(DM, A1-B1), roundness (A2-B2), compactness (A3-B3) and slenderness of leaves (SOL, A4-B4) of lettuce plants grown under control or salt stress conditions for 21 days of 

phenotyping (DoP). Variations throughout time of maximum quantum yield of PSII photochemistry for the light-adapted state (Fv’/Fm’, C1-D1), PSII operating efficiency (ФPSII, 

C2-C3) and non-photochemical quenching (NPQ, C3-D3). Values shown were measured after the exposure of the plants to the light of intensity 480 µmol m-2 s-1 (Lss2). 

Morphological and physiological values shown represent the average of 8 biological replicates per variant. Error bars represent standard deviation. The significant differences 

between control and salt treatment are indicated with *, ** and *** for p-values below 0.05, 0.01 and 0.001, respectively. 
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Supplementary Figure S2|Morphological and physiological parameters of tomato plants under control and stress conditions. Digital biomass (DB, A1), roundness (A2), 

compactness (A3) and slenderness of leaves (SOL, A4) of tomato plants grown under control or salt stress conditions for 24 days of phenotyping (DoP). Maximum quantum yield 

of PSII photochemistry for the light-adapted state (Fv’/Fm’, C1) , PSII operating efficiency (ФPSII, C2) and non-photochemical quenching (NPQ, C3). Values shown were measured 

after the exposure of the plants to the light of intensity 480 µmol m-2 s-1 (Lss2). Morphological and physiological values shown represent the average of 6 biological replicates per 

variant. Error bars represent standard deviation. The significant differences between control and salt treatment are indicated with *, ** and *** for p-values below 0.05, 0.01 and 

0.001, respectively.  
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Supplementary Figure S3|Morphological and physiological parameters of lettuce plants in control conditions: PHs treated and untreated lettuce plants. Variations 

throughout time of the digital biomass (DB, A1-B1), roundness (A2-B2), compactness (A3-B3) and slenderness of leaves (SOL, A4-B4) of lettuce plants sprayed with 7 PHs and 

grown under control conditions for 21 days of phenotyping (DoP). Maximum quantum yield of PSII photochemistry for the light-adapted state (Fv’/Fm’, C1-D1) , PSII operating 

efficiency (ФPSII, C2-C3) and non-photochemical quenching (NPQ, C3-D3). Values shown were measured after the exposure of the plants to the light of intensity 480 µmol m-2 

s-1 (Lss2). Morphological and physiological values shown represent the average of 8 biological replicates per variant. Error bars represent standard deviation.  
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Supplementary Figure S4|Morphological and physiological parameters of lettuce plants in salt stress conditions: PHs treated and untreated lettuce plants. Variations 

throughout time of the digital biomass (DM, A1-B1), roundness (A2-B2), compactness (A3-B3) and slenderness of leaves (SOL, A4-B4) of lettuce plants sprayed with 7 PHs and 

grown under salt stress conditions for 21 days of phenotyping (DoP). Maximum quantum yield of PSII photochemistry for the light-adapted state (Fv’/Fm’, C1-D1) , PSII operating 

efficiency (ФPSII, C2-C3) and non-photochemical quenching (NPQ, C3-D3). Values shown were measured after the exposure of the plants to the light of intensity 480 µmol m-2 

s-1 (Lss2). Morphological and physiological values shown represent the average of 8 biological replicates per variant. Error bars represent standard deviation.   
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Supplementary Figure S5|Morphological and physiological parameters of tomato plants grown in control and salt stress conditions: PHs treated and untreated lettuce 

plants. Variations throughout time of the digital biomass (DM, A1-B1), roundness (A2-B2), compactness (A3-B3) and slenderness of leaves (SOL, A4-B4) of tomato plants sprayed 

with 7 PHs and grown under control and salt stress conditions for 24 days of phenotyping (DoP). Maximum quantum yield of PSII photochemistry for the light-adapted state 

(Fv’/Fm’, C1-D1) , PSII operating efficiency (ФPSII, C2-C3) and non-photochemical quenching (NPQ, C3-D3). Values shown were measured after the exposure of the plants to 

the light of intensity 480 µmol m-2 s-1 (Lss2). Morphological and physiological values shown represent the average of 6 biological replicates per variant. Error bars represent 

standard deviation. The significant differences between control and salt treatment are indicated with *, ** and *** for p-values below 0.05, 0.01 and 0.001, respectively. 
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Supplementary Figure S6|Relative Growth Rate and final biomass of lettuce plants treated with PHs. Relative Growth Rate (RGR, A1-A2) of the different treatments over 

time, calculated for the Early phase (from DoP 0 to DoP 12) and the Late Phase (from DoP 12 to DoP 21) in lettuce plants sprayed with 7 PHs grown under control conditions or 

salt stress. Total fresh (B1-B2) and dry (C1-C2) weight of the final aboveground biomass per variant. Values represent the average of the 8 biological replicates per variant. Error 

bars represent standard deviation. Different letters indicate significant difference according to one-way ANOVA post hoc Tukey’s test (p < 0.05). 



Results  

 

 

230 

Supplementary Figure S7|Relative Growth Rate and final biomass of tomato plants treated with PHs. Relative Growth Rate (RGR, A1-A2) of the different treatments over 

time, calculated for the Early phase (from DoP 0 to DoP 12) and the Late Phase (from DoP 12 to DoP 24) in tomato plants sprayed with 7 PHs, grown under control conditions or 

salt stress. Total fresh (B1-B2) and dry (C1-C2) weight of the final aboveground biomass per variant. Values represent the average of the 6 biological replicates per variant. Error 

bars represent standard deviation. Different letters indicate significant difference according to one-way ANOVA post hoc Tukey’s test (p < 0.05). 
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Supplementary Figure S8|Temperature of the leaves for lettuce and tomato plants under control and salt stress conditions. Canopy temperature depression measured on 

lettuce (A1-3, B1-3, full and dotted lines) and tomato (C1-3, dashed and dotted + dashed lines) plants growing in control and salt stress conditions, treated or untreated with the 

biostimulant substances. Values represent the average of the 8 biological replicates per treatment in lettuce and 6 biological replicates in tomato; error bars represent standard 

deviation. The significant differences between control and salt treatment are indicated with *, ** and *** for p-values below 0.05, 0.01 and 0.001, respectively. 
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Supplementary Figure S9| Metabolomic analysis for the best (H) and worst (B) performing biostimulants. Unsupervised hierarchical cluster analysis carried out from UHPLC-

ESI/QTOF-MS metabolomics analysis of lettuce (A) and tomato (B) plants after B and H application, under control and salt stress (NaCl) conditions. The fold-change based heat 

map was used to build hierarchical clusters (linkage rule: Ward; distance: Euclidean). Score plot of orthogonal projection to latent structures discriminant analysis (OPLS-DA) 

supervised modelling carried out on untargeted metabolomics profiles of lettuce (C) and tomato (D) plants after B and H application, under control and salt stress (NaCl) condition. 
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Supplementary Figure S10| Score plot of metabolomics profiles. Score plot orthogonal projection to latent structures discriminant analysis (OPLS-DA) supervised modelling 

carried out on untargeted metabolomics profiles of tomato and lettuce plants after B and H application, under control (A) and salt stress (B) conditions. 
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Supplementary Figure S11| Identified metabolites in control conditions.  Metabolic processes (A), secondary metabolism (B) and hormone biosynthesis (C) impaired by 

treatments in plants (tomato and lettuce) grown under control conditions. Differential metabolites (VIP score > 1.20) along with their fold-change (FC) values were elaborated 

using the Omic Viewer Dashboard of the PlantCyc pathway Tool software (www.pmn.plantcyc.com).  The large dots represent the average (mean) of all log FC for metabolites, 

and the small dots represent the individual log FC for each metabolite. The x-axis represents each set of subcategories, while the y-axis corresponds to the cumulative log FC. 

FA/Lipid:  fatty acids and lipids; Amine:  amines and polyamines; Cofactor:  cofactors, prosthetic groups, electron carriers, and vitamins; N-containing:   Nitrogen-containing   

secondary   metabolites; S-containing:   Sulphur-containing secondary metabolites; Sugar Derives: sugar derivatives. 
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Supplementary Figure S12| Identified metabolites in NaCl conditions. Metabolic processes (A), secondary metabolism (B) and hormone biosynthesis (C) impaired by treatments 

in plants (tomato and lettuce) grown under salinity conditions.  Differential metabolites (VIP score > 1.20) along with their fold-change (FC) values were elaborated using the Omic 

Viewer Dashboard of the PlantCyc pathway Tool software (www.pmn.plantcyc.com).  The large dots represent the average (mean) of all log FC for metabolites, and the small dots 

represent the individual log FC for each metabolite. The x-axis represents each set of subcategories, while the y-axis corresponds to the cumulative log FC. FA/Lipid:  fatty acids 

and lipids; Amine:  amines and polyamines; Cofactor:  cofactors, prosthetic groups, electron carriers, and vitamins; N-containing:   Nitrogen-containing   secondary   metabolites; 

S-containing:   Sulphur-containing secondary metabolites; Sugar Derivs: sugar derivatives. 
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£Supplementary Figure S13| Graphical output of co-Inertia analysis (CIA). Scatter plot of tomato (A) and lettuce (B) samples. Each sample is represented by an arrow whose 

length is proportional to the divergence between the phenomic and the metabolomic datasets. Eigenvalues of the co-inertia analysis for tomato (C) and lettuce (D). Correlation 

circles (E and F) showing the projections of the PCA axes (from the phenomic datasets) onto the axes of the co-inertia analysis (x axes) and projections of the PCA axes (from the 

metabolomic datasets) onto the axes of the co-inertia analysis (y axes). These four circles represent a view of the rotations needed to associate the two datasets for tomato (E) and 

the two datasets for lettuce (F).  
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Supplementary Table S1|Pairwise comparisons test using mixed models for determining the significant 

differences between the means of the morphological parameters in lettuce (1st round, A; 2nd round, B) and 

tomato plants (C) growing in control and NaCl stress conditions and treated with 7 PHs, at different time points. 

The p-values below 0.05 are highlighted in green. 

Supplementary Table S2| Pairwise comparisons test using mixed models for determining the significant 

differences between the means of the photosynthetic parameters in lettuce (1st round, A; 2nd round, B) and 

tomato plants (C) growing in control and NaCl stress conditions and treated with 7 PHs, at different time points. 

The p-values below 0.05 are highlighted in green. 

Supplementary Table S3| Pairwise comparisons test using mixed models for determining the significant 

differences between the means of the difference between canopy and air temperature in lettuce (1st round, A; 

2nd round, B) and tomato plants (C) growing in control and NaCl stress conditions and treated with 7 PHs, at 

different time points. The p-values below 0.05 are highlighted in green. 

Supplementary Table S4| Importance of variables for lettuce (A) and tomato plants (B) based on the random 

forest classifier used for treatment classification based on mean decrease in classification accuracy measure. 

Supplementary Table S5| Whole dataset produced from untargeted metabolomics carried out in lettuce (A) 

and tomato plants (B) treated with 7 PHs either under stressed and non-stress conditions. Compounds are 

presented with individual intensities and composite mass spectra. 

Supplementary Table S6| Discriminant metabolites identified by the variable importance in projection (VIP) 

analysis following OPLS-DA modelling of metabolome in lettuce (A) and tomato plants (B) treated with 7 

PHs, either under non-stressed and stress conditions. Compounds were selected as discriminant by possessing 

a VIP score>1.20. 

Supplementary Table S7| Differential metabolites derived from Volcano analysis (p<0.01; FC ≥ 1.3) in 

lettuce (A) and tomato plants (B) treated with PH B and PH H under control and salinity conditions. 

Supplementary Table S8| Discriminant metabolites identified by the variable importance in projection (VIP) 

analysis following OPLS-DA modelling of metabolome of plants of lettuce and tomato plants treated with PH 

H and PH B under control (A) and stress (B) conditions along with their LogFC values in comparison to control 

samples. Compounds were selected as discriminant by possessing a VIP score>1.20 

Supplementary Table S9| Correlation matrix between the most important phenotyping traits (according to the 

random forest analysis) and the metabolites for lettuce (A) and for tomato plants (B). 
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The Supplementary Tables for this article can be found online at: 

https://drive.google.com/drive/folders/1V8rIQ-H2Tu90vWEl0_XUOZVsfnd1lfIw?usp=sharing  
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Overall conclusions 

This PhD project focused on the development of a reliable and reproducible method for the screening 

of potential biostimulant substances on different plant species, in optimal or sub-optimal conditions, 

using platforms for automated plant phenotyping and in-depth metabolomic analysis. The attention 

was mainly focused on the biomass accumulation, morphological modifications, photosynthetic 

efficiency and primary and secondary metabolites production in response to the biostimulants 

application. The results obtained with the different omics techniques were then integrated with the 

help of multivariate statistical analysis.  

We chose to investigate four plant species at diverse developmental stages: 

• The first experiment focused on the development of a simple method to test the effects of 

biostimulant coating on the germination and the early establishment of wheat seeds in control 

or salt stress conditions. Wheat is the most extensively cultivated cereal and a worldwide 

staple food, whose germination is especially affected by the soil salinity. To estimate the 

mode of action of the 6 compounds in a clear-cut way, we used the Plant Biostimulant 

Characterization (PBC) index, developed by Ugena and co-workers (2018). By using PBC 

index it is possible to quantitatively investigate the effects of the biostimulants application 

on multiple parameters at once, comparing the effects of different doses in diverse growing 

conditions. As a matter of fact, the results of the first experiment highlighted a high dose-

dependent and growth conditions-dependent response of the seeds to the biostimulant 

coating. The biostimulants that proved to be the best in control and in conditions of NaCl 

stress also showed a dose-dependent performance, with the lowest concentration having little 

to no effect on the germination of the coated seeds. The aforementioned biostimulant was a 

PH-based substance derived from pea seed extract.  

• The second phase of this work focused on the seedling stage. Young Arabidopsis plantlets 

primed with 11 different biostimulants at 3 increasing concentrations were transplanted in 

plain or salt-enriched growing media and were screened for a week for their growth 

performance. The use of a model plant such as Arabidopsis allowed us to screen a bigger set 

of biostimulants, increasing at the same time the number of replicates. The results of this 

experiment highlighted once again the importance of screening a range of biostimulant 

concentrations; for most of the substances, in fact, the highest dose proved to be detrimental 

to the growth and survival of the plants. Different results were also observed for plantlets 
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growing in control, mild and severe stress conditions. The use of the Plant Biostimulant 

Characterization Index was again essential to identify the two substances that acted as the 

best growth improver and stress alleviator in all 3 doses applied: the commercial product 

Trainer® and an experimental compound derived by the biomass of plants belonging to the 

Malvaceae family.  

• Therefore, a third stage of the work was focused on evaluating the effects of biostimulant 

applications on crops, from the early stage up to maturity. For this purpose, we chose lettuce 

and tomato, two economically relevant crop species that differ greatly in regard to their 

structure and final commercial scope. The use of an integrative phenotyping platform, 

combining data obtained from multiple imaging sensors, and the metabolomic analysis of 

the plant tissue, highlighted a completely different response of the two species, both to the 

stress application and to the treatment with the biostimulants. The monitoring of the plant 

growth for a longer period of time (if compared to the two previous trials) allowed us to 

observe the changing responses of the individuals to the application of the different 

substances in an early or later phase of the growth.   

As an internal control, we used the commercial substance Trainer® in all the aforementioned trials. 

The beneficial effects of Trainer® have already been proven in multiple works (Colla et al., 2014; 

Lucini et al., 2015; Rouphael et al., 2017b; Di Mola et al., 2019a; Luziatelli et al., 2019). However, 

our results greatly differed according to the application method, the dose used, the stress applied and 

the plant species to which the biostimulant was provided: 

• In the germination assay, the coating of the wheat seeds with Trainer® did not improve 

germination or early development of the seedlings in control conditions. On the other hand, 

Trainer® increased the tolerance to salinity of the seedlings when supplied in its lower 

concentration (80 g/100 kg). 

• In the in-vitro assay on Arabidopsis seedlings, Trainer® acted as the best growth improver 

and stress alleviator in all 3 doses applied. These results also confirmed the biological 

translation of the trial made on Arabidopsis to profitable agronomic crops. 

• In mature tomato plants subjected to drought stress, between the 6 biostimulants applied 

Trainer® was the one that increased the most the biomass accumulation and the stress 

tolerance of the plants, especially when applied using the substrate drench method. 
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• Finally, when applied to lettuce and tomato plants grown in salinity stress conditions, 

Trainer® only had a weak effect on the photosynthetic efficiency of tomato plants, while 

showing little to no improving effects on lettuce.  

In summary, high throughput automated phenotyping technology proved to be an extremely useful 

tool for the screening of potential new biostimulant substances on multiple crop species, shortening 

the time needed and allowing to test the mode of action of the compounds on hundreds of plants at 

the same time, at different developmental stages and in different growing conditions. The integration 

of phenomics with metabolomics helped us to investigate the metabolomic pathways activated by 

the biostimulants applications, deepening our knowledge about their mode of action.  

Future lines of research arising from this PhD work may possibly focus on: 

• Investigation of the mode of action on biostimulants applied on crops growing in field 

conditions, with non-controlled environmental settings. Field conditions may also allow the 

choice of crops with a longer life cycle, to be monitored until their complete maturity (e.g., 

cereals). 

• Integration of the phenotyping technology with multi-omics methods (transcriptomics, 

proteomics, metabolomics) to develop biostimulants that can effectively boost the crops 

yielding and stress resistance. 

• Development of specialized algorithms based on deep learning technology for simplifying 

the process of extracting phenotypic features of biostimulant-treated crops subjected to high-

throughput automated phenotyping. 
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