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Chapter 1

Introduction

This dissertation has the purpose to describe the mathematical fundamen-

tals and outline a methodological framework for formulating geometrically

exact models for the analysis of beams undergoing large displacements.

The theme of high flexible beams has received growing attention during

the last decades, what has been justified by the possibility of application in

several fields of science and technology, from modeling of soft robotic manip-

ulators (Grazioso et al., 2019a,b, Rucker et al., 2010, Rucker and Webster III,

2011, Sadati et al., 2017, Trivedi et al., 2008), of blades for wind turbines

and helicopters (Cesnik and Shin, 2001, Faccio Júnior et al., 2019, Sabale

and Gopal, 2019), even up to applications in biology (Balaeff et al., 2006,

Coleman and Swigon, 2000, Swigon et al., 1998, Westcott et al., 1995).

In parallel, a number of beam models have been proposed in the last

half century, based on several modeling strategies, aiming to capture the

characteristic behavior of such a mechanical system.

1.1 Modeling of Beams undergoing Large Defor-

mations

The response of a beam under large deflections reveals geometric non-linearity,

that requires some numerical methodology to be managed.

With specific reference to the context of the finite element method, two
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Chapter 1 Introduction

fundamental strategies have been traditionally pursued to characterize the

geometrically non-linear behavior of beams, which are the corotational ap-

proach and the geometrical exact one.

The main idea of the corotational approach relies on separating the rigid

body component from the beam deformation, by defining a single element

frame that continuously rotates with the element. Then, standard linear

formulations are used with respect to the rotating frame and a non-linearity

is introduced accounting for the finite rotation of such a frame.

Corotational formulations first appeared in the work of Belytschko and

Hsieh (1973) and subsequent works (Belytschko and Glaum, 1979, Belytschko

et al., 1977), as well as similar ideas were proposed by Oran (1973a,b) and

Oran and Kassimali (1976). A comprehensive description of the first coro-

tational approaches in beam modeling is provided by Crisfield (1990).

On the other side, the geometrically exact approach was developed ex-

ploiting a reduction process deriving the beam kinematics from the exact

deformation analysis of a solid body.

The expression geometrically exact was first used by Simo and Fox (1989)

to denote an approach for shell modeling, suitable for large scale computa-

tions, based on the analytical reduction of a solid model to a resultant form.

The same expression was specifically applied to beam modeling two years

later (Simo and Vu-Quoc, 1991), within the context of a series of papers

started by Simo (1985) and Simo and Vu-Quoc (1986), describing a spatial

beam formulation with the explicit intention to generalize the plane model

proposed by Reissner (1972). The authors themselves considered their model

as a reparameterization of the one proposed by Antman (1974), which ex-

tended the classical Kirchhoff-Love rod model (Love, 1944) by including

finite extension and finite shearing.

From the perspective of Simo (1985) and coworkers, the beam model is

derived by constraining the three-dimensional solid with the introduction of

specific kinematic assumptions. The formulation leads to conceive the beam

in terms of a three-dimensional orthogonal moving frame, with one of its axis

remaining orthogonal to the beam cross-section in any configuration. This

moving frame is also the reference system at which the resultant force and

2



Chapter 1 Introduction

torque, acting on the typical cross-section, are evaluated. In this way, Simo

(1985) goes back to the pioneering work of Cosserat and Cosserat (1909),

also taken up by Ericksen and Truesdell (1957).

The ‘exactness’ of this approach relies on considering a rotation tensor,

characterized as an element of the special orthogonal Lie group, denoted

as SO(3), to represent the three-dimensional spatial rotation of each beam

cross-section. Then, the non-linearity of the algebraic space of the rotations

is reflected in a non-linear beam model.

Meanwhile, Cardona and Geradin (1988) contributed to clarify the role

of finite rotations in identifying the cross-section configuration, specifically

focusing on a parameterization by the rotation vector and the relevant lin-

earized variational representation. Further contributions about a vector pa-

rameterization of rotations and the consistent linearization procedure came

from Ibrahimbegović et al. (1995), while an extension of the beam formu-

lation including initially curved configurations was provided by Ibrahimbe-

gović (1995).

A significant improvement in making clear how the features of the beam

three-dimensional model are reflected on the resultant one-dimensional ap-

proximation came from Crisfield and Jelenić (1999). First, they pointed out

that even if the theory of Simo (1985) and the derived models was often

referred to as a ‘geometrically exact finite-strain beam theory’, an effec-

tive finite-strain formulation would require a consistent constitutive model,

which is not straightforward to be implemented in conjunction with the

usual assumption of the in-plane rigidity of cross-sections. For this reason,

both in (Crisfield and Jelenić, 1999) and (Jelenić and Crisfield, 1998, 1999),

the authors adopted the nomenclature of geometrically exact beam theory,

dropping the term ‘finite strain’.

A further clarification about how finite strains can be effectively included

in a geometrically exact beam model is presented by Auricchio et al. (2008).

Beyond the formality about the appropriate nomenclature to use, the

merit of Crisfield and Jelenić (1999) was to focus attention on the objectivity

of the cross-section strain measures in finite element implementations based

on geometrically exact beam theory. Actually, extending to rotations the
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Chapter 1 Introduction

conventional approach of directly interpolating the nodal kinematic param-

eters, or even their increments, leads to non-objectivity of the interpolated

strain measures, even though the strain measures are themselves objective.

In fact, being rotations non-additive quantities, regardless of the adopted

parameterization, strains associated with a displacement-like interpolation

of nodal parameters are not invariant under rigid rotations of the beam

element’s nodes.

Inspired by the previous work about the corotational beam formula-

tion (Crisfield, 1990), Crisfield and Jelenić (1999) proposed an interpolation

scheme based upon the relative rotation of the beam element’s nodes, work-

ing on the local rotation vector representing the configuration of the final

cross-section with respect to the initial one. A further refinement of such

approach has been proposed by Magisano et al. (2020), as well as other

strategies based on localizing the corotational decomposition have also been

suggested (Garcea et al., 2012a,b). Objectivity of strain measures is also

taken into account in recent isogeometric formulations of spatial beam mod-

els (Harsch et al., 2021).

Even if a significant improvement towards a better insight of beam mod-

eling came from the work of Crisfield and Jelenić (1999), the beam axis

representation was still based upon a classical polynomial interpolation, sep-

arately from the scheme adopted for the rotations of the cross-section local

frame. Actually, two distinct configuration spaces were considered: the one

relevant to the rotations was the Lie group SO(3), along with a consistent

non-linear interpolation scheme, while the classical Euclidean vector space

R3 was assumed for representing the beam axis.

An alternative approach was proposed by Borri and Bottasso (1994), that

considered helicoidal shape functions to describe the spatial configuration

of the beam axis. Differently from polynomial interpolation, the resulting

model is invariant with respect to the choice of the reference line, meaning

that any other reference line has a helicoidal shape. Such an approach im-

plies a coupled representation of beam axis displacements and cross-section

rotations.

The necessity to consider coupled interpolation schemes for displace-
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Chapter 1 Introduction

ments and rotations, in favor of the accuracy of the formulation, was partic-

ularly pointed out by Zupan and Saje (2003a,b), considering a strain-based

approach, rather than a position-based one.

A coupled representation of translation and rotation fields naturally

arises from the approach proposed by Sonneville et al. (2014). Such a formu-

lation, inspired by the interpolation methods of rigid body motions (Park,

1995, Žefran and Kumar, 1998), relies on considering the special Euclidean

Lie group, namely SE(3), as the configuration space, consisting of the spa-

tial proper rigid motions. A similar beam model, formulated by explicitly

representing the kinematic parameters in the physical space, is proposed by

Santana et al. (2021).

Even if a rigid motion can be thought as a rotation of SO(3) and a trans-

lation in R3, the composition rule characterizing SE(3) takes into account

the coupling between rotations and translations, so that, by means of an ex-

ponential interpolation method on SE(3), a natural coupling of the position

and the rotation variables follows.

1.2 Outline

This thesis adopts a formalism similar to the one proposed by Sonneville

et al. (2014), describing the formulation of a beam model within the frame-

work of the Lie group of Euclidean rigid transformations.

In particular, it will be shown how the Lie group formulation naturally

arises from the geometric description of the beam kinematics, leading to a

characterization of a beam cross-section configuration as an affine transfor-

mation within the physical space.

For this reason, in order to include the beam model within a framework

as rigorous and consistent as possible, the algebraic structure of the group

of affine transformations is deeply investigated, with particular attention

towards the subgroup of proper Euclidean motions. The differential features

of such a space are as well analyzed, and are presented as the specialization

of more general properties characterizing smooth manifolds.

At the same time, the mechanical meaning of the algebraic and differ-
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Chapter 1 Introduction

ential operations involved in the development of geometrically exact beam

models is emphasized, showing how the mathematical formalism has an ef-

fective counterpart in the behavior of the beam as a mechanical system.

Hence, aim of this work is to provide a mathematical validation, as clear

as possible, to some intuitive ideas which guide any engineer in formulating

a mechanical model and, at once, to show how the properties of some al-

gebraic structures, sometimes apparently counter-intuitive and misleading,

are actually related to what we call ‘reality’.

Since the formalism of differential geometry is crucial in providing a

comprehensive mathematical framework for beam modeling, Chapter 2 is

dedicated to review some essential notions about smooth manifolds, with

specific focus on Lie groups. In Chapter 3 the basic features of affine spaces

are briefly recalled, and particular attention is given to the algebraic struc-

ture characterizing the group of affine transformations. Chapter 4 is focused

on Euclidean affine spaces and isometric transformations, also describing the

differential structure of the group of rotations, SO(3), and Euclidean mo-

tions, SE(3).

In Chapter 5 the kinematics of a geometrically exact beam model is de-

rived as the specialization of a solid body model, under some appropriate

geometric and kinematic assumptions. It is also remarked the interpreta-

tion of the beam configuration as a curve on the Lie group SE(3), that is

actually assumed as the configuration space for the beam kinematics. This

also implies the algebraic definition of internal forces and external loads as

functionals for the virtual displacement space, the only one that effectively

makes sense in a non-linear manifold context. At the same time, a proper

definition of the cross-section strain measures is introduced on the basis of

a local linearization of the beam motion. In this way, the infinitesimal vari-

ation of the beam configuration is treated as a linear model whose reference

system is represented by the current beam configuration. Consequently, the

cross-section stiffness matrix, considered as a linear operator between the

infinitesimal variation of the strain parameters and the relevant variation of

the internal forces, is recovered from the results of the cross-section analysis

based on linear beam models.

6



Chapter 1 Introduction

Chapter 6 concerns a finite element beam model relying on specific as-

sumptions about the beam deformation field, along with some introductory

numerical tests. A brief discussion about some aspects to be specified in

greater detail and further issues to be investigated is reported Chapter 7.

Finally, in order to make this work suitably self-contained, some common

algebraic structures are briefly described in Appendix A, as well as a review

of linear algebra is specifically reported in Appendix B.
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Chapter 2

Smooth Manifolds and Lie

Groups

2.1 Smooth Manifolds

A smooth manifold can be intended as a space that locally looks like some

Euclidean space Rn. It is a topological space enriched with an additional

differentiable structure.

2.1.1 Topological Manifolds

A topological space is a mathematical space where the notion of limit, con-

tinuity and connectedness are introduced in the most general sense.

Here, some essential notions about topology and topological spaces are

briefly summarized. For a more detailed description one can refer to Lee

(2012).

Definition 2.1. Let X be a set. A topology on X is a collection τ of subsets

of X, called open subsets, satisfying the following axioms:

� X and ∅ are in τ;

� the union of any family of open subsets is open;

� the intersection of any finite family of open subsets is open.

8
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The set X along with a topology τ on it is called a topological space.

In addition, we say that X is a Hausdorff space if for any pair of distinct

points p, q ∈ X there exist disjoint open subsets U,V ⊆ X such that p ∈ U
and q ∈ V . The open subsets U and V are neighborhoods of p and q,

respectively.

A sequence of points p1, . . . , p∞ of X is said to converge to a point p ∈ X
if for every neighborhood U of p there exists an integer N such that pi ∈ U
for all i ≥ N. If the X is a Hausdorff space, the limit of any convergent

sequence is unique.

Given two topological spaces X and Y, we say that a map f : X → Y
is continuous if for any open subset V of Y the preimage f −1(V) is open

in X. When the continuous map f is bijective and the inverse map is also

continuous, it is called a homeomorphism and the topological spaces X and

Y are said to be homeomorphic.

Given a topological space X, a family B of open subsets of X is a basis for

the topology of X if every open subset of X is the union of some sub-family

of B. Also, we say that X is second-countable if there exists a countable

basis for its topology.

On the basis of these preliminary notions, we can introduce the definition

of topological manifold.

Definition 2.2. Suppose M is a topological space. We say that M is a

topological manifold of dimension n, or a topological n-manifold, if it is

� a Hausdorff space;

� second-countable;

� locally Euclidean of dimension n.

We remark that the requirement of being locally Euclidean means that

every point p ∈ M has a neighborhood U which is homeomorphic to an

open subset of Rn.

Definition 2.3. Let M be a topological n-manifold. A coordinate chart, or

simply a chart, on M is a pair (U, ϕ) consisting of a open subset U ⊆ M
and a homeomorphism ϕ : U → Û ⊆ Rn.

9



Chapter 2 Smooth Manifolds and Lie Groups

If ϕ(p) = o, we say that the chart is centered at p. When ϕ(p) 6= o, the

chart can be centered at p by subtracting the constant vector ϕ(p).

The set U of a chart (U, ϕ) is called a coordinate domain, or a coordinate

neighborhood, of each of its points. The homeomorphism ϕ is the (local)

coordinate map and consists of n functions x1, . . . , xn, which are called local

coordinates on U, such that

ϕ(p) =
(
x1(p), . . . , xn(p)

)
∈ Rn , ∀ p ∈ U .

A collection of charts A = {(Ui, ϕi)}i∈I is called an atlas for M if the

domains cover the whole topological manifold:⋃
i∈I

Ui = M .

2.1.2 Smooth Structure

The definition of a topological manifold allows one to extend to an arbitrary

space, endowed with a topology, some notions characteristic of Euclidean

spaces, such as the limit of a succession, continuity and connectedness.

However, one might ask whether further properties, such as differentia-

bility and other related notions, could also apply.

To investigate such a possibility, a topological space needs to be endowed

with an additional structure, which is the property of being smooth.

The definition of a smooth manifold relies on multivariable calculus, so

we first recall the property of being smooth applied to a multivariable real

function.

Definition 2.4. Let U and V be open subsets of Rn and Rm, respectively.

A function F : U → V is smooth, also said C∞, or infinitely differentiable,

if each of its components functions has continuous partial derivatives of all

orders.

In addition, if F is bijective with a smooth inverse map, it is called a

diffeomorphism. Clearly, a diffeomorphism is also a homeomorphism.

Since smoothness is defined for real multivariable functions, and recalling

that a manifold can be associated with a Euclidean space through coordinate

10
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charts, one could somehow combine such properties in order to extend the

notion of differentiability to maps defined on manifolds.

At the same time, with the aim of properly define a smooth structure

on a manifold, the features of such a structure should be independent of the

choice of the chart.

Let us consider two overlapping charts of an n-dimensional topological

manifold M, say (U, ϕ) and (V,ψ). The intersection of the domains U and

V is a non-empty open set of M and provides a common subdomain of both

the coordinate maps ϕ and ψ, so that the one can be composed with the

inverse of the other:

ψ ◦ ϕ−1 : ϕ(U ∩V)→ ψ(U ∩V) . (2.1)

The map ψ ◦ ϕ−1 is called the transition map from ϕ to ψ and, being the

composition of homeomorphisms, results an homeomorphism itself.

Noting that both ϕ(U ∩V) and ψ(U ∩V) are open subsets of Rn, we say

that the charts (U, ϕ) and (V,ψ) are smoothly compatible if either U ∩V =

∅ or the transition map ψ ◦ ϕ−1 is a diffeomorphism.

An atlas A for M is called a smooth atlas if any two charts in A are

smoothly compatible.

Moreover, we say that a smooth atlas A is maximal if it is not properly

contained in any larger smooth atlas. This means that any chart which is

compatible with every chart in A is already in the atlas A.

The need to consider maximal atlases for a manifold M comes from

the observation that adding a chart (U, ϕ) to a smooth atlas A provides a

new atlas, say A′, assuming (U, ϕ) is smoothly compatible with every chart

already included in A. However, even if A and A′ are formally distinct,

de facto the latter atlas cannot give any additional information about M if

compared with the former one.

For this reason we use maximal atlases to define a smooth structure on

a manifold.

Definition 2.5. A smooth manifold is a pair (M, A) made by a topological

manifold M and a maximal smooth atlas A on M.

11
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We say that the maximal smooth atlas A is a smooth structure, also

called a differentiable structure or a C∞ structure, on M.

Furthermore, when the smooth structure is understood, it is usually

omitted and M is itself referred to as a smooth manifold.

Remark. It is possible to prove that every smooth atlas for a manifold

is contained in a unique maximal smooth atlas. Also, if the union of two

smooth atlases is itself a smooth atlas on a manifold, then they are contained

in the same maximal atlas, and vice-versa (see, e.g., Lee (2012)).

This means that a maximal smooth atlas induces an equivalence class,

which consists of all the smooth atlases contained in it. Equivalently, such

an equivalence class is defined by all the smooth atlases whose union is in

turn a smooth atlas.

As a consequence, any smooth atlas on a manifold is representative of a

single maximal atlas and determines a unique smooth structure.

Any chart (U, ϕ) contained in the given maximal smooth atlas is a

smooth chart. The term ‘smooth’ also applies to the domain U and the

coordinate map ϕ defining the chart.

Once a smooth chart on the manifold M has been chosen, the coordinate

map ϕ : U → Û provides an identification between U and Û ⊆ Rn. This

means that the domain U can be thought as an open subset of M and, at the

same time, as open subset of Rn. Likewise, a point p ∈ U can be identified

with the n-tuple (x1, . . . , xn) = ϕ(p).

We remark that the identification of a subset of M with a subset of Rn is

only local and is strictly related with the choice of the coordinate chart. In

order to emphasize such a characteristic, we say that the n-tuple (x1, . . . , xn)

is the local coordinate representation of p.

Smooth Functions and Maps

Let M be a smooth n-dimensional manifold. A smooth function is a map

f : M → Rk such that for every p ∈ M there exists a smooth chart (U, ϕ)

such that the composite function f ◦ ϕ−1 is smooth on Û = ϕ(U) ⊆ Rk.

12
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The function f̂ : ϕ(U)→ Rk, defined by the property

f̂ (x) = ( f ◦ ϕ−1)(x) , ∀ x ∈ ϕ(U) ,

is called the coordinate representation of f .

With specific reference to the case of R as codomain, the set of the

real-valued functions f : M→ R is denoted as C∞
M.

Let us now consider two smooth manifolds, say M and N, with dimen-

sions n and k, respectively. A map F : M→ N is a smooth map if for every

point p of M there exist smooth charts (U, ϕ) and (V,ψ) containing p and

F(p), respectively, such that F(U) ⊆ V and the composite map ψ ◦ F ◦ ϕ−1,

between ϕ(U) ⊆ Rn and ψ(V) ⊆ Rk, is smooth.

Similarly to smooth functions, the coordinate representation of F is given

by the function F̂ : ϕ(U)→ ψ(V) such that

F̂(x) = (ψ ◦ F ◦ ϕ)(x) , ∀ x ∈ ϕ(U) .

Please observe that any smooth function f : M → Rk can be seen as

the specialization of a smooth map with the assumptions N = V = Rk and

ψ = idRk .

In addition, a smooth map F : M → N is called a diffeomorphism from

M to N if it is bijective with a smooth inverse. In such a case, we also say

that M and N are diffeomorphic.

Clearly, since the coordinate representation of F is a diffeomorphism

between open subsets of Rn and Rk, respectively, the condition n = k is

necessary for M and N to be diffeomorphic.

2.2 Tangent Space

As in Euclidean spaces the crucial idea is the linear approximation, a similar

notion can be defined on manifold by introducing the tangent space at a

point, which can be seen as a sort of linearization of the manifold in a

neighborhood of a point.

13
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2.2.1 Geometric Tangent Vectors

Let us consider the n-dimensional real space Rn. Each element x of Rn can

be thought as a point in space, whose location is expressed by an n-tuple of

coordinates (x1, . . . , xn).

At the same time, the vector space structure of Rn leads one to visualize

an element as a vector v = viei, where {e1, . . . , en} is the standard basis,

whose geometric meaning is defined in terms of magnitude and direction, no

matter where it is located.

In order to associate a vector with a point of the space Rn, we introduce

the following definition.

Definition 2.6. Given a point a of Rn, we define the geometric tangent

space of Rn at a as the set

Rn
a = {a} ×Rn = { (a, v) | v ∈ Rn } . (2.2)

A geometric tangent vector at a ∈ Rn is an element (a, v) of Rn
a , denoted

as va or also as v|a.
The vector va can be thought as a copy of v representing an oriented

line segment with the initial point at a. The geometric tangent space Rn
a

as a whole can be seen as a copy of the real vector space Rn with the null

vector located at a.

As such, Rn
a satisfies the linear space properties, that is

(v + w)a = va + wa , (cv)a = cva ,

and, because of the natural isomorphism Rn
a
∼= Rn, it inherits all the property

of Rn.

Any geometric tangent vector va yields a map Dv|a : C∞
Rn → R, which

takes the directional derivative with respect to v at a:

Dv|a( f ) = Dv f (a) =
d
dµ

∣∣∣∣
µ=0

f (a + µv) .

14
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Such an operator is linear over R and satisfies Leibniz’ product rule:

Dv|a( f g) = f (a)Dv|a(g) + g(a)Dv|a( f ) .

Moreover, considering the representation of the vector va with respect

to the standard basis of Rn
a as va = vi ei|a, the map Dv|a applied at the

function f reads

Dv|a( f ) = vi ∂ f
∂xi

∣∣∣∣
a

.

The construction obtained from the properties of directional derivative

can be extended to a more general map by introducing the following defini-

tion.

Definition 2.7. Given a point a ∈ Rn, we say that a map w : C∞
Rn → R is

a derivation at a if it is linear over R and satisfies Leibniz’ product rule:

� w(c f ) = cw( f ) , ∀ c ∈ R , f ∈ C∞
Rn ;

� w( f g) = f (a)w(g) + g(a)w( f ) , ∀ f , g ∈ C∞
Rn .

The set of all the derivations of C∞
Rn at a is denoted as TaRn. It is a

vector space under addition and scalar multiplication.

Clearly, any map in the form Dv|a, providing the directional derivative

at a relevant to the vector v, is a derivation. In addition, it is possible to

prove that the map associating Dv|a with the geometric tangent vector va

is an isomorphism (see, e.g. Lee (2012)).

As a consequence of the isomorphism Rn
a
∼= TaRn, a basis for TaRn is

given by the set{
∂

∂x1

∣∣∣∣
a
, . . . ,

∂

∂xn

∣∣∣∣
a

}
, (2.3)

where ∂/∂xi|a = Dei |a is the derivation such that

∂

∂xi

∣∣∣∣
a
( f ) =

∂ f
∂xi

∣∣∣∣
a

.
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2.2.2 Tangent Vectors on Manifolds

We introduce now the definition of tangent vectors on manifolds.

Definition 2.8. Let M be a smooth manifold and p a point of M. A linear

map v : C∞
M → R is called a derivation at p if it satisfies Leibniz’ product

rule:

v( f g) = f (p)v(g) + g(p)v( f ) , ∀ f , g ∈ C∞
M . (2.4)

The derivation v is also called the tangent vector at p and the set of all

the derivations at p, denoted as Tp M is called the tangent space to M at p.

Please notice that the sum of the derivations v,w ∈ Tp M is defined as

the map v + w satisfying the point-wise addition, that is

(v + w)( f ) = v( f ) + w( f ) , ∀ f ∈ C∞
M ,

as well as the multiplication of v ∈ Tp M by a scalar c ∈ R is such that

(cv)( f ) = c v( f ) , ∀ f ∈ C∞
M .

One can easily verify that Leibniz’ product rule is fulfilled for the addi-

tion, i.e.

(v + w)( f g) = v( f g) + w( f g)

= f (p)v(g) + g(p)v( f ) + f (p)w(g) + g(p)w( f )

= f (p)
(
v(g) + w(g)

)
+ g(p)

(
w( f ) + w(g)

)
= f (p)

(
v + w

)
(g) + g(p)

(
v + w

)
( f ) ,

and similarly for the scalar multiplication:

(cv)( f g) = c v( f g)

= c
(

f (p)v(g) + g(p)v( f )
)

= f (p)
(
cv(g)

)
+ g(p)

(
cv( f )

)
= f (p)

(
cv
)
(g) + g(p)

(
cv
)
( f ) .

Hence, it is confirmed that Tp M has a linear space structure.
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2.2.3 The Differential of a Smooth Map

Definition 2.9. Let F : M→ N be a smooth map from M to N. For every

point p ∈ M, the differential of F at p is the map dF|p : Tp M → TF(p)N
such that

(dF|pv)( f ) = v( f ◦ F) , ∀ v ∈ Tp M , f ∈ C∞
N , (2.5)

where dF|pv is the imagine of v through dF|p.

To be sure that the above definition actually makes sense, please observe

that dF|pv is a vector of the tangent space TF(p)N and, as a derivation, acts

on a real-valued function f of C∞
N . At the same time, the composition f ◦ F

is in C∞
M and the action of v ∈ Tp M on it is well-defined.

The linearity of dF|pv : C∞
N → R readily derives from the one of v ∈ Tp M:

(dF|pv)( f + g) = v
(
( f + g) ◦ F

)
= v( f ◦ F) + v(g ◦ F)

= (dF|pv)( f ) + (dF|pv)(g) ,

as well as

(dF|pv)(c f ) = v
(
(c f ) ◦ F

)
= cv( f ◦ F) = c(dF|pv)( f ) .

In addition, since Leibniz’ rule is fulfilled, dF|pv is actually a derivation

on N:

(dF|pv)( f g) = v
(
( f g) ◦ F

)
= v

(
( f ◦ F)(g ◦ F)

)
= ( f ◦ F)(p) v(g ◦ F) + (g ◦ F)(p) v( f ◦ F)

= f
(

F(p)
)

(dF|pv)(g) + g
(

F(p)
)

(dF|pv)( f ) .

The main properties of the differentials of smooth maps are summarized

by the following proposition.

Proposition 2.10. Let M, N, P be smooth manifolds and let F : M → N
and G : N → P be smooth maps. Then, for any p ∈ M, the following

properties hold true.

1. dF|p : Tp M→ TF(p)N is linear.

17
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2. d(G ◦ F)|p = dG|F(p) ◦ dF|p.

3. d(idM)|p = idTp M.

4. If F is a diffeomorphism, then dF|p : Tp M → TF(p)N is an isomor-

phism, and (dF|p)−1 = d(F−1)|F(p).

2.2.4 The Tangent Bundle

Given a smooth manifold M, the tangent bundle of M, denoted as TM, is

the disjoint union of the tangent spaces at all points of M:

TM =
⊔

p∈M

Tp M . (2.6)

An element of TM is a pair (p, v), where p ∈ M and v ∈ Tp M, also

simplified in vp.

There exists a natural projection map associating an element (p, v) of

TM with the point p of the manifold:

π : TM→ M

(p, v) 7→ p .
(2.7)

It can be proved that for any n-dimensional smooth manifold M, the

tangent bundle has a natural topology and a smooth structure (see, e.g.,

Lee (2012)). Specifically TM is a 2n-dimensional smooth manifold and the

projection π : TM→ M is also smooth.

When two manifolds M and N are considered, along with the relevant

tangent bundles TM and TN, the following map is introduced:

dF : TM→ TN

(p, v) 7→
(

F(p), dF|pv
)
,

(2.8)

which is called the global differential of F.

The global differential dF is a smooth map. Such a property comes from

the smoothness of its coordinate representation, along with the one of the

map F.

Evidently, the differential dF|p of F at p is the restriction of dF to the

18
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tangent space Tp M ⊆ TM. Consequently, the properties of dF|p specified

by Proposition 2.10 can be generalized to the global differential dF.

Corollary 2.11. Let M, N, P be smooth manifolds and let F : M→ N and

G : N → P be smooth maps. Then, the following properties apply.

1. d(G ◦ F) = dG ◦ dF.

2. d(idM) = idTM.

3. If F is a diffeomorphism, then dF : TM → TN is also a diffeomor-

phism, and (dF)−1 = d(F−1) = dF−1.

2.2.5 Velocity Vectors of Curves

Definition 2.12. If M be a smooth manifold and J ⊆ R an interval. A

curve on M is a continuous map γ : J → M.

Since the interval J is a 1-dimensional manifold, the curve γ represents

a smooth map, whose global differential is dγ : TJ → TM, where TJ and

TM are the tangent bundles of J and M, respectively.

Moreover, given µ0 ∈ J, the differential of γ at µ0 maps a vector in Tµ0 J
to a vector v of Tγ(µ0) M. We say that the vector v is the velocity of the

curve γ at µ0:

v =
dγ

dµ

∣∣∣∣
µ0

= dγ|µ0

d
dµ

∣∣∣∣
µ0

∈ Tγ(µ0) M , (2.9)

where d/dµ|µ0
is the standard coordinate basis vector of Tµ0 J.

The velocity is often denoted as γ′(µ0), or also γ′|µ0
, just as one usually

represents the derivative of a 1-parameter function in ordinary calculus.

At the same time, with the aim to point out the role of v as a tangent

vector to the manifold M, we likewise say that it is the velocity of γ at p,

meaning that p = γ(µ0).

Furthermore, applying the definition (2.5) of the differential to dγµ0 , the

velocity γ′(µ0) acts on a function f of C∞
M as follows:

(
γ′(µ0)

)
( f ) =

(
dγ|µ0

d
dµ

∣∣∣∣
µ0

)
( f ) =

d
dµ

∣∣∣∣
µ0

( f ◦ γ) = ( f ◦ γ)′(µ0) . (2.10)
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It is worth noting that if µ0 is an endpoint of J, the definition of the

velocity still holds, provided that we intend the derivative with respect to µ

as a one-side derivative.

Proposition 2.13. Let γ : J → M be an curve on a smooth manifold M
and let τ : J̃ → J be a differentiable real-valued function whose domain is the

interval J̃ = { µ ∈ R | τ(µ) ∈ J }. Then, the map γ̃ : J̃ → M, defined by

γ̃(µ) = γ
(
τ(µ)

)
, is a curve on M whose velocity vector is

γ̃′(µ) = τ′(µ) γ′
(
τ(µ)

)
. (2.11)

Proof. Consider an arbitrary f ∈ C∞
M and apply the property (2.10) to the

velocity of γ̃:(
γ̃′(µ)

)
( f ) = ( f ◦ γ̃)′(µ) = ( f ◦ γ ◦ τ)′(µ) = ( f ◦ γ)′

(
τ(µ)

)
τ′(µ) ,

where the last equality comes from the chain rule applied to the composition

of f ◦ γ and τ.

Hence, again by (2.10), one has(
γ̃′(µ)

)
( f ) = τ′(µ)

(
γ′
(
τ(µ)

))
( f ) , ∀ f ∈ C∞

M ,

whence, for the arbitrariness of f , one finally obtains (2.11).

Proposition 2.14. Let M be an n-dimensional smooth manifold and con-

sider the tangent space Tp M at a point p ∈ M. Then, every v ∈ Tp M is the

velocity of a smooth curve.

Proof. Let (U, ϕ) be a smooth coordinate chart centered at p and let v1, . . . , vn

be the components of v with respect to the induced basis for Tp M:

v = vi ∂

∂xi

∣∣∣∣
p

.

For a sufficiently small ε > 0, consider a curve γ : (−ε, ε) → U, such

that its coordinate representation γ̂ : (−ε, ε)→ ϕ(U) is

γ̂(µ) = (µv1, . . . , µvn) .
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Hence, γ is a smooth curve satisfying γ(0) = ϕ−1
(
γ̂(0)

)
= ϕ−1(o) = p,

so that evaluating the velocity in local coordinates easily reads

γ′(0) = vi ∂

∂xi

∣∣∣∣
γ(0)

= v ∈ Tp M .

Any curve of a manifold which is the domain of some smooth maps, by

composition, induces a curve also on the codomain.

Proposition 2.15. Let F : M → N be a smooth map between the smooth

manifolds M and N, and let γ : J → M be a curve. Then, the velocity of the

composite curve F ◦ γ : J → N at any µ0 ∈ J is given by

(F ◦ γ)′(µ0) = dF|γ(µ0)γ
′(µ0) .

Proof. Applying (2.9), the velocity of F ◦ γ at µ0 is

(F ◦ γ)′(µ0) = d(F ◦ γ)|µ0

d
dµ

∣∣∣∣
µ0

= dF|γ(µ0)

(
dγ|µ0

d
dµ

∣∣∣∣
µ0

)
,

that is

(F ◦ γ)′(µ0) = dF|γ(µ0)γ
′(µ0) .

The result of the Proposition 2.15 can be exploited to evaluate the dif-

ferential of a smooth map.

Corollary 2.16. Given the smooth map F : M → N between the manifolds

M and N, the differential of F at a point p ∈ M applied at a vector v ∈ Tp M
is

dF|pv = (F ◦ γ)′(0) ,

for any smooth curve γ : J → M, with 0 ∈ J, such that γ(0) = p and

γ′(0) = v.

Proof. The proof follows from Proposition 2.15 specialized at µ0 = 0.

21



Chapter 2 Smooth Manifolds and Lie Groups

2.3 Vector Fields

We have seen that, along with a smooth manifold M, the tangent bundle

TM is also defined. In addition, the map π : TM→ M, projecting the pair

(p, v) ∈ TM onto the manifold, provides the point p ∈ M.

A vector field on the manifold can be thought as an inverse operation of

the projection, i.e. a map associating a tangent vector with each point of

M, as formally specified through the following definition.

Definition 2.17. Let M be a smooth manifold and TM the tangent bundle.

A vector field on M is a section of the projection map π, that is a map

X : M→ TM satisfying

π ◦ X = idM ,

where idM is the identity map on M.

Explicitly, a vector field on M is a continuous map in the form

X : M→ TM

p 7→ X(p) = X p ,

where X p is clearly a vector of the tangent space Tp M ⊆ TM.

Please notice that since the tangent bundle has a natural smooth struc-

ture, smoothness also applies to vector fields.

If (U, ϕ) is a smooth chart with the local coordinates x1, . . . , xn, the

value of X at a point p ∈ U can be expressed in terms of coordinate basis

vectors as

X p = Xi(p)
∂

∂xi

∣∣∣∣
p
,

where n maps Xi : U → R are the component functions of X.

The set of all the smooth vector fields on M is denoted as X(M). Such a

set can be endowed with the addition and scalar multiplication by point-wise

evaluation:

(aX + bY)p = aX p + bY p , ∀X,Y ∈ X(M) , a, b ∈ R .
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With these operations, X(M) has a vector space structure. The null

element is the vector field O : p → op which maps any point p ∈ M to the

null vector op of the tangent space Tp M.

Furthermore, the multiplication of a vector field X ∈ X(M) by a real-

valued function f ∈ C∞
M is the map f X : M→ TM such that

( f X)p = f (p)X p , ∀ p ∈ M . (2.12)

It is worth noting that the point-wise operation here above is consistent

with the vector space structure of Tp M, and therefore of the space X(M).

As a matter of fact, since f is in C∞
M, evaluating the map f X at p through

the relation (2.12) results in multiplying the vector X p ∈ Tp M by the scalar

f (p). Consequently, ( f X)p is itself an element of the tangent space Tp M
and the map f X is effectively proven to be a vector field on M.

A smooth vector field X ∈ X(M) and a real-valued function f ∈ C∞
M can

be related in a way other than the multiplication.

In fact, X can be thought as an operator acting on f to give a new

function X f : M→ R defined by the following property:

(X f )(p) = X p( f ) , ∀ p ∈ M . (2.13)

We remark again that f X ∈ X(M) represents the vector field given by

the multiplication of X by f . Instead, the notation X f ∈ C∞
M refers to the

function resulting from applying X on f .

In summary, a smooth vector field X defines a map on C∞
M as follows:

X : C∞
M → C∞

M

f 7→ X f .
(2.14)

Such a map is clearly linear over R, i.e. X(c f ) = c(X f ) for an arbitrary

scalar c ∈ R. Actually, applying the property (2.13) at an arbitrary point

p ∈ M, and exploiting the linearity of the tangent vector X p, one has

X(c f ) (p) = X p(c f ) = cX p( f ) = c(X f ) (p) .
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Moreover, the map (2.14) satisfies Leibniz’ rule:

X( f g) = f (Xg) + g(X f ) , ∀ f , g ∈ C∞
M , (2.15)

which can be proved by applying again the defining property (2.13) and

recalling that X p is a tangent vector fulfilling (2.4):

X( f g) (p) = X p( f g) = f (p)X p(g) + g(p)X p( f )

= f (p)(Xg)(p) + g(p)(X f )(p)

=
(

f (Xg) + g(X f )
)
(p) .

More generally, any map in the form (2.14) which is linear over R and

satisfying Leibniz’ rule as in (2.15) is called a derivation of C∞
M.

Recalling that C∞
M has a vector space structure, the space of the deriva-

tions on C∞
M, denoted as Der C∞

M, is a subspace of the endomorphisms of

C∞
M:

Der C∞
M = {D ∈ End C∞

M | D( f g) = f D(g) + gD( f ) , ∀ f , g ∈ C∞
M } .

It is important to point out that the space Der C∞
M is formally distinct

from X(M). However, we have already shown that any smooth vector field

X induces a derivation on C∞
M, i.e. the map (2.14).

The converse also holds true, that is any derivation D ∈ Der C∞
M induces

a smooth vector field on M. Such a property easily comes out by considering

the restriction of D at a point p ∈ M as the map Dp : C∞
M → R satisfying

Dp( f ) = (D f )(p) , ∀ f ∈ C∞
M .

By exploiting Leibniz’ product rule of D ∈ Der C∞
M, it is straightforward

to verify that Dp is a derivation at p, in the sense of Definition 2.8. Then,

Dp is a tangent vector at the point p of M and, as a map from M to TM,

D is a vector field.

Because of this result, it is possible to identify the smooth vector fields

on M with the derivations of C∞
M, and X can be thought as an element of

both X(M) and Der C∞
M.
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2.3.1 Vector Fields and Smooth Maps

Suppose F : M → N is smooth map between the smooth manifolds M and

N, and let dF be the differential.

Even if for every point p ∈ M the specification dF|p maps the tangent

vector X p ∈ Tp M to the vector dF|pX p ∈ TF(p)N, such a map does not

implies the definition of a vector field on N.

Specifically, if F is not injective, there may be distinct vectors dF|pX p

and dF|qXq, associated with distinct points p and q of M, at the same point

F(p) = F(q) of N. On the other hand, if F is not surjective, there is no way

to assign the a tangent vector at the points of N \ F(M).

The possibility to relate a vector field on M with a vector field on N
through the differential of F leads to the following definition.

Definition 2.18. Let M and N be smooth manifolds and F : M → N a

smooth map. The vector fields X ∈ X(M) and Y ∈ X(N) are said to be

F-related if, for every point p of M, the tangent vector X p is mapped to the

tangent vector Y F(p) through the differential of F at p:

dF|pX p = Y F(p) , ∀ p ∈ M . (2.16)

If f is a real-valued function on N, recalling the definition (2.5) and the

property (2.13), the differential of F at an arbitrary point p ∈ M is such

that

(dF|pX p)( f ) = X p( f ◦ F) = X( f ◦ F) (p) ,

and, at the same time, the vector field Y ∈ X(N) satisfies

Y F(p)( f ) = (Y f )
(

F(p)
)

=
(
Y f ◦ F

)
(p) ,

By comparison, and because of the arbitrariness of p ∈ M, one infers

that the condition dF|pX p = Y F(p) is the same as

X( f ◦ F) = Y f ◦ F , ∀ f ∈ C∞
N , (2.17)

or, equivalently, we can say that X and Y are F-related if, and only if, the
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relation here above is satisfied.

A further important property of F-related vector fields is expressed in

the following proposition.

Proposition 2.19. Let F : M → N be a smooth map between the smooth

manifolds M and N. Then, if F is a diffeomorphism, for every X ∈ X(M)

there exists a unique vector field Y ∈ X(N) which is F-related with X.

Proof. Let (p, X p) be the element of the tangent bundle TM given by the

a vector field X ∈ X(M) at a point p ∈ M. Applying the map (2.8), one

obtains the image through the global differential dF as(
F(p), dF|pX p

)
= dF(p, X p) ∈ TN .

Assuming F is a diffeomorphism, the differential dF : TM → TN is a

diffeomorphism itself. Consequently, (p, X p) is the preimage of an element

(q,Y q) of the tangent bundle TN, that is

(q,Y q) =
(

F(p), dF|pX p
)
∈ TN ,

which, being p = F−1(q), can be concisely represented by the tangent vector

at the point q ∈ N as

Y q = dF|F−1(q)XF−1(q) .

The expression here above can be seen as the specialization at q of the

vector field Y : N → TN resulting from the following composition:

Y = dF ◦ X ◦ F−1 .

Hence, the vector field Y ∈ X(N) is F-related to X by construction and,

since F and dF are bijective, it is unique.

In the case that F : M → N is a diffeomorphism, the unique vector

field which is F-related to X is usually denoted as F∗X and is called the

pushforward of X by F.
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As emerged from the proof of Proposition 2.19, the pushforward F∗X is

explicitly defined by the following relation:

(F∗X)q = dF|F−1(q)XF−1(q) , ∀ q ∈ N . (2.18)

2.3.2 Lie Algebra of Vector Fields

Suppose two vector fields X and Y are considered on a smooth manifold M.

Since applying X on a smooth function f gives a further smooth function X f ,

it makes sense to apply, in turn, the vector field Y . However, the resulting

operation YX : f 7→ Y(X f ) does not fulfill Leibniz’ product rule and the

composition YX does not provide a vector field.

Even if YX is not a vector field, as well as the composition XY , they can

be combined to give a further operator on C∞
M.

Definition 2.20. Let M be a smooth map and X and Y two vector fields.

The Lie bracket of X and Y is the operator [X,Y ] : C∞
M → C∞

M such that

[X,Y ] f = XY f − YX f , ∀ f ∈ C∞
M . (2.19)

The important feature of the Lie bracket is to provide a vector field on

the manifold M, that is a linear map on C∞
M fulfilling Leibniz’ product rule.

Such a property can be easily proved by direct computation for two

arbitrary functions f , g ∈ C∞
M:

[X,Y ]( f g) = X
(
Y( f g)

)
− Y

(
X( f g)

)
= X

(
f (Yg) + g(Y f )

)
− Y

(
f (Xg) + g(X f )

)
= f (XYg) + (X f )(Yg) + g(XY f ) + (Xg)(Y f )

− f (YXg)− (Y f )(Xg)− g(YX f )− (Yg)(X f )

= f (XYg)− f (YXg) + g(XY f )− g(YX f )

= f [X,Y ]g + g[X,Y ] f .

The next proposition summarizes some useful properties of the Lie bracket.

Proposition 2.21. Let X,Y , Z ∈ X(M) be vector fields on the smooth

manifold M. Then, the Lie bracket fulfills the following properties.
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1. Bilinearity:

[aX + bY , Z] = a[X, Z] + b[Y , Z] , ∀ a, b ∈ R ,

[Z, aX + bY ] = a[Z, X] + b[Z,Y ] , ∀ a, b ∈ R .

2. Antisymmetry:

[X,Y ] = −[Y , X] .

3. Jacobi identity:[
X, [Y , Z]

]
+
[
Y , [Z, X]

]
+
[
Z, [X,Y ]

]
= O .

Proof. The properties can be verified by applying the defining property

(2.19) for an arbitrary f ∈ C∞
M. An explicit computation can be found,

e.g., in Lee (2012).

Given the smooth manifold M, it is trivial to see that the space of vector

fields X(M), along with the operation defined by (2.19), is a Lie algebra over

the real field R consistent with Definition A.27.

In addition, the Lie bracket of vector fields does have some specific prop-

erties, as shown here below.

Proposition 2.22. Let F : M→ N be a smooth map between the manifolds

M and N and let X1, X2 ∈ X(M) and Y1,Y2 ∈ X(N) be vector fields such

that X1 and X2 are F-related to Y1 and Y2, respectively. Then, [X1, X2] is

F-related to [Y1,Y2].

Proof. Consider an arbitrary real-valued function f on N and apply the

property (2.17) of the F-related vector fields. Since the composition of maps

distributes over addition, one has

(X1X2 − X2X1)( f ◦ F) = X1(Y2 f ◦ F)− X2(Y1 f ◦ F)

= (Y1Y2 f ) ◦ F− (Y2Y1 f ) ◦ F

=
(
(Y1Y2 − Y2Y1) f

)
◦ F ,
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which is concisely written as

[X1, X2]( f ◦ F) =
(
[Y1,Y2] f

)
◦ F , ∀ f ∈ C∞

N .

A straightforward corollary concerns the special case of a diffeomor-

phism.

Corollary 2.23. Let F : M → N be a diffeomorphism between the smooth

manifolds M and N. Then, the pushforward of the Lie bracket of vector

fields is the Lie bracket of the pushforwards of the vector fields:

F∗[X1, X2] = [F∗X1, F∗X2] , ∀X1, X2 ∈ X(M) . (2.20)

Proof. We recall that if F is a diffeomorphism, the pushforward of X1 by F
is the only vector field which is F-related to X1, and the same applies to X2.

Then, the proof promptly comes from Proposition 2.22 with the condi-

tions Y1 = F∗X1 and Y2 = F∗X2.

2.3.3 Integral Curves

When a smooth curve γ : J → M is given on a smooth manifold M, the

velocity vector γ′(µ) is a vector of the tangent space Tγ(µ) M.

Conversely, one may be interested in finding a curve whose velocity vec-

tor at each point is equal to an assigned tangent vector.

Definition 2.24. Let M a smooth vector field and V : M → TM a vector

field. An integral curve of V is a differentiable curve γ : J → M whose

velocity at each point is equal to the value of V at that point:

γ′(µ) = V γ(µ) , ∀ µ ∈ J . (2.21)

A vector field V is said to be complete when the domain of the integral

curves can be chosen to be the whole real field, i.e. J = R.

Please recall that on a smooth coordinate domain U ⊆ M, the curve γ

is represented in local coordinates by the real-valued functions γ1, . . . ,γn,

so that the velocity vector is expressed as γ′(µ) = γi ′(µ)∂i|γ(µ). At the

29



Chapter 2 Smooth Manifolds and Lie Groups

same time, the vector field V is represented by the component functions

V1, . . . ,Vn with respect to the basis {∂1, . . . , ∂n}.
Then, the condition (2.21) is expressed in local representation as

γi ′(µ)
∂

∂xi

∣∣∣∣
γ(µ)

= V i(γ(µ)
) ∂

∂xi

∣∣∣∣
γ(µ)

,

and finding the integral curve of V actually means solving the following

system of ordinary differential equations:

γ1′(µ) = V1
(
γ1(µ), . . . ,γn(µ)

)
,

...

γn ′(µ) = Vn(γ1(µ), . . . ,γn(µ)
)

.

Proposition 2.25. Let V : M → TM be a smooth vector field on a smooth

manifold M and let γ : J → M be an integral curve of V . If τ : J̃ → J is a

differentiable real-valued function, with J̃ = { µ ∈ R | τ(µ) ∈ J }, the curve

γ̃ : J̃ → M, defined by γ̃(µ) = γ
(
τ(µ)

)
, is an integral curve of the vector

field τ′V .

Proof. The proof readily comes from Proposition 2.13 and applying the re-

lation (2.11) at any µ ∈ J̃:

γ̃′(µ) = τ′(µ)γ′
(
τ(µ)

)
= τ′(µ)V γ̃(µ) .

Since the relation holds true for all µ in J̃, we conclude that γ̃ is the

integral curve of the vector field provided by the multiplication of V by the

function τ′.

The following proposition shows how the integral curves of related vector

fields are mapped the one to the other.

Proposition 2.26. Consider a smooth map F : M→ N between the smooth

manifolds M and N. Then, the vector fields X ∈ X(M) and Y ∈ X(N) are

F-related if, and only if, F takes integral curves of X to integral curves of Y.

Proof. Suppose X and Y are F-related and let γ : J → M be an integral

curve of X. The composition F ◦ γ : J → N is a curve of N whose velocity
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satisfies

(F ◦ γ)′(µ) = dF|γ(µ)γ
′(µ) = dF|γ(µ)Xγ(µ) = Y F(γ(µ)) = Y (F◦γ)(µ) ,

that is F ◦ γ is the integral curve of Y .

Conversely, suppose now F takes integral curves of X to integral curves of

Y . For an arbitrary point p ∈ M, consider ε > 0 such that γ : (−ε, ε)→ M
is an integral curve of X starting at p.

Since F ◦ γ is an integral curve of Y starting at F(p), one has:

Y F(p) = (F ◦ γ)′(0) = dF|pγ′(0) = dF|pX p ,

whence, for the arbitrariness of the point p ∈ M, the vector fields X and Y
are F-related.

2.3.4 Flows

Let V ∈ X(M) be a complete smooth vector field on M. When a point

p ∈ M is fixed on M, let us suppose θ(p) : R→ M is the integral curve of V
starting at p.

For each µ ∈ R, the point θ(p)(µ) of such a curve can also be seen as the

image of the following map:

θµ : M→ M

p 7→ θµ(p) = θ(p)(µ) .
(2.22)

Let q be the point of the curve θ(p) relevant to λ ∈ R, that is q = θ(p)(λ),

and define a further map θ(q) : R→ M such that θ(q)(µ) = θ(p)(µ + λ). Then,

since the function µ 7→ µ + λ is a translation on R, by Proposition 2.25 the

map θ(q) is the integral curve of the same vector field V as θ(p).

As a matter of fact, θ(p) and θ(q) represent different parameterizations of

the same curve on M, so that the map (2.22) applies as follows

θµ+λ(p) = θ(p)(µ + λ) = θ(q)(µ) = θµ(q) = θµ

(
θλ(p)

)
,
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that is

θµ+λ(p) = (θµ ◦ θλ)(p) .

The relation here above, along with the property θ0(p) = p, assures that

θµ is the specialization at µ of the map θ : R× M → M representing the

action of the additive group R on M (cf. Appendix A.2.2), which allows one

to introduce the following definition.

Definition 2.27. Let M be a smooth manifold. A global flow on M, also

called a one-parameter group action, is a continuous left R-action on M.

Explicitly, a global flow θ on M is the map

θ : R×M→ M

(µ, p) 7→ θ(µ, p) = θµ(p) ,
(2.23)

where, for each µ ∈ R, the map θµ : M → M is a bijection of M which is

consistent with the group structure of R:

� θ0 = idM;

� θµ+λ = θµ ◦ θλ.

Please notice that if the global flow θ is a continuous group action, the

induced map θµ is a homeomorphism. Also, when θ is smooth, the map θµ

is a diffeomorphism.

At the same time, for each p ∈ M, the global flow θ induces a curve

θ(p) : R→ M defined by θ(p)(µ) = θ(µ, p). The image of such a curve is the

orbit of p ∈ M under the group action.

If θ : R× M → M is a smooth global flow, and θ(p) : µ → M is the

associated curve starting at p, the velocity of θ(p) at µ = 0 is a tangent

vector V p ∈ Tp M.

Consequently, the map

V : M→ TM

p 7→ V p = θ(p) ′(0) ,
(2.24)
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is a vector field on M, which is called the infinitesimal generator of θ.

It is possible to verify that the infinitesimal generator V of a smooth

global flow θ is a smooth vector field on M, and that each curve θ(p) is an

integral curve of V (see, e.g., Lee (2012)).

Remark. The notion of a smooth global flow has been introduced by refer-

ring to a complete smooth vector field. In practice, the global flow has been

constructed assuming that the integral curves of the smooth vector field are

defined for all µ ∈ R.

However, such an assumption does not hold true for any vector field

on a manifold, so that it is worth introducing the notion of a flow which

preserves, at least locally, the same properties as a global one.

To this end, we define a flow domain for M as an open subset D ⊆ R×M
such that, for each p ∈ M, the set D(p) = { µ ∈ R | (µ, p) ∈ D } is an open

interval containing 0.

Therefore, a local flow, or simply a flow, on M is a map θ : D → M with

the same definition as in (2.23) restricted to a flow domain D.

With this restriction, the identification between the curves of a flow and

the integral curves of a smooth vector field still holds true (see, e.g., Lee

(2012)).

2.3.5 Lie Derivative of a Vector Field

The tangent vector v at a point of a smooth manifold M, introduced by

Definition 2.8, provides a generalization of the notion of directional deriva-

tive of a real-valued function f . Moreover, as shown by (2.9), any tangent

vector v can be seen as the velocity of a curve γ, so that the action of v on

f gives the derivative of f along γ, in the ordinary sense.

In addition, when a vector field X is considered on M, the function

X f , defined at any point of p by virtue of the identification (2.13), is the

derivative of f in the direction of X.

On this basis, it is natural to ask if a similar generalization applies to the

derivative of a vector field on M. Such a role is played by the Lie derivative.
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Definition 2.28. Let M be a smooth manifold with a vector field X ∈
X(M). The Lie derivative of a vector field Y ∈ X(M) with respect to X, at

a point p, is defined as

(LXY)p = lim
µ→0

(θ−µ)∗
∣∣

θµ(p)
Y θµ(p) − Y p

µ
, (2.25)

where θ is the flow of X.

Please observe that the numerator of the limit in (2.25) represents the

variation of the vector field Y in the direction of X. However, in order to

make completely clear the above definition, such a variation can be inter-

preted as follows.

First, the vector field Y is evaluated at θµ(p) = θ(p)(µ), which is the

point of the integral curve of X starting at p relevant to µ. Since the vector

Y θµ(p) belongs to the tangent space Tθµ(p) M, it cannot be directly compared

with Y p, but one should consider the pushforward by θ−µ = θ−1
µ .

Then, differential (θ−µ)∗
∣∣

θµ(p)
: Tθµ(p) M → Tp M is applied to the vector

Y θµ(p), so that the variation with respect to Y p is actually evaluated in Tp M.

Since the limit in (2.25) is formally performed in Tp M, the Lie derivative

(LXY)p is clearly a tangent vector at p. Consequently, it is induced a vector

field on M, denoted as LXY : M → TM, which provides the Lie derivative

of Y with respect of X at each point of M.

Even if the limit in (2.25) is well-defined, it is not used to evaluate the

Lie derivative. On the contrary, a useful and simple formula, which does

not require to find the flow of X, can be applied.

The derivation of such a formula evaluating the Lie derivative is based

on the following lemma (see, e.g. Boothby (2002)).

Lemma 2.29. Let M be a smooth manifold with X ∈ X(M) the infinitesimal

generator of a flow θ. Given a function f ∈ C∞
M and a scalar ε > 0, there

exists a C∞ function g : (−ε, ε)×M→ R such that

f
(
θµ(p)

)
= f (p) + µg(µ, p) , X p f = g(0, p) .

Proof. Consider a function h : (µ, p) 7→ h(µ, p) = f
(
θµ(p)

)
− f (p), which is
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smooth on (−ε, ε)×M and satisfies h(0, p) = 0. Then, denoting by h′ the

derivative of h with respect to µ, for each fixed p ∈ M, the required map is

g(µ, p) =
∫ 1

0
h′(µλ, p)dλ .

Actually, by the fundamental theorem of calculus (Rudin, 1986), one has

µg(µ, p) =
∫ 1

0
h′(µλ, p)µdλ =

∫ µ

0
h′(µλ, p)d(µλ)

= h(µ, p)− h(0, p) = h(µ, p) ,

whence

f
(
θµ(p)

)
= f (p) + µg(µ, p) .

On the other hand, if the vector field X is the infinitesimal generator of

θ, recalling (2.24) and then using (2.10), one has

X p f =

(
d

dµ

∣∣∣∣
0

θ(p)

)
( f ) =

(
f ◦ θ(p)

)′
(0) = lim

µ→0

f
(
θ(p)(µ)

)
− f

(
θ(p)(0)

)
µ

,

that is

X p f = lim
µ→0

h(µ, p)

µ
= lim

µ→0
g(µ, p) = g(0, µ) .

It is now possible to introduce the formula evaluating the Lie derivative.

Proposition 2.30. Let X and Y be smooth vector fields on the smooth

manifold M. Then, the Lie derivative of Y with respect to X is given by the

Lie bracket of X and Y:

LXY = [X,Y ] . (2.26)

Proof. Consider an arbitrary point p ∈ M and a function f ∈ C∞
M. Applying

the defining property (2.5) to the differential (θ−µ)∗
∣∣

θµ(p)
, one has(

(θ−µ)∗
∣∣

θµ(p)
Y θµ(p)

)
( f ) = Y θµ(p)( f ◦ θ−µ) . (2.27)

Moreover, for some ε > 0, using Lemma 2.29 with −µ in place of µ,
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there exists a function g : (−ε, ε)×M→ R such that(
f ◦ θµ

)
(p) = f (p)− µg−µ(p) ,

with 0 < |µ| < ε and gµ(p) = g(µ, p).

Consequently, the evaluation of the pushforward in (2.27) becomes(
(θ−µ)∗

∣∣
θµ(p)

Y θµ(p)

)
( f ) = Y θµ(p)( f − µg−µ) = (Y f )

(
θµ(p)

)
− µY θµ(p)(g−µ) ,

whence the Lie derivative defined by (2.25), applied at the function f , reads

(LXY)p( f ) = lim
µ→0

(
(θ−µ)∗

∣∣
θµ(p)

Y θµ(p) − Y p
)
( f )

µ

= lim
µ→0

(Y f )
(
θµ(p)

)
− µY θµ(p)(g−µ)− (Y f )(p)

µ

= lim
µ→0

(
(Y f ) ◦ θ(p)

)
(µ)−

(
(Y f ) ◦ θ(p)

)
(0)

µ
− lim

µ→0
Y θ(p)(µ)(g−µ) ,

(2.28)

where the property θµ(p) = θ(p)(µ) has been used, along with the initial

condition θ(p)(0) = p.

The first limit in the sum (2.28) is the derivative at 0 of the real-valued

function (Y f ) ◦ θ(p) : (−ε, ε) → R, which, by (2.10) and then using the

fact that X is the infinitesimal generator of the flow θ at p, is evaluated as

follows:(
(Y f ) ◦ θ(p)

)′
(0) =

(
θ(p) ′(0)

)
(Y f ) = X p(Y f ) .

At the same time, since by Lemma 2.29 g0(p) = g(0, p) coincides with

X p( f ) = (X f )(p), the function g−µ tends to X f as µ approaches to 0,

obtaining

lim
µ→0

Y θµ(p)(g−µ) = Y p(X f )
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Then, the sum in (2.28) results

(LXY)p( f ) = X p(Y f )− Y p(X f ) = (XY)p( f )− (YX)p( f )

= (XY − YX)p( f ) ,

which holds true for each p ∈ M, so that

(LXY)( f ) = (XY − YX)( f ) ,

whence, by Definition 2.20 and for the arbitrariness of f , one finally has

LXY = [X,Y ] .

2.4 Lie Groups and Lie Algebras

In Section A.2.2 we introduced the notion of a group in the algebraic sense.

When a group is also endowed with a smooth structure, we say that it is a

Lie group.

Definition 2.31. A Lie group is a smooth manifold G which is also a group

in the algebraic sense, with the property that the group composition and

the inversion are both smooth.

The algebraic characterization of a group is given in Section A.2.2 and,

within the context of smooth manifolds, it is required that the group multi-

plication (g, h) 7→ gh ∈ G and the inversion g 7→ g−1 ∈ G are both smooth.

As a consequence, the left translation Lg by any g ∈ G, defined by (A.5),

is a diffeomorphism of G. In fact, not only Lg is smooth, because the group

multiplication is, but the inverse L−1
g = Lg−1 is also smooth. Clearly, the

same applies to the right translation Rg by g.

In addition, the conjugation Cg by g, defined by (A.6), is a Lie group

automorphism. Actually, it is a bijective map of G preserving the group

structure and, intended as the composition of the smooth maps Lg and Rg−1 ,

is also smooth.

More generally, in accordance with the adopted nomenclature, we say

that a map F : G → H, between the Lie groups G and H, is a Lie group
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homomorphism if it is smooth and at the same time is a group homomor-

phism.

We recall that when a group G is considered along with a set M, the

action of G on M is the map α : G×M → M specified in A.2.2. If G is a

Lie group and M is smooth manifold, we say that α is a smooth action if it

is a smooth map.

Please notice that the permutation σg : M → M, associated with the

smooth action of the element g ∈ G on M, is a diffeomorphism of M. Such

a property readily results from the smoothness of the inverse map σg−1 .

2.4.1 The Lie Algebra of a Lie Group

Let G be a Lie group and let us consider a vector field X ∈ X(G). We

say that X is left-invariant if it is invariant under all left translations Lg,

meaning that it is Lg-related to itself for any g ∈ G.

More explicitly, denoting as dLg : TG → TG the global differential of

the left translation by g, and recalling Definition 2.18, the vector field X is

left-invariant if it satisfies the following identity:

dLg

∣∣
hXh = Xgh , ∀ g, h ∈ G , (2.29)

where it has been exploited the property XLg(h) = Xgh.

Since Lg is a diffeomorphism of G, we properly say that X is a left-

invariant vector field if it coincides with its pushforward by Lg, for any

g ∈ G:

(Lg)∗X = X , ∀ g ∈ G . (2.30)

The set of all the left-invariant vector fields on G is denoted as XL(G)

and is a linear subspace of X(G).

In fact, recalling that the differential is a linear map (cf. Property 1

of Proposition 2.10), any linear combination aX + bY of the vector fields

X,Y ∈ XL(M) is left-invariant:

(Lg)∗(aX + bY) = a(Lg)∗X + b(Lg)∗Y = aX + bY , ∀ g ∈ G .
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In addition, left-invariance is preserved when the Lie bracket is applied

to any pair of left-invariant vector fields.

Proposition 2.32. Let G be a Lie group and let XL(G) be the space of the

left-invariant vector fields. Then XL(G) is closed under Lie bracket.

Proof. Consider two arbitrary left-invariant vector fields X and Y . Since the

left translation Lg is a diffeomorphism for any g ∈ G, Corollary 2.23 applies:

(Lg)∗[X,Y ] =
[
(Lg)∗X, (Lg)∗Y

]
= [X,Y ] , ∀ g ∈ G ,

that is [X,Y ] is left-invariant.

As a consequence of the above proposition, the set XL(G), along with

the Lie bracket, has a Lie algebra structure and then it is a subalgebra of

X(G).

Specifically, the Lie algebra of all the smooth left-invariant vector fields

on a Lie group G is called the Lie algebra of G and is denoted as Lie(G).

Proposition 2.33. Let G be a Lie group, with the Lie algebra Lie(G), and

let TeG be the tangent space at the identity element. Then, the map

ε : Lie(G)→ TeG

X 7→ X e ,
(2.31)

is a vector space isomorphism.

Proof. The linearity of the map ε over R is straightforward:

ε(aX + bY) = (aX + bY)e = aX e + bY e = aε(X) + bε(Y) ,

∀X,Y ∈ Lie(G) , a, b ∈ R .

Moreover, for each g ∈ G there exists a unique left translation Lg such

that Lg(e) = g. Hence, given a vector v ∈ TeG, the differential of Lg at e
uniquely determines the following map

X : G→ TG

g 7→ Xg = dLg

∣∣
ev ,

(2.32)
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which clearly satisfies X e = v.

Consequently, X is the unique vector field induced by the differential of

the left translation such that its specialization X e at the identity e coincides

with the assigned vector v ∈ TeG.

Moreover, recalling Property 2 in Proposition 2.10, the vector field X
defined by (2.32) satisfies the following relation

dLg

∣∣
hXh = dLg

∣∣
h

(
dLh|ev

)
= d(Lg ◦ Lh)

∣∣
ev = dLgh

∣∣
ev = Xgh ,

that is the fulfillment of the defining property (2.29) implies the left-invariance

of X.

In addition, by introducing a chart (U, ϕ) including a neighborhood

of the identity e, it is possible to prove that the components of X in the

local representation are C∞ functions of the coordinates, which implies the

smoothness of X (one can refer, e.g., to Boothby (2002), Lee (2012), Spivak

(1999) for the details).

In conclusion, X is in Lie(G) and the uniqueness of the map (2.32), for

each v ∈ TeG, assures that ε is one-to-one.

When a homomorphism is defined between two Lie groups, the relevant

Lie algebras are also related.

Proposition 2.34. Let G and H be Lie groups with g and h as Lie algebras,

respectively. If F : G → H is a Lie group homomorphism, for any X ∈ g

there is a unique vector field Y ∈ h which is F-related to X.

Proof. As a Lie group homomorphism, F is consistent with group laws of G
and H, implying

F
(

Lg(h)
)

= F(gh) = F(g)F(h) = LF(g)

(
F(h)

)
∀ g, h ∈ G ,

whence, for the arbitrariness of h, one finds

F ◦ Lg = LF(g) ◦ F , ∀ g ∈ G ,

and the global differentials of the maps on both sides, by Property 1 in
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Proposition 2.11, result

dF ◦ dLg = dLF(g) ◦ dF , ∀ g ∈ G .

Then, supposing Y ∈ h is the vector field on H identified by the tangent

vector Y e = dF|eX e at the identity, one has

Y F(g) = dLF(g)

∣∣
eY e = dLF(g)

∣∣
e

(
dF|eX e

)
=
(
dLF(g) ◦ dF

)∣∣
e
X e

=
(
dF ◦ dLg

)∣∣
e
X e = dF|Lg(e)

(
dLg

∣∣
eX e
)

= dF|gXg ,

where, by virtue of the left-invariance of both X ∈ g and Y ∈ h, the identities

Xg = dLg

∣∣
eX e and Y F(g) = dLF(g)

∣∣
eY e have been used.

In conclusion, the identity Y F(g) = dF|gXg, which holds for any g ∈ G,

assures that X and Y are F-related.

The above proposition implies that for any Lie group homomorphism

F : G→ H there exists an induced Lie algebra homomorphism defined as

F∗ : g→ h

X 7→ F∗X ,
(2.33)

where F∗X is the unique left-invariant vector field on H which is F-related

with X.

Remark. If G is a subgroup of H, the inclusion ι : G ↪→ H is group homo-

morphism and ι∗ : g→ h is the induced Lie algebra homomorphism.

Specifically, the image ι∗(g) is the subalgebra of h consisting of the left-

invariant vector fields on H which are ι-related with the vector fields on

G, and are defined by the value at the identity given by dι|eX e, for some

X e ∈ TeG.

Since the differential dι|e : TeG ↪→ TeH is the inclusion of TeG in TeH, the

subalgebra ι∗(g) is characterized as

ι∗(g) = {X ∈ h | X e ∈ TeG } .
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2.4.2 One-parameter Subgroups and Exponential Map

Let us consider a Lie group G. Since R has a group structure under addition,

the map γ : R → G is a group homomorphism, which is called a one-

parameter subgroup of G.

It is possible to prove that any left-invariant vector field on a Lie group

is complete (see, e.g., Boothby (2002), Lee (2012)). Such a property assures

that the integral curves of left-invariant vector fields are exactly the one-

parameter subgroups of the Lie group, as stated by the proposition here

below.

Proposition 2.35. The one-parameter subgroups of a Lie group G are the

integral curves of left-invariant vector fields starting at the identity.

Proof. Let γ be the integral curve of some left-invariant vector field X start-

ing at the identity, i.e. γ(0) = e and γ′(0) = X e. Since X is complete, γ is

defined on all of R.

Moreover, recalling that X is Lg-related to itself, by Proposition 2.26 any

left translation Lg takes integral curves of X to integral curves of X. Con-

sequently, setting g = γ(λ) for some λ ∈ R, the curve µ 7→ Lγ(λ)

(
γ(µ)

)
=

γ(λ)γ(µ) is an integral curve of X with the initial point at γ(λ).

On the other hand, by Proposition 2.13 the map µ 7→ γ(λ + µ), is itself

an integral curve of X starting at γ(λ), so that one has

γ(λ)γ(µ) = γ(λ + µ) ,

which means that γ preserves the group structure of R and G, resulting a

one-parameter subgroup of G.

Conversely, suppose γ : R→ G is a one parameter subgroup of G. Since

γ is a Lie group homomorphism, its value at 0 is the identity of G, that is

γ(0) = e.
In addition, treating d/dµ as a left-invariant vector field of R, it is

mapped by the differential dγ to a vector field X = dγ(d/dµ). Since X
is the unique left-invariant vector field of G which is γ-related to d/dµ (cf.
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Proposition 2.34), for any µ0 ∈ R one has

γ′(µ0) = dγ|µ0

d
dµ

∣∣∣∣
µ0

= Xγ(µ0) ,

that is, consistently with Definition 2.24, γ is the integral curve of X starting

at the identity e.

By identifying a one-parameter subgroup γ : R → G with the integral

curve of a vector field X ∈ Lie(G), it is established a one-to-one correspon-

dence between the tangent space at the identity, the Lie algebra of G the

set of the one-parameter subgroups of G.

In fact, any tangent vector v ∈ TeG uniquely identifies a left-invariant

vector-field X ∈ Lie(G) such that X e = v, as well as a one-parameter

subgroup γ of G satisfying γ′(0) = v.

For this reason, we say that the one-parameter subgroup representing

the integral curve of X starting at the identity, is generated by X.

In addition, if γ : R → G is the one-parameter subgroup generated by

the left-invariant vector field X, the global flow θ : R× G → G associated

with X is defined by

θ(µ, g) = Lg
(
γ(µ)

)
= Rγ(µ)(g) = gγ(µ) . (2.34)

Actually, since X is Lg-related to itself, by Proposition 2.26 the integral

curves of X are translated the ones into the others by Lg.

Specifically, noting that γ(0) = e, the map θ(g) : R → G, defined by

θ(g)(µ) = θ(µ, g) = gγ(µ), is a curve starting at g and its velocity is

θ(g) ′(0) = dθ(g)
∣∣

0

d
dµ

∣∣∣∣
0

= d
(

Lg ◦ γ
)∣∣

0

d
dµ

∣∣∣∣
0

=
(

dLg

∣∣
γ(0)
◦ dγ|0

) d
dµ

∣∣∣∣
0

= dLg

∣∣
eγ
′(0) = dLg

∣∣
eX e = Xg ,

that is θ(g) = gγ is the integral curve of X starting at g.

The connection between the left-invariant vector fields and the one-

parameter subgroups is the basis of the definition of the exponential map.
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Definition 2.36. Let G be a Lie group and g the relevant Lie algebra. The

exponential map of G is the map exp : g→ G such that

exp(X) = γ(1) , ∀X ∈ g , (2.35)

where γ : R→ G is the one-parameter subgroup of G generated by X.

The importance of the exponential map in characterizing a Lie group

relies on the fact that it maps the straight line of g passing through X
to the one-parameter subgroup generated by X or, which is the same, to

the integral curve of X passing through the identity e. Such a property is

discussed in the following proposition.

Proposition 2.37. Let g be the Lie algebra of the Lie group G. For any

X ∈ g, the curve γ : R → G defined by γ(λ) = exp(λX) is the one-

parameter subgroup generated by X.

Proof. Let γ : R → G be one-parameter subgroup generated by X and

consider the real-valued function τ : R → R defined by τ(µ) = λµ, for any

λ ∈ R, so that the composition γ ◦ τ : R → G is the integral curve of the

vector field λX (cf. Proposition 2.25).

Since g has a vector space structure, the scalar multiplication λX is itself

a left-invariant vector field of G and the exponential map provides

exp(λX) = γ(τ(1)) = γ(λ) , ∀ λ ∈ R .

Since the exponential map defines a one-parameter subgroup of G, which

preserves the group structure of R and G, the addition in R is reflected in

the composition law of G:

exp
(
(λ + µ)X

)
= exp(λX) exp(µX) , ∀X ∈ g , λ, µ ∈ R , (2.36)

as well as the opposite in R is consistent with the inverse in G:

exp(−X) =
(

exp(X)
)−1

, ∀X ∈ g . (2.37)

Finally, since the integral curve of X starting at e is expressed in terms

of exponential map as µ 7→ exp(µX), the flow of X provided by (2.34)
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specializes to

θ(µ, g) = Lg
(

exp(µX)
)

= Rexp(µX)(g) = g exp(µX) , (2.38)

where µ 7→ g exp(µX) is the integral curve of X starting at g.

Let us further observe that if σ : R 7→ g is the curve defined by σ(t) = tX,

satisfying σ′(0) = X, the velocity of the composition t 7→ (exp ◦σ)(t) at

t = 0 results

(exp ◦σ)′(0) = dexp|σ(0)σ
′(0) = dexp|OX .

At the same time, by Proposition (2.37), the map t 7→ exp(tX) is also

the one-parameter subgroup generated by X, whose tangent vector at the

identity is X e ∈ TeG (cf. Proposition 2.35). Then, one has

X e =
d

dµ

∣∣∣∣
0

exp(tX) = dexp|OX ,

and, under the canonical identification of both TeG and TOg with g, the

differential dexp|O is the identity map:

dexp|O = idg . (2.39)

Remark. The consistency of the exponential map with the group operations

only concerns the group homomorphism between R and G, and it does not

apply to the operations of the Lie algebra g.

This means, for example, that the exponential of the sum X + Y is not

the same, in general, as the product of exp(X) and exp(Y):

exp(X + Y) 6= exp(X) exp(Y) .

2.5 Lie Group Representation

Please recall that if V is a vector space over R, GL(V ) is the group of the

linear transformations of V and, assuming dimV = n, it is isomorphic to

GL(n) (cf. Appendix B.4.3).
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Definition 2.38. Let G be a Lie group. A (finite-dimensional) represen-

tation of G is a Lie group homomorphism from G to GL(V ) for some real

vector space V .

A representation ρ : G→ GL(V ) is faithful if it is injective, and then the

Lie group G is isomorphic with the subgroup ρ(G) ⊆ GL(V ) ∼= GL(n).

There exists a connection between group representations and actions

defined in Section A.2.2. Actually, if ρ : G → GL(V ) is a representation of

G, there exists a left action α : G×V → V defined by α(g, v) = ρ(g)v.

The action α is linear, in the sense that the associated map on V is a linear

transformation.

Moreover, a notion of representation also applies to Lie algebras, which

are associated with the Lie algebra gl(V ) of the linear maps of a vector

space V .

Definition 2.39. Let g be a n-dimensional Lie algebra. A (finite-dimensional)

representation of g is a Lie algebra homomorphism ϕ : g→ gl(V ), for some

real vector space V .

Similarly to the group representations, the homomorphism ϕ : g→ gl(V )

is a faithful representation when it is injective. In such a case, g is isomorphic

to the Lie subalgebra ϕ(g) ⊆ gl(V ) ∼= gl(n).

The representations of Lie algebras are strictly related to the ones of

Lie groups. Specifically, if G is a Lie group with the Lie algebra g and

the map ρ : G → GL(V ) is any representation, the induced Lie algebra

homomorphism ρ∗ : g→ gl(V ), defined by (2.33), is a representation of g.

Moreover, any action of the Lie group G on its algebra g, considered as a

vector space, provides a representation of G. Among these representations,

a key role is played by the adjoint representation, which is induced by the

conjugation map Cg defined by (A.6).

Definition 2.40. Let G be a Lie group and g the relevant Lie algebra. The

adjoint representation of G is the representation

Ad : G→ GL(g)

g 7→ Adg = (Cg)∗ ,
(2.40)
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where (Cg)∗ : g → g is the Lie algebra homomorphism induced by the

conjugation Cg.

The characterization of (Cg)∗ as a Lie group homomorphism promptly

comes from Proposition 2.34, since Cg : G → G is a Lie group homomor-

phism.

Moreover, recalling that Cg1g2 = Cg1 ◦ Cg2 , the relevant Lie algebra ho-

momorphisms do satisfy (Cg1g2 )∗ = (Cg1 )∗ ◦ (Cg2 )∗, whence

Adg1g2 = Adg1 ◦Adg2 , ∀ g1, g2 ∈ G ,

as well as the bijectivity of Cg implies the one of Adg, with the inverse given

by

Ad−1
g = Adg−1 , ∀ g ∈ G .

Consequently, Adg is actually an automorphism of g for any g of G and

the map Ad: G→ GL(g) is effectively a representation of G.

In addition to the adjoint representation for a Lie group, it is also possible

to define a representation for a Lie algebra g considering the linear space

gl(g) of the linear maps on g.

Definition 2.41. Let g be a Lie algebra and gl(g) the space of its linear

transformations. The adjoint representation of g is the representation

ad : g→ gl(g)

X 7→ adX ,
(2.41)

such that adX : g→ g is defined by the Lie bracket adX(Y) = [X,Y ].

Recalling Property 1 in Proposition 2.21, the Lie bracket operator is

linear in its entries, so that adX is actually a linear map of gl(g) for each

X ∈ g.

On the other hand, the linearity of the Lie bracket with respect to the

first entry implies the linearity of the map ad:

adaX1+bX2 = a adX1 +b adX2 .
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Moreover, using the Jacobi identity and the antisymmetry of the Lie

bracket, expressed by Properties 3 and 2 in Proposition 2.21, respectively,

one finds

ad[X1,X2] Y =
[
[X1, X2],Y

]
=
[
X1, [X2,Y ]

]
−
[
X2, [X1,Y ]

]
= adX1

(
adX2 Y

)
− adX2

(
adX1 Y

)
=
(

adX1 ◦ adX2 − adX2 ◦ adX1

)
Y ,

which, for the arbitrariness of Y ∈ g, implies

ad[X1,X2] = [adX1 , adX2 ] .

The specifications here above show that the adjoint map is consistent

with the Lie algebra structure of g and gl(g) and provides a representation

of g.

Moreover, if g is the Lie algebra of the Lie group G, the adjoint repre-

sentation of g is precisely the homomorphism induced by the adjoint repre-

sentation of G.

Proposition 2.42. Let G be a Lie group with the Lie algebra g and let

Ad: G→ GL(g) be the adjoint representation. Then, the induced Lie algebra

homomorphism Ad∗ : g→ gl(g) is the adjoint representation ad of g.

Proof. Consider a vector field X ∈ g and evaluate the map Ad∗ X at an

arbitrary Y ∈ g.

Since any vector field of g is left-invariant, it is completely determined

by its value at the identity e ∈ G. The same applies to Ad∗ X ∈ gl(g), which

is evaluated at idg, so that the following evaluation is considered:(
(Ad∗ X)(Y)

)
e

= (Ad∗ X)idg
(Y e) = (Ad∗|eX e)(Y e) .

Moreover, recalling that the curve γ : µ 7→ exp(µX) satisfies γ(0) = e
and γ′(0) = X e, Corollary 2.16 can be applied to evaluate the differential of

the adjoint map, obtaining

(
(Ad∗ X)(Y)

)
e

= (Ad ◦γ)′(0)Y e =
d

dµ

∣∣∣∣
0

(
Adγ(µ) Y

)
e

=
d

dµ

∣∣∣∣
0

(Cγ(µ))∗
∣∣

eY e ,
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where Definition 2.40 has been applied.

Furthermore, being Cγ(µ) = Rγ(−µ) ◦ Lγ(µ), and using the left-invariance

of Y , the above relation becomes

(
(Ad∗ X)(Y)

)
e

=
d

dµ

∣∣∣∣
0

(
(Rγ(−µ))∗

∣∣
γ(µ)
◦ (Lγ(µ))∗

∣∣
e

)
Y e

=
d

dµ

∣∣∣∣
0

(Rγ(−µ))∗
∣∣

γ(µ)
Yγ(µ) ,

In addition, using (2.38), it is easy to recognize that Rγ(−µ) coincides

with the map θ−µ, where θ is the flow of X, so that the derivative in the

above relation can be expressed as

(
(Ad∗ X)(Y)

)
e

= lim
µ→0

(θ−µ)∗
∣∣

θµ(e)Y θµ(e) − Y e

µ
,

which, by Definition 2.28, is the Lie derivative (LXY)e.

Consequently, since any vector field in g is determined by its value at e,
and applying Proposition 2.30, one finally has

(Ad∗ X)(Y) = LXY = [X,Y ] = adX(Y) .

2.6 Matrix Lie Groups

Within the context of the Lie groups, a central role is played by the groups

of matrices.

As a matter of fact, the law of composition for matrix groups consists

in the standard matrix multiplication, so that the group operations are re-

duced to functions on the entries. Moreover, specifying the smooth manifold

structure of the matrix groups, the differential operations proper of a Lie

group take themselves the form of matrix operations.

In order to point out how some matrix operations represent smooth maps

on manifolds, the exponential function is first introduced.
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2.6.1 Exponential of Matrices

The exponential of a matrix is crucial in the theory of matrix Lie groups,

since it specializes the exponential map connecting a Lie algebra and the

corresponding Lie group.

Definition 2.43. Let X be an n-dimensional square matrix. The exponen-

tial of X, denoted as eX or exp(X), is the power series

eX = exp(X) =
∞

∑
k=0

Xk

k!
. (2.42)

Each term Xk appearing in (2.42) the k-th matrix power, i.d. the re-

peated matrix multiplication of X with itself:

Xk = X× · · · ×X︸ ︷︷ ︸
k times

,

with the convention X0 = I for any X.

Please notice that the series (2.42) is, formally, the same series defining

the exponential function in real analysis (Rudin, 1986) and similar features

are expected. Specifically, it can be proved that the series converges for all

X ∈ Mn and exp : X 7→ eX is a continuous function of X (see, e.g., Hall

(2015)).

The main difference between the matrix exponential defined by (2.42)

and the relevant real-valued function concerns the addition formula, since

the matrix exponentials, in general, do not commute:

e(X+Y) 6= eXeY .

However, when the matrices X and Y do commute, i.e. XY = YX, the

relevant exponentials also commute and the addition formula applies. Such

a property and other ones are summarized by the following proposition.

Proposition 2.44. Let X and Y be n-by-n matrices. Then, the following

properties are true.

1. If XY = YX, then e(X+Y) = eXeY = eYeX.
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2. e0 = I.

3. e(a+b)X = eaXebX , ∀ a, b ∈ R.

4. eX is invertible and the inverse is (eX)−1 = e−X.

Proof. 1. Let us use (2.42) for both eX and eY and apply the Cauchy

product of these two series:

eXeY =
∞

∑
k=0

Xk

k!

∞

∑
h=0

Yh

h!
=

∞

∑
k=0

k

∑
m=0

XkY(k−m)

k!(k−m)!

=
∞

∑
k=0

1
k!

k

∑
m=0

m!
m!(k−m)!

XkY(k−m) =
∞

∑
k=0

1
k!

k

∑
m=0

(
k
m

)
XkY(k−m) .

If XY = YX, the last summation is the power (X + Y)k, so that one

obtains

eXeY =
∞

∑
k=0

(X + Y)k

k!
= eX+Y .

2. Observe that any X ∈ Mn can be written as X + 0, and clearly X0 =

0X = 0. Then, Property 1 of the proposition applies and one has

eX = e(X+0) = eXe0 ,

whence e0 = I.

3. The matrix (a + b)X can be written as aX + bX, and the matrices aX
and bX do commute. Then, by Property 1 of the proposition, one has

e(a+b)X = eaX+bX = eaXebX .

4. Setting a = 1 and b = −1 in Property 3 of the proposition and then

applying Property 2, the following relation holds true:

eXe−X = eX−X = e0 = I ,

whence e−X is the inverse of eX.

51



Chapter 2 Smooth Manifolds and Lie Groups

2.6.2 Smooth Structure of Matrix Groups

A matrix group G is a subset of the space of square matrices Mn over R
which satisfies the group axioms given by Definition A.8. Specifically, G is a

subset of invertible matrices, which is closed under the matrix multiplication

and contains the identity.

Roughly speaking, the manifold structure of a matrix group G comes

from the fact that the entries of its matrices are real variables. In addition,

the smoothness arises from considering the group as the domain of some

differentiable functions.

As a matter of fact, a matrix group G can be properly characterized as a

matrix Lie group if it is a closed subgroup of the general linear group GL(n).

This means that for any sequence Ak of matrices in G, which converges to

some A ∈ GL(n), the matrix A is actually in G.

A discussion about how the smoothness of GL(n) is reflected on its closed

subgroups can be found, among others, in Gallier and Quaintance (2020),

Hall (2015). In the context of this work, it is enough to say that GL(n)

is assumed as the reference matrix Lie group and, as such, its differential

structure is briefly described.

Please recall that the general linear group GL(n) is introduced by Def-

inition B.59 as the group of the invertible n-dimensional matrices and, in

this context, the reference field is R. Its smooth manifold structure comes

from the fact of being an open subset of the real vector space Mn(R) and,

as such, its dimension is n2.

Specifically, let us notice that the determinant function det : Rn2 → R
is differentiable because it is a polynomial in the n2 entries. Moreover,

since the determinant of invertible matrices is non-null, GL(n) represents

the preimage of the open subset R/{0}:

GL(n) = det−1(R/{0}
)
,

whence GL(n) results an open subset of Mn and also inherits its smoothness.

Furthermore, the entries of the matrix AB are polynomials of the entries

of A and B, so that the matrix multiplication is smooth. Also, the inversion
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is itself smooth by Cramer’s rule, concluding that GL(n) is actually a Lie

group (cf. Definition 2.31).

At the same time, let us also consider the Lie algebra over R, intro-

duced following Definition B.56, as the real vector space Mn along with the

commutator bracket and here simply denoted as gl(n).

Since gl(n) has the same dimension n2 as GL(n), it is isomorphic, as

a vector space, with the tangent space at the identity I. In addition, by

Proposition 2.33, the space TIGL(n) is also isomorphic with the Lie algebra

of GL(n), concluding that there exists a vector space isomorphism between

gl(n) and the Lie algebra of GL(n):

gl(n) ∼= Lie
(
GL(n)

)
. (2.43)

It is possible to prove (see, e.g., Lee (2012)) that the above relation also

holds true in the sense of a Lie algebra isomorphism, which justifies the

notation gl(n) for the Lie algebra of the n-dimensional square matrices.

As a Lie group, GL(n) is connected to its Lie algebra via the exponential

map (cf. Definition 2.36). However, in this case, such a relation takes the

explicit form of the matrix exponential defined by (2.42).

Actually, since by Property 4 in Proposition 2.44 the exponential of any

matrix is invertible, eX is a matrix of GL(n) for each X ∈ Mn.

Furthermore, considering the Lie algebra gl(n) as Mn endowed with the

commutator bracket, the matrix exponential is actually a map between gl(n)

and the Lie group GL(n). Then, with the identification (2.43), the map

exp : gl(n)→ GL(n) represents the specialization of the exponential map to

the general linear group.

Such a result is more properly justified by the following proposition.

Proposition 2.45. For any X ∈ gl(n), the one-parameter subgroup of

GL(n) generated by X is γ(µ) = eµX.

Proof. Recalling that any left-invariant vector field on a Lie group is induced

by a tangent vector at the identity by (2.32), let V ∈ Lie
(
GL(n)

)
be defined

by X ∈ gl(n) through the condition V I = X.
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By Proposition 2.35, the one-parameter subgroup of GL(n) generated by

X is the integral curve of the vector field V starting at I, so that let us verify

that such an integral curve is actually represented by γ.

Exploiting Property 2 in Proposition 2.44, it is easy to see that γ is a

curve starting at I:

γ(0) = e0X = e0 = I .

Moreover, expressing the exponential of µX through the series (2.42)

and taking the derivative with respect to µ, the velocity of γ results

γ′(µ) =
∞

∑
k=0

d
dµ

(
µkXk

k!

)
=

∞

∑
k=1

kµk−1Xk

k!
=

∞

∑
k=1

(
µk−1Xk−1

(k− 1)!

)
X .

Please observe that the differentiated series does converge because, a

part for the factor X, it is the same convergent series defining eµX.

Then, noting also that X commutes with Xk−1, for any k > 0, the velocity

of the curve is

γ′(µ) =
d
dµ

eµX = eµXX = XeµX , (2.44)

and its value at the identity I ∈ GL(n) results γ′(0) = X = V I.

As consequence of Proposition 2.45, the flow of the vector field V , given

by (2.38), is expressed as

θ(µ,A) = LA(eµX) = ReµX(A) = AeµX , (2.45)

where the matrix X ∈ gl(n) uniquely identifies the left-invariant vector field

V ∈ Lie
(
GL(n)

)
by setting X = V I.

Moreover, the integral curve of V starting at A ∈ GL(n) is the map

γA : R→ GL(n)

µ 7→ AeµX ,
(2.46)
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whence the velocity at µ = 0 results

γ′A(0) =
d

dµ
(AeµX)

∣∣∣∣
0

= AeµXX
∣∣

0 = AX .

Since γ′A(0) is also the value of the left-invariant vector field V at A,

recalling the defining property (2.29), one infers

γ′A(0) = VA = dLA|IV I = dLA|IX ,

so that the differential dLA|I coincides with the matrix A, considered as a

linear operator from TIGL(n) to TAGL(n), and the value of the vector field

V at any point A ∈ GL(n) is simply given by the matrix multiplication:

VA = AV I = AX . (2.47)

Please observe that if a further curve σ is defined by left translation as

σ = LB ◦ γA, for some B ∈ GL(n), the starting point is σ(0) = BA and the

relevant velocity vector is

σ′(0) = (LB ◦ γA)′(0) = dLB|γA(0)γ
′
A(0) = dLB|AVA .

In addition, since the explicit form of σ(µ) = BAeµX, and the velocity

at the starting point is

σ′(0) =
d

dµ
(BAeµX)

∣∣∣∣
0

= BAX = BVA ,

whence, by comparison the differential of the left translation results

dLB|A = B , (2.48)

whatever the matrices A and B are in the matrix group GL(n).

2.6.3 Adjoint Representation of Matrix Groups

The adjoint representation of a Lie group G has been introduced by Defi-

nition 2.40 as the group homomorphism between G and the general linear

group of the lie algebra of G.
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With reference to GL(n), the adjoint representation of GL(n) specializes

as follows:

Ad : GL(n)→ GL
(
gl(n)

)
A 7→ dCA|I ,

(2.49)

where, with the usual identification Lie
(
GL(n)

) ∼= gl(n), the Lie algebra

homomorphism (CA)∗ : Lie
(
GL(n)

)
→ Lie

(
GL(n)

)
induced by the conju-

gation map CA specializes to the differential dCA|I : gl(n)→ gl(n).

In order to provide an explicit form for the adjoint representation, let

us consider γ : µ 7→ eµX as the integral curve of the left-invariant field

V starting at I, with γ′(0) = V I = X. Hence, applying the conjugation

CA provides the curve σ = CA ◦ γ, such that σ(0) = I, with the velocity

evaluated as

σ′(0) = (CA ◦ γ)′(0) =

(
dCA ◦

dγ

dµ

′)∣∣∣∣
0

= dCA|σ(0)γ
′(0) ,

that is σ′(0) = dCA|IX.

At the same time, the explicit expression σ : µ 7→ AeµXA−1 gives

σ′(0) =
d

dµ

∣∣∣∣
0

(
AeµXA−1) =

(
AeµXXA−1)∣∣

0
= AXA−1 ,

whence dCA|IX = AXA−1 and the differential of the map CA coincides

with the same conjugation CA, considered as an automorphism of gl(n).

Then, the adjoint representation of GL(n) is the group homomorphism

Ad: GL(n)→ GL
(
gl(n)

)
and its value at A results

AdA : gl(n)→ gl(n)

X 7→ AdA(X) = AXA−1 .
(2.50)

Regarding the Lie algebra gl(n), the adjoint representation introduced

by Definition 2.41 specializes to the following map:

ad : gl(n)→ gl
(
gl(n)

)
X 7→ adX ,

(2.51)
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where the map adX : gl(n)→ gl(n) is a homomorphism of gl(n) defined by

matrix commutator as adX(Y) = [X,Y].

In addition, it is useful to consider also the k-th power of the adjoint

representation adk
X, defined as

adk
X(Y) =

[
X, · · ·

[
X, [X,Y]

]]︸ ︷︷ ︸
k times

. (2.52)

2.6.4 Differential of the Exponential Map

Assuming the identification Lie
(
GL(n)

) ∼= gl(n), the exponential map, in-

troduced by Definition 2.36, specializes to

exp : gl(n)→ GL(n)

X 7→ eX ,

with the matrix exponential eX given by (2.42).

In addition, since gl(n) coincides with Mn as a vector space, it has a

natural smooth manifold structure and any tangent space is canonical iso-

morphic with gl(n) (see, e.g., Lee (2012)).

Then, the exponential map can be regarded as a smooth map between

smooth manifolds, and with the identification Tgl(n) ∼= gl(n), its differential

at a point X ∈ gl(n) is a map from gl(n) to Texp(X)GL(n):

dexp|X : gl(n)→ Texp(X)GL(n)

Y 7→ dexp|XY .
(2.53)

The explicit expression of dexp|X is provided by the following proposi-

tion.

Proposition 2.46. The differential of the exponential map exp : gl(n) →
GL(n) at a point X ∈ gl(n) is given by

dexp|X = eXDX , (2.54)
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where

DX =
∞

∑
k=0

(−1)k adk
X

(k + 1)!
. (2.55)

Proof. Consider a curve φ : µ 7→ φ(µ) in gl(n) such that φ(µ) = X, with

the velocity φ′(µ) = Y, for some Y ∈ gl(n). Such a curve is well-defined in

gl(n) because φ(µ) can be thought as a matrix function of one parameter

and, with the identification Tφ(µ)gl(n) ∼= gl(n), the velocity φ′(µ) results

itself an element of gl(n).

The composition of the exponential map with φ is the curve of GL(n)

defined as γ : µ 7→ eφ(µ), whose velocity at µ is a vector of the tangent space

Tγ(µ)GL(n), with γ(µ) = exp(X) ∈ GL(n), evaluated as

γ′(µ) = (exp ◦φ)′(µ) = dexp|φ(µ)φ
′(µ) = dexp|XY . (2.56)

With the aim of finding an explicit expression of γ′(µ), let us define

θ(λ, µ) = e−λφ(µ) ∂

∂µ
eλφ(µ) ,

which satisfies θ(0, µ) = 0.

Recalling the property (2.44) of the matrix exponential, the derivative

of θ with respect to λ reads:

∂θ

∂λ

∣∣∣∣
(λ,µ)

= −φ(µ)e−λφ(µ) ∂

∂µ
eλφ(µ) + e−λφ(µ) ∂

∂µ

(
∂

∂λ
eλφ(µ)

)
= −φ(µ)θ(λ, µ) + e−λφ(µ) ∂

∂µ

(
eλφ(µ)φ(µ)

)
= −φ(µ)θ(λ, µ) + θ(λ, µ)φ(µ) + φ′(µ)

= −
[
φ(µ), θ(λ, µ)

]
+ φ′(µ) ,

where, since φ(µ) and θ(λ, µ) are both elements of gl(n), the commutator

bracket has been applied.

Moreover, since φ and φ′ both depend solely on µ, evaluating again the
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derivative with respect to λ, one finds

∂2θ

∂λ2

∣∣∣∣
(λ,µ)

= −
[

φ(µ),
∂θ

∂λ

∣∣∣∣
(λ,µ)

]
= −

[
φ(µ),−

[
φ(µ), θ(λ, µ)

]
+ φ′(µ)

]
=
[
φ(µ),

[
φ(µ), θ(λ, µ)

]]
−
[
φ(µ), φ′(µ)

]
= ad2

φ(µ)

(
θ(λ, µ)

)
− adφ(µ)

(
φ′(µ)

)
,

so that, by induction, the following relation can be derived:

∂kθ

∂λk

∣∣∣∣
(λ,µ)

= (−1)k adk
φ(µ)

(
θ(λ, µ)

)
+ (−1)k−1 adk−1

φ(µ)

(
φ′(µ)

)
,

which, setting λ = 0, along with the conditions φ(µ) = X and φ′(µ) = Y,

specializes to

∂kθ

∂λk

∣∣∣∣
(0,µ)

= (−1)k−1 adk−1
X (Y) .

Recalling that θ(0, µ) = 0, the derivatives reported here above can be

used to compute the Taylor series of θ(λ, µ) around the point (0, µ):

θ(λ, µ) =
∞

∑
k=1

∂kθ

∂λk

∣∣∣∣
(0,µ)

λk

k!
=

∞

∑
k=1

(−1)k−1 adk−1
X (Y)

λk

k!
,

and, setting λ = 1, one finally obtains

θ(1, µ) = e−φ(µ) ∂

∂µ
eφ(µ) =

∞

∑
k=1

(−1)k−1 adk−1
X (Y)

k!
.

The comparison with (2.56) allows one to recognize

e−X(exp ◦φ)′(µ) =
∞

∑
k=1

(−1)k−1 adk−1
X (Y)

k!
,

that is

e−X dexp|XY =
∞

∑
k=0

(−1)k adk
X(Y)

(k + 1)!
,
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whence, considering the series expansion in the form (2.55), one finally finds

dexp|XY = eXDXY ,

and, for the arbitrariness of Y ∈ gl(n), the expression (2.54) is proved.

Please observe that the operator DX defined by (2.55) is usually denoted

as

DX =
I− e− adX

adX

=
∞

∑
k=0

(−1)k adk
X

(k + 1)!
,

in accordance with the relevant scalar-valued function expressed by the same

series of powers (see, e.g., Gallier and Quaintance (2020), Hall (2015)).

Moreover, given Y ∈ gl(n), the vector dexp|XY is an element of the

tangent space Texp(X)GL(n) and results from the left translation by the dif-

ferential dLexp(X)

∣∣
I
, as described by (2.29) for the general case.

Since for a matrix Lie group the left translation of tangent vectors takes

the form of the matrix multiplication, writing dexp|XY = eXDXY can be

interpreted as the composition of the map DX : gl(n) → TIGL(n) with the

map dLexp(X)

∣∣
I
: TIGL(n)→ Texp(X)GL(n).

Then, with the identification gl(n) ∼= TIGL(n), the operator DX applies

as an endomorphism of gl(n):

DX : gl(n)→ gl(n)

Y 7→ DXY =
∞

∑
k=0

(−1)k adk
X(Y)

(k + 1)!
.

(2.57)

2.6.5 Logarithm of Matrices

Since Definition 2.43 is based on a power series, the exponential of a matrix

can be seen, although with some limitations, as an extension of the ordinary

exponential function to the space of matrices. Hence, one could ask if the

same is also possible for the logarithm function, meant as the inverse of the

exponential function.

With the aim to provide a map to be considered as the inverse of the
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exponential map, let us introduce the following definition.

Definition 2.47. The logarithm of a n-dimensional square matrix A, de-

noted as log(A), is the power series

log(A) =
∞

∑
k=1

(−1)k+1 (A− I)k

k
, (2.58)

whenever the series converges.

Please observe again that the series (2.58) is formally the same as the

power series providing the logarithm of a real scalar variable. Accordingly,

the convergence of such a series is not assured for any A ∈ Mn.

Specifically, it can be proved that the series (2.58) is convergent for all A

such that ‖A− I‖ < 1, for a suitable matrix norm, and log : A 7→ log(A)

is well-defined as a continuous function of A (see, e.g., Hall (2015)).

Moreover, since log(A) is an n-by-n matrix, its exponential can be eval-

uated through (2.42), giving

elog(A) = exp
(

log(A)
)

= A , (2.59)

with the condition ‖A− I‖ < 1, and also

log(eX) = log
(

exp(X)
)

= X , (2.60)

for all the square matrices X satisfying ‖X− I‖ < log 2 (the necessity of

this condition is discussed in Hall (2015)).

Even if the logarithm of a matrix appears to be formally as the inverse

of the exponential function, its treatment requires greater attention.

Specifically, any invertible real matrix A can be expressed in the form

A = eX, but the matrix X is not unique (see, e.g., Hall (2015)). In addition,

a matrix with real and positive entries might have negative or even complex

eigenvalues, so that the logarithm of A might be, in general, a complex

matrix.

However, if a matrix A has no negative real eigenvalues, there is a unique

matrix X, which is the logarithm of A, with the eigenvalues lying in the strip
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{ z ∈ C | − π < =(z) < π }. In this conditions, X is referred to as the

principal logarithm and, if A is a real matrix, it is also real (Higham, 2008).

On the basis of the above observations, for any A ∈ GL(n), the matrix

denoted as X = log(A) is intended as the unique real matrix X ∈ Mn which

is the principal logarithm of A.

Moreover, following Gallier and Quaintance (2020), the condition { z ∈
C | − π < =(z) < π } for the spectrum of X = log(A) defines a subset

e(n) of gl(n) such that the differential dexp|X of the exponential map is

non-singular. Consequently, that the restriction of exp to e(n)⊂ gl(n) is a

diffeomorphism to exp
(
e(n)

)
⊂ GL(n), and in particular it is bijective.

Such a result is summarized by the following proposition. It is reported

without the proof, referring to Gallier and Quaintance (2020) and Higham

(2008), among others, for a deeper discussion.

Theorem 2.48. The restriction of the exponential map to e(n) ⊂ gl(n)

is a diffeomorphism exp : e(n) → exp
(
e(n)

)
. Furthermore, the codomain

exp
(
e(n)

)
is an open subset of GL(n), which consists of all the invertible

matrices with no eigenvalues in R− and contains the open ball B1(I) such

that B1(I) = {A ∈ GL(n) | ‖A− I‖ < 1 }, for every matrix norm on Mn.
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Affine Spaces and Affine

Transformations

An affine space is a geometric structure whose introduction is required when

one tries to exploit the properties of a vector space to describe geometric

entities.

To make clear such a necessity, let us make an example considering the

real vector space R3. Suppose P(0) is the set of real triples v(0) with 0 as last

entry:

P(0) =
{

v(0) = (v1, v2, 0)
∣∣ v1, v2 ∈ R

}
⊂ R3 .

Please notice that the set P(0) is a real vector space, with the operations

inherited from R3 and o = (0, 0, 0) as null vector. Hence, P(0) is a linear

subspace of R3.

Now, let us denote as P(1) the set of the real triples v(1) with v3 = 1 as

third component (the same applies for any fixed v3 6= 0 ∈ R):

P(1) =
{

v(1) = (v1, v2, 1)
∣∣ v1, v2 ∈ R

}
⊂ R3 .

Even if P(1) is a subset of R3, it is not a vector space. Actually, one can

easily verify that o = (0, 0, 0) is not in P(1) and that the component-wise
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addition is not a law of composition for P(1).

a(1) + b(1) = (a1, a2, 1) + (b1, b2, 1) = (a1 + b1, a2 + b2, 2) /∈ P(1) .

At the same time, from a geometric point of view the sets P(0) and P(1)

represent two parallel planes in R3. Hence, one can expect that they have

similar geometric properties, even if they do not have the same algebraic

structure.

Such a contradiction depends on the role of the null vector o in R3 in

identifying a special point of the geometric space, whence comes the necessity

to generalize the structure of a vector space to an affine space. As reported

in Berger (1987), an affine space is nothing more than a vector space whose

origin we try to forget about, by adding translations to the linear maps.

The example here discussed shows that, in order to exploit the algebraic

structure of a vector space to describe a geometric space, one should consider

two different types of elements, i.e. points and vectors, of which only the

latter ones form a linear space. So we can cite Tarrida (2011) in saying that

an affine space represents a natural generalization of the concept of vector

space but with a clear distinction between points and vectors.

3.1 Affine Spaces

According to Tarrida (2011), we define an affine space as follows.

Definition 3.1. Let F be a field and V be an F-vector space. An affine

space over V is a set A together with a map

Φ : A×V → A

(P, v) 7→ P + v ,
(3.1)

such that

� P + o = P , ∀P ∈ A , where o is the null element in V ;

� P + (v + w) = (P + v) + w , ∀P ∈ A, v,w ∈V ;

� given P,Q ∈ A, there exists a unique v ∈V such that P + v = Q.
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The unique vector determined by the points P and Q is denoted by
#   –

PQ:

P +
#   –

PQ = Q .

You can observe from the third condition that the symbol “+” is over-

loaded with multiple meanings, easily resolvable by context. Actually, it

refers both to the addition operation between elements of the vector space

V and the result of applying the map Φ.

The dimension of an affine space A is defined to be the dimension of its

associated vector space V and we write dim A= dimV .

Here we summarize the basic properties of an affine space, which are are

direct consequences of Definition 3.1. The explicit proof can be found in

Tarrida (2011).

Proposition 3.2. Let P,Q,R,S ∈ A and u, v ∈ V be arbitrary points and

vectors. Then, the following properties hold:

1. P + u = P + v implies u = v;

2. P + u = Q + u implies P = Q;

3.
#   –

PQ = o if, and only if, P = Q;

4.
#   –

PQ = − #   –

QP;

5. given P ∈ A, v ∈V , there exists a unique Q ∈ A such that
#   –

PQ = v;

6.
#   –

PQ +
#   –

QR =
#  –

PR;

7.
#   –

PQ =
#  –

PR implies Q = R;

8.
#   –

PQ =
#  –

RS implies
#  –

PR =
#  –

QS.

In addition, the transitivity of the action of V on Amakes the following

bijection well-defined for all P ∈ A:

µP : A→V

Q 7→ v =
#   –

PQ ,

µ−1
P : V → A

v 7→ Q = P + v .
(3.2)

Please notice that, as a vector space, V is a commutative group with

respect to the addition. Moreover, the requirements introduced in Definition

3.1 for the map Φ do satisfy the properties characterizing a simply transitive

action of V on A (see A.2.2). Explicitly, the first two properties correspond

65



Chapter 3 Affine Spaces and Affine Transformations

to the identity and compatibility axioms characterizing a group action, and

the third one makes such an action simply transitive.

For this reason, some authors formally introduce the definition of affine

space in terms of a simply transitive group action of a vector space on a set

(see, e.g., Berger (1987)). The permutation representation of such an action

is denoted by tv and is derived from the map Φ by fixing v ∈V :

tv : A→ A

P 7→ tv(P) = Φ(P, v) = P + v .
(3.3)

Moreover, the action of V on A can also be intended in terms of the

following group homomorphism:

τ : V → Perm(A)

v 7→ τ(v) = tv ,

meaning that any vector of V induces a permutation of the set A.

Definition 3.3. The map tv ∈ Perm(A) expressed by (3.3) is called the

translation of A by the vector v.

The image of the homomorphism τ is a subgroup of Perm(A). It is

called the group of translations of A and is denoted as T(A):

T(A) = Im(τ) = { tv | v ∈V } ⊆ Perm(A) . (3.4)

Furthermore, by means of (3.3), it is easy to verify that the homomor-

phism τ satisfies the following properties:

� to = idA;

� tv ◦ tw = tw ◦ tv = tv+w , ∀ v,w ∈V ;

� t−1
v = t−v , ∀ v ∈V .

In particular, since tv = idA if, and only if, v = o, the map t has a trivial

kernel and it is actually a group monomorphism.
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Consequently, by restricting the codomain of τ to T(A) ⊆ Perm(A), the

resulting homomorphism V → T(A) is bijective, and the group of transla-

tions of A is isomorphic with the vector space V :

T(A) ∼= V . (3.5)

3.1.1 Affine Frames

Definition 3.4. Let A be an affine space over the F-vector space V . An

affine frame, or simply a frame, of A is a set F = {O;B } consisting of a

point O ∈ A, the origin of the frame F, and a basis B = {b1, . . . ,bn} of

the associated vector space V .

Please notice that each vector bi ∈ B defines a translation of the origin

O to a point Pi ∈ A. Then, a frame can equivalently be defined as a set

F= {O;P1, . . . ,Pn} of n + 1 points of A such that B = { #     –

OP1, . . . ,
#     –

OPn} is

a basis for the vector space V , with the clear identification bi =
#    –

OPi.

In any case, if the point O is fixed as the origin of the frame F, the

bijective map (3.2), specialized to µO, allows one to identify each point P of

A with a unique vector of V , that is

µO(P) = p =
#   –

OP ,

and vice-versa

P = µ−1
O (p) = µ−1

O (
#   –

OP) .

Moreover, since the basis B of V is also introduced, the vector p can

be associated with the n-tuple p = (p1, . . . , pn) ∈ Fn through the map ϕB

defined by (B.1):

p = (p1, . . . , pn) = ϕB (p) = ϕB (
#   –

OP) .

Consequently, the composition of the maps ϕB and µO provides a bijec-
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tive map ψF = ϕB ◦ µO defined as follows

ψF : A→ Fn

P 7→ p = (p1, . . . , pn) ,

ψ−1
F : Fn → A

p 7→ P = O + pibi .
(3.6)

Please observe that bijectivity of ψF is a consequence of the one of ϕB

and µO, so that the inverse map ψ−1
F = µ−1

O ◦ ϕ−1
B is well-defined.

The entries pi ∈ F of p the affine coordinates, or simply coordinates, of

the point P with respect to F.

3.2 Affine Maps

Let A1 and A2 be affine spaces overs the F-vector spaces V1 and V2, respec-

tively, and consider an arbitrarily fixed point P ∈ A1. Then, every map

f : A1 → A2 induces a map between the underlying vector spaces:

fP : V1 →V2

#   –

PQ 7→
#                    –

f (P) f (Q) .
(3.7)

Definition 3.5. The map f : A1 → A2 is an affinity, also called an affine

map or an affine transformation, if the induced map fP given by (3.7) is a

linear transformation.

Proposition 3.6. The linear map induced by the affinity f : A1 → A2 does

not depend on the point P.

Proof. Let us apply the map fP, defined by (3.7), to the vectors
#   –

PQ and
#  –

PR, being Q and R arbitrary points of A1:

fP(
#   –

PQ) =
#                    –

f (P) f (Q) ,

fP(
#  –

PR) =
#                   –

f (P) f (R) .

Since the resulting vectors are both elements of V2, it is possible to add

the first one with the opposite of the second one, obtaining

fP(
#   –

PQ)− fP(
#  –

PR) =
#                    –

f (P) f (Q)−
#                   –

f (P) f (R) ,
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which, for the linearity of fP, results

fP(
#   –

PQ)− fP(
#  –

PR) = fP(
#   –

PQ− #  –

PR) ,

so that, by means of Properties 4 and 6 in Proposition 3.2, the following

relation is found:

fP(
#   –

RQ) =
#                    –

f (R) f (Q) , ∀Q,R ∈ A1 .

Hence, the image vector
#                    –

f (R) f (Q) is a function only of the points Q and

R, in addition to the map f , and the linear transformation fP is actually

independent of the point P.

Consistently with the above result, the linear map induced by f is simply

denoted as f .

The connection between the affinity f and the associated linear trans-

formation f is reflected in the property stated in the following proposition,

whose proof can be found, e.g., in Tarrida (2011).

Proposition 3.7. Let A1 and A2 be affine spaces with V1 and V2 as associ-

ated vector spaces, respectively. The map f : A1 → A2 is an affinity if, and

only if, there exists a unique linear map f : V1 →V2 such that

f (P + v) = f (P) + f (v) , ∀P ∈ A1 , v ∈V1 . (3.8)

An immediate consequence of such a property is that the identity map

idA over an affine space A is an affinity and the induced linear map is the

identity idV over V :

idA(P + v) = P + v = idA(P) + idV (v) , ∀P ∈ A, v ∈V .

Also, the linear map f associated with the affinity f inherits the property

of being injective, surjective or bijective, and vice-versa (see, e.g., Tarrida

(2011)).

Proposition 3.8. Let f and g be affinities with the induced linear maps f
and g, respectively.
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1. If f is composable with g, and f is composable with g, then g ◦ f is an

affinity with g f as associated linear map.

2. If f is bijective, the inverse map is itself an affinity and f−1 is the

induced linear map.

Proof. 1. Suppose f : A1 → A2 and g : A2 → A3, as well as f : V1 → V2

and g : V2 → V3. At an arbitrary point P ∈ A1, and for any vector

v ∈V1, the composed map g ◦ f gives

(g ◦ f )(P+ v) = g
(

f (P+ v)
)

= g
(

f (P) + f (v)
)

= g
(

f (P)
)

+ g
(

f (v)
)
,

that is

(g ◦ f )(P + v) = (g ◦ f )(P) + (g f )(v) , ∀P ∈ A1 , v ∈V1 .

Hence, by Proposition 3.7, the composition g ◦ f : A1 → A3 is an

affinity and the induced linear map is g f : V1 →V3.

2. In the same conditions as above, let us set g = f −1 and g = f−1, with

A3 = A1 and V3 = V1, and consider the following identity:

f −1
(

f (P + v)
)

= idA1 (P + v) = P + v , ∀P ∈ A1 , v ∈V1 .

Being also P = idA1 (P) and v = idV1 (v), one infers

f −1
(

f (P+ v)
)

= f −1
(

f (P)
)

+ f−1( f (v)
)
, ∀ f (P) ∈ A2 , f (v) ∈V2 ,

and, again by Proposition 3.7, the inverse map f −1 : A2 → A1 results

an affinity with the associated linear transformation f−1 : V1 →V2.

3.2.1 Change of Frame Map

It has been shown in Section 3.1.1 that introducing an affine frame, any point

P of the affine space is represented by a set of affine coordinates provided

by the map (3.6).

When two frames for an affine space Aare considered, the relevant defin-

ing points are connected by an affine transformation of A. The main feature

of such a relation is presented in the following proposition.
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Proposition 3.9. Let A be an affine space on the F-vector space V and con-

sider two affine frames FA = {P0;P1, . . . ,Pn} and FB = {Q0;Q1, . . . ,Qn}.
Then, there exists a unique bijective affine transformation H B

A : A → A

mapping each point of FA to the relevant point of FB :

H B
A (Pi) = Qi , ∀ i = 1, . . . , n . (3.9)

Proof. Let us set ai =
#      –

P0Pi and bi =
#       –

Q0Qi, with i = 1, . . . , n, so that the

sets A = {a1, . . . , an} and B = {b1, . . . ,bn} are the bases of V associated

with the frames FA and FB , respectively.

With this specification, the maps ψA and ψB , obtained by specializing

of the coordinate map (3.6) to the frames FA and FB , respectively, are

characterized by the following property:

ψA (Pi) = ei = (0, . . . , 1, . . . , 0) ∈ Fn , ∀ i = 1, . . . , n ,

as well as

ψB (Qi) = ei = (0, . . . , 1, . . . , 0) ∈ Fn , ∀ i = 1, . . . , n ,

Then, the map H B
A can be obtained by composing ψ−1

B with ψA , i.e.

H B
A = ψ−1

B ◦ ψA , (3.10)

which clearly satisfies the required property:

H B
A (Pi) = (ψ−1

B ◦ ψA )(Pi) = ψ−1
B
(
ψA (Pi)

)
= ψ−1

B (ei) = Qi ,

∀ i = 1, . . . , n .

Please observe that the bijectivity of H B
A readily follows from the one of

both ψA and ψB .

In addition, since the affine coordinates of any point P ∈ A with re-

spect to a frame are unambiguously determined, both the maps ψA and

ψB are uniquely defined one the frames FA and FB have been introduced.

Consequently, the map H B
A is unique.

Moreover, in order to prove that H B
A is an affine map of A, let us recall
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that any coordinate map ψF is the composition of the maps defined by (B.1)

and (3.2), which specializes to ψA = ϕA ◦ µP0 and ψB = ϕB ◦ µQ0 .

Hence, the composition (3.10) can be expressed as

H B
A = µ−1

Q0
◦
(

ϕ−1
B ◦ ϕA

)
◦ µP0 = µ−1

Q0
◦ hB

A ◦ µP0 ,

where, recalling (B.5), hB
A is the change of basis map, from A to B , for the

vector space V .

As a consequence, considering (3.2) specialized to µP0 andµ−1
Q0

, one has

H B
A (Pi) = (µ−1

Q0
◦ hB

A ◦ µP0 )(Pi) = µ−1
Q0

(
hB

A (ai)
)

= Q0 + hB
A (ai) ,

or, equivalently,

H B
A (P0 + ai) = H B

A (P0) + hB
A (ai) , (3.11)

whence, recalling Proposition 3.7, H B
A is an affinity.

3.3 The Affine Group

Let us denote as Aff(A) ⊆ Perm(A) the set of permutations of an affine

space Awhich are also affinities from A to itself. Such a set, along with the

map composition, has a group structure.

The group structure of Aff(A) comes from the properties of Proposition

3.8. Specifically, composing affinities represents a law of composition for

Aff(A), whose identity element is idA and where the inverse affinity f −1 is

the inverse element of f ∈ Aff(A).

Definition 3.10. Let A be an affine space over the F-vector space V . The

set of the bijective affinities of A into itself is called the affine group, or the

group of affinities, of A and is denoted as GA(A).

Since any bijective affinity of A induces an automorphism of V , the

following group homomorphism is well-defined (Berger, 1987):

λ : GA(A)→ GL(V )

f 7→ f ,
(3.12)
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where GL(V ) is the general linear group on the vector space V introduced

by Definition B.57. Actually, the consistency of λ with the group struc-

ture of GA(A) and GL(V ) is a direct consequence of the first statement in

Proposition 3.8:

λ(g ◦ f ) = g f = λ(g)λ( f ) , ∀ f , g ∈ GA(A) .

In order to emphasize the role of the composition of affinities as the

group law for GA(A), the notation is simplified as follows:

g f = g ◦ f , ∀ f , g ∈ GA(A) . (3.13)

3.3.1 Subgroups of the Affine Group

A subgroup of the affine group GA(A) is represented exactly by the group of

translations T(A) defined by (3.4). This is a consequence of the proposition

here below.

Proposition 3.11. The kernel of the homomorphism λ : GA(A)→ GL(V )

is the group T(A) of translations of A:

Ker(λ) = T(A) .

Proof. The kernel of λ is the set of f ∈ GA(A) mapped to the identity idV .

Hence, setting f = idV , the characterizing property (3.8) specializes in

f (P + w) = f (P) + w , ∀P ∈ A, w ∈V .

On the other hand, we recall that any translation tv ∈ T(A), defined by

(3.3), is such that

tv(P + w) = tv(tw(P)) = tw(tv(P)) = tv(P) + w , ∀P ∈ A, w ∈V ,

showing that the map tv is actually an affinity and idV is the associated

linear transformation.

In conclusion, the set of translations acting on the affine space A by the
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vectors in V represents precisely the kernel of the group homomorphism λ:

Ker(λ) = T(A) ≤ GA(A) .

Along with the group of translations T(A), it is possible to recognize

a further subgroup of GA(A). Such a subgroup is the stabilizer GAP(A),

associated with any point P ∈ A.

Specifically, recalling (A.7), the stabilizer of P is the set

GAP(A) = { fP ∈ GA(A) | fP(P) = P }⊂ GA(A) ,

whence the following property holds:

fP(P + v) = P + f (v) , ∀ fP ∈ GAP(A) , v ∈V , (3.14)

being f a linear map in GL(V ).

In order to reconstruct the full group GA(A) from its subgroups, it is

first shown that T(A) and GAP(A) are distinct subgroups.

Lemma 3.12. Let A be an affine space over the F-vector space V . For any

point P ∈ A, the stabilizer GAP(A) and the group of translations T(A) are

distinct subgroups of GA(A):

T(A) ∩GAP(A) = idA .

Proof. In order to characterize the intersection of GAP(A) and T(A), let us

consider an affinity f in T(A). Then, by (3.3), there exists a vector v ∈V
such that

f (P) = tv(P) = P + v .

Moreover, since it is also required f ∈ GAP(A), the same affinity should

satisfy the condition f (P) = P. Hence, one finds

P + v = P ,

whence, by Definition 3.1, v is the null vector o and the affinity f is the
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identity map:

f = to = idA .

It is now possible to show how the affine group of an affine space is

actually coincident with the multiplication of the stabilizer of an arbitrary

point and the group of translations. This means that any affinity f can be

thought as the composition of an affinity fP in the stabilizer of a point P

and a translation tv.

Proposition 3.13. Let A be an affine space over the F-vector space V
and P an arbitrary point. The group of affinities GA(A) of A is the group

multiplication of the translations of A and the stabilizer of P:

GA(A) = T(A)GAP(A) , ∀P ∈ A.

Proof. Since both the group of translations and the stabilizer of P are sub-

groups of GA(A), any tv ∈ T(A) is in GA(A), and the same applies to any

fP ∈ GAP(A). Then, the composition tv fP is an element of GA(A) and the

following map is well-defined as a bijection:

γ : T(A)×GAP(A)→ GA(A)

(tv, fP) 7→ f = tv fP .
(3.15)

In order to prove the injectivity of γ let us consider two element (tv, fP)

and (tw, gP) of T(A)×GAP(A) and show that

γ(tv, fP) = γ(tw, gP) ⇒ (tv, fP) = (tw, gP) . (3.16)

In fact, by applying (3.15) at both (tv, fP) and (tw, gP), one has

tv fP = twgP , (3.17)

so that the composition of t−1
v with both members provides

fP = (t−1
v tw)gP .

Since fP is in GAP(A), it is required that the composition of the trans-
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lation t−1
v tw with gP is also in the stabilizer of P. However, by Lemma 3.12,

T(A) and GAP(A) do have no elements in common except the identity map.

So the above identity only makes sense if t−1
v tw = idA, i.e. tv = tw.

Similarly, composing both members of (3.17) with f −1
P , one can find

tv = tw(gP f −1
P ) ,

which only holds true if gP f −1
P = idA, that is fP = gP.

Then, resulting both tv = tw and fP = gP, the implication in (3.16) is

satisfied and the injectivity of γ is proved.

To show the surjectivity of γ, let us fix an arbitrary element f ∈ GA(A)

and verify that there exist some t ∈ T(A) and fP ∈ GAP(A) providing f
through the map (3.15).

Concretely, consider the translation tv associated with a vector v ∈ V
and set f = tv fP. By composing on the left with t−1

v = t−v, one has

fP = t−v f ∈ GA(A) .

It is worth noting that, since the affine group is closed under map compo-

sition and T(A) is a subgroup, the above composition makes sense in GA(A).

However, the specific aim is to show in which conditions the affinity fP is in

the stabilizer of P. Then, let us set

fP(P) = (t−v f )(P) = P , (3.18)

or, explicitly,

t−v
(

f (P)
)

= f (P)− v = P .

The relation here above can be equivalently expressed as

f (P) = P + v ,

and, using the map µP defined by (3.2), the vector v defining the translation

tv results

v = µP

(
f (P)

)
=

#           –

P f (P) ∈V . (3.19)

76



Chapter 3 Affine Spaces and Affine Transformations

In summary, the existence of the vector v defined by (3.19) ensures

that any affinity f in GA(A) can be expressed as tv fP, where fP belongs to

GAP(A). Such a decomposition proves the surjectivity of the map γ, and

then its bijectivity.

It is important to remark that the bijection γ introduced by (3.15) relates

T(A)× GAP(A) and GA(A) as sets, while no reference has been made to

the group structure. Then, by Definition A.10, one can say that GA(A)

coincides with the multiplication T(A)GAP(A) as a set.

3.3.2 Semidirect Product Decomposition

Since the group of translations T(A) is the kernel of the homomorphism

λ defined by (3.12), by Proposition A.16 the subgroup T(A) is normal in

GA(A):

T(A) E GA(A) ,

whence, recalling Proposition A.13, the multiplication T(A)GAP(A) is also

a group and coincides with GA(A).

Using the nomenclature of Definition A.24, the stabilizer GAP(A) is a

complement for the translations T(A) in the affine group GA(A), and vice-

versa.

Moreover, by Theorem A.23, the group of affinities of A is the semidirect

product of GAP(A) and T(A), up to an isomorphism:

GA(A) ∼= T(A) o GAP(A) . (3.20)

Concretely, any map f of GA(A) can be thought as an affinity fP which

fixes a point P of A, followed by the a translation tv:

f = tv fP . (3.21)

It is worth noting that the affinities f and fP do have the same associated
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linear map f , that is, in terms of the group homomorphism defined by (3.12),

λ( f ) = λ( fP) = f .

Then, the decomposition (3.21) of the affinity f ∈ GA(A) results from

fixing a point P ∈ A and obtaining fP as the unique affinity in GAP(A)

with f as associated linear map. Also, using (3.19), the translation tv is

consistently provided by the vector v =
#           –

P f (P).

Conversely, if the vector v is assigned, P is uniquely determined as the

point satisfying P = f (P)− v. Then, the affinity fP is consistently obtained

as the map in the stabilizer GAP(A) associated with the linear transforma-

tion f .

Recalling again Theorem A.23, the composition of two affinities f = tv fP
and g = twgQ accounts for the action by conjugation of gQ on tv:

g f = (twgQ)(tv fP) =
(
tw(gQtvg−1

Q )
)
(gQ fP) . (3.22)

In order to provide a more convenient expression of the composition here

above, it is useful to analyze how the elements in the stabilizer GAP(A) act

by conjugation on the translations of T(A).

Proposition 3.14. Given an affine space A on the vector space V , let

fP ∈ GAP(A) be an affinity in the stabilizer of P ∈ A and let tv ∈ T(A) be

the translation by the vector v ∈ V . Then, the action by conjugation of fP
on tv reads

fPtv f −1
P = t f (v) . (3.23)

where f ∈ GL(V ) is the automorphism associated with the affinity fP.

Proof. Let us evaluate fPtv f −1
P at an arbitrary point Q ∈ A to be expressed

as Q = P + w for a w ∈V .

Since fP is in the stabilizer of P, the inverse affinity f −1
P is also in GAP(A)

and, recalling (3.14), it satisfies

f −1
P (Q) = f −1

P (P + w) = P + f−1(w) .
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Then, the conjugation fPtv f −1
P is evaluated as follows:

( fPtv f −1
P )(Q) = ( fPtv)

(
f −1
P (Q)

)
= ( fPtv)

(
P + f−1(w)

)
= fP

(
P + f−1(w) + v

)
= P + f

(
f−1(w) + v

)
= P + w + f (v) ,

where the linearity of f ∈ GL(V ) has been exploited.

The above relation further simplify as

( fPtv f −1
P )(Q) = t f (v)

(
Q + f (v)

)
= t f (v)(Q) ,

whence, for the arbitrariness of Q, one infers

( fPtv f −1
P ) = t f (v) .

The result of Proposition 3.14 can be applied for a useful simplification

of the composition rule (3.22), which can be expressed as

g f =
(
twtg(v)

)
(gP fP) = tw+g(v)(gP fP) , (3.24)

where, being g the linear map associated with the affinity gP, the relation

(3.23) has been exploited.

Along with the identification (3.5) of the group T(A) with the vector

space V , a further useful identification relates the stabilizer of any point

P ∈ A with the general linear group of V .

Proposition 3.15. Let us fix an arbitrary point P ∈ A. The stabilizer

GAP(A) of P is isomorphic with GL(V ):

GAP(A) ∼= GL(V ) , ∀P ∈ A. (3.25)

Proof. Let λP : GAP(A)→ GL(V ) be the restriction of the group homomor-

phism (3.12) at the stabilizer GAP(A).

In order to prove the surjectivity of λP, let us show that for any isomor-

phism in GL(V ) there exist some affinities in the stabilizer of P.

Consider a linear transformation f ∈ GL(V ) and compose with the
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bijection µP defined by (3.2):

f ◦ µP : A→V

Q 7→ f (
#   –

PQ) .

The further composition with µ−1
P provides the map h = µ−1

P ◦ f ◦ µP

from A to itself, with the following rule:

f (Q) = P + f (
#   –

PQ) , ∀Q ∈ A.

Moreover, since any point Q ∈ Acan be expressed as the translation P+
#   –

PQ,

the map f satisfies the property

f (P +
#   –

PQ) = P + f (
#   –

PQ) , ∀ #   –

PQ ∈V ,

whence, by Proposition 3.7, f is clearly an affinity in GA(A) with f as

associated linear map.

Moreover, since f (P) = P, the affinity f is in the stabilizer of P. Then,

the preimage of GL(V ) under λP is exactly GAP(A) and the map λP is

surjective.

Please observe that λP is also injective because its kernel is trivial. In

fact, by (3.14), the affinities mapped to idV by λP satisfy the condition

f (P + v) = P + v , ∀ v ∈V ,

which holds true, for the arbitrariness of v, only if f = idA.

As a consequence of the isomorphisms (3.5) and (3.25), and expressing

GA(A) as the semidirect product given by (3.20), the following isomorphism

applies:

GA(A) ∼= V o GL(V ) , (3.26)

so that each affinity f ∈ GA(A) can be represented as

f ∼= (v, f ) , (3.27)
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where v ∈ V represents a translation tv and f ∈ GL(V ) is the linear map

associated with f .

Moreover, consistently with the semidirect product in (3.26), and recall-

ing (3.24), the following composition rule applies:

g f ∼= (w, g)(v, f ) =
(
w + g(v), g f

)
. (3.28)

3.4 Matrix Representation of Affinities

Please recall that introducing an frame F for an affine space A it is possible

to represent each point P ∈ A by an n-tuple p ∈ Fn, given by the bijective

map (3.6).

Moreover, by assembling the affine coordinates (p1, . . . , pn) of P in a

column matrix [p], it is desirable that the transformation f : P 7→ Q = f (P)

could be represented by a matrix multiplication in the form

[q] = [L][p] ,

just as linear maps do transform vectors, expressed in terms of coordinates,

through (B.109).

However, even if each affine transformation f ∈ GA(A) is associated with

a linear map f ∈ GL(V ), the matrix representation of f is not straightfor-

ward.

In fact, the group homomorphism λ : GA(A) → GL(V ), introduced by

(3.12), is not an isomorphism. Specifically, λ is not injective, and its kernel

is exactly the group of translations T(A) (cf. Proposition 3.11).

Consequently, since there exists no linear map in GL(V ), other the iden-

tity idV , to be associated with a translation, no affine transformation in-

cluding a translation can be represented by an n-by-n matrix.

To clarify the observation here above, please observe that when the trans-

lation component of an affinity f vanishes, the representation (3.27) reads

f ∼= (o, f ). Then, the transformation Q = f (P) can be expressed with
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respect to the frame F= {O;B } as

[q] = [A][p] , (3.29)

where [p] ∈ Mn×1 and [q] ∈ Mn×1 are the matrix representations of the

vectors
#   –

OP and
#   –

OQ, respectively, and [A] ∈ Mn is the matrix representation

of the linear map f . Formally, [p] and [q] are provided by the map θB defined

by (B.110), and [A] = Ψ(B ,B )( f ) is obtained by specializing the map (B.107).

On the contrary, when the affinity f is a pure translation, the isomor-

phism (3.27) becomes f ∼= (v, o), and the matrix representation of the

transformation Q = f (P) results

[q] = [p] + [v] , (3.30)

where, in addition to [p] and [q], the matrix representation [v] ∈ Mn×1 of

the translation vector v has been considered.

Please observe that, as opposed to (3.29), the sum of column matrices

in (3.30), representing the translation by v, is not a linear transformation

of [p].

3.4.1 Homogeneous Representation

With the aim to provide a matrix representation of a translation map con-

sistent with a linear transformation, the homogeneous coordinates of affine

points are traditionally introduced.

Definition 3.16. Let A be an affine space on the F-vector space V and let

F= {O;B } be an affine frame. The homogeneous representation of a point

P ∈ A, with respect to the frame F, is the column matrix [p]h ∈ Mn+1×1

such that the first n entries are the affine coordinates p1, . . . , pn of the point

P and the last one is 1:

[p]h = [p1 · · · pn 1]T =

[
p
1

]
. (3.31)

Please notice that, with a slight abuse of notation, in place of the matrix

symbol [p], the vector p has been used to denote the n-by-1 submatrix of
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[p]h.

The benefit of expressing the coordinates of affine points in the form

(3.31) is that the transformation (3.30) can be consistently represented as[
q
1

]
=

[
I v

oT 1

][
p
1

]
, (3.32)

where oT = [o]T is the 1-by-n submatrix with null entries, so that the

translation map (v, o) takes the form of a linear transformation on the space

of the (n + 1)-by-1 matrices.

In addition, the matrix operation (3.29), representing the affine transfor-

mation (o, f ), can itself be expressed with the formalism of the homogeneous

coordinates as[
q
1

]
=

[
A o
oT 1

][
p
1

]
. (3.33)

In conclusion, exploiting the homogeneous coordinate representation,

both (3.32) and (3.33) can be combined in a unique linear transformation

for a subset of Mn+1×1, representing the affine map f ∼= (v, f ).

Definition 3.17. Given the affine space A associated with the F-vector

space V , let f ∼= (v, f ) be an affine map. The homogeneous representation of

the affine transformation f ∈ GA(A), with respect to a frame F= {O;B },
is the square matrix [L]h ∈ Mn+1 in the form

[L]h =

[
A v
oT 1

]
, (3.34)

where the n-by-n submatrix A = [A] is the matrix representation of the

linear map f ∈ GL(V ) associated with f .

3.4.2 Change of Frame Matrix

Let us consider two affine frames FA and FB for the affine space A, which are

assigned as FA = {P0;P1, . . . ,Pn} and FB = {Q0;Q1, . . . ,Qn}, respectively.

Equivalently, the affine frames can be defined as FA = {P0; A } and FB =
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{Q0;B }, where the bases of vectors A = {a1, . . . , an} and B = {b1, . . . ,bn}
result from setting ai =

#      –

P0Pi and bi =
#       –

Q0Qi, with i = 1, . . . , n.

Recalling Proposition 3.9, the change of frame from FA to FB is repre-

sented by a map H B
A : A→ A, which is a bijective affinity of A and hence

is in GA(A).

Then, the decomposition (3.21) can be applied and H B
A can be intended

as an affinity hP, which stabilizes a point P, followed by a translation tv:

H B
A = tvhP , (3.35)

where one between the vector v or the fixed point P should be chosen, while

the other object is consistently derived.

Since the transformation H B
A maps the origin of FA to the one of FB , it

is convenient to make the vector v represent the translation from P0 to Q0,

defining

v =
#       –

P0Q0 = vB
A , (3.36)

and the fixed point P is obtained as the point of A satisfying the condition

P = H B
A (P)− v, that is

P = H B
A (P)− #       –

P0Q0 = P0 . (3.37)

In conclusion, the change of frame map H B
A is decomposed as

H B
A = tvB

A
hP0 , (3.38)

where hP0 ∈ GAP0 (A) is the affinity of A which fixes the origin P0 of FA ,

and tvB
A

is the translation map from P0 to Q0.

In addition, recalling (3.11), the linear map associated with H B
A is hB

A ,

which is the change of basis map from A to B , so that, by (3.27), the change

of frame can be represented as

H B
A
∼= (vB

A , hB
A ) . (3.39)

Consequently, applying Definition 3.17, the homogeneous representation
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of H B
A is

[HB
A ]h =

[
CB

A vB
A

oT 1

]
, (3.40)

where CB
A = [CB

A ] is the active matrix of change of basis for V , specified by

(B.118). Accordingly, [HB
A ]h is the active matrix of change of frame from

FA to FB , with the role to describe how the affine coordinates of a point,

relevant to FA , do change when it is mapped to a point associated with FB .

Now, consider a point X ∈ A whose coordinate vectors, with respect to

FA and FB , are xA and xB , respectively. Then, the coordinates of X are such

that

X = P0 + xi
A ai = Q0 + xk

B bk ,

whence, using (3.36) to express Q0 = P0 + vB
A , and also recalling (B.118),

one finds

P0 + xi
A ai = P0 + xk

B (CB
A )i

k ai + (vB
A )iai .

The identity here above implies xi
A = (CB

A )i
k xk

B + (vB
A )i, which can be

expressed in matrix form, using the homogeneous representation, as[
xA

1

]
=

[
CB

A vB
A

oT 1

][
xB

1

]
⇔ [xA ]h = [HB

A ]h[xB ]h ,

or equivalently

[xB ]h = [HA
B ]h[xA ]h . (3.41)

The matrix [HA
B ]h = [HB

A ]−1
h is the passive matrix of change of frame from

FA to FB , which transforms, for a fixed point, the homogeneous coordinates

with respect to FA to the ones with respect to FB .

Explicitly, the inversion of the matrix [HB
A ]h provides

[HA
B ]h =

[
CA

B v A
B

oT 1

]
=

[
CB

A
−1 −CB

A
−1

vB
A

oT 1

]
, (3.42)

85



Chapter 3 Affine Spaces and Affine Transformations

which represents both the passive change of frame from FA to FB and the

active transformation from FB to FA .
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Chapter 4

Euclidean Spaces and Rigid

Motions

A Euclidean affine space is associated with a Euclidean vector space. For

this reason, it is worth recalling in which sense a Euclidean vector space

is a specialization of general linear spaces, and how this reflects on the

characterization of Euclidean affine spaces.

Remark (Notation). By virtue of the identification (B.111) discussed in

Appendix B.4.1, the same symbol v will be used to denote both an element

of a vector space or its matrix representation [v] with respect to a fixed basis.

Similarly, on the basis of (B.108), the symbol of a tensor A will be used to

denote both the associated linear map f and its matrix representation [A],

and an evaluation w = f (v) will be denoted by juxtaposition as

w = Av ⇔ [w] = [A][v] .

4.1 Euclidean Vector Space

Definition 4.1. A vector space E is said a Euclidean vector space if it is

defined over the real field R and is endowed with a positive definite scalar

product.
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Please notice that the standard dot product 〈·, ·〉Rn , introduced by (B.84),

is positive definite. Then, Rn is the reference Euclidean vector space.

In a Euclidean vector space E , the associated scalar product naturally

induces the following norm:

‖v‖ =
√
〈v, v〉 , ∀ v ∈ E , (4.1)

which is called the Euclidean norm.

It is easy to recognize that the Euclidean norm is consistent with the gen-

eral notion of a norm as introduced by Definition B.50. Actually, since the

scalar product of a Euclidean vector space is positive definite, the positivity

condition is trivially satisfied.

In addition, the linearity of a scalar product implies

‖cv‖ =
√
〈cv, cv〉 =

√
c2〈v, v〉 = |c|

√
〈v, v〉 = |c|‖v‖ , ∀ v ∈ E , c ∈ R , ,

which corresponds to the second condition of Definition B.50.

Finally, since the scalar product is bilinear and symmetric, one can verify

that also the triangle inequality is satisfied:

‖v + v′‖ =
√
〈v + v′, v + v′〉 =

√
〈v, v〉+ 〈v′, v′〉+ 2〈v, v′〉

≤
√
‖v‖2 + ‖v′‖2 + 2‖v‖‖v′‖

= ‖v‖+ ‖v′‖ ,

where the Cauchy-Schwartz’ inequality (B.93) has been applied.

4.1.1 Orthonormal Bases

The Euclidean norm (4.1) allows one to recognize a unit vector as a vector u
such that ‖u‖ = 1. It is straightforward to see that for any non-null vector

v of V , there exists an associated unit vector given by v/‖v‖.

Definition 4.2. Let B = {e1, . . . , en} be a basis for a Euclidean vector space

E . We say that B is an orthonormal basis, with respect to the associated

scalar product, if it is orthogonal and any vector in B has a unitary norm.
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The orthogonality condition is defined by (B.86) and implies 〈ei, ej〉 = 0
for any pair of distinct vectors of an basis. At the same time, by (4.1), any

vector ei is such that 〈ei, ei〉 = 1. Both properties can be summarized by

the following condition:

〈ei, ej〉 = δij , (4.2)

where δij is the Kronecker symbol:

δij =

1 if i = j ,

0 if i 6= j .
(4.3)

Moreover, by the linearity of the scalar product, one also has

〈v,w〉 = 〈viei,wjej〉 = viwj〈ei, ej〉 = viwjδij , ∀ v,w ∈ E , (4.4)

or, explicitly,

〈v,w〉 = u1v1 + · · ·+ unvn , ∀ v,w ∈ E ,

whence, by virtue of (B.84), the scalar product of v and w equals the dot

product of the coordinate vectors v and w:

〈v,w〉 = 〈v,w〉Rn = v ·w , ∀ v,w ∈ E . (4.5)

For this reason, one can simply write

v ·w = 〈v,w〉 , ∀ v,w ∈ E , (4.6)

meaning that the dot product of v and w in a Euclidean vector space is

coincident with the standard dot product of the coordinate vectors relevant

to a orthonormal basis.

Remark. In identifying an endomorphism f with a tensor A, the equiva-

lence is given specializing (B.103) as

f (v) = Av = Ai
kek(v)ei = Ai

kvkei , (4.7)
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which is derived considering A = Ai
kei ⊗ ek a mixed tensor in T (1,1)(E ).

At the same time, supposing the vector Av is involved the scalar product

with a vector w, one has

〈Av,w〉 = Ai
kvkwj〈ei, ej〉 ,

where, if the basis of E is orthonormal, the condition 〈ei, ej〉 = δij implies

the simplification

〈Av,w〉 = Ai
kvkwjδij = Ajkvkwj .

that is A = Ajkei ⊗ ej should be intended as a covariant tensor in T (0,2)(E ).

The apparent contradiction is actually resolved by the self-duality of the

Euclidean vector space E (cf. Appendix B.3.2), which allows the identifica-

tion E ∗ ∼= E and also E ⊗E ∗ ∼= E ∗ ⊗E ∗.
In addition, if the basis B = {e1, . . . , en} is orthonormal, the coefficients

of A considered both as a mixed tensor or a covariant one do coincide:

Ai
j = Aij .

4.1.2 Linear Isometries

Definition 4.3. Let E and E ′ Euclidean vector spaces and let Q : E → E ′

be a map. We say that Q is an isometry if it takes the scalar product of E
to the one of E ′:

〈Qu,Qv〉E ′ = 〈u, v〉E , ∀ v, v′ ∈ E . (4.8)

Please observe that any map preserving the scalar product is linear, as

stated in the following proposition.

Proposition 4.4. Any isometry Q : E → E ′ between the Euclidean vector

spaces E and E ′ is a linear transformation.

Proof. Consider arbitrary vectors u, v and w of E . Then, exploiting the
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linearity of the scalar product both in E and E ′, the isometry Q satisfies

〈Qu + Qv,Qw〉E ′ = 〈Qu,Qw〉E ′ + 〈Qv,Qw〉E ′

= 〈u,w〉E + 〈v,w〉E = 〈u + v,w〉E
= 〈Q(u + v),Qw〉E ′ ,

whence, for the arbitrariness of w, one derives

Q(u + v) = Qu + Qv ∀ u, v ∈ E .

Similarly, considering the multiplication by an arbitrary scalar, one has

〈cQv,Qw〉E ′ = c〈Qv,Qw〉E ′ = c〈v,w〉E = 〈cv,w〉E
= 〈Q(cv),Qw〉E ′ ,

obtaining

Q(cv) = cQv ∀ v ∈ E , c ∈ R .

Then, by Definition B.8, the isometry Q il linear.

Please notice that if the map Q is an isometry, the orthogonality of

vectors is preserved:

〈Qu,Qv〉E ′ = 〈u, v〉E = 0 , ∀ u, v ∈ E : u ⊥ v ,

which is the reason why Q is also called orthogonal (see, e.g. Mac Lane and

Birkhoff (1999)).

Moreover, since any scalar product in a Euclidean vector space induces

a norm by (4.1), an isometry Q also satisfies

‖Qv‖E ′ = ‖v‖E , ∀ v ∈ E . (4.9)

A consequence of preserving the norm of vectors is the bijectivity of

isometries, as shown in the following proposition.

Proposition 4.5. Let Q : E → E ′ be an isometry between the n-dimensional

Euclidean vector spaces E and E ′. Then, Q is bijective.
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Proof. As a consequence of (4.9), the norm of the vector Qv ∈ E ′ is null if,

and only if, the norm of the vector v ∈ E vanishes.

Then, since in any Euclidean vector space the scalar product is non-

degenerate, as is the associated Euclidean norm, the condition Qv = o′

implies v = o, meaning that the linear isometry Q between E and E ′ is

injective (cf. Proposition B.11).

Also, by virtue of Corollary B.14, since the Euclidean vector spaces E
and E ′ have the same dimension, the orthogonal transformation Q is an

isomorphism.

A relevant feature of the orthogonal maps concerns the relation between

the transpose and the inverse map.

Proposition 4.6. Any linear transformation Q : E → E ′ between the n-

dimensional Euclidean vector spaces E and E ′ is orthogonal if, and only if,

the transpose is coincident with the inverse map:

QT = Q−1 . (4.10)

Proof. Let us apply the isomorphism Q to an arbitrary vector u ∈ E and

evaluate the transpose map to the image Qu ∈ E ′. Recalling the identity

(B.92), one has

〈QT(Qu), v〉E = 〈Qu,Qv〉E ′ , ∀ u, v ∈ E .

Assuming Q is orthogonal, by (4.8) one derives

〈QT(Qu), v〉E = 〈u, v〉E , ∀ u, v ∈ E ,

whence, for the arbitrariness of the vectors u and v, one obtains QTQ = idE ,

that is QT is the inverse of Q.

Conversely, supposing that (4.10) holds true, one can write

〈u, v〉E = 〈QT(Qu), v〉E = 〈Qu,Qv〉E ′ , ∀ u, v ∈ E ,

which proves the orthogonality of Q.
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A further property of orthogonal transformations between Euclidean vec-

tor spaces is to preserve the orthonormality of the relevant bases.

Proposition 4.7. Let E and E ′ be Euclidean vector spaces with the same

dimension n. Then, the linear map Q : E → E ′ is orthogonal if, and only if,

any orthonormal basis B = {e1, . . . , en} for E is mapped to an orthonormal

basis B ′ = {e′1, . . . , e′n} of E ′.

Proof. Since each basis vector ei ∈ B is mapped to e′i ∈ B ′ by Q, the

following identity holds true:

〈e′i, e′j〉E ′ = 〈Qei,Qej〉E ′ = 〈ei, ej〉E = δij .

Then, if Q is orthogonal, the scalar product is preserved, implying the

orthonormality of B ′:

〈e′i, e′j〉E ′ = 〈ei, ej〉E = δij .

Conversely, if B ′ is orthonormal, the identity 〈e′i, e′j〉E ′ = δij = 〈ei, ej〉E
implies the orthogonality of Q.

The Euclidean vector spaces E and E ′ such that an isometry Q : E → E ′

does exist, are called isometric.

Recalling the identification (4.5), it is clear that an n-dimensional Eu-

clidean vector space is isometric to Rn, which is assumed as the universal

model for all the n-dimensional Euclidean vector spaces.

4.1.3 The Orthogonal Group

By virtue of Proposition 4.5, an isometry Q : E → E , defined from a

Euclidean vector space E to itself, is an automorphism of E .

Then, the set of all the isometries of E is a subset of Aut(E ) and, along

with the usual linear map composition, has a group structure. Such a group,

which is actually a subgroup of the general linear group of E (cf. Definition

B.57), can be characterized using the property (4.10).
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Definition 4.8. Let E be a Euclidean vector space. The orthogonal group

of E , denoted as O(E ), is the group of the automorphisms of E which are

isometries:

O(E ) = {Q ∈ GL(E ) | QQT = QTQ = idE } . (4.11)

In addition to the properties shown in Section 4.1.2, since Q ∈ O(E ) is

an endomorphism of E , a further characterization concerns its determinant.

Actually, applying the properties of determinants given by (B.79) and

(B.80), and using (4.10), one has

det(idE ) = det(QTQ) = det(QT) det(Q) = 1 ,

and, exploiting the result of Proposition B.46, one also infers

det(QT) det(Q) = det(Q)2 = 1 ,

whence det(Q) = ±1.

Please notice that, when a basis B for E is considered, any isometry

Q ∈ O(E ) can be seen as a change of basis map from B to another basis B ′ of

the same vector space E . Also, recalling Proposition 4.7, if B = {e1, . . . , en}
is orthonormal, the basis B ′ = {e′1, . . . , e′n} of E is itself orthonormal.

Moreover, suppose an orientation O is considered for E (cf. Definition

B.51). Recalling Proposition B.52, the basis B ′ resulting from applying Q is

consistently oriented with B if, and only if, the determinant of Q is positive.

Explicitly, the elements R ∈ O(E ) such that det(R) = 1 are the isome-

tries of E preserving the orientation induced by a basis B , a condition leading

to the following definition.

Definition 4.9. Given a Euclidean vector space E , the special orthogonal

group of E , denoted as SO(E ), is the group of isometries of E preserving

orientations:

SO(E ) = {R ∈ O(E ) | det(R) = 1 } . (4.12)

and an isometry R ∈ SO(E ) is called a rotation of E .
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In order to verify that the definition introduced here above actually

makes sense, please observe that SO(E ) is closed under linear map compo-

sition, resulting

det(R1R2) = det(R1) det(R2) = 1 , ∀R1,R2 ∈ SO(E ) .

so that the composition of linear maps provides the group structure to

SO(E ).

Please observe that the isometries Q of E with det(Q) = −1, named

the reflections of E , do not form a group. This trivially comes noting that

det(idE ) = 1, so that the identity idE is not a reflection and O(E )\SO(E )

is not a group.

More generally, O(E )\SO(E ) is not closed under the usual linear map

composition:

det(Q1Q2) = det(Q1) det(Q2) = 1 6= −1 , ∀Q1,Q2 ∈ O(E )\SO(E ) .

Matrix Orthogonal Group

It is worth recalling that, by virtue of the identification (B.108), the features

of isometries apply in a similar way to their matrix representation.

Specifically, a matrix Q ∈ Mn is orthogonal if satisfies QTQ = I, which

also reads

QTi
jQ

j
k = Qj

iQ
j
k = 〈Q(i),Q(k)〉Mn×1 = δik ,

meaning that the columns of Q are orthonormal.

Then, the orthogonal group of degree n is the subgroup of GL(n) whose

elements are orthogonal matrices:

O(n) = {Q ∈ GL(n) | QQT = QTQ = I } , (4.13)

as well as the special orthogonal group of degree n is the subgroup of O(n)

defined as

SO(n) = {R ∈ O(n) | det(R) = 1 } , (4.14)
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where, similarly to (B.117), the following isomorphism holds true:

SO(E ) ∼= SO(n) . (4.15)

4.2 Euclidean Affine Spaces

Definition 4.10. A Euclidean affine space, or simply a Euclidean space, is

an affine space E such that the underlying vector space E is Euclidean.

Recalling that the vector space E is endowed with the Euclidean norm

given by (4.1), one can exploit such a norm to define the distance between

points of the space E (see, e.g., Tarrida (2011)).

Definition 4.11. Let E be a Euclidean space and E the associated vector

space. The Euclidean distance between the points P and Q of E is the map

d : E× E→ R+
0

(P,Q) 7→ ‖ #   –

PQ‖ ,
(4.16)

where ‖ #   –

PQ‖ is the Euclidean norm of the vector
#   –

PQ.

4.2.1 Orthonormal Frames

Please recall from Definition 3.4 that an affine frame F = {O;B } for E

consists a point O ∈ E and a basis B for the associated vector space E , so

that the features of the basis B are also reflected in the frame F.

Definition 4.12. An affine frame F= {O;B } for a Euclidean affine space E

is orthonormal if B = {e1, . . . , en} is an orthonormal basis for the associated

vector space E .

A further feature of the underlying vector space E which is reflected on

the affine space E concerns the orientation.

Specifically, the affine Euclidean space E is oriented if an orientation O
is fixed for the associated vector space E .

Then, the orientation of the affine frame F= {O;B } is the one induced

by basis B = {e1, . . . , en} of E .

96



Chapter 4 Euclidean Spaces and Rigid Motions

4.2.2 Euclidean Motion

Definition 4.13. Let E and E′ be Euclidean affine spaces. An isometry

between E and E′ is a map f : E→ E′ preserving the distance:

d
(

f (P), f (Q)
)

= d(P,Q) , ∀P,Q ∈ E. (4.17)

The isometries between Euclidean affine spaces are strictly related to

the linear isometries between the relevant vector spaces, as shown in the

following proposition.

Proposition 4.14. Let E and E′ be Euclidean affine spaces and let E and

E ′ be the associated vector spaces. Then, a map f : E→ E′ is an isometry

if, and only if, it is an affinity and the associated linear map Q : E → E ′ is

orthogonal.

Proof. Suppose f is an isometry, so that the following relation is satisfied:

d
(

f (P), f (Q)
)

= d(P,Q) = ‖ #   –

PQ‖ .

At the same time, the distance function on E is such that

d
(

f (P), f (Q)
)

= ‖
#                    –

f (P) f (Q)‖ = ‖QP(
#   –

PQ)‖ ,

where QP : E → E ′ is the map induced by f , as defined by (3.7).

By comparison, it is clear that the map QP is distance-preserving and,

by Proposition 4.4, it is a linear transformation.

Consequently, recalling Definition 3.5, the isometry f is an affinity and

the associated linear map Q = QP, which actually does not depend on P

(cf. Proposition 3.6), is orthogonal.

The converse is readily verified. In fact, if f is an affinity and Q is

orthogonal, the following relation holds true:

d
(

f (P), f (Q)
)

= ‖
#                    –

f (P) f (Q)‖ = ‖Q(
#   –

PQ)‖ = ‖ #   –

PQ‖ = d(P,Q) ,

which means that the affinity f is actually an isometry.
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4.2.3 The Euclidean Group

When an isometry is in the form f : E → E, the associated linear map

is an orthogonal transformation Q : E → E . Consequently, since Q is an

automorphism of E , the affinity f is also bijective (see, e.g., Tarrida (2011)).

Then, the map composition provides a group structure to the set of the

isometries of E, which is a subgroup of the affine group GA(E) (cf. Definition

3.10), and the group of the induced linear maps is the orthogonal group of

E .

Definition 4.15. Let Ebe a Euclidean affine space with the associated vec-

tor space E . The Euclidean group, or the group Euclidean transformations,

of E is the group of the isometries of E and is denoted as E(E):

E(E) = { f ∈ GA(E) | Q ∈ O(E ) }. (4.18)

Moreover, when a rotation R ∈ SO(E ) is considered as associated linear

map, the isometry f is called a (proper) Euclidean motion, or also a (proper)

rigid motion. This kind of isometries form a subgroup of the Euclidean group

of E.

Definition 4.16. The special Euclidean group of a Euclidean affine space

E is the group of the proper Euclidean motions of E:

SE(E) = {H ∈ E(E) | R ∈ SO(E ) }. (4.19)

Please recall from Definition 3.1 that, as an affine space, the Euclidean

space E is characterized by the action of the associated vector space E on

its points, which takes the form of translations (cf. Definition 3.3).

Specifically, any translation map tv is an isometry for E, resulting

d
(
tv(P), tv(Q)

)
= d(P + v,Q + v) = d(P,Q) , ∀P,Q ∈ E,

since the vector from P + v to Q + v is the same vector
#   –

PQ from P to Q.

In addition, as shown in Proposition 3.11, the translations of E are the

affinities whose relevant linear map is the identity idE , and the then group

of translations T(E) is normal in SE(E).
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Consequently, similarly to the decomposition applied to the affine group

GA(E) in Section 3.3.2, the Euclidean group of E can be expressed as

SE(E) ∼= T(E) o SEP(E) , (4.20)

where SEP is the group of the proper motions of E which fix a point P and

acts by conjugation on the translations of E.

In practice, any proper motion H ∈ SE(E) can be thought as a proper

rigid motion H P ∈ SEP(E) around a point P, followed by the translation tv

by a vector v:

H = tvH P . (4.21)

In addition, following the same approach shown in Proposition 3.15,

one can verify that the stabilizer SEP(E) is isomorphic with the special

orthogonal group SO(E ).

Then, considering also that any translation tv is associated with a vector

v ∈ E , and vice-versa, the following representation of SE(E) applies:

SE(E) ∼= E o SO(E ) , (4.22)

and the proper Euclidean motion H can be represented as

H ∼= (v,R) . (4.23)

Furthermore, the composition rule consistent with the semidirect prod-

uct (4.22) is

H 2H 1
∼= (v2,R2)(v1,R1) = (v2 + R2v1,R2R1) , (4.24)

where the vector R2v1 results from the action by conjugation of H P2
∼= R2

on tv1
∼= v1 (cf. Proposition 3.14).

Matrix Euclidean Group

Please recall that when a frame F is considered, an affinity f can be ex-

pressed in matrix form by the homogeneous representation (cf. Definition
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3.17).

Referring to an isometry f of the Euclidean group E(E), the homoge-

neous representation reads

f ∼= L =

[
Q v
oT 1

]
, (4.25)

with the condition Q ∈ O(n).

Then, the matrices expressed as in (4.25) form a group which is called

the Euclidean group of degree n:

E(n) =

{[
Q v
oT 1

]
∈ GL(n + 1)

∣∣∣∣∣ Q ∈ O(n)

}
. (4.26)

Similarly, the homogeneous representation of a proper Euclidean motion

H ∈ SE(E) results

H ∼= H =

[
R v
oT 1

]
, (4.27)

where now R is in SO(n).

Consequently, the group of the matrices in the form (4.27) is called the

special Euclidean group of degree n:

SE(n) =

{[
R v
oT 1

]
∈ E(n)

∣∣∣∣∣ R ∈ SO(n)

}
. (4.28)

It is easy to verify that the matrix multiplication of two matrices H2

and H1 in the form (4.27) is consistent with the composition of the motions

(v2,R2) and (v1,R1) expressed by (4.24):

H2H1 =

[
R2 v2

oT 1

][
R1 v1

oT 1

]
=

[
R2R1 v2 + R2v1

oT 1

]
, (4.29)

so that the groups SE(E) and SE(n) are isomorphic:

SE(E) ∼= SE(n) . (4.30)
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Moreover, the matrix product (4.29) also highlights the action of R2 ∈
SO(n) on v1 ∈ Rn in accordance with the following semidirect product

decomposition:

SE(n) ∼= Rn o SO(n) . (4.31)

4.3 Rotations in 3-Dimensional Spaces

The structure of Euclidean vector spaces and Euclidean affine spaces intro-

duced in the previous section is deeper investigated for the case of three-

dimensional spaces.

Specifically, for the role that this kind of spaces plays in Mechanics, it

appears appropriate to provide a more comprehensive description of rigid

motions in three-dimensional spaces.

4.3.1 Cross Product and Alternating Tensors

Let B = {e1, e2, e3} be an orthonormal basis for the Euclidean vector space

E and consider the space of the alternating tensors Λ3(E ).

Please recall from Appendix B.2.3 that Λ3(E ) is a one-dimensional vec-

tor space whose basis is given by the wedge product of the vectors of B :

ι = e1 ∧ e2 ∧ e3 . (4.32)

Since Λ3(E ) is a real one-dimensional vector space, it is isomorphic with

R and, for this reason, any element ω ∈ Λ3(E ) is also called a pseudoscalar.

Please observe that the vectors ei, ej, ek do satisfy

ei ∧ ej ∧ ek = εijkι , (4.33)

where εijk is the Levi-Civita symbol:

εijk =

sgn(σ) if (i, j, k) =
(
σ(1), σ(2), σ(3)

)
,

0 otherwise .
(4.34)
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with σ ∈ S3 a permutation on {1, 2, 3}.
Also, the space Λ2(E ) of alternating tensors is a three-dimensional vector

space over R and is isomorphic with E . Actually any tensor a ∧ b ∈ Λ2(E )

can be associated with a unique vector c ∈ E by means of the following

construction:

〈c, v〉ι = v ∧ a ∧ b , ∀ v ∈ E , (4.35)

and the map identifying a ∧ b with c = ∗(a ∧ b) is also called the Hodge

star (see, e.g., Winitzki (2020)).

As an example, the Hodge star of e2 ∧ e3 is evaluated as

〈c, v〉ι = v ∧ e3 ∧ e3 = v1e1 ∧ e2 ∧ e3 = v1ι , ∀ v ∈ E ,

where, for the arbitrariness v, one infers c = ∗(e2 ∧ e3) = e1, with the usual

identification e1(v) = 〈e1, v〉. Similarly, one can evaluate ∗(e3 ∧ e1) = e2

and ∗(e1 ∧ e2) = e3.

More generally, noting that v∧ a∧ b = εijkviajbkι, and that 〈a× b, v〉 =

εijkviajbk one can easily recognize that the Hodge star of a∧ b is exactly the

cross product of a and b:

a× b = ∗(a ∧ b) . (4.36)

Moreover, since Λ2(E ) is a subspace of T (2,0)(E ), for the self-duality of

E and with the identification (4.7), any W ∈ Λ2(E ) results a linear map

W : E → E such that the property of being alternating applies as follows:

〈Wv,w〉 = −〈v,Ww〉 , ∀ v,w,∈ E , (4.37)

which, being 〈v,Ww〉 = 〈WTv,w〉, specializes in

WT = −W . (4.38)

A further connection between the cross product and the space of alter-
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nating tensors is given by the following map:

(·)̂ : E → Λ2(E )

a 7→ â ,
(4.39)

such that â ∈ Λ2(E ) is the alternating tensor satisfying

âb = a× b , ∀ b ∈ E . (4.40)

Moreover, since the cross product is linear, the map (4.39) applies as

follows

â = (aiei)̂ = aiêi ,

which takes the explicit matrix form:

a =

a1

a2

a3

 7→ â =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 . (4.41)

The skew-symmetric matrices provide the matrix representation of the

alternating tensors in Λ2(E ) and can themselves be considered as alternating

tensors for the vector space R3. Then, the following characterization is

introduced:

Λ2(R3) = {W ∈ M3 |WT = −W } . (4.42)

4.3.2 3-Dimensional Rotations

The transformations of the special orthogonal group, introduced by Defini-

tion 4.8, do have the geometric meaning of rotations, intended as the circular

movement around an axis.

Specifically, in the framework of a three-dimensional Euclidean vector

space E , let k be a unit vector identifying an axis of rotation and let u be

a vector rotated by an angle θ around k, according to the right hand rule.
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The resulting vector v is expressed as

v = cos θ u + sin θ k× u + (1− cos θ)(k · u)k ,

which represents the Rodrigues’ rotation formula (Rodrigues, 1840), and can

be rearranged as

v = u + sin θ k× u + (1− cos θ)k× k× u . (4.43)

Moreover, applying the map (4.39) to the unit vector k, such a transfor-

mation can be expressed as

v = u + sin θ k̂u + (1− cos θ)k̂2u , (4.44)

so that the rotation by θ around k takes the form of the linear transformation

R(θ,k) : E → E expressed as

R(θ,k) = I + sin θ k̂ + (1− cos θ)k̂2 . (4.45)

It is possible to verify by direct computation that R(θ,k)R
T
(θ,k) = I, as

well as det(R(θ,k)) = 1, the geometric transformations in the form (4.45) are

exactly the proper orthogonal transformation of E .

When the transformation R(θ,k) is applied to the vectors of an orthonor-

mal basis B = {e1, e2, e3}, a new basis B ′ = {e′1, e′2, e′3} is obtained.

Please observe that, by Proposition 4.7, the new basis is itself orthonor-

mal and, being det(R(θ,k)) = 1 > 0, the orientation induced by B is also

preserved.

Then, R(θ,k) = RB ′
B represents the change of basis map from B to B ′

and, as such, the associated matrix has both the meaning of the active

transformation from B to B ′ and the passive coordinate transformation from

B ′ to B (cf. Appendix B.4.4).

In other words, the coordinates of a vector u attached to B transform as

u′ = RB ′
B u when B is rotated to the configuration B ′. At the same time, if

uB ′ is the coordinate vector of u with respect to B ′, the same transformation

uB = RB ′
B uB ′ provides the coordinate vector uB with respect to the basis B .

In addition, the same rotation RB ′
B also plays to role to represent the
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configuration of B ′ with respect to B . Actually, supposing the basis B
is fixed and the new one B ′ is introduced, the relevant basis vectors do

transform as

e′j = RB ′
B ej ,

whence, the i-th coordinate of the unit vector e′j with respect to B is

(e′j)
i = e′j · ei = (RB ′

B ej) · ei = (RB ′
B )ij ,

that is the j-th column of the orthogonal matrix RB ′
B gathers the coordinates

of the new unit vector e′j with respect to the basis B .

4.3.3 Lie Group Structure of SO(3)

By virtue of the isomorphism (4.15), the matrix group SO(3) is here analyzed

as a reference for the group of proper rotations of E .

Please recall that the group SO(3) is the matrix Lie group characterized

by the property RRT = RTR = I, with det(R) = 1.

The defining property can be exploited to identify the Lie algebra of

SO(3) as follows.

Let us consider a parameterization t 7→ R(t) such that R(0) = I, which

represents a curve on SO(3) starting at the identity I. Moreover, for the

orthogonality of any matrix of SO(3), the following identity holds true

R(t)
(
R(t)

)T
= I ,

and the derivative with respect to the scalar t reads

d
dt

RRT = R′(t)RT(t) + R(t)R′T(t) = 0 ,

where R′(t) denotes the derivative of R with respect to t, and the same

applies to the transpose, while the derivative of the identity matrix I does

vanish.
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Then, setting t = 0, one finds

R′(0)RT(0) + R(0)R′
T
(0) = R′(0) + R′

T
(0) = 0 ,

whence the velocity R′(t) of any curve in the form t 7→ R(t) at the identity

turns out to be a skew-symmetric matrix

R′(0) = −R′
T
(0) .

Since the velocity of a curve at a point of a smooth manifold is an element

of the tangent space at that point (cf. Section 2.2.5), the tangent space

of SO(3) at the identity I is the space three-dimensional skew-symmetric

matrices:

TISO(3) = Λ2(R3) .

With the identification Lie
(
SO(3)

) ∼= TISO(3) (cf. Proposition 2.33),

one can conclude that the Lie algebra of SO(3) is the space of the skew-

symmetric matrices, endowed with the matrix commutator as Lie bracket.

Such a space is a subalgebra of the general linear Lie algebra gl(3) and

is denoted as so(3).

Definition 4.17. The special orthogonal Lie algebra of order 3, denoted

as so(3), is the space of the three-dimensional skew-symmetric matrices,

endowed with the matrix commutator:

so(3) = {W ∈ gl(3) |WT = −W } . (4.46)

Because of the connection of so(3) with the Lie group SO(3), the follow-

ing identification applies:

Lie
(
SO(3)

) ∼= so(3) . (4.47)

4.3.4 Exponential Map of SO(3)

By virtue of the vector space isomorphism R3 → Λ2(R3) specified by (4.41),

let us consider the elements of the Lie algebra so(3) in the form θ̂, with θ
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a vector of R3.

Moreover, it is useful to consider the decomposition

θ = θk , (4.48)

with θ = ‖θ‖ and k = θ/θ.

With the decomposition (4.48), the vector θ ∈ R3 can represent a three-

dimensional rotation by the angle θ around the axis identified by k, and the

relevant rotation matrix is given by the Rodrigues’ formula (4.45).

Then, the exponential map for SO(3) reads

exp : so(3)→ SO(3)

θ̂ 7→ exp(θ̂) = Rθ ,
(4.49)

where Rθ is expressed as

Rθ = I + sin‖θ‖ θ̂

‖θ‖ +
(
1− cos‖θ‖

) θ̂2

‖θ‖2
. (4.50)

The explicit expression of exp(θ̂) can also be derived recalling that the

exponential map of a matrix Lie group is given by the matrix exponential

(cf. Section 2.6.2).

Then, the power series defined by (2.42) specializes to

eθ̂ =
∞

∑
k=0

θ̂
k

k!
= I +

∞

∑
j=0

θ2j+1

(2j + 1)!
k̂2j+1 +

∞

∑
j=1

θ2j

(2j)!
k̂2j , (4.51)

where the odds powers have been separated from the even ones and the the

decomposition θ̂ = θk̂ has been used.

Moreover, please observe that for a unit vector k̂ the following identities

apply:

k̂2j = (−1)jk̂2 , k̂2j+1 = (−1)jk̂ ,
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so that one finds

eθ̂ = I +

( ∞

∑
j=0

(−1)j

(2j + 1)!
θ2j+1

)
k̂ +

( ∞

∑
j=1

(−1)j

(2j)!
θ2j

)
k̂2 .

It is easy to recognize that the two power series in the formula here

above represent exactly sin θ and 1− cos θ, respectively, in the form of the

Maclaurin series expansion. Hence, the same expression as in (4.50) is found.

Differential of the Exponential Map of SO(3)

In addition to the exponential map, an explicit formula for the differential

dexp, whose role is specified in Section 2.6.4, can also be provided.

To this aim, let us first observe that representing the skew-symmetric

matrices of Λ2(R3) by means of the map (4.41), the matrix commutator

applies as follows:

[â, b̂] = (a× b)̂ = (âb)̂ , (4.52)

which can be verified by applying the skew-symmetric matrix [â, b̂] to an

arbitrary c ∈ R3.

Please recall also that the matrix commutator represents the Lie bracket

of so(3), which coincides with the adjoint representation of so(3) (cf. Defini-

tion 2.41). Then, in identifying so(3) with R3, the evaluation adâ(b̂) = [â, b̂]

of the adjoint representation becomes

adâ(b̂) ∼= ada(b) = âb , (4.53)

and the k-th power of the adjoint representation adâ takes the following

explicit form

adk
â
∼= adk

a = âk .

With the specifications here above, the operator Dθ̂ defined by (2.57)

and associated with the differential of the exponential map, takes the fol-
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lowing form:

Dθ̂ =
∞

∑
k=0

(−1)k adk
θ̂

(k + 1)!
∼= Tθ =

∞

∑
k=0

(−1)k θ̂
k

(k + 1)!
. (4.54)

The tangent operator Tθ is a linear operator whose action on R3 is

equivalent to the one of Dθ̂ on so(3):

Tθ : R3 → R3

a 7→ Tθa =
∞

∑
k=0

(−1)k θ̂
k
a

(k + 1)!
,

(4.55)

where, by virtue of the equivalence so(3) ∼= R3 specified by (4.41), and using

(4.53), the following identity applies:

(Tθa)̂ = Dθ̂(â) . (4.56)

Then, the differential of the exponential map defined by (2.53), at a

vector θ ∼= θ̂ ∈ so(3), specializes to SO(3) as follows:

dexp|θ : R3 → TRθ
SO(3)

a 7→ dexp|θ(a) = Rθ(Tθa)̂ .
(4.57)

Furthermore, with a procedure similar to the one proving the equivalence

of the exponential map in (4.49) with the Rodrigues’ rotation formula, the

following explicit expression for Tθ can be verified:

Tθ = I− 1− cos‖θ‖
‖θ‖

θ̂

‖θ‖ +

(
1− sin‖θ‖

‖θ‖

)
θ̂

2

‖θ‖2
. (4.58)

It is worth observing that the operator Tθ maps any element a of R3,

meant as the tangent space of the smooth manifold R3 at θ, to the vector

Tθa belonging to R3 ∼= so(3), isomorphic with the tangent space at the

identity of SO(3). Then, exploiting the Lie group structure of SO(3), the

tangent vector (Tθa)̂ is mapped to Rθ(Tθa)̂, which is a tangent vector

to SO(3) at Rθ, by left translation.
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4.3.5 Logarithm Map of SO(3)

Since any rotation matrix R ∈ SO(3) can be expressed in the form of the

Rodrigues’ formula (4.45), the associated rotation vector can be derived by

noting that the only skew-symmetric term results

sin θ k̂ =
R−RT

2
,

while the trace of R, applied to the symmetric part, gives

tr(R) = 1− 2 cos θ .

Then, the definition of the logarithm map for SO(3) is

log : SO(3)→ so(3)

R 7→ θ̂ ,
(4.59)

where, evaluating θ = arccos
( tr(R)−1

2

)
, one has

θ̂ = log(R) =
θ

2 sin θ
(R−RT) . (4.60)

Please recall from Theorem 2.48 that the matrix exponential eX is a

diffeomorphism between the matrix Lie algebra and the relevant matrix Lie

group if the eigenvalues λi of X, with i = 1, . . . , n, satisfy the condition

−π < =(λi) < π.

With respect to the group SO(3), it is easy to verify that any skew-

symmetric matrix θ̂ ∈ so(3) has a null real eigenvalue, while the other two

eigenvalues are conjugate purely imaginary numbers:

λ1 = 0 , λ2,3 = ±θi ,

where θ is exactly the norm of the vector θ associated with θ̂ through the

map (4.41).

Then, since the matrix exponential eθ̂ coincides with the matrix Rθ of

the rotation by θ, the exponential map exp : so(3)→ SO(3) is a diffeomor-

phism if the angle of rotation satisfies −π < θ < π.
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In these conditions, the logarithm map given by (4.59) is the inverse of

the exponential map defined by (4.49).

Moreover, limiting the analysis at −π < θ < π, the differential of the

logarithm map is also well-defined as dlog = dexp−1, with the role to map

a tangent vector X at R ∈ SO(3), to a vector in R3.

In order to find an explicit form for dlog, please notice from (4.57) that

X ∈ TRSO(3) can be expressed in the form X = Rb̂, for a b̂ ∈ so(3). Then,

applying the left translation by RT, one has

b̂ = RTX ,

where the skew-symmetric matrix b̂, playing the role of a tangent vector in

TISO(3) ∼= so(3), is the image of a matrix â through the operator Dlog(R).

Then, assuming θ is the vector in R3 such that θ̂ = log(R), the equiv-

alence (4.56) implies

b̂ = Dlog(R)(â) = (Tθa)̂ .

whence, in terms of a linear transformation in R3 ∼= so(3), one infers

a = T−1
θ b.

The existence of a, with the role of a tangent vector to R at θ, is assured

by the diffeomorphic relation between so(3) ∼= R3 and SO(3), within the

limitation −π < θ < π.

Consequently, T−1
θ is well-defined as the inverse tangent operator at θ,

and its explicit expression is

T−1
θ = I +

1
2
θ̂+

(
1− ‖θ‖

2
cot
‖θ‖

2

)
θ̂

2

‖θ‖2
. (4.61)

In conclusion, the differential of the logarithm map can be formally de-

fined as

dlog|R : TRSO(3)→ R3

X 7→ dlog|RX = T−1
θ b ,

(4.62)
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with b̂ = RTX and θ̂ = log(R).

4.4 Rigid Motions in 3-Dimensional Spaces

The special Euclidean group introduced by Definition 4.16 gathers the proper

rigid motions of a Euclidean affine space E.

When one refers to a three-dimensional Euclidean space E, any rigid

motion, except for pure translations, can be described as a rotation about

an axis a of E and a translation along the same axis. Such a property is

the statement of the Chasles’ theorem.

Let us consider a point P ∈ E and suppose that the axis of rotation a

passes through P. By fixing P, any point Q ∈ E is uniquely identified by a

vector
#   –

PQ of the associated vector space E (cf. Section 3.1).

Then, a rotation by an angle θ around the axis a, identified by the unit

vector k, is described by the transformation R(θ,k) = Rθ, given by (4.45),

while a translation along a is represented by a vector in the form dk, for

some scalar d ∈ R.

Consequently, exploiting the representation of the Euclidean motions as

in (4.23), this kind of transformation can be expressed as

H a
∼= (dk,Rθ) . (4.63)

Please notice that, denoting the rotation around P as H P
∼= (o,Rθ)

and the translation along k as tdk
∼= (dk, idE ), the following decomposition

applies:

H a = tdkH P = H Ptdk ,

where the transformations H P and tdk do commute because k is an eigen-

vector of the linear map Rθ.

In order to describe an arbitrary rigid motion of the Euclidean space,

please observe that the point P can be reached, starting from an arbitrary

point O ∈ E, by means of a translation tp by the vector p =
#   –

OP.

For this reason, a Euclidean transformation H can be obtained by first
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applying a translation t−p, which makes P coincident with O. Then, with the

axis a passing through O, the transformation H a is applied and finally the

inverse translation tp brings the axis a back to the original configuration:

H = tpH at−p
∼= (−p, I)(dk,Rθ)(p, I) , (4.64)

which, using the composition rule (4.24), simplifies in

H ∼= (v,R) =
(
(I−Rθ)p + dk,Rθ

)
. (4.65)

In conclusion, a proper rigid motion H ∈ SE(E), consisting of an or-

thogonal transformation R ∈ SO(E ) and a translation by a vector v ∈ E , is

equivalent to a rotation of an angle θ around an axis a, having the direction

of k and passing through a point P at the location p =
#   –

OP, along with a

translation by dk in the same direction of a.

The equivalence of these two characterization of the motion H is assured

by setting R = Rθ and v = (I−Rθ)p + dk.

It is worth remarking that an analogous description of the motion H
can be made by using the homogeneous representation given by (4.27).

Actually, the rigid motion with respect the axis a in (4.63) can be ex-

pressed as

H a
∼= Ha =

[
Rθ dk
oT 1

]
, (4.66)

where, since the point P of a has been considered fixed in E, the matrix

Ha is the homogeneous representation of the affine transformation H a with

respect to a reference frame FP = (P;B ), having P as origin (cf. Definition

3.17).

Moreover, the composition in (4.64) reads

H ∼= H =

[
I p

oT 1

][
Rθ dk
oT 1

][
I −p

oT 1

]
, (4.67)
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which simplifies in

H ∼= H =

[
Rθ v
oT 1

]
=

[
Rθ (I−Rθ)p + dk
oT 1

]
. (4.68)

Please observe that the composition (4.67) can be seen as the change of

frame from FO = (O;B ) to FP = (P;B ), followed by the rigid transforma-

tion Ha expressed in FP and a further change of frame to FO.

Screw Motion

Let us consider the translation vector v of the Euclidean motion H ∼=
(v,Rθ), expressed in the form v = (I−Rθ)p + dk.

Using the identity (4.113), one finds

v = −TT
θθ̂p + dk = −TT

θ(θ× p) + dk = TT
θ(p× θ) + dk ,

which, since k is an eigenvector of Tθ, can be written as

v = TT
θ(dk + p× θ) = TT

θu , (4.69)

where it has been set

u = dk + p× θ . (4.70)

Then, the Euclidean motion H can be represented as

H ∼= (TT
θu,Rθ) . (4.71)

whose homogeneous representation results

H ∼= H =

[
Rθ TT

θu
oT 1

]
. (4.72)

Please notice that, since both the rotation Rθ and the tangent operator

Tθ depend on θ, once the rotation vector has been fixed, the Euclidean

motion is a function only of the vector u expressed by (4.70).

The pair (θ,u), which is called a screw, completely identifies the rigid
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motion in (4.71), or equivalently the homogeneous representation in (4.72),

which is called a screw motion.

It is worth observing that the rotation component of the screw (θ,u)

has the meaning of defining the angle of rotation θ = ‖θ‖ and the axis of

rotation k = θ/θ, while the role of the translation component u follows

from (4.70).

Actually, the projection of u on k is

d = u · k , (4.73)

which represents the pure translation contribution to the rigid motion par-

allel to the axis of the screw, while the other addend in (4.70) is

p× θ = u− dk . (4.74)

which represents the moment of the rotation vector θ with respect to the

reference point O.

Furthermore, a screw (θ,u) can also be intended as a vector s ∈ R6,

that is

(θ,u) ∼= s =

[
sr
st

]
=

[
θ

u

]
, (4.75)

with the clear meaning that sr = θ is the rotation vector, associated with

the matrix R, and st = u is the translation vector providing v = TT
θu.

4.4.1 Lie Group Structure of SE(3)

Similarly to the special orthogonal group analyzed in Section 4.3.3, the group

isomorphism (4.30) allows one to consider the matrix Lie group SE(3) as a

reference for the group SE(E) of the proper rigid transformations of Eu-

clidean space E.

Please recall from (4.28) that any element of SE(3) is in the form

H =

[
R v
oT 1

]
,
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with R a rotation matrix in SO(3) and v a vector in R.

In order to identify the Lie algebra of SE(3), let us consider an arbitrary

curve on the group, starting at the identity I, by introducing a parame-

terization t 7→ H(t) such that H(0) = I, whose velocity at the identity

results

H′(0) =

[
R′(0) v′(0)

oT 0

]
.

In Section 4.3.3 it has been shown that R′(0) is a skew-symmetric matrix,

with the subsequent identification of Lie
(
SO(3)

)
with so(3) (cf. Definition

4.17). At the same time, since the parameterization t 7→ v(t) is a curve of

R3, the velocity v′(0) is a vector in R3.

Then, the velocity H′(0), which is a vector tangent to SE(3) at the

identity I, is completely specified by a skew-symmetric matrix W ∈ Λ2(R3)

and a vector x ∈ R3, so that the tangent space to TISE(3) is the space of

the matrices in the form[
W x
oT 0

]
,

and, with the matrix commutator, the Lie algebra se(3) is accordingly char-

acterized.

Definition 4.18. The special Euclidean Lie algebra of order 3, denoted

as se(3), is the subalgebra of the general linear algebra gl(4) such that

the leading principal minor of any element is a three-dimensional skew-

symmetric matrix:

se(3) =

{[
W x
oT 0

]
∈ gl(4)

∣∣∣∣∣ WT = −W

}
. (4.76)

Exploiting the usual identification of the Lie algebra of a Lie group with

the tangent space at the identity, one can write

Lie
(
SE(3)

) ∼= se(3) . (4.77)

116



Chapter 4 Euclidean Spaces and Rigid Motions

Please recall that any skew-symmetric matrix results from a vector in R3

by means of the isomorphism (4.41). Consequently, it is useful to consider

an analogous map also for the elements of se(3):

(·)̂ : R6 → se(3)

h 7→ ĥ =

[
â x

oT 0

]
,

(4.78)

where h is the column matrix gathering a ∈ R3 and x ∈ R3:

h =

[
hr

ht

]
=

[
a
x

]
.

Exponential Map and Logarithm Map of SE(3)

As a matrix Lie group, the exponential map of SE(3) is given by the matrix

exponential defined by (2.42).

With the aim to provide an explicit expression of the exponential map,

let us consider the k-th power of a matrix ĥ ∈ se(3), which is given by

assembling θ̂ ∈ so(3) and x ∈ R3. By induction, it is easy to verify that ĥk

results

ĥk =

[
θ̂ x
oT 0

]k

=

[
θ̂

k
θ̂

k−1
x

oT 0

]
,

whence the power series defining the matrix exponential specializes to

eĥ =
∞

∑
k=0

ĥk

k!
=

[
I o

oT 1

]
+

 ∞

∑
k=1

θ̂
k

k!

∞

∑
k=1

θ̂
k−1

k!
x

oT 0

 . (4.79)

Please notice that principal leading minor of the matrix here above is ex-

actly the exponential of θ̂, which gives the rotation matrix Rθ, consistently

with the definition (4.49) of the exponential map of SO(3):

Rθ = eθ̂ = I +
∞

∑
k=1

ĥk

k!
.
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In addition, the power series multiplying the vector x in (4.79) can be

expressed as

∞

∑
k=0

θ̂
k

(k + 1)!
=

∞

∑
k=0

(−1)k (−θ̂)k

(k + 1)!
,

which, comparing with (4.55), is the tangent operator relevant to −θ, i.e.

T−θ = TT
θ.

In conclusion, the matrix exponential in (4.79) reads

eĥ = Hh =

[
Rθ TT

θx
oT 0

]
, (4.80)

and the exponential map of SE(3) is defined as follows:

exp : se(3)→ SE(3)

ĥ 7→ exp(ĥ) = Hh ,
(4.81)

where Hh is the homogeneous matrix given by (4.80).

It is important to observe that, comparing (4.80) with (4.72), the matrix

Hh is exactly the homogeneous representation of the motion associated with

the screw (θ, x).

This means that any vector h ∈ R6, or equivalently any ĥ ∈ se(3),

is a screw representing a rigid motion of the Euclidean space, and the Lie

algebra se(3) can itself be defined as the space of the screws. Also, using the

representation (4.75), the rotation and the translation components of h are

hr and ht, respectively, while the explicit representation of the screw motion

associate with ĥ ∈ se(3) is given by the matrix exponential in (4.80).

Let us now suppose that an homogeneous matrix H ∈ SE(3) is assigned.

The map providing the screw ĥ ∈ se(3) is the logarithm map of SE(3),

defined as:

log : SE(3)→ se(3)

H 7→ ĥ =

[
θ̂ u
oT 0

]
,

(4.82)
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where, being H ∼= (v,R), the skew-symmetric matrix θ̂ results from apply-

ing the logarithm map of SO(3) at R, as specified by (4.59). Also, since the

translation vector of H is in the form v = TT
θu, the vector u ∈ R3 of the

screw ĥ is evaluate as

u = T−Tθ v , (4.83)

where T−Tθ = T−1
−θ is the inverse tangent operator of SO(3), relevant to −θ,

evaluated by means of (4.61).

It is worth emphasizing that, similarly to what discussed in Section 4.3.5,

the exponential map exp : se(3) → SE(3) results a diffeomorphism, and

specifically a bijection, if the spectrum of the matrix ĥ ∈ se(3) is character-

ized by −π < =(λi) < π, with i = 1, . . . , 4.

Consequently, since any matrix in se(3) is in the form

ĥ =

[
θ̂ u
oT 0

]
,

the eigenvalues of ĥ are λ1,2 = 0 and λ3,4 = ±θi, with θ = ‖θ‖ representing

the norm of the rotation vector θ relevant to the screw ĥ.

Then, the same condition −π < θ < π applies to both SO(3) and

SE(3) in order to characterize the exponential map as a diffeomorphism.

In addition, one should also notice that the restriction about the angle of

rotation θ assures that the operator T−Tθ , which is involved in the logarithm

map of SE(3) through (4.83), is well-defined as the inverse of the tangent

operator T−θ of SO(3).

Adjoint Representation of SE(3) and se(3)

The adjoint representation of the a Lie group is introduced in Definition

2.40 and for a matrix Lie group specializes to the map (2.50).

In order to find and explicit expression, let us consider a an homogeneous

matrix H ∼= (R, v) whose adjoint map AdH : se(3) → se(3) applied at a
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screw ĥ provides the screw ŝ:

ŝ = AdH(ĥ) = HĥH−1 .

The explicit matrix representation is[
ŝr st
oT 0

]
=

[
R v
oT 1

][
ĥr ht

oT 0

][
RT −RTv
oT 1

]
,

whence[
ŝr ŝt
oT 0

]
=

[
RĥrR

T −RĥrR
Tv + Rht

oT 0

]
.

It is easy to recognize that the rotation component results

ŝr = RĥrR
T = (Rh)̂ ,

as well as the translation vector is

st = −RĥrR
Tv + Rht = −(Rhr)̂ v + Rht = v̂Rhr + Rht ,

where the last step is justified by the following identity:

−(Rhr)̂ v = −(Rhr)× v = v× (Rhr) = v̂Rhr .

Then, the two vector relations sr = Rhr and st = v̂Rhr + Rht can be

written in matrix form as[
sr
st

]
=

[
R 0

v̂R R

][
hr

ht

]
,

so that, the identification se(3) ∼= R6 allows one to identify the adjoint

representation of H with the linear operator AdH : R6 → R6 having the

following representation

AdH =

[
R 0

v̂R R

]
, (4.84)
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and satisfying

AdH h = AdH(ĥ) = HĥH−1 . (4.85)

As far as the Lie algebra, the adjoint representation of is given by the

Lie bracket operation (cf. Definition 2.41).

With specific reference to the matrix Lie algebra se(3), given x̂ ∈ se(3),

the adjoint representation adx̂ is the map se(3) → se(3) such that applied

at ŷ provides the screw ŝ:

ŝ = adx̂(ŷ) = [x̂, ŷ] , (4.86)

which, by explicit computation, reads[
ŝr st
oT 0

]
=

[
[x̂r, ŷr] x̂ryt − ŷrxt

oT 0

]
=

[
(x̂ryt)̂ x̂ryt + x̂tyr

oT 0

]
,

where, since x̂r and ŷr are matrices of so(3), the identity [x̂r, ŷr] = (x̂ryt)̂
follows from (4.52), as well as ŷrxt = −x̂tyr is derived from ŷrxt = yr × xt

coinciding with −xt × yr = −x̂tyr.

In conclusion, the rotation vector of the screw ŝ is sr = x̂ryt and the

translation component is st = x̂ryt + x̂tyr, so that the evaluation of (4.86)

can be equivalently represented as[
sr
st

]
=

[
x̂r 0

x̂t x̂r

][
yr

yt

]
,

that is

adx y ∼= adx̂(ŷ) = [x̂, ŷ] , (4.87)

where the linear operator adx : R6 → R6 explicitly results

adx =

[
x̂r 0

x̂t x̂r

]
. (4.88)
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Differential of the Exponential Map of SE(3)

Similarly to the differential of the exponential map of SO(3), given by (4.57),

the differential dexp of SE(3) at a vector x, relevant to the screw x̂ ∈ se(3),

is defined as follows

dexp|x : R6 → Texp(x̂)SE(3)

a 7→ dexp|x(y) = exp(x̂)(Txy)̂ .
(4.89)

where Tx : R6 → R6 is the tangent operator of SE(3). Its action on R6 is

equivalent to the one of the operator Dx̂ on se(3):

(Txy)̂ = Dx̂(ŷ) =
∞

∑
k=0

(−1)k adk
x̂(ŷ)

(k + 1)!
, (4.90)

with Dx̂ introduced in Proposition 2.46.

Expressions of the tangent operator Tx of SE(3) and the inverse T−1
x are

provided, among others, by Sonneville et al. (2014). However, a compact

and useful representation, based upon the algebra of dual numbers, will be

provided in Section 4.5.2.

4.5 Rigid Motions via Dual Numbers

In Section 4.4 it has been shown how any rigid motion is associated with a

screw by means of (4.72).

From an algebraic point of view, the relation between a rigid motion

matrix H and a screw (θ,u) is the same as the relation between a rotation

matrix R and a rotation vector θ. However, using screws to manage rigid

motions is quite complex if compared with the pure rotation counterpart.

Manipulating screw coordinate transformations can be significantly sim-

plified if the formalism of dual numbers is adopted. Actually, such an ap-

proach consists in using the same expressions applied for the operators of

SO(3), to be referred to the ring D of dual numbers rather than to the field

R of real ones.
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4.5.1 Dual Numbers

Dual numbers have been originally introduced by Clifford (1871) and have

been widely applied in kinematic analysis of rigid body systems (see, e.g.,

Angeles (1998), Bottema and Roth (1990), Dimentberg (1968), Fischer (1999),

McCarthy (1990), Pennestr̀ı and Valentini (2009), Yang and Freudenstein

(1964)).

The space D of dual numbers is a commutative ring containing zero

divisors (cf. Appendix A.2.3). It also represents a two-dimensional commu-

tative algebra over the real field R, with the sum and the product defined

as follows:

� ã + b̃ = (a, ad) + (b, bd) = (a + b, ad + bd) , ∀ (a, ad), (b, bd) ∈ R2;

� ãb̃ = (a, ad) · (b, bd) = (ab, abd + bcd) , ∀ (a, ad), (b, bd) ∈ R2.

A dual number can be more concisely defined by means of a non-real

unit ε as follows.

Definition 4.19. Let ε 6= 0 be a nonzero nilpotent unity, named the dual

unity, satisfying ε2 = 0. A dual number ã is the number given by the sum

of a real part a and a dual part ad:

ã = a + εad ,

with a, ad ∈ R.

Since the sum is associative and the multiplication is a bilinear operation,

it is trivial to verify that, for any pair of dual numbers ã, b̃ ∈ D, the following

relations do apply:

ã + b̃ = (a + b) + ε(ad + bd) ,

as well as

ãb̃ = ab + ε(abd + bad) .

A direct consequence is that, exploiting the Taylor series expansion, any

analytical function f : U ⊆ R→ R can be easily evaluated at a dual number
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x̃ = x + εxd as follows:

f (x̃) = f (x + εxd) = f (x) +
∞

∑
i=1

f (i)(x)

i!
(εxd)i ,

whence, using the property ε2 = ε3 = . . . = 0, one finds

f (x̃) = f (x + εxd) = f (x) + ε f ′(x)xd . (4.91)

The relation here above also shows that a function f can be applied at a

dual variable x̃ only if the real part x is in the domain of f . As an example,

the inverse of x̃ results

x̃−1 =
1
x

(
1− ε

xd

x

)
, (4.92)

which is well-defined for any x 6= 0.

Hence, the inverse of a dual number in the form x̃ = εxd is not defined,

even though εxd is non-null.

By using (4.92), the division between two dual numbers reads

ã
b̃

=
a + εad

b + εbd
=

a
b

+ ε

(
ad

b
− abd

b2

)
, (4.93)

which applies only when b 6= 0.

Actually, pure dual numbers, i.e. dual numbers with vanishing real part,

are zero divisors in D, that is (εad)(εbd) = 0 whatever ad and bd are. It

is exactly the existence of zero divisors that makes D a ring rather than a

field.

Even if D is not a field, it is possible to construct arrays whose entries

are dual numbers. Then, a dual vector is expressed in the form

ṽ = v + εvd ,

where v and vd are the real and dual parts, respectively, of the dual vector.

Moreover, acting on the entries of the arrays, the same operations of
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standard vectors extend to dual vectors:

c̃ṽ = cv + ε(cvd + cdv) ,

ũ · ṽ = u · v + ε(u · vd + ud · v) ,

ũ× ṽ = u× v + ε(u× vd + ud × v) ,

(4.94)

where the last one specifically applies to three-dimensional dual vectors.

In addition, by (4.1), and applying the property (4.91) to the square root

function, the Euclidean norm of a dual vector reads

‖ṽ‖ = ‖v‖+ ε
v · vd

‖v‖ . (4.95)

Similarly, a dual matrix is a matrix Ã whose entries are dual numbers

so that, gathering the real and dual components in A and Ad, respectively,

it can be expressed in the form

Ã = A + εAd .

Given the dual matrices Ã and B̃, whose dimensions are compatible, the

matrix multiplication reads

ÃB̃ = (A + εAd)(B + εBd) = AB + ε(ABd + AdB) , (4.96)

whence it is clear that the pure real matrix I is the identity matrix also in the

context of the dual numbers, meaning that it is the only matrix satisfying

the property ÃI = IÃ = Ã for any dual matrix Ã.

The transpose of Ã is given by transposing the real and the dual part,

that is

Ã
T

= AT + εAdT , (4.97)

and, when Ã is a square matrix, the dual inverse is

Ã
−1

= A−1 − εA−1AdA−1 . (4.98)

The previous relation, that is well-defined only when the real part A is

not singular, can be derived by considering the condition ÃÃ
−1

= I.
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Finally, the determinant of a dual matrix Ã is a dual number to be

evaluated as (see, e.g., Angeles (1998))

det(Ã) = det(A)
(
1 + ε tr(AdA−1)

)
. (4.99)

4.5.2 Representing Motions as Dual Rotations

The formalism of dual numbers allows one to represent a rigid motion con-

sidering only the algebra of rotations, to be intended in a dual representation

sense.

Specifically, a dual orthogonal matrix R̃ satisfies the conditions R̃
T
R̃ = I

and det(R̃) = 1.

The first requirement explicitly reads

(R + εRd)(RT + εRdT) = RRT + ε(RRdT + RdRT) = I ,

whence the real part satisfies the condition RRT = I, while the vanishing of

the dual part implies the skew-symmetry of RdRT. Consequently, Rd can

be decomposed in the form

Rd = DR , (4.100)

where D = RdRT is a skew-symmetric matrix.

Moreover, by (4.99), the dual determinant results

det(R̃) = det(R)
(
1 + ε tr(RdR−1)

)
= det(R) = 1 ,

where the property tr(RdR−1) = tr(RdRT) = 0, following from the skew-

symmetry of RdRT, has been used.

In conclusion, a dual orthogonal matrix R̃ is such that the real part R

is orthogonal and the dual part Rd can be decomposed as the product of a

skew-symmetric matrix D and the real orthogonal matrix R:

R̃ = R + εDR = (I + εD)R . (4.101)

The space of the matrices R̃ is called the dual orthogonal group and is

denoted as SO(3,D). It is possible to prove that there exists a Lie group
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homomorphism between SO(3,D) and SE(3), as shown by Daher (2013).

Here, it is just observed that the relation between a dual orthogonal

matrix R̃ and a homogeneous matrix H naturally prompts by comparing

(4.101) with the adjoint representation given by (4.84):

H =

[
R v
oT 1

]
∼= AdH =

[
R 0

v̂R R

]
∼= R̃ = R + εv̂R . (4.102)

The identification SE(3) ∼= SO(3,D) summarizes the Principle of trans-

ference, claiming that any valid proposition about the Lie group SO(3,R)

and its Lie algebra becomes on dualisation a valid statement about SO(3,D)

and its Lie algebra and hence about SE(3) and its Lie algebra (Daher, 2013).

A historical review of the principle, along with a discussion about its alge-

braic fundamentals and validity, can be found, e.g., in Chevallier (1996),

Mart́ınez and Duffy (1993), Selig (2005).

The benefit of dual number formalism is that the operators characterizing

the Lie group SE(3) can be obtained from the relevant operator of SO(3)

applied in a dual sense.

Specifically, a screw (θ,u) can be represented by means of a dual rotation

vector whose real part is θ and the dual part is the component u:

θ̃ = θ+ εu . (4.103)

By applying (4.95), the dual norm of θ̃ results:

‖θ̃‖ = θ̃ = θ + εd , (4.104)

where θ = ‖θ‖ is the angle of rotation and the dual part d = k · u is the

contribution of the translation along the axis k = θ/θ, just as introduced

by (4.73).

Moreover, using (4.93) for the component-wise division of θ̃ by ‖θ̃‖, the

dual unit vector results

k̃ =
θ̃

θ̃
=
θ

θ
+ ε

(
u
θ
− dθ

θ2

)
= k + ε

u− dk
θ

,
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and, comparing with (4.74), the dual part is the moment p× k of the unit

vector k identifying the screw axis:

k̃ =
θ̃

θ̃
= k + εp× k . (4.105)

Hence, the dual rotation vector can be decomposed as

θ̃ = θ̃k̃ , (4.106)

in such a way the dual unit vector k̃ completely identifies the screw, both in

terms of the direction of the axis, by means of k, and its position, through

the moment p× k; at the same time, the dual angle θ̃ gives the magnitude

of the screw motion, defining the angle of rotation θ and the translation d
along the screw axis, considered in its actual position.

Exploiting the decomposition (4.106), the Rodrigues’ rotation formula

(4.45) can be applied in its dual version to provide a dual orthogonal matrix:

R̃θ̃ = I + sin θ̃ ̂̃k + (1− cos θ̃)̂̃k2
. (4.107)

where ̂̃k is the dual skew-symmetric matrix relevant to the dual unit vector

k̃ and the dual trigonometric functions sin θ̃ and cos θ̃ can be evaluated

recalling the property (4.91):

sin θ̃ = sin θ + εd cos θ , (4.108)

as well as

cos θ̃ = cos θ − εd sin θ . (4.109)

The same formalism can be exploited to evaluate the tangent operator

of SE(3) and its inverse as the dual extension of (4.58) and (4.61):

T̃θ̃ = I− 1− cos θ̃

θ̃
̂̃k +

(
1− sin θ̃

θ̃

)̂̃k2
, (4.110)
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and

T̃
−1
θ̃ = I +

1
2
̂̃k +

(
1− θ̃

2
cot

θ̃

2

)̂̃k2
, (4.111)

where, using again (4.91), the dual evaluation of the cotangent function

reads

cot
θ̃

2
= cot

θ

2
+ ε

d
4

(
1 + cot2 θ

2

)
. (4.112)

4.6 Some Identities for Operators of SO(3) and

SE(3)

Given a rotation vector θ ∈ R3, let θ̂ ∈ so(3) be the relevant skew-

symmetric matrix. In addition, consider the rotation matrix Rθ, provided

by (4.50), and the tangent operator Tθ expressed by (4.58).

Please, first observe that R−θ = R−1
θ = RT

θ, as well as T−θ = TT
θ, and

notice that θ̂ commutes with both Rθ and Tθ.

Then, setting θ = ‖θ‖, k = θ/θ and multiplying Tθ with θ̂, one has:

Tθθ̂ = θk̂− (1− cos θ)k̂2 + θ

(
1− sin θ

θ

)
k̂3

= θk̂− (1− cos θ)k̂2 − θk̂ + sin θ k̂

= I−
(
I− sin θ k̂ + (1− cos θ)k̂2

)
that is

Tθθ̂ = I−RT
θ , Rθ = I + TT

θθ̂ . (4.113)

By using the series expansions (4.51) for Rθ and (4.54) for Tθ, the

following identities can be verified:

TθRθ = RθTθ = TT
θ , T−1

θ RT
θ = RT

θT
−1
θ = T−Tθ . (4.114)

Using the dual rotation vector θ̃, defined by (4.103), to represent a screw

motion, the identities here above also apply to the same operators in their
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dual extension, given by (4.107) and (4.110-4.111).

Hence, recalling the isomorphism (4.102), the identities (4.114) likewise

hold for the relevant operators of SE(3) in the adjoint representation form:

Th Adexp(ĥ) = Adexp(ĥ) Th = T−h ,

T−1
h Adexp(−ĥ) = Adexp(−ĥ) T−1

h = T−1
−h ,

(4.115)

where Th is the tangent operator of SE(3) defined by (4.90) and Adexp(ĥ) is

the adjoint representation of exp(ĥ) given by (4.84).
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A Geometrically Exact Beam

Model

The intuitive notion of a beam is related to a solid body such that a char-

acteristic direction, coincident with the direction of the largest expansion of

the solid, can be detected.

Aiming to derive a beam model as a specialization of the kinematics of a

three-dimensional continuous body, by considering specific hypotheses justi-

fied by its peculiar shape, some general notion about continuum mechanics

are briefly recalled.

5.1 Body, Space and Motion

Definition 5.1. A body B is a smooth manifold with boundary. A point

p of B is called a material point of the body.

For the purposes of this work it is assumed that the body is a three-

dimensional manifold, so that any material point is identified by the coordi-

nates ψ(p) = x ∈ R3. Moreover, the map ψ : p 7→ x is the body chart and

ψ(p) are the material coordinates.

A further notion to be introduced along with a body is the physical

space.
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Definition 5.2. The physical space is a Euclidean space E and a point P

of the physical space is called a spatial point of E.

In the context of the present work, the physical space E is specifically

intended as a 3-dimensional Euclidean affine space.

Moreover, since a Euclidean space is endowed with the Euclidean dis-

tance, the physical space E is also a metric space and, as such, a topological

space. Also, intending the coordinates of any spatial point P as smooth

functions, the physical space is also a smooth manifold.

With these premises, we say that a point p of the body B occupies a

position, identified by a spatial point P of the physical space E, if there exists

a smooth mapping in the form p 7→ P. By exploiting such an association,

the notion of the configuration of a body is introduced.

Definition 5.3. Given an interval J⊂ R and a body B, a configuration is

a smooth map C : J ×B→ E associating a material point p of the body

B, at a time t, with a spatial point P of the physical space E:

C : J ×B→ E

(t,p) 7→ P .
(5.1)

With a slight abuse of terminology, the spatial point P, as image of the

material point p through the map C, is itself referred to as the configuration

of p at the time t. Similarly, the subset Bt = C(t,B)⊂ E is also called the

configuration of the body B at t.
The restriction of C at a specific time is the map Ct : B→ E defined

by Ct(p) = C(t,p).

It is required that, for any t ∈ J, the induced map Ct : B → E is an

embedding between the body manifold and the physical space. Actually,

the injectivity of Ct, as well as of its differential, is consistent with the two

classical principles of permanence of matter and impenetrability.

Since Bt, as a subset of E, is itself a smooth manifold, any spatial point

P ∈ Bt is identified by the coordinates p = ϕt(P) ∈ R3, which are the affine

coordinates with respect to some affine frame F (see Figure 5.1). Hence,

the configuration of a material point p is represented in coordinates through
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ψ(p)

x
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Figure 5.1: Material and spatial representation of the body B.

the real-valued function Φt = ϕt ◦ Ct ◦ ψ−1:

Φt : ψ(B)→ ϕt(Bt)

x 7→ p ,
(5.2)

where ψ(B) and ϕt(Bt) are both subsets of R3.

Remark. The characterization of the physical space as an affine space is

consistent with the intuitive idea of ‘space’ as it is commonly experienced.

In short, one can say that the physical space E in Definition 5.2 is a math-

ematical model of the real environment.

On the other hand, for what concerns the idea of ‘body’, the notion of a

manifold B introduced by Definition 5.1 seems to be far from the common

experience of an object occupying a region of the environment.

Actually, defining a body as a manifold allows one to characterize a ma-

terial point p independently of its position in the space. As a consequence,

once the body chart ψ has been established, a material point of the body is

uniquely identified by a set of material coordinates x ∈ R3, whatever is its

configuration in the physical space.

At the same time, one of the drawbacks of such a theoretical notion con-

cerns the geometric characterization of a body, which is necessarily involved
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when one thinks of an object in the real world. In fact, unless the mani-

fold is endowed with some additional metric structure, the usual concepts

of length and angles do not apply to B. Consequently, if one just refers to

the manifold B, the very idea of ‘shape’ of the body is not defined.

As a matter of fact, the information about the geometry of a body are

derived from its configuration in the physical space. In practice, the con-

figuration map provides a connection between the mathematical definition

of a body, i.e. a finite-dimensional manifold, and the idea of ‘body’ in the

common thinking.

Moreover, the requirement for the configuration map Ct to be an em-

bedding at any t, assures that the relation between the body B and the

subset Bt ⊂ E is one-to-one. Then, in specifying any geometric feature

of the body, we actually refer to some configuration Bt, that inherits the

geometric properties of the Euclidean space E.

5.2 Beam Geometric Characterization

Following Antman (2005), we consider a beam as a slender body such that

a one characteristic direction can be detected.

It is again emphasized that the geometric characterization of a body

only makes sense when one refers to a configuration Bt in the physical

space. Then, the slenderness of B should actually be intended as a geometric

feature of any configuration Bt = Ct(B).

5.2.1 Beam Material Coordinates

The hypothesis about the shape of Bt translates into the possibility to in-

troduce a scalar µ such that, for any fixed t ∈ J, distinct spatial points P

are considered along the characteristic direction of Bt as µ varies in a closed

interval [a, b]⊂ R.

At the same time, the coordinate representation of any point P ∈ Bt

is the image of a triple x through the real-valued function Φt given by

(5.2), where x = (x1, x2, x3) is the material representation, or the local

representation, of a point p.
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Then, in defining the body chart ψ : B→ R3, it is advisable to consider

one of the material coordinates, say x3 ∈ R, to be coincident with the scalar

parameter µ ∈ [a, b].

Formally, the scalar µ, which is called the material abscissa of the beam,

is given by a map ψa : B→ R resulting from the composition ψa = π3 ◦ ψ,

where π3 : R3 → R is the projection map defined by π3(x1, x2, x3) = x3.

Explicitly, ψa reads

ψa : B→ R

p 7→ µ ,

where the image ψa(B) is a closed real interval [a, b]⊂ R.

Moreover, for the arbitrariness of the material representation of B, it

is convenient to set a = 0 and b = 1, so that µ actually results a variable

ranging in [0, 1]⊂ R.

By exploiting the material abscissa map, it is also defined the cross-

section Sµ of the beam at µ as the preimage of µ ∈ [0, 1] under ψa:

Sµ = ψ−1
a (µ) = {p ∈ B | ψa(p) = µ } .

It is trivial to see that the material coordinates of any point p of the

cross-section Sµ are in the form ψ(p) = (x1, x2, µ). Then, for each fixed value

of the abscissa µ, the coordinates x1 and x2 can themselves be gathered in

the pair (x1, x2) ∈ R2, inducing a map ψS|µ : B→ R2 defined by ψS|µ(p) =

(x1, x2).

Similarly to the abscissa map, the material representation map ψS|µ of

the cross-section at µ results from the composition π12 ◦ ψ, where π12 is the

projection map from R3 to R2 defined as π12(x1, x2, x3) = (x1, x2).

It is worth noting that, by construction, both ψS|µ and ψa are smooth

functions. In fact, being ψS|µ = π12 ◦ ψ, as well as ψa = π3 ◦ ψ, the

smoothness of the body chart ψ is directly extended to the cross-section

map ψS|µ and the abscissa map ψa.

Since each cross-section Sµ is a subset of points which have the same

material abscissa µ, the beam B can be thought as the union of all the
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Figure 5.2: Material representation of the beam B.

cross-sections as µ varies in [0, 1]:

B=
⋃

µ∈[0,1]

Sµ . (5.3)

At the same time, the image of the cross-section Sµ is a two-dimensional

connected subset of R2, denoted as Σµ = ψS|µ(Sµ)⊂ R2. Then, the material

representation of the beam B can be expressed as

ψ(B) =
⋃

µ∈[0,1]

Σµ × {µ}⊂ R3 .

If the representation map of the cross-section does not depend on the

material abscissa µ, it is simply denoted as ψS. In such a case, all the cross-

sections Sµ do have the same material representation Σ = ψS(Sµ) and the

beam is said to have a uniform cross-section.

Consequently, as shown in Figure 5.2, the material representation of the

beam B can be expressed as the Cartesian product of the cross-section Σ
and the domain [0, 1] of the material abscissa:

ψ(B) = Σ× [0, 1]⊂ R3 .

Definition 5.4. Let B be a beam having a uniform cross-section, whose

material representation is Σ⊂ R2. For any x ∈ Σ, the (material) fiber of the
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beam over x, denoted as fx, is the preimage of x through the representation

map of the cross-section:

fx = ψ−1
S (x) = {p ∈ B | ψS(p) = x } .

The set of all the material fibers of the beam B is denoted as

FΣ = {fx = ψ−1
S (x) | x ∈ Σ } , (5.4)

and, since any material fiber fx is uniquely identified by x ∈ Σ, the beam B

can be intended as the union of all its fibers:

B=
⋃
x∈Σ

fx . (5.5)

Moreover, the fiber over the null element o = (0, 0) is the axis a of the

beam:

a = fo = {p ∈ B | ψS(p) = (0, 0) } . (5.6)

Please notice that, according to Definition 5.4, the axis of the beam does

exist only if the null element o ∈ R2 is in the material representation Σ of

the cross-section. To this aim, it is useful to choose the local representation

map ψ in such a way that Σ contains the null element of R2.

In any case, it will be shown that, with some additional assumptions that

are common in beam theory, any x ∈ R2 can be mapped to some spatial

point of E, even if the material fiber of x is not defined.

It is also remarked that, being ψS = π12 ◦ ψ, the material coordinates of

any point p of the fiber over x = (x1, x2) are in the form

ψ(p) = (x1, x2, µ) , ∀p ∈ fx .

Conversely, the bijectivity of the map ψ assures that p = ψ−1(x1, x2, µ)

is a point of the fiber fx.

Then, by fixing x1 and x2, the map ψ−1 induces a one-variable map γx

between the interval [0, 1] of the material abscissa µ and the fiber fx of the
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beam:

γx : [0, 1]→ fx⊂ B

µ 7→ p = ψ−1(x1, x2, µ) ,
(5.7)

where the smoothness of the coordinate map ψ implies that γx is a smooth

curve on the manifold B.

5.2.2 Beam Configuration in the Physical Space

The relation reported in (5.5) shows how the beam B can be thought as the

union of its material fibers. Then, the configuration of the beam at t results

Bt = Ct(B) =
⋃
x∈Σ

Ct(fx) , (5.8)

where Ct(fx)⊂ E is the configuration of the material fiber fx in the physical

space E.

Since each material point p of the fiber fx is the image of a scalar µ

through the map γx defined by (5.7), the composition Γx = Ct ◦ γx is a

curve of the physical space:

Γx : [0, 1]→ Ct(fx)

µ 7→ P = Γx(µ) .
(5.9)

Using the terminology of Section 2, the tangent vector d/dµ|µ is mapped

by the differential dΓx|µ to Γ′x(µ), which is the tangent vector to the curve

at the point P = Γx(µ).

Moreover, by Property 2 in Proposition 2.10, the differential of the curve

Γx at µ is

dΓx|µ = d(Ct ◦ γx)µ = dCt|p ◦ γx|µ ,

whence, recalling that γx is a diffeomorphism between [0, 1] and fx, and that

Ct is an embedding, dΓx|µ is injective.

Consequently, the tangent vector Γ′x(µ), as image of the differential

dΓx|µ, is non-vanishing for any µ in the interval [0, 1], and the curve Γx
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is regular (see, e.g., do Carmo (2016)).

Please observe that, by virtue of the decomposition (5.8), the configura-

tion Bt of the beam is fully defined once the curves Γx : [0, 1]→ Ct(fx) have

been characterized as x varies in Σ.

Hence, in order to formulate a one-dimensional model of the beam, it

is desirable that one of the curves Γx could represent the beam as a whole,

provided that the configuration of any other fiber is accordingly derived.

To this purpose, the beam axis a is assumed to be the representative

fiber of the beam (see Figure 5.3), and its configuration in the physical space

is defined by the curve Γo : [0, 1]→ Ct(a).

Referring again to do Carmo (2016), the arc length of the curve Γo is

defined as the map s : [0, 1]→ R given by

s(µ) =
∫ µ

0
‖Γ′o(µ)‖dµ , (5.10)

where ‖Γ′o(µ)‖ is the length of the tangent vector Γ′o(µ).

Since the curve Γo is regular, the arc length s is a differentiable function

and its derivative at µ, i.e. ds/dµ|µ = ‖Γ′o(µ)‖, induces the following real-

valued function:

λ : [0, 1]→ R

µ 7→ λ(µ) =
ds
dµ

∣∣∣∣
µ

= ‖Γ′o(µ)‖ ,
(5.11)

whose meaning is to provide the arc length ds = λ(µ)dµ of the infinitesimal

element of Γo between µ and µ + dµ.

From (5.10), the map s clearly vanishes at µ = 0, while its value at

µ = 1 is the length l of the beam, so that the arc length is properly defined

as s : [0, 1]→ [0, l].
Please notice that, with a slight abuse of notation, the symbol s is typ-

ically used to denote both the map from [0, 1] to [0, l] and the value it

assumes at some µ.

Moreover, since Γo is aimed to represent the whole beam configuration

in the physical space, the value s = s(µ) of the arc length of Γo at µ is also
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Figure 5.3: Beam material axis a and cross-section Sµ and their configuration in
the physical space.

called the spatial abscissa of the beam, relevant to the configuration Bt.

Remark. One should observe that the composition Γo = Ct ◦ γo applies to

each t ∈ J. Hence, Γo is just one within a family of curves of the physical

space, each of which represents a separate configuration of the beam axis

a. Consequently, the spatial abscissa of the beam should be intended as a

function s = s(t, µ), and the length of the beam is itself the value of the

function t 7→ l = s(t, 1).

However, in order to simplify the notation, unless explicitly specified,

time t is assumed to be fixed and the spatial abscissa is considered as s =

s(µ), with µ as the only variable.

Internal Constraints

In addition to the configuration of the beam axis a in the physical space,

a further way to look at the configuration Bt of the beam follows from the

decomposition (5.3). Actually, by applying the configuration map at t, one

has

Bt = Ct(B) =
⋃

µ∈[0,1]

Ct(Sµ) =
⋃

s∈[0,l]

As , (5.12)
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where As = Ct(Sµ) ∈ E is the cross-section of the beam at s. More precisely,

s = s(µ) is the spatial abscissa of the configuration Bt relevant to the

material abscissa µ, and As is the configuration of the material cross-section

Sµ in the physical space by Ct.

Consistently with the approach commonly followed in beam theory (Eu-

gster, 2015), it is now introduced the assumption of the beam cross-section

to be plane and rigid.

Such hypotheses about the cross-section are usually referred to as in-

ternal constraints, since they provide a kinematic relation between points

within the same cross-section, no matter which is the configuration of the

beam in the physical space E.

It is worth emphasizing that, since the manifold B is not endowed with a

metric structure, any geometric assumption about the beam actually refers

to its configuration in the physical space. Consequently, the beam cross-

section is plane if its configuration As, for any value of the time t, is fully

contained in a plane πs of the physical space E:

As = Ct(Sµ)⊂ πs , ∀ µ ∈ [0, 1] , t ∈ J . (5.13)

Similarly, in order to specify the rigidity of the cross-section, one should

exploit the distance function d defined on the physical space E(cf. Definition

4.11). Then, the beam cross-section is rigid if the distance between any pair

of points, in their spatial configuration, is constant, whatever the material

abscissa µ and the time t are:

d
(
Ct(p), Ct(q)

)
= const , with p,q ∈ Sµ , ∀ µ ∈ [0, 1] , t ∈ J .

Moreover, if the points p and q of the cross-section Sµ belong to the

material fibers fx and fy, respectively, their configuration in Bt is expressed

as Γx(µ) and Γy(µ), for some µ ∈ [0, 1]. Hence, the rigidity of the cross-

section reads

d
(
Γx(µ), Γy(µ)

)
= const , ∀ µ ∈ [0, 1] , (5.14)

meaning that the distance between the fibers fx and fy, in any spatial con-
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figuration of the beam, is constant. Also, since such a property applies

to any pair of material fibers, the relative position of the relevant spatial

configurations is itself fixed.

Consequently, the kinematic constraint (5.14) justifies the assumption

that the axis a is representative of the whole beam. Specifically, the axial

curve Γo characterizes the configuration Bt of the beam at t in the sense

that the curve Γx relevant to any other fiber fx can be deduced through the

relative position of Ct(fx) with respect to Ct(a), which is independent of

the configuration Ct.

For this reason, it is convenient to consider a representation of the ma-

terial fibers in the physical space that does not depend on t and µ, with the

role to provide only the relative position of the beam fibers in their spatial

configuration.

To this end, the following map is introduced

C∗ : FΣ → E

fx 7→ P∗ = C∗(fx) ,
(5.15)

where FΣ, defined by (5.4), is the set of all the material fibers of B and the

image C∗(FΣ) is a subset A∗ of the physical space E such that any pair of

points P∗ = C∗(fx) and Q∗ = C∗(fy) satisfies the following condition

d(P∗,Q∗) = d
(
Γx(µ), Γy(µ)

)
, ∀ µ ∈ [0, 1] , (5.16)

whatever the configuration Bt of the beam is.

In summary, A∗ is a spatial representation of all material sections Sµ

of the beam B, such that each configuration As = Ct(Sµ) can be obtained

through an affine transformation H s : A∗ → As mapping a point P∗, rep-

resentative of a material fiber fx in the physical space, to the point P of

the cross-section As belonging to the configuration at t of the same material

fiber:

H s : A∗ → As

P∗ 7→ P ,
(5.17)
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where P∗ = C∗(fx) and P = Γx(µ), whence the rigidity condition (5.16)

reads

d(P∗,Q∗) = d
(
H s(P∗),H s(Q∗)

)
, ∀P∗,Q∗ ∈ A∗ . (5.18)

Please notice that, by Definition 5.4, any fiber fx is uniquely associated

with the material coordinates x ∈ Σ through ψ−1
S . Then, the composition

ϕ∗ = C∗ ◦ ψ−1
S is well-defined:

C∗ ◦ ψ−1
S : Σ→ A∗

x 7→ P∗ .
(5.19)

Moreover, since it is assumed that the configuration As of the cross-

section is plane, so is A∗ and the plane of the physical space containing A∗

is denoted as π∗. With this specification, the map C∗ ◦ ψ−1
S can be intended

as the restriction to Σ of a map ϕ∗ defined between R2 and π∗:

ϕ∗ : R2 → π∗

x 7→ P∗ ,
(5.20)

and then the affine transformation H s can be defined between the plane π∗

and πs:

H s : π∗ → πs

P∗ 7→ P .
(5.21)

It is worth observing that ϕ∗ defined by (5.20) is a map between the

material representation of the beam cross-section, in a wide sense, and its

configuration in the physical space E. As a matter of fact, ϕ∗ is a bijective

map between the vector space R2 and the two-dimensional affine space π∗

and, as such, can be applied to any x ∈ R2, even when it does not detect

any material fiber of the beam B.

Notably, as shown in Figure 5.4, the point O∗ = ϕ∗(0, 0) ∈ π∗ is con-

sidered as the representation of the beam axis in the physical space, even if

the material fiber a = ψ−1
S (0, 0) is not defined, and the axis configuration

at the time t is represented by the curve Γo, defined by Γo(µ) = H s(O∗).
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Figure 5.4: Cross-section configuration resulting from a rigid motion in E.

Moreover, it is convenient to consider O∗ as the origin of a reference

frame F∗ in such a way that the coordinates of any P∗ ∈ π∗ do coincide

with x ∈ R2. With this assumption, the material representation Σ of any

beam cross-section Sµ does coincide with the configuration A∗ represented

in the reference system F∗.

Then, the point Γo(µ) = H s(O∗) = Os can be considered as the origin of

a reference frame Fs attached at the plane πs containing As, and the motion

H s can considered as the change of frame from F∗ to Fs.

In addition, the hypothesis for the cross-section to be rigid induces to

consider F∗, as well as any Fs, as an orthonormal frame (cf. Definition

4.12). Consequently, H s results a proper Euclidean motion of E whose

matrix representation, given by (4.27), takes the following form:

H s
∼= Hs =

[
Rs vs

oT 1

]
. (5.22)

Please observe that the subscript ‘s’ in (5.22), representing the spatial

abscissa relevant to As = Ct(Sµ), should be intended as s = s(t, µ), so that

the homogeneous matrix Hs is actually a function of t and µ, and the same
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applies to the entries Rs and vs:

Hs = H(t, µ) =

[
R(t, µ) v(t, µ)

oT 1

]
. (5.23)

It is important to emphasize that, with the internal constraints on As,

the configuration map introduced by Definition 5.3 specializes to

Q : J × [0, 1]→ E

(t, µ) 7→ Q(t, µ) = As = Ct(Sµ) .
(5.24)

Moreover, by the introduction of the reference cross-section configuration

A∗ as image of the map (5.19), the same cross-section As also results from

applying the Euclidean motion H s defined by (5.21), that is

As = Q(t, µ) = H s(A∗) ,

and, recalling from (5.10) that s = s(t, µ), the map (t, µ) 7→ H s is isomorphic

with Q.

Consequently, the configuration space of the beam, that is the space of

the configuration maps Q as in (5.24), coincides with the space of the rigid

motions Hs, i.e. the special Euclidean group SE(E) specified by Definition

4.16.

Further, the isomorphism SE(E) ∼= SE(3) makes it possible to consider

the group SE(3) as the configuration space for the one-dimensional beam

theory.

5.3 Beam Kinematics

It has been shown how the configuration Bt of the beam is defined by the

configuration of any cross-section As, relevant to the time t ∈ J and the

material abscissa µ. Moreover, under the hypotheses specified in Section

5.2.2, the configuration As is completely detected by a Euclidean proper

motion H s, which is identified with the homogeneous matrix Hs in (5.22).

Hence, representing the configuration space through SE(3), a compre-
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hensive description of the beam kinematics comes from the characterization

of SE(3) as matrix Lie group.

Specifically, since a parameterization in the form s 7→ Hs is a curve on

the Lie group SE(3), any information about the configuration of the beam

can be derived considering the differential structure of SE(3) as a smooth

manifold.

However, in order to highlight the mechanical meaning of the algebraic

and differential structure of SE(3), it seems convenient to first derive the

compatibility conditions of the beam kinematics from the perspective of its

configuration in E. Then, the validity of such conditions, within the Lie

group structure of SE(3), is discussed.

5.3.1 Beam Compatibility Equations

Let Hs be the homogeneous matrix defining the configuration of the cross-

section As. Supposing Hs to be fixed, let us consider the homogeneous

matrix Hs+∆s associated with the configuration of the cross-section As+∆s at

s + ∆s.
Recalling that the spatial abscissa s is a function of µ by means of (5.10),

the change of configuration from As to As+∆s actually corresponds to a vari-

ation of the material abscissa from µ to µ + h.

Hence, making reference to a fixed configuration Ct and omitting the

explicit dependence on t, the values of the spatial abscissa of the cross-

sections As and As+∆s are

s = s(µ) , s + ∆s = s(µ + h) ,

while the relevant configuration matrices turn out to be

Hs = H(µ) , Hs+∆s = H(µ + h) .

Since Hs+∆s represents the configuration of the reference frame Fs+∆s

attached to As+∆s with respect to the global frame F∗, it can be thought as

resulting from two subsequent transformations (see Figure 5.5).

Specifically, the configuration of the frame Fs+∆s is first represented with
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Figure 5.5: Relative configuration of beam cross-section frames Fs and Fs+∆s.

respect to Fs by the matrix Hs
s+∆s, and then Fs is referred to the global

frame F∗ through Hs:

Hs+∆s = HsH
s
s+∆s ,

or equivalently, emphasizing the dependence on the material abscissa,

H(µ + h) = H(µ)Q(h) ,

where the relative configuration matrix Hs
s+∆s = Q(h) actually depends only

on the increment h of the material abscissa, since As is taken as a reference

and Hs is considered fixed.

Consequently, when one moves from As to As+∆s, the variation of the

configuration matrix results

∆H = H(µ + h)−H(µ) = H(µ)
(
Q(h)− I

)
, (5.25)

and the rate of variation of H is given by

∆H

∆s
=

H(µ)
(
Q(h)− I

)
s(µ + h)− s(µ)

,

since the arc length between As and As+∆s is ∆s = s(µ + h)− s(µ).

With the aim to characterize the rate of variation of H per unitary

length, let us consider the limit, as ∆s approaches 0, of the above ratio, also

147



Chapter 5 A Geometrically Exact Beam Model

corresponding to h→ 0:

dH

ds
= lim

∆s→0

∆H

∆s
= lim

h→0

H(µ + h)−H(µ)

s(µ + h)− s(µ)

= lim
h→0

H(µ + h)−H(µ)

h
lim
h→0

h
s(µ + h)− s(µ)

,

whence, exploiting the map λ defined by (5.11) and denoting as H′(µ) the

derivative of H with respect to µ, one finds

dH

ds

∣∣∣∣
s(µ)

=
H′(µ)

λ(µ)
. (5.26)

It is worth recalling that λ(µ) is the norm of the vector Γ′o(µ) tangent

to the beam axis in its spatial configuration. Hence, due the regularity of

such a curve of E, the condition λ(µ) 6= 0 is satisfied, and the derivative

here above is well-defined.

In addition, by means of (5.25), the derivative of H with respect to the

material abscissa reads:

H′(µ) = lim
h→0

H(µ + h)−H(µ)

h
= H(µ) lim

h→0

Q(h)− I

h
. (5.27)

Please recall that Q(h) = Hs
s+∆s is the configuration matrix of Fs+∆s with

respect to Fs, so that it can be expressed as

Q(h) =

[
R(h) v(h)

oT 1

]
, (5.28)

where R(h) = Rs
s+∆s represents the rotation of Fs+∆s with respect to Fs and

v(h) = vs
s+∆s is the position vector of the origin Os+∆s of Fs+∆s with respect

to the origin Os of Fs (see Figure 5.5).

Moreover, having assumed that the configuration of the cross-section

changes with continuity along the beam axis, it is expected that Fs+∆s over-

laps Fs when ∆s = 0, that is when h = 0. Hence, the condition Q(0) = I

applies, which is the same as R(0) = I and v(0) = o.

Furthermore, since Q(h) represents a proper Euclidean motion, it is

associated with a screw
(
ω(h), x(h)

) ∼= q(h) ∈ R6 (cf. Section 4.4). Hence,
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using (4.72), it can be written as

Q(h) =

[
Rω(h) TT

ω(h)x(h)

oT 1

]
,

where, setting ω = ‖ω‖, the rotation matrix Rω(h) is expressed by the

Rodrigues’ formula in (4.50) as

Rω(h) = I + sin ω
ω̂

ω
+
(
1− cos ω

)ω̂2

ω2
, (5.29)

and TT
ω(h) = T−ω(h) is the tangent operator of SO(3), whose expression, by

means of (4.58), is given by

TT
ω(h) = I +

1− cos ω

ω

ω̂

ω
+

(
1− sin ω

ω

)
ω̂

2

ω2
. (5.30)

Please also observe that the condition Q(0) = I is reflected in the van-

ishing of the associated screw, that is q(0) = o, or equivalently ω(0) = o
and x(0) = o.

With these specifications, the limit in (5.27) reads

lim
h→0

Q(h)− I

h
=

limh→0
Rω(h) − I

h
limh→0

TT
ω(h)x(h)

h
oT 0

 . (5.31)

In order to evaluate the entries of the matrix here above, let us first

report the following limit evaluations:

lim
h→0

sin ω

ω
= 1 , lim

h→0

1− cos ω

ω2
=

1
2
, lim

h→0

ω− sin ω

ω3
=

1
6
, (5.32)

which, considering ω(0) = ‖ω(0)‖ = 0, can be easily verified by applying

L’Hospital’s rule.

Accordingly, using the expression (5.29), the first limit in (5.31) is eval-
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uated as follows:

lim
h→0

Rω(h) − I

h
= lim

h→0

sin ω

ω

ω̂

h
+ lim

h→0

1− cos ω

ω2

ω̂
2

h

= lim
h→0

ω̂(h)

h
+

1
2

lim
h→0

ω̂(h)

h
ω̂(h) ,

(5.33)

where the first addend is the derivative of the skew-symmetric matrix ω̂(h),

associated with the vector ω(h). The existence of such a derivative will be

discussed in Section 5.3.2. Here, it is enough to say that ω′(0), as well as

ω̂
′(0), does exist and its value is a vector dr:

lim
h→0

ω(h)

h
= ω′(0) = dr ; (5.34)

this result, being ω(0) = o, also implies the vanishing of the second addend

in (5.33), and the limit on the left-hand side is evaluated as

lim
h→0

Rω(h) − I

h
= d̂r . (5.35)

Regarding the limit of the translation vector in (5.28), please notice that

the operator TT
ω(h) tends to I as h → 0. Actually, recalling the expression

(5.30) of TT
ω(h) and using the evaluations (5.32), one infers

lim
h→0

TT
ω(h) = I + lim

h→0

1− cos ω

ω2
ω̂+ lim

h→0

ω− sin ω

ω3
ω̂

2 =

= I +
1
2

lim
h→0
ω̂(h) +

1
6

lim
h→0
ω̂

2(h) = I .

In addition, let us denote as dt the derivative of x(h) with respect to h:

lim
h→0

x(h)

h
= x′(0) = dt , (5.36)

whose existence, similarly to dr = ω′(0), will be discussed in Section 5.3.2.

Accordingly, the translation vector in (5.28) becomes

lim
h→0

v(h)

h
= lim

h→0

TT
ω(h)x(h)

h
= lim

h→0

x(h)

h
= dt . (5.37)

In conclusion, using the evaluations (5.35) and (5.37) in (5.31), one finds
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lim
h→0

Q(h)− I

h
=

[
d̂r dt

oT 0

]
=

[
dr

dt

]̂
= d̂ , (5.38)

where the map (4.78) ha been used, since d̂r is the skew-symmetric matrix

relevant to the vector dr ∈ R3 and dt is a vector in R3.

Therefore, using the result (5.38), in (5.27) the derivative of the config-

uration matrix H with respect to the beam material abscissa is

H′(µ) = H(µ)d̂(µ) , (5.39)

where the explicit dependence of d̂ on µ is introduced to highlight that,

consistently with the described procedure, it is actually associated with the

cross-section As relevant the specific value µ of the material abscissa.

Moreover, from (5.26), the variation of H per unitary length becomes

dH

ds

∣∣∣∣
s(µ)

=
H′(µ)

λ(µ)
= H(µ)

d̂(µ)

λ(µ)
. (5.40)

Please recall from (5.11) that λ(µ) is the length of the tangent vector

Γ′o(µ) to the configuration of the beam axis. Moreover, in coordinates, such

a vector is given by the translation component of H′(µ), resulting

v′(µ) = R(µ)dt(µ) ; (5.41)

in turn, being R(µ) orthogonal, this implies

λ(µ) = ‖v′(µ)‖ = ‖dt(µ)‖ . (5.42)

5.3.2 Algebra of Beam Deformations

In Section 5.3.1 the kinematics of the beam has been characterized in terms

of configuration of each cross-section in the physical space, and has been

represented by means of an homogeneous matrix H varying smoothly along

the beam axis.

Considering the Lie group structure of the space SE(3), the parameteri-
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zation µ 7→ H(µ) is a smooth curve, whose velocity at µ is a vector H′(µ)

of the tangent space TH(µ)SE(3).

Moreover, for each µ ∈ [0, 1], the point H(µ) = Hµ of SE(3) can be

considered as the starting point of a smooth curve defined as follows:

σ : R→ SE(3)

h 7→ σ(h) = H(µ + h) ,

that can be easily seen to satisfy the initial conditions σ(0) = Hµ and

σ′(0) = H′(µ).

At same time, by left translation, the curve σ induces a further curve

γ = LH−1
µ
◦ σ, defined by γ(h) = (LH−1

µ
◦ σ)(h) = H−1

µ H(µ + h).

It is easy to verify that the starting point of γ is γ(0) = I, and that

the relevant velocity is a vector of the tangent space TISE(3) evaluated as

follows (cf. Proposition 2.15):

γ′(0) = (LH−1
µ
◦ σ)′(0) = dLH−1

µ

∣∣∣
σ(0)

σ′(0) = H−1
µ H′(µ) , (5.43)

where the initial condition σ′(0) = H′(µ) has been used, along with the

property dLH−1
µ

∣∣∣
σ(0)

= H−1
µ , as given by (2.48) for matrix Lie groups.

Let us also notice that the point of γ at h is given by

γ(h) = Q(h) ,

where Q(h) is the homogeneous matrix, represented by (5.28), that provides

the relative configuration of the beam cross-section As+∆s with respect to As

(cf. Section 5.3.1).

Furthermore, the screw associated with the motion Q(h), denoted as

q̂(h) ∈ se(3), results from applying the logarithm map of SE(3) at Q(h),

accordingly with the definition (4.82).

Hence, the parameterization h 7→ q̂(h), given by q̂(h) = (log ◦γ)(h), is

a smooth curve of se(3), as a consequence of the smoothness of both γ and

log.
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Specifically, the starting point of log ◦γ is the null vector of se(3), i.e.

q̂(0) = log(I) = 0 ,

and the initial velocity is evaluated as follows (cf. Proposition 2.15):

q̂′(0) = (log ◦γ)′(0) =
d

dh

∣∣∣∣
0

(log ◦γ) = dlog|γ(0)γ
′(0) = dexp|−1

0 γ′(0) ,

where γ′(0) = H−1
µ H′(µ) is given by (5.43).

Accordingly, recalling from (2.39) that the differential of the exponential

at 0 is the identity map, and so is its inverse dexp|−1
0 , one finally finds

q̂′(0) = H−1
µ H′(µ) = d̂(µ) ∈ se(3) , (5.44)

or, using the vector space isomorphism se(3) ∼= R6,

q′(0) = d(µ) ∈ R6 . (5.45)

Please observe that, specifying the rotation ω(h) and translation com-

ponent x(h) of the screw vector q(h), the relation (5.45) also reads

ω′(0) = dr , x′(0) = dt ,

so that the limits in (5.34) and (5.36) are actually well-defined.

Moreover, the evaluation (5.44) for the velocity of the curve h 7→ q̂(h)

also implies the compatibility condition of the beam kinematics expressed

by (5.39):

H′(µ) = H(µ)d̂(µ) , (5.46)

that, with the usual identification se(3) ∼= TISE(3), is formally given by the

following map:

dLH(µ)

∣∣
I

: TISE(3)→ TH(µ)SE(3)

d̂(µ) 7→ H′(µ) = dLH(µ)

∣∣
I
d̂(µ) .

(5.47)

Hence, in view of the smooth manifold structure of SE(3), the derivative
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H′(µ) of the configuration matrix H(µ), associated with the beam cross-

section As, is actually a vector within the tangent space TH(µ)SE(3) resulting

from the left translation of the screw d̂(µ) ∈ se(3) ∼= TISE(3).

In other words, the parameterization µ 7→ H(µ) represents the integral

curve of a vector field V on SE(3), that satisfies VH(µ) = H′(µ) at each

H(µ) (cf. Section 2.3.3).

Furthermore, with reference to the beam spatial abscissa, the real-valued

function µ 7→ s(µ), defined by (5.10), is a diffeomorphism between [0, 1] and

[0, l], whose derivative is the function λ given by (5.11). Consequently, the

inverse map τ : s 7→ µ is itself a real-valued function and the derivative is

τ′ : s 7→ 1/λ
(
µ(s)

)
.

Finally, recalling Proposition 2.25, the map s 7→ H(s) is the integral

curve of a vector field τ′V defined by the condition

dH

ds

∣∣∣∣
s

= τ′(s)VH(s) =
VH(µ(s))

λ
(
µ(s)

) =
H′
(
µ(s)

)
λ
(
µ(s)

) , (5.48)

that is the same as (5.40) considering s as the independent variable.

5.4 Force Representation and Equilibrium Config-

urations

The internal constraints introduced in Section 5.2.2, that characterize the

beam cross-section as plane and rigid in any spatial configuration, has led

to consider the Lie group SE(3) as the configuration space of the beam.

Consequently, in considering the virtual displacements of the beam, with

the classical meaning of arbitrary infinitesimal changes of a configuration

(see, e.g., Arnold (1989), Goldstein et al. (2001)), the smooth manifold

structure of SE(3) is also involved.

Specifically, when the configuration space of a mechanical system is rep-

resented in terms of a smooth manifold, the virtual displacements should be

intended as elements of the tangent space (see, e.g., Epstein (2010), Epstein

and Segev (1980), Eugster (2015)). Moreover, since a specific tangent space

THSE(3) is associated with any point H ∈ SE(3), it is appropriate to define
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the virtual displacement field as the tangent bundle TSE(3) of SE(3) (cf.

Section 2.2.4).

At this point, following the same approach proposed by Epstein (2010),

the space of forces is introduced as the cotangent bundle T∗SE(3) of SE(3),

intended as the dual space of the tangent bundle (cf. Section 2.2.4).

Such a notion of a force follows from the assumption the configuration

space is SE(3) and, consequently, the virtual displacements are tangent vec-

tors on SE(3). Accordingly, for any point H ∈ SE(3), a virtual displacement

is a vector δH of the tangent space THSE(3), and a force is an element f∗H
of the cotangent space T∗HSE(3).

As a consequence, a force f∗H, considered as a covector within the dual

space T∗HSE(3) of the tangent space at H, plays the role of a functional

acting on any δH ∈ THSE(3) to give a scalar.

More properly, the real number resulting from applying f∗H at δH is the

virtual work of the force f∗H by the virtual displacement δH:

δW = f∗H(δH) . (5.49)

5.4.1 Virtual Displacement Screws and Wrenches

Let us first observe that any virtual displacement δH ∈ THSE(3) can be

thought as resulting from the left translation of a screw δĥ ∈ se(3). Hence,

recalling that (2.48) applies for matrix Lie groups under the usual identifi-

cation TISE(3) ∼= se(3), one can write

δH = Hδĥ ∈ THSE(3) , (5.50)

where H plays the role of a linear map H : se(3)→ THSE(3).

As a consequence, the virtual displacement field, represented by the tan-

gent bundle TSE(3), can actually be identified with SE(3)× se(3), meaning

that any (H, δĥ), or simply δĥ if the point H appears from the context,

gives the virtual displacement δH = Hδĥ ∈ THSE(3).

Similarly, considering the dual map HT : T∗HSE(3) → se∗(3) of H, any
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force f∗H ∈ T∗HSE(3) can be represented by its pullback f̂∗ ∈ se∗(3):

f̂∗ = HTf∗H ∈ se∗(3) , (5.51)

a quantity that, recalling Definition B.26, satisfies

δW = f∗H(δH) = f̂∗(δĥ) . (5.52)

Any vector f̂∗ ∈ se∗(3), acting as a functional for the screws in se(3), is

called a coscrew.

In addition, since the dual space se∗(3) is itself a six-dimensional vector

space, hence isomorphic to R6; consequently, any coscrew f̂∗ can be repre-

sented by a vector f∗ ∈ R6 such that, exploiting the Euclidean structure of

R6, the virtual work δW = f̂∗(δĥ) can be evaluated by the dot product as

in (4.5):

δW = f̂∗(δĥ) = f∗ · δh , (5.53)

where δh ∈ R6 is the column vector associated with the screw δĥ by means

of the map (4.78).

Expressing the virtual work δW in the form (5.53) provides a physical

meaning to the coscrew f∗. Actually, the column vector f∗ ∈ R6 can be

thought as made of two components as follows:

f∗ =

[
fm
ff

]
, (5.54)

where ff ∈ R3 is a vector representing a force applied at a point of the

physical space E, and fm ∈ R3 represents its moment with respect to some

point of E.

Consequently, denoting as δhr and δht the rotation and the translation

components of the screw δh, the virtual work δW in (5.53) becomes

δW = f∗ · δh = ff · δht + fm · δhr . (5.55)

It is clear from (5.54) that the entries of f∗ ∈ R6 provide the matrix
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representation f ∈ R6 of a screw f̂ ∈ se(3) that, in turn, can be identified

with the pair (ff , fm) by means of (4.75), that is

(ff , fm) ∼= f =

[
ff
fm

]
;

this quantity, called a wrench, has direction defined by the force component

ff and position associated with the moment component fm. At the same

time, the energetic coupling of a wrench (ff , fm) with a kinematic screw

takes the form of the dot product in R6 if the coscrew representation f∗ is

considered.

It is important to remark that a screw (δhr, δht), being related with the

virtual displacement δH ∈ THSE(3) by means of (5.50), has the kinematic

meaning of the infinitesimal variation of a reference system Fof the physical

space E, represented by the configuration matrix H ∈ SE(3).

In parallel, a vector δh ∈ R6 actually takes the meaning of a screw rep-

resenting a virtual displacement only if the reference system F is specified,

or equivalently the configuration H at which such a variation is applied.

In conclusion, the virtual displacement of a framed point in E should be

intended as a pair (H, δh) ∼= (H, δH) ∈ TSE(3).

This is also reflected on the representation of forces within the physical

space E. In fact, since a wrench (ff , fm) is necessarily associated with a

screw (δhr, δht) by means of (5.55), it is well-defined only by concurrently

specifying the reference system F, seen as a framed point of E, at which it

is applied.

Consequently, a wrench should be in turn understood as a pair (H, f) ∼=
(H, f∗H) ∈ T∗SE(3), where the identification with the cotangent vector f∗H ∈
T∗HSE(3) follows from the definition of the virtual work as an invariant scalar

quantity:

δW = f∗ · δh = f · δh∗ = f∗H(δH) . (5.56)

Following again the approach outlined, among others, by Epstein (2010),

Epstein and Segev (1980), Eugster (2015), a configuration of a system is said

to be an equilibrium configuration if the virtual work δW does vanish for all
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virtual displacements.

In the context of this work, a configuration H of a framed point of

the physical space E, consisting of an affine frame F, is an equilibrium

configuration if the virtual work δW is null for any virtual displacement in

the tangent space of SE(3) at H:

δW = f∗H(δH) = 0 , ∀ δH ∈ THSE(3) . (5.57)

It is worth noting that the assumption stated by (5.57), that specializes

the Principle of Virtual Work to a framed point of the physical space, is

actually full consistent with the notion of equilibrium in classical mechanics

(see, e.g., Arnold (1989), Goldstein et al. (2001)).

In fact, recalling Part 2 of Proposition B.25, the arbitrariness of δH in

(5.57) implies that f∗H is null. At the same time, since any cotangent vector

f∗H ∈ T∗HSE(3) has a relevant physical representation by a wrench (ff , fm),

the condition f∗H = o∗ is reflected on the vanishing of the resultant force ff
and of the resultant moment fm acting on H.

Hence, the configuration of a point P of the physical space, along with

an attached frame F, is an equilibrium configuration if the resultant force

and moment acting at P do vanish.

5.4.2 Virtual Displacement Field of a Beam

With specific reference to the beam kinematics, the representation in terms

of a curve µ 7→ H(µ) on SE(3) implies that the virtual displacement field

is actually a subspace of TSE(3), and consists of all tangent vectors δH(µ)

satisfying the condition δH(µ) ∈ TH(µ)SE(3), for each µ ∈ [0, 1].

Moreover, recalling that any H ∈ SE(3) concurrently applies as a linear

operator H : TISE(3)→ THSE(3), a compatible virtual displacement δH(µ)

can be obtained by left translation as

δH(µ) = H(µ)δĥ(µ) , (5.58)

where δĥ(µ) ∈ TISE(3) ∼= se(3) is a screw variation compatible with the

virtual displacement field of the beam.
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Furthermore, let us consider the relative configuration screw d̂(µ) ∈
se(3), associated with the derivative H′(µ) by the compatibility condition

(5.39). Intending any quantity evaluated at an arbitrary µ ∈ [0, 1], the

infinitesimal variation of d̂ reads

δd̂ = δ(H−1H′) = δH−1H′ + H−1δ(H′) = −δĥ H−1H′ + H−1(δH)′ ,

where the property δH−1 = −δĥ H−1 can be deduced from δ(HH−1) = 0

and, noting that H′ and δH are in the same linear space THSE(3), the

operators (·)′ and δ(·) do commute.

Consequently, the above equation further simplifies as follows:

δd̂ = −δĥ d̂ + H−1(Hδĥ)′ = −δĥ d̂ + H−1H′δĥ + H−1H δĥ′

= −δĥ d̂ + H−1Hd̂ δĥ + δĥ′ = δĥ′ + d̂ δĥ− δĥ d̂ ,

whence, recalling that the matrix commutator is the Lie bracket for a matrix

Lie algebra (cf. Definition B.56), one infers

δd̂ = δĥ′ + [d̂, δĥ] ; (5.59)

using the equivalence (4.87), the previous relation in vector form reads

δd = δh′ + add δh , (5.60)

and represents the variation δd(µ) associated with the field δh(µ) of the

screw variation compatible with the virtual displacement field δH(µ) ∈
TH(µ)SE(3).

5.4.3 Static Equilibrium

The principle of virtual work expressed by (5.57) for a single framed point

of E, can be extended to the whole beam.

Actually, intending the configuration of the beam in the physical space

as a framed curve, the virtual work of Bt can be expressed as

δW =
∫
Bt

d(δW) ,
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where d(δW) = δW(µ + dµ)− δW(µ) represents the virtual work relevant

to the infinitesimal element of the beam, between the cross-sections at µ

and at µ + dµ.

Moreover, as usual in one-dimensional beam theory, the virtual work is

split in the external contribution and the internal one. Actually, consistently

with the representation of forces as covectors of virtual displacement screws,

that holds true by virtue of the identification (5.56), the external virtual

work is associated with the external forces acting on the beam, and the

same applies for the internal contribution.

Specifically, the external load is a screw vector field µ 7→ g(µ) acting on

a compatible virtual displacement screw field µ 7→ δh(µ):

d(δWext) = g∗(µ) · δh(µ)dµ , (5.61)

and, considering also the external forces fA and fB, applied as wrenches at

the framed points FA and FB relevant to the extremities of the beam, the

external virtual work of the beam reads

δWext = f∗A · δhA + f∗B · δhB +
∫ 1

0
g∗ · δh dµ , (5.62)

where the dependence of the screw in the integral is intended upon the

material abscissa µ.

In parallel, with the aim to represent the static interaction between two

subsequent beam cross-sections, the internal forces are introduced as the

screw field µ 7→ l(µ) acting on the virtual variation of the deformation

screw field µ 7→ δd(µ), compatible via (5.60) with the virtual displacement

screw:

d(δW int) = l∗(µ) · δd(µ)dµ ; (5.63)

thus, omitting the explicit dependence on µ, the internal virtual work of the

beam turns out to be

δW int =
∫ 1

0
l∗ · δd dµ , (5.64)
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and the virtual work of the beam is

δW = δWext + δW int . (5.65)

In accordance with the principle of virtual work, the configuration Bt of

the beam is an equilibrium configuration if the virtual work vanishes for all

compatible virtual displacement δh:

δW(δh) = δWext(δh) + δW int(δh) = 0 , ∀ δh = δh(µ) . (5.66)

Let us point out that the required compatibility of δh(µ) consists in

assuring that the relevant screw field δĥ(µ) satisfies (5.58). In addition, it

is required that the virtual screw of A and B in (5.62) do satisfy δhA = δh(0)

and δhB = δh(1), as well as the virtual increment of the deformation vector

δd appearing in (5.64) fulfills the compatibility condition (5.60).

Specifically, under such compatibility condition, the internal virtual work

becomes

δW int =
∫ 1

0
l∗ · δh′ dµ +

∫ 1

0
l∗ · add δh dµ

= [l∗ · δh]1
0 −

∫ 1

0
l∗′ · δh dµ +

∫ 1

0
adT

d l∗ · δh dµ

= l∗(1) · δhA − l∗(0) · δhB +
∫ 1

0
(adT

d l∗ − l∗′) · δh dµ .

so that the principle of virtual work specializes to

δW =
(
f∗A + l∗(1)

)
· δhA +

(
f∗B − l∗(0)

)
· δhB

+
∫ 1

0
(g∗ + adT

d l∗ − l∗′) · δh dµ = 0 , ∀ δh = δh(µ) .
(5.67)

The arbitrariness of the screw vector field δh(µ), and using the screw

representation of the forces in place of the coscrew one, implies the differ-

ential equilibrium equation of the beam, i.e.

g(µ) + add(µ) l(µ)− l′(µ) = o , (5.68)
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along with the following boundary conditions:

l(1) = −fA , l(0) = fB . (5.69)

5.4.4 Internal Forces

The internal force wrench l(µ), relevant to the beam cross-section at µ, has

been introduced in (5.63) in terms of the virtual work d(δW int) provided by

its action on the screw variation δd(µ)dµ.

However, a complete characterization of the beam internal forces requires

to specify some explicit relation with the strain parameters associated with

the cross-section.

At this stage, it is useful to recall that, within the framework of an

induced beam theory, beam kinematics has been derived by specializing a

three-dimensional solid body through the progressive introduction of specific

geometric assumptions and constraints about the position field. Hence, it

would be desirable to do the same for the statics by establishing an equiva-

lence between the stress distribution relevant to the beam cross-section and

the internal forces of the one-dimensional model.

In this respect, satisfactory characterizations of a beam cross-section

are available from linear beam theories so that one asks if it is possible,

and to what extent it is legitimate, to exploit the results derived from the

cross-section analysis based on linear models, in order to describe the elastic

behavior of a beam undergoing large displacements.

Actually, a first issue concerns the definition of suitable strain measures

for the beam cross-section that can somehow be compared to the relevant

strain measures usually adopted in linear analysis.

As a matter of fact, in linear models, strain measures relevant to a cur-

rent configuration, have the mechanical meaning of variation of the beam

deformation status, with respect to a reference configuration, per unitary

length.

However, while the hypothesis of small displacements and displacement

gradients, characterizing any linear beam model, allows one to recognize

strain parameters unambiguously, the extension of the same reasoning to a
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beam undergoing large displacements is not straightforward.

With the aim to introduce a proper set of strain parameters, let us recall

from (5.38) that the screw vector d(µ)dµ represents the relative configura-

tion of the cross-section at µ + dµ with respect to the one at µ. Accordingly,

the quantity δd(µ)dµ has the meaning of infinitesimal variation of the rel-

ative cross-section configuration, when an infinitesimal displacement field is

applied at the beam configuration Bt. At this point, the cross-section strains

resulting from δd(µ)dµ can be obtained by referring such a variation to the

length of the beam incremental element.

However, differently from linear beam theories, the length ds of such an

element itself depends upon the configuration Bt. Specifically, the length

of the infinitesimal beam element is given by the differential of the spatial

abscissa s(µ) with respect to µ, and can be expressed as ds = λ(µ)dµ, with

λ defined by (5.11).

Accordingly, the ratio between the variation δd(t, µ)dµ and the asso-

ciated arc length ds = λ(t, µ)dµ, with the explicit dependence on time t,
is assumed to represent the infinitesimal variation δχ of the cross-section

strain screw:

δχ(t, µ) =
δd(t, µ)

λ(t, µ)
. (5.70)

In practice, the screw δχ(t, µ) has the function to represent the linearized

strain measures of the cross-section when the beam configuration Bt is de-

formed slightly enough to remain close to Bt itself. As such, the incremental

screw δχ plays the same role with respect to the configuration Bt at time t,
as the strain measures of linear beam theory with respect to the reference

configuration.

With these specifications, if one refers to the infinitesimal variation

δχ(t, µ), the results emerging from the analysis of classical linear beam mod-

els appear appropriate to be extended to the context of a beam subject to

large displacements.
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p ∼= x

A∗ ∼= Σ

x1

x2

O∗

Figure 5.6: Beam cross-section representation.

Cross-Section Stiffness Matrix

It has been shown in Section 5.2.1 how the material representation of any

beam-cross section Sµ is a domain Σ ⊂ R2. Moreover, by virtue of the

internal constraints introduced in Section 5.2.2, any spatial configuration

As of the cross-section Sµ is obtained by a proper rigid motion applied at a

plane subset A∗ of the physical space E, the relation between Σ⊂ R2 and

A∗⊂ π∗ being provided by the map (5.19), or equivalently by its extension

ϕ∗ : R2 → π∗ defined by (5.20).

Let us assume that the reference system F∗ attached to A∗, made of the

origin O∗ and the orthonormal basis B∗ = {e1, e2, e3}, is such that the plane

π∗ containing A∗ is spanned by e1 and e2.

Concurrently, since the material representation Σ of the beam cross-

section is arbitrary, it is convenient to choose a local chart such that the

pair (x1, x2) defining x ∈ R2 also provides the coordinates of the relevant

point P∗ ∈ π∗ with respect to F∗.

Explicitly, as shown in Figure 5.6, given x = (x1, x2) and considering

P∗ = ϕ∗(x), the position vector of P∗ in the frame F∗ is p = x1e1 + x2e2.

Moreover, since the strain variation δχ, arising from the deformation

screw vector d through (5.70), is referred to the cross-section configuration

As, the representation of the relevant rotation and translation components,

with respect to the local frame Fs, turn out to be

δχr =

[
δχben

δχtor

]
, δχt =

[
δχsh

δχax

]
, (5.71)
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where the subscripts ‘ben’ and ‘tor’ for the entries of the rotation component

δχr refer to the cross-section strains associated with bending and torsion,

respectively, as well as the subscripts ‘sh’ and ‘ax’ for the components of the

translation vector δχt identify the strains induced by the shear and axial

effects, respectively.

A comprehensive description of the effects associated with the above-

mentioned load conditions in linear elastic beams can be found in Paradiso

et al. (2019), as well as the resulting beam cross-section characterization is

reported in Paradiso et al. (2021, 2020).

Thus, denoting by KΣ the cross-section stiffness matrix, consistently

with the meaning given to the strain screw variation δχ, the infinitesimal

variation of the cross-section internal forces is expressed as

δl = KΣδχ , (5.72)

whence the internal force vector l(t, µ), relevant to the cross-section at µ for

the beam configuration Bt, becomes

l(t, µ) =
∫ t

t0

KΣδχ(t, µ) . (5.73)

where t ∈ [t0, t] identifies a configuration Bt of the beam between the refer-

ence configuration B0 = C(t0,B) and the current one Bt.

Please notice that the reference configuration represents a condition

where the internal forces do vanish:

l(t0, µ) = o , ∀ µ ∈ [0, 1] .

Hence, B0 defines a configuration where no external loads are applied, or,

more generally, a configuration where the equilibrium is fulfilled, providing

the starting point for any further variation.

Moreover, in accordance with its derivation from the linear beam theory,

the stiffness matrix KΣ is assumed to not depend on the specific beam

configuration Bt, and the wrench vector in (5.73) becomes

l(t, µ) = KΣ χ(t, µ) , (5.74)
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where the meaning of the screw vector χ(t, µ) is to represent the cumulative

strain of the cross-section at µ between the reference configuration B0 and

the current one Bt.

Taking also account of (5.70), the cumulative strain vector becomes

χ(t, µ) =
∫ t

t0

δχ(t, µ) =
∫ t

t0

δd(t, µ)

λ(t, µ)
, (5.75)

an expression that will be exploited in numerical simulations.
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Finite Element Formulation

A Finite Element approach to the solution of the beam mechanical problem

is presented.

In agreement with such a method, the kinematics of a beam element is

approximated by means of shape functions interpolating the configurations

HA and HB of the element’s nodes, say A and B. In particular, consistently

with the geometrically exact formulation, the interpolating functions are de-

fined within the context of the Lie group SE(3), so that they are introduced

as curves on SE(3).

Then, the equilibrium of the beam element is formulated in weak form

by considering the virtual displacement field of the finite element, that spe-

cializes the field introduced in Section 5.4.2.

6.1 Shape Functions

The compatibility condition governing the beam kinematics is given by

(5.39) and has been derived in Section 5.3.1 with the geometric meaning

of establishing the relation between the local variation H′(µ) of the config-

uration matrix H(µ) and the deformation screw d̂(µ).

Moreover, in Section 5.3.2 it has shown how the same equation actually

defines a vector field V on the Lie group SE(3) whose value at H(µ) is

VH(µ) = H′(µ) and specializes to V I = d̂(µ) at the identity.
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In order to define the shape functions of the beam element, it is useful

to recall that V , assumed to be a left-invariant vector field of SE(3), is

completely identified by its value at the identity (cf. Section 2.4.1). In such

a case the value V I is uniquely defined, that is the screw d̂ ∈ se(3) does not

depend on µ, and, by Proposition 2.35, the integral curve of V starting at

the identity with velocity V I = d̂ is the one-parameter subgroup generated

by V .

In addition, recalling also Proposition 2.37, the integral curve of V start-

ing at the identity is provided by the exponential map in the form

γI(µ) = exp(µd̂) ,

where the identification V ∼= V I = d̂ has been exploited.

The benefit of assuming V as a left-invariant vector field is that any

integral curve can be obtained from γI by left-translation. Consequently, the

integral curve of V starting at HA, which satisfies the condition H(0) = HA,

provides the shape functions for the beam element in the form

H(µ) = HA exp(µd̂) , (6.1)

where the exponential map for SE(3) is explicitly provided by (4.80).

Moreover, since it is also required H(1) = HB, one can promptly verify

that exp(d̂) = H−1
A HB, that is

d̂ = log(H−1
A HB) , (6.2)

with the logarithm map of SE(3) defined by (4.82).

Please recall that the deformation screw d̂(µ) has been introduced in

Section 5.3.1 with kinematic meaning of the local change of configuration

between two subsequent beam cross-sections. Hence, the assumption of V
to be a left-invariant vector field on SE(3), implies that such a deformation

is uniform along the beam axis.

Moreover, invoking (6.2), the deformation screw d̂ defines the motion

between the beam cross-sections AA to AB, identified with the configura-

tion matrices HA and HB, respectively. This also means that the beam
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deformation is provided by the average of the initial and final cross-section

configurations, in a sense consistent with the group structure of the config-

uration space SE(3).

In order to provide a weak form for the equilibrium of the beam ele-

ment, consistently with the standard approach of the finite element method

(Zienkiewicz et al., 2013), let us consider a virtual displacement of the con-

figuration matrices HA and HB:

δHA = HAδĥA , δHB = HBδĥB , (6.3)

where δĥA and δĥB are the variational screws of se(3) associated with the

six-dimensional vectors δhA and δhB by the map (4.78); for convenience,

they are assembled in a unique variational vector δhAB ∈ R12:

δhAB =

[
δhA

δhB

]
. (6.4)

Hence, with the aim to provide a weak form of the equilibrium equation

(5.68), let us express the vector variation δd, associated with the variation

δd̂ of the deformation screw given by (6.2), as a function of δhAB:

δd = BdδhAB , (6.5)

where Bd is the element deformation operator.

Similarly, the infinitesimal variation δh(µ) relevant to the beam virtual

displacement screw δĥ(µ) = H(µ)−1δH(µ), can be expressed by means of

the element displacement operator, denoted as Pd(µ), as

δh(µ) = Pd(µ)δhAB . (6.6)

The explicit expression of both the deformation and the displacement

operators is derived in the next section.
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6.2 Element Operators of Deformation and Dis-

placement

Let us preliminarily observe that, given δĥ ∈ se(3) such that δH = Hδĥ ∈
THSE(3), the infinitesimal variation of the inverse element H−1 ∈ SE(3)

satisfies

δ(H−1H) = δH−1H + H−1δH = δH−1H + H−1Hδĥ

= δH−1H + δĥ = 0 ,

whence

δH−1 = −δĥH−1 . (6.7)

Now, consider the exponential of the screw d̂, given by (6.2), and apply

an infinitesimal variation:

δ
(

exp(d̂)
)

= δ(H−1
A HB) = δH−1

A HB + H−1
A δHB

= −δĥAH−1
A HB + H−1

A HBδĥB

= H−1
A HB

(
− (H−1

A HB)−1δĥA(H−1
A HB) + δĥB

)
,

where, accordingly with (2.50), (H−1
A HB)−1δĥA(H−1

A HB) is the adjoint rep-

resentation of (H−1
A HB)−1 applied at δĥA.

Since within SE(3) the isomorphism se(3) ∼= R6 allows one to write the

adjoint map in the form (4.84), the above relation can be expressed as

δ
(

exp(d̂)
)

= exp(d̂)
(
−Adexp(−d̂) δhA + δhB

)̂ .

At the same time, the variation of exp(d̂) can be expressed by means of

the differential dexp of SE(3) given by (4.89):

δ
(

exp(d̂)
)

= dexp|d(δd) = exp(d̂)(Tdδd)̂ , (6.8)

so that, by comparison, one finds

Tdδd = −Adexp(−d̂) δhA + δhB ;
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upon assembling δhA and δhB in δhAB, the previous relation reads

δd =
[
−T−1

d Adexp(−d̂) T−1
d

]
δhAB .

Finally, using the second identity in (4.115), one gets

δd = BdδhAB =
[
−T−1

−d T−1
d

]
δhAB , (6.9)

where the element deformation operator explicitly reads

Bd =
[
−T−1

−d T−1
d

]
. (6.10)

A similar procedure can be applied to derive the displacement operator.

Specifically let us consider the virtual variation of H(µ) expressed by (6.1):

δH(µ) = δ
(
HA exp(µd̂)

)
= δHA exp(µd̂) + HAδ

(
exp(µd̂)

)
= HAδĥA exp(µd̂) + HA dexp|µd(µδd) =

= HA exp(µd̂)
(

exp(−µd̂)δĥA exp(µd̂) + (µTµdδd)̂) ,
where the variation δ

(
exp(µd̂)

)
has been evaluated as in (6.8) considering

the screw µd̂.

Moreover, recognizing the adjoint representation of exp(−µd̂) applied

at δĥA, one also has

δH(µ) = H(µ)
(

Adexp(−µd̂) δhA + µTµdδd
)̂ ,

and, since δH(µ) = H(µ)δĥ(µ), by comparison, one infers

δh = Adexp(−µd̂) δhA + µTµdδd .

Furthermore, exploiting the explicit form of δd given by (6.9), the fol-

lowing relation is finally obtained

δh(µ) = Pd(µ)δhAB

=
[
Adexp(−µd̂)−µTµdT−1

−d µTµdT−1
d

]
δhAB , (6.11)
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whence the expression of the element displacement operator is

Pd(µ) =
[
Adexp(−µd̂)−µTµdT−1

−d µTµdT−1
d

]
. (6.12)

6.3 Element Forces

Adopting the usual procedure of the finite element method, both the external

distributed load g(µ) and the internal forces l(µ) of the beam element are

expressed in terms of equivalent nodal forces, denoted as fextAB ∈ R12 and

fintAB ∈ R12, respectively.

Please recall that, from the algebraic point of view, the vector g(µ) ∈ R6

represents a coscrew ĝ∗(µ) ∈ se∗(3), and the action on the virtual displace-

ment vector δh(µ) ∈ R6, associated with δĥ(µ) ∈ se(3), applies as in (5.61):

δWext =
∫ 1

0
g∗ · δh dµ =

∫ 1

0
g(δh) dµ ,

where the explicit dependence on µ has been omitted.

In addition, using (6.11), the above relation becomes

δWext(δhAB) =
∫ 1

0
g(PdδhAB) dµ =

∫ 1

0
(PT

d g)(δhAB) dµ ,

where, invoking Definition B.26 of dual map, the transpose of the dis-

placement operator PT
d (µ) is a linear map from R6 ∼= se∗(3) to R12 ∼=

se∗(3)× se∗(3).

Hence, considering δh∗AB ∼= (δĥ∗A, δĥ∗B) ∈ se∗(3)× se∗(3), that is

δh∗AB =

[
δh∗A
δh∗B

]
, (6.13)

the external virtual work can be written as

δWext(δhAB) =
∫ 1

0
PT

d g dµ · δh∗AB = fextAB · δh∗AB ,

where the element external forces have been gathered in fextAB ∈ R12:

fextAB =
∫ 1

0
PT

d g dµ , (6.14)
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whose components are

fextAB =

[
fextA

fextB

]
.

It is worth remarking that fextA and fextB define the wrenches acting on

the virtual displacement screws δhA and δhB, respectively, in such a way

that the virtual work fextA (δhA) + fextB (δhB) = fextA · δh∗A + fextB · δh∗B equals the

virtual work δWext of the beam element due to the external load wrench

g(µ).

A similar procedure can be applied to evaluate the element internal

forces. In particular, the action of the internal force vector l(µ) on the

infinitesimal variation δd of the deformation vector is defined by (5.63) and

the virtual internal work turns out to be:

δW int =
∫ 1

0
l∗ · δd dµ =

∫ 1

0
l(δd) dµ ,

which, by means of (6.9) becomes

δW int(δhAB) =
∫ 1

0
l(BdδhAB) dµ =

∫ 1

0
(BT

d l)(δhAB) dµ ,

where, similarly to the displacement operator, the transpose of the defor-

mation operator is the linear map BT
d between R6 ∼= se∗(3) and R12 ∼=

se∗(3)× se∗(3).

Furthermore, considering also (6.13), the internal virtual work becomes

δW int(δhAB) =
∫ 1

0
BT

d l dµ · δh∗AB = fintAB · δh∗AB ,

where fintAB ∈ R12 is the vector gathering the element internal forces:

fintAB =
∫ 1

0
BT

d l dµ , (6.15)

that is

fintAB =

[
fintA

fintB

]
.
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Please observe again that fintA and fintB represent the wrench vectors whose

action on the displacement screws δhA and δhB, respectively, provides the

virtual work fintA (δhA) + fintB (δhB) = fintA · δh∗A + fintB · δh∗B, that is the same as

the virtual work δW int relevant to the internal force wrench l.
Moreover, the internal force vector l(t), relevant to the current config-

uration Bt, is expressed by (5.74) as linearly dependent on the cumulative

strain vector χ(t), given by (5.75). Also, since (6.2) implies a uniform de-

formation screw vector d, the cumulative cross-section strains result in

χ(t) =
∫ t

t0

δχ(t) =
∫ t

t0

δd(t)
λ(t)

, (6.16)

whence the internal force vector l = KΣχ does not depend on the material

abscissa µ.

Consequently, (6.15) becomes

fintAB = BT
dKΣχ = BT

dKΣ

∫ t

t0

δd(t)
λ(t)

. (6.17)

It is worth highlighting that if the beam axis elongation is constant,

that is λ(t) = λ0 = λ(t0) for any intermediate configuration Bt, the ratio

δd(t)/λ0 becomes an exact differential. Then, the cumulative strain vector

is given by the difference between the current deformation d(t) and the

reference one d(t0) = d0, divided by length of the beam axis at the reference

configuration l0 = λ0 = ‖d0t‖.
With this assumption, the internal forces can be explicitly evaluated as

fintAB = BT
dKΣ

d(t)− d0

l0
, (6.18)

which is the same evaluation proposed by Sonneville et al. (2014).

In more general hypotheses, the cumulative strain vector can be evalu-

ated by a numerical computation of the integral (6.16), obtaining the rele-

vant element internal forces fintAB for the current configuration by (6.17).
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6.4 Element Stiffness Matrix

The element stiffness matrix Kel can be numerically evaluated considering

its role as the gradient of the element force vector.

Specifically, assuming that the distributed loads are null, the element

force vector specializes to felAB = fintAB, to be evaluated by means of (6.18) as

a function ψ of the current configurations HA and HB:

felAB = ψ(HA,HB) , (6.19)

in such a way that the current deformation d is the vector representation of

the screw d̂ = log(H−1
A HB).

Supposing that infinitesimal screw vectors δhA and δhB are applied, the

relevant variations of the configuration matrices HA and HB result

δHA = HAδĥA , δHB = HBδĥB ,

and, differentiating (6.19), the infinitesimal variation of the force vector can

be expressed as

δfelAB =
∂ψ

∂hAB

δhAB , (6.20)

where δhAB gathers the vectors δhA and δhB.

Since the tangent stiffness matrix plays the role to provide the variation

δfelAB when an increment δhAB is applied to the configurations of the element’s

nodes, Kel is formally the gradient of the function ψ with respect to the

infinitesimal variation δhAB:

Kel =
∂ψ

∂hAB

. (6.21)

At this point, in order to evaluate Kel, automatic differentiation via dual

numbers can be applied.

Dual numbers have been introduced in Section 4.5.1 to provide a use-

ful representation of rigid motions. At the same time, when considered as

variables of an analytical function, they provide the derivative of such a
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function, as specified by (4.91).

Then, applying the vector function ψ in (6.19) at the dual variables

H̃A = HA + εδHA and H̃B = HB + εδHB, the dual extension of felAB is

obtained:

f̃elAB = ψ(H̃A, H̃B) = felAB + εδfelAB = felAB + ε
∂ψ

∂hAB

δhAB ,

that is

f̃elAB = ψ(H̃A, H̃B) = felAB + εKelδhAB . (6.22)

Exploiting the relation here above, the element stiffness matrix Kel can

be assembled observing that its i-th column is the dual part of the dual

vector f̃elAB when δhAB is the i-th unitary column vector ei = [0 · · · 1 · · · 0]T.

6.5 Numerical Tests

The effectiveness of the described formulation is shown by considering two

representative numerical tests also presented in the specialized literature.

6.5.1 Cantilever Beam

As an introductory application let us consider the test case of the cantilever

beam in Figure 6.1, which is frequently considered in the specialized litera-

ture (Jelenić and Crisfield, 1999, Magisano et al., 2020, Simo and Vu-Quoc,

1986, Sonneville et al., 2014).

The beam axis has the shape of a circular arc with radius r = 100,

subtending an angle measuring π/4, while the cross-section is a unit square.

Young’s modulus is E = 1× 107 and the Poisson ratio is ν = 0.

A transverse force is applied at the free-end, and two values are consid-

ered, that is F = 300 and F = 600.

The numerical analysis has been performed by means of the Newton

method, whose convergence and stability have been tested by considering

several discretizations of the beam and of the load increments, for both the

loading conditions.
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Figure 6.1: Bent cantilever beam loaded by a transverse force.

Table 6.1: Average number of iterations by Newton method and out of plane dis-
placement of the beam in Figure 6.1 for F = 300.

Load
steps

Number of elements

1 2 4 8 16

1 38 Fails Fails Fails Fails
5 11.2 11 11.4 11.4 11.4
10 8 8.7 8.6 8.2 8.1
20 7 7 7 7 7
40 6.3 6.4 6 6 6.3

uz 32.4353 38.5746 40.0100 40.3634 40.4514

Tables 6.1 and 6.2 show the average number of iterations required for

convergence at each load increment, for F = 300 and F = 600, respectively.

In addition, the values of the displacement in z-direction of the loaded point

are also reported. For each beam mesh, these values do not depend on the

number of load steps, confirming the path-independence of the formulation.

As expected the standard Newton method fails to converge when the

equilibrium configuration is too far from the initial one, and a multi-step

analysis is required. However, since the implemented formulation is intrin-

sically path-independent, the equilibrium configuration can be reached by

gradually increasing the applied loads without affecting the validity of the
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Table 6.2: Average number of iterations by Newton method and out of plane dis-
placement of the beam in Figure 6.1 for F = 600.

Load
steps

Number of elements

1 2 4 8 16

1 Fails Fails Fails Fails Fails
5 14.8 16 Fails Fails Fails
10 10.2 10.2 10.1 10.3 10.4
20 7.8 8.3 8.2 8 8.1
40 6.8 6.9 6.8 6.8 6.8

uz 44.5472 51.2959 53.0373 53.4659 53.5725

z

x

y
P

Mx

Qr = 120

h
=

6

t = 0.6

Figure 6.2: Deployable ring undergoing wrapping rotation.

solution.

6.5.2 Deployable Ring

In order to verify the capability of the finite element formulation to handle

arbitrarily large rotations, the example in Figure 6.2 is considered. Such a

test case, introduced by Yoshiaki et al. (1992) and also reported by Magisano

et al. (2020), depicts the deformation of an elastic ring wrapping in on itself

as an effect of a rotation around a diametrical axis.

The ring has a radius r = 120, with a thin rectangular cross-section

having height h = 6 and thickness t = 0.6. The Young modulus is E =

2× 105 and the Poisson ration is ν = 0.3.

The point Q is fully clamped, while the control point P is allowed to

move only along the x-direction. The rotation φx of P around the x-axis

is assumed as a control kinematic parameter, while Mx is obtained as the

relevant constraint reaction moment. Hence, controlling the values of the
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A B C

D E F

Figure 6.3: Evolving configuration of the elastic ring in Figure 6.2.

rotation φx, the analysis can be performed by the standard Newton method.

Figure 6.3 shows the evolution of the configuration under increasing val-

ues of φx. First, the ring twists about the diametrical axis. Then, it wraps

around itself and fold into a smaller ring when φx equals 2π. Finally, keep-

ing on increasing the control parameter, the ring untangles and goes back

to its initial configuration at φx = 4π.

In order to verify the effective path-independence of the numerical for-

mulation and its stability under very large rotations, five complete cycles

are considered, so that φx is gradually increased between 0 and 20π.

The elastic energy relevant to the configuration Ct at the time t can be

evaluated by halving the mechanical work of the external loads. Specifically,

the only non vanishing contribution is the work of the reaction Mx at the

control point P:

U(t) =
∫ t

t0

dU =
1
2

∫ t

t0

dWext =
1
2

∫ t

t0

Mx(t)φ̇x(t)dt ,

where dφx = φ̇x(t)dt is the infinitesimal variation of the rotation φx.

Moreover, since very small variations of the rotation φx are applied in

the numerical analysis, the elastic energy at the i-th step can be estimated

as

U(ti) u Ui =
1
2

i

∑
j=1

Mxi∆φxi =
1
2

i

∑
j=1

Mxi(φxi − φxi−1) .

The elastic energy U of the deformed ring is plotted in Figure 6.4a with
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(a) (b)

Figure 6.4: Deformation process for the elastic ring in Figure 6.2: (a) elastic energy;
(b) configuration path. The marked steps refer to the configurations in Figure 6.3.

respect to the time steps and the rotation φx, for five consecutive cycles.

The steps relevant to the configurations in Figure 6.3 are also highlighted.

Please observe that U(t) has a local minimum when the rings completely

folds (D), and vanishes when the ring overlaps to its initial configuration (F).

Then, the graph recurs identically for the successive cycles.

The cyclic behavior is also clear from Figure 6.4b, which shows the con-

figuration path following the moment Mx and the horizontal displacement

ux of the control point P. The five cycles perfectly overlap, proving again

the path-independence and the stability of the proposed formulation.
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Conclusions and Outlook

This dissertation has presented a comprehensive mathematical framework

for modeling beams undergoing large displacements, what arises from an

appropriate characterization of the beam kinematics.

In particular, it has been shown how the reduction process from a slender

body to a one-dimensional continuous system, in line with the geometrically

exact approach, induces one to represent the configuration of a beam cross-

section by means of a rigid-body motion within the physical space. Then,

the configuration space of a beam is naturally identified with the space of

the proper Euclidean motions.

For this reason, a mathematically consistent discussion on the beam

mechanics cannot be separated from the algebraic characterization of such

a space.

As a matter of fact, a proper Euclidean motion is a particular kind of

affine transformation, i.e. the one preserving the distance between affine

points and the orientation of affine frames. As such, the group of Euclidean

motions, namely SE(3), inherits the same algebraic structure of the affine

group.

In particular, with specific reference to a rigid body motion, any decom-

position involving a translation should take into account the action of the

rotation component on the translation one. At the same time, this group ac-

tion, necessarily involved in the subgroup decomposition of SE(3), results in
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the coupling of rotations and translations within the physical space, that is

the coupling of rotation and translation kinematic parameters of any beam

cross-section.

In parallel, in accordance with the assumed continuity and differentia-

bility of the beam kinematics, the group SE(3) has also the structure of a

smooth manifold, being specifically indicated as a Lie group.

However, the differential properties of a Lie group are more general than

the ones of a Euclidean vector space, so that some refined notions, specific of

the differential geometry, are required. In some way, one could claim that it

is exactly because of the non-linear algebraic structure of the configuration

space that a beam exhibits a non-linear behavior in the physical space.

The description of the beam configuration within the context of a Lie

group has also effects on statics. In fact, when one refers to a non-flat

manifold, the notion of a force is algebraically well-defined only if it is related

to its action on virtual displacements, intended as infinitesimal variations

on the Lie group. Moreover, since a virtual displacement belongs to a local

linearization of the neighborhood of a point, one should specify the point of

the non-linear space it is associated to, the same applying for the relevant

static quantities.

On account of such algebraic characterization of the configuration space

of a beam, a finite beam element has been formulated by introducing the

shape functions as integral curves of a vector field on the Lie group SE(3).

Hence, representing the element’s nodes as points of SE(3), they are in-

terpolated in their current configuration, leading to a formulation that is in-

trinsically path-independent. Such a property is confirmed by the numerical

results, that also validate the effectiveness of the automatic differentiation,

based upon the algebra of dual numbers, in evaluating the element stiffness

matrix.

Nevertheless, some issues still require further in-depth studies. In par-

ticular, the standard Newton method results ineffective to converge when

the equilibrium configuration is not sufficiently close to the reference one,

requiring a large number of load steps. Moreover, the Newton method re-

quires a prescribed load history, in terms of either force or displacement
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parameters, and cannot be applied for general configuration paths adapting

forces and displacements simultaneously.

In this respects, some refined numerical methodologies already presented

in the specialized literature (Magisano et al., 2017, 2020), as well as specif-

ically derived from Lie group methods (Iserles et al., 2000, Munthe-Kaas,

1998), could be adapted to the beam model specifically described.
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Appendix A

Review of Algebraic

Structures

A.1 Basic Definitions

We introduce the basics of some algebraic structures mostly following Dum-

mit and Foote (2003) and Lang (2002), as well as other standard textbooks

in abstract algebra.

First, basic notions and symbols about sets and maps are briefly recalled.

Then, we will see how several algebraic structures can be constructed by

introducing specific operations on sets.

A.1.1 Sets and Maps

We denote a set by capital letters, such as A, with the usual meaning of a

collection of objects shearing a common property.

If an object a is an element, or a member, of the set A, we write a ∈ A.

Otherwise, we write a 6∈ A.

If A and B are sets, we write A ⊆ B to say that A is a subset of B,

or also B ⊇ A to say that B contains A. If A is a proper subset of B, i.e.

A 6= B, we write A ( B, or simply A ⊂ B. Similarly, B ) A, as well as

B ⊃ A, means that B properly contains A.
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The Cartesian product of two sets A and B is the collection of ordered

pairs of elements from A and B:

A× B = { (a, b) | a ∈ A , b ∈ B } .

Repeating n times the Cartesian product of a set A with itself defines

its n-ary Cartesian power:

An = A× · · · × A︸ ︷︷ ︸
n times

= { (a1, . . . , an) | ai ∈ A , i = 1, . . . , n } .

Definition A.1. A mapping, or simply a map, from the set A to the set B
is a relation f which associates each element of A with an element of B:

f : A→ B

a 7→ b .

We say that A and B are the domain and the codomain of f , respectively,

and that the element a ∈ A is mapped to b ∈ B. We also say that b is the

image of a through f and write f (a) = b. More generally, the image of a

subset X ⊆ A under f is the subset Y ⊆ B collecting the images of the

elements in X:

Y = f (X) = { f (a) | a ∈ X ⊆ A } ⊆ B .

If X = A, we also say that f (A) is the image, or the range, of f :

Im( f ) = f (A) = { f (a) | a ∈ A } ⊆ B .

For each subset Y ⊆ B, its preimage, or its inverse image, is the subset

of A having Y as image under f :

f −1(Y) = { a ∈ A | f (a) ∈ Y } .

The preimage of the set {b}, consisting of a single element b ∈ B, is

called the fiber of f over b.

Remark. Please notice that f −1 is not, in general, a map. Actually, de-
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pending on the properties of f and the subset Y, the preimage of Y could

be an empty set, as well as there could be several elements of A mapping to

the same element b ∈ B.

A.1.2 Properties of Maps

The fiber over f (a), with a ∈ A, induces a binary relation on the domain:

a ∼ f a′ ⇔ f (a) = f (a′) . (A.1)

One can easily verify that this is an equivalence relation on A and implies

the following definition (see, e.g., Bergman (2011), Mac Lane and Birkhoff

(1999)).

Definition A.2. Let f be a map from A to B. The equivalence relation

(A.1) on the domain A is called the equivalence kernel of f . Explicitly, the

kernel of f can be represented as a subset of the Cartesian power A2:

Ker( f ) = { (a, a′) ∈ A2 | f (a) = f (a′) } . (A.2)

The notion of kernel here introduce has a general meaning. However, in

the subsequent sections, such a definition will be specified to the features of

the map f and the involved sets.

The primary map to be defined on a set A is the identity map. It is the

unary operation idA associating each element of A with itself:

idA : A→ A

a 7→ a .
(A.3)

Definition A.3. Let f : A → B and g : B → C be maps. The composition

of g with f is the map g ◦ f : A→ C such that

(g ◦ f )(a) = g
(

f (a)
)
, ∀ a ∈ A .

We also say that g ◦ f is the composite map of g and f .

The maps f and g are composable if their composition, in a given order,
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is meaningful. Actually, the composite map g ◦ f only makes sense if

f : A→ B , g : C ⊆ B→ D .

Moreover, if the codomain of f is not fully contained within the domain of

g, we usually restrict f to a subset A′ in such a way that C ⊆ f (A′).

Remark. Even if composite map g ◦ f is well-defined, the composition in

the reverse order, i.e. f ◦ g, only makes sense when A ⊆ D. Also, in general

the composite maps are not the same, that is

g ◦ f 6= f ◦ g .

On the contrary, when g ◦ f = f ◦ g we say that f and g commute.

A property of mapping composition which always applies is associativity.

Explicitly, given the composable maps f , g and h, we can write

h ◦ (g ◦ f ) = (h ◦ g) ◦ f = h ◦ g ◦ f .

Definition A.4. Let f : A → B be a map between two sets A and B. The

following definitions hold:

� f is injective, or f is an injection, if distinct elements of the domain A
are mapped to distinct elements of the codomain B:

a1 6= a2 ⇒ f (a1) 6= f (a2) ;

� f is surjective, or f is a surjection, if the preimage of the codomain B
corresponds with the domain A:

∀ b ∈ B, ∃ a ∈ A : f (a) = b ;

� f is bijective, or f is a bijection, if it is both injective and surjective:

∀ b ∈ B, ∃! a ∈ A : f (a) = b ;

� f has a left inverse if there exists a map g : B → A, providing the
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identity map when is composed to the left of f :

g ◦ f = idA ;

� f has a right inverse if there exists a map h : B → A which provides

the identity map by right composition with f :

f ◦ h = idB .

Proposition A.5. Let f be a map from A to B. The following properties

hold true:

1. f is injective if and only if it has a left inverse;

2. f is surjective if and only if it has a right inverse;

3. f is bijective if and only if there exists a map g : B→ A which is both

a left and right inverse of f .

For the proofs one can refers, among others, to Mac Lane and Birkhoff

(1999).

The unique map g that is both a left and right inverse of a bijection f
is called the two-sided inverse, or simply the inverse, of f .

We also say that f is invertible, meaning that the two-sided inverse does

exist and is represented by f −1.

The composite map of injections is always injective, and the same holds

for surjective maps. As a consequence, the composition of two bijections f
and g provides the bijective map g ◦ f . Such a map is invertible and the

inverse map satisfies the following property:

(g ◦ f )−1 = f −1 ◦ g−1 .

Definition A.6. A bijection from a set A to itself is called a permutation of

A. The collection of all the permutations of A is itself a set and is referred

to as Perm(A).
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A.1.3 Homomorphisms

Here we recall the fundamental notions useful for the further developments,

referring to the specialized literature for the details (see, e.g., Cohn (1981)).

An algebraic structure is a set A endowed with a collection of operations

satisfying a finite number of properties. The number of arguments taken by

any operation is called its arity.

Definition A.7. A map between two algebraic structures is called a homo-

morphism, or a homomorphic mapping, if it is structure-preserving.

With reference to a single operation µ of arity k, we say that the map

f : A→ B between the sets A and B preserves µ, or is compatible with this

operation, if

f
(
µA(a1, . . . , ak)

)
= µB

(
f (a1), . . . , f (ak)

)
, ∀ a1, . . . , ak ∈ A .

As an example, considering a binary operation, the map f is compatible

if

f (x ∗ y) = f (x) ∗ f (y) , ∀ x, y ∈ A .

Please notice that in the last relation there is a slight abuse of notation,

since the same symbol ‘∗’ has been used to represent the operations µA and

µB associated with two distinct algebraic structures.

An injective homomorphism is called a monomorphism, and a surjective

one is called an epimorphism. We say that a homomorphism f : A→ B is an

isomorphism if it is bijective. An isomorphism is also invertible, i.e. there

exists a map g : B→ A such that

g ◦ f = idA , f ◦ g = idB .

The inverse map g is itself a homomorphism.

Like any map between sets, the kernel of the homomorphism f can be

defined as the following equivalence relation:

x ∼ f x′ ⇔ f (x) = f (x′) ,
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or, explicitly, as the subset of ordered pairs of elements of A mapped to the

same element of B:

Ker( f ) = { (x, x′) ∈ A2 | f (x) = f (x′) } . (A.4)

The kernel relation of the homomorphism f is properly a congruence

relation, since it is compatible with the algebraic structure of A (see, e.g.

Bergman (2011)). As an example, denoting by ‘∗’ the law of composition

defined over A, the relation ≡ is a congruence on A if it is an equivalence

and satisfies

x ≡ x′ , y ≡ y′ ⇒ x ∗ y ≡ x′ ∗ y′ .

With reference to definition (A.4) of kernel of f , one can verify that

f (x ∗A y) = f (x) ∗B f (y) = f (x′) ∗B f (y′) = f (x′ ∗A y′) ,

whence

x ∼ f x′ , y ∼ f y′ ⇒ x ∗A y ∼ f x′ ∗A y′ .

A homomorphism f : A → A, such that the domain and the codomain

are the same, is called an endomorphism. If f is also an isomorphism, we

say that it is an automorphism.

A permutation of the set A represents an automorphism of A, intended

as an algebraic structure, when it is compatible with the relevant algebraic

operations. The set of all the automorphisms of A is Aut(A).

It is important to point out that the definition of an algebraic structure

strictly depends on the operations defined on the underlying set. This means

that the same set can provide several algebraic structures depending on the

collection of operations considered.
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A.2 Algebraic Structures

A.2.1 Monoids

Let us consider a set S and a binary operation S× S→ S, mapping the pair

(a, b) to the element a · b, also denoted by ab. The algebraic structure (S, ·)
is a monoid if the following properties are satisfied:

� associativity:

a(bc) = (ab)c , ∀ a, b, c ∈ S ;

� existence of identity, also called unit element, e ∈ S:

ae = ea = a , ∀ a ∈ S .

The binary operation defining the monoid structure is sometimes called

law of composition of S into itself (see, e.g., Lang (2002)).

It is easy to verify that the identity element is unique. Actually, if e1

and e2 both satisfy the identity axiom, one has e1 = e1e2 = e2.

The identity e can be seen as the value of a constant operator, i.e. a

0-ary operation with no arguments (Cohn, 1981). Consequently, a monoid

is specified as the triple (S, ·, e) made of the set S, the binary operation ·
and the nullary operation e.

Given n elements a1, . . . , an of the monoid S, one can recursively apply

the composition, obtaining the sequence pi = pi−1ai , i = 1, . . . , n with initial

element p0 = e. Then, the pn is the product of the sequence (a1, . . . , an),

also written as

pn =
n

∏
i=1

ai .

The special case when ai = a, the product pn provides the n-th power of

the element a, represented as an.

If (M, ·, eM) and (N, ∗, eN) are two monoids, we say that a map f : M→
N is a monoid homomorphism if

� f (x · y) = f (x) ∗ f (y) , ∀ x, y ∈ M;
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� f (eM) = eN.

Let us observe that such properties fulfill the requirement for f to pre-

serve the monoid structure, i.e. to be compatible with both the binary

operations (·, ∗) and the nullary ones (eM, eN).

A.2.2 Groups

A group is a monoid (G, ·) such that for every element a ∈ G there exists

an element b ∈ G verifying ab = ba = e. The element b is called the inverse

of a.

Definition A.8. A group is a set G with a binary operation G × G → G
satisfying the following axioms:

� associativity:

a(bc) = (ab)c , ∀ a, b, c ∈ G ;

� existence of the identity element e ∈ G:

ae = ea = a , ∀ a ∈ G ;

� existence of the inverse element:

ab = ba = e , ∀ a ∈ G .

A group G inherits all the properties of the monoid structure, e.g. the

uniqueness of the unity element e and the recursive definition of the n-th

power an of an element a.

In addition, the group axioms also imply the uniqueness of the inverse

for any element of G. Actually, let b be the inverse of a ∈ G. If c is also the

inverse of a, one has:

c = ce = cab = eb = e .
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The inverse of a ∈ G is usually denoted as a−1. Moreover, for any non-

negative integer n, let us observe that

e = aa−1 = aea−1 = a(aa−1)a−1 = a · · · a︸ ︷︷ ︸
n times

a−1 · · · a−1︸ ︷︷ ︸
n times

= an(a−1)n ,

whence we find

(an)−1 = (a−1)n = a−n .

The existence of the inverse can be interpreted as the effect of the fol-

lowing unary operation:

θ : G → G

a 7→ a−1 ,

so that the group is identified with the quadruple (G, ·, e, θ) made of the set

G, the binary operation ·, the nullary operation e and the unary operation θ.

We recall that a map can be qualified as homomorphism if it is compati-

ble with the operations characterizing the algebraic structure. With specific

reference to a group, the following definition is introduced.

Definition A.9. Let (G, ·, eG, θG) and (H, ∗, eH, θH) be groups. The map

f : G → H is a group homomorphism, if the following properties are satisfied:

� f (x · y) = f (x) ∗ f (y) , ∀ x, y ∈ G;

� f (eG) = eH;

� f (x−1) = f (x)−1 ⇔ f
(
θG(x)

)
= θH

(
f (x)

)
, ∀ x ∈ G.

Examples of Groups

An important example of group is the set of permutations defined over a set

A, along with the operation of map composition. Specifically, let A be a set

and Perm(A) the set of all its permutations. We can verify that Perm(A),

endowed with the composition rule, forms a group.

First, we recall that composition is associative and that f ◦ g is itself a

bijection from A to itself, for all f and g in Perm(A).
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Moreover, since the identity map idA satisfies

f ◦ idA = f , idA ◦ f = f , ∀ f ∈ Perm(A) ,

it represents the identity element for Perm(A).

Finally, since any bijection is invertible, the existence of the inverse ele-

ment f −1 is ensured for any f in Perm(A).

Hence, the group axioms are satisfied and we can conclude that Perm(A)

along with map composition, is a group.

When the set A is endowed with a number of operations, it provides

an algebraic structure and the set Aut(A) of all the automorphisms is de-

fined. Similarly to Perm(A), one can easily prove that Aut(A), with the

composition operation, has a group structure.

Translations and Conjugations

The uniqueness of the inverse element in a group G imply that, given two

elements a and b, there is a unique solution in G satisfying the equation

ax = b. One can easily verify that such a solution is x = a−1b.

As a consequence, for any fixed a ∈ G, it is possible to define a bijection

La as follows

La : G → G

x 7→ xa ,
(A.5)

whose inverse map is L−1
a = La−1 .

The above-defined bijection is called the left multiplication by a, or the

left translation by a. Similarly, it is possible to define the right multiplication,

or the right translation, by a as the map

Ra : G → G

x 7→ xa ,

and it is trivial to verify that the inverse map is R−1
a = Ra−1 . The existence

of such an inverse is ensured by the fact that the equation xa = b has the

unique solution x = ba−1 ∈ G.
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Please notice that left and right translations represent, in general, two

distinct maps. Only if the binary operation defining the group structure is

commutative, they coincide:

La(x) = ax = xa = Ra(x) , ∀ a, x ∈ G .

When commutativity holds, we say that the G is an abelian group, or a

commutative group.

It is worth noting that the translation map is not a group homomor-

phism, since it does not preserve the group structure. For example, one can

verify that La(e) = ae = a 6= e (the same holds for the right translation).

The only exception is the translation by e, in which case both left and right

multiplication maps coincide with the identity map:

Le(x) = ex = Re(x) = xe = x , ∀ x ∈ G ⇔ Le = Re = idG .

Let us now consider an element a ∈ G and compose the left translation

La and the inverse of the right translation Ra−1 . Since the multiplication

in G is associative, the resulting map does not depends on the order of

composition and any element x ∈ G transforms as follows:

(La ◦ Ra−1 )(x) = (Ra−1 ◦ La)(x) = axa−1 , ∀ a, x ∈ G .

The above operation is called the conjugation by a and is defined as

Ca : G → G

x 7→ axa−1 .
(A.6)

Since Ca arises from the composition of bijective maps, it is a bijection

itself. Moreover, differently from translation, conjugation is a group homo-

morphism, since it preserves the identity, the law of composition and the

inversion in G:

� Ca(e) = aea−1 = aa−1 = e ;

� Ca(xy) = axya−1 = axeya−1 = (axa−1)(aya−1) = Ca(x)Ca(y) ,

∀ x, y ∈ G ;
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� Ca(x−1) = ax−1a−1 = a(ax)−1 = (axa−1)−1 = (Ca(x))−1 , ∀ x ∈ G .

In the end, a conjugation is an automorphism of G. Specifically, all

the automorphisms in the form of a conjugation are said inner and form a

subgroup of Aut(G) denoted by Inn(G).

Two elements x and y of G are said to be conjugate in G if there exists

some a ∈ G such that x = Ca(y) = aya−1. The same definition applies to

subsets X and Y of G such that X = Ca(Y) = aYa−1.

One can easily verify that conjugacy is an equivalence relation and, as

such, induces a partition of G. The equivalence class induced by a ∈ G is

called the conjugacy class of a.

Group Actions

Let G be a group with identity element e and A a set. A group action of G
on A is a map

α : G× A→ A

(g, a) 7→ α(g, a) = g · a ,

satisfying the following properties (Dummit and Foote, 2003):

� compatibility:

g1 · (g2 · a) = (g1g2) · a , ∀ g1, g2 ∈ G , a ∈ A ;

� identity:

e · a = a , ∀ a ∈ A .

When g ∈ G is fixed, the map α is reduced to a map σg : A → A such

that

σg(a) = α(g, a) = g · a , ∀ a ∈ A .

It can bee proved that σg is a permutation of A (see, e.g., Dummit and

Foote (2003)) whose inverse is σ−1
g = σg−1 . Moreover, the map between G
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and Perm(A) is a group homomorphism:

σ : G → Perm(A)

g 7→ σg .

Some authors, such as Lang (2002), introduce the definition of group

action of G on A referring to the group homomorphism σ and then derive

the map α with the relevant properties.

We also say that such a homomorphism is the permutation represen-

tation of the action, meaning that each element of G is associated with a

permutation in Perm(A). The set A is called a G-set.

The kernel of the action is the set of elements of G that act trivially on

every element of A:

Ker(σ) = { g ∈ G | g · a = σg(a) = a , ∀ a ∈ A } ⊆ G .

In practice, the kernel of an action is precisely the same as the kernel of

the associated permutation representation.

If the kernel of σ is the identity e ∈ G, we say that such an action is

faithful. In other words, distinct elements in G induce distinct permutations

of A, that is the associated permutation representation is injective.

For each element a ∈ A, we call the stabilizer of a in G the set Ga of

elements of G that fix the element a (Dummit and Foote, 2003):

Ga = { g | g · a = σg(a) = a , a ∈ A } ⊆ G . (A.7)

The stabilizer of a has a group structure and is also called the isotropy

group of a in G (see, Lang (2002)). A fixed point of G is an element a ∈ A
such that g · a = σg(a) = a for all g ∈ G, so that Ga = G.

Let G be a group acting on A and a ∈ A. We call the orbit of a under

G the subset Ga of A made of all the elements resulting as g · a, with g ∈ G
(Lang, 2002):

Ga = { x | x = g · a , g ∈ G } ⊆ A .

The action of G on A is transitive if for any element of A its orbit under
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G is not empty. Explicitly, given any two elements a and b in A, there exists

g ∈ G such that a = g · b. If such g is unique, the action is said simply

transitive, i.e. it is both faithful and transitive.

We want to observe that the map G× A→ A should be more precisely

referred to as a left action, since the group element appears on the left of

the set one. Similarly, a right action of G on A can be introduced by means

of a map A× G → A.

In this respect, it is also clear that the left (right) translation over a

group G defines a left (right) group action of G on itself.

Subgroups, Group Homomorphisms and Products

Let G be a group and H ⊆ G a nonempty subset. We say that H is a

subgroup of G if it is a group under the same law of composition defined in

G.

In practice, H is a subgroup of G if it contains the identity element e
and it is closed under products and inverses (see, e.g., Dummit and Foote

(2003), Lang (2002)):

� e ∈ H;

� x, y ∈ H ⇒ xy ∈ H , ∀ x, y ∈ G;

� x ∈ H ⇒ x−1 ∈ H , ∀ x ∈ G.

Suppose H a subgroup of G and g an arbitrary element of G. We call

the left coset of H in G the subset of G defined as

gH = { gh | h ∈ G } ⊆ G ,

and any element of a coset is called a representative of the coset.

Please notice that the left coset gH can be thought as the left translate

of H by g ∈ G or, equivalently, as the image of the bijection h 7→ gh. Also,

since H is closed under products, lH = H for any l ∈ H.

Let us observe that any element g ∈ G represents the left translation of

the identity e by itself, i.e. g = ge. Hence, if H is a subgroup of G, e is in

H and then g ∈ gH.
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At the same time, if x is a representative of gH, there exists l ∈ H such

that x = gl. Hence, xH = glH = gH, because lH = H when l is in H. In

other words, x is an element of exactly one left coset of H, that is xH = gH.

Any pair of representatives of a left coset gH, say x and y, are character-

ized by the property xy−1 ∈ H. Such a property is an equivalence relation,

and so any left coset of a subgroup H provides an equivalence class. Then,

x and y are coset representatives in the sense of class representatives.

As an equivalence class, the cosets of a subgroup H form a partition of

the underlying group G.

Of course, one can also introduce an analogous definition for a right coset

of H in G as

Hg = { hg | h ∈ H } ⊆ G ,

and similar properties as for the left cosets holds.

Please notice that the left coset of H with respect to g is also the right

coset of the conjugate of H by g:

gH = gHg−1g = Cg(H) g .

Definition A.10. Let H and K be subgroups of a group G. The multipli-

cation of H and K is the subset

HK = { hk | h ∈ H , k ∈ K } ⊆ G .

The multiplication of H and K is a union of the left cosets of K, as well

as a union of the right cosets of K:

HK =
⋃

h∈H

hK =
⋃
k∈K

Hk .

Proposition A.11. Let H and K be subgroups of G. Then, the multiplica-

tion HK is also a subgroup of G if, and only if, HK = KH.

Proof. Let us verify that with HK = KH the multiplication satisfies the

group axioms.

� Since H and K are subgroups, they both contain the identity e. Then,
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ee = e ∈ HK.

� The inverse of hk ∈ HK is in HK = KH, since

(hk)−1 = k−1h−1 ∈ KH = HK , ∀ h ∈ H , k ∈ K .

� Let us consider h1, h2 ∈ H and k1, k2 ∈ K, so that h1k1 and h2k2 belong

to HK. By associativity, the multiplication results

(h1k1)(h2k2) = h1(k1h2)k2 , ∀ h1, h2 ∈ H , k1, k2 ∈ K .

Because of the permutation property, there exist h′2 ∈ H and k′1 ∈ K
such that

k1h2 = h′2k′1 ,

whence

(h1k1)(h2k2) = (h1h′2)(k′1k2) ∈ HK .

Then, HK is closed under composition of elements.

Conversely, let us assume HK is a subgroup of G and consider an arbi-

trary element hk in HK, with h ∈ H and k ∈ K. By group axiom of inverse,

the element (hk)−1 is in HK, meaning that there exist h1 ∈ H and k1 ∈ K
satisfying

(hk)−1 = h1k1 ∈ HK ,

or, equivalently,

hk = k−1
1 h−1

1 ∈ HK ,

Since k−1
1 is in K and h−1

1 is in H, for the arbitrary hk ∈ HK we have

found k′ = k−1
1 and h′ = h−1

1 such that

hk = k′h′ ∈ KH .

When HK = KH, we say that the two subgroups permute. However, this
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does not imply that the elements of H commute with those of K. Actually,

the permutation of H and K means that for any element hk ∈ HK, with

h ∈ H and k ∈ K, there exist h′ ∈ H and k′ ∈ K such that

hk = k′h′ ∈ KH .

Definition A.12. A subgroup N of G is called normal if its left and right

cosets coincide and we write N E G (Dummit and Foote, 2003):

gN = Ng , ∀ g ∈ G .

The above definition implies that N equals its own conjugate by any

element of G, and we say that N is invariant under conjugation:

gNg−1 = N , ∀ g ∈ G .

Proposition A.13. Let H and K be subgroups of G. Then, if either H or

K is normal, the multiplication HK is a subgroup of G.

Proof. Suppose K E G. Recalling that the multiplication HK represents

the collection of left cosets of K by the elements of H, the subgroups do

permute:

HK =
⋃

h∈H

hK =
⋃

h∈H

Kh = KH ,

whence, by Proposition A.11, HK is a subgroup of G.

Similarly, if H is normal in G, the same result can be shown by consid-

ering the cosets of H.

Please notice that when H and K are both normal subgroups of G, one

can easily verify that HK is also normal:

gHK = (Hg)K = H(gK) = HKg , ∀ g ∈ G .

Proposition A.14. Let H and K be normal subgroups of G with H ∩K = e,

where e is the identity element of G. Then, the elements of H commute with

the elements of K.
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Proof. Consider h ∈ H and k ∈ K. The condition H E G implies that k−1hk
is in H, as well as h−1(k−1hk). Similarly, being K E G, the conjugate h−1k−1h
of k−1 is in K, and so is (h−1k−1h)k.

Hence, being H ∩ K = e, one derives

h−1k−1hk = (kh)−1(hk) = e ∈ G ,

what results in the following identity:

hk = kh , ∀ h ∈ H , k ∈ K .

Definition A.15. Given a normal subgroup N of G, let us denote by G/N
the set of all the cosets of N:

G/N = { gN = Ng | g ∈ G } .

Such a set is actually a group, called the quotient group, or the factor group,

of G by N (Lang, 2002).

The multiplication of subgroups provides the law of composition of G/N.

Actually, by multiplying two elements aN and bN, one has

aNbN = abNN = abN , ∀ aN, bN ∈ G/N .

Since abN is itself a coset of N, G/N is closed under multiplication.

Moreover, N = eN is the identity of G/N and the inverse of an element aN
is a−1N.

The normal subgroups of G are strictly related to the homomorphisms

having G as domain.

Let us first consider the groups G and G′, with the relevant unit elements

e and e′, and a group homomorphism f : G → G′. The kernel of f is the

subset of G mapped to the identity element:

Ker( f ) = { x ∈ G | f (x) = e′ } ⊆ G . (A.8)

Please observe that Ker( f ) satisfies the group axioms of Definition A.8,

which makes the kernel of f a subgroup of G:
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� the identity element e is in Ker( f ):

f (e) = e′ ;

� the kernel is closed under the group law of composition:

f (xy) = f (x) f (y) = e′e′ = e′ , ∀ x, y ∈ Ker( f ) ;

� the kernel is closed under inversion:

f (x−1) =
(

f (x)
)−1

= (e′)−1 = e′ , ∀ x ∈ Ker( f ) .

Proposition A.16. Let G and G′ be groups, with the identity elements e
and e′, respectively, and let f : G → G′ be a group homomorphism. Then,

Ker( f ) is a normal subgroup of G.

Proof. Let us set K = Ker( f ) and consider the conjugation gKg−1 by an

arbitrary element of G. Since f is a group homomorphism, one has

f (gKg−1) = f (g) f (K) f (g)−1 = f (g)e′ f (g)−1 = f (g) f (g)−1 = e′ ,

∀ g ∈ G .

Then, being the preimage of e′, the set gKg−1 is exactly the kernel of f :

K = gKg−1 , ∀ g ∈ G ,

implying the invariance of Ker( f ) by conjugation and the normality as a

subgroup of G.

The converse also applies, meaning that any normal subgroup is the

kernel of some group homomorphism.

Proposition A.17. Let G be a group and N a normal subgroup. Then,

there exists a group homomorphism whose kernel is given by N.
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Proof. The required group homomorphism is given by

π : G → G/N

g 7→ gN ,
(A.9)

where G/N is the quotient group introduced by Definition A.15.

First observe that, since N is normal in G, the map π is actually a group

homomorphism:

π(ab) = abN = abNN = aNbN = π(a)π(b) , ∀ a, b ∈ G .

Then, the kernel of π can be found by considering the elements mapped

to eN = N:

Ker(π) = { g ∈ G | π(g) = N } .

Consequently, since an element g satisfies the condition π(g) = gN = N
if, and only if, it is in N, the kernel of π is given exactly by N:

Ker(π) = N .

The homomorphism π defined by (A.9) is called the canonical map of

G to G/N or the natural projection of G onto G/N. Clearly, N is also the

kernel of any other homomorphism whose codomain is isomorphic to G/N.

Remark. Defining the kernel of the group homomorphism f by (A.8) is

consistent with the definition (A.4) as a congruence relation.

In fact, the fiber of f over e′, say K = f −1(e′), provides the congruence

class of the identity e. Then, the class of any other element g ∈ G is given by

the coset gK = Kg, whence the entire congruence relation can be recovered.

One can also say that the quotient group G/K is the collection of the

fibers of f over the elements of Im( f ). Then, the kernel K is a single element

of the group G/K, and the other elements are translates, as cosets, of K.

Let us again consider the group homomorphism f : G → G′, with K =

Ker( f ), and let π : G → G/K be the natural projection of G onto G/K.
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Then, there exists a unique monomorphism f : G/K → G′ such that

f = f ◦ π .

We recall that G/K collects the cosets of K and f (gK) = f (g) for any

element g ∈ G. Then, the following map is well-defined:

f : G/K → G′

gK 7→ f (g)

Since K is normal and being hK = K for all h in K, it results

f (xKyK) = f (xyK) = f (xy) = f (x) f (y) = f (xK) f (yK) ,

∀ xK, yK ∈ G/K ,

so that f is actually a group homomorphism.

Furthermore, considering the preimage of the identity e′ ∈ G′, we derive

Ker( f ) =
{

gK ∈ G/K
∣∣ f (gK) = f (g) = e′

}
,

and, since the fiber of f over e′ is exactly the kernel of f , we obtain Ker( f ) =

K. On the other hand, K is the identity element in the group G/K, so f has

a trivial kernel and is injective.

The map f is the unique homomorphism satisfying the required prop-

erties. Actually, because of its injectivity, f is the unique map whose fiber

over f (g) provides gK ∈ G/K for any g ∈ G. In addition, considering the

restriction of G′ to its subgroup f (G), the monomorphism f induces the

following isomorphism

ϕ : G/K → Im( f )

gK 7→ f (gK) = f (g)

In conclusion, for any group homomorphism f : G → G′, the image is

isomorphic to the quotient group of the domain by the kernel:

Im( f ) ∼= G/ Ker( f ) .
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Direct and Semidirect Product

Let G1 and G2 be groups with operations ∗1 and ∗2. The direct product

of G1 and G2 is the group whose underlying set is the Cartesian product

G = G1×G2 with the law of composition defined component-wise (Dummit

and Foote, 2003):

(x1, x2) ∗ (y1, y2) = (x1 ∗1 y1, x2 ∗2 y2) , ∀ x1, y1 ∈ G1 , x2, y2 ∈ G2 .

The above notation can be simplified as follows:

(x1, x2)(y1, y2) = (x1y1, x2y2) , ∀ x1, y1 ∈ G1 , x2, y2 ∈ G2 ,

with the clear meaning that each group multiplication makes sense within

the relevant algebraic structure.

Furthermore, in order to comply with the group structure consistently

with the law of composition, the identity element of G is (e1, e2), being e1 and

e2 the identities in G1 and G2, respectively. Also, from the component-wise

multiplication, the inverse element of (x1, x2) results (x−1
1 , x−2

2 ).

Let us consider the subsets H1 and H2 of G obtained by setting x2 = e2

and x1 = e1, respectively:

H1 = { (x1, e2) | x1 ∈ G1 }⊂ G , H2 = { (e1, x2) | x2 ∈ G2 }⊂ G .

Because of the element-wise definition of the multiplication in G, one

can easily verify that both H1 and H2 are subgroups of G. It is also clear

that H1 and H2 are isomorphic with G1 and G2, respectively:

G1
∼= H1⊂ G , G2

∼= H2⊂ G .

Moreover, by construction the identity e = (e1, e2) is the only element be-

longing to both the subgroups H1 and H2:

H1 ∩ H2 = (e1, e2) .
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Let ϕ1 : G → H1 be the map defined as

ϕ1(x1, x2) = (x1, e2) .

By means of the element-wise multiplication, it is possible to prove that

ϕ1 is a group homomorphism (Dummit and Foote, 2003). Specifically, since

for any (x1, e2) ∈ H1 there exist some (x1, x2) ∈ G mapped to (x1, e2) by ϕ1,

it is clear that ϕ1 is surjective, that is

Im(ϕ1) = H1 .

In addition, it can be noticed that (x1, x2) ∈ G is mapped to the identity

(e1, e2) ∈ H1 if, and only if, we set x1 = e1. This is the same condition

identifying the subgroup H2, so that the kernel of ϕ1 coincides with the

subgroup H2:

Ker(ϕ1) = H2 ,

and, being Ker(ϕ1) normal in G, one obtains

G/H2
∼= Im(ϕ1) = H1

∼= G1 .

An analogous result can be proved by considering the map ϕ2 : (x1, x2) 7→
(e1, x2) from G to H2. Explicitly, the kernel of ϕ2 is exactly H1:

Ker(ϕ2) = H1 ,

and the quotient group is isomorphic with H2:

G/H1
∼= Im(ϕ2) = H2

∼= G2 .

A further property of the subgroups H1 and H2 is that every element of

the one commutes with the elements of the other:

h1h2 = h2h1 , ∀ h1 ∈ H1 , h2 ∈ H2 .

Such a property is a consequence of the element-wise definition for the

law of composition in G. In fact, by setting h1 = (x1, e2) and h2 = (e1, x2),
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one has

(x1, e2)(e1, x2) = (x1, x2) = (e1, x2)(x1, e2) , ∀ (x1, e2) ∈ H1 , (e1, x2) ∈ H2 .

In summary, constructing a group G as a direct product of two groups

G1 and G2 implies that there exist two subgroups H1 and H2 in G isomorphic

to G1 and G2, respectively, whose intersection is the identity e and that are

both normal in G. Also, each of the subgroups is isomorphic to the quotient

group of G by the other one.

We want to point out that the results so far presented concern the direct

product of two groups. Similar properties can be proved defining the direct

product of an arbitrary number of groups. A discussion of such more general

case can be found, e.g., in Dummit and Foote (2003).

Recognizing Direct Products We have seen how a group G can be

constructed as the direct product of two given groups G1 and G2, along with

the relations between the assigned groups and the resulting one.

Now, we want to introduce a criterion to decompose a given group as

the direct product of some of its subgroups (Dummit and Foote, 2003).

Lemma A.18. Let H and K be subgroups of a group G, with identity e,

such that H ∩ K = e. Then, each element of the group multiplication HK
can be uniquely written as a product hk, with h ∈ H and k ∈ K.

Proof. Let us consider an element g ∈ HK and let h and k be some elements

of H and K, respectively, such that

g = hk ∈ HK .

Suppose that there exist some h1 ∈ H and k1 ∈ K, other than h and k,

whose multiplication provides the element g:

hk = h1k1 ∈ HK .

Then, the right multiplication by k−1 and the left multiplication by h−1
1 imply

h−1
1 h = k1k−1 ∈ G ,
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where h−1
1 h is in H, while k1k−1 is in K.

Since H ∩ K = e, the above relation holds true if and only if both the

left hand side and the right one equal the identity element of G, that is

h−1
1 h = e , k1k−1 = e .

whence h1 = h ∈ H and k1 = k ∈ K.

In conclusion, the pair of elements h ∈ H and k ∈ K providing g ∈ HK
is unique.

Theorem A.19 (Recognition Theorem). Let G be a group with subgroups H
and K such that H and K are normal in G and H ∩K = e, with e the identity

element of G. Then, the group multiplication of H and K is isomorphic to

the direct product:

HK ∼= H × K .

Proof. Since H ∩K = e, by Lemma A.18 any element of HK can be uniquely

written in the form hk, being h ∈ H and k ∈ K. For this reason, the following

map is well-defined:

ϕ : HK → H × K

hk 7→ (h, k)

In order to show the homomorphic structure of ϕ, let us consider the

elements h1, h2 ∈ H and k1, k2 ∈ K, so that both g1 = h1k1 and g2 = h2k2

are in HK. Moreover, by Proposition A.14, h1 and h2 do commute with k1

and k2, so that the multiplication of g1g2 is the element (h1h2)(k1k2) ∈ HK.

Hence, the image of g1g2 is

ϕ
(

g1g2
)

= ϕ
(
(h1h2)(k1k2)

)
= (h1, h2)(k1, k2) .

At the same time, the component-wise multiplication in H × K applies as

follows:

(h1, h2)(k1, k2) = (h1k1, h2k2) = ϕ(g1)ϕ(g2) .
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The comparison of the above relations implies

ϕ
(

g1g2
)

= ϕ(g1)ϕ(g2) , ∀ g1, g2 ∈ HK ,

proving that ϕ is a homomorphism.

The surjectivity of ϕ is trivial, since the pairs (h, k) are constructed from

the elements of H and K, and the same holds for the members of HK. In

addition, the uniqueness of the decomposition hk for any element of HK
ensures that ϕ is injective, proving the theorem.

Semidirect Product

We have seen how the direct product of two groups allows one to construct

a new group. The primary feature emerging from this construction is the

normality, up to an isomorphism, of the assigned groups. Conversely, a

group can be thought as the direct product of two subgroups, provided that

such subgroups are normal.

The notion of semidirect product comes from the idea of relaxing the

requirement for the subgroups to be both normal, what can be achieved by

properly defining a law of composition involving the action of a subgroup

on the other one (Dummit and Foote, 2003).

Definition A.20. Let H and K be groups and let ϕ be a homomorphism

from K into Aut(H). We define the semidirect product of K and H with

respect to ϕ the group, denoted as G = H oϕ K, whose underlying set is the

Cartesian product H × K with the following law of composition:

(h1, k1) ∗ (h2, k2) =
(
h1 ∗H ϕk1 (h2), k1 ∗K k2

)
, ∀ h1, h2 ∈ H , k1, k2 ∈ K ,

where ϕk1 = ϕ(k1) ∈ Aut(H) is the representation of the group action ϕ.

When the group operations are clear from the context, the above nota-

tion can be simplified in

(h1, k1)(h2, k2) = (h1 ϕk1 (h2), k1k2) , ∀ h1, h2 ∈ H , k1, k2 ∈ K .

Moreover, if there is no risk of ambiguity, the resulting group can be
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denoted simply as G = H o K, where the explicit reference to ϕ is omitted.

In any case, the notation points out how the construction of the semidirect

product is not symmetric, meaning that the law of composition relies on the

group action of K on H.

Let us also observe that one can refer to the semidirect product of K and

H by writing K nϕ H, or simply K n H. In that case, the group operation

is defined by switching the roles of the first and the second component and

the resulting group is the same up to an isomorphism.

In order to ensure that Definition A.20 makes sense, it is necessary that

the set H oϕ K, along with the associated law of composition, actually has

a group structure. This is the purpose of the following theorem (Dummit

and Foote, 2003).

Theorem A.21. Let H and K be groups and let ϕ : K → Aut(H) be a given

homomorphism. Consider the set G made by the pairs (h, k), with h ∈ H
and k ∈ K, and define a binary operation G× G → G as follows:

(h1, k1) ∗ (h2, k2) =
(
h1 ϕk1 (h2), k1k2

)
, ∀ h1, h2 ∈ H , k1, k2 ∈ K ,

with ϕk1 = ϕ(k1).

Then, this operation makes G a group.

Proof. Let (h1, k1), (h2, k2) and (h3, k3) be elements of G and verify the

associativity of the introduced operation:(
(h1, k1) ∗ (h2, k2)

)
∗ (h3, k3) =

(
h1 ϕk1 (h2), k1k2

)
∗ (h3, k3)

=
(
h1 ϕk1 (h2)ϕk1k2 (h3), k1k2k3

)
.

The associativity of the second component results from the group struc-

ture of K. Regarding the first component, let us observe that the homomor-

phism ϕ satisfies

ϕk1k2 (h3) =
(

ϕk1 ◦ ϕk2

)
(h3) = ϕk1

(
ϕk2 (h3)

)
.

Then, being ϕk1 ∈ Aut(H), one also has

ϕk1 (h2)ϕk1

(
ϕk2 (h3)

)
= ϕk1

(
h2 ϕk2 (h3)

)
,
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finally obtaining(
(h1, k1) ∗ (h2, k2)

)
∗ (h3, k3) =

(
h1 ϕk1

(
h2 ϕk2 (h3)

)
, k1k2k3

)
=
(
h1, k1

)
∗
(
h2 ϕk2 (h3), k2k3

)
=
(
h1, k1

)
∗
(
(h2, k2) ∗ ((h3, k3)

)
.

It is easy to show that the identity element of G is (eH, eK), with eH

and eK the identity elements of H and K, respectively. Actually, for the

homomorphic structure of ϕ, one has ϕeK = idH. On the other hand, since

ϕk is an automorphism of H, it also results ϕk(eH) = eH. Then

(h, k) ∗ (eH, eK) =
(
hϕk(eH), k

)
= (h, k) , ∀ (h, k) ∈ G ,

and also

(eH, eK) ∗ (h, k) =
(
eH ϕeK (h), k

)
= (h, k) , ∀ (h, k) ∈ G .

Finally, the inverse of an element (h, k) of G results

(h, k)−1 =
(

ϕ−1
k (h−1), k−1

)
, ∀ (h, k) ∈ G ,

what can be proved by applying the definition of inverse:

(h, k) ∗
(

ϕ−1
k (h−1), k−1

)
=
(
h
(

ϕk ◦ ϕ−1
k

)
(h−1), kk−1

)
= (hh−1, eK) = (eH, eK) ,

as well as, recalling that ϕ−1
k = ϕk−1 ,(

ϕ−1
k (h−1), k−1

)
∗ (h, k) =

(
ϕ−1

k (h−1)ϕk−1 (h), k−1k
)

= (h−1h, eK) = (eH, eK) .

The semidirect product of two groups has a peculiar structure. Specifi-

cally, the resulting group contains isomorphic copies of the assigned groups

satisfying specific properties. This is shown in the following theorem.

Theorem A.22. Let G = H oϕ K be the semidirect product of K and H
with respect to ϕ, and define the subsets H and K as

H = { (h, eK) | h ∈ H } ⊆ G , K = { (eH, k) | k ∈ K } ⊆ G .
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Then, the following statements hold true.

1. H and K are subgroups of G and they are isomorphic with H and K,

respectively.

2. H ∩ K = (eH, eK) = e.

3. H is normal in G.

4. K acts on H by conjugation and such an action is isomorphic to ϕ.

Proof. 1. The subset H ⊆ G can be thought as the Cartesian product

H×{eK}. Similarly, we can regard the subset K ⊆ G as the Cartesian

product {eH} × K. Then, the following maps are clearly bijective:

πH : H → H

h 7→ (h, eK)

πK : K → K

k 7→ (eH, k)
(A.10)

Moreover, recalling that the homomorphism ϕ satisfies the property

ϕeK = idH, it is easy to verify that H has a group structure under the

same law of composition of G:

(h1, eK)(h2, eK) = (h1h2, eK) ∈ H , ∀ (h1, eK), (h2, eK) ∈ H .

The above relation can also be written in terms of the map πH as

πH(h1)πH(h2) = πH(h1h2) , ∀ h1, h2 ∈ H ,

showing that πH is a group isomorphism.

On the other hand, since ϕk is an automorphism of H for any k of K,

the identity is mapped to itself, i.e. ϕk(eH) = eH. Then, the group

operation of G makes K also a subgroup, resulting

(eH, k1)(eH, k2) = (eK, k1k2) ∈ K , ∀ (eH, k1), (eH, k2) ∈ K ,

what also proves the homomorphic structure of the bijection πK:

πK(k1)πK(k2) = πK(k1k2) , ∀ k1, k2 ∈ K .

2. The component-wise comparison of (h, eK) ∈ H and (eH, k) ∈ K shows

that the condition (h, eK) = (eH, k) is satisfied if, and only if, h = eH

213



Appendix A Review of Algebraic Structures

and k = eK both hold. Hence

H ∩ K = (eH, eK) .

3. Consider the left coset of H by an arbitrary element (h, k) of G:

(h, k)H =
⋃
l∈H

(h, k)(l, eK) =
⋃
l∈H

(
hϕk(l), k

)
.

Since ϕk is an automorphism of H, then ϕk(H) = H and so⋃
l∈H

hϕk(l) = hϕk(H) = hH = Hh =
⋃
l∈H

lh ,

whence

(h, k)H =
⋃
l∈H

(lh, k) =
⋃
l∈H

(l, eK)(h, k) = H(h, k) .

Thus the left and the right cosets of H do coincide and, by definition,

H is normal in G.

4. Let h ∈ H and k ∈ K be mapped to h ∈ H and k ∈ K, respectively,

through the isomorphisms πH and πK defined by (A.10). The conju-

gate of h by k is

Ck(h) = (eH, k)(h, eK)(eH, k)−1 =
(

ϕk(h), k
)(

eH, k−1
)

=
(

ϕk(h), eK
)

.

Then, the conjugation Ck is an automorphism of H for any k in K,

representing the action of K on H.

In addition, let us observe that

Ck(h) = Ck

(
πH(h)

)
=
(

ϕk(h), eK
)

= πH
(

ϕk(h)
)
,

whence

Ck ◦ πH = πH ◦ ϕk ⇔ ϕk = π−1
H ◦ Ck ◦ πH .

This shows how the group action ϕ of K on H coincides, up to the
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isomorphisms πH and πK, with the action by conjugation of K on

H.

Similarly to the direct product, it is possible recognize the structure of

an assigned group depending on the features of its subgroups. To this end,

we prove now a recognition theorem for the semidirect product.

Theorem A.23. Let G be a group with identity e. Suppose H and K are

subgroups such that H is normal in G and H ∩K = e. Then, the group mul-

tiplication of H and K is isomorphic to the semidirect product with respect

to the map C:

HK ∼= H oC K ,

where C is the action by conjugation of K on H:

C : K× H → H

(k, h) 7→ Ck(h) = khk−1 .

Proof. Since H E G, the subgroup H is invariant under conjugation (see

Definition A.12). Consequently, any representation Ck of the action C is an

automorphism of H, resulting

Ck(H) = kHk−1 = H , ∀ k ∈ K ⊆ G ,

and the semidirect product H oC K is well-defined.

By Proposition A.13, the normality of H also implies that the group

multiplication HK is a subgroup of G. Moreover, being H ∩ K = e, by

Lemma A.18 any element of HK can be written uniquely in the form hk, for

some h ∈ H and k ∈ K. Then, the definition of the following map makes

sense:

π : HK → H oC K

hk 7→ (h, k) .

We recall that the underlying set of the group H oC K is the Cartesian

product H×K. Hence, since any pair of elements h ∈ H and k ∈ K uniquely
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defines the element hk of HK and (h, k) in H× K, the map π is clearly a set

bijection.

To prove that π is also a group homomorphism, let us consider the

product of two elements h1k1 and h2k2 of HK:

(h1k1)(h2k2) = h1k1h2(k−1
1 k1)k2 = h1(k1h2k−1

1 )k1k2 =
(
h1Ck1 (h2)

)
(k1k2) ,

where the resulting elements h1Ck1 (h2) ∈ H and k1k2 ∈ K are consistent with

the law of composition induced by the action C on the group H oC K. Then,

π
(
(h1k1)(h2k2)

)
= π

(
h1Ck1 (h2)

)
π(k1k2) , ∀ h1k1, h2k2 ∈ HK

and the bijection π results a group isomorphism.

In the same hypotheses of the above theorem, if any element of G can be

written in the form hk, with h ∈ H and k ∈ K, the group G itself coincides

with the multiplication HK and is isomorphic with the semidirect product

of its subgroups:

G ∼= H o K ,

where it is understood the action by conjugation of K on H.

Moreover, each of the subgroups H and K also results the complement

of the other one, according to the following definition (Dummit and Foote,

2003).

Definition A.24. Let H be a subgroup of a group G. A subgroup K of G
is called a complement for H in G if G = HK and H ∩ K = e.

A.2.3 Rings

A ring is a set R along with two laws of composition, called addition (+) and

multiplication (·), such that (R,+) is an abelian group, (R, ·) is a monoid

and multiplication distributes over addition.

Specifically, the ring structure holds if the laws of composition do fulfill

the following properties:
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� addition is associative:

a + (b + c) = (a + b) + c , ∀ a, b, c ∈ R ;

� there exists an element 0 ∈ R called the additive identity :

a + 0 = 0 + a = a , ∀ a ∈ R ;

� for any element there exists an additive inverse, or opposite, in R:

a + (−a) = (−a) + a = 0 , ∀ a ∈ R ;

� addition is commutative:

a + b = b + a , ∀ a, b ∈ R ;

� multiplication is associative:

a · (b · c) = (a · b) · c , ∀ a, b, c ∈ R ;

� there exists 1 ∈ R called the multiplicative identity :

a · 1 = 1 · a = a , ∀ a ∈ R ;

� multiplication is distributive with respect to addition:

a · (b + c) = a · b + a · c , (a + b) · c = a · c + b · c , ∀ a, b, c ∈ R .

Multiplication can be represented by juxtaposition and the symbol ‘·’ is

usually omitted, so that ab stands for a · b with a, b ∈ R.

It is observed in Dummit and Foote (2003) how the commutativity of

addition is actually a consequence of distributive laws and existence of 1. In

fact, by applying left and right distributivity to (1 + 1)(a + b), one has

(1 + 1)(a + b) = (1 + 1)a + (1 + 1)b = a + a + b + b ,

(1 + 1)(a + b) = 1(a + b) + 1(a + b) = a + b + a + b ,
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whence

a + a + b + b = a + b + a + b .

By adding −a to the left and −b to the right of both members, one can

derive the commutative property, i.e. a + b = b + a.

A further property, shown in Lang (2002), is that 0a = 0 for all a ∈ R.

Such a property comes from the following relation:

0a + a = (0 + 1)a = 1a = a .

The immediate consequence is that if 0 is both the additive and the

multiplicative identity, explicitly 1 = 0, then

0a = a = 0 , ∀ a ∈ R ,

and R consists of 0 alone, named the zero ring. Hence, R 6= {0} requires

1 6= 0.

Also, for any a, b ∈ R we have (−a)b = a(−b) = −ab. In fact, left and

right distributive property implies

ab + a(−b) = a(b− b) = a0 = 0 ,

ab + (−a)b = (a− a)b = 0b = 0 ,

so that, by definition, both a(−b) and (−a)b coincide with the opposite of

ab. The immediate consequence is (−a)(−b) = ab.

It is worth noting that (R, ·) is introduced as a (non-commutative)

monoid. If commutativity is additionally assumed for multiplication, i.e.

ab = ba for all a, b ∈ R, we say that R is a commutative ring.

Units and zero divisors

Let R be a non-zero ring and let us consider an element u which has both

a left inverse, v, and a right one, w. By associativity, we observe that

vuw = (vu)w = v(uw), i.e. v = w = u−1. We say that u is a unit in R.

The set of all the units in R, denoted by R×, is a group under multipli-
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cation and is called the group of units, or the group of invertible elements

of R.

If any non-zero elements of R is invertible, i.e. R× = R\{0}, then it is

called a division ring.

A non-zero element a of R is called a zero divisor if there exists an

element b 6= 0 in R such that ab = 0 or ba = 0.

Please notice that a zero divisor can never be a unit, and vice-versa. To

prove this property, let us consider a unit a ∈ R and suppose that ab = 0
for some b 6= 0 in R. Then, there exists v ∈ R such that va = 1 and we can

write

b = 1b = (va)b = v(ab) = v0 = 0 ,

what contradicts the assumption b 6= 0.

A.2.4 Fields

A field is a commutative division ring. Hence, supposing a set F with addi-

tion and multiplication satisfies the ring axioms, it is a field if (F\{0}, ·) is

an abelian group (Dummit and Foote, 2003).

The properties providing the field structure to a set F are here summa-

rized:

� addition is associative:

a + (b + c) = (a + b) + c , ∀ a, b, c ∈ F ;

� there exists an element 0 ∈ R called the additive identity :

a + 0 = 0 + a = a , ∀ a ∈ F ;

� for any element there exists an additive inverse, or opposite, in F:

a + (−a) = (−a) + a = 0 , ∀ a ∈ F ;
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� addition is commutative:

a + b = b + a , ∀ a, b ∈ F ;

� multiplication is associative:

a · (b · c) = (a · b) · c , ∀ a, b, c ∈ F ;

� there exists 1 ∈ F called the multiplicative identity :

a · 1 = 1 · a = a , ∀ a ∈ F ;

� for any non-zero element there exists a multiplicative inverse, or simply

an inverse, in F:

a · a−1 = a−1 · a = 1 , ∀ a 6= 0 ∈ F ;

� multiplication is commutative:

a · b = b · a , ∀ a, b ∈ F ;

� multiplication distributes over addition:

a · (b + c) = (b + c) · a = a · b + a · c , ∀ a, b, c ∈ F .

A field F inherits from the ring structure all its properties. As an exam-

ple, a0 = 0 for any a in F, as well as 1 6= 0 unless F = {0}. The property

(−a)b = a(−b) = −ab also hold for all elements a, b ∈ F.

Ordered Fields

Let F be a field. An ordering of F is a subset P of F such that the following

properties are satisfied:

� given any x ∈ F, either x is in P, or x = 0, or −x is in P, and these

possibilities are mutually exclusive;
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� if x and y are in P, then x + y and xy are both in P.

The subset P is the set of positive elements of F, while −P is the set of

negative elements of F, that is the subset of x such that −x ∈ P. Then, the

ordered field F is the union of the subset P, the additive identity 0, and the

subset −P:

F = P∪ {0} ∪ (−P) .

Given x, y ∈ F, the relation x < y, or equivalently y > x, means that

y− x is in P. Then, the positive elements, i.e. x ∈ P, satisfy x > 0, while

the negative ones, that is x ∈ −P, are the elements satisfying x < 0.

Please notice that the multiplicative identity 1 is positive. Actually,

being other than 0, the identity 1 is either positive or negative, and in both

cases one has

12 = (−1)2 = 1 > 0 .

Moreover, if x ∈ P and x 6= 0, then xx−1 = 1 > 0, whence x−1 ∈ P. In

addition, if x 6= 0, the square x2 is positive because x2 = (−x)2 and either

x ∈ P or −x ∈ P.

The basic example of an ordered field is the field of real numbers R.

Further details about ordered fields can be found, e.g., in Lang (2002).

A.2.5 Vector Spaces

The algebraic structures so far introduced refer to just one set endowed

with a number of operations. On the contrary, a vector space represents a

composite system involving two sets and two binary operations.

Definition A.25. Let (V ,+) an additive abelian group and (F,+, ·) be a

field. We say that V is an F-vector space, or a vector space over F, if it is

defined a map called scalar multiplication

µ : F×V →V

(a, v) 7→ µ(a, v) = av ,
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satisfying the following axioms:

� compatibility of scalar multiplication with field multiplication:

a(bu) = (ab)u , ∀ u ∈V , a, b ∈ F ;

� existence of identity element of scalar multiplication:

1u = u , ∀ u ∈V ,

where 1 is the multiplicative identity in F;

� distributivity of scalar multiplication with respect to addition in V :

a(u + v) = au + av , ∀ u, v ∈V , a ∈ F ;

� distributivity of scalar multiplication with respect to field addition:

(a + b)u = au + bu , ∀ u ∈V , a, b ∈ F .

Please notice that we use the same symbol “+” to represent both the

addition in the field F and the group operation of V .

We also say that the elements a ∈ F are scalars, while the elements

v ∈ V are called vectors and the law of composition in V is called vector

addition.

The properties of the vector addition in V , as an abelian group, are here

summarized:

� associativity:

u + (v + w) = (u + v) + w , ∀ u, v,w ∈V ;

� commutativity:

u + v = v + u , ∀ u, v ∈V ;
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� existence of additive identity:

u + o = o + u = u , ∀ u ∈V ,

where o ∈V is called the zero vector or null vector ;

� existence of additive inverse:

u + (−u) = −u + u = o , ∀ u ∈V ,

with −u ∈V .

In the sequel we will also adopt the notation v − w to represent the

addition of v with the opposite of w:

v−w = v + (−w) , ∀ v,w ∈V ,

as well as the division by a non-null scalar in F will stand for the scalar

multiplication by its inverse:

v
c

= c−1v , ∀ v ∈V , c ∈ F\{0} .

The compatibility of the scalar multiplication with the field structure of

F derives from the ring homomorphism from F to End(V ).

Proposition A.26. Let V be a vector space over the field F and let the null

scalar 0 be additive identity of F.

1. The scalar multiplication of the of 0 with any vector of V is the null

vector:

0v = o , ∀ v ∈V .

2. The scalar multiplication of any scalar of F with the null vector o is

the null vector:

co = o , ∀ c ∈ F .

Proof.
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1. Considering an arbitrary vector v ∈ V , along with its opposite −v,

the following identity holds:

0v = 0v + o = 0v + v + (−v) ,

whence, applying the property 1v = v and the distributivity of the

scalar multiplication, one finds

0v = (0 + 1)v + (−v) = 1v + (−v) = v + (−v) = o .

2. Let c be an arbitrary scalar of F. By virtue of the above statement,

one has

co = c(0v) = (c0)v = 0v = o ,

where the compatibility of the scalar multiplication has been exploited.

A direct consequence of the above proposition is that the identity cv = o
holds true if, and only if, either c = 0 or v = o. Actually, we observe that

if c = 0, the identity 0v = o is trivially verified. Conversely, if c 6= 0 we can

multiply by the inverse of c:

c−1(cv) = c−1o ,

where the first member becomes (c−1c)v = 1v = v, and the second one is

the null vector, obtaining v = o.

Please notice that the primary vector space over a field F is the Cartesian

power Fn:

Fn = { (a1, . . . , an) | ai ∈ F , i = 1, . . . , n } .

In fact, since (F,+) is an abelian group, such a structure is clearly

extended to Fn by the component-wise addition:

(a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn) ,
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being ai, bi ∈ F.

Moreover, exploiting the multiplication in F, the following operation is

well-defined

c(a1, . . . , an) = (ca1, . . . , can) , ∀ c ∈ F(a1, . . . , an) ∈ Fn ,

what represents a scalar multiplication consistent with the requirements of

Definition A.25.

The properties of vector spaces are deeper described in Appendix B.

A.2.6 Lie Algebras

When a vector space is endowed with a bilinear operation, a new algebraic

structure results, and it is called an algebra.

The bilinear operation introduced here below is the Lie bracket and the

resulting algebraic structure is the Lie algebra.

Definition A.27. A Lie algebra over a field F is an F-vector space g en-

dowed with a skew-symmetric bilinear map

[·, ·] : g× g→ g ,

which is called the Lie bracket, satisfying the following properties:

� bilinearity:

[au + bv,w] = a[u,w] + b[v,w] , ∀ a, b ∈ f F ,

[w, au + bv] = a[w,u] + b[w, v] , ∀ a, b ∈ f F ;

� antisymmetry:

[u, v] = −[v,u] ;

� Jacobi identity:[
u, [v,w]

]
+
[
v, [w,u]

]
+
[
w, [u, v]

]
= o .
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Algebra of Vector Spaces

B.1 Vector Space Structure

The main features of vector spaces and multilinear algebra are recalled.

Remark (Notation). Following the classical references about Differential

Geometry and Tensor Analysis (Dimitrienko, 2002, Lee, 2012), from now

on we adopt the typical notation compatible with the Einstein summation

convention, unless otherwise stated.

Specifically, the i-th element in a collection of vectors will be denoted by

the subscript ‘i’:

{vi}n
i=1 , with vi ∈V ,

and an analogous index will be used as a superscript to refer to the i-th
scalar:{

ai}n
i=1 , with ai ∈ F .

Then, we will write aivi to represent a summation with respect to the

index i:

aivi =
n

∑
i=1

aivi = a1v1 + . . . + anvn ∈V .

With this convention, it is understood that a summation is performed
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with respect to any index that appears exactly twice, once in an upper and

once in a lower position, in a monomial term. The index that is implicitly

summed over is a dummy index.

B.1.1 Bases

Definition B.1. LetV be a vector space over the field F and S = {v1, . . . , vn}
a subset of V .

1. A linear combination of S is any element of V expressed in the form

a1v1 + . . . + anvn ,

with a1, . . . , an ∈ F.

2. The span of S is the set of all linear combinations of S and it is denoted

as Span(S ).

We observe that, because of the distributivity properties of the scalar

multiplication, as introduced in Definition A.25, any linear combination of

a number of vectors of V is itself a vector of V .

Furthermore, the span of S , along with the operations defined for V , is

itself a vector space over F. This is clear from the explicit definition of the

span of S :

Span(S ) =
{

aivi = a1v1 + . . . + anvn

∣∣ vi ∈ S , ai ∈ F
}
,

whence one can easily see that Span(S ) is closed under addition. Moreover,

by setting ai = 0, we find that o is in Span(S ), while for any element in

the form a1v1 + . . . + anvn the opposite is given by (−a1)v1 + . . . + (−an)vn.

Then, Span(S ) is an abelian additive group.

Also, the span of S is closed under the scalar multiplication, resulting

c(a1v1 + . . . + anvn) = (ca1)v1 + . . . + (can)vn ∈ Span(S ) , ∀ c ∈ F ,

so that Span(S ) is actually a vector space.

More generally, we say that the span of S is a subspace of V , according

to the following definition.
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Definition B.2. Let V be an F-vector space. We define a subspace of V
any (nonempty) subset that is a vector space with the operations inherited

from V .

Proposition B.3. Let V be a vector space over the field F. A subset W 6=
{o} is a subspace of V if, and only if, it results

aw + a′w′ ∈W , ∀w,w′ ∈W , a, a′ ∈ F .

Proof. Recalling that any linear combination of vectors is itself a vector of

the same space, if W has a vector space structure, the above requirement is

trivially satisfied.

On the contrary, suppose that the above condition holds true. By setting

a = a′ = 0, one verifies that o is in W . Also, the opposite of any vector

in the form aw + a′w′ is given by (−a)w + (−a′)w′. Then, W results an

additive abelian group.

Furthermore, since the above condition is satisfied for all the elements

of F, W is closed under scalar multiplication, i.e.

c(aw + a′w′) = (ca)w + (ca′)w′ ∈W , ∀ c ∈ F ,

proving the vector space structure of W .

Definition B.4. Let V be a vector space over the field F. The subset

S = {v1, . . . , vn} of V is linearly independent over F if there exist scalars

a1, . . . , an ∈ F, not all equal to 0, such that

a1v1 + . . . + anvn = o .

Otherwise, S is linearly independent.

Please notice that any set containing the null vector o is linearly depen-

dent. As an example, for the set {o, v2, . . . , vn}, the null vector is given by

the following linear combination:

a1o + 0v2 + . . . + 0vn = o , ∀ a1 ∈ F .
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In addition, for any set S = {v1, . . . , vn} of vectors of V linearly inde-

pendent, the set {v1, . . . , vn,w} is linearly dependent if, and only if, w is

in Span(S ). Actually, if w is in the span of S , it can be written as a linear

combination in the form w = a1v1 + . . . + anvn, so that

a1v1 + . . . + anvn −w = o ,

whence the linear dependence.

On the contrary, supposing {v1, . . . , vn,w} is linear dependent, one can

write

a1v1 + . . . + anvn + bw = o ,

where, being a1v1 + . . . + anvn 6= o for the linear independence of S , the

scalar b is non-zero. Then, dividing by b, one finds

w =

(
− a1

b

)
v1 + . . . +

(
− an

b

)
vn ,

whence w ∈ Span(S ).

Definition B.5. Let V be a vector space over the field F. The subset

B = {b1, . . . ,bn} of V is a basis of V if it is linearly independent and its

span coincides with V :

Span(B ) = V .

The number of elements of B is the dimension of V .

A vector space spanned by a finite set of vectors is said to be finite-

dimensional. Otherwise, it is said to be infinite-dimensional. If the vector

space consists of o alone, then it does not have a basis and we shall say that

its dimension is 0. In the sequel, whenever a vector space is considered, it

is assumed to be finite-dimensional.

Proposition B.6. Let B = {b1, . . . ,bn} be a set of vectors of an F-vector

space. Then, B is a basis for V if, and only if, any v ∈ V can be written

in a unique way as a linear combination of the vectors of B .
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Proof. Supposing B is a basis for V , any vector v is in the span of B and

can be written as:

v = v1b1 + . . . + vnbn ,

where v1, . . . , vn are scalars of F.

Assume there exists another set of scalars of F, say w1, . . . ,wn, such that

v = w1b1 + . . . + wnbn .

Hence, by comparing the above equations, we can write

v1b1 + . . . + vnbn = w1b1 + . . . + wnbn ,

whence

(v1 − w1)b1 + . . . + (vn − wn)bn = o .

Since B is linearly independent, the coefficients providing the null vec-

tor vanish, obtaining vi = wi with i = 1, . . . , n. Then, the set of scalars

v1, . . . , vn ∈ F providing the vector v is unique.

Conversely, suppose that any vector v of V can be uniquely written as

a linear combination of B :

v = v1b1 + . . . + vnbn , ∀ v ∈V .

By Definition B.1, the set of linear combinations of the vectors b1, . . . ,bn

is the span of B , so that

V = Span(B ) .

In addition, when the coefficients v1, . . . , vn vanish, the relevant linear

combination is the null vector:

o = 0b1 + . . . + 0bn ∈V

Hence, since such a combination is unique, the vectors b1, . . . ,bn are linearly

independent and B is a basis of V .
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Definition B.7. Let us fix a basis B = {b1, . . . ,bn} for the vector space

V over the field F. The scalars v1, . . . , vn ∈ F providing the vector v, by

multiplication with the basis vectors, are called the coordinates of v with

respect to the basis B :

v = vibi ∈V .

The coordinates of the vector v can be gathered into the n-tuple v =

(v1, . . . , vn) ∈ Fn, what represents the coordinate vector of v.

Actually, we have observed by the end of Section A.2.5 that Fn is a vector

space over over F. Moreover, since by Proposition B.6 the set of coefficients

v1, . . . , vn ∈ F is unique for any v of V , the following map results a vector

space isomorphism:

ϕB : V → Fn

v 7→ v = (v1, . . . , vn) ,

ϕ−1
B : Fn →V

v 7→ v = vibi .
(B.1)

It is worth noting that, from the perspective of the vector space Fn, the

scalars v1, . . . , vn ∈ F actually represent the coordinates of the vector v with

respect to the basis {e1, . . . , en}, i.e. the collection of n-tuples ei with all

entries equals to 0, except the i-th equal to 1. Explicitly, we can write

v = viei = v1e1 + . . . + vnen = v1(1, 0, . . . , 0) + . . . + vn(0, . . . , 0, 1) .

Such a basis is called the standard basis, or the natural basis, of the

vector space Fn.

B.1.2 Linear Mappings

In Appendix A.1.3 we introduced a homomorphism between algebraic struc-

tures as a map consistent with the operations of such structures. When we

refer to vector spaces, the same idea applies and specializes to the notion of

linear mapping.

Definition B.8. Let V and W be two vector spaces over the same filed

F. A linear mapping f : V → W , also called a linear map or a linear
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transformation, is a vector space homomorphism such that

� f (v + v′) = f (v) + f (v′) , ∀ v, v′ ∈V ;

� f (cv) = c f (v) , ∀ v ∈V , c ∈ F.

It is clear that the definition of linear mapping here introduced is fully

consistent with the one of a general homomorphism (Definition A.7). In

fact, the first requirement establishes that the linear map f preserves the

law of composition in V and W , intended as additive abelian groups, while

the second one ensures that the field F acts consistently over V and W .

In particular, since the group structure of V and W is preserved, the

additive identity of the former space is mapped to the identity of the latter

one (see Definition A.9). Explicitly, the null vector oV of V is transformed

into the null vector oW of W :

f (oV ) = oW . (B.2)

Please notice that the above property also results from the linearity of

f . In fact, by Part 1 of Proposition A.26, whatever the vector v ∈ V is

considered, one has

f (oV ) = f (0v) = 0 f (v) = oW .

In order to characterize linear mappings, the same nomenclature intro-

duced in Section A.1.3 for general homomorphisms is also applied in this

context. Specifically, the linear map f : V →W is called a monomorphism,

an epimorphism or an isomorphism if it is injective, surjective or bijective,

respectively. Furthermore, if f maps the vector space V to itself, that is

W = V , it is called an endomorphism. Finally, when f : V →V is bijective,

we say that it is an automorphism.

Definition B.9. Let V and W be F-vector spaces and f : V →W a linear

map from V to W .

1. The kernel of f as the set of elements v ∈V mapped to the null vector
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of W :

Ker( f ) = { v ∈V | f (v) = oW } .

2. The image, or the range, of f is the set of elements w ∈W which are

images of vectors of V :

Im( f ) = {w ∈W | w = f (v) , v ∈V } .

It is worth noting that the definition here introduced for the kernel of

the linear map f is consistent with the one considered for a general homo-

morphism in terms of the congruence relation (A.4). Actually, for any pair

(u,u′) ∈ V 2 satisfying the condition f (u) = f (u′), it is always possible to

find a vector v ∈V such that f (v) = oW , and vice-versa:

f (u) = f (u′) ⇔ f (v) = oW .

The direct implication can be simply verified by exploiting the linearity

of f and then setting v = u− u′. The converse one results observing that

any v in the kernel of f is also in V , which implies, by virtue of the linear

space structure, that such a vector can be expressed as the difference of two

elements, say u and u′. Then, the linearity of f ensures the validity of the

condition f (u) = f (u′).

Proposition B.10. Let f : V → W be a linear map between the vector

spaces V and W over the field F.

1. The kernel of f is a linear subspace of V .

2. The image of f is a linear subspace of W .

Proof. 1. Let v and v′ be vectors in the kernel of f , and consider two

arbitrary scalars, say a and a′. Then, resulting f (v) = f (v′) = oW

and being f linear, one finds

f (av + a′v′) = a f (v) + a′ f (v′) = aoW + a′oW = oW ,

that is the linear combination av + a′v′ is in Ker( f ) and, by Proposi-

tion B.3, the kernel of f is actually a subspace of V .
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2. Consider w and w′ in the image of f , meaning that there exist v, v′ ∈
V such that f (v) = w and f (v′) = w′. Then, for any pair of scalars

a, a′ ∈ F, one has

f (av + a′v′) = a f (v) + a′ f (v′) = aw + a′w′ ,

which means that the linear combination aw + a′w′ is in the image

of f and, again by Proposition B.3, Im( f ) results a subspace of the

codomain W .

The properties of the linear map f are related to the features of its kernel

and image as linear subspaces of V and W , respectively.

Proposition B.11. Let V and W be vector spaces over the field F and let

the map f : V →W be linear.

1. The map f is injective if, and only if, dim(Ker( f )) = 0.

2. The map f is surjective if, and only if, dim(Im( f )) = dim(W ).

Proof. 1. Suppose dim(ker( f )) = 0, or equivalently Ker( f ) = {oV }. In

order to prove that f is injective, let us consider an arbitrary pair of

vectors v, v′ ∈V such that f (v) = f (v′). Then, since f is linear, one

can write

f (v)− f (v′) = f (v− v′) = oW ,

which implies that the difference v− v′ is in the kernel of f . Hence,

because of the assumption, one finds v− v′ = oV , that is the condition

v = v′ ensuring the injectivity of f .

Conversely, if f is supposed to be injective, then any vector v ∈V such

that v 6= oV has an image f (v) 6= f (oV ) = oW . This means that the

kernel of f is made only of the null vector oV , i.e. dim(ker( f )) = 0.

2. The surjectivity of f means that every element of the codomain W
has some preimages in V , that is the image of f is coincident with the

codomain itself and then dim(Im( f )) = dim(W ).

On the contrary, since by Part 2 of Proposition B.10 the image of f is

a subspace of W , the condition dim(Im( f )) = dim(W ) means that
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Im( f ) is the codomain itself, i.e. f is surjective.

Proposition B.12. Given the F-vector spaces V and W , let f : V →W
be an isomorphism from V to W . Considering a set of k vectors v1, . . . , vk

of V , the images f (v1), . . . , f (vk) ∈W are linearly dependent if, and only

if, the vectors v1, . . . , vk are dependent themselves.

Proof. Suppose that v1, . . . , vk ∈ V are linearly dependent. Then, at least

one of them can be expressed as a linear combination of the others:

vi =
k

∑
j=1
j 6=i

ajvj ,

and, for the linearity of f , one has

f (vi) =
k

∑
j=1
j 6=i

aj f (vj) ,

whence the linear dependence of the images.

On the other hand, assume that f (v1), . . . , f (vk) ∈W are linearly de-

pendent and that the following relation holds true:

f (vi) =
k

∑
j=1
j 6=i

aj f (vj) .

Exploiting again the linearity of f , one finds

f
(

vi −
k

∑
j=1
j 6=i

ajvj

)
= oW ,

so that, since f is isomorphic, we have

vi −
k

∑
j=1
j 6=i

ajvj = oV .

Please notice that the null vector of V has been written as a linear
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combination with at least a non-null coefficient, i.e. the one relevant to v1.

Hence, the vectors v1, . . . , vk ∈V are linearly dependent.

Proposition B.13. Let V and W be vector spaces over the same field F
and let f : V → W be a linear map. Then f is injective if, and only

if, for any set of linearly independent vectors v1, . . . , vk ∈ V the images

f (v1), . . . , f (vk) ∈W are linearly independent themselves.

Proof. Assume f is injective and let v1, . . . , vk be linearly independent vec-

tors of V .

To show the independence of the images f (v1), . . . , f (vk) ∈W , consider

a linear combination by means of the coefficients a1, . . . , ak ∈ F providing

the null vector, that is

ai f (vi) = oW ,

which, for the linearity of f , also means

f (aivi) = oW .

Since f is injective, its kernel contains only the null vector oV , obtaining

aivi = oV ,

where the independence of v1, . . . , vk implies the vanishing of the scalars

a1, . . . , ak and so the linear independence of f (v1), . . . , f (vk) ∈W .

On the contrary, suppose that for any collection of linearly independent

vectors the images are also independent.

To prove the injectivity of f , consider its kernel and verify it contains

only the null vector oV . Hence, let v be a vector in V such that f (v) = oW .

If v is not in the span of {v1, . . . , vk}, then the vectors v, v1, . . . , vk are

linearly independent, and so are the images f (v), f (v1), . . . , f (vk). However,

this contradicts the assumption f (v) = oW .

Hence, v is spanned by v1, . . . , vk and can be expressed as v = aivi, so

that one finds

f (v) = f (aivi) = ai f (vi) = oW ,

236



Appendix B Algebra of Vector Spaces

where, being f (v1), . . . , f (vk) linearly independent, the coefficients a1, . . . , ak

do vanish, and so do the vector v = aivi.

In conclusion, since f (v) = oW implies v = oV , the kernel of f consists

solely of oV and f is actually injective.

The proposition here above relates dimensions of the kernel and image of

the linear map f , as subspaces of V and W , to the features the map itself.

At the same time, such dimensions are also connected with the dimension

of the domain V by means of the following relation:

dim(Ker( f )) + dim(Im( f )) = dim(V ) . (B.3)

For the proof of the property here introduced one can refer, among oth-

ers, to Lang (1987).

A straightforward consequence of the relation (B.3) is the corollary here

reported.

Corollary B.14. Let f : V →W be a linear map between the vector spaces

V and W over the same field F, and let us assume dim(V ) = dim(W ). If

Ker( f ) = {oV }, or if Im( f ) = W , then the map f is bijective.

Proof. If Ker( f ) = {oV }, which means dim(Ker( f )) = 0, the property

(B.3) also implies dim(Im( f )) = dim(V ) = dim(W ).

On the other hand, when Im( f ) = W , and so dim(Im( f )) = dim(W ),

exploiting again the relation (B.3), one also finds dim(Ker( f )) = 0.

Either way, the linear map f is both injective and surjective by Propo-

sition B.11.

Corollary B.15. Let V and W be F-vector spaces with the same dimension,

i.e. dim(V ) = dim(W ). A linear maps f : V → W is bijective if, and

only if, for any collection of k linearly independent vectors v1, . . . , vk ∈ V
the images f (v1), . . . , f (vk) ∈W are also linearly independent.

Proof. If f is a bijection, the hypotheses of Proposition B.12 are fulfilled.

Hence, the linear independence of the vectors v1, . . . , vk ∈V implies the one

of the images f (v1), . . . , f (vk) ∈W .
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Conversely, suppose that if vectors v1, . . . , vk ∈ V are linearly indepen-

dent, so are the images f (v1), . . . , f (vk) ∈W . Then, by Proposition B.13,

the linear map f is injective.

This means that Ker( f ) = {oV } and, by Corollary B.14, f is actually

bijective.

The Algebra of Linear Maps

Definition B.16. Let V and W be F-vector spaces. The space of linear

maps from V to W is the set of all the linear transformations from V to

W and is denoted as L (V ,W ). The symbol Hom(V ,W ) will also be used

to point out the homomorphic structure of such mappings.

In addition, we define the sum of two linear transformations f , g ∈
L (V ,W ) as the map f + g : V →W satisfying

( f + g)(v) = f (v) + g(v) , ∀ v ∈V .

Moreover, we consider the multiplication of f ∈ L (V ,W ) by the scalar

c ∈ F as the map c f : V →W such that

(c f )(v) = c f (v) , ∀ v ∈V .

By exploiting the point-wise definition of the sum of linear maps, it is

easy to see that the sum of linear maps is itself linear, that is

f + g ∈ L (V ,W ) , ∀ f , g ∈ L (V ,W ) ,

and the same holds for the scalar multiplication:

c f ∈ L (V ,W ) , ∀ c ∈ F , f ∈ L (V ,W ) .

Furthermore, for any map f ∈ L (V ,W ), we can define the opposite

− f , given by the scalar multiplication (−1) f . Also, we call the zero map,

or the null map, the linear transformation which maps any element in V to
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the null vector of W :

o : v 7→ o(v) = oW , ∀ v ∈V .

With the definitions here introduced, the sum of linear transformations

represents a commutative law of composition for the set L (V ,W ), what

makes the space of linear maps an abelian group.

Additionally, one can verify that the scalar multiplication satisfies the

properties required in Definition A.25, so that we conclude that L (V ,W )

has a vector space structure. Such a result is summarized by the following

proposition.

Proposition B.17. The space of linear maps L (V ,W ) between two vector

spaces V to W over the same field F is a vector space.

Composing linear transformations

Definition B.18. Let U , V , W be vector spaces over the field F and

f ∈ L (U ,V ), g ∈ L (V ,W ) linear maps. We define the product of the

linear maps g and f the map g f such that

(g f )(u) = g
(

f (u)
)
, ∀ u ∈U .

Please notice that the product of linear transformations is given, de facto,

by the map composition. Then it is well-defined only when the involved

maps are composable. Explicitly, it is required that

f : U →V , g : V →W ,

and their product is a map between U and W :

g f : U →W .

Proposition B.19. Let U , V , W be F-vector spaces and let f and g be

linear maps in L (U ,V ) and L (V ,W ), respectively. Then, the product map

g f is linear.
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Proof. To prove the linearity of g f , we verify that the requirements of Def-

inition B.8 are satisfied.

Since both f and g are linear, the point-wise evaluation of g f at arbitrary

elements u and u′ of U , by Definition B.18, reads

(g f )(u + u′) = g
(

f (u + u′)
)

= g
(

f (u) + f (u′)
)

= g
(

f (u)
)

+ g
(

f (u′)
)
,

whence

(g f )(u + u′) = (g f )(u) + (g f )(u′) , ∀ u,u′ ∈U .

Also, for any scalar c ∈ F and an arbitrary element u of U , one has

(g f )(cu) = g( f (cu)) = g(c f (u)) = cg( f (u)) ,

obtaining

(g f )(cu) = (cg f )(u) , ∀ u ∈U , c ∈ F .

Proposition B.20. Let f ∈ L (V ,W ) be an isomorphism between the vec-

tor spaces V and W over F. Then, the inverse f−1 : W →V is linear.

Proof. Since we have identified the map composition with the product of

maps, the inverse of f is such that

f−1 f = idV .

Then, since f is linear, for an arbitrary pair of vectors v, v′ ∈ V the

following relation holds:

f−1( f (v) + f (v′)
)

= f−1( f (v + v′)
)

= v + v′ = f−1( f (v)
)

+ f−1( f (v′)
)
,

which, by setting w = f (v) and w′ = f (v′), can be written as

f−1(w + w′) = f−1(w) + f−1(w′) , ∀w,w′ ∈W .

Similarly, considering an arbitrary scalar c of the field F and a vector
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v ∈V , one has

f−1(c f (v)
)

= f−1( f (cv)
)

= cv = c f−1( f (v)
)
,

that is, setting again w = f (v),

f−1(cw) = c f−1(w) , ∀w ∈W , c ∈ F .

Since both the properties of Definition B.8 are verified, the linearity of

f−1 is proved.

Change of Basis Map

Let us introduce a basis B = {b1, . . . ,bn} for the F-vector space V and

consider the map ϕB : V → Fn defined by (B.1).

It is worth noting that ϕB is not only a vector space isomorphism, but

it is also a linear transformation.

In fact, by expressing any vector of V with respect to the basis B , both

the vector addition and the scalar multiplication are reflected in the relevant

operations on the coordinates, i.e. on the images through the map ϕB .

Explicitly, observing that

v + v′ = vibi + v′ibi = (vi + v′i)bi , ∀ v, v′ ∈V ,

as well as

cv = c vibi = (cvi)bi , ∀ v ∈V , c ∈ F ,

one can easily derive

ϕB (v + v′) = ϕB (v) + ϕB (v′) , ∀ v, v′ ∈V ,

and also

ϕB (cv) = cϕB (v) , ∀ v ∈V , c ∈ F .

Then the map ϕB is actually linear in accordance with Definition B.8

and the same applies to the inverse map ϕ−1
B (cf. Proposition B.20).
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Let us now consider two distinct bases. Then, it is possible to uniquely

define a linear transformation mapping each vector of one basis to the rele-

vant one of the other basis.

Proposition B.21. Let V be an F-vector space and let A = {a1, . . . , an}
and B = {b1, . . . ,bn} be two distinct bases for V . Then, there exists a

unique automorphism hB
A : V → V mapping each vector of A into the

relevant element in B :

hB
A (ai) = bi , ∀ i = 1, . . . , n . (B.4)

Proof. Let ϕA and ϕB be the specifications of the map defined by (B.1) to

the bases A and B , respectively.

In other words, the maps ϕA and ϕB provide the coordinate vectors

vA and vB of the same vector v ∈ V with respect to the basis A and B ,

respectively.

Then, the map hB
A can be easily be constructed by composing the inverse

of ϕB with ϕA :

hB
A = ϕ−1

B ◦ ϕA . (B.5)

In fact, since the i-th coordinate of ai with respect to A is 1 and all the

other ones do vanish, applying the map ϕA provides the i-th element of the

standard basis of Fn:

ϕA (ai) = ei = (0, . . . , 1, . . . , 0) , ∀ i = 1, . . . , n .

The same applies to the i-th vector of the basis B with respect to the

map ϕB , so that the inverse transformation ϕ−1
B maps ei ∈ Fn to the vector

bi ∈V :

ϕ−1
B (ei) = bi , ∀ i = 1, . . . , n .

At this point, the following relation can be trivially verified:

hB
A (ai) = (ϕ−1

B ◦ ϕA )(ai) = ϕ−1
B (ei) = bi , ∀ i = 1, . . . , n .
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The uniqueness of hB
A is a direct consequence of the one of ϕA , as well

as of ϕB , since for any vector of V there exists a unique set of coordinates

with respect to any fixed basis (cf. Proposition B.6).

Finally, being the composition of linear isomorphisms, the map hB
A is

itself a bijective linear transformation.

The map hB
A , defined by the property (B.4), is called the change of basis

map from A to B .

Clearly, the inverse map hB
A
−1

= hA
B provides the change of basis from B

to A :

hB
A
−1

(bi) = hA
B (bi) = ai , ∀ i = 1, . . . , n .

B.1.3 Dual Vector Space

Let V be an n-dimensional vector space over the field F and consider a linear

map from V to F. We call such a map a linear functional, or also a linear

form, from V to F.

We recall that the field F can be seen as a one-dimensional vector space

over F itself. Then, the set of the linear functionals of V actually represents

the space of homomorphisms Hom(V ,F), which, by Proposition B.17, is a

vector space over F.

In order to emphasize the vector space structure of Hom(V ,F) and how

this is related with the one of V , the space of functionals over V is more

properly called the dual space of V and is usually denoted as V ∗.

Definition B.22. Let V be an F-vector space. The dual space of V is the

vector space V ∗ of the linear functionals from V to F.

The elements of the dual space V ∗ are the linear maps w∗ : V → F and

are called dual vectors, covectors or linear forms.

Remark (Notation). In order to distinguish the covectors from the vectors

in V , we usually adopt the superscript ‘∗’ (e.g., w∗ ∈V ∗). However, when

a covector is intended as an element of a numerable set, the relevant index

is itself used as a superscript, such as wi ∈V ∗.
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Consistently, if we regard F as the field of the dual space V ∗, the i-th
element within a collection of scalars is identified by the relevant subscript

(e.g., ai ∈ F), and the Einstein convention still applies:

aiwi =
n

∑
i=1

aiwi = a1w1 + . . . + anwn ∈V ∗ .

We recall that by fixing a basis B = {b1, . . . ,bn} for the vector space

V , any vector v is completely defined by the n-tuple of scalars (v1, . . . , vn).

The component vi, that is the i-th coordinate of v with respect to the basis

B , can be seen as the image of v through the coordinate function bi (see

Lang (1987)):

bi : V → F

v 7→ vi = bi(v) .
(B.6)

Moreover, any of the n maps bi is clearly linear, and hence it is in V ∗.

Proposition B.23. Let V be an F-vector space and B = {b1, . . . ,bn} a

basis. Then, the set B ∗ = {b1, . . . ,bn} of the coordinate functions is a basis

for the dual space V ∗.

Proof. We first prove that any covector w∗ ∈ V ∗ is in the span of B ∗.
Actually, for the linearity of w∗ and using the coordinate function (B.6),

one has

w∗(v) = w∗(vibi) = viw∗(bi) = bi(v) w∗(bi) , ∀ v ∈V ,

Moreover, denoting by wi the image of bi through the functional w∗, i.e.

wi = w∗(bi) ∈ F, the above equation can be written as

w∗(v) = wibi(v) , ∀ v ∈V ,

and, for the arbitrariness of v, one finally has

w∗ = wibi ∈ Span(B ∗) .

To prove the linear independence of B ∗, we consider a linear combination
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providing the null vector o∗ of V ∗, i.e.

aibi = o∗ .

Since o∗ is the null functional, its value vanishes at any vector of V .

Specifically, for the vectors bj of the basis B one has

o∗(bj) = aibi(bj) = 0 , j = 1, . . . , n .

In addition, observing that the j-th coordinate of bj is exactly 1 while all

the others vanish, the coordinate functions bi give null contributions in the

above summations except when i = j, obtaining

aj = 0 , j = 1, . . . , n .

Hence, all the coefficients providing the null covector o∗ vanish and the

linear independence of B ∗ is proved.

The straightforward corollary of Proposition B.23 is that, since the num-

ber of the coordinate functions bi is exactly n, the dual space V ∗ has the

same dimension as V :

dim(V ∗) = dim(V ) . (B.7)

It is worth emphasizing that the covectors bi of B ∗ are strictly related

to the basis B introduced for the vector space V , because of their role as

coordinate functions specified by (B.6).

Notably, each covector bi is the only linear functional on V providing

the value 1 when applied to bi and 0 if evaluated at the other elements of

the basis B . For this reason the following definition is introduced.

Definition B.24. Let B = {b1, . . . ,bn} be a basis for the F-vector space

V and let B ∗ = {b1, . . . ,bn} be the basis of the dual space V ∗, made of the

coordinate functions of V with respect of the basis B . The set B ∗ is called

the dual basis to B and its covectors bi are characterized by the following
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property:

bi(bj) = δi
j . (B.8)

In the above definition, δi
j is the Kronecker symbol, whose value is 1 if

i = j and 0 otherwise:

δi
j =

1 if i = j ,

0 if i 6= j .
(B.9)

Please notice again that the basis vector bi plays for the covectors in V ∗

a comparable role to the one of the coordinate function bi, defined by (B.6),

for the vectors of V .

In fact, any covector w∗ can be identified by the n-tuple (w1, . . . ,wn),

which collects the coordinates of w∗ with respect to the dual basis B ∗, that

is w∗ = wibi. Then, applying the covector w∗ to the vector bi of the basis

B provides exactly the i-th coordinate of w∗ with respect to B ∗:

w∗(bi) = wi . (B.10)

Such a property comes trivially from Definition B.24, resulting

w∗(bi) = wjbj(bi) = wjδ
j
i = wi .

A further consequence of the relation between the basis B of V and its

dual basis B ∗ is the following proposition.

Proposition B.25. Let V be an F-vector space and V ∗ its dual space.

1. For any non-null vector v ∈V , there exists a covector w∗ ∈V ∗ such

that w∗(v) 6= 0. Equivalently,

w∗(v) = 0 , ∀w∗ ∈V ∗ ⇔ v = o .

2. For any non-null covector w∗ ∈V ∗, there exists a vector v ∈V such

that w∗(v) 6= 0. Equivalently,

w∗(v) = 0 , ∀ v ∈V ⇔ w∗ = o∗ .
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Proof. Consider the basis B = {b1, . . . ,bn} of V and the dual basis B ∗ =

{b1, . . . ,bn} of V ∗.

1. Once the basis B ∗ has been fixed, we can write w∗ = wibi ∈ V ∗ and

the arbitrariness of w∗ results in that of the coordinates wi. Then,

applying (B.6), one has

wibi(v) = wivi = 0 , ∀wi ∈ F , i = 1, . . . , n ,

which implies vi = 0 for any i = 1, . . . , n, that is

v = vibi = o .

2. Proceeding as above, we consider an arbitrary set of coordinates vi,

with respect to the basis B , providing a vector v = vibi. Then, for

the linearity of w∗ ∈V ∗ and using (B.10), one easily finds

w∗(vibi) = viw∗(bi) = viwi = 0 , ∀ vi ∈ F , i = 1, . . . , n ,

whence, for the arbitrariness of vi ∈ F, one infers wi = 0 for any

i = 1, . . . , n and then

w∗ = wibi = o∗ .

Transpose of a Linear Map

Consider now two vector spaces over the same field, along with the relevant

dual spaces. If the vector spaces are related by a linear transformation,

a further linear map is induced between the relevant dual spaces. Such a

property is formally defined here below.

Definition B.26. Let V and W be F-vector spaces and f : V →W a linear

map. The transpose, or the dual map, of f is the linear map fT : W ∗ →V ∗

such that

fT(w∗) = w∗ ◦ f , ∀w∗ ∈W ∗ , (B.11)

and the functional fT(w∗) ∈V ∗ is the pullback of w∗ along f .
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The above definition implies the following identity:(
fT(w∗)

)
(v) = w∗

(
f (v)

)
, ∀ v ∈V , w∗ ∈W ∗ , (B.12)

which also allows one to easily verify the linearity of fT.

Actually, considering a linear combination aw∗ + a′w′∗ ∈ W ∗ and an

arbitrary vector v ∈ V , the linearity of the map f and the functionals w∗

and w′∗ implies(
fT(aw∗+ a′w′∗)

)
(v) = (aw∗+ a′w′∗)

(
f (v)

)
= aw∗

(
f (v)

)
+ a′w′∗

(
f (v)

)
,

which, by using again identity (B.12), can be written as(
fT(aw∗ + a′w′∗)

)
(v) =

(
a fT(w∗)

)
(v) +

(
a′ fT(w′∗)

)
(v) ,

and, for the arbitrariness of v, one finally finds

fT(aw∗ + a′w′∗) = a fT(w∗) + a′ fT(w′∗) .

When two composable linear maps are considered, say f : U → V and

g : V →W , the transpose of their product is given by the reversed product

of the relevant dual maps, that is

(g f )T = fTgT . (B.13)

The above statement can be easily verified by applying the property

defined by (B.11) to an arbitrary functional w∗ ∈W ∗ and simply exploiting

the associativity of map composition:

(g f )T(w∗) = w∗ ◦ (g f ) = (w∗ ◦ g) ◦ f =
(

gT(w∗)
)
◦ f = fT

(
gT(w∗)

)
,

which can be concisely written as

(g f )T(w∗) = ( fTgT)(w∗) , ∀w∗ ∈W ∗ .

Then, for the arbitrariness of w∗, identity (B.13) is proved.
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Double Dual Space

The vector space structure of the dual space V ∗ leads us to consider the

linear maps defined on it. Specifically, the set of the linear functionals of

V ∗ provides its own dual space.

The dual space of V ∗ is called the double dual space, or sometimes the

second dual space, of V and it is denoted as V ∗∗.

We recall that a covector w∗ ∈V ∗ is a linear functional on V , meaning

that w∗(v) represents the image of the map w∗ : V → F evaluated at v ∈V .

However, if the vector v is hold fixed, the same scalar w∗(v) can be thought

as the image of a different map, whose domain is V ∗, evaluated at w∗.
Then, for each v ∈V , we can define the following functional of V ∗:

ξv : V ∗ → F

w∗ 7→ ξv(w∗) = w∗(v) .
(B.14)

Because of the algebraic structure of V ∗, the map ξv is clearly linear.

Actually, considering an arbitrary pair of covectors w∗,w′∗ ∈V ∗, one has

ξv(w∗ + w′∗) = (w∗ + w′∗)(v) = w∗(v) + w′∗(v) = ξv(w∗) + ξv(w′∗) .

Similarly, for any scalar c ∈ F and any w∗ ∈V ∗, one also has

ξv(cw∗) = (cw∗)(v) = cw∗(v) = cξv(w∗) ,

proving the linearity of ξv.

For this reason, we conclude that, for each vector v of V , the map

ξv : V ∗ → F is in the double dual space V ∗∗.

Proposition B.27. Let V be an n-dimensional vector space over F and

V ∗∗ its double dual. Then, V and V ∗∗ are isomorphic under the following

vector space isomorphism:

ξ : V →V ∗∗

v 7→ ξv ,
(B.15)

where ξv : V ∗ → F is the functional such that ξv(w∗) = w∗(v) for any

249



Appendix B Algebra of Vector Spaces

w∗ ∈V ∗.

Proof. We first prove that ξ is a linear map. To this aim, let av + a′v′ be

an arbitrary linear combination of two vectors in V . Applying (B.14) to an

arbitrary w∗ ∈V ∗, one has

ξav+a′v′(w∗) = w∗(av + a′v′) = aw∗(v) + a′w∗(v′) ,

where the linearity of the functional w∗ has been used. Then, again by

(B.14), one finds

ξav+a′v′(w∗) = aξv(w∗) + a′ξv′(w∗) = (aξv + a′ξv′)(w∗) ,

and, for the arbitrariness of w∗ ∈V ∗, the linearity of ξ is proved:

ξav+a′v′ = aξv + a′ξv′ .

Now we prove that ξ is a vector space isomorphism. In this respect,

we first observe that the domain V and the codomain V ∗∗ have the same

dimension. Actually, by (B.7), the dual space V ∗ has the dimension of V ,

and the same goes for V ∗∗ as dual of V ∗.

Furthermore, denoted by o∗∗ the null vector of V ∗∗, let us consider the

condition ξv = o∗∗ characterizing the kernel of ξ. As a functional of V ∗, the

map o∗∗ : V ∗ → F satisfies

o∗∗(w∗) = 0 , ∀w∗ ∈V ∗ ,

so that, using (B.14), the vectors v of Ker(ξ) do fulfill the following condi-

tion:

ξv(w∗) = w∗(v) = 0 , ∀w∗ ∈V ∗ ,

which, by Part 1 of Proposition B.25, is satisfied if, and only if, v = oV .

Hence, we obtain Ker(ξ) = {oV } and, by Corollary B.14, we conclude

that ξ is a vector space isomorphism.

The map ξ, defined by (B.15), represents the canonical isomorphism

between V and V ∗∗, meaning that each vector v is naturally associated
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with the functional ξv without reference to any basis (Lee (2012)). By

virtue of such an isomorphism, whose algebraic meaning relies on (B.14), it

is possible to unambiguously identify the double dual V ∗∗ with the vector

space V itself:

V ∗∗ ∼= V . (B.16)

Consequently, the vector space V can itself be considered the dual of V ∗,

in the sense that any vector v ∈ V can be thought as a linear functional

acting on V ∗ as follows:

v : V ∗ → F

w∗ 7→ v(w∗) = w∗(v) .
(B.17)

On the other hand, a similar identification of the dual space V ∗ with the

vector space V is not possible. Actually, even if V ∗ is isomorphic with V ,

since they have the same dimension, there is not a canonical isomorphism.

B.2 Multilinear Forms and Tensors

B.2.1 Tensor Product

The dual space V ∗ has been introduced considering the linear functionals

of the vector space V .

Definition B.28. Let V1, . . . ,Vk and W be vector space over the field F.

A multilinear map is mapping A : V1 × · · · ×Vk → W that is linear as a

function of each variable, separately, when the others are all held fixed. We

also say that the map A is k-linear.

Based on Definition B.8, the multilinear map A is characterized by the

following conditions:

� A(v1, . . . , vi + v′i, . . . , vk) = A(v1, . . . , vi, . . . , vk)

+ A(v1, . . . , v′i, . . . , vk) , ∀ vi, v′i ∈Vi , i = 1, . . . , k ;
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� A(v1, . . . , cvi, . . . , vk) = cA(v1, . . . , vi, . . . , vk) ,

∀ vi ∈Vi , i = 1, . . . , k .

Please notice that the multilinear maps have the same algebraic prop-

erties as the linear transformations between two vector spaces (see Section

B.1.2). Specifically, the set of the multilinear maps from V1 × · · · ×Vk to

W , denoted by L (V1, . . . ,Vk;W ), can be endowed by the usual sum and

scalar multiplication.

In particular, the sum of A,A′ ∈ L (V1, . . . ,Vk;W ) is the k-linear map

A + A′ satisfying

(A + A′)(v1, . . . , vk) = A(v1, . . . , vk) + A(v1, . . . , vk) ,

∀ vi ∈ Vi , i = 1, . . . , k , (B.18)

and the multiplication of A ∈ L (V1, . . . ,Vk;W ) by the scalar c ∈ F is the

multilinear map cA such that

(cA)(v1, . . . , vk) = cA(v1, . . . , vk) , ∀ vi ∈Vi , i = 1, . . . , k . (B.19)

It is easy to verify that the sum and the scalar multiplication here defined

are linear and make L (V1, . . . ,Vk;W ) a vector space.

Moreover, extending again the notions introduced for linear transforma-

tions, when the codomain of the k-linear map A is the field F itself, that

is A : V1 × · · · ×Vk → F, we more properly say that A is a multilinear

functional, or a multilinear form (see Halmos (1958)).

Following Lee (2012), as well as Halmos (1958), multilinear forms repre-

sent the starting point for introducing the tensor product of transformations.

Definition B.29. Let V1, . . . ,Vk and W1, . . . ,Wl be vector spaces over the

field F, and suppose A ∈ L (V1, . . . ,Vk;F) and B ∈ L (W1, . . . ,Wl;F). The

tensor product of A and B is the multilinear map A⊗B such that

A⊗B : V1,× · · · ×Vk ×W1 × · · · ×Wl → F

(v1, . . . , vk,w1, . . . ,wl) 7→ A(v1, . . . , vk)B(w1, . . . ,wl)

(B.20)
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One can readily observe that, because of the multilinearity of both A

and B, their tensor product linearly depends on each of the k + l variables.

Then, A⊗B is in L (V1, . . . ,Vk,W1, . . . ,Wl;F).

Moreover, considering a further multilinear form C ∈ L (U1, . . . ,U h;F),

where U1, . . . ,U h are themselves vector spaces over the same field F, we can

verify that associativity holds for the tensor product.

Actually, by applying Definition B.29 at arbitrary sets of vectors, say

(u1, . . . ,uh), (v1, . . . , vk) and (w1, . . . ,wl), we observe that the image is a

scalar. Hence, the associativity of the multiplication in F allows one to write

(
(C⊗A)⊗B

)
(u1, . . . ,uh, v1, . . . , vk,w1, . . . ,wl)

= (C⊗A)(u1, . . . ,uh, v1, . . . , vk) B(w1, . . . ,wl)

= C(u1, . . . ,uh)A(v1, . . . , vk)B(w1, . . . ,wl)

= C(u1, . . . ,uh) (A⊗B)(v1, . . . , vk,w1, . . . ,wl)

=
(
C⊗ (A⊗B)

)
(u1, . . . ,uh, v1, . . . , vk,w1, . . . ,wl) .

which, for the arbitrariness of the considered vectors, implies

(C⊗A)⊗B = C⊗ (A⊗B) = C⊗A⊗B . (B.21)

Furthermore, the tensor product can be readily extended to an arbi-

trary number of multilinear functionals. Specifically, given r functionals

A(1), . . . ,A(r) depending on k1, . . . , kr variables, respectively, their tensor

product is the multilinear form A defined as

A =
r⊗

j=1

A(j) = A(1) ⊗ · · · ⊗A(r) . (B.22)

Please notice that we are using the notation “(·)” as a superscript in

order distinguish the functionals involved in the tensor product. Then, being

k j the arity of the j-th functional, we write A(j) ∈ L
(
V (j)

1 , . . . ,V (j)
k j

;F
)
, with

j = 1, . . . , r. In addition, by setting k = k1 + · · ·+ kr, it is clear that A is a

k-linear functional, that is A ∈ L
(
V (1)

1 , . . . ,V (1)
k1

, . . . ,V (r)
1 , . . . ,V (r)

kr
;F
)
.

We further point out that, within each space L
(
V (j)

1 , . . . ,V (j)
k j

;F
)
, the

253



Appendix B Algebra of Vector Spaces

sum of functionals and the scalar multiplication do apply in accordance

with (B.18) and (B.19), respectively. Then, considering two arbitrary k j-

linear forms, say A(j) and A(j) ′, the following identity holds true:

A(1) ⊗ · · · ⊗
(
A(j) + A(j) ′)⊗ · · · ⊗A(r)

= A(1) ⊗ · · · ⊗A(j) ⊗ · · · ⊗A(r) + A(1) ⊗ · · · ⊗A(j) ′ ⊗ · · · ⊗A(r) .

Also, for any c ∈ F, the following relation applies:

A(1) ⊗ · · · ⊗
(
cA(j))⊗ · · · ⊗A(r) = c

(
A(1) ⊗ · · · ⊗A(j) ⊗ · · · ⊗A(r)) .

The identities here above introduced can be easily proved by considering

arbitrary sets of vectors
(
v(1)

1 , . . . , v(1)
k1

)
, . . . ,

(
v(r)

1 , . . . , v(r)
kr

)
as arguments of

the relevant functionals. Then, since the images are scalars, the properties

of the multiplication within the field F can be applied, i.e. distributivity

over addition and commutativity, and both relations are point-wise fulfilled.

Such a result proves, in practice, the linearity of the tensor product with

respect to the involved functionals, which is summarized by the following

proposition.

Proposition B.30. Let A(1), . . . ,A(r) be multilinear forms of arity k1, . . . , kr,

respectively, defined on the F-vector spaces V (j)
1 , . . . ,V (j)

k j
, with j = 1, . . . , r.

Then, the tensor product A(1) ⊗ · · · ⊗A(r) depends linearly on each multi-

linear functional.

Tensor Product of Covectors and Vectors

Let us introduce k vector spaces over the field F, say V1, . . . ,Vk, and consider

a covector for each of them. Since any covector w∗(j) is a linear functional

for the j-th vector space, we can apply (B.22) to define the tensor product

of the covectors w∗(1), . . . ,w∗(k).

Definition B.31. Let V1, . . . ,Vk be F-vector spaces and let V ∗
1 , . . . ,V ∗

k be

the relevant dual spaces. The tensor product of the covectors w∗(1), . . . ,w∗(k)
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is the multilinear form of L (V1, . . . ,Vk;F) defined as

w∗(1) ⊗ · · · ⊗w∗(k) : V1 × · · · ×Vk → F

(v(1), . . . , v(k)) 7→ w∗(1)(v(1)) · · ·w∗(k)(v(k)) ,
(B.23)

where w∗(j) ∈V ∗
j , with j = 1, . . . , k.

Remark. Since distinct vector spaces are involved, the index “(j)” will be

used to refer to the j-th vector space. We will write, for example, v(j)
1 , . . . , v(j)

nj

to represent nj distinct vectors of V j, while a1
(j), . . . , anj

(j) will denote a set

of scalars of F by which a linear combination can be performed. Then,

consistently with the Einstein summation convention, we will write

v(j) = a1
(j)v

(j)
1 + · · ·+ anj

(j)v
(j)
nj

= aij

(j)v
(j)
ij
∈V j .

Similarly, when we refer to a linear combination within the dual space

V ∗
j , we will write

w∗(j) = b(j)
1 w1

(j) + · · ·+ b(j)
nj

wnj

(j) = b(j)
ij

wij

(j) ∈V ∗
j .

The tensor product introduced in Definition B.31 provides a relation

between a set of k covectors acting on V1, . . . ,Vk to a k-linear functional

defined on V1 × · · · ×Vk. However, in general, such relation is not one-to-

one.

In fact, we firstly underline that a multilinear form in L (V1, . . . ,Vk;F) is

not always representable as the tensor product of covectors. Moreover, even

when a representation of this kind is possible, the relevant expression is not

unique. For example, because of the linearity stated in Proposition B.30,

the tensor product c(w∗(1) ⊗ · · · ⊗w∗(k)) can be obtained by multiplying any

of the covectors w∗(1), . . . ,w∗(k) by the scalar c.

At the same time, we have already seen that the set of multilinear func-

tionals L (V1, . . . ,Vk;F), endowed with the sum (B.18) and the scalar multi-

plication (B.19), has a vector space structure. In particular, its null element

is the functional 0 providing the null scalar of F whatever are the input
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vectors, that is

0
(
v(1), . . . , v(k)

)
= 0 , ∀ v(j) ∈V j , j = 1, . . . , k . (B.24)

So now we are going to show how the tensor product can be exploited to

construct a basis for L (V1, . . . ,Vk;F) starting from the bases of the vector

spaces V1, . . . ,Vk themselves.

Proposition B.32. Let V1, . . . ,Vk be vector spaces over F with dimensions

n1, . . . , nk, respectively, and let L (V1, . . . ,Vk;F) be the space of the multilin-

ear forms on V1, . . . ,Vk. Also, let B j =
{

b(j)
1 , . . . ,b(j)

nj

}
a basis for V j and

B ∗j =
{

b1
(j), . . . ,bnj

(j)

}
the relevant dual basis for V ∗

j , with j = 1, . . . , k. Then,

a basis for the space L (V1, . . . ,Vk;F) is given by

B⊗ =
{

bi1
(1) ⊗ · · · ⊗ bik

(k)

∣∣ ij = 1, . . . , nj , j = 1, . . . , k
}

. (B.25)

Proof. We first prove that the space L (V1, . . . ,Vk;F) is spanned by B⊗. To

this end, let us consider a multilinear functional A applied at the arbitrary

set of vectors (v(1), . . . , v(k)).

Since a basis B j has been fixed, we can express the vector v(j) of the j-th
vector space V j as vj = vij

(j)b
(j)
ij

. Then, for the multilinearity of A, we have

A(v(1), . . . , v(k)) = A
(
vi1

(1)b
(1)
i1
, . . . , vik

(k)b
(k)
ik

)
= vi1

(1) · · · v
ik
(k) A

(
b(1)

i1
, . . . ,b(k)

ik

)
.

We call Ai1 ...ik the value assumed by the functional A at the vectors of

bases B1, . . . ,Bk, that is

Ai1 ...ik = A
(
b(1)

i1
, . . . ,b(k)

ik

)
, (B.26)

so that the above equation becomes

A(v(1), . . . , v(k)) = vi1
(1) · · · v

ik
(k) Ai1 ...ik .

At the same time, any scalar vij

(j) represents the result of the coordinate

function bij

(j) applied at v(j) according to (B.6), that is vij

(j) = bij

(j)(v(j)). Then,
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applying the property defined by (B.23), one can find

A(v(1), . . . , v(k)) = Ai1 ...ik bi1
(1)(v(1)) · · · bik

(k)(v(k))

= Ai1 ...ik

(
bi1

(1) ⊗ · · · ⊗ bik
(k)

)
(v(1), . . . , v(k)) ,

and, for the arbitrariness of the vectors v(1), . . . , v(k), one finally obtains the

expression of the required linear combination:

A = Ai1 ...ik bi1
(1) ⊗ · · · ⊗ bik

(k) .

To prove the linear independence of B⊗, we consider a linear combination

such that

Ai1 ...ik bi1
(1) ⊗ · · · ⊗ bik

(k) = 0 ,

where 0 ∈ L (V1, . . . ,Vk;F) is the null multilinear functional defined by the

property (B.24).

Hence, using (B.23) to evaluate the above combination at an arbitrary

set of vectors (v(1), . . . , v(k)), and recalling again that each covector bij

(j) rep-

resents a coordinate function, defined by (B.6), within the vector space V j,

we have

Ai1 ...ik (bi1
(1) ⊗ · · · ⊗ bik

(k))
(
v(1), . . . , v(k)

)
= Ai1 ...ik bi1

(1)(v(1)) · · · bik
(k)(v(k))

= Ai1 ...ik vi1
(1) · · · v

ik
(k) = 0 .

Since the arbitrariness of the vectors v(j) is reflected in the coordinates

vij

(j) ∈ F, the linear combination here above vanishes only if all the coefficients

Ai1 ...ik are simultaneously null, that is

Ai1 ...ik = 0 , ∀ ij = 1, . . . , nj , j = 1, . . . , k ,

which proves the linear independence of B⊗.

In conclusion, B⊗ is actually a basis for L (V1, . . . ,Vk;F) and the scalar

Ai1 ...ik , evaluated by (B.26), provides the coordinate of the functional A

relevant to the element bi1
(1) ⊗ · · · ⊗ bik

(k) of this basis.

We want to emphasize that any element bi1
(1) ⊗ · · · ⊗ bik

(k) of the basis B⊗
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in (B.25) is uniquely identified once the k indices i1, . . . , ik are fixed. This

means that all the elements of B⊗ can be obtained by varying the functional

at the j-th position of the tensor product from b1
(j) to bnj

(j), where nj is the

dimension of the space V j, while all the other k − 1 functionals are fixed.

Explicitly, we can write

B⊗ =
{

b1
(1) ⊗ · · · ⊗ b1

(k), b2
(1) ⊗ · · · ⊗ b1

(k),

. . . , bn1
(1) ⊗ · · · ⊗ bnk−1

(k) , bn1
(1) ⊗ · · · ⊗ bnk

(k)

}
,

whence it is also clear that the number of elements in B⊗, as well as the

dimension of L (V1, . . . ,Vk;F) as vector space, is the product n = n1 · · · nk.

Similarly to the vector space V j, the dual space V ∗
j also has its own linear

functionals, collected in the double dual space V ∗∗
j . For this reason, focusing

on the vector structure of the dual spaces, it makes sense to consider the

space L (V ∗
1 , . . . ,V ∗

k ;F) gathering the multilinear forms on the dual spaces

V ∗
1 , . . . ,V ∗

k .

In addition, since any double dual space V ∗∗
j is identified with V j by the

canonical isomorphism (B.15), any vector v(j) ∈ V j can be seen as a linear

functional on the dual space V ∗
j .

Consequently, we can introduce the following definition of tensor product

of vectors.

Definition B.33. Given the vector spaces V1, . . . ,Vk over the field F, with

the relevant dual spaces V ∗
1 , . . . ,V ∗

k , we define the tensor product of the

vectors v(1), . . . , v(k) as the multilinear functional in L (V ∗
1 , . . . ,V ∗

k ;F) such

that

v(1) ⊗ · · · ⊗ v(k) : V ∗
1 × · · · ×V ∗

k → F(
w∗(1), . . . ,w∗(k)

)
7→ w∗(1)(v(1)) · · ·w∗(k)(v(k)) ,

(B.27)

where v(j) is an element of the vector space V j, for any j from 1 to k.

Of course, by virtue of the linearity of the spaces and the maps involved

in the above definition, the same properties specified for the tensor product

of covectors also apply to the product of vectors. Specifically, a basis for the
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linear space L (V ∗
1 , . . . ,V ∗

k ;F) is given by

B ′⊗ =
{

b(1)
i1
⊗ · · · ⊗ b(k)

ik

∣∣ ij = 1, . . . , nj , j = 1, . . . , k
}
, (B.28)

where b(j)
ij

is the ij-th vector of the basis B j =
{

b(j)
1 , . . . ,b(j)

nj

}
for V j.

In order to emphasize the structure of L (V ∗
1 , . . . ,V ∗

k ;F) as the space

spanned by the tensor products b(1)
i1
⊗ · · · ⊗ b(k)

ik
, it will be referred to as the

tensor product space of V1, . . . ,Vk, to be denoted as V1 ⊗ · · · ⊗Vk.

Similarly, the space of linear functionals L (V1, . . . ,Vk;F) can be intended

as the tensor product space of the dual spaces V ∗
1 , . . . ,V ∗

k , and the notation

V ∗
1 ⊗ · · · ⊗V ∗

k will be used.

Remark. The tensor product of the dual vector spaces V ∗
1 , . . . ,V ∗

k pro-

vides, strictly speaking, an algebraic structure distinct from the space of

multilinear forms, namely L (V1, . . . ,Vk;F). To distinguish these two types

of algebraic structures, in Lee (2012) the nomenclature abstract tensor prod-

uct space is used to refer to V ∗
1 ⊗ · · · ⊗V ∗

k .

At the same times, it can be proved that the two spaces are canonically

isomorphic, justifying the identification V ∗
1 ⊗ · · · ⊗V ∗

k = L (V1, . . . ,Vk;F)

previously mentioned. The same also applies to the tensor product of the

vector spaces V1, . . . ,Vk, so that it is legitimate to set V1 ⊗ · · · ⊗Vk =

L (V ∗
1 , . . . ,V ∗

k ;F).

Further details about the abstract and concrete definitions of the tensor

product can be found, among others, in Dimitrienko (2002), Halmos (1958),

Lee (2012), Mac Lane and Birkhoff (1999), Winitzki (2020).

From a more general perspective, since any dual vector space has itself

a linear space structure, the following identification can be applied:

W1 ⊗ · · · ⊗Wk = L (W ∗
1 , . . . ,W ∗

k ;F) , (B.29)

where each Wi can be intended as an arbitrary vector space Vi, and than

W ∗
i = V ∗

i is the i-th dual space, or as a dual space V ∗
i , in which case W ∗

i

represents the double dual V ∗∗
i
∼= Vi.

Consistently, generalizing Proposition B.32, a basis for the tensor space
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in (B.29) is provided as

B⊗ =
{

bi1 ⊗ · · · ⊗ bik

∣∣ ij = 1, . . . , nj , j = 1, . . . , k
}

. (B.30)

where each vector bij should be intended as the j-th vector bij

(i) of the i-th

basis B i when Wi = Vi, or as the j-th covector bij = b(i)
ij

of the i-th dual

basis B ∗i when Wi = V ∗
i .

Tensors on a Vector Space

Suppose a vector space V is assigned. The tensor product of covector can

be defined considering k copies of V , along with its dual space V ∗.

Definition B.34. Let V be a vector space over the field F and let V ∗ be its

dual space. A covariant k-tensor on V is a multilinear form whose domain

is the k-th Cartesian power of V :

T : V × · · · ×V︸ ︷︷ ︸
k times

→ F ,

and k is the rank of the covariant tensor T.

The set collecting all the covariant tensors of rank k, denoted as T k(V ∗),

is the tensor product space given by k copies of V ∗:

T k(V ∗) = V ∗ ⊗ · · · ⊗V ∗︸ ︷︷ ︸
k times

. (B.31)

Similarly, we can introduce a multilinear form defined on the k copies of

the dual space V ∗.

Definition B.35. Let V be an F-vector space, with the dual space V ∗. A

contravariant k-tensor on V is a multilinear functional defined on the k-th

Cartesian power of V ∗:

T : V ∗ × · · · ×V ∗︸ ︷︷ ︸
k times

→ F ,

and we say that the contravariant tensor T has rank k.
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Recalling the role of V as the space of functionals on V ∗, up to a canon-

ical isomorphism, the tensor product space given by k copies of V provides

the space of the contravariant k-tensors. Such a space is referred to using

the notation T k(V ):

T k(V ) = V ⊗ · · · ⊗V︸ ︷︷ ︸
k times

. (B.32)

Both the spaces of covariant and contravariant tensors on V can be seen

as the specification of a more general space. Actually, given the non-negative

integers p and q such that p + q = k, we introduce the space of mixed tensors

on V of rank (p, q). Such a space, denoted as T (p,q), represents the tensor

product space of p copies of V and q copies of V ∗:

T (p,q)(V ) = V ⊗ · · · ⊗V︸ ︷︷ ︸
p times

⊗V ∗ ⊗ · · · ⊗V ∗︸ ︷︷ ︸
q times

. (B.33)

Any tensor T ∈ T (p,q) is k-linear functional defined on the Cartesian

product of p times V ∗ and q times V :

T : V ∗ × · · · ×V ∗︸ ︷︷ ︸
p times

×V × · · · ×V︸ ︷︷ ︸
q times

→ F ,

where p and q are said the order of covariance and the order of contravari-

ance of T, respectively.

Comparing (B.33) with (B.31) and (B.32), it is clear that a tensor with

rank (k, 0) is a contravariant k-tensor:

T (k,0)(V ) = T k(V ) ,

as well as the rank (0, k) represents a covariant k-tensor:

T (0,k)(V ) = T k(V ∗) .

Please notice that when k = 1, the tensor product space defined by

(B.31) specializes to

T (0,1)(V ) = T 1(V ∗) = V ∗ ,
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as also (B.32) implies

T (1,0)(V ) = T 1(V ) = V ,

meaning that the covectors in V ∗ are covariant 1-tensors on V , while the

vectors in V are contravariant 1-tensors.

Finally, it is assumed by convention that when the rank vanishes, both

the spaces of covariant and contravariant tensors coincide with the field F:

T (0,0)(V ) = T 0(V ∗) = T 0(V ) = F ,

so that any 0-tensor, being a functional of arity k = 0, can be thought as a

constant in F.

It is worth pointing out that T (p,q)(V ), representing a specialization of

the tensor product space of k distinct vector spaces, inherits the property of

being a linear space itself. In particular, Proposition B.32 readily results in

the following corollary.

Corollary B.36. Let V be an n-dimensional vector space over the field F
and let V ∗ be the dual space. Suppose B = {b1, . . . ,bn} is a basis for V
and B ∗ = {b1, . . . ,bn} is the relevant dual basis for V ∗. Then, a basis for

the space T (p,q)(V ) of the tensors on V of rank (p, q) is given by

B (p,q) =
{

bi1 ⊗ · · · ⊗ bip ⊗ bj1 ⊗ · · · ⊗ bjq
∣∣

i1, . . . , ip = 1, . . . , n , j1, . . . , jq = 1, . . . , n
}
, (B.34)

and the dimension of T (p,q)(V ) is nk, with k = p + q.

With explicit reference to the space of covariant and contravariant ten-

sors, a basis for T k(V ∗) is

B (0,k) =
{

bj1 ⊗ · · · ⊗ bjk
∣∣ j1, . . . , jk = 1, . . . , n

}
, (B.35)

as well as a basis for T k(V ) is

B (k,0) =
{

bi1 ⊗ · · · ⊗ bik

∣∣ i1, . . . , ik = 1, . . . , n
}

. (B.36)
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It is also relevant to observe that, following the proof of Proposition

B.32, any tensor T ∈ T (p,q) can be expressed in the form

T = Ti1 ...ip
j1 ...jq bi1 ⊗ · · · ⊗ bip ⊗ bj1 ⊗ · · · ⊗ bjq ,

where one can derive the nk coordinates Ti1 ...ip
j1 ...jq with respect to B (p,q) by

applying the tensor T to a collection of p covectors of the dual basis B ∗ and

q vectors of the basis B :

Ti1 ...ip
j1 ...jq = T(bi1 , . . . ,bip ,bj1 , . . . ,bjq ) . (B.37)

B.2.2 Symmetric and Alternating Tensors

We have seen that a tensor on a linear space V is a multilinear map to

be applied to an ordered set of vectors which, with reference to covariant

or contravariant tensors, are elements of V or V ∗, respectively. When the

order of the input vectors is changed, the new result is not generally related

with the former one.

However, in some special cases, it is possible that the scalar resulting

from applying a tensor does not change when the arguments are switched,

or only its sign changes.

Such properties represent the basis for the definition of symmetric and

alternating tensors (see, e.g., Dimitrienko (2002), Lee (2012)).

Definition B.37. Let V be a vector space over the field F and consider the

k-tensors in T k(V ∗) and T k(V ).

� A k-tensor is called symmetric if it is invariant under any permutation

of its arguments.

� A k-tensor is alternating, also called antisymmetric or skew-symmetric,

if any interchange of two arguments results in a change of the sign.

Since the possibility to recognize symmetric and alternating tensors relies

on how their value changes when the input vectors are interchanged, in order

to give a formal characterization some preliminary notions are required.
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Moreover, we first proceed with reference to covariant tensors and then

we will specify the analogous notions to contravariant tensors.

Permutations on Tensors

Given the set of integers {1, . . . , k}, we consider the group of permutations

of its elements, denoted as Sk, which is called the symmetric group on k
elements.

For clarity, we recall that a permutation on {1, . . . , k} is a bijective map

in the form σ : i 7→ j = σ(i), where j is itself an integer between 1 and k.

Moreover, a permutation interchanging two distinct elements of {1, . . . , k},
while all the others remain fixed, is called a transposition.

Since a transposition represents the simplest transformation changing

the order of k elements, any permutation σ ∈ Sk can be decomposed into

a finite sequence of transpositions. Moreover, the parity of the number of

transpositions providing σ defines the property of such permutation of being

even or odd (see, e.g., Dummit and Foote (2003), Lang (2002)).

Consequently, a sign function is associated with any permutation σ of Sk

such that

sgn(σ) =

+1 if σ is even ,

−1 if σ is odd .
(B.38)

Permutations on Covariant Tensors With reference to the Cartesian

power V k, a permutation of indices by σ ∈ Sk results in rearranging the

entries of (v1, . . . , vk) to obtain the new ordered set (vσ(1), . . . , vσ(k)).

Then, any permutation σ ∈ Sk induces a map

ϕσ : T k(V ∗)→ T k(V ∗)

T 7→ Tσ ,
(B.39)

such that the resulting tensor Tσ is defined by the following property:

Tσ (v1, . . . , vk) = T(vσ(1), . . . , vσ(k)) , ∀ (v1, . . . , vk) ∈V k . (B.40)

Suppose to express a covariant tensor in T k(V ∗) in the form of the tensor
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product of the covectors w1, . . . ,wk ∈ V ∗. Applying the permutation map

ϕσ to the tensor w1 ⊗ · · · ⊗wk, and using the defining property (B.23) at

an arbitrary set of vectors v1, . . . , vk, one finds

(w1 ⊗ · · · ⊗wk)σ (v1, . . . , vk) = (w1 ⊗ · · · ⊗wk)(vσ(1), . . . , vσ(k))

= w1(vσ(1)) · · ·wk(vσ(k)) .

Since the multiplication of scalars is commutative, the last expression

can be written with the factors in a different order, which means permut-

ing the indices 1, . . . , k and σ(1), . . . , σ(k) of the covectors and the vectors,

respectively Specifically, using the inverse permutation σ−1, one obtains

w1(vσ(1)) · · ·wk(vσ(k)) = wσ−1(1)(v1) · · ·wσ−1(k)(vk) ,

whence it is easy to find

(w1 ⊗ · · · ⊗wk)σ (v1, . . . , vk) = (wσ−1(1) ⊗ · · · ⊗wσ−1(k))(v1, . . . , vk) ,

and, for the arbitrariness of the vectors v1, . . . , vk, one finally has

(w1 ⊗ · · · ⊗wk)σ = wσ−1(1) ⊗ · · · ⊗wσ−1(k) . (B.41)

Let us now introduce the basis B = {b1, . . . ,bn} for the vector space

V , along with the basis B ∗ = {b1, . . . ,bn} for the dual space V ∗. We recall

that a basis for the tensor space T k(V ∗) is given by (B.35) and collects the

tensors bj1 ⊗ · · · ⊗ bjk , with j1, . . . , jk varying from 1 to n.

Also, the coordinates of a tensor T ∈ T k(V ∗) are the scalars Tj1 ...jk , which

can be obtained, specializing the property (B.37) to tensors of rank (0, k),

by evaluating T at the vectors bj1 , . . . ,bjk of the basis B :

Tj1 ...jk = T(bj1 , . . . ,bjk ) .

The same property applies to the permuted tensor Tσ , that is

Tσ
j1 ...jk = Tσ (bj1 , . . . ,bjk ) ,

265



Appendix B Algebra of Vector Spaces

so that, being Tσ (bj1 , . . . ,bjk ) = T(bσ(j1), . . . ,bσ(jk)), we find

Tσ
j1 ...jk = Tσ(j1)...σ(jk) , (B.42)

meaning that the coordinates of the permuted tensor Tσ can be obtained by

permuting the ones of T.

Permutations on Contravariant Tensors Given a contravariant tensor

T ∈ T k(V ), we denote as Tσ the relevant tensor resulting from a permuta-

tion σ ∈ Sk acting on the arguments, that is

Tσ (w1, . . . ,wk) = T(wσ(1), . . . ,wσ(k)) , ∀ (w1, . . . ,wk) ∈V ∗k
, (B.43)

which is reflected in the following transformation of coordinates:

Tσ j1 ...jk = Tσ(j1)...σ(jk) . (B.44)

Also, when a contravariant tensor is provided by the product of k vectors

of V , say v1, . . . , vk, the action of σ ∈ Sk results in the inverse permutation

of the factors:

(v1 ⊗ · · · ⊗ vk)
σ = vσ−1(1) ⊗ · · · ⊗ vσ−1(k) . (B.45)

Symmetric and Alternating Covariant Tensors

In this section we introduce a formal expression for both symmetric and

alternating tensors by exploiting the permuting map defined by (B.39) and

the properties of permutations on covariant tensors.

Symmetric Covariant Tensors With regard to the first part of Defini-

tion B.37, we say that a covariant k-tensor S ∈ T k(V ∗) is symmetric if it

satisfies the condition

Sσ = S , ∀ σ ∈ Sk , (B.46)

where Sσ is the tensor resulting from the permutation σ, as defined by

(B.40), and Sk is the group of permutations on k elements.
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Explicitly, the value of S at an arbitrary ordered set (v1, . . . , vk) ∈ V k

remains the same if any pair of entries are switched:

S(v1, . . . , vi, . . . , vj, . . . , vk) = S(v1, . . . , vj, . . . , vi, . . . , vk) ,

∀ i, j = 1, . . . , k .

Moreover, in terms of coordinates with respect to a basis B (0,k) for

T k(V ∗), by means of (B.42), the defining property (B.46) reads

Sσ(j1)...σ(jk) = Sj1 ...jk , ∀ σ ∈ Sk . (B.47)

At the same time, if the symmetric tensor S can be represented as the

product of k covectors, say w1, . . . ,wk ∈V ∗, the following property holds:

wσ(1) ⊗ · · · ⊗wσ(k) = w1 ⊗ · · · ⊗wk , ∀ σ ∈ Sk , (B.48)

which comes from the property (B.41) and observing that, since any per-

mutation in Sk is considered, both σ and the inverse σ−1 are included.

The set of the symmetric covariant k-tensors on the vector space V is

denoted as Σk(V ∗). Such a space is not only a subset of T k(V ∗), but actually

a linear subspace.

To prove the vector space structure of Σk(V ∗), we show that it is closed

under the sum and the scalar multiplication, i.e. that such operations are

both consistent with the defining property (B.46).

In fact, using the linearity of the covariant tensors, it is easy to verify

that the sum of any pair of symmetric tensors S,S′ ∈ Σk(V ∗) is symmetric,

that is

(S + S′)σ = Sσ + S′σ
= S + S′ , ∀ σ ∈ Sk ,

and that the product of a symmetric tensor S ∈ Σk(V ∗) by a scalar c ∈ F
is itself symmetric, i.e.

(cS)σ = c Sσ = cS , ∀ σ ∈ Sk .

The map projecting of a covariant k-tensor T from T k(V ∗) to Σk(V ∗) is
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defined the symmetrization of T:

Sym : T k(V ∗)→ Σk(V ∗)

T 7→ Sym T =
1
k! ∑

σ∈Sk

Tσ ,
(B.49)

which explicitly means

(Sym T)(v1, . . . , vk) =
1
k! ∑

σ∈Sk

T(vσ(1), . . . , vσ(k)) , ∀ (v1, . . . , vk) ∈V k .

Alternating Covariant Tensors We formalize the second point of Def-

inition B.37 by saying that an alternating covariant k-tensor W ∈ T k(V ∗)

is such that

Wσ = sgn(σ) W , ∀ σ ∈ Sk , (B.50)

where Wσ comes from the application of the permutation map (B.39) to the

k-tensor W, and sgn(σ) is the sign of the permutation σ defined by (B.38).

Another way to characterize the alternating tensor W consists in con-

sidering an ordered set (v1, . . . , vk) ∈V k and switching an arbitrary pair of

distinct vectors. Then, the values provided by W are the one the opposite

of the other:

W(v1, . . . , vi, . . . , vj, . . . , vk) = −W(v1, . . . , vj, . . . , vi, . . . , vk) ,

∀ i, j = 1, . . . , k , i 6= j .

In addition, when we refer to a basis B (0,k) of T k(V ∗), the coordinates

of the alternating tensor W satisfies the following condition:

Wσ(j1)...σ(jk) = sgn(σ) Wj1 ...jk , ∀ σ ∈ Sk , (B.51)

which comes from applying the property (B.42) to the definition (B.50).

We observe as well that when an alternating k-tensor can be expressed

as the tensor product of w1, . . . ,wk ∈V ∗, the property (B.41) implies

wσ(1) ⊗ · · · ⊗wσ(k) = sgn(σ) (w1 ⊗ · · · ⊗wk) , ∀ σ ∈ Sk , (B.52)
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which also accounts that for any permutation in Sk the inverse map σ−1 has

the same sign as σ.

Similarly to the symmetric tensors, the set of the alternating covariant

k-tensors, denoted as Λk(V ∗), has a vector space structure and is a subspace

of T k(V ∗) as well. Actually, exploiting the linearity of the covariant ten-

sors, it can be proved that Λk(V ∗) is closed under the sum and the scalar

multiplication.

Specifically, one can verify that the sum of any pair of alternating tensors,

say W and W′, is in Λk(V ∗), resulting

(W + W′)σ = Wσ + W′σ
= sgn(σ) (W + W′) , ∀ σ ∈ Sk ,

as well as the product of a tensor W ∈ Λk(V ∗) by any scalar c ∈ F is also

alternating:

(cW)σ = c Wσ = sgn(σ) (cW) , ∀ σ ∈ Sk .

In addition, it is possible to construct an alternating tensor by means of

the following map:

Alt : T k(V ∗)→ Λk(V ∗)

T 7→ Alt T =
1
k! ∑

σ∈Sk

sgn(σ) Tσ ,
(B.53)

which provides the projection from T k(V ∗) to Λk(V ∗) and is called the

alternation of T.

Then, the alternation of T is the k-tensor satisfying

(Alt T)(v1, . . . , vk) =
1
k! ∑

σ∈Sk

sgn(σ) T(vσ(1), . . . , vσ(k)) ,

∀ (v1, . . . , vk) ∈ V k . (B.54)

Please notice that when k covectors w1, . . . ,wk ∈V ∗ are considered, the
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alternation of the resulting covariant tensor can be expressed as

Alt(w1 ⊗ · · · ⊗wk) =
1
k! ∑

σ∈Sk

sgn(σ) wσ(1) ⊗ · · · ⊗wσ(k) , (B.55)

which comes from (B.53) observing that the permutation by σ of the tensor

product is provided by (B.41) as wσ−1(1) ⊗ · · · ⊗wσ−1(k) and that, in consid-

ering all the permutations in Sk, both σ and the inverse σ−1 are included.

Remark. Both the symmetrization and the alternation of a tensor T, de-

fined by (B.49) and (B.53), respectively, are characterized by a summation

to be performed on all the permutations in Sk.

In fact, the summation has the role of taking into account all the possi-

ble interchanges of the k arguments when the tensors Sym T and Alt T are

evaluated. Since the total number of such permutations is exactly k!, the

symmetrization of T, as well as its alternation, is actually defined as the

average of all its possible permuted versions.

The only difference to be pointed out is that in the alternation map

each permutation of T is considered along with its parity, so that a skew-

symmetric tensor is actually obtained.

Symmetric and Alternating Contravariant Tensors

The definitions and the properties so far introduced for the covariant k-

tensors on V can be easily extended to the contravariant ones. Here we

report the main features, which can be verified proceeding similarly to the

covariant tensors.

Specializing Definition B.37 to contravariant k-tensors, we say that the

tensor S ∈ T k(V ) is symmetric if the following property applies:

Sσ = S , ∀ σ ∈ Sk , (B.56)

or, in terms of coordinates with respect to a basis B (k,0),

Sσ(i1)...σ(ik) = Si1 ...ik , ∀ σ ∈ Sk . (B.57)

A further property of the a symmetric contravariant tensor arises when
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it can be written as the tensor product of the vectors v1, . . . , vk ∈V :

vσ(1) ⊗ · · · ⊗ vσ(k) = v1 ⊗ · · · ⊗ vk , ∀ σ ∈ Sk . (B.58)

Furthermore, recalling that the sign of a permutation is given by (B.38),

a contravariant k-tensor W ∈ T k(V ) is alternating if it satisfies the condition

Wσ = sgn(σ) W , ∀ σ ∈ Sk , (B.59)

which is reflected in the coordinates as follows:

Wσ(j1)...σ(jk) = sgn(σ) W j1 ...jk , ∀ σ ∈ Sk . (B.60)

Additionally, supposing that a tensor is given by the product of the

vectors v1, . . . , vk ∈V , the property of being alternating becomes

vσ(1) ⊗ · · · ⊗ vσ(k) = sgn(σ) (v1 ⊗ · · · ⊗ vk) , ∀ σ ∈ Sk . (B.61)

We denote as Σk(V ) and Λk(V ) the spaces of the symmetric and the

alternating contravariant k-tensors, respectively. They are both vector sub-

spaces of T k(V ).

Finally, the symmetrization of a contravariant tensor T ∈ T k(V ) is given

by the projection onto Σk(V ), that is

Sym : T k(V )→ Σk(V )

T 7→ Sym T =
1
k! ∑

σ∈Sk

Tσ ,
(B.62)

as well as the projection onto Λk(V ) provides the alternation of T:

Alt : T k(V )→ Λk(V )

T 7→ Alt T =
1
k! ∑

σ∈Sk

sgn(σ) Tσ .
(B.63)

In addition, for a contravariant tensor resulting from the product of k
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vectors v1, . . . , vk ∈V , the alternating map is provided as

Alt(v1 ⊗ · · · ⊗ vk) =
1
k! ∑

σ∈Sk

sgn(σ) vσ(1) ⊗ · · · ⊗ vσ(k) . (B.64)

Please observe that, recalling (B.45), the term vσ(1) ⊗ · · · ⊗ vσ(k) is actu-

ally the permutation (v1⊗ · · · ⊗ vk)σ−1
. However, since for any σ appearing

in the summation the inverse map σ−1 is also included, the expression (B.64)

is, in fact, the specification of the general definition (B.63).

B.2.3 The Space of Alternating Tensors

We have seen in the previous section how Λk(V ∗) and Λk(V ), i.e. the spaces

of alternating covariant and contravariant tensors on a vector space V , are

subspaces of the tensor spaces T k(V ∗) and T k(V ), respectively.

Moreover, the structure of such subspaces is related with a multilinear

map defined on an ordered set of vectors or covectors, which is the exterior

product, similarly to how the spaces T k(V ∗) and T k(V ) are related with

the tensor product.

For this reason, alternating covariant k-tensors are sometimes called ex-

terior forms.

On the other hand, in order to emphasize the vector space structure of

Λk(V ∗), exterior forms are also referred to as k-covectors.

Similarly, alternating contravariant k-tensors are called k-vectors.

Exterior Product of Vectors and Covectors

Following Dimitrienko (2002), we introduce the exterior product of vectors

and covectors by exploiting the alternation maps defined by (B.53) and

(B.63).

Definition B.38. Let V be a vector space over the field F and let V ∗ be

its dual. We define the exterior product, or the wedge product, of k vectors

as the alternation of their tensor product. The same holds for the product

of k covectors.
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For the exterior product of the vectors v1, . . . , vk ∈ V , we adopt the

notation

v1 ∧ · · · ∧ vk = Alt(v1 ⊗ · · · ⊗ vk) ∈ Λk(V ) , (B.65)

as well as, for the covectors w1, . . . ,wk ∈V ∗, we write

w1 ∧ · · · ∧wk = Alt(w1 ⊗ · · · ⊗wk) ∈ Λk(V ∗) . (B.66)

Recalling that each element of Λk(V ) is an alternating contravariant k-

tensor, the exterior product v1 ∧ · · · ∧ vk represents the k-linear functional

on V ∗k
fulfilling the following properties:

� v1 ∧ · · · ∧ (vi + v′i) ∧ · · · ∧ vk = (v1 ∧ · · · ∧ vi ∧ · · · ∧ vk)

+ (v1 ∧ · · · ∧ v′i ∧ · · · ∧ vk) , ∀ vi, v′i ∈V , i = 1, . . . , k ;

� c(v1 ∧ · · · ∧ vk) = v1 ∧ · · · ∧ (cvi) ∧ · · · ∧ vk , ∀ c ∈ F , i = 1, . . . , k ;

� vσ(1) ∧ · · · ∧ vσ(k) = sgn(σ) (v1 ∧ · · · ∧ vk) , ∀ σ ∈ Sk .

Please notice that the first two properties are inherited from the tensor

product (cf. Proposition B.30), while the third one is the specific feature of

the alternating forms, as expressed by (B.61).

The straightforward implication of being alternating is the following

Lemma.

Lemma B.39. The exterior product of k vectors v1, . . . , vk of the F-vector

space V vanishes if one the entries is repeated:

v1 ∧ · · · ∧ v ∧ · · · ∧ v ∧ · · · ∧ vk = 0 , (B.67)

Proof. The statement can be easily verified observing that switching the

vector v implies a change of sign and the resulting tensor equals its opposite:

v1 ∧ · · · ∧ v∧ · · · ∧ v∧ · · · ∧ vk = −(v1 ∧ · · · ∧ v∧ · · · ∧ v∧ · · · ∧ vk) .

Clearly, when k covectors are considered, the above lemma reads

w1 ∧ · · · ∧w∗ ∧ · · · ∧w∗ ∧ · · · ∧wk = 0 , (B.68)
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Proposition B.40. Let V be a vector space over F and let V ∗ be the dual

space. Then, for any pair of sets of vectors v1, . . . , vk of V and covectors

w1, . . . ,wk of V ∗ the following identity holds true:

(w1 ∧ · · · ∧wk)(v1, . . . , vk) = (v1 ∧ · · · ∧ vk)(w1, . . . ,wk) . (B.69)

Proof. We recall that the exterior product w1 ∧ · · · ∧wk is the alternation

of w1 ⊗ · · · ⊗wk. Hence, applying the property (B.54) implies

(w1 ∧ · · · ∧wk)(v1, . . . , vk) = Alt(w1 ⊗ · · · ⊗wk)(v1, . . . , vk)

=
1
k! ∑

σ∈Sk

sgn(σ) (w1 ⊗ · · · ⊗wk)(vσ(1), . . . , vσ(n))

=
1
k! ∑

σ∈Sk

sgn(σ) w1(vσ(1)) · · ·wk(vσ(k)) .

Moreover, considering the map (B.17) defining the action of a vector on a

covector, each term can be written as wi(vσ(i)) = vσ(i)(wi), with i = 1, . . . , k,

obtaining

(w1 ∧ · · · ∧wk)(v1, . . . , vk) =
1
k! ∑

σ∈Sk

sgn(σ) vσ(1)(w1) · · · vσ(k)(wk)

=
1
k! ∑

σ∈Sk

sgn(σ) (vσ(1) ⊗ · · · ⊗ vσ(k))(w1, . . . ,wk) ,

where the summation here above, recalling (B.64), provides exactly the alter-

nation of the tensor v1⊗ · · · ⊗ vk, that is the exterior product v1 ∧ · · · ∧ vk,

proving the identity (B.69).

We remark that the exterior product of vectors, defined by (B.65), is

introduced as a multilinear map from V k to Λk(V ), represented through

the symbol ‘∧’, just as the tensor product maps a set of vectors from V k to

T k(V ) by means of the symbol ‘⊗’. Correspondingly, the exterior product

of covectors represents a map from V ∗k
to Λk(V ∗).

Moreover, just like a tensor in T k(V ) in general cannot be reduced to

the tensor product of vectors, analogously not all the k-vectors in Λk(V ),

or the k-covectors in Λk(V ∗), can be expressed in the form of an exterior
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product.

Specifically, when a k-vector W ∈ Λk(V ) results from the wedge product

of k elements v1, . . . , vk of V , we say that W is simple, or also decomposable,

that is W = v1 ∧ · · · ∧ vk. Clearly, the same name applies to k-covectors.

However, the exterior product can be exploited to define a basis for the

space Λk(V ), in a similar manner to what has been shown in Proposition

B.32 in respect of the tensor product.

Proposition B.41. Let V be an n-dimensional vector space over the field

F and let B = {b1, . . . ,bn} be a basis. Then, a basis for the space Λk(V )

of the alternating k-tensors is given by

B ∧k =
{

bi1 ∧ · · · ∧ bik

∣∣ 1 ≤ i1 < . . . < ik ≤ n
}

. (B.70)

Proof. To prove that Λk(V ) is spanned by B ∧k, consider an arbitrary alter-

nating k-tensor W ∈ Λk(V ).

We recall that W satisfies Wσ = sgn(σ) W for any permutation σ ∈ Sk.

Hence, applying the definition (B.63), it is easy to see that W equals its own

alternation:

W = Alt(W) .

At the same time, since Λk(V ) is a subspace, the tensor W also results

in T k(V ) and can be expressed, with respect to the basis B (k,0) given by

(B.36), as

W = W i1 ...ik bi1 ⊗ · · · ⊗ bik ,

so that, observing that the alternation is clearly linear with respect to the

input tensor, one finds

W = Alt(W i1 ...ik bi1 ⊗ · · · ⊗ bik ) = W i1 ...ik Alt(bi1 ⊗ · · · ⊗ bik )

= W i1 ...ik bi1 ∧ · · · ∧ bik ,

where Definition B.38 of the wedge product has been used.

We recall that, having used the Einstein summation convention in the
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above relation, each of the indices i1, . . . , ik in turn assumes all the values

from 1 to n while the remaining k− 1 indices are fixed. Explicitly, the tensor

W can be written as

W =
n

∑
i1,...,ik=1

W i1 ...ik bi1 ∧ · · · ∧ bik .

Recalling the property (B.67), in the equation here above the terms

with repeating indices do vanish. Moreover, the remaining addends can

be gathered taking the indices in ascending order, which ensures that only

the non-null contributions are actually considered, and applying all their

possible permutations:

W = ∑
1≤i1<...<ik≤n

σ∈Sk

Wσ(i1)...σ(ik)bσ(i1) ∧ · · · ∧ bσ(ik) , (B.71)

The resulting relation may look cumbersome, but it simplifies if one takes

into account that the following identity holds true for each addend:

Wσ(i1)...σ(ik)bσ(i1) ∧ · · · ∧ bσ(ik) = W i1 ...ik bi1 ∧ · · · ∧ bik , (no summation)

which comes from the condition bi1 ∧ · · · ∧ bik = sgn(σ)bσ(i1) ∧ · · · ∧ bσ(ik),

along with the property (B.60) for the coordinates of alternating tensors.

Noting also that the total number of distinct permutations in Sk is k!, the

equation (B.71) finally becomes:

W = k! ∑
1≤i1<...<ik≤n

W i1 ...ik bi1 ∧ · · · ∧ bik ,

which proves that the tensor W of Λk(V ) is in the span of the set B ∧k.

Now we prove the linear independence of the elements collected in B ∧k

by assuming that the above linear combination equals the null tensor 0 of

Λk(V ):

k! ∑
1≤i1<...<ik≤n

W i1 ...ik bi1 ∧ · · · ∧ bik = 0 .

Applying once again Definition B.38 of the exterior product, and using
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the linearity of the alternation provided by (B.64), one has

k! ∑
1≤i1<...<ik≤n

W i1 ...ik bi1 ∧ · · · ∧ bik = k! ∑
1≤i1<...<ik≤n

W i1 ...ik Alt(bi1 ⊗ · · · ⊗ bik )

= k! ∑
1≤i1<...<ik≤n

W i1 ...ik
1
k! ∑

σ∈Sk

sgn(σ) (bσ(i1) ⊗ · · · ⊗ bσ(ik))

= ∑
1≤i1<...<ik≤n

σ∈Sk

(
sgn(σ)W i1 ...ik

)
(bσ(i1) ⊗ · · · ⊗ bσ(ik)) = 0

Please observe that the indices i1, . . . , ik differ from each other, so that the

contravariant tensors bσ(i1) ⊗ · · · ⊗ bσ(ik) are distinct themselves. Moreover,

since such tensors are all included in the basis B (k,0) of T k(V ), as expressed

by (B.36), they are certainly linearly independent.

Then, the null tensor 0 can be obtained only by vanishing the coefficients

appearing in the above linear combination, that is

sgn(σ)W i1 ...ik = 0 , 1 ≤ i1 < . . . < ik ≤ n , ∀ σ ∈ Sk ,

which implies the condition W i1 ...ik = 0 for all the indices i1 < . . . < ik, and

hence the linear independence of the tensors bi1 ∧ · · · ∧ bik .

Evidently, a basis for the space Λk(V ∗) of the k-covectors on V is

B ∧k∗ =
{

bi1 ∧ · · · ∧ bik
∣∣ 1 ≤ i1 < . . . < ik ≤ n

}
, (B.72)

where bij is an element of the dual basis B ∗ = {b1, . . . ,bn}.
Furthermore, since in constructing the basis B ∧k the indices i1, . . . , ik

must be distinct, each tensor in the form bi1 ∧ · · · ∧ bik is given by a com-

bination of n elements, i.e. the vectors bi of the basis B , taken k at a time

without repetition. The total number of such combinations provides the

number of elements of the basis B ∧k.

The same is true for the number of tensors in B ∧k∗, so that the dimension

of the spaces Λk(V ) and Λk(V ∗) is

dim Λk(V ) = dim Λk(V ∗) =

(
n
k

)
=

n!
k!(n− k)!

. (B.73)
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Linear Dependence of Vectors

A consequence of Proposition B.41 is that the space of alternating tensors

on an n-dimensional vector space V is well-defined only for k ≤ n.

Actually, when k is greater than n, the binomial coefficient (n
k) in (B.73)

is zero by convention. In this case, the dimension of both Λk(V ) and Λk(V ∗)

vanishes, and such vector spaces coincide with trivial ones {0} and {0∗},
respectively.

In addition, the exterior product of k vectors or k covectors, providing an

alternating tensor in Λk(V ) and Λk(V ∗), respectively, vanishes for k > n:

v1 ∧ · · · vn ∧ vn+1 ∧ · · · ∧ vk = 0 , ∀ v1, . . . , vk ∈V , k > n , (B.74)

and also

w1 ∧ · · ·wn ∧wn+1 ∧ · · · ∧wk = 0∗ , ∀w1, . . . ,wk ∈V ∗ , k > n . (B.75)

Let us observe that the result in (B.74), as well as the one in (B.75), can

also be seen as the specification of a more general property, which associates

the vanishing of the exterior product with the linear dependence of the

involved vectors.

From this perspective, the wedge products in (B.74) and (B.75) do vanish

since any collection of vectors gathering more than n elements of an n-

dimensional vector space is clearly linearly dependent.

The connection of the exterior product with the linear dependence of

vectors is formalized in the following proposition.

Proposition B.42. The vectors v1, . . . , vk of the F-vector space V are lin-

early dependent if, and only if, their exterior product is null:

v1 ∧ · · · ∧ vk = 0 .

Proof. If v1, . . . , vk are linearly dependent, there is a vector vi among them
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which can be expressed as a linear combination of the other ones, that is:

vi =
k

∑
j=1
j 6=i

ajvj .

Then, the multilinearity of the exterior product implies

v1 ∧ · · · ∧ vi ∧ · · · ∧ vk = v1 ∧ · · · ∧
k

∑
j=1
j 6=i

ajvj ∧ · · · ∧ vk

=
k

∑
j=1
j 6=i

ajv1 ∧ · · · ∧ vj ∧ · · · ∧ vk = 0 ,

where the j-th addend, having the vector vj repeated, do vanishes (cf.

Lemma B.39), and hence the summation is itself null.

Let us now show that the vanishing of the exterior product implies the

linear dependence of the vectors v1, . . . , vk.

If k is greater than the dimension n of the vector space, the result is

trivial, since the maximum number of linearly independent vectors in V is

exactly n.

Suppose k ≤ n and proceed by contradiction assuming that the vectors

v1, . . . , vk are independent.

We can collect such vectors along with additional n− k elements of V to

obtain a basis {v1, . . . , vk, vk+1, . . . , vn}. Then, by Proposition B.41, a basis

for Λk(V ) is given by{
vi1 ∧ · · · ∧ vik

∣∣ 1 ≤ i1 < . . . < ik ≤ n
}

.

Then, the exterior product v1 ∧ · · · ∧ vk is an element of this basis and

cannot be null.

Such a result contradicts the hypothesis v1 ∧ · · · ∧ vk = 0, concluding

that the k vectors are actually dependent.

Determinant of an Endomorphism

Let us focus on the alternating tensors with rank k = n.
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By equation (B.73), the space Λn(V ) is one-dimensional and then it is

isomorphic with the field F itself.

Consequently, the non-null elements in Λn(V ) are proportional to each

other and any of them can be used as a basis tensor.

As an example, by virtue of Proposition B.41, a basis for Λn(V ) is given

by B ∧n = {b1 ∧ · · · ∧ bn}, so that an alternating tensor ω ∈ Λn(V ) can be

identified by a scalar c ∈ F, i.e.

ω = c b1 ∧ · · · ∧ bn .

This representation shows that any n-vector is decomposable in the form

of the exterior product of n vectors, but the decomposition is not unique.

In fact, for the linearity of the wedge product, one can equally express

ω = (cb1) ∧ · · · ∧ bn = b1 ∧ · · · (cbi) · · · ∧ bn = b1 ∧ · · · ∧ (cbn) .

At the same time, any set of linearly independent vectors {v1, . . . , vn}
can serve as a basis for V , obtaining a new basis tensor v1 ∧ · · · ∧ vn for

Λn(V ) and so a further possible representation of the multivector ω.

We also remark that the isomorphism of Λn(V ) with F is not canonical,

meaning that it depends on the basis tensor, and hence on the choice of a

basis for V .

Let us now consider a linear map in End(V ). Any linear transformation

f : V →V induces a map Λn
f : Λn(V )→ Λn(V ) defined as follows:

Λn
f (v1 ∧ · · · ∧ vn) = f (v1) ∧ · · · ∧ f (vn) . (B.76)

Please notice that the linearity of the wedge product, along with the one

of the map f , makes Λn
f a linear transformation, that is Λn

f ∈ End Λn(V ).

Moreover, recalling that all the tensors in Λn(V ) are proportional to

each other, the image Λn
f (ω) of a multivector ω results from ω itself by a

scalar multiplication.

The scalar relating Λn
f (ω) with the preimage ω is the determinant of

the linear map f (see, e.g. Winitzki (2020)).
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Definition B.43. Let V be an F-vector space and f ∈ EndV a linear map.

The determinant of f is the scalar det( f ) ∈ F such that

Λn
f (ω) = det( f ) ω , (B.77)

where ω ∈ Λn(V ) is an arbitrary non-null n-vector.

Equivalently, by the property (B.76) of the map Λn
f , the determinant of

f also satisfies

f (v1) ∧ · · · ∧ f (vn) = det( f ) v1 ∧ · · · ∧ vn , (B.78)

which holds true for any set of linearly independent vectors v1, . . . , vn of V .

As could be expected, the number det( f ) satisfying (B.77) does not

depends on the multivector ω. In fact, since any tensor in Λn(V ) can be

expressed as ω′ = cω, for some c ∈ F, the linearity of Λn
f implies

Λn
f (ω′) = Λn

f (cω) = cΛn
f (ω) = c det( f )ω = det( f )ω′ , ∀ω′ ∈ Λn(V ) .

On the other side, the determinant of f clearly depends on the transfor-

mation f . In particular, the value of det( f ) characterizes f as an isomor-

phism.

Proposition B.44. Let f be an endomorphism of the F-vector space V .

Then, the determinant of f is non-null if, and only if, the map f is bijective.

Proof. Consider an arbitrary set of n linearly independent vectors v1, . . . , vn

of V , so that, by Proposition B.42, the exterior product v1 ∧ · · · ∧ vn is

non-null.

Consequently, using the property (B.78), the product f (v1)∧ · · · ∧ f (vn)

vanishes if, and only if, det( f ) is the zero scalar of F.

At the same time, recalling Corollary B.15, the map f is bijective if, and

only if, the images f (v1), . . . , f (vn) are linearly independent.

Hence, if det( f ) 6= 0, the product f (v1) ∧ · · · ∧ f (vn) is other than the

null tensor of Λn(V ), the vectors f (v1), . . . , f (vn) are linearly independent

and the endomorphism f is bijective.
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Conversely, when f is bijective, the images f (v1), . . . , f (vn) are linearly

independent, the product f (v1) ∧ · · · ∧ f (vn) is non-null, and so is the de-

terminant of f .

Proposition B.45. Let V be an n-dimensional vector space over the field

F. Then, the following properties hold true.

1. The determinant of the identity map idV is the multiplicative identity

of F:

det(idV ) = 1 . (B.79)

2. The determinant of the product of endomorphisms equals the multipli-

cation of the determinants of the maps:

det( f g) = det( f ) det(g) , ∀ f , g ∈ EndV . (B.80)

3. The determinant of the inverse map of an automorphism is the inverse

of the determinant of the map:

det( f−1) = det( f )−1 , ∀ f ∈ AutV . (B.81)

4. The determinant of the scalar multiplication of an endomorphism by

a number is the determinant of the map multiplied by the n-th power

of the scalar:

det(c f ) = cn det( f ) , ∀ f ∈ EndV , c ∈ F . (B.82)

Proof. 1. Using the property (B.78) with f = idV reads

idV (v1) ∧ · · · ∧ idV (vn) = det(idV ) v1 ∧ · · · ∧ vn .

Moreover, being idV (v) = v for all the vectors in V , one also has

idV (v1) ∧ · · · ∧ idV (vn) = v1 ∧ · · · ∧ vn ,

whence, by comparison, the property det(idV ) = 1 is verified.
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2. Since ( f g)(v) = f
(

g(v)
)

for any v ∈V , one can verify

( f g)(v1) ∧ · · · ∧ ( f g)(vn) = f
(

g(v1)
)
∧ · · · ∧ f

(
g(vn)

)
= det( f ) g(v1) ∧ · · · ∧ g(vn)

= det( f ) det(g) v1 ∧ · · · ∧ vn ,

where the property (B.78) has been first applied to the map f and the

vectors g(v1), . . . , g(vn), and then to g and the vectors v1, . . . , vn.

At the same time, the determinant of f g is such that

( f g)(v1) ∧ · · · ∧ ( f g)(vn) = det( f g) v1 ∧ · · · ∧ vn ,

which, by comparing with the above relation, implies

det( f g) = det( f ) det(g) .

3. We recall that the inverse f−1 of an automorphism f is such that

f f−1 = idV ,

whence, by applying parts 2. and 1. of the proposition to the two sides,

respectively, one finds

det( f ) det( f−1) = 1 ,

and then det( f−1) = det( f )−1.

4. Specializing the property (B.78) to the map c f , one has

(c f )(v1) ∧ · · · ∧ (c f )(vn) = det(c f ) v1 ∧ · · · ∧ vn .

At the same time, because of the linearity of the exterior product, as

well as of the map f , one also finds

(c f )(v1) ∧ · · · ∧ (c f )(vn) = cn f (v1) ∧ · · · ∧ f (vn)

= cn det( f ) v1 ∧ · · · ∧ vn ,

so that the comparison with the previous expression proves the identity
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det(c f ) = cn det( f ).

An additional feature of the determinant relates an endomorphism with

its transpose.

Proposition B.46. Let f : V → V be an endomorphism of the F-vector

space V and let fT : V ∗ →V ∗ be the transpose map. Then, the determinant

of fT is equal to the one of f :

det( fT) = det( f ) . (B.83)

Proof. Consider an arbitrary set of linearly independent vectors v1, . . . , vn

of V and covectors w1, . . . ,wn of the dual space V ∗

The exterior product of the images fT(w1), . . . , fT(wn) provides an al-

ternating n-covector of Λn(V ∗) to be applied to the vectors v1, . . . , vn. Sub-

sequently, recalling the property (B.54) of the alternation map, one has

(
fT(w1) ∧ · · · ∧ fT(wn)

)
(v1, . . . , vn)

=
1
n! ∑

σ∈Sn

sgn(σ)
(

fT(w1)⊗ · · · ⊗ fT(wn)
)
(vσ(1), . . . , vσ(n))

=
1
n! ∑

σ∈Sn

sgn(σ)
(

fT(w1)
)
(vσ(1)) · · ·

(
fT(wn)

)
(vσ(n)) .

Moreover, by means of (B.12), the i-th term of each addend satisfies the

following identity(
fT(wi)

)
(vσ(i)) =

(
f (vσ(i))

)
(wi) ,

so that one also can write

(
fT(w1) ∧ · · · ∧ fT(wn)

)
(v1, . . . , vn)

=
1
n! ∑

σ∈Sn

sgn(σ)
(

f (vσ(1))
)
(w1) · · ·

(
f (vσ(n))

)
(wn)

=
1
n! ∑

σ∈Sn

sgn(σ)
(

f (vσ(1))⊗ · · · ⊗ f (vσ(n))
)
(w1, . . . ,wn)

=
(

f (v1) ∧ · · · ∧ f (vn)
)
(w1, . . . ,wn) ,
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where, recalling the map (B.64), the summation provides the alternation of

the tensor f (v1)⊗· · ·⊗ f (vn), and so the exterior product of f (v1), . . . , f (vn).

In summary, the following identity holds:(
fT(w1)∧ · · · ∧ fT(wn)

)
(v1, . . . , vn) =

(
f (v1)∧ · · · ∧ f (vn)

)
(w1, . . . ,wn) ,

whence, by applying the property (B.78) to both sides, one also has

det( fT) (w1 ∧ · · · ∧wn)(v1, . . . , vn) = det( f ) (v1 ∧ · · · ∧ vn)(w1, . . . ,wn) .

Hence, exploiting Proposition B.40 and for the arbitrariness of the vec-

tors v1, . . . , vn ∈V and the covectors w1, . . . ,wn ∈V ∗, one finally finds

det( fT) = det( f ) .

B.3 Scalar Product Spaces

Definition B.47. Let V be a vector space over F. A scalar product on V
is a symmetric bilinear map

〈·, ·〉V : V ×V → F .

Explicitly, the scalar product satisfies the following properties:

� 〈u, v〉V = 〈v,u〉V , ∀ u, v ∈V ;

� 〈u + v,w〉V = 〈u,w〉V + 〈v,w〉V , ∀ u, v ∈V ;

� 〈au, v〉V = a〈u, v〉V , ∀ u, v ∈V , a ∈ F.

By virtue of the symmetry, it is clear that the linearity of 〈·, ·〉V also

applies to the second argument.

Moreover, when the vector space is uniquely specified, the subscript can

be omitted and the notation 〈·, ·〉 is adopted.

The standard scalar product for the vector space Fn, also called the

dot product, is defined by directly operating on the entries of the involved
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n-tuples:

〈·, ·〉Fn : Fn × Fn → F

(u, v) 7→ u · v = u1v1 + . . . + unvn .
(B.84)

Since the elements of the field F do commute with respect to both addi-

tion and multiplication, one can easily verify that the dot product is actually

symmetric and bilinear, satisfying the requirements of Definition B.47.

B.3.1 Orthogonality

Definition B.48. Two elements u and v of vector space V , endowed with

a scalar product, are orthogonal or perpendicular if 〈u, v〉 = 0:

u ⊥ v ⇔ 〈u, v〉 = 0 .

Please notice that the null vector o ∈ V is orthogonal to any other

vector v:

〈v, o〉 = 0 , ∀ v ∈V .

Such a result comes from the property o = 0v (cf. Proposition A.26)

and the third property of Definition B.47, that is

〈v, 0v〉 = 0〈v, v〉 = 0 , ∀ v ∈V .

Specifically, the scalar product of the vector space V is non-degenerate

if the null vector is the only element of V to be orthogonal to any other

vector:

〈u, v〉 = 0 , ∀ v ∈V ⇔ u = o . (B.85)

Finally, considering a basis B = {b1, . . . ,bn} of the vector space V , it is

called an orthogonal basis if all pairs of distinct vectors of B are orthogonal:

〈bi,bj〉 = 0 , ∀ i 6= j . (B.86)
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B.3.2 Duality in Scalar Product Spaces

Let us consider a vector space V with a non-degenerate scalar product.

Since the scalar product is a bilinear form, fixing one of the two entries

induces a linear map with respect to the other one. Such a map acts as a

linear form on V and then is an element of a dual space V ∗.

Explicitly, let us introduce the following map:

ψ : V →V ∗

u 7→ u∗ = ψ(u) ,
(B.87)

where the form u∗ : V → F satisfies

u∗(v) = 〈u, v〉 , ∀ v ∈V . (B.88)

It is easy to verify that the map ψ defined by (B.87) is a vector space

isomorphism.

Actually, the linearity of ψ readily comes from the bilinearity of the scalar

product in (B.88), that is (u + u′)∗ = u∗ + u′∗, as well as (cu)∗ = cu∗.
Moreover, since the scalar product in (B.88) is non-degenerate, by (B.85)

the image u∗ is the null functional o∗ ∈ V ∗ only if u = o, which means

Ker(ψ) = {o}. Then, recalling that V and V ∗ have the same dimension,

by Corollary B.14 the linear transformation ψ is bijective.

The inverse of ψ is the linear map defined as follows:

ψ−1 : V ∗ →V

u∗ 7→ u = ψ−1(u∗) ,
(B.89)

where, consistently with (B.88), the image u is the only element of V whose

scalar product with any vector v provides the same value as applying the

functional u∗.
It is worth noting that, by virtue of (B.88), the relation between the

vector space V and the dual space V ∗ does not depend on the choice of a

basis.

Then, any vector space V endowed with a non-degenerate scalar product

is canonically isomorphic with its dual space, allowing one to identify the
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dual space V ∗ with V itself:

V ∗ ∼= V . (B.90)

In this sense, V is said self-dual (see, e.g., Dimitrienko (2002)).

Transpose in Scalar Product Spaces

Let us now consider two vector spaces V and W over the same field F, each

with a non-degenerate scalar product, and let f : V →W be a linear map.

Then, since both V and W are self-dual, the transpose of f is the fol-

lowing linear map:

fT : W →V

w 7→ fT(w) ,
(B.91)

where the image fT(w) satisfies

〈 fT(w), v〉V = 〈w, f (v)〉W , ∀ v ∈V , w ∈W . (B.92)

Please notice that (B.91) readily comes from Definition B.26 with the

identifications V ∗ ∼= V and W ∗ ∼= W . In addition, since the vector fT(w)

is a functional acting on V , just as f (v) is a form on W , the identity (B.92)

is a consequence of the property (B.88).

B.3.3 Real Vector Spaces

Let V a vector space defined over the real field R and supposed it is endowed

with a scalar product. Since the set of real numbers is an ordered field, it

makes sense to introduce an additional requirement for the scalar product.

Definition B.49. A scalar product on an R-vector space V is said positive

definite if the following conditions are satisfied:

� 〈v, v〉 ≥ 0 , ∀ v ∈V (R);

� 〈v, v〉 = 0 ⇔ v = o.
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One can easily observe that, since the second property here introduced

is consistent with the condition (B.85), a positive scalar product is also

non-degenerate.

Moreover, a consequence of the positiveness is the so-called Cauchy-

Schwartz’ inequality :

〈v,w〉2 ≤ 〈v, v〉〈w,w〉 , ∀ v,w ∈V . (B.93)

The validity of Cauchy-Schwartz’ inequality is trivial when v = o. Con-

versely, if v 6= o one can set c = 〈v,w〉/〈v, v〉, so that, by the positiveness

of the scalar product and recalling the symmetry of the scalar product, one

finds

0 ≤ 〈w− cv,w− cv〉 = 〈w,w〉 − 2c〈v,w〉+ c2〈v, v〉

= 〈w,w〉 − 2
〈v,w〉2
〈v, v〉 +

〈v,w〉2
〈v, v〉2 〈v, v〉

= 〈w,w〉 − 〈v,w〉2
〈v, v〉 ,

which implies the inequality (B.93).

When a vector space V is defined over the real field, or a general ordered

field, the norm of a vector is also introduced (see, e.g., Lang (2002), Lee

(2012)).

Definition B.50. Let V be a vector space over the field R. A norm on V
is a real-valued function

‖·‖ : V → R , (B.94)

such that the following properties are satisfied:

� positivity:

‖v‖ ≥ 0 , ∀ v ∈V , with ‖v‖ = 0 if, and only if, v = o ;

� homogeneity:

‖cv‖ = |c|‖v‖ , ∀ v ∈V , c ∈ R ;
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� triangle inequality:

‖v + v′‖ ≤ ‖v‖+ ‖v′‖ , ∀ v, v′ ∈V .

When the vector space V is endowed with a specific choice of a norm is

called a normed vector space.

Orientation of a Real Vector Space

Please recall that the space of the alternating covariant tensors on a vector

space V , is itself a linear space over the same field of V .

Specifically, if V is a real n-dimensional vector space, by means of (B.73),

the space Λn(V ∗) is a one-dimensional real space and hence it is isomor-

phic with R itself. Consequently, Λn(V ∗)\{o∗} has exactly two connected

components, i.e. the subsets related to R+ and R−, respectively.

With this specifications, the following definition can be introduced (see,

e.g., Berger (1987), Lee (2012)).

Definition B.51. Let V be an n-dimensional vector space over R and

let Λn(V ∗) be the space of the alternating covariant n-tensors. An orien-

tation O for V is the choice of one of the two connected components of

Λn(V ∗)\{o∗}.

Any form ω∗ of Λn(V ∗) is called positive if it belongs to the fixed orien-

tation O , and a basis B = {b1, . . . ,bn} of V is said to be positively oriented

if ω∗(b1, . . . ,bn) > 0 for any ω∗ in O .

Please observe that a multicovector ω′∗ is in the same orientation O of

ω∗ if there exists a scalar c > 0 such that ω′∗ = cω∗.

As a matter of fact, ω∗ can be chosen as a basis tensor for Λn(V ∗), so

that the coordinate of ω∗ is trivially 1, while the coordinate of ω′∗ is exactly

the coefficient c. Then, since 1 and c are both in R+, the forms ω′∗ and ω∗

are in the same connected component of Λn(V ∗).

It is worth pointing out that fixing a basis B = {b1, . . . ,bn} for V
naturally induces an orientation O , which is the one identified by the exterior

product of the covectors b1, . . . ,bn of the dual basis B ∗.
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Actually, setting ω∗ = b1 ∧ · · · ∧ bn and recalling that exterior product

relies on the alternation map (cf. Definition B.38), by means of the property

(B.54) one obtains

(b1 ∧ · · · ∧ bn)(b1, . . . ,bn) = Alt(b1 ⊗ · · · ⊗ bn)(b1, . . . ,bn)

=
1
n! ∑

σ∈Sn

sgn(σ) (b1 ⊗ · · · ⊗ bn)(bσ(1), . . . ,bσ(n))

=
1
n! ∑

σ∈Sn

sgn(σ) b1(bσ(1)) · · · bn(bσ(n)) ,

where, using the property (B.8), the scalars bi(bσ(i)), with i = 1, . . . , n, are

other than 0 only when σ(i) = i.
Consequently, the only permutation σ providing a non-vanishing contri-

bution is the identity map idSn of the symmetric group Sn, and the above

relation provides

(b1 ∧ · · · ∧ bn)(b1, . . . ,bn) =
1
n!

> 0 . (B.95)

Then, any other basis B ′ = {b′1, . . . ,b′n} of V satisfying the condition

(b1 ∧ · · · ∧ bn)(b′1, . . . ,b′n) > 0, is positively oriented.

Since the bases B and B ′ identify the same orientation, we also say that

they are consistently oriented.

Proposition B.52. Let B = {b1, . . . ,bn} and B ′ = {b′1, . . . ,b′n} be two

bases for the real vector space V . Then, they are consistently oriented if,

and only if, the determinant of the change of basis map is positive:

det
(
hB ′

B
)
> 0 . (B.96)

Proof. Consider the orientation O of V defined by the basis B , that is the

one associated with the multicovector b1 ∧ · · · ∧ bn.

By Proposition B.40, applying b1 ∧ · · · ∧ bn to the vectors of B ′ reads

(b1 ∧ · · · ∧ bn)(b′1, . . . ,b′n) = (b′1 ∧ · · · ∧ b′n)(b1, . . . ,bn) .

Moreover, recalling Proposition B.21, the change of basis map from B
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to B ′ satisfies the property hB ′
B (bi) = b′i, obtaining

(b1 ∧ · · · ∧ bn)(b′1, . . . ,b′n) =
(
hB ′

B (b1) ∧ · · · ∧ hB ′
B (bn)

)
(b1, . . . ,bn)

= det
(
hB ′

B
)
(b1 ∧ · · · ∧ bn)(b1, . . . ,bn) ,

where the defining property (B.78) of the determinant has been applied.

Then, using again the result of Proposition B.21, and also exploiting

(B.95), one finally finds the following identity:

(b1 ∧ · · · ∧ bn)(b′1, . . . ,b′n) =
det

(
hB ′

B
)

n!
.

It is now clear how the sign of (b1 ∧ · · · ∧ bn)(b′1, . . . ,b′n) is the same

of the determinant of hB ′
B . Hence, the positiveness of det

(
hB ′

B
)

implies the

consistency of the orientations associated with B and B ′, and vice-versa.

Please notice that the consistency of orientation between the bases of a

vector space V represents an equivalence relation.

In addition, exploiting the results of Proposition B.52, such an equiv-

alence is the same as the relation between the automorphisms of V with

positive determinant:

B ∼O B ′ ⇔ det
(
hB ′

B
)
> 0 . (B.97)

In order to prove that the relation here above is actually an equivalence

relation, let us show that it is reflective, symmetric and transitive.

Actually, since hB
B = idV , the reflexivity of (B.97) readily results from

(B.79):

det
(
hB

B
)

= det(idV ) = 1 > 0 .

Moreover, recalling that hB
B ′ = hB ′

B
−1

, by (B.81) one has

det
(
hB

B ′
)

= det
(
hB ′

B
)−1

> 0 ⇔ det
(
hB ′

B
)
> 0 ,

whence the symmetry of the binary relation (B.97).

Finally, if B ∼O B ′ and B ′ ∼O B ′′, composing the relevant change of
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basis maps gives the linear transformation hB ′′
B = hB ′′

B ′ h
B ′
B . Since hB ′

B and hB ′′
B ′

both have a positive determinant, the resulting map, by means of (B.80),

satisfies

det
(
hB ′′

B
)

= det
(
hB ′′

B ′
)

det
(
hB ′

B
)
> 0 ,

which proves the transitivity of the equivalence relation (B.97).

Remark. In the light of the equivalence relation (B.97), the orientation O
of the vector space V can be alternatively defined as the equivalence class

of the bases related by the automorphisms of V with positive determinant

(see, e.g., Lee (2012), Mac Lane and Birkhoff (1999)).

B.4 Linear Maps and Tensors

Let us consider the F-vector spaces V and W . For any w ∈W and v∗ ∈
V ∗, the tensor product w⊗ v∗ is an element of the tensor space W ⊗V ∗

and induces a linear map between V and W by means of the following

identification:

f w⊗v∗ : V →W

x 7→ f w⊗v∗(x) = v∗(x) w ,
(B.98)

where v∗(x) is the scalar of F resulting from applying the functional v∗ ∈V ∗

at x ∈ V , so that the linearity of the functional v∗ implies the one of the

map f w⊗v∗ .

At the same time, if g : V →W is a linear map, let us consider some

w ∈W and v∗ ∈V ∗ such that the tensor (w⊗ v∗)g is defined as

(w⊗ v∗)g : W ∗ ×V → F

(y∗, x) 7→ (w⊗ v∗)g(y∗, x) = w(y∗)v∗(x) ,
(B.99)

where, by means of (B.17), the usual identification W ∗∗ ∼= W has been

exploited.

Moreover, applying an arbitrary y∗ ∈W ∗ to the vector v∗(x) w ∈W
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provided by the map (B.98), one has

y∗
(

f w⊗v∗(x)
)

= v∗(x)y∗(w) = w(y∗)v∗(x) = (w⊗ v∗)g(y∗, x) ,

∀ x ∈ V , y∗ ∈W ∗ , (B.100)

whence, for the arbitrariness of y ∈W ∗, as well as x ∈V , it is clear that the

linear map f w⊗v∗ induced by w⊗ v∗ is exactly the assigned map g inducing

the tensor (w⊗ v∗)g.

It is worth noting that the relation (B.100) implies the identification

f w⊗v∗ = g on the condition that the linear map g : V → W induces a

multilinear functional, defined on W ∗ ×V , to be expressed in the form of a

tensor product (w⊗ v∗)g.

However, such an identification can be easily extended to any tensor in

W ⊗V ∗, as stated in the following proposition.

Proposition B.53. Let V and W be F-vector spaces. Then, there exists a

vector space isomorphism

Θ : L (V ,W )→W ⊗V ∗

f 7→ A = Θ( f ) ,
(B.101)

such that

A(y∗, x) = y∗
(

f (x)
)
, ∀ x ∈V , y∗ ∈W ∗ . (B.102)

Proof. To prove that Θ is linear, consider f , g ∈ L (V ,W ) and A,B ∈
W ⊗V ∗ such that A = Θ( f ) and B = Θ(g).

By the linearity of L (V ,W ) stated in Proposition B.17, applying the

defining property (B.102) to a linear combination of f and g, one has

y∗
(
(a f + bg)(x)

)
= y∗

(
a f (x) + bg(x)

)
= ay∗

(
f (x)

)
+ by∗

(
g(x)

)
,

where the linearity of the functional y∗ ∈W ∗ has been also exploited.

Hence, since (B.102) applies to both A = Θ( f ) and B = Θ(g), the sum

and the multiplication by a scalar of multilinear forms, defined by (B.18)
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and (B.19), respectively, provide

y∗
(
(a f + bg)(x)

)
= aA(y∗, x) + bB(y∗, x) = (aA + bB)(y∗, x) ,

whence

aA + bB = Θ(a f + bg) , ∀ f , g ∈ L (V ,W ) , a, b ∈ F .

which assures the linearity of Θ.

The injectivity of Θ can be proved considering the condition Θ( f ) = 0,

where 0 is the null tensor in W ⊗V ∗ and satisfies

0(y∗, x) = 0 , ∀ x ∈V , y∗ ∈W ∗ ,

which means

y∗
(

f (x)
)

= 0 , ∀ x ∈V , y∗ ∈W ∗ .

By Part 1 of Proposition B.25, the arbitrariness of y∗ ∈W ∗ implies the

vanishing of f (x) ∈W . Then, the condition

f (x) = oW , ∀ x ∈V

is satisfied if, and only if, f is the null map o ∈ L (V ,W ), that is Ker(Θ) =

{o} and Θ is injective.

In order to verify the surjectivity of Θ, let us consider the bases A =

{a1, . . . , an} and B = {b1, . . . ,bm} for V and W , respectively, with the

relevant dual bases A ∗ = {a1, . . . , an} and B ∗ = {b1, . . . ,bm}.
Consequently, specializing (B.30), a basis for W ⊗V ∗ is given in the form

B⊗ = { bi ⊗ aj | i = 1, . . . ,m , j = 1, . . . , n } and any tensor A ∈W ⊗V ∗

can be expressed as

A = Ai
jbi ⊗ aj ,

where the coefficients Ai
j = A(bi, aj) are values of A relevant to the pairs

(bi, aj), with i = 1, . . . ,m and j = 1, . . . , n.
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Evaluating A at an arbitrary pair of vectors (y∗, x), one has

A(y∗, x) = Ai
jbi ⊗ aj(y∗, x) = Ai

jbi(y∗)aj(x) = Ai
jy
∗(bi)aj(x)

whence, for the linearity of y∗ ∈W ∗, the following relation holds true:

A(y∗, x) = y∗
(

Ai
ja

j(x) bi
)
,

Since each aj ∈ A ∗ is a functional onV , the linear composition Ai
ja

j(x) bi

is a vector of W which depends linearly on x ∈ V , and can be considered

as the image of the following linear map

f : V →W

x 7→ f (x) = Ai
ja

j(x) bi .
(B.103)

Since the relation (B.102) is fulfilled by construction, i.e.

y∗
(

f (x)
)

= y∗
(

Ai
ja

j(x) bi
)

= A(y∗, x) , ∀ x ∈V , y∗ ∈W ∗ ,

the map f is such that A = Θ( f ), ensuring the surjectivity of Θ.

Please observe that the surjectivity of Θ has been proved introducing

the bases A and B . However, if different bases are considered, say A ′ and

B ′, respectively, the map in (B.103) is the same, since the scalars Ai
j are

consistently modified:

f (x) = Ai
ja

j(x) bi = A(bi, aj)aj(x) bi = A(b′i, a′j)a′j(x) b′i
= A′ ija

′j(x) b′i .

Then, the isomorphism (B.101) is canonical and the spaces L (V ,W )

and W ⊗V ∗ can be unambiguously identified:

L (V ,W ) ∼= W ⊗V ∗ . (B.104)

Please notice that, using the identity (B.12), the relation between the

linear map f and the tensor A also reads:

A(y∗, x) = y∗
(

f (x)
)

=
(

fT(y∗)
)
(x) = x

(
fT(y∗)

)
= AT(x, y∗) ,
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where the identification V ∼= V ∗∗ has been exploited and the notation AT

has been introduced for the tensor associated with the transpose map fT.

Consequently, the following definition can be introduced.

Definition B.54. The transpose of a tensor A ∈ W ⊗V ∗ is a tensor

AT ∈V ∗ ⊗W such that

AT(x, y∗) = A(y∗, x) , ∀ x ∈V , y∗ ∈W ∗ . (B.105)

Introducing the bases A = {a1, . . . , an} and B = {b1, . . . ,bm} for V and

W , respectively, the defining property of AT reads

AT(x, y∗) = AT j
i ai ⊗ bj(x, y∗) = AT j

i ai(x)bj(y∗) = AT j
i bj(y∗)ai(x)

= AT j
i bj ⊗ ai(y∗, x) ,

whence, being also A(y∗, x) = Aj
ibj ⊗ ai(y∗, x), for the arbitrariness of x

and y∗, one finds

AT j
i = Aj

i . (B.106)

B.4.1 Matrix Representation of Linear Maps

The canonical isomorphism B.102 implies that a tensor A ∈W ⊗V ∗ can

itself be considered as a linear operator from V to W .

Moreover, introducing the bases A = {a1, . . . , an} and B = {b1, . . . ,bm}
for V and W , respectively, along with the relevant dual bases A ∗ and B ∗,
the expression of the tensor A is

A = Ai
jbi ⊗ aj ,

where the coefficients Ai
j, with i = 1, . . . ,m and j = 1, . . . , n result from the

evaluation Ai
j = A(bi, aj).

Each scalar Ai
j ∈ F can be considered as the entry placed at the i-th row

and the j-th column of a matrix [A] ∈ Mm×n. Then, since any tensor A is

uniquely related with both a linear map f and, through its coordinates, to

a matrix [A], it is possible to define the following isomorphism between the
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space L (V ,W ) and the space Mm×n:

Ψ(A ,B ) : L (V ,W )→ Mm×n

f 7→ [A] ,

Ψ−1
(A ,B ) : Mm×n → L (V ,W )

[A] 7→ f .
(B.107)

Please observe that, differently from Θ : L (V ,W ) → W ⊗V ∗, the

isomorphism Ψ(A ,B ) is not canonical, but it depends on the bases A and B
of the vector spaces.

However, by fixing the bases A and B , the linear map f ∈ L (V ,W ),

the tensor A ∈W ⊗V ∗ and the matrix [A] ∈ Mm×n can be identified:

f ∼= A ∼= [A] . (B.108)

Moreover, recalling that the linear map f associated with A is given by

(B.103), the image of x ∈V through f is a vector y expressed as

y = f (x) = Ai
ja

j(x)bi = Ai
jx

jbi ,

where the role of aj ∈ A ∗ as the j-th coordinated function, defined by (B.6),

has been exploited.

Then, expressing y ∈W with respect to the basis B as y = yibi, one

has

yi = Ai
jx

j .

which also represents as the i-th entry of a column matrix [y] ∈ Mm×1

resulting from the matrix multiplication of [A] ∈ Mm×n and [x] ∈ Mn×1:

[y] = [A][x] . (B.109)

Since the entries of [x] are exactly the coordinates of x ∈ V with re-

spect to the basis A , the column matrix [x] ∈ Mn×1 is isomorphic with the

coordinated vector x ∈ Fn, provided by (B.1) as x = ϕA (x).

More generally, if V is an n-dimensional vector space with a basis B ,
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the following map is a vector space isomorphism:

θB : V → Mn×1

v 7→ [v] ,

θ−1
B : Mn×1 →V

[v] 7→ v ,
(B.110)

so that, once a basis B has been fixed, the vectors v ∈ V , v ∈ Fn and

[v] ∈ Mn×1 can be uniquely identified:

v ∼= v ∼= [v] . (B.111)

B.4.2 Endomorphisms of a Vector Space

When the map f is an endomorphism of the vector space V , the codomain

of the map defined by (B.101) specializes to the tensor space V ⊗V ∗, which

is the space of the mixed tensors on V of rank (1, 1).

Then, the identification (B.104) reads

End(V ) ∼= T (1,1)(V ) , (B.112)

and, introducing a basis B = {b1, . . . ,bn} for V , a tensor A ∈ T (1,1)(V )

results

A = Ai
jbi ⊗ bj ,

with the associated matrix [A] in the space of the square matrices of order

n, denoted as Mn.

Since by Definition B.18 the product of linear maps is the same as the

composition, the product of endomorphisms of V is itself an endomorphism

of V , i.e.

f g ∈ End(V ) , ∀ f , g ∈ End(V ) .

Exploiting the product of endomorphisms, the space End(V ) can be en-

dowed with the Lie bracket operation, which provides a Lie algebra denoted

as gl(V ).

Definition B.55. Given an F-vector space V , the general linear Lie algebra
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of V , denoted as gl(V ), is the Lie algebra of the endomorphisms of V
obtained by endowing the space End(V ) with the following operation:

[·, ·] : gl(V )× gl(V )→ gl(V )

( f , g) 7→ [ f , g] = f g − g f .
(B.113)

It is easy to verify that the operation defined by (B.113) is a Lie bracket

satisfying the properties introduced by Definition A.27, and gl(V ) is actually

a Lie algebra.

A similar algebraic structure results noting that the matrix multiplica-

tion is an internal operation for Mn:

[A][B] ∈ Mn×n , ∀ [A], [B] ∈ Mn×n ,

so that the commutator bracket is a well-defined binary operation for the

space Mn of the n-by-n matrices.

Definition B.56. The general linear Lie algebra of order n over the field

F, denoted as gl(n,F) or simply as gl(n), is the Lie algebra resulting from

the space of matrices Mn along with the following commutator bracket:

[·, ·] : gl(n)× gl(n)→ gl(n)

([A], [B]) 7→
[
[A], [B]

]
= [A][B]− [B][A] .

(B.114)

Please notice that, since End(V ) is isomorphic with Mn and the com-

position of linear maps results in the matrix multiplication of the relevant

matrices, gl(V ) and gl(n) are isomorphic as Lie algebras:

gl(V ) ∼= gl(n) . (B.115)

B.4.3 The General Linear Group

Within the endomorphisms on a vector space V , a key role is played by the

automorphisms, i.e. the bijective linear maps of V .

Since, by Proposition B.44, the determinant of any bijective endomor-

phism of V is non-null, the set of the automorphisms of V can be charac-
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terized as follows:

Aut(V ) = { f : V →V | det( f ) 6= 0 } ⊆ End(V ) . (B.116)

Moreover, since composing bijective maps results in a bijection, the prod-

uct of linear maps, introduced by Definition B.18, is an internal operation

for Aut(V ).

Specifically, for any pair of maps f and g in Aut(V ), Property 2 in

Proposition B.45 reads

det( f g) = det( f ) det(g) 6= 0 , ∀ f , g ∈ Aut(V ) ,

where the non-vanishing of both det( f ) and det(g) implies that det( f g) is

itself non-null. Hence, consistently with (B.116), the product f g is a linear

map in Aut(V ).

It is easily to see that the set Aut(V ), along with the product of linear

maps, has a group structure (cf. Definition A.8). In fact, the product of

maps is an associative operation, whose identity element is the identity map

idV , and such that the inverse element of any f , with respect to the product,

is given by the inverse map f−1.

Definition B.57. The general linear group of an F-vector space V is the

set Aut(V ) of the automorphisms of V along with the product of linear

transformations, and is denoted as GL(V ).

The characterization of the automorphisms of V in terms of matrix

representation comes from the following proposition.

Proposition B.58. Let f be an automorphism of an F-vector space V .

Then, the relevant matrix [A] is invertible and the inverse matrix [A]−1 is

associated with the inverse map f−1.

Proof. Let us consider a basis B = {b1, . . . ,bn} for V . Specializing (B.103)

to the tensor A ∈V ∗ ⊗V , the image of an arbitrary x ∈V through f can

be represented as

f (x) = Ai
jb

j(x) bi .

301



Appendix B Algebra of Vector Spaces

At the same time, if B ∈ V ∗ ⊗V is the tensor associated with the

inverse map f−1 : V →V , one has

x = f−1( f (x)
)

= Bh
kbk( f (x)

)
bh = Bh

kbk(Ai
jb

j(x) bi
)

bh

= Bh
k Ai

jb
j(x) bk(bi) bh ,

where the linearity of the functional bk ∈V ∗ has been exploited.

Moreover, applying Definition B.24 and considering bj as the j-th coor-

dinate function defined by (B.6), one also infers:

x = Bh
k Ai

jx
jδk

i bh = Bh
i A

i
jx

jbh .

Then, expressing x as xhbh = δh
j xjbh, the comparison of the coordinates

implies δh
j xj = Bh

i Ai
jxj, whence, for the arbitrariness of the coordinates xj

representing the vector x, one also finds

Bh
i A

i
j = δh

j .

Such a relation is the component-wise expression of the matrix product

[B][A] = [I] ,

which implies [B] = [A]−1.

It is trivial to check that the set of all the invertible matrices in Mn,

along with the matrix multiplication, is a group with the identity given by

[I] and the inverse element given by the inverse matrix.

Definition B.59. The general linear group of degree n over the field F is

the set of all the invertible n-by-n matrices along with the standard matrix

multiplication, and it is denoted as GL(n,F), or simply GL(n) when the field

is deducible.

By virtue of Proposition (B.58), the product of linear maps in GL(V )

and the matrix multiplication in GL(n) do correspond to each other, and

then these two sets are isomorphic also as groups:

GL(V ) ∼= GL(n) . (B.117)
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B.4.4 Change of Basis Matrix

Consider a vector space V over the field F and suppose two bases are intro-

duced, say A = {a1, . . . , an} and B = {b1, . . . ,bn}.
It has been shown in Proposition B.21 that the change of basis from A

to B is provided by an automorphism hB
A mapping each vector ai ∈ A to

the relevant vector bi ∈ B , with i = 1, . . . , n.

Let CB
A be the tensor in V ⊗V ∗ associated with the automorphism hB

A ,

which is expressed with respect to the basis A as

CB
A = (CB

A )i
jai ⊗ aj ,

so that, specializing (B.103) to hB
A : V →V , one has

hB
A (x) = (CB

A )i
ja

j(x) ai , ∀ x ∈V ,

which, using the defining property (B.4), provides

bk = hB
A (ak) = (CB

A )i
ja

j(ak) ai = (CB
A )i

jδ
j
k ai .

that is

bk = (CB
A )i

k ai . (B.118)

The matrix [CB
A ], whose entries are the coefficients (CB

A )i
k of the tensor

CB
A with respect to the basis A , represents the active matrix of change of

basis from A to B . In fact, since the entries of k-th row are the coordinates

of bk with respect to the basis A , the role of [CB
A ] is to transform the vectors

of A into the vectors of B .

Consider now an arbitrary vector v of V , whose coordinate n-tuples with

respect to the bases A and B are vA and vB , respectively. Since v can be

expressed as v = vi
A ai, with respect to A , and at the same time as v = vk

B bk,

with respect to B , the following identity holds true:

vi
A ai = vk

B bk = (CB
A )i

k vk
B ai ,

where the transformation (B.118) has been exploited.
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By comparison, one easily finds vi
A = (CB

A )i
k vk

B , which in matrix form

reads

[vA ] = [CB
A ][vB ] ,

or equivalently

[vB ] = [CB
A ]−1[vA ] = [CA

B ][vA ] . (B.119)

The matrix [CA
B ] = [CB

A ]−1 represents the passive change of basis from

A to B , with the meaning to transform the coordinates of a fixed vector

with respect to A to the ones with respect to B .
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Crisfield, M. A. and G. Jelenić (1999). Objectivity of strain measures in the

geometrically exact three-dimensional beam theory and its finite-element

implementation. Proceedings of the Royal Society of London. Series A:

Mathematical, Physical and Engineering Sciences 455 (1983), 1125–1147.

Daher, M. (2013). Dual Numbers and Invariant Theory of the Euclidean

Group with Applications to Robotics. Ph. D. thesis, Victoria University of

Wellington.

Dimentberg, F. M. (1968). The screw calculus and its applications in me-

chanics. Technical report, Foreign Technology Division.

Dimitrienko, Y. I. (2002). Tensor Analysis and Nonlinear Tensor Functions

(First ed.). Dordrecht: Springer.

do Carmo, M. P. (2016). Differential Geometry of Curves and Surfaces:

Revised & Updated Second Edition (Second ed.). New York: Dover Pub-

lications.

Dummit, D. S. and R. M. Foote (2003). Abstract Algebra (Third ed.). Hobo-

ken: Wiley.

Epstein, M. (2010). The Geometrical Language of Continuum Mechanics

(First ed.). New York: Cambridge University Press.

Epstein, M. and R. Segev (1980). Differentiable manifolds and the principle

of virtual work in continuum mechanics. J. Math. Phys. 21 (5), 1243–1245.

Ericksen, J. and C. Truesdell (1957). Exact theory of stress and strain in

rods and shells. Arch. Ration. Mech. Anal. 1, 295–323.

307



Bibliography

Eugster, S. (2015). Geometric Continuum Mechanics and Induced Beam

Theories (First ed.), Volume 75. Springer International Publishing.

Faccio Júnior, C. J., A. C. Pegoraro Cardozo, V. Monteiro Júnior, and

A. Gay Neto (2019). Modeling wind turbine blades by geometrically-exact

beam and shell elements: A comparative approach. Eng. Struct. 180, 357–

378.

Fischer, I. S. (1999). Dual-Number Methods in Kinematics, Statics and

Dynamics (First ed.). Boca Raton: CRC Press.

Gallier, J. and J. Quaintance (2020). Differential Geometry and Lie Groups:

A Computational Perspective (First ed.). Cham: Springer International

Publishing.

Garcea, G., A. Madeo, and R. Casciaro (2012a). Nonlinear FEM analysis for

beams and plate assemblages based on the implicit corotational method.

J. Mech. Mater. Struct. 7, 539–572.

Garcea, G., A. Madeo, and R. Casciaro (2012b). The implicit corotational

method and its use in the derivation of nonlinear structural models for

beams and plates. J. Mech. Mater. Struct. 7, 509–538.

Goldstein, H., C. Poole, and J. Safko (2001). Classical Mechanics (Third

ed.). Pearsong.

Grazioso, S., G. Di Gironimo, and B. Siciliano (2019a). A geometrically

exact model for soft continuum robots: The finite element deformation

space formulation. Soft Rob. 6 (6), 790–811.

Grazioso, S., G. Di Gironimo, and B. Siciliano (2019b). From differential

geometry of curves to helical kinematics of continuum robots using expo-

nential mapping. Advances in Robot Kinematics 2018 8, 319–326.

Hall, B. C. (2015). Lie Groups, Lie Algebras and Representations (Second

ed.). Springer.

308



Bibliography

Halmos, P. R. (1958). Finite Dimensional Vector Spaces (Second ed.).

Princeton University Press.

Harsch, J., G. Capobianco, and S. R. Eugster (2021). Finite element for-

mulations for constrained spatial nonlinear beam theories. Math. Mech.

Solids 26 (12), 1838–1863.

Higham, N. J. (2008). Functions of Matrices: Theory and Computation

(First ed.). Philadelphia: Society for Industrial and Applied Mathematics.
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Žefran, M. and V. Kumar (1998). Interpolation schemes for rigid body

motions. Comput.-Aided Des. 30 (3), 179–189.

Zienkiewicz, O., R. Taylor, and J. Zhu (2013). The Finite Element

Method: its Basis and Fundamentals (Seventh ed.). Oxford: Butterworth-

Heinemann.

Zupan, D. and M. Saje (2003a). Finite-element formulation of geometrically

exact three-dimensional beam theories based on interpolation of strain

measures. Comput. Methods Appl. Mech. Eng. 192 (49), 5209–5248.

Zupan, D. and M. Saje (2003b). The three-dimensional beam theory: Finite

element formulation based on curvature. Comput. Struct. 81 (18), 1875–

1888.

313


	Introduction
	Modeling of Beams undergoing Large Deformations
	Outline

	Smooth Manifolds and Lie Groups
	Smooth Manifolds
	Topological Manifolds
	Smooth Structure

	Tangent Space
	Geometric Tangent Vectors
	Tangent Vectors on Manifolds
	The Differential of a Smooth Map
	The Tangent Bundle
	Velocity Vectors of Curves

	Vector Fields
	Vector Fields and Smooth Maps
	Lie Algebra of Vector Fields
	Integral Curves
	Flows
	Lie Derivative of a Vector Field

	Lie Groups and Lie Algebras
	The Lie Algebra of a Lie Group
	One-parameter Subgroups and Exponential Map

	Lie Group Representation
	Matrix Lie Groups
	Exponential of Matrices
	Smooth Structure of Matrix Groups
	Adjoint Representation of Matrix Groups
	Differential of the Exponential Map
	Logarithm of Matrices


	Affine Spaces and Affine Transformations
	Affine Spaces
	Affine Frames

	Affine Maps
	Change of Frame Map

	The Affine Group
	Subgroups of the Affine Group
	Semidirect Product Decomposition

	Matrix Representation of Affinities
	Homogeneous Representation
	Change of Frame Matrix


	Euclidean Spaces and Rigid Motions
	Euclidean Vector Space
	Orthonormal Bases
	Linear Isometries
	The Orthogonal Group

	Euclidean Affine Spaces
	Orthonormal Frames
	Euclidean Motion
	The Euclidean Group

	Rotations in 3-Dimensional Spaces
	Cross Product and Alternating Tensors
	3-Dimensional Rotations
	Lie Group Structure of SO(3)
	Exponential Map of SO(3)
	Logarithm Map of SO(3)

	Rigid Motions in 3-Dimensional Spaces
	Lie Group Structure of SE(3)

	Rigid Motions via Dual Numbers
	Dual Numbers
	Representing Motions as Dual Rotations

	Some Identities for Operators of SO(3) and SE(3)

	A Geometrically Exact Beam Model
	Body, Space and Motion
	Beam Geometric Characterization
	Beam Material Coordinates
	Beam Configuration in the Physical Space

	Beam Kinematics
	Beam Compatibility Equations
	Algebra of Beam Deformations

	Force Representation and Equilibrium Configurations
	Virtual Displacement Screws and Wrenches
	Virtual Displacement Field of a Beam
	Static Equilibrium
	Internal Forces


	Finite Element Formulation
	Shape Functions
	Element Operators of Deformation and Displacement
	Element Forces
	Element Stiffness Matrix
	Numerical Tests
	Cantilever Beam
	Deployable Ring


	Conclusions and Outlook
	Review of Algebraic Structures
	Basic Definitions
	Sets and Maps
	Properties of Maps
	Homomorphisms

	Algebraic Structures
	Monoids
	Groups
	Rings
	Fields
	Vector Spaces
	Lie Algebras


	Algebra of Vector Spaces
	Vector Space Structure
	Bases
	Linear Mappings
	Dual Vector Space

	Multilinear Forms and Tensors
	Tensor Product
	Symmetric and Alternating Tensors
	The Space of Alternating Tensors

	Scalar Product Spaces
	Orthogonality
	Duality in Scalar Product Spaces
	Real Vector Spaces

	Linear Maps and Tensors
	Matrix Representation of Linear Maps
	Endomorphisms of a Vector Space
	The General Linear Group
	Change of Basis Matrix



