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Abstract

In recent years novel inference techniques have been developed based on the construc-
tion of summary statistics with neural networks by minimizing inference-motivated
losses via automatic differentiation. The inference-aware summary statistics aim to
be optimal with respect to the statistical inference goal of high energy physics anal-
ysis by accounting for the effects of nuisance parameters during the model training.
One such technique is INFERNO (P. de Castro and T. Dorigo, Comp. Phys. Comm.
244 (2019) 170) which was shown on toy problems to outperform classical summary
statistics for the problem of confidence interval estimation in the presence of nui-
sance parameters. In this thesis the algorithm is extended to common high energy
physics problems based on a differentiable interpolation technique. In order to test
and benchmark the algorithm in a real-world application, a complete, systematics-
dominated analysis of the CMS experiment, “Measurement of the tt̄ production cross
section in the τ+jets channel in pp collisions at

√
s = 7 TeV” (CMS Collaboration,

The European Physical Journal C, 2013) is reproduced with CMS Open Data. The
application of the INFERNO-powered neural network architecture to this analysis
demonstrates the potential to reduce the impact of systematic uncertainties in real
LHC analysis.
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Preface

The work presented in this thesis summarizes the main research project that I car-
ried out as a Marie Skłodowska-Curie fellow in the context of an interdisciplinary
European Innovative Training Network INSIGHTS, funded by the European Union’s
Horizon 2020 research and innovation program, call H2020-MSCA-ITN-2017, under
Grant Agreement n. 765710. The main research project is the result of a collabora-
tion with Tommaso Dorigo and Giles Strong. The purpose of this manuscript is to
describe my original contributions to this work. The Chapters 2-5 are intended as
an introduction to the main research project presented in Chapters 6 and 7 and do
not describe my own work. The code for my main research project has been made
public [1].
During my PhD as a Marie Skłodowska-Curie fellow of the INSIGHTS network,
I also collaborated with members of other institutions and collaborations. The
projects carried out within CMS and INSIGHTS that lead to a publication during
my PhD are briefly described in the following.

Automatic log analysis with NLP for the CMS workflow handling [2]

In this work an approach is presented that considers the error log files of failing
CMS Monte Carlo production workflows as regular text to leverage modern tech-
niques from Natural Language Processing (NLP). In general, log files contain a
substantial amount of text that is not human language. Therefore, different log
parsing approaches are studied in order to map the log files’ words to high dimen-
sional vectors. These vectors are then exploited as feature space to train a model
that predicts the action that an operator has to take. This approach has the advan-
tage that the information of the log files is extracted automatically and the format
of the logs can be arbitrary. The performance of the log file analysis with NLP is
compared to previous approaches. I have contributed to this work by setting up a
pipeline with Apache Spark to prepare the input data and I developed and optimized
a state-of-the-art NLP model with TensorFlow.
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Measurement of CKM matrix elements in single top quark t-channel
production in proton-proton collisions at

√
s = 13 TeV [3]

In this work the first direct, model-independent measurement is presented of the
modulus of the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements |Vtb|, |Vtd|,
and |Vts|, in final states enriched in single top quark t-channel events. The analysis
uses proton-proton collision data from the LHC, collected during 2016 by the CMS
experiment, at a centre-of-mass energy of 13 TeV, corresponding to an integrated
luminosity of 35.9fb−1. In the standard model hypothesis of CKM unitarity, a lower
limit of |Vtb| > 0.970 is measured at the 95% confidence level. Several theories
beyond the standard model are considered, and by releasing all constraints among
the involved parameters, the values |Vtb| = 0.988±0.024, and |Vtd|2 + |Vts|2 = 0.06±
0.06, where the uncertainties include both statistical and systematic components, are
measured. Within this work I have contributed to the setup of the profile likelihood
fit with the CMS combine tool.

Clustering of Experimental Seismo-Acoustic Events Using
Self-Organizing Map (SOM) [4]

In this work laboratory experiments that produce seismo-acoustic events relevant
for understanding the degassing processes of a volcanic system are studied. A Self-
Organizing Map algorithm is applied to cluster the feature vectors extracted from
the seismo-acoustic data through the parameterization phase, and four main clusters
have been identified. The results were consistent with the experimental findings on
the role of viscosity, flux velocity and conduit roughness on the degassing regime.
The neural network is capable to separate events generated under different experi-
mental conditions. This suggests that the SOM is appropriate for clustering natural
events such as the seismo-acoustic transients accompanying Strombolian explosions
and that the adopted parameterization strategy may be suitable to extract the sig-
nificant features of the seismo-acoustic signals linked to the physical conditions of the
volcanic system. Within an industrial secondment at the Italian National Institute
of Geography and Volcanology, I contributed to this work with data preparation,
visualization and the application of unsupervised learning algorithms.
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Changes in the Eruptive Style of Stromboli Volcano before the 2019
Paroxysmal Phase Discovered through SOM Clustering of
Seismo-Acoustic Features Compared with Camera Images and
GBInSAR Data [5]

In this work the two paroxysmal explosions that occurred at Stromboli on 3 July
and 28 August 2019 are studied. After the first paroxysm an effusive activity began
from the summit vents and affected the NW flank of the island for the entire period
between the two paroxysms. We carried out an unsupervised analysis of seismic and
infrasonic data of Strombolian explosions over 10 months (15 November 2018–15
September 2019) using a Self-Organizing Map (SOM) neural network to recognize
changes in the eruptive patterns of Stromboli that preceded the paroxysms. We used
a dataset of 14,289 events. The SOM analysis identified three main clusters that
showed different occurrences with time indicating a clear change in Stromboli’s erup-
tive style before the paroxysm of 3 July 2019. We compared the main clusters with
the recordings of the fixed monitoring cameras and with the Ground-Based Interfer-
ometric Synthetic Aperture Radar measurements, and found that the clusters are
associated with different types of Strombolian explosions and different deformation
patterns of the summit area. Our findings provide new insights into Strombolian
eruptive mechanisms and new perspectives to improve the monitoring of Stromboli
and other open conduit volcanoes. I contributed to this work with data preparation,
visualization and the application of unsupervised learning algorithms.

Toward Machine Learning Optimization of Experimental Design [6, 7]

In this work the research program of the MODE Collaboration (an acronym for
Machine-learning Optimized Design of Experiments), which aims at developing tools
based on deep learning techniques to achieve end-to-end optimization of the design of
instruments via a fully differentiable pipeline capable of exploring the Pareto-optimal
frontier of the utility function is described. The goal of MODE is to demonstrate
those techniques on small-scale applications such as muon tomography or hadron
therapy, to then gradually adapt them to the more ambitious task of exploring in-
novative solutions to the design of detectors for future particle collider experiments.
I have been a founding member of the collaboration and the development of IN-
FERNO is part of the program.
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Calorimetric Measurement of Multi-TeV Muons via Deep
Regression [8]

In this work the feasibility of an entirely new avenue for the measurement of the en-
ergy of muons based on their radiative losses in a dense, finely segmented calorimeter
is presented. This is made possible by exploiting spatial information of the clusters
of energy from radiated photons in a regression task. The use of a task-specific deep
learning architecture based on convolutional layers allows us to treat the problem
as one akin to image reconstruction, where images are constituted by the pattern
of energy released in successive layers of the calorimeter. A measurement of muon
energy with better than 20% relative resolution is shown to be achievable for ultra-
TeV muons. I have contributed to this work with data preparation, visualization
and assisted in the training of the models.
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1 Introduction

The search for new physics at the LHC, as well as the search for known physics
signals not yet put in evidence, is in general terms a problem of distinguishing a
small signal from large backgrounds in a multi-dimensional space of observed event
features. Neural network classifiers as well as boosted decision trees are nowadays
routinely used to construct powerful summary statistics as input for inference, e.g.
for parameter estimation or hypothesis tests. However, the imperfect knowledge
of the properties of the background and signal results in systematic uncertainties
that have to be accounted for in statistical models by the inclusion of nuisance pa-
rameters [9]. Neglecting the nuisance parameters during the training of a classifier
causes a reduction of the statistical power of the summary statistic during inference.
Nuisance parameters are therefore one of the main limiting factors of the preci-
sion of high energy physics (HEP) analyses, while the statistical uncertainty can
be reduced by collecting more data. The understanding and mitigation of system-
atic uncertainties is crucial for precise measurements at the LHC, in particular for
model-independent searches that are becoming increasingly important in the search
for new physics. Thus, addressing directly the statistical inference objective with
modern machine learning techniques that account for the effect of nuisance param-
eters has attracted a lot of attention and various methods are being developed [10].

In recent years, a novel approach, called inferno [11], an acronym that stands
for Inference-Aware Neural Optimization, has been developed to construct machine
learning based summary statistics that are optimal for statistical inference. The
inferno technique promises to fundamentally improve the power of neural network
classification by embedding the effect of all systematic uncertainties on the param-
eter of interest in the loss of the neural network. On toy problems inferno clearly
outperformed classical summary statistics for the problem of confidence interval es-
timation in the presence of nuisance parameters. The original code for the inferno
algorithm has been developed for a synthetic example. However, the structure of the
data and systematic uncertainties in HEP is special and therefore one of the main

1



1 Introduction

aspects of this work is the development of a framework where real LHC data can be
used with the inferno algorithm. In order to benchmark the framework, a com-
plete, systematics-dominated analysis of the CMS experiment, “Measurement of the
tt̄ production cross section in the τ+jets channel in pp collisions at

√
s = 7 TeV” [12]

is reproduced with CMS Open Data. The study of top-quark production, decays,
couplings and other properties with the highest possible precision is an important
part of the physics program of the CMS experiment and is one of the most promis-
ing avenues for the discovery of new physics due to the critical role of the top-quark
mass in the consistency of the Standard Model. The inferno algorithm will be
applied to the reproduced top pair cross-section measurement and the inference
with the obtained summary statistic will be compared to a classifier trained in a
classical approach with a standard binary cross-entropy loss. Several studies with
different setups are performed in order to understand under which conditions in-
ferno can reduce the impact of systematic uncertainties in a realistic LHC analysis.

The work in this thesis is organized as follows: in Chapter 2 the foundations of
the machine learning and statistical methods are laid that are necessary to un-
derstand the working principle of the inferno algorithm. In Chapter 3 the use
of machine learning to build summary statistics for inference is reviewed from a
statistical perspective and its limitation in the presence of nuisance parameters is
discussed. Additionally, an overview over existing approaches to deal with nuisance
parameters in machine learning is given. Subsequently the inferno algorithm is
described and its performance on a synthetic example is discussed. In Chapter 4
the Standard Model of particle physics and its limitations are discussed, as well as
possible extensions. Then an introduction to the phenomenology of proton-proton
collisions is given and some of the key aspects of top physics at the LHC are re-
viewed. In Chapter 5, the design of the Large Hadron Collider at CERN and the
CMS detector is discussed, as well as the event reconstruction and simulation of the
CMS experiment. In Chapter 6, the reproduction of the analysis “Measurement of
the tt̄ production cross section in the τ+jets channel in pp collisions at

√
s = 7 TeV”

with CMS Open Data is presented. The main result in this chapter is the measure-
ment of the top pair cross-section based on a summary statistic obtained by training
a neural network classifier with a binary cross-entropy loss with CMS Open Data.
In Chapter 7, the extension of the inferno algorithm to HEP-like data and sys-
tematic uncertainties is described. Its performance is quantified in a performance
study based on the reproduced analysis and compared to models trained with bi-

2
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nary cross-entropy. Finally, an inferno model is trained with the most relevant
systematic uncertainties. The resulting summary statistic is used to measure the
top pair cross-section and compare the results to the classical approach described in
Chapter 6.

3



2 Machine Learning and
Statistical Inference at the
LHC

Machine learning (ML) is a very broad field that has grown substantially in the last
decade, driven mainly by the emergence of deep learning (DL). Deep learning has
seen an enormous growth in its popularity and usefulness, mainly due to more pow-
erful hardware, larger datasets and advanced techniques to train deeper networks.
Particle physics offers a variety of use cases for machine learning techniques. The
experimental high-energy physics (HEP) program has two main objectives: probing
the Standard Model (SM) with increasing precision and searching for new particles
associated with physics beyond the SM. Both tasks require the identification of rare
signals in very large backgrounds. The increasing number of collisions at the High-
Luminosity LHC will make this a significant challenge. Exploiting the full potential
of machine learning in many different areas will be a key ingredient for the success
of the LHC program. In the area of statistical data analysis, machine learning tech-
niques have become particularly important to construct powerful summary statistics
that are used as input for inference. Due to the importance of machine learning and
inference for the topic of this thesis, the core concepts will be introduced in the fol-
lowing. The review is based on the standard literature for machine learning [13] and
the Statistics and Machine Learning chapters of the Particle Data Group Review [9],
which are also recommended for further reading.

2.1 Core Concepts of Machine Learning

Most machine learning algorithms can be described as the optimization of some
objective, which can be formulated as minimizing a quantity called risk, that in-

4



2 Machine Learning and Statistical Inference at the LHC

cludes three main ingredients: the model family F , the loss function L, and a data
distribution p(u). The risk for a model f ∈ F is defined as its expected loss:

R[f ] := Ep(u)[L(u, f(u))] ≡
∫

L(u, f(u)), p(u)du . (2.1)

In general, the goal of machine learning is to solve the optimization problem:

f∗ = arg min
f∈F

R[f ] (2.2)

where F includes all possible functions. In practice, the data distribution p(u) is
unknown, and the input for the machine learning algorithm are n i.i.d. samples from
that distribution. This leads to the corresponding empirical risk

Remp[f ] := Ep̂(u)[L(u, f(u))] ≡ 1
n

n∑
i=1

L(ui, f(ui)) (2.3)

where p̂(u) = 1
n

∑n
i=1 δ(u− ui) is referred to as the empirical distribution of the

samples ui. The empirical risk minimization approximates f∗ with the empirical
analogue

f̂ = arg min
f∈F̂

Remp[f ] (2.4)

where F̂ are all possible functions with the model parameters ϕ. In the infinite
parameter limit, machine learning models are universal approximators, such that
they cover all functions and F = F̂ . However, this is not necessarily true for
models with finite parameters in real world applications. The “capacity” of a model
characterizes the ability to fit a wide variety of functions and depends on the model
architecture and its parameters such as the width and depth of neural network layers.
To evaluate the abilities of a machine learning algorithm, a quantitative measure of
its performance needs to be designed, which is usually specific to the learning task.

2.1.1 Generalization and Bias-Variance Tradeoff

The central challenge in machine learning is that the algorithm must perform well
on previously unseen samples - not just on those which have been used for the
training procedure. The ability to perform well on previously unobserved inputs is
called “generalization”. More formally, while the empirical risk might be minimized
Remp[f̂ ] → 0, the true risk might be large R[f̂ ] ≫ 0. The gap R[f̂ ] − Remp[f̂ ] is
typically referred to as the “excess risk”. In general it is not possible to evaluate R[f̂ ]
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exactly because the true data distribution p(u) is unknown, however, an independent
testing dataset can be used to obtain an unbiased estimate of it. This motivates the
splitting of the data in “train” and “test” sets. The factors determining how well a
machine learning algorithm will perform are its ability to reduce the training error,
while also keeping the gap between test and training error small. These two factors
correspond to two important concepts in machine learning: underfitting and over-
fitting. Underfitting occurs when the model is too simple and is not able to perform
well on the training set. Overfitting occurs when a sufficiently flexible model fits
the training data very well, but the gap between the training error and test error is
large and the model does not generalize well to unseen data. By altering a model’s
capacity, one may control under and overfitting. Models with low capacity might
not be sufficiently flexible to fit the training set. Models with high capacity can
overfit by memorizing statistical fluctuations of the training set.

The statistical concepts of “bias” and “variance” are useful to formally characterize
the concept of generalization. Bias and variance quantify two different sources of er-
ror in an estimator, where an estimator θ̂ is defined as a function of the data used to
estimate the value of the parameter θ. The variance V [θ̂] provides a measure of the

Figure 2.1: As capacity increases, bias tends to decrease and variance tends to increase,
yielding an U-shaped curve for the generalization error [13].
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deviation from the expected estimator value that any sampling of the data causes,
while bias measures the expected deviation from the true value of the parameter:

b = E
(
θ̂
)

− θ . (2.5)

Ideally, an estimator has both a low bias and a relatively low variance. The mean-
squared error (MSE) is a measure of an estimator’s quality which combines bias and
variance:

MSE = E
[
(θ̂ − θ)2

]
= V [θ̂] + b2 . (2.6)

Desirable estimators have a small MSE, which means that they manage to balance
both their bias and variance. The relationship between bias and variance is linked to
the discussed concepts of capacity, underfitting and overfitting. When the general-
ization error is measured by the MSE, increasing capacity tends to increase variance
and decrease bias. Typically, the generalization error has a U-shaped curve as a
function of the model capacity, which is illustrated in Fig. 2.1. The optimal ca-
pacity corresponds to the minimum of the generalization error. Left to the optimal
capacity, the bias dominates and the model tends to underfit, while right to the op-
timal capacity the variance dominates and the model tends to overfit, and the gap
between training and generalization error increases. It is also possible for the model
to have optimal capacity and yet still have a large gap between training and gener-
alization errors, which can be reduced with more training examples. A common way
to control the bias-variance trade-off is to use cross-validation. In the basic k-fold
cross-validation approach, the training set is split into k smaller sets and k models
are trained on k − 1 folds. The models are then evaluated on the remaining part
of the data and the performance is measured by the average of the computed val-
ues such that an estimate of the mean value and the variance of the predictions can
be obtained. This allows to choose a suitable model with a low generalization error.

Surprisingly, recent studies have shown that overparametrized models can achieve
good empirical generalization. Overparametrized models are highly complex with
respect to the size of the training dataset, which results in them interpolating the
training data. A wide range of interpolating models have been observed to generalize
extremely well on unseen test data [14]. The double descent phenomenon shown in
Fig. 2.2, indicates that highly overparametrized models can improve over the best
underparametrized model in test performance. This counter-intuitive behaviour is
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Figure 2.2: Double descent of test errors with respect to the complexity of the learned
model. In this qualitative demonstration, the global minimum of the test er-
ror is achieved by maximal overparametrization [14].

studied by the theory of overparametrized ML, called TOPML, that tries to explain
these findings from a statistical signal processing perspective.

2.1.2 No-Free Lunch Theorem and Regularization

The “no-free lunch” theorem for machine learning states that, averaged over all
possible data-generating distributions, every classification algorithm has a similar
error rate when classifying unseen data, thus no learning algorithm is universally
better than any other [15]. However, by making assumptions about the kinds of
probability distributions, learning algorithms can be designed to perform well on
these particular distributions. Thus, the goal of machine learning is not to find a
universal learning algorithm, but rather to understand what kinds of distributions
are relevant and what kinds of machine learning algorithms perform well on data
sampled from particular data-generating distributions.

The no-free lunch theorem and the bias–variance tradeoff motivates the addition
of a regularization term to the loss function. A common form of regularization is
Tikhonov regularization, which penalizes the loss of a model with parameters ϕ by
the L2 norm of the parameters ∥ϕ∥2. Another possible form of regularization is the
restriction of the model class F̂ , since in real-world problems some models perform
better than others, depending on the concrete application. This form of regulariza-
tion is typically encoded in the architecture of a neural network and the choices are
referred to as inductive bias in the model. In addition to explicit regularization, it
is also possible to regularize implicitly, for example with early stopping, where the
loss is monitored on the training and test dataset. Early stopping terminates the
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training when the test loss does not improve anymore for a number of pre-defined
epochs. The no-free lunch theorem makes clear that no optimal machine learning
algorithm and no best form of regularization exists, instead a form of regularization
has to be chosen that suits the particular task.

2.1.3 Supervised Learning

Supervised learning refers to the class of problems where the training dataset consists
of input-output pairs {xi, yi}i=1,...,n, where xi ∈ X are the input features and yi ∈ Y
are the corresponding target labels. The resulting trained model is then used to
predict the labels for a dataset where labels are not available, which can be seen as
an estimate of the conditional probability p(y|x), to predict y given x. Furthermore,
it is typically assumed that the input features (xi, yi) are i.i.d. and are generated
according to the distribution p(x, y), that usually is unknown.

Regression

The goal of regression is the prediction of a label y ∈ Y given an input feature
vector x ∈ X . To solve this task, the learning algorithm is asked to output a
function f : R|X | → R. When Y is a discrete variable, the task is referred to as
classification. Regression and classification are closely related, since many classifiers
predict continuous probabilities for each class, followed by an operation that results
in a discrete label, e.g. logistic regression. A common loss function for regression is
the mean-squared error (MSE):

LMSE(y, f(x)) = (y − f(x))2 . (2.7)

It can be shown with calculus of variations that the optimal regressor for the MSE
loss is the conditional expectation of y given x:

f∗
MSE(x) = Ep(y|x)[y] . (2.8)

Here regression yields a function f(x) that provides a point estimate for y, however,
also alternative approaches to regression exist that try to model the full conditional
distribution p(y|x). A drawback of the MSE as a loss function is its sensitivity
to outliers. Therefore also various other loss functions exist that can be used in
regression problems, such as the Huber loss [16], that aims to be more robust to
outliers than MSE.
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Classification

The goal of classification is the prediction of a discrete number of class labels y ∈ Y
given an input feature vector x ∈ X . Typically, the learning algorithm produces a
function f : R|X | → R|Y|. If the number of discrete labels is two y = {0, 1}, the task
is referred to as binary classification and the mean-squared error LMSE(y, f(x)) can
be used as loss function. The resulting model approximates the optimal classifier
f∗

MSE and the conditional expectation of equation 2.8 can be written as:

f∗
MSE(x) = Ep(y|x)[y] → p(y = 1|x) = p(x|y = 1)p(y = 1)

p(x|y = 0)p(y = 0) + p(x|y = 1)p(y = 1) .

(2.9)
This expression shows that the MSE loss for binary classification results in the
Bayesian posterior probability that the label y is equal to class 1 given the feature
vector x. As will be discussed further in 3.1.1, binary classification is equivalent
to hypothesis testing in frequentist statistics. If the classification task considers
multiple classes, the binary cross-entropy loss can be generalized to the cross-entropy
loss:

Lxe(y, f(x)) = −
|Y|∑
c=1

1(y = c) log(fc(x)) (2.10)

where fc : X → R|Y| and the indicator function selects the term in the sum for
the corresponding class label y. This loss can be derived from maximizing the
posterior of the Bayes theorem using a discrete set of class labels y, and enforcing
the constraint ∑c fc(x) = 1 and fc(x) ≥ 0. The risk associated with the cross-
entropy loss function is given by:

Rxe[f ] = Ep(x,y)

−
|Y|∑
c=1

1(y = c) log fc(x)

 (2.11)

and calculus of variations can be used to show that the optimal classifier is the
conditional expectation for y given x:

f∗
x.e.,c(x) = p(y = c|x) . (2.12)

In general, the cross-entropy between two distributions can be written as:

H[p, f ] = Ep[− log f ] . (2.13)
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This is related to the Kullback-Leibler (KL) divergence that measures the degree of
dissimilarity between two probability distributions:

KL(p∥fϕ) := Ep[log p(x) − log fϕ] = H[p, fϕ] +H[p] (2.14)

where H[p] :=
∫
p(x) log p(x)dx is the entropy and independent of fϕ. The KL

divergence is equal to zero if and only if p = f . Minimizing the cross-entropy
H[p, fϕ] with respect to ϕ is equivalent to minimizing the KL divergence, since H[p]
does not depend on ϕ. It can further be shown that minimizing the empirical risk
of the cross-entropy loss function:

Remp,xe[fϕ] = − 1
n

n∑
i=1

log fϕ(x) (2.15)

is equivalent to maximum likelihood estimation for the parameters ϕ of the classifier
fϕ with likelihood function L(ϕ) = ∏n

i=1 fϕ(xi). Thus, minimizing the cross-entropy
loss yields the optimal parameters ϕ for the model fϕ. In general, any loss consist-
ing of a negative log-likelihood is a cross-entropy between the empirical distribution
defined by the training set and the probability distribution defined by the model.
Therefore, maximum likelihood estimation in the context of classification can be seen
as an attempt to minimize the dissimilarity between the empirical distribution de-
fined by the training set and the model distribution, with the degree of dissimilarity
measured by the KL divergence.

2.1.4 Unsupervised Learning

Unsupervised learning addresses the class of problems that use unlabeled training
datasets {xi}i=1,...,n, where xi ∈ X are the input features. Typically, it is assumed
that the input features (xi) are i.i.d. and are generated according to the distribution
p(x), that usually is not known. A concept related to unsupervised learning is that
of self-supervised learning, which aims to learn useful features without requiring su-
pervision labels for every sample in the input data. Common tasks for unsupervised
learning are clustering and representation learning.

The goal of clustering is to group the data x into k clusters. Some clustering al-
gorithms require the specification of k. Often, clustering uses a distance measure
d(xi, xj), which for example can be the Lp norm ∥xi − xj∥p. A popular clustering
algorithm is the k-means algorithms, where the number of clusters k is specified
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beforehand which results in sets S = {S1, . . . , Sk} that minimize the variance of
each cluster.

Another important topic in machine learning and statistics is data representation
and in particular how to construct a low-dimensional summary statistic that contains
the relevant information from high-dimensional data for a particular task. An exam-
ple of a linear dimensionality reduction is principal component analysis (PCA) [17].
A common algorithm for representation learning and nonlinear dimensionality re-
duction is the auto-encoder:

f = g ◦ e : X → X (2.16)

where e : X → Z is called the encoder and g : Z → X is called the decoder.
Typically the dimensionality of Z is smaller than the one of X , and z = e(x) yields
a compressed representation of the input, also called a bottleneck. A possible loss
function for an auto-encoder is the reconstruction error:

La.e. (x, f(x)) = ∥x− f(x)∥2 . (2.17)

After the training phase, the encoder part e(x) can be used independently of the
decoder to obtain low-dimensional representations of the data.

2.1.5 Stochastic Gradient Descent

Most machine learning algorithms are powered by the important Stochastic Gradient
Descent algorithm (SGD), which is an extension of the Gradient Descent algorithm.
The parameters θ of a parametrized model f(x, θ) and a loss function L(x, θ) can
be optimized with the Gradient Descent algorithm by performing iterative updates:

θt = θt−1 − λ∇θL(x, θ) (2.18)

where λ is a small, real-valued hyperparameter called learning rate. The algorithm
further requires an appropriate initialization of the parameters θt=0. By defining
δθ ≡ θt − θt−1 and considering a small variation of the loss function δ(L(x, θ)) the
following relation can be obtained for small λ:

δ(L(x, θ)) ≈ δθ · ∇θL(x, θ) = −λ|∇θL(x, θ)|2 (2.19)
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which shows that the loss function decreases monotonically, and the parameter val-
ues are moved in the direction of loss function minimization.

Typically in machine learning large training sets are necessary for good general-
ization, which has the drawback that the training process becomes computationally
expensive. The idea of Stochastic Gradient Descent is that the gradient is an expec-
tation, which may be approximately estimated using a small set of samples. Thus,
SGD is based on GD but replaces the exact gradient term ∇θL(x, θ) with a stochas-
tic approximation, where the loss function is evaluated using N i.i.d. sub-samples of
the total dataset, also called mini-batches:

∇θEp̂(x)L ≈ 1
N

N∑
i

∇θLi (2.20)

and Li is the loss function for data sample i. An important advantage of SGD is the
computational cost, since only a small subset of data has to be evaluated at each
update, and thus the cost per SGD update does not depend on the training set size.
Moreover, vectorization libraries and GPU architectures can be exploited.

Based on the SGD algorithm, more advanced optimization algorithms can be con-
structed. The loss is often highly sensitive to some directions in parameter space
and insensitive to others. The method of momentum can mitigate this by comput-
ing a running average of current and past gradients with a forgetting factor that
controls how far back the averaging goes. Moreover, the convergence of SGD can be
improved by making the learning rate λ depend on the individual θi, for example by
using the gradient norm squared (∇θi

L)2. The popular ADAM (Adaptive Moment
Estimation) algorithm makes use of both the momentum and gradient norm con-
cepts by computing running averages of both the gradient and the gradient norm
squared, each with a separate forgetting factor [18].

2.1.6 Boosted Decision Trees

Many different algorithms exist for supervised learning. Some of the most impor-
tant are logistic regression, the k-NN algorithm, support vector machines, random
forests, boosted decision trees, and neural networks. Due to its importance in HEP,
the boosted decision tree algorithm will be briefly described, while neural networks
are discussed in the next section.
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Boosted decision trees (BDT) are popular algorithms for supervised learning that
work particularly well with tabular data and are used in many HEP applications. A
decision tree takes a set of input features and splits the input data recursively based
on those features. Each split at a node is chosen such that it maximizes information
gain or minimizes entropy. The information gain is the difference in entropy before
and after the potential split, where the entropy is maximized for a 50/50 split and
minimized for a 1/0 split. The splits in the decision tree are created recursively until
a stop criterion is met, for example, the depth of the tree or no more information
gain. Boosting is a method of combining many weak learners, such as single deci-
sion trees, into one classifier. Usually, each tree is created iteratively and the tree’s
output h(x) is given a weight w relative to its accuracy. The ensemble output then
corresponds to the weighted sum:

ŷ(x) =
∑

t

wtht(x) . (2.21)

After an iteration each data sample is given a weight based on its misclassification.
The more often a data sample is misclassified, the more important it becomes. The
goal of the algorithm is to minimize an objective function:

O(x) =
∑

i

l(ŷi, yi) +
∑

t

Ω(ft) (2.22)

where l(ŷi, yi) is the loss function and Ω(ft) is a regularization function that penalizes
the complexity of the tth tree. There are many different ways of iteratively adding
learners to minimize a loss function. Some of the most common algorithms are
AdaBoost [19], GradientBoost [20], and XGBoost [21]. Some common tree parameters
that are usually tuned to increase accuracy and prevent overfitting are:

• the maximum depth of a tree, that specifies how tall a tree can grow,

• the number of maximum features, that specifies how many features can be
used to build a given tree, where features are randomly selected from the total
set of features,

• and the minimum number of samples per leaf, that specifies how many samples
are required to create a new leaf.

Common boosting parameters are the learning rate that specifies how much to adjust
the data weights after each iteration and the number of trees, which is the same as
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the number of iterations. Benefits of the BDTs are that the training and prediction
is fast and the results are interpretable. Moreover, they are not sensitive to the
scale of the input data, which means that the features can be a mix of categorical
and continuous data. However, BDTs are sensitive to overfitting and have limited
application in deep learning.

2.2 Deep Learning

Modern deep learning is characterized by the composition of a large number of
various types of layers that are optimized with the SGD algorithm. Training a deep
neural network with more than one layer that generalizes well can be challenging
and can require large training datasets, powerful hardware, and a suitable network
architecture.

2.2.1 Feed Forward Neural Networks

A Feed Forward Neural Network consists of L layers f = f (L) ◦ · · · ◦ f (1). The lth

layer is a function that maps a dl−1 dimensional input to a dl dimensional output:
f (l) : Rdl−1 → Rdl . For l < L, the functions f (l) are called hidden layers, and the
number of neurons dl is called the width of the hidden layer. The layers in a Feed
Forward Neural Network are defined as:

f (l)(u) = σ(l)
(
W (l)u+ b(l)

)
(2.23)

where W (l) ∈ Rdl×dl−1 is called the weight matrix, the components of the vector
b(l) ∈ Rdl are referred to as the biases, u ∈ Rdl−1 is the input from the previous
layer, W (l)u denotes a matrix-vector product, and σ(l) is a non-linear activation
function that is usually applied element-wise. The parameters of the network are
given by the set of all weights and biases, ϕ =

(
W (1), . . . ,W (L), b(1), . . . , b(L)

)
.

The activation function σ in neural networks is a nonlinear function and its choice
depends on the model architecture and application. A popular choice in deep learn-
ing is a Rectified Linear Unit (ReLU):

σ(x) =
{
x if x > 0
0 otherwise

(2.24)
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for which the computational cost is small and the gradient does not vanish. For
classification tasks the logistic function

σ(x) = 1
1 + exp(−x) (2.25)

is a popular choice for the final layer. Another important function in deep learning is
the softmax function that can be used to normalize the elements of a discrete vector
u and to interpret the output of a model as a probability over a set of n discrete
categories. It is commonly used at the last layer in multi-class classifiers. Given a
real-valued input vector u ∈ Rn, the softmax function computes the output vector
v ∈ Rn and the i-th component is given by:

vi = exp(ui)∑n
j=1 exp(uj) . (2.26)

The output vector has the property that vi ∈ (0, 1) and ∑ vi = 1. The components
of the input vector u are also called logits, due to their connection to the logistic
function used in logistic regression.

The universal approximation theorem states that a Feed Forward Network with
a single layer is sufficient to represent any function, but the layer may be impossibly
large and may fail to learn and generalize correctly [22]. Often the use of deeper
models can reduce the required number of neurons to approximate the desired func-
tion. In general, a neural network can be visualized as a graph, which is illustrated
in Fig. 2.3.

2.2.2 Neural Network Variants: CNNs, RNNs and GNNs

Many variants of neural networks have been developed that are particularly suitable
for specific data-structures and applications. Among the most important ones for
HEP applications are Convolutional Neural Networks, Recurrent Neural Networks
and Graph Neural Networks that will be briefly described in the following.

Convolutional Neural Networks (CNNs) are commonly used for image-like
data. CNNs convolute the input image u and a filter W , also referred to as “kernel”.
The parameters of the kernel are learnable and the convolution operation traverses
over the input and calculates the inner product of the kernel W with the part of
the input in the receptive field, which has the same spatial shape as the kernel and
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Figure 2.3: Sketch showing feed-forward, recurrent, and recursive neural network architec-
tures. Diamonds represent inputs and outputs, while processing units are repre-
sented with circles and squares. The figure is taken from [23].

is centered at the target pixel. Each pixel can have a vector of features associated
with it. The components of the features, indexed by c and c′, are called channels.
The convolution operation is often denoted with a ∗ and can be written as:

vc(j) = (W ∗ uc)(j) =
∑
c′

∑
i

Wc,c′(i)uc′(“j − i”) (2.27)

where “j − i” denotes the pixel index corresponding to the translation from pixel j
to i. The result of a kernel convolution is also an image, and the image for a fixed
channel index is referred to as a “feature map”.
Larger kernel sizes allow the filters to learn more complicated patterns, with the
drawback of having more model parameters. In practice, kernel sizes of 3 are very
common. A kernel size of 1 is referred to as a 1 × 1 convolution, which can be
used to perform linear operations on the input features, such as increasing or de-
creasing the number of features. This is an important technique to extract more
powerful features that can be used by the following layers, and also to compress
features. Moreover, a typical CNN architecture often uses pooling, which effectively
down-samples the image such that it can be processed at different resolutions. An
important feature of CNNs is equivariance, which means that if the input image
is shifted, then the output is also shifted by a similar amount. The CNN can be
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interpreted as a fully connected Feed Forward Network with shared weights that
maintains the equivariance property.

Recurrent Neural Networks (RNNs) are a class of neural networks that are
particularly suitable for sequential data. RNNs process sequences in such a way
that information across the entire sequences can be accumulated and the model can
operate on the previous states of the system. RNNs are commonly used for three
types of tasks:

• One-to-many tasks: this task takes a single input and generates a sequence.
An example is the generation of sequence data, such as a sentence or waveform,
given a category.

• Many-to-one tasks: this task takes a sequence and generates an output. An
example for this task is sequence-labeling.

• Many-to-many tasks: this task takes a sequence and generates a sequence
where the length of input and output sequence may be the same. An example
for this task is sequence to sequence mapping.

For sequential data where xt represents each step in a sequence with t ∈ [1, n] and
ht denotes the hidden state of the system, a simple RNN cell, which is a set of
operations at each time step, may look like:

ht = gh(Wxt + V ht−1 + b)

yt = go(Uht)
(2.28)

where W ∈ Rdh×di , V ∈ Rdh×dh , U ∈ Rdo×dh are matrices and gh and go represent
functions. The dimension of input, hidden state and output are denoted as di, dh,
and do, and b ∈ Rdh is a bias term. An RNN applies the same functions gh and go

repeatedly for each element of the sequence, which is similar to the shared weights
in a convolutional filter. In practice, since recursive networks can grow very deep,
simple recursive units encounter problems with vanishing or exploding gradients.
Long sequences can be handled using a technique known as gating, where activation
functions and transformations are applied selectively, or inputs can be ignored en-
tirely. This mitigates the exploding and vanishing gradient problem at the expense
of a more complicated recurrent unit. Examples for these units are long-short-term-
memory (LSTM) units [24], and gated recurrent units (GRU) [25]. An extension of
RNNs are bi-directional RNNs [26], that train two instead of one RNN on the input
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sequence, one on the input sequence as-is and the second on a reversed copy of the
input sequence. This can provide additional context to the network and result in
faster and more detailed learning of the problem.

Graph Neural Networks (GNNs) are a class of neural networks that are suitable
for graph-structured data. A graph consists of multiple nodes and edges between
them. Graphs are highly flexible and allow to describe many types of structured
data including images and sequences. An example for graph-structured data in HEP
is the point cloud data type, which is an unordered set of points, for example the
raw hits in a detector. Graph-based neural networks can be seen as a generalization
of many types of machine learning models such as Recurrent Neural Networks and
Convolutional Neural Network, which is studied in detail in the formulation of ge-
ometric deep learning [27]. In general, there are three types of prediction tasks on
graphs: graph-level, node-level, and edge-level [28]. In a graph-level task the goal is
to predict a single property for a whole graph. A node-level task aims at predicting
some property for each node in a graph and in an edge-level task the goal is to
predict the property or presence of edges in a graph. For a mathematical review of
GNNs it is referred to reference [29].

2.2.3 Automatic Differentiation

Optimizing the parameters of a neural network often requires the calculation of gra-
dients with respect to millions of parameters. Automatic differentiation (AD) is a
technique for efficiently and accurately evaluating derivatives of numeric functions
expressed as computer programs. It is much faster for the calculation of partial
derivatives with a large number of inputs than traditional approaches, such as sym-
bolic and numerical differentiation, and does not suffer from increasing errors when
calculating higher derivatives. Moreover, symbolic differentiation has problems to
convert a program into a single expression, and numerical differentiation suffers from
round-off errors. The term ∇θL = ∇θL(f(x, θ)), which needs to be computed in the
Stochastic Gradient Descent algorithm, requires computing partial derivatives with
respect to the parameters θi. If f is a composite model f = fn(fn−1(· · · , θn−1), θn)),
and if the functions fi are differentiable, the chain rule can be applied:

∇θi
L = ∂L(f(x, θ))

∂θi
= ∂L
∂xn

· ∂xn

∂xn−1
· · · ∂xi

∂θi
(2.29)
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Figure 2.4: Overview of backpropagation. (a) Training samples xi are passed forward, gen-
erating corresponding activations yi and an error E between the output y3 and
the target output t is computed. (b) The error is propagated backward, giving
the gradient with respect to the weights ∇wiE =

(
∂E
∂w1

, . . . , ∂E
∂w6

)
, which can

then be used in the gradient-descent algorithm. The figure is taken from [30].

where xn denotes the output of n-th composite function fn. The computation of
∇θi

L for fi requires the computation of a gradient at all preceeding functions. Ac-
cumulating the gradients of the differentiable functions in the reverse order of the
composite model is referred to as backpropagation, which is widely used to train
neural networks. An example for backpropagation is shown in Fig. 2.4.
More generally, there are two modes of AD: the forward and backward mode. For a
composite function f(x, θ), the forward mode evaluates the chain rule in the same
order of the forward evaluation of f by first computing ∂f1/∂x, then ∂f2/∂f1, and
finally ∂fn/∂fn−1. The backward mode evaluates the chain rule in the reverse di-
rection: starting from the last function ∂fn/∂fn−1, then ∂fn−1/∂fn−2, and finishing
with ∂f1/∂x. The backpropagation algorithm in equation 2.29 can be implemented
using the backward AD mode.

2.2.4 Vanishing Gradients and Regularization

As shown in equation 2.29, the gradient of the i-th function fi is a product of gra-
dients of the preceeding functions. If the gradients of these functions are very large
or very small, the magnitude can either increase or decrease exponentially with the
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number of layers, which is referred to as exploding and vanishing gradient prob-
lems that are particularly critical for deep neural networks that consist of many
composite functions. One way to mitigate an exploding gradient is to use gradient
clipping, which treats the maximum gradient as a model hyperparameter. Moreover,
many architecture designs are motivated by the vanishing and exploding gradient
problem, such as LSTM cells. Moreover, the initialization of model parameters and
normalization of input data can cause vanishing and exploding gradients. Thus, it is
often useful to center the input values around zero with a similar level of covariance
across the inputs. Since the mean and covariance of the data representations in hid-
den layers are evolving during the training phase, it is also often useful to explicitly
normalize features in between hidden layers, for example with batch normalization
that fixes the means and variances of each layer’s inputs. Another common form of
regularization for neural networks is called dropout, which randomly omits some of
the model units during training and can be interpreted as a type of model averaging.

2.3 Inference

Statistical inference refers to the problem of making inferences about a probabilistic
model given a sample of data. The two main approaches to statistical inference
are frequentist and Bayesian. Frequentist statistics interprets probability as the fre-
quency of the outcome of a repeatable experiment and, importantly, a probability
for a hypothesis or for the value of a parameter is not defined. In Bayesian statistics,
the interpretation of probability is more general and includes a degree of belief and
it is therefore possible to define a probability density function (PDF) for the true
value of a parameter. The frequentist and Bayesian approaches are fundamentally
different interpretations of probability, however, for many inference problems they
give similar numerical values. The following description of basic statistical methods
is based on the Statistics chapter of the Particle Data Group review [9].

For an experiment with data x, a hypothesis H is a statement about the proba-
bility for the data p(x|H). If the probability p(x|H) is a function of the hypothesis
H, it is called the likelihood L(H) of H. If the hypothesis is characterized by one or
more parameters θ, the likelihood function can be written as L(θ) = p(x|θ). In the
Bayesian approach, inference is based on the posterior probability for H given the
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data x, which quantifies the degree of belief that H is true given the data x. This
can be obtained from Bayes’ theorem:

p(H|x) = p(x|H)π(H)∫
p(x|H ′)π(H ′)dH ′ (2.30)

where p(x|H) is the likelihood for H. The quantity π(H) is the prior probability
for H, which represents the degree of belief for H before the measurement. The
integral in the denominator serves as a normalization factor. If H is characterized
by continuous parameters θ then the posterior probability is a PDF p(θ|x).

The statistical methods described in the following are implemented in the ROOT-
based software packages RooFit/RooStats [31, 32]. Recently also a statistics pack-
age called pyhf [33] has been developed that implements many statistical methods
based on modern tensor arithmetic provided by the popular ML frameworks, Ten-
sorFlow, PyTorch and JAX.

2.3.1 Parameter Estimation

In the frequentist approach, parameters are estimated with the maximum likelihood
method or least squares fits. For a set of measured quantities x and the likelihood
L(θ) = p(x|θ) characterized by parameters θ, the maximum likelihood (ML) estima-
tors for θ are defined as the values that give the maximum of L. To avoid numerical
problems, it is often better to work with the log-likelihood lnL, that is maximized
for the same parameter values of θ. An important property of maximum likelihood
estimators is that they are consistent, efficient and for large datasamples unbiased.
If the data consist of i.i.d. values, the joint PDF of the data sample factorizes and
the likelihood function is given by:

L(θ) =
n∏

i=1
f(xi; θ) . (2.31)

If the probability to observe n events follows a Poisson distribution with mean µ

and the independent observations x all follow f(x; θ), then the likelihood can be
written as:

L(θ) = µn

n! e
−µ

n∏
i=1

f(xi; θ) (2.32)

which is often called the extended likelihood. Under a change of parameters from θ

to η, the ML estimators θ̂ transform to η(θ̂), which means that the ML estimators
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are invariant under change of parameters. The inverse V −1 of the covariance matrix
Vij = cov

[
θ̂i, θ̂j

]
for a set of ML estimators can be estimated with the relation:

(
V̂ −1

)
ij

≥ − ∂2 lnL
∂θi∂θj

∣∣∣∣∣
θ̂

. (2.33)

For a small number of samples, this equation can result in a misestimation of the
variances. In the asymptotic limit (i.e., for large data samples) lnL is parabolic
and s times the standard deviations σi of the estimators for the parameters can be
obtained from the hypersurface defined by the parameters θ such that:

lnL(θ) = lnLmax − s2/2 (2.34)

where lnLmax is the value of lnL at the solution point. The minimum and maxi-
mum values of θi on the hypersurface define an approximate s-standard deviation
confidence interval for θi.

In Bayesian statistics, all knowledge about θ is contained in the posterior PDF
p(θ|x). The posterior can for example be summarized with the mean value and
covariance matrix.

2.3.2 Nuisance Parameters

In the presence of systematic uncertainties, the models are not perfect and the esti-
mated parameters θ can have a systematic bias. The imperfections can be addressed
by including additional parameters such that the more general model p(x|θ,ν) de-
pends on the parameters of interest θ and the nuisance parameters ν. The presence
of nuisance parameters increases the statistical uncertainties for the parameters of
interest. This happens because the estimators for the nuisance parameters and the
parameters of interest will in general be correlated, which enlarges the contour de-
fined by equation 2.34. To reduce the impact of the nuisance parameters they can
be constrained with control measurements. If the control measurements y are sta-
tistically independent from x and are described by a model py(y|ν), the joint model
for both x and y is the product of the probabilities for x and y, and the likelihood
function for the full set of parameters becomes:

L(θ,ν) = px(x|θ,ν)py(y|ν) . (2.35)
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Using all of the parameters (θ,ν) in equation 2.34 to calculate the statistical errors
for the parameters θ is equivalent to using the profile likelihood [34], which depends
only on θ. The profile likelihood is defined as:

Lp(θ) = L(θ, ̂̂ν(θ)) (2.36)

where ̂̂ν denote the profiled values of the parameters ν, defined as the values that
maximize L for the specified parameters θ.

In the Bayesian treatment of nuisance parameters one can obtain the posterior PDF
for θ by integrating over the nuisance parameters:

p(θ|x) =
∫
p(θ,ν|x)dν (2.37)

which often needs Markov Chain Monte Carlo techniques to compute the integrals.

2.3.3 Confidence Intervals

Confidence intervals are intervals constructed such that they cover the true value of
a parameter with a specified probability [9]. Frequentist intervals can be obtained
with a procedure proposed by Neyman [35]. The boundary of the interval is given
by a function of the data, that would fluctuate if the experiment was repeated many
times. The coverage probability refers to the fraction of intervals that contain the
true parameter value. Confidence intervals are constructed such that they have a
coverage probability greater than or equal to a given confidence level, regardless of
the true parameter’s value. To illustrate the procedure, a PDF f(x; θ) is considered,
where x represents the outcome of the experiment and θ is the parameter of interest
for which a confidence interval will be constructed. With a pre-defined probability
1 − α, for every value of θ a set of values x1(θ, α) and x2(θ, α) can be found such
that the coverage condition is fulfilled:

P (x1 < x < x2; θ) =
∫ x2

x1
f(x; θ)dx ≥ 1 − α . (2.38)

This is illustrated in Fig. 2.5, where a horizontal line segment [x1(θ, α), x2(θ, α)] is
drawn for several values of θ. The union of the intervals for all values of θ, indicated
in the figure as D(α), is referred to as a confidence belt. When an experiment is
performed to measure x and a value x0 is obtained, one draws a vertical line through
x0. The confidence interval for θ is then defined as the set of all values of θ for which
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Figure 2.5: Construction of the confidence belt. The figure is taken from [9].

the corresponding line segment [x1(θ, α), x2(θ, α)] is intercepted by this vertical line.
The confidence interval [θ1, θ2], marked in red in Fig. 2.5, then has a confidence level
(CL) equal to 1 − α.

If the experiment is repeated a large number of times, the interval [θ1, θ2] covers
the fixed value θ in a fraction 1 − α of the experiments. The values of x1 and x2

are not determined uniquely by the condition of coverage. Central intervals can
be chosen such that the probabilities to find x below x1 and above x2 are each
α/2, while for upper limits the lower bound can be set to zero and the upper to α,
adapting equation 2.38. Due to the freedom to decide which values to include in the
Neyman construction, also likelihood ratio ordering can be used to determine which
values of x should be included in the confidence belt. The test statistic based on
the likelihood ratio is defined as:

λ(θ) = f(x; θ)
f(x; θ̂)

(2.39)

where θ̂ is the value of the parameter which maximizes f(x; θ) in the physical region.
This results in the Feldman-Cousins intervals [36]. The Feldman-Cousins intervals
have the advantage that they do not exclude parameter values to which one has
little sensitivity and the prescription determines whether the interval is one- or two-
sided such that the coverage probability is preserved. If the model contains nuisance
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parameters ν, they can be incorporated by profiling the likelihood as discussed in
the section above.

An important example of constructing a confidence interval is when the data consist
of random variables that follow a Gaussian distribution. In this case, the shape
of the likelihood function around the maximum likelihood estimator θ̂ can be used
to approximate confidence intervals. Using Wilks’ theorem [37], it can be shown
that the confidence region for θ, that covers the true values with a certain, fixed
probability, can be determined using the following relation:

lnL(θ) ≥ lnLmax − ∆ lnL (2.40)

where ∆ lnL depends on the number of parameter dimensions and the desired cov-
erage. For example, the values of θ inside the 1-σ confidence region and for a one
dimensional parameter, are given by ∆ lnL = 0.5.

In the Bayesian approach, the Bayesian posterior probability can be used to de-
termine regions with a given probability of containing the true value of a parameter
of interest, however evaluating the posterior is often computationally expensive.

2.3.4 Hypothesis Tests

Frequentist hypothesis tests determine whether a hypothesis is accepted or rejected
depending on the outcome of an experiment. A frequentist test of a hypothesis H0

is a rule that states for which data x the hypothesis is rejected. A critical region, w,
is defined such that the probability to find x under H0 in w is smaller than a given
probability α, referred to as the significance level of the test: P (x ∈ w|H0) ≤ α. The
hypothesis H0 is rejected if the data is observed in the critical region. As will be
discussed in 3.1.1, signal-versus-background classification corresponds to hypothesis
testing. The choice of the critical region is not unique and should take into account
the probabilities for the data predicted by an alternative hypothesis H1. Rejecting
H0 if it is true is called a type-I error, while not rejecting H0 if an alternative H1 is
true is called a type-II error. The probability for a type-I error is by construction no
greater than α, while the probability for a type-II error is given by β = P (x /∈ w|H1).
The quantity 1 − β is referred to as the power of the test of H0 with respect to the
alternative H1. A sketch of a hypothesis test is shown in Fig. 2.6. The important
Neyman–Pearson lemma states that the power of a test of H0 with respect to the
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Figure 2.6: Sketch of a hypothesis test for the null hypothesis H0 and the alternative hy-
pothesis H1. The figure is taken from [38].

alternative H1 can be maximized by choosing the critical region w such that for all
data values x inside w, the likelihood ratio

λ(x) = f(x|H1)
f(x|H0) (2.41)

is greater than or equal to a given constant cα, and outside the critical region one has
λ(x) < cα. The value of cα depends on the significance level α of the test [9]. The
Neyman–Pearson lemma is equivalent to the statement that the likelihood ratio is
the optimal test statistic. Type-I and type-II errors are also known as false positives
and false negatives and the receiver operating characteristic (ROC) curve, that is a
popular metric in machine learning, can be obtained by plotting the true positive
rate against the false positive rate at various thresholds cα.

To quantify the level of agreement between the data and a hypothesis without con-
sidering an alternative hypothesis, one can define a statistic t whose value reflects
the level of agreement between the data and the hypothesis. The hypothesis H0

will then determine the PDF f(t|H0) for the statistic. The p-value quantifies the
significance of a discrepancy between the data and H0. If t is defined such that large
values correspond to a poor agreement with the hypothesis, then the p-value can be
written as:

p =
∫ ∞

tobs
f(t|H0)dt (2.42)
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where tobs is the experimentally observed value of the statistic. A hypothesis test
can be formulated by defining the critical region such that that obtaining a p-value
p ≤ α implies that the data outcome was in the critical region. When searching for
a new phenomenon in HEP, one often tries to reject the hypothesis H0 that the data
is consistent with the Standard Model. If the p-value of H0 is sufficiently low, then
one accepts that some alternative hypothesis is true. Often the p-value is converted
into an equivalent significance Z, defined such that a Z standard deviation upward
fluctuation of a Gaussian random variable would have an upper tail area equal to p:

Z = Φ−1(1 − p) (2.43)

where Φ is the cumulative distribution of the standard Gaussian, and Φ−1 is its
inverse function. In HEP usually the level of significance for a discovery is Z = 5,
corresponding to a p-value of 2.87 × 10−7. However, in general the actual degree of
belief that a new particle is discovered will depend on other factors as well, e.g. that
the analyzers followed best scientific practices.

To find a p-value for θ when the model also contains nuisance parameters ν, a
test statistic qθ can be constructed such that larger values of it correspond to in-
creasing incompatibility between the data and the hypothesis. For an observed value
of the statistic qθ,obs, the p-value of θ is given by:

pθ(ν) =
∫ ∞

qθ,obs
f(qθ|θ,ν)dqθ . (2.44)

In the frequentist approach, θ is rejected only if the p-value is less than α for all
possible values of the nuisance parameters. This requires to define a test statistic
qθ such that its distribution f(qθ|θ,ν) is independent of the nuisance parameters.
While exact independence is only possible in special cases, it can be achieved ap-
proximately with the profile likelihood ratio. This is given by the profile likelihood
divided by the value of the likelihood evaluated with the ML estimators θ̂ and ν̂:

λp(θ) = L(θ, ν̂(θ))
L(θ̂, ν̂)

. (2.45)

Wilks’ theorem [37] can be used to show that in the asymptotic limit the distribution
of −2 lnλp(θ) approaches a χ2 distribution independent of the values of the nuisance
parameters ν.
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In the Bayesian approach, all knowledge about the model is contained in its posterior
probability. A challenge in Bayesian hypothesis tests is the definition of the prior
probability, since the posterior p(H|x) is proportional to the prior probability p(H),
and often there is no consensus about the prior probabilities, e.g. for the existence
of a new particle. However, it is possible to construct a quantity called the Bayes
factor [39], which quantifies the degree to which the data prefers one hypothesis over
another and is independent of their prior probabilities.

2.4 Applications in HEP

Machine learning has many different applications in particle physics. Some of the
diverse areas where modern machine learning algorithms are used in HEP include
event classification, tracking, triggering, object reconstruction, particle identifica-
tion and calibration, fast simulation, as well as detector monitoring and production
workflows. A more complete overview over the various applications in HEP can be
found in [40]. In the following some selected examples for machine learning applica-
tions in HEP are discussed, based on the reviews in [23] and [41]. For a collection
of relevant literature it is referred to [42].

2.4.1 Event Selection

One of the main applications of machine learning in high energy physics is supervised
learning for the selection of signal events. Applying a selection on the classifier score
often improves the signal efficiency and reduces the background, which overall im-
proves the sensitivity of the measurement. It has been demonstrated that algorithms
trained with physics-inspired high-level features are outperformed by deep networks
based on features to which less pre-processing has been applied (low-level features).
In the left panel of Fig. 2.7 the performance of deep networks in signal-background
classification is compared to shallow networks with low- and high-level features [43].
The study demonstrates that deep networks with only low-level features outperform
shallow networks that rely only on physics-inspired features such as reconstructed
invariant masses. This suggests that by using only high-level features some of the
information is lost. Feature engineering generally improves the performance of shal-
low neural networks and BDTs. However, with the rise of deep learning this is often
no longer necessary and rather limits performance compared to working with the
low-level features. By training all layers of a deep neural network simultaneously
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Figure 2.7: Left panel: comparison of the performance in signal-background classification
between deep neural networks (DN), and shallow networks (NN) with low- and
high-level features [43]. Right panel: the BDT-score distribution to separate
signal and background for a search for the Higgs boson decaying to a tau-lepton
pair by the ATLAS experiment is shown for one kinematic region [44].

one can interpret the intermediate layers as learned representations of the data, such
that the neural network automatically engineers useful features.

Besides training machine learning algorithms in order to apply selections on the
output score of the classifier, a common use case of supervised classification is the
construction of low-dimensional event summaries, which allow to perform statis-
tical inference on the parameters of interest. The learnt summary statistics can
efficiently combine high-dimensional information from each event into one or a few
variables, which may be used as the basis of statistical inference. These techniques
improved the sensitivity of the measurements and were used in various analysis,
among them the discovery of the Higgs boson [41]. An example for such an analysis
is the measurement of the Higgs boson decaying into tau-leptons by the ATLAS
collaboration [44]. In this analysis the data sample is divided into six kinematic
regions. A BDT was trained to separate signal and background in each region using
12 discriminating input features. An example BDT output distribution obtained in
one region is displayed in the right panel of Fig. 2.7. The combined analysis of all
six regions provided strong evidence that the Higgs boson couples to tau-leptons,
with about 40% better sensitivity achieved through the use of a BDT algorithm.
The simulation that was used in this work was the basis of the 2014 Kaggle Higgs

30



2 Machine Learning and Statistical Inference at the LHC

Machine Learning Challenge and now is often used as a benchmark for novel al-
gorithms. Moreover, multi-class classification has become a popular technique to
define analysis categories.

2.4.2 Jet Identification

Machine learning has also been applied to a wide range of jet classification problems,
in order to identify jets from heavy or light quarks, gluons, and W , Z, and H bosons.
The application of machine learning improved the identification by using the low-

Figure 2.8: Sketch of the CMS DeepJet architecture that makes use of Recurrent Neural
Networks. The figure is taken from [45].

level particle features within a jet. Since jets typically contain between 10 and 50
particles, the number of features is different for each jet. RNNs have proven to be
highly successful at processing long sequences of data and thus are particularly suit-
able for jet classification problems. Applying an RNN to jet classification requires
the particles in the jet to be ordered sequentially, such as sorting them according
to the value of the transverse momentum. A set of features for each particle can
then be provided to train the RNN to discriminate jets originating from different
sources. Both ATLAS and CMS have developed flavor-tagging neural networks that
rely on individual particle features. The ATLAS recurrent-network-based approach
combined with traditional high-level features reduces the background by roughly
a factor of two [46]. The CMS DeepJet neural network [45], shown in Fig. 2.8,
uses three separate branches to process charged candidates, neutral candidates and
secondary vertices. The algorithm applies 1 × 1 convolutional layers to perform
automatic feature engineering for the different classes of jet constituents. The infor-
mation for each sequence of constituents is combined with three LSTM layers. The
full jet information is then combined using a fully connected layer. The DeepJet
algorithm outperformed all previous flavour tagging approaches developed by the
CMS collaboration. The newest generation of flavour tagging algorithms is based
on GNNs and further improves the performance of jet identification [47, 48].
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2.4.3 Design Optimization of Detectors

The rise of deep learning also enables ambitious new programs to optimize complete
workflows, such as the end-to-end optimization of detectors. Optimizing the design
of detectors is a challenging task due to the complex interplay of physical processes
with the detector material and the large choice of detector elements and geometries.
However, as will be discussed in more detail in Chapter 4, so far the LHC has not
detected any new physics, and therefore making optimal use of financial resources
to build new detectors might become crucial for the progress of high energy physics
in the future. The MODE collaboration [6] (an acronym for Machine-learning Op-
timized Design of Experiments) aims at developing tools based on deep neural net-

Figure 2.9: Conceptual layout of an optimization pipeline for a muon radiography appara-
tus [6].

works and modern automatic differentiation techniques to implement a full modelling
of all elements of the experimental design, achieving end-to-end optimization of the
design of instruments via a fully differentiable pipeline. The objective function for
this task can for example be defined as the expected precision of a measurement, and
may be represented as a combination of performance and cost considerations that
are balanced within reasonable limitations. Neural networks are naturally suitable
for this task, since they can be used as surrogates for simulators to enable gradient-
based optimization in cases where a simulator is non-differentiable. An example for
an optimization pipeline for a muon radiography apparatus is shown in Fig. 2.9.
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Cosmic rays are fed to a fast simulation of detection apparatus and scanned volume.
The simulation of multiple scattering, particle propagation, and resulting electronic
signals in the detector can be directly produced by a differentiable program. Alter-
natively, a differentiable module based on deep generative models or local generative
surrogates can be used. A generation and validation loop keeps the model appro-
priate as the layout parameters are modified during the optimization task. After
applying a reconstruction step, the output is used to compute a loss function that
describes as closely as possible the real goal of the system. Exploratory studies have
shown that very large gains in performance are potentially achievable even for very
simple apparata [8, 49].
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As discussed in Section 2.4, classification and regression models have become very
popular in HEP to construct powerful summary statistics that are used for infer-
ence. However, as will be discussed in more detail in the following sections, neither
the standard cross-entropy loss, nor the standard measures of performance for the
learning task are aligned with the inference goal when the simulated events depend
on nuisance parameters. The presence of nuisance parameters then causes a reduc-
tion of the statistical power of the summary statistics during inference. In recent
years, a novel approach, called inferno [11], an acronym that stands for Inference-
Aware Neural Optimization, has been developed to construct machine learning based
summary statistics that are optimal for the specific analysis goal. In the following,
event classification will be reviewed from a statistical perspective. Subsequently,
an overview over existing approaches to deal with nuisance parameters in machine
learning will be given. In the last section the inferno algorithm and its perfor-
mance on a synthetic example will be reviewed. The following sections are based on
the review in [10], the thesis [50], and the Statistics and Machine Learning chapters
of the Physics Data Group review [9] and are the main references for the material
presented below.

3.1 Event Classification

Event classification in HEP is commonly based on the training of probabilistic clas-
sifiers with samples of different processes obtained from MC simulations. In the
following, the relation between probabilistic classifiers and probability density ra-
tios will be reviewed, as well as the limitations of using probabilistic classifiers to
construct summary statistics.
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3.1.1 Classification and Density Ratios

In Chapter 2.1.3 it has been shown that a probabilistic classifier trained with the
cross-entropy loss Lxe(y, f(x)) will approximate the optimal classifier f∗. For binary
classification with labels y = {0, 1} this is equal to the Bayesian posterior probability
p(y = 1|x) that the label y equals 1 given the features x:

f∗
BCE(x) = p(x|y = 1)p(y = 1)

p(x|y = 0)p(y = 0) + p(x|y = 1)p(y = 1) . (3.1)

The prior distributions p(y) on the labels of the classes represent the frequency
in the training dataset. For binary classification problems, it is common to use a
balanced training dataset with p(y = 0) = p(y = 1) = 1

2 . The true p′(y = 1) in the
experimental data can be very small if the true signal is small, or even zero in the
case of a hypothetical particle. If p′(y) and p(y) are known, the posterior p(y|x) can
be re-calibrated from one prior to another with the Bayes theorem. An example of a
re-calibration is the correspondence of binary classification to frequentist hypothesis
tests, where according to the Neyman-Pearson lemma the optimal classifier is given
by the likelihood-ratio:

f∗
N.P. (x) = p(x|y = 1)

p(x|y = 0) (3.2)

which does not depend on the prior probabilities p′(y = 0) and p′(y = 1).
With the Bayes theorem it can be proven that both functions are related by a
monotonic transformation:

f∗
N.P. (x) = p(y = 0)

p(y = 1)
f∗

BCE(x)
1 − f∗

BCE(x) (3.3)

which is also referred to as the likelihood-ratio trick. The tradeoff of type-I and
type-II error is not affected by this transformation, therefore the ROC curve for
fN.P. and fBCE are identical and do not depend on the prior probabilities p(y). By
training a probabilistic classification model with binary cross-entropy, the likelihood
ratio r(x) = p(x|y = 1)/p(x|y = 0) can be approximated by:

f∗
BCE(x)

1 − f∗
BCE(x) = p(x|y = 1)

p(x|y = 0)
p(y = 1)
p(y = 0) = r(x)p(y = 1)

p(y = 0) (3.4)

where the equality is only true for the optimal Bayes classifier. This relation can also
be obtained for other approaches that minimize continuous relaxations of the zero-
one loss and can be generalised for the multi-class case. Interpreting probabilistic
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classifiers as approximations for density ratios allows to study the limitations of
traditional machine learning approaches.

3.1.2 Sufficient Summary Statistics

A summary statistic for a set of n i.i.d. events D = {x0, . . . , xn}, where each x ∈
X ⊆ Rd is a d-dimensional representation of the event information, is a function of
the data D that reduces the dimensionality from n× d to n× b:

s(x) : X ⊆ Rd −→ Y ⊆ Rb (3.5)

where X ⊆ Rd is the original feature space, and Y ⊆ Rb the new low-dimensional
space. Since the generating probability distribution p(x|θ) is in general not known
analytically and has to be estimated from a finite number of simulated samples,
only summary statistics that are as low-dimensional as possible and approximately
preserve the information are relevant for inference. In HEP applications, often sim-
ple sample-wise statistics, such as histograms, are constructed from s(x), that are
then used to construct Poisson-count likelihoods. The effect of nuisance parameters
is modeled by producing sets of simulations with different values of the nuisance
parameters and making use of interpolation algorithms.

The Fisher–Neyman factorization theorem states that a summary statistic for a
set of n i.i.d. observations x is sufficient with respect to a statistical model and a set
of parameters θ if the generating probability distribution function of the data p(x|θ)
can be factorized as:

p(x|θ) = q(x)r(s(x)|θ) (3.6)

where q(x) is a non-negative function that does not depend on the parameters θ and
r(x) is a non-negative function that depends on θ and depends on the data x only
through the summary statistic s(x). A sufficient statistic contains all information
about the relevant model parameters θ, and no information can be added by any
complementary statistic.

For a two-component mixture model it can be shown analytically that an approxi-
mately sufficient summary statistic can be obtained by training a probabilistic clas-
sifier. The two-component mixture model forms the basis for both cross-section
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measurements and new physics searches and thus is of particular importance in
HEP. In the absence of nuisance parameters, it can be written as:

p(x|µ) = (1 − µ)pb(x) + µps(x) (3.7)

where µ is a parameter corresponding to the signal mixture fraction and ps and pb

are the PDFs for the signal and background distribution. This can be rewritten as:

p(x|µ) = pb(x)
(

1 − µ+ µ
ps(x)
pb(x)

)
(3.8)

from which can be proven that the density ratio

ss/b(x) = ps(x)
pb(x) (3.9)

is a sufficient summary statistic for the mixture coefficient µ, according to the Fisher-
Neyman factorisation criterion defined in equation 3.6. It can be shown that any
bijective function of a sufficient summary statistic is also a sufficient summary statis-
tic, thus the conditional probability

ss/(s+b)(x) = ps(x)
ps(x) + pb(x) (3.10)

is a sufficient summary statistic as well. This quantity can be approximated by
training a balanced probabilistic classifier as defined in equation 3.1:

f∗
BCE(x) = p(x|y = 1)

p(x|y = 0) + p(x|y = 1) (3.11)

with the additional advantage that the output score of this classifier is bounded
between zero and one. The fact that signal-versus-background classification allows
to obtain an approximately sufficient summary statistic for the mixture model and
mixture fraction µ explains why these techniques are frequently used in HEP.

3.1.3 Why Is Classification Not Enough?

In the previous section, signal-versus-background classification was reviewed from
a statistical perspective. It has been shown that training a probabilistic classifier
approximates the density ratio r(x) = p(x|y = 1)/p(x|y = 0) between the signal and
background generating distributions. In the case when the generating probability
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distributions of the data are not fully specified, but depend on additional unknown
nuisance parameters θ, a probabilistic classifier trained to distinguish samples from
the data-generating distributions p(x|θ, y = 1) and p(x|θ, y = 0) will approximate a
function of the density ratio

r(x; θ) = p(x|θ, y = 1)
p(x|θ, y = 0) (3.12)

that will itself depend on the actual value of the parameters θ and the Neyman-
Pearson lemma does not hold any more. Thus, in the presence of nuisance pa-
rameters, even an optimal probabilistic classifier is not guaranteed to provide a
transformation that is optimal for inference. Moreover, if it is assumed that the
true value of the parameters is fixed but unknown, as usually done in frequentist
inference in HEP, then the optimal classifier is not uniquely defined. Training a clas-
sifier with simulated data generated for a specific value of the nuisance parameters θ
might not be optimal for the classification of experimental data that correspond to
the unknown true parameter values θtrue. This is the main issue when probabilistic
classifiers are used to construct summary statistics for inference. In practice, clas-
sifiers can be trained for the most probable value of the nuisance parameters and
their effect can be accounted for during inference. However, with this approach the
statistical power for inference can degrade even if the classifier is optimal.

The limitations of classification for statistical inference can also be formulated based
on the sufficiency conditions for summary statistics, as defined by the Fisher-Neyman
factorisation criterion. If the mixture model depends on additional nuisance param-
eters θ it can be written as:

p(x|µ, θ) = pb(x|θ)
(

1 − µ+ µ
ps(x|θ)
pb(x|θ)

)
(3.13)

and it can be seen that the Fisher-Neyman factorisation criterion from equation 3.6
is not fulfilled any more, since pb and ps depend on the nuisance parameters θ. Thus,
even a Bayes optimal probabilistic classifier does not provide a sufficient summary
statistics and useful information for inference might be lost if a low-dimensional
classification-based summary statistic is used.
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3.2 Nuisance Parameters in Machine Learning

There is a growing interest in the development of new techniques to mitigate the
effect of nuisance parameters in inference problems. Recent work has shown that
some of the innovations in the field of machine learning can be used to deal more
closely with the statistical inference objective of HEP analyses and several methods
have been developed. In the following, the various existing approaches are summa-
rized based on the review in [10], which is also recommended for a more detailed
reading.

3.2.1 Nuisance-Parametrized Models

The most direct way to account for the effect of nuisance parameters in the construc-
tion of a summary statistic is to include them in the physical model by parametrizing
their effect on the event features. For simple problems it is sometimes possible to
develop an analytical solution. An example in HEP is the decorrelation of the vari-
able τ21 that is used to study the sub-structure in hadronic jets [51]. The τ21 variable
has a dependence on the jet pT, thus applying a selection on this variable biases the
distribution of the reconstructed jet mass. It is possible to remove this bias almost
entirely by parametrizing the dependence of τ21 on the jet pT [52].

If experimental data is available that is informative of the value of the nuisance
parameters it sometimes can be exploited in the construction of summary statistics
with probabilistic classifiers. This was first studied by Neal [53], who addressed the
problem of how the construction of a sufficient summary for the signal fraction θ

with a binary classifier is affected by unknown parameters α, when these modify
the PDF of the signal and background events. The proposed solution is the con-
struction of low-dimensional summary statistics for both the nuisance parameters α
and the observable event features x with a probabilistic classifier. If suitable para-
metric models of the summaries can be constructed, they can be used for inference,
exploiting the informative power of the data to constrain the nuisance parameters.
Approximate sufficiency can be reached, if the parametrizations do not cause a sig-
nificant loss of information.

In case no knowledge or constraints on a nuisance parameter is available, some-
times it is possible to parametrize its effect on the observations. An example of
this situation is the search for a new particle whose true mass Mtrue is unknown.
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A classifier trained with signal events simulated assuming a mass M1 = Mtrue + α,
suffers from a progressive degradation in performance as |α| increases. A possible
solution [54, 55] is to independently train a set of classifiers using data simulated
with different mass values for the unknown signal. However, this approach is still
sub-optimal, since each classifier is ignorant about the information processed by the
other ones. A way to avoid this limitation is to parametrize the effect of the nuisance
parameter in the construction of the classifier [56] by including the unknown value
of Mtrue in the set of features of the signal events when training the classifier. The
advantage of this procedure is that an interpolated classification score for events
with mass values never seen during training can be obtained.

3.2.2 Feature Decorrelation and Penalized Methods

If a direct parametrization of the effect of nuisance parameters is not feasible, sev-
eral alternative approaches exist. In the context of the search for new physics,
the ATLAS and CMS experiments have developed methods to increase the signal
purity without modifying the shape of the distribution of the reconstructed mass,
Mrec. The goal of these methods is to avoid that a selection on the output of a
classifier biases the background towards displaying a ”signal-like” mass distribu-
tion, which enhances systematic uncertainties on the estimate of the signal fraction
and hinders the application of bump-hunting techniques. The technique to reduce
the dependence of a classification score on the mass is called planning [57, 58]. It
is implemented by pre-selecting training samples for signal and background such
that they have the same marginal PDF in the variable one aims to decorrelate,
pS(Mrec)sel = pB(Mrec)sel. This can be implemented by weighting each event i by
a mass-dependent value w(Mrec,i):

w(Mrec,i) =
{

1/pS(Mrec,i)train , i ∈ S

1/pB(Mrec,i)train , i ∈ B

}
. (3.14)

The weights are applied in the loss function of the classifier in the training stage,
but are not used during the validation and testing stage. It has been shown that
planning can significantly reduce the correlation between the classifier output and
the planed variable in specific situations. However, the effectiveness of this approach
is limited when the classifier learns the value of the planed variable indirectly from
other event features.
In [57] it was also shown that a decorrelation of the output of a neural network classi-
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fier from the mass of boosted hadronic jets can be possible by feature pre-processing
based on principal component analysis.

If a decorrelation of the classifier output from a variable of interest is not feasi-
ble due to other informative event features, a different type of solutions tries to
make the classifier score independent from variations in the value of the nuisance
parameters by implementing a robust optimization objective for classification. The
first algorithm that designed such an objective is uBoost [59], which relies on boosted
decision trees to improve signal purity. The method is based on the AdaBoost algo-
rithm of increasing the weight of training events misclassified by the decision tree in
the previous iteration. It augments the algorithm by modifying the weight of signal
events depending on the disuniformity of the selection. The uniformity weight is
defined as the inverse of the density of signal in the proximity of the event, and is
computed with the k-NN algorithm. Applied on a Dalitz analysis [59], the method
was shown to achieve uniformity with almost no degradation in classification perfor-
mance. Several other approaches that try to achieve a uniform selection efficiency
of a BDT classifier were introduced in [60] and it was shown that they outperform
uBoost in specific situations.

The robustness to nuisance parameters has also been addressed by adding suit-
able regularizer terms to the loss function of neural network classifiers. In [61] a
measure is introduced that quantifies to which extend two sets of features x and
y are independent. The proposed measure is called DisCo (”distance correlation”)
and is bound between 0 and 1, where a value of 0 indicates that x and y are fully
independent. The measure is differentiable and and its value can be added as a
penalty term to the loss of the classifier. A hyperparameter λ allows to control the
amount of interdependence of x and y when minimizing the penalized loss.
A similar approach is taken in [62] where the authors aim at decorrelating a neural
network classifier output from nuisance parameters based on an approximately dif-
ferentiable histogram. The loss of the classifier is penalized by a term derived from
the difference in the smoothed bin counts of the nominal output and its nuisance-
varied value, which decorrelates the classifier output from the nuisance parameters.

3.2.3 Adversary Losses

Another possible approach is the use of adversarial techniques to find the best com-
promise between signal discrimination and impact of nuisances. The main idea of
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adversarial setups are two independent neural networks that compete with each
other in the search for the optimal working point in a constrained classification
problem. The global loss function is the combination of a classification loss and a
penalization loss that tries to learn information about the nuisance parameter from
the output of the classifier. Adversarial neural networks in HEP problems were first
studied by Louppe, Kagan and Cranmer [63], who introduced adversarial techniques
to make the classification score pivotal, such that its distribution is independent on
the value of nuisance parameters. If the nuisance parameters affect the shape of
the decision boundary, a hyperparameter λ multiplying the adversary loss can be
introduced. Louppe et al. study this approach both with a synthetic example and a
HEP use case where the nuisance parameter Z is categorical, describing the absence
(Z = 0) or presence (Z = 1) of pile-up in LHC collision data. In the case of Z = 1
they show how a compromise between the classification and the pivotal tasks can
be obtained by tuning the parameter λ.

The adversarial technique has been applied to the discrimination of the decay of
boosted heavy particles [64] where background systematics affect the inference of
the neural network based selection. In [65] the effectiveness of the adversarial train-
ing to alternatives based on data augmentation and tangent propagation is studied
based on the Higgs Kaggle Challenge [66]. Another study in [67] examines adversar-
ial classification as a preliminary step to reduce the dependence of an autoencoder
task on systematic uncertainties. Moreover, the study in [68] addresses the problem
of theoretical uncertainties with adversarial networks. While adversarial methods
were shown to achieve approximate independence of the classifier output from nui-
sance parameters, there is no guarantee that the equilibrium point between the two
competing tasks is optimal for the inference goal of the analysis.

3.2.4 Semi-Supervised Approaches

An alternative approach to deal with nuisance parameters is exploiting experimental
data to complement or substitute simulated samples in the model training. This aims
at minimizing the gap between the inference performance of real and simulated data.
The approach is based on novel ideas from weak supervision and semi-supervised
learning and has the advantage that a classifier could be trained using data from
the experiment. Dery et al. [69] proposed a method, referred to as learning from
label proportions (LLP), where a neural network is trained only based on class pro-
portions. The method is applied to a quark-versus-gluon tagging problem, and the
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authors find that the performance is similar to that of a fully supervised classifier,
while being more robust to mismodelled input variables. However, this approach
requires knowledge of the label proportions in the mixed samples, which might be
unknown during the training stage.

To overcome this limitation, a method called classification without labels (CWoLA)
was developed by Metodiev et al. [70]. The main idea of this approach is to train a
probabilistic classifier to distinguish between two mixed samples with different, and
possibly unknown, component fractions. This simplifies the LLP approach because
it is based on a standard classification loss, where the label is not the observation
class but an identifier of the mixed sample it belongs to. The authors show that the
optimal binary classifier to distinguish samples from each of the mixed samples is a
function of the density ratio between the components. Both, CWoLA as well as LLP
are tested with practical examples such as a quark-versus-gluon discrimination prob-
lems. Two other studies have applied variations of CWoLA to a new-physics search
for gluino production [71] and the quark-versus-gluon discrimination problem [72].
However, while weak supervision can in principle be useful to build classifiers that
are more robust to certain types of mismodelling, existing practical approaches do
not fully address the issue of dealing with nuisance parameters [10].

3.2.5 Bayesian Neural Networks

Recently, there have also been proposals to use Bayesian Neural Networks for the es-
timation of uncertainties. Bayesian Neural Networks allow to estimate uncertainties
of neural networks by treating their weights as distributions, such that the network
output is a distribution instead of a fixed value. The uncertainties of a network can
then be estimated by combining multiple measurements of the same test data to cal-
culate the mean prediction and its standard deviation. Recently, several attempts
have been made to apply Bayesian Neural Networks to HEP problems. In [73] the
authors show that Bayesian Neural Networks can be used in the event reconstruction
of collider events to improve the prediction accuracy and uncertainties. The authors
in [74] demonstrate how to treat systematic uncertainties with the use of Bayesian
Networks for a synthetic top tagger example that uses jet images. Building on this
work, in [75] a Deep Bayesian Neural Network is used in a regression task to treat
systematic uncertainties on the momenta of boosted top quarks forming fat jets.
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3.2.6 Simulation Based Inference

The goal of simulation-based inference is to extend statistical procedures to the sit-
uation where one does not know the explicit likelihood p(x|θ), but has access to a
simulator that defines the likelihood implicitly [76]. The key idea of the concept
is the training of a classifier using supervised learning to discriminate two sets of
data, that both come from the simulator and are generated for different parameter
points θ0 and θ1. The classifier output function can be converted into an approxi-
mation of the likelihood ratio r(x|θ0, θ1) = p(x|θ0)/p(x|θ1) between θ0 and θ1. The
approach is amortized, which means that after a simulation and training phase,
the surrogates can be evaluated efficiently for arbitrary data and parameter points.
The use of neural networks eliminates the requirement of low-dimensional summary

Figure 3.1: Sketch of a typical HEP analysis. Simulation based inference methods propose to
obtain additional information from the simulator that can be used to train neural
networks to efficiently approximate arbitrary likelihood ratios for inference. The
figure is taken from [77].

statistics, because the model learns the structures in high-dimensional data, which
potentially improves the quality of inference. With the drawback of a more complex
training procedure, this technique is the first general solution for dealing with nui-
sance parameters when using machine learning for HEP inference. In the original
paper [78], Cranmer et al. introduced a generic framework for inference using cali-
brated parametrized classifiers referred to as carl.
Brehmer et al. further extended the approach of parametrized classifiers to better
exploit the latent-space structure of generative models from complex scientific simu-
lators [77, 79, 80, 81]. The authors show that in some situations, that are common for
HEP analysis, it is possible to extract additional quantities from the simulator that
characterize the likelihood of the latent process. A sketch of a typical HEP analysis
is shown in Fig. 3.1, where the simulator is a Monte Carlo event generator. The ad-
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ditional information can be used to augment the training data for surrogate models.
This often allows to solve the supervised learning task more efficiently, which can
improve the sample efficiency in the inference task. In some cases, one can augment
the training dataset to include the joint likelihood-ratio

r(xi, zi|θ0, θ1) := p(xi, zi|θ0)/p(xi, zi|θ1) (3.15)

where zi are unobserved latent variables from the simulator. This can be used
to reduce the variance of the loss function. While the marginal likelihood p(x|θ)
is intractable due to the high-dimensional integral over the latent space, the joint
likelihood is often tractable and therefore it is often possible to augment the training
dataset with the joint score

t(xi, zi|θ0) := ∇θ log p(xi, zi|θ)|θ0
. (3.16)

Based on this additional information, Brehmer et al. developed several new methods
that extend carl to more efficiently approximate the parametrized likelihood ra-
tio r(x|θ0, θ1) and they demonstrate the effectiveness in several example problems.
Moreover, they developed a new class of methods referred to as sally using the
regressed score approximation t̂(x|θ0) at a single reference parameter point θ0 to
construct a summary statistic. The score t̂ defines an optimal summary statistic
in the neighborhood of θ, and thus is useful for inference. To further reduce the
dimensionality if the number of parameters is large, the authors propose another
technique, referred to as sallino.
A challenge for the application of these methods in HEP, particularly for the meth-
ods that use augmented data from the simulator, is to approximate or model the
effect of all relevant nuisance parameters in the joint likelihood ratio and score. To
facilitate this, Brehmer et al. developed a software library madminer [82] to simplify
the application of these techniques to LHC measurements.

3.3 INFERNO

In the previous sections it has been shown that classification-based summary statis-
tics cannot easily account for the effects of nuisance parameters and their power for
statistical tests is reduced when nuisance parameters are taken into account dur-
ing inference. The simulation-based inference techniques, that propose a general
solution for dealing with nuisance parameters in machine learning, do not construct
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summary statistics, but aim at directly addressing the inference problem. While
this approach has great potential, it is quite different from the typical approaches in
HEP. Therefore, adapting it in large experimental collaborations may be challeng-
ing. In recent years complementary inference-aware techniques have been developed,
that aim at constructing machine-learning based summary statistics that are better
aligned with the statistical inference goal of HEP analysis and can be used in place
of traditional histograms. A generic technique in this category is inferno [11]. In
this work the authors P. De Castro and T. Dorigo show how non-linear summary
statistics can be constructed by minimizing inference-motivated losses via stochastic
gradient descent. The algorithm is studied with a synthetic example, inspired by a
typical cross-section measurement. The proposed algorithm can be used to directly
minimize the approximated variance of the parameter of interest, fully accounting
for the effect of relevant nuisance parameters.

3.3.1 Algorithm

The inferno algorithm [11] aims at directly minimizing the expected variance of
the parameter of interest (POI) obtained via a non-parametric simulation-based
synthetic likelihood. The parameters of a neural network are optimized by stochastic

Figure 3.2: Sketch of the inferno algorithm. Batches from a simulator are passed through a
neural network and a differentiable summary statistics is constructed that allows
to calculate the variance of the POI. The parameters of the network are then
updated by SGD. The figure is taken from [11].

gradient descent via automatic differentiation, where the loss function accounts for
the details of the statistical model and in particular the effect of nuisance parameters.
The original algorithm has been implemented in TensorFlow 1 [83]. A sketch of
the inferno algorithm is shown in Fig. 3.2. An inference-aware summary statistics
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is learnt by optimizing the parameters ϕ of a neural network f in order to reduce
the dimensionality d of each input observation x:

f(x; ϕ) : Rd → Rb . (3.17)

The network is trained with batches of simulated samples Gs = {x0, . . . ,xg} ob-
tained from a simulator g with parameters θs. Here Gs denotes one batch of sam-
ples. The number of nodes in the last layer of the network determines the dimension
b of the summary statistics. Since histograms are not differentiable, the original
algorithm uses a softmax function as a differentiable approximation for the neural
network output y:

ŝi(Gs; ϕ) =
∑

x

efi(x;ϕ)/τ∑b
j=0 e

fj(x;ϕ)/τ
(3.18)

where the temperature hyperparameter τ regulates the softness of the operator. For
small temperatures τ → 0+, the probability of the largest component will tend to
1 while others to 0. With this approximation it is possible to construct a summary
statistic for each batch by computing the Asimov Poisson-count likelihood L̂A [84]:

L̂A(θ; ϕ) =
b∏

i=0
Pois(ŝi(Gs; ϕ)|ŝi(Gs; ϕ)) . (3.19)

The MLE for the Asimov likelihood is the parameter vector θs used to generate the
simulated dataset Gs, i.e. argmaxθ

(
L̂A(θ; ϕ)

)
= θs. The concept of Asimov data is

also referred to as “saturated models” in statistics. The effect of the parameters of
interest and the main nuisance parameters can be included by changing the mixture
coefficients of mixture models, translations of a subset of features, or conditional
density ratio re-weighting. An example for this will be discussed in the next section,
where the application of the algorithm to a synthetic example is described. From the
Asimov likelihood the Fisher information matrix is then calculated via automatic
differentiation according to:

I(θ)ij = ∂2

∂θi∂θj

(
− log L̂A(θ; ϕ)

)
. (3.20)

As has been discussed in Chapter 2.3.1, the covariance matrix can be estimated
from the inverse of the Fisher information matrix if θ̂ is an unbiased estimator of
the values of θ:

covθ(θ̂) ≥ I(θ)−1 . (3.21)
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It is also possible to include auxiliary measurements that constrain the nuisance
parameters, characterized by likelihoods

{
L0

C(θ), . . . ,Lc
C(θ)

}
, by considering the

augmented likelihood L̂′
A:

L̂′
A(θ; ϕ) = L̂A(θ; ϕ)

c∏
i=0

Li
C(θ) . (3.22)

The loss function used to optimize the parameters of the neural network ϕ can be
any function of the covariance matrix at θs, depending on the concrete inference
problem. The diagonal elements I−1

ii (θs) correspond to the expected variance for
the parameter θi. Thus, if the aim is optimal inference about one of the parameters
ω0 = θk a possible loss function is:

U = I−1
kk (θs) (3.23)

which corresponds to the approximated expected width of the confidence interval
for ω0.

3.3.2 Synthetic Example

The performance of inferno has been studied with a synthetic three-dimensional
mixture model with two components [11] and the authors show that the summary
statistics learnt with inferno outperform those obtained by using a classifier trained
with binary cross-entropy (bce). The studied model is defined by the following PDFs
for the background:

fb(x|r, λ) = N
(

(x0, x1)|(2 + r, 0),
[

5 0
0 9

])
Exp(x2|λ) (3.24)

and the signal:

fs(x) = N
(

(x0, x1)|(1, 1),
[

1 0
0 1

])
Exp(x2|2) (3.25)

such that (x0, x1) are distributed according to a multivariate normal distribution
while x2 is given by an exponential distribution. The signal distribution is fully
specified while the background distribution depends on the parameter r, that shifts
the mean of the background density, and a parameter λ that specifies the rate of the
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exponential distribution. A common model for physics analyses at the LHC, where
the expected number of observations can be inferred from simulations, is given by:

p(x|s, r, λ, b) = b

s+ b
fb(x|r, λ) + s

s+ b
fs(x) (3.26)

where s and b correspond to the expected number of signal and background events.
The performance of inferno is compared to a neural network trained with binary
cross-entropy. Furthermore, the performance is also compared to the optimal infer-
ence baseline obtained from the analytical extended likelihood:

L(s, r, λ, b) = Pois(n|s+ b)
n∏
p(x|s, r, λ, b) (3.27)

and the performance is also compared to the optimal classifier, given by:

s∗(x|r, λ) = fs(x)
fs(x) + fb(x|r, λ) . (3.28)

As described in Section 3.1.1, s∗ is a sufficient summary statistic for a two-component
mixture model if the only unknown parameter is the signal mixture fraction.

In the inferno paper the authors consider five inference benchmarks with s = 50
signal events and b = 1000 background events, that vary in the number of nuisance
parameters and their constraints:

• Benchmark 0: no nuisance parameters are considered, both signal and back-
ground distributions are taken as fully specified (r = 0.0, λ = 3.0 and b =
1000).

• Benchmark 1: r is considered as an unconstrained nuisance parameter, while
λ = 3.0 and b = 1000 are fixed.

• Benchmark 2: r and λ are considered as unconstrained nuisance parameters,
while b = 1000 is fixed.

• Benchmark 3: r and λ are considered as nuisance parameters but with the
following constraints: N (r|0.0, 0.4) and N (λ|3.0, 1.0), while b = 1000 is fixed.

• Benchmark 4: all r, λ and b are all considered as nuisance parameters with the
following constraints: N (r|0.0, 0.4),N (λ|3.0, 1.0) and N (b|1000, 100).
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In the training of inferno, the expected number of signal and background events,
s and b are included in the computation graph by scaling the Poisson counts of the
signal and background observations. The effect of the nuisance parameters r and λ

is modelled as an analytical transformation of the input data.

200,000 events have been considered for the training, while 1,000,000 events are
used for evaluation. The same network architecture is used both for cross-entropy
and inference-aware training: two hidden layers of 100 nodes followed by ReLU ac-
tivation functions. A temperature of τ = 0.1 has been used for the inference-aware
models, which were trained during 200 epochs with SGD using mini-batches of 2000
observations and a learning rate γ = 10−6. The models based on a cross-entropy loss
were trained during 200 epochs using a mini-batch size of 64 and a fixed learning rate
of γ = 0.001. The results of the study are provided in Fig. 3.3. The median and 1-σ
percentiles on the expected uncertainty on s are reported for 100 random-initialized
instances of each model and the optimal classifier and likelihood-based inference are
included for comparison. The conclusion of the study is that confidence intervals ob-

Figure 3.3: Summary of the results for the benchmarks defined in the text. Details can be
found in [11].

tained using inferno-based summary statistics are more precise compared to those
obtained with binary classification and tend to be closer to the confidence intervals
expected when using the true likelihood for inference. The improvement over binary
classification increases when more nuisance parameters are considered. The authors
also show for Benchmark 2 that the inference-aware summary statistics learnt for θs

work well if the value used during the training deviates from the true value of θs.
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3.3.3 Novel Developments and Related Work

Charnock et al. [85] propose a machine learning technique, called information maxi-
mizing neural networks, that aims at finding non-linear functionals of the data that
maximize the Fisher information. By design, this approach will find transformations
that are minimally affected by nuisance parameters while being maximally sensitive
to the parameters of interest. Related to this work, Alsing et al. [86] have developed
a transformation that can be applied to marginalize the summary statistics resulting
from information maximizing neural networks.

Additionally, alternative approaches exist that may be useful in specific situations.
In [87] a variation of boosted decision trees is developed, referred to as qbdt. The
loss is based on the statistical significance, and can also include the effect of nuisance
parameters in its approximation.
In [88] the expected significance approximation formula for a single-bin counting ex-
periment that can include the effect of a single source of systematic uncertainty is
used as a loss function of a neural network. Related to this work, in [89] the authors
use an approximation of the Punzi figure of merit as a loss function. The Punzi loss
is used in the search for new physics and maximizes the inverse of the minimum
detectable cross-section, which defines a sensitivity region for which the experiment
will certainly give conclusive results.
More recently, the authors of [90] proposed a custom loss function for the search
of new physics where the effect of different nuisance parameters is included with a
polynomial approximation.

While inferno focuses on uncertainty-aware loss functions, there is a complemen-
tary line of research that focuses on the profiling aspect of uncertainty awareness.
The authors in [91] train a classifier that is fully aware of uncertainties and their
corresponding nuisance parameters. Specifically, the nuisance parameter z is treated
as a feature alongside the observed data x, such that the network learns a decision
function which varies with the nuisance parameter, allowing for later profiling over
the nuisance parameters during inference. The method is studied using a synthetic
Gaussian dataset, as well as the Kaggle Higgs Challenge [66]. For both cases the
authors show that the uncertainty-aware approach can achieve a better sensitivity
than alternative machine learning strategies.

More recently, there has also been some work that is based on the ideas of inferno.
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Wunsch et al. [92] approximate the bins of a histogram with Gaussian functions
and use a neural network with a sigmoid function in the last layer as the basis for
the inference-aware loss to construct a Poisson count likelihood. The authors study
the approach with a synthetic example and the Higgs ML dataset including nui-
sance parameters. The authors of neos [93, 94] implement a differentiable version of
kernel-density estimation to construct a differentiable summary statistic and com-
pute the gradients of the profile likelihood with a technique referred to as fixed-point
differentiation that directly minimizes the expected upper CLs limits.
Moreover inferno has been rewritten in TensorFlow 2 and a PyTorch version
PyTorch_Inferno [95] has been developed by G. Strong, that besides analyti-
cally parametrizing the effects of nuisance parameters, allows to use a differentiable
interpolation algorithm, which is important for typical HEP analysis. Details of
this implementation will be further discussed in Chapter 7, where the INFERNO
algorithm will be applied to a realistic CMS measurement of the tt̄ production cross-
section in the τ+jets channel. The following two chapters will provide an overview
over the Standard Model and the CMS detector that are essential for this analysis.
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Following the introduction of the INFERNO algorithm, this chapter will provide an
overview over the Standard Model of elementary particles (SM) that is studied in
detail at the LHC, and is of particular relevance for the tt̄ cross-section measurement
discussed in Chapter 6.
The Standard Model is one of the great triumphs of modern physics. It is a Quantum
Field Theory that describes three of the four known fundamental interactions in
our world. Its development started in the early 1970s with the formulation of a
unified theory of the electromagnetic and weak interactions by Glashow, Salam and
Weinberg [96]. The theory became widely accepted by the discovery of neutral weak
currents at CERN in 1973 [97]. Various precision measurements and discoveries have
established the validity of the Standard Model at energies up to the electroweak
scale. The discovery of the Higgs boson by the ATLAS and CMS collaborations in
2012 completed the spectrum of particles in the Standard Model [98, 99]. Despite
its great success, the Standard Model cannot explain several physical phenomena,
therefore it is not a complete theory of fundamental interactions. One of the most
promising avenues to discover new physics that can lead to the development of a
complete theory of fundamental interactions is the study of top physics at particle
colliders, such as the Large Hadron Collider (LHC) in Geneva. This chapter will
provide an overview over the mathematical foundations of the Standard Model, as
well as its limitations. It will then introduce the physics of proton-proton collisions
and give an overview over the top physics program of the CMS experiment at the
LHC.

4.1 The Standard Model

Mathematically the Standard Model can be specified as a Quantum Field The-
ory with gauge group SU(3) × SU(2) × U(1) with 15 left-handed spinor fields in
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three copies of the representation
(
1, 2,−1

2

)
⊕ (1, 1,+1) ⊕

(
3, 2,+1

6

)
⊕
(
3, 1,−2

3

)
⊕(

3, 1,+1
3

)
. The first entry of each triplet refers to the representation of the group

SU(3), the second entry to the representation of SU(2) and the last entry corre-
sponds to the value of the U(1) hypercharge. The eight gauge bosons that mediate
the strong force are called gluons and are associated to the generators of the group
SU(3). The Higgs mechanism induces a mixing of the gauge bosons that couple to

Figure 4.1: Overview of the particle content within the Standard Model of particle physics.
Diagram adapted under licence CC BY 4.0.

the generators of SU(2) and U(1). A linear combination of the bosons A1,2
µ , asso-

ciated with the group SU(2), form the two physically observable gauge bosons W+

and W−. The photon, that couples to the electric charge, is a linear combination of
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the third boson of SU(2), A3
µ and the boson Bµ that is associated with the group

U(1). The linear combination orthogonal to the photon corresponds to the Z boson.
The spinor fields in the SU(3) × SU(2) × U(1) representation

(
3, 2,+1

6

)
correspond

to the up- and down-quark, while their conjugate right-handed partners are in the
representation

(
3, 1,−2

3

)
and

(
3, 1,+1

3

)
. The electron and neutrino are in the rep-

resentation
(
1, 2,−1

2

)
, while the conjugate right-handed partner of the electron is

in the representation (1, 1,+1) and the neutrino does not have a conjugate right-
handed partner. The fact that the up- and down-quarks, as well as the neutrino and
electron, transform as a doublet under SU(2), while their conjugate partners do not,
implies that the theory is parity violating. The masses of the elementary particles
are explained by the Higgs mechanism. The Standard Model Lagrangian L contains
all terms that are allowed by the gauge symmetries and Lorentz invariance and are
of mass dimension four or less. The action of a quantum field ψ is defined as:

S =
∫

L(ψ, ∂µψ) d4x (4.1)

and the equations of motion for the field ψ can be obtained with the action principle,
which requires the action integral to be stationary under small perturbations, i.e.
δS = 0, yielding the Euler-Lagrange equations:

∂µ

(
∂L

∂(∂µψ)

)
− ∂L
∂ψ

= 0 . (4.2)

The important Noether theorem states that every continuous global symmetry of
the action leads to a conserved current Jµ:

∂µJ
µ = 0 (4.3)

which implies a conserved charge for solutions of the equations of motion. The
description of the Standard Model in this chapter is based on the standard lit-
erature [100] and [101], which is also recommended for a more detailed review on
Quantum Field Theory and the Standard Model.

4.1.1 Gauge and Higgs Sector

The electroweak part of the gauge group, SU(2) × U(1) with the complex scalar
Higgs field φ in the representation

(
2,−1

2

)
gives rise to the electromagnetic and the
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weak force and provides an explanation for the masses of the massive W± and Z

vector bosons. The covariant derivative of the Higgs field φ is given by:

(Dµφ)i = ∂µφi − i
[
g2A

a
µT

a + g1BµY
]j

i
φj . (4.4)

with T a = 1
2σ

a where σa are the Pauli matrices, g2 and g1 the coupling constants of
SU(2) and U(1), and Y is the hypercharge generator. The form of the Higgs potential
V (φ), which is displayed in Fig. 4.2, is chosen such that it provides degenerated
vacuum states and a local maximum:

V (φ) = 1
4λ
(
φ†φ− 1

2v
2
)2

(4.5)

where λ is a positive constant. As a result, the Higgs field acquires a nonzero vacuum
expectation value v that spontaneously breaks the group SU(2) × U(1) to U(1). It

Figure 4.2: Sketch of the Higgs potential V (φ). Selecting one of the points at the bottom of
the potential breaks spontaneously the rotational U(1) symmetry [102].

is possible to make a global gauge transformation to bring the vacuum expectation
value in the first component and make it real:

⟨0|φ(x)|0⟩ = 1√
2

(
v

0

)
(4.6)
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and by replacing φ with its vacuum expectation value and inserting this relation
in the kinetic term of the Higgs field φ, which is given by −(Dµφ)†Dµφ, the mass-
squared matrix for the gauge fields can be identified as:

Lmass = −1
8v

2(1, 0)

 g2A
3
µ − g1Bµ g2

(
A1

µ − iA2
µ

)
g2
(
A1

µ + iA2
µ

)
−g2A

3
µ − g1Bµ

2(
1
0

)
. (4.7)

This matrix can be diagonalized by defining the weak mixing angle:

θW ≡ tan−1(g1/g2) (4.8)

and the physical gauge boson fields, that correspond to the normalized eigenvectors
of the mass-squared matrix, are then defined as:

W±
µ ≡ 1√

2

(
A1

µ ∓ iA2
µ

)
(4.9)

Zµ ≡ cWA
3
µ − sWBµ (4.10)

Aµ ≡ sWA
3
µ + cWBµ (4.11)

where sW ≡ sin θW and cW ≡ cos θW. The physical fields are mixtures of the
massless bosons associated with the U(1) and SU(2) local gauge symmetries. In
terms of these fields, equation 4.7 can be written as:

Lmass = −M2
WW

+µW−
µ − 1

2M
2
ZZ

µZµ (4.12)

where MW = g2v/2 and MZ = MW/ cos θW. The mass of the W boson is deter-
mined by the coupling constant of the SU(2) gauge interaction g2 and the vacuum
expectation value of the Higgs field. The Z boson, which is associated with the neu-
tral Goldstone boson of the broken symmetry, has acquired mass through the Higgs
mechanism, while the field Aµ that corresponds to the photon remains massless.
This means that there is an unbroken U(1) subgroup that can be identified with the
gauge group of electromagnetism. The two complex components of the Higgs field
φ result in four real scalar fields. After the spontaneous breaking of the symmetry,
three of the scalar fields give the longitudinal degrees of freedom of the W± and Z
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bosons, while the remaining scalar field accounts for shifts in the overall scale of φ.
Therefore, the Higgs field in unitary gauge can be written as:

φ(x) = 1√
2

(
v +H(x)

0

)
(4.13)

where H is a real scalar field. The particle corresponding to the field H is the Higgs
boson. With this the potential becomes:

V (φ) = 1
4λv

2H2 + 1
4λvH

3 + 1
16λH

4 (4.14)

and the mass of the Higgs boson can be identified as m2
H = 1

2λv
2. The kinetic term

for H can be written as −1
2∂

µH∂µH, while the kinetic terms for the gauge fields are
given by:

L = −1
4F

aµνF a
µν − 1

4B
µνBµν (4.15)

where
F i

µν = ∂µA
i
ν − ∂νA

i
µ + g2ϵ

ijkAj
µA

k
ν

Bµν ≡ ∂µBν − ∂νBµ .
(4.16)

By forming the combinations F 1
µν ± iF 2

µν and using equation 4.8, one can define a
covariant derivative that acts on W+

µ :

Dµ ≡ ∂µ − ig2A
3
µ = ∂µ − ig2(sWAµ + cWZµ) (4.17)

and Aµ can be identified as the electromagnetic vector potential. By assigning an
electric charge Q = +1 to the W+ boson, then it follows from equation 4.17 that
the electromagnetic coupling constant e is identified as:

e = g2 sin θW . (4.18)
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All of this can be assembled into the complete Lagrangian for the electroweak gauge
fields and the Higgs boson in unitary gauge with the electromagnetic field strength
Fµν = ∂µAν − ∂νAµ, and Zµν ≡ ∂µZν − ∂νZµ which finally gives:

L = − 1
4F

µνFµν − 1
4Z

µνZµν −D†µW−νDµW
+
ν +D†µW−νDνW

+
µ

+ ie(Fµν + cot θWZ
µν)W+

µ W
−
ν

− 1
2
(
e2/ sin2 θw

)(
W+µW−

µ W
+νW−

ν −W+µW+
µ W

−νW−
ν

)
−
(
M2

wW
+µW−

µ + 1
2M

2
ZZ

µZµ

)(
1 + v−1H

)2

− 1
2∂

µH∂µH − 1
2m

2
HH

2 − 1
2m

2
Hv

−1H3 − 1
8m

2
Hv

−2H4 .

(4.19)

Many properties of electroweak phenomena were verified by experiments, including
the discovery of the massive W± [103, 104] and Z bosons [105, 106], and the exis-
tence of weakly-interacting neutral and charged currents [97]. The observed masses
of the W± and Z bosons are MW = 80.4 GeV and MZ = 91.2 GeV [9] which implies
cos θW = 0.882. In 2012 the CMS and ATLAS collaborations discovered a parti-
cle with a mass of 125 GeV consistent with the expected properties for the Higgs
boson [98, 99].

4.1.2 Lepton Sector

Leptons are particles with a spin value of one-half. Since they are singlets of the color
group SU(3), they are not affected by the strong force. There are three generations
of leptons: e and νe, µ and νµ, τ and ντ . The electron and its neutrino can be
described by left-handed spinor fields ℓ and ē in the representations

(
2,−1

2

)
and

(1,+1) of SU(2) × U(1). The SU(2) components of ℓ can be written as:

ℓ =
(
ν

e

)
. (4.20)

Since only the left-handed spinor fields of ℓ transform as a doublet under SU(2) the
gauge theory is parity violating. The covariant derivatives of the lepton fields are
given by:

(Dµℓ)i = ∂µℓi − ig2A
a
µ(T a)i

jℓj − ig1

(
−1

2

)
Bµℓi

Dµē = ∂µē− ig1(+1)Bµē

(4.21)

59



4 The Standard Model and Top Physics at the LHC

and their kinetic terms are:

Lkin = iℓ†iσ̄µ(Dµℓ)i + iē†σ̄µDµē . (4.22)

The Higgs mechanism does not only generate the masses of the gauge bosons, but is
also responsible for the masses of the leptons. Since the left- and right-handed fields
transform differently under SU(2), a mass term involving only ℓ and/or ē does not
respect the gauge symmetry of SU(2) × U(1). However, it is possible to introduce
mass terms for fermions with a Yukawa coupling that respects the gauge symmetry
and takes the form:

LYuk = −yεijφiℓj ē+ h.c. (4.23)

where h.c. refers to the hermitian conjugate, φ is the Higgs field in the
(
2,−1

2

)
rep-

resentation, and y is the Yukawa coupling constant. In unitary gauge this equation
becomes:

LYuk = − 1√
2
y(v +H)

(
eē+ ē†e†

)
= − 1√

2
y(v +H)EE

(4.24)

with the definition of a Dirac field for the electron and a Majorana field NL for the
neutrino:

E ≡
(

e

ē†

)
, NL ≡ PLN =

(
ν

0

)
(4.25)

with PL = 1
2(1 − γ5). From equation 4.24 it can be seen that the electron has

acquired the mass me = yv/
√

2, while the neutrino is still massless. By expressing
the covariant derivatives in equation 4.21 with the fields W±

µ , Zµ, and Aµ, one can
identify the generator of the electric charge:

Q = T 3 + Y (4.26)

and from the definitions of the generators T 3 and Y the following relations can be
obtained:

T 3ν = +1
2ν, T 3e = −1

2e, T 3ē = 0

Y ν = −1
2ν, Y e = −1

2e, Y ē = +ē
(4.27)

and the values of the charge of the spinor fields are given by:

Qν = 0, Qe = −e, Qē = +ē (4.28)
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which are the electric charges that are expected for the electron and the neutrino.
In terms of the Dirac fields one finds the following relations for the couplings of the
gauge boson fields to the leptons:

Lint = 1√
2
g2W

+
µ J

−µ + 1√
2
g2W

−
µ J

+µ + e

sWcW
ZµJ

µ
Z + eAµJ

µ
EM (4.29)

with the definition of the conserved charged and neutral currents:

J+µ ≡ ELγ
µNL

J−µ ≡ N Lγ
µEL

Jµ
Z ≡ Jµ

3 − s2
wJ

µ
EM

Jµ
3 ≡ 1

2N Lγ
µNL − 1

2ELγ
µEL

Jµ
EM ≡ −EγµE .

(4.30)

From equation 4.29, equation 4.19, equation 4.22 and equation 4.24 the Lagrangian
of Quantum Electrodynamics for the electron Dirac spinor E and the photon field
Aµ can be identified:

LQED = iEγµ∂µE − 1
4F

µνFµν −meEE + eAµJ
µ
EM (4.31)

where γµ are the Dirac matrices. Applying the Euler-Lagrange equations, as de-
fined in equation 4.2, with respect to the field of the photon Aµ yields the Maxwell
equations that form the foundation of classical electromagnetism:

∂µF
µν = eJµ

EM (4.32)

and applying the Euler-Lagrange equations with respect to the field E yields:

(iγµ∂µ −me)E = eγµAµE (4.33)

which is the original Dirac equation on the left side and the interaction with the
photon field Aµ on the right side. It can further be shown that the exchange of the
W boson generates the Fermi weak interaction [107] that was developed to describe
the β-decay and can be interpreted as a low-energy Effective Field Theory of the
SM. The Fermi constant can be defined as:

GF ≡ e2

4
√

2 sin2 θwM2
w

(4.34)
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which corresponds to the historical definition of the Fermi coupling.

4.1.3 Quark Sector

Quarks are spin-one-half particles that transform under the color group SU(3). The
Quantum Field Theory of the strong interaction associated with the group SU(3)
is also referred to as Quantum Chromodynamics(QCD). There are three families of
quarks: up u and down d, charm c and strange s, top t and beauty (or bottom) b.
A single quark family can be described by left-handed spinor fields q, ū and d̄ in the
representation

(
3, 2,+1

6

)
,
(
3, 1,−2

3

)
, and

(
3, 1,+1

3

)
of SU(3) × SU(2) × U(1). The

SU(2) components of q can be written as:

q =
(
u

d

)
. (4.35)

As in the case of the leptons, only the left-handed spinor fields of q transform as
a doublet under SU(2) implying that the theory is parity violating. Experimen-
tally, parity violation was first discovered in the Wu experiment in 1956 [108]. The
covariant derivatives of the quark fields are given by:

(Dµq)αi = ∂µqαi − ig3A
a
µ(T a

3 )β
αqβi − ig2A

a
µ(T a

2 )j
i qβj − ig1

(
+1

6

)
Bµqαi

(Dµū)α = ∂µū
α − ig3A

a
µ(T a

3 )α
βū

β − ig1
(
−2

3

)
Bµū

α(
Dµd̄

)α
= ∂µd̄

α − ig3A
a
µ(T a

3 )α
β d̄

β − ig1
(
+1

3

)
Bµd̄

α

(4.36)

and the kinetic terms can be expressed as:

Lkin = iq†αiσ̄µ(Dµq)αi + iū†
ασ̄

µ(Dµū)α + id̄†
ασ̄

µ
(
Dµd̄

)α
. (4.37)

As in the case of the leptons, a mass term can be generated via Yukawa couplings:

LYuk = −y′εijφiqαj d̄
α − y′′φ†iqαiū

α + h.c. (4.38)

where φ is the Higgs field in the
(
1, 2,−1

2

)
representation, and y′ and y′′ are the

Yukawa coupling constants. In unitary gauge this becomes:

LYuk = − 1√
2
y′(v +H)

(
dαd̄

α + d̄†
αd

†α
)

− 1√
2
y′′(v +H)

(
uαū

α + ū†
αu

†α
)

= − 1√
2
y′(v +H)DαDα − 1√

2
y′′(v +H)UαUα

(4.39)
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with the definition of the Dirac fields for the down- and up-quarks:

Dα ≡
(
dα

d̄†
α

)
, Uα ≡

(
uα

ū†
α

)
. (4.40)

From equation 4.39 it follows that the up-quarks have acquired the mass mu =
y′′v/

√
2 and the down-quarks have acquired the mass md = y′v/

√
2. With the

definition of the generator of the electric charge Q = T 3 + Y the following charges
are assigned to the up- and down-quarks:

Qu = +2
3u, Qd = −1

3d, Qū = −2
3 ū, Qd̄ = +1

3 d̄ (4.41)

which are the charges that are expected for the up- and down-quarks. By express-
ing the covariant derivatives in equation 4.36 with the fields W±

µ , Zµ, and Aµ and
using the definitions of the four-component fields, the following couplings of the
electroweak gauge fields to the quarks can be found:

Lint = 1√
2
g2W

+
µ J

−µ + 1√
2
g2W

−
µ J

+µ + e

sWcW
ZµJ

µ
Z + eAµJ

µ
EM (4.42)

where the conserved currents have been defined as:

J+µ ≡ DLγ
µUL

J−µ ≡ ULγ
µDL

Jµ
Z ≡ Jµ

3 − s2
WJ

µ
EM

Jµ
3 ≡ 1

2ULγ
µUL − 1

2DLγ
µDL

Jµ
EM ≡ +2

3UγµU − 1
3DγµD .

(4.43)

The Yukawa couplings can be generalized for multiple quark generations by defining
the fields qαI , ūI , and d̄I , where I = 1, 2, 3 denotes the generation index. The kinetic
term for these fields is given by:

Lkin = iq†αiI σ̄µ(Dµ)βj
αiqβjI + iū†

αI σ̄
µ(Dµ)α

βū
β
I + id̄†

αI σ̄
µ(Dµ)α

β d̄
β
I (4.44)

where the sum runs over the generation index I. The most general Yukawa term
that is possible in unitary gauge can be written as:

LYuk = − 1√
2

(v +H)dαIy
′
IJ d̄

α
J − 1√

2
(v +H)uαIy

′′
IJ ū

α
J + h.c. (4.45)
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where y′
IJ and y′′

IJ are complex 3×3 matrices, and the generation indices are summed.
It is possible to make transformations between the different generations of the fields:

dI → DIJdJ , d̄I → D̄IJ d̄J

uI → UIJuJ , ūI → ŪIJ ūJ

(4.46)

where U,D, Ū and D̄ are independent unitary matrices. These matrices can be
chosen such that DTy′D̄ and UTy′′Ū are diagonal and contain only positive real
entries y′

I and y′′
I . The down-quarks DI thus acquire masses mdI

= y′
Iv/

√
2, and the

up-quarks UI acquire masses muI = y′′
I v/

√
2. While in the neutral currents simply

a generation index I is added to each field, the charged currents become:

J+µ = DLI

(
V †
)

IJ
γµULJ

J−µ = ULIVIJγ
µDLK

(4.47)

where V ≡ U †D is called the Cabibbo–Kobayashi–Maskawa (CKM) matrix. Making
use of phase rotations of the fields allows to eliminate 5 out of the 9 parameters of
the 3 × 3 unitary CKM matrix, leaving 4 free parameters: θ1 (the Cabibbo angle),
θ2, θ3, and δ, and V can be written as:

V =


c1 +s1c3 +s1s3

−s1c2 c1c2c3 − s2s3e
iδ c1c2s3 + s2c3e

iδ

−s1s2 c1s2c3 + c2s3e
iδ c1s2s3 − c2c3e

iδ

 (4.48)

with the coefficients ci = cos θi and si = sin θi. The experimentally determined
values of these angles are: sin θ12 = 0.226, sin θ13 = 0.003, sin θ23 = 0.040 and
δ = 1.196 [9]. Since the charged currents have some terms with a phase factor eiδ,
and some without, it is implied that the weak interactions are violating the CP

symmetry. CP -violation was first discovered experimentally in 1964 in the decay of
neutral Kaons [109].

Experimentally, there is evidence for the existence of quarks. However, despite
many experimental attempts, free quarks have not been observed directly so far.
This can be explained by the hypothesis of colour confinement, which states that in
the non-perturbative regime only objects with net-zero colour charge can propagate
as free particles. The origin of colour confinement is believed to be the gluon–gluon
self-interactions that are possible because the gluons themselves carry colour charge.
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So far there is no analytic proof of colour confinement, but there is strong evidence
for it from the calculations of lattice QCD [9].
Another important feature of QCD is asymptotic freedom which means that the
interactions between particles become asymptotically weaker as the energy scale
increases. Asymptotic freedom can be derived by calculating the beta-function de-
scribing the variation of the coupling constant under the renormalization group.
Evaluating the beta-function of QCD for the strong coupling at the momentum

Figure 4.3: Summary of the measurements of αS as a function of the energy scale Q. The
degree of QCD perturbation theory used in the extraction is indicated in brack-
ets [9].

scale µ defined as αS(µ) ≡ g(µ)2/4π yields the following relation for αS at a scale
Q:

αS(Q) = αS(µ)
1 + (1/4π)

(
11 − 2

3nf

)
αS(µ) log(Q2/µ2)

(4.49)

where nf is the total number of quark flavours. This result shows explicitly that
αS(Q) → 0 logarithmically as Q → ∞. Different ways exist in which αS can be
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measured, including studies of the hadronic decays of the tau-lepton, the spectra
of bound states of heavy quarks, measurements of deep inelastic scattering, and jet
production rates in electron-positron annihilation [101]. Figure 4.3 summarizes the
most important measurements of αS [9]. As predicted, αS decreases with increasing
Q and the data are consistent with the QCD predictions for the running of αS with
a value of αS at Q2 = M2

Z of:

αs

(
M2

Z

)
= 0.1179 ± 0.0010 . (4.50)

At LHC energies αS is sufficiently small that perturbation theory can be used,
however often higher order corrections have to be taken into account.

4.2 Beyond the Standard Model

The Standard Model is the most successful particle physics theory up to date. How-
ever, there are several phenomena that the Standard Model cannot explain. Various
proposals for physics “Beyond the Standard Model” exist that modify the Standard
Model in a way that they are still consistent with the existing experimental data,
but are able to predict possible deviations from the Standard Model in new experi-
ments. In this section the limitations of the SM, as well as two important proposals
for extensions of the SM are discussed.

4.2.1 Limitations of the Standard Model

The Standard Model is not the ultimate theory of particle physics since there are
several fundamental physical phenomena that the Standard Model does not explain.
Some of the most important ones are:

• Gravity: the addition of a graviton to the Standard Model is not consistent
with the existing experimental data without requiring other theoretical modi-
fications that have not been observed yet. In the last decades there have been
several theoretical efforts that tried to unify the Standard Model and General
Relativity, such as loop quantum gravity [110] or string theory [111], but so far
there is no experimentally verifiable theory that fits the Standard Model and
Einstein’s General Relativity theory in a single framework. However, at the
scale of particle physics at the LHC, the very small effect of gravity can be
neglected in most of the calculations.
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• Dark matter: cosmological observations, such as galaxy rotation curves [112],
gravitational lensing [113] and the Cosmic Microwave Background [114], indi-
cate the existence of matter that does not interact with the electromagnetic
force. This matter is referred to as dark matter and it is estimated that it
makes up about 26% of the total matter-energy budget of the universe. It is
also estimated that only 5% of the matter-energy budget of the universe is
contained in the observable stars and galaxies. However, the Standard Model
does not predict any fundamental particles that are suitable candidates for
dark matter.

• Dark energy: cosmological observations such as the Cosmic Microwave Back-
ground [114] and the redshift of type Ia supernovae [115], indicate that the uni-
verse is accelerating. A possible way to describe this in cosmological models
is the inclusion of a cosmological constant that corresponds to an intrinsic en-
ergy density of the vacuum which drives the observed expansion of the universe.
This is referred to as dark energy, and it is estimated that approximately 69%
of the universe’s energy consists of it. The dark energy cannot be explained
with the vacuum energy of the Standard Model.

• Neutrino masses: according to the SM, neutrinos are massless particles.
However, there is experimental evidence that neutrinos oscillate between differ-
ent flavour eigenstates, which implies that neutrinos do have a small non-zero
mass [116, 117]. It is possible to extend the SM Lagrangian with mass terms for
the neutrinos by introducing Yukawa couplings similarly as has been done for
quarks and leptons. However, this leads to new theoretical issues, in particu-
lar the Yukawa couplings to the Higgs field turn out to be unnaturally small
and the existence of weakly interacting right-handed neutrinos is required. An
alternative way of explaining the masses of the neutrinos is the inclusion of
a Majorana mass term in the SM Lagrangian assuming that neutrinos are
their own anti-particles. Several experiments are currently investigating this
problem.

• Matter–antimatter asymmetry: as discussed in Section 4, in the SM ev-
ery particle has an anti-particle with opposite quantum numbers, thus the
Standard Model predicts that the amount of matter and antimatter should
be similar. However, it is observed that our universe consists mostly out of
matter. The CP violation that is predicted by the SM seems to be insufficient
to explain this observed matter-antimatter asymmetry of the universe [101].
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Furthermore, the Standard Model is constructed in an ad-hoc fashion in order to
reproduce the experimental data. This is no issue of the model, but some of the
features of the SM are considered unnatural by theorists and they imply a lack of
understanding. The most important ones are:

• Hierarchy problem: as described in Section 4.1.1 the masses of the particles
in the SM are generated by spontaneous symmetry breaking caused by the
Higgs field. Within the SM theory, virtual particles introduce large quantum
corrections to the mass of the Higgs. These corrections require a fine-tuning of
the bare mass parameter of the Higgs in the SM, such that the quantum cor-
rections are canceled almost completely. This level of fine-tuning is considered
unnatural by many theorists [101].

• Number of parameters: if neutrinos are Dirac fermions, the Standard
Model has 19 free parameters: the 12 Yukawa couplings of the fermions to
the Higgs field, the three coupling constants describing the strength of the
gauge interactions, the three coupling constants describing the strengths of
the gauge interactions, and the parameters of the CKM matrix. The values
of these parameters have to be inferred from experiment and the origin of the
values is unknown. Between the different parameters certain patterns are vis-
ible and the coupling constants of the three gauge interactions are of a similar
order of magnitude, which may be a hint that they are different low-energy
manifestations of a Grand Unified Theory [101].

• Strong CP problem: in principle the SM can contain a term that leads to CP
symmetry breaking in the strong interaction [101]. However, experimentally
it was found that this strong CP phase is very close to zero, which is also
considered unnatural by many theorists.

To the date of writing this thesis, no experimental result is known to contradict the
Standard Model at the 5-σ level [9]. Due to statistical and systematic uncertainties,
it is expected that some of the experimental tests of the SM will significantly differ
from the predictions of the SM. So far, most of these contradictions turned out
to be statistical fluctuations once more data was analyzed. However, any possible
new physics beyond the SM will first show up in experimental data as a statistical
discrepancy between the prediction of the SM and the measured data. In order to
distinguish statistical fluctuations from signs of new physics, a precise modelling of
systematic uncertainties is crucial. To the date of the writing of the thesis, the two
most notable experimental results that are in tension with the SM prediction are:
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• Anomalous magnetic dipole moment of the muon: the experimentally
measured value of the muon’s anomalous magnetic dipole moment differs sig-
nificantly from the Standard Model prediction. Muons that travel through the
strong external magnetic field of a storage ring have the direction of their mag-
netic moments precess at a rate that depends on its strength g. The g-factor is
predicted to be equal to two by the Dirac equation, but higher order loops add
an anomalous moment, aµ = (g−2)/2, which can be calculated with very high
precision. In the early 2000s the Brookhaven National Laboratory conducted
an ultra-precise experiment and the measured data are disagreeing with the
SM at the 3.7 σ level [118]. The experiment was rebuilt at Fermilab and in
2021 the first run of the muon g-2 experiment has reported a disagreement
with the SM prediction of 3.3 σ [119], in agreement with the Brookhaven ex-
periment. Combining the results of both experiments, the disagreement with
the SM prediction currently stands at 4.2 σ.

• Anomalies in flavour-changing B decays: the LHCb collaboration has
measured a flavour anomaly in the decay of B mesons into a K∗ and a pair of
muons [120, 121]. The B0 → K∗0µ+µ− decay is sensitive to new physics since
this decay is forbidden at the lowest perturbative order in the SM and instead
occurs via higher-order penguin and box processes, which are sensitive to the
presence of new, heavy particles. Such particles could significantly change
the decay rate and the angular distribution of the final-state particles. The
LHCb collaboration first reported the anomaly in 2013, which was confirmed
with more data in 2020 and currently stands at a disagreement with the SM
prediction at 3.3 σ.

4.2.2 Possible Extensions

Due to the limitations of the Standard Model discussed in the previous section,
alternative theories to describe fundamental interactions are being developed. Most
of the proposed theoretical models contain the SM as a low-energy Effective Field
Theory. Two important extensions of the SM that are being tested experimentally
at the LHC are:

• Supersymmetry (SUSY): which is a possible solution to the hierarchy prob-
lem based entirely on symmetries [122]. The basic idea of SUSY is that each
Standard Model particle has a super-partner “sparticle” which differs by half
a unit of spin. In the minimal supersymmetric Standard Model (MSSM), the
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particle content of the SM is approximately doubled. The super-partner of
each fermion is a spin-0 scalar (sfermion) and the super-partners of the spin-
1 gauge fields are spin-half gauginos. For example, for a quark there is a
squark, for a lepton there is a slepton, and for the gluon and photon there
is a gluino and a photino. The MSSM enlarges the SM Higgs to two Higgs
doublets Hu and Hd, which have spin-1/2 superpartners called Higgsinos. Un-
der electroweak symmetry breaking, the Higgsinos and gauginos mix and form
the physical chargino and neutralino states. In the formalism of SUSY, the
large quantum corrections to the mass of the Higgs in the SM are canceled by
corresponding loops of superpartners. Furthermore, in many supersymmetric
models, the lightest neutralino is a weakly interacting stable particle, and is a
possible WIMP candidate for the dark matter in the universe [101].

• Composite Higgs models aim at solving the hierarchy problem through a
combination of strong dynamics and symmetry [122]. It is assumed that the
Higgs boson is a composite bound state of an additional strongly coupled sec-
tor. The compositeness scale is constrained by direct searches and electroweak
precision tests to be at least in the multi-TeV range. Modern composite Higgs
models generally also introduce an approximate global symmetry in the com-
posite sector to explain why the Higgs boson is a narrow, light state that
is separated from the other resonances of the composite sector. When the
global symmetry is spontaneously broken, the SM Higgs boson emerges as a
pseudo–Nambu–Goldstone boson similar to the pion of QCD. Many composite
Higgs models predict towers of electroweak vector resonances, such as the W ′

and colored fermionic resonances starting at around the compositeness scale.

Despite extensive searches for BSM physics by the ATLAS and CMS experiments,
so far no evidence for new physics has been found and stringent limits have been set
on many BSM models [122].

4.3 Proton-Proton Collisions at the LHC

In order to analyze the data of the proton-proton collisions recorded by the LHC
experiments, it is crucial to understand the hard scattering processes of the proton
constituents, called partons. These processes are characterized by a momentum
transfer that is large compared to the proton mass and they can be calculated to
high accuracy with perturbative Quantum Chromodynamics (pQCD). Recording
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the final states of the hard scatterings in proton-proton collisions at the LHC allows
to confront the predictions of pQCD with the experimental data. The discussion of
hard processes in this chapter is based on reference [123].

4.3.1 PDFs

The initial stage of the proton-proton collisions is dominated by the effective densities
of the parton distribution functions (PDFs) of the proton. The quarks inside the
proton interact with each other through the exchange of gluons. At high energies
a sea of virtual quark-antiquark pairs is generated by the constant gluon exchange
between the three constituent quarks of the proton. Therefore, in the interaction of
two protons, both the constituent quarks and the gluons and sea quarks take part in
the hard scattering process [101]. The dynamics of this interacting system results in a
distribution of quark momenta within the proton and the distributions are expressed
in terms of PDFs. In practice, the functional forms of the PDFs depend on the

Figure 4.4: Results of the latest global PDF fit by the NNPDF Collaboration. PDFs are
shown at factorization scales of µ2 = 10 GeV2 (left) and µ2 = 104 GeV2 (right).
The figure is adapted from [124].

detailed dynamics of the proton and have to be inferred from experiments. There
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are many complementary ways to measure the proton PDFs and the PDFs that are
usually used in LHC analysis are extracted from a global fit to the experimental data
from various experiments [125]. The theoretical framework of QCD, in particular the
DGLAP evolution equations allow to calculate the evolution of the PDFs at different
scales once that they have been measured at a fixed scale [126, 127, 128]. Various
groups provide parametrizations of PDFs based on fits of the experimental data,
the most popular are those from the CTEQ [129], MSTW [130], and NNPDF [131]
Collaborations. Figure 4.4 shows the parton distribution functions at two different
energy scales at µ2 = 10 GeV2 (left) and µ2 = 104 GeV2 (right) estimated by the
NNPDF collaboration [124]. Valence quarks are dominant at lower energies, while
at higher energies gluon scattering is the dominant process.

4.3.2 Hard Processes

Hard scattering processes probe distance scales far below the radius of the proton
and can be described as collisions between partons. The cross-section can be calcu-
lated by factorising the PDFs fi,p of the proton and the cross-section of the parton
processes. The full expression for the cross-section can be written as [123]:

σ(pp → X) =
∑
i,j

∫
dx1dx2fi,p

(
x1, µ

2
F

)
fj,p

(
x2, µ

2
F

)
σ̂ij→X

(
x1x2s, µ

2
R, µ

2
F

)
(4.51)

where the sum runs over all possible initial-state partons with longitudinal momen-
tum fractions x1,2, that can give rise to a final state X at a center-of-mass energy
of √

x1x2s, with s denoting the total proton-proton center-of-mass energy squared.
The renormalization scale µ2

R and the factorization scale µ2
F originate from trun-

cated expansions in the strong coupling constant. The hard cross-section σ̂ can be
calculated at leading order (LO) in the strong coupling, αS , and can also incorporate
next-to-leading-order (NLO) and next-to-next-to-leading-order (NNLO) corrections.
In general, fixed-order predictions are associated with final states that have a small
number of partons.

4.3.3 Underlying Event, Hadronization and Parton Showers

Every LHC analysis requires a thorough understanding of QCD processes which
involves more than studying only the hard scattering [132]. An overview over the
process of a hard scattering in a proton-proton collision is shown in Fig. 4.5. The re-
sulting event contains initial and final-state radiation, as well as particles that come
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Figure 4.5: Sketch of a proton-proton collision, where a quark-gluon scattering results in a
final state consisting of a Z boson and a jet [123].

from the breakup of the proton and antiproton, also called “beam-beam remnants”.
The “underlying event” is everything except the two outgoing hard scattered par-
tons and receives contributions from the “beam-beam remnants” plus initial- and
final-state radiation. The “hard scattering” component consists of the outgoing two
partons plus initial and final-state radiation. Shortly after hard partons are pro-
duced, they repeatedly radiate low-energy and collinear gluons in a process called
parton shower [123]. After the particle shower has terminated, the partons transition
to hadrons, which is called hadronization. In this energy regime non-perturbative
effects become important and so far there exists no exact theory that analytically
describes hadronization. However, models exist that can describe hadronization and
parton showers, forming the basis of popular general-purpose Monte Carlo (MC) sim-
ulation programs such as PYTHIA [133], HERWIG [134], and Sherpa [135]. These
MC generators allow to obtain realistic descriptions of proton-proton collisions with
all final-state particles. Often, parton showers are matched with multileg tree-level
matrix elements, e.g. from MadGraph [136] and also with NLO matrix elements,
making use of methods such as MC@NLO [137] and POWHEG [138]. Usually the
results of the measurements at the LHC are compared either with NLO or NNLO
fixed-order predictions or with results from parton-shower programs.
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4.3.4 Jets

A high energy parton emitted from a hard scattering in a proton-proton collision
cannot be recorded directly in the detector. According to the hypothesis of colour
confinement, the reason for this is that the QCD force that becomes stronger the
farther the parton gets from the proton. Soft gluons are radiated at small angles

Figure 4.6: Measurement of the double-differential inclusive jet cross-section as a function
of the jet transverse momentum and rapidity by the CMS collaboration and
comparison with NLO QCD predictions [139].

relative to the original parton, until the threshold for hadronization is reached and
the partons form colour-neutral hadrons. This results in a collimated jet of hadrons
where the collective energy and momentum reflect those of the initially scattered
parton. Several algorithms exist that allow to combine these hadrons into a jet.
Typically, these algorithms have to be collinear and infrared safe, which means that
the resulting hard jets are not affected by the collinear and soft splittings that orig-

74



4 The Standard Model and Top Physics at the LHC

inate from the parton shower. This feature is important because it ensures that
the calculations in pQCD are finite at every order in perturbation theory. Mea-
surements of jet properties at very high energies allows to confront the pQCD with
experimental data. An example for a measurement of the inclusive jet production
cross-section in intervals of ∆y = 0.5 of rapidity by the CMS collaboration [139] is
shown in Fig. 4.6. The NLO QCD calculations are in good agreement with the data
over the full considered range. In general, QCD is found to provide an excellent
description of jet phenomena in proton–proton collisions.

4.4 Top Physics at the LHC

The top-quark is the heaviest elementary particle in the Standard Model and was
discovered by the CDF [140] and D0 [141] collaborations at the Tevatron proton–anti-
proton collider at Fermilab in 1995. Due to its very short lifetime (∼ 0.5 × 10−24 s),
which is shorter than the hadronization timescale, no hadronic top-quark pair bound
states can form. This fact offers a unique possibility to study the properties of the
particle as a quasi-free quark [9]. The precise knowledge of the elementary particle

Figure 4.7: Two-σ ellipses in the top and Higgs mass plane obtained from Tevatron and LHC
measurements (from 2012) and a possible future ILC collider, confronted with
the areas in which the SM vacuum is absolutely stable, metastable and unstable
up to the Planck scale [142].

masses and their couplings is an important element in consistency tests of the SM
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and in indirect searches of physics beyond the SM. So far, the LHC has not dis-
covered new particles that are not predicted by the SM, therefore indirect searches
for new physics, which focus on finding deviations between experimental data and
SM predictions, are becoming increasingly important. These searches require a high
level of precision and an excellent understanding of experimental systematic uncer-
tainties. The precise determination of the top mass is crucial for testing the overall
consistency of the Standard Model and to constrain new physics models through pre-
cision electroweak fits [122, 143]. Due to its large value of the order of the electroweak
scale, the top mass has a direct impact on the Higgs sector of the SM, and on ex-
trapolations of the SM to high-energy scales. Therefore, precision measurements of
the top-quark mass are important to understand the stability of the electroweak vac-
uum, since radiative top-quark corrections can drive the Higgs-boson self-coupling
towards negative values, which potentially can result in an unstable vacuum. The
precision of the top-quark mass measurement is crucial for the determination of the
energy scale where the vacuum might become unstable, which possibly requires new
physics at lower or comparable energies [144]. As indicated in Fig. 4.7, the current
experimental uncertainties do not allow to determine whether the electroweak vac-
uum is stable when the SM is extrapolated up to the Planck scale. Thus, the detailed
study of top-quark production, decays, couplings and other top properties with high
precision is an important part of the physics program of the CMS experiment. In
the following, a selective overview on some of the key properties of top-quark mea-
surements will be given. The description is based on a review on top physics [145]
which is also recommended for a complete overview of top-quark properties.

4.4.1 Top Pair Production

The measurement of the inclusive top pair production cross-section σtt̄ is an im-
portant test of Quantum Chromodynamics. Calculations of the cross-section are
performed at next-to-next-to-leading order (NNLO) including the resummation of
soft gluon terms (NNLL). Important systematic uncertainties are stemming from
scales, PDFs, and the strong coupling constant αS [145, 146]. The main decay chan-
nel of top-quarks is the flavour-changing charged current decay t → Wb. Several tt̄
final states are available for the measurement of σtt̄ that can be grouped in three
W boson decay categories: an all hadronic jet channel W → qq̄, a leptonic decay
channel W → ℓνℓ where ℓ stands for electrons and muons, including those from the
leptonic decays of tau-leptons, and a channel where the tau-lepton decays hadroni-
cally W → τhντ . Accordingly, the tt̄ events can be classified as “dilepton”, “single-
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Figure 4.8: Summary of LHC and Tevatron measurements of the top-pair production cross-
section as a function of the center-of-mass energy compared to the NNLO QCD
calculation complemented with NNLL resummation (top++2.0). The theory
band represents uncertainties due to renormalization and factorization scale,
parton density functions and the strong coupling. The measurements and the
theory calculation are quoted at mtop = 172.5 GeV. Measurements made at
the same center-of-mass energy are slightly offset for clarity. The figure and
the description is provided by the LHC Top Working Group and adapted under
licence CC BY 4.0.

lepton”, “all-hadronic” and categories with tau-leptons. The different channels are
complementary and inconsistencies between the measured cross-sections could po-
tentially indicate new physics. The most precise measurements of σtt̄ at the LHC
are obtained in the dilepton channel [145], and in particular the eµ final state, since
it is essentially background free. A typical analysis technique is a template fit to
multi-differential binned distributions that are characterized by the number of b-jets
and the transverse momentum and multiplicity of other jets in order to extract the
number of signal and background events. The largest yield of tt̄ events is in the
all-hadronic channel, however the large multijet background and the many possi-
ble jet combinations make the measurement challenging. CMS and ATLAS have
also measured the inclusive cross-section in events with one identified hadronically
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decaying tau-lepton, both in the channels τh + ℓ and τh+jets [145]. Besides test-
ing the consistency of the tt̄ cross-section measurements in different channels, this
channel is interesting since hypothetical charged Higgs bosons could be produced in
top-quark decays that further decay through H+ → τ+ντ , which would reflect in
a modification of the branching fractions. The CMS analysis of the decay channel
τh+jets [12] is of particular importance for this thesis, since its replication will be
the main subject of Chapter 6. Figure 4.8 shows a summary of LHC and Tevatron
measurements of the top-pair production cross-section as a function of the center-
of-mass energy compared to the NNLO QCD calculation complemented with NNLL
resummation [145]. The measured inclusive cross-sections for tt̄ pair production at
proton-proton center-of-mass energies of 7 TeV, 8 TeV and 13 TeV are found to be
in very good agreement with the theoretical calculations.

4.4.2 Top Mass

As discussed Section 4.1.3, the top Yukawa coupling is a free parameter in the SM,
which implies that the top mass has to be inferred from experimental measurements.
It can either be measured through direct measurements, which rely on the kinematic
reconstruction of the final-state top-quark decay products, or indirectly through re-
lations with other measured observables, such as the tt̄ cross-section at a given
center-of-mass energy [147]. Currently the most precise mass measurements come
from direct measurements. The reconstructed final-state particles are compared
with predictions of Monte-Carlo event generators to determine the top-quark mass
value that best describes the data. The measured top-quark mass then corresponds
to the parameter implemented in the MC generator and the direct measurements
yield a world average of mMC

top = 173.34 GeV with a precision up to 0.5 GeV. The
result for the top mass obtained from direct measurements mMC

top is usually identi-
fied with the top-quark pole mass mpole

top , which is a popular renormalization scheme
used for perturbative QCD computations at next-to-leading order and beyond [143].
However, so far no precise relation between the Monte Carlo mass mMC

top and more
fundamental and field-theoretic mass definitions is known. As a result, the identifi-
cation yields an uncertainty of the order of 1 GeV. Indirect determinations of the top
mass, based on the comparison of inclusive or differential production cross-sections
to the corresponding theory calculations can also be used to extract the top mass
in a well-defined renormalization scheme, but currently are less precise than direct
measurements.
The direct measurements performed by CMS and ATLAS are based on kinematic
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Figure 4.9: Summary of the direct top-quark mass measurements by ATLAS and CMS. The
figure is provided by the LHC Top Working Group and adapted under licence
CC BY 4.0.

observables reconstructed from top decay products for the different accessible top
decay and top production modes. The top-quark mass has been measured in tt̄
events, where the top pair decays in the ℓ+jets channel, in the dilepton channel,
and in the all-hadronic channel, as well as in single-top events. Important analy-
sis techniques for the direct mass measurements are ideogram and matrix element
methods, where the likelihood of a whole reconstructed final state compatible with
a production hypothesis is determined event-by-event [145]. Figure 4.9 provides a
summary of all state-of-the-art direct top mass measurements by the ATLAS and
CMS collaborations.
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4.4.3 CKM Matrix Elements

The CKM matrix element |Vtb| can be measured in single-top events that are mainly
produced via charged-current electroweak interactions. The W boson virtuality de-
fines three channels: the t-channel, s-channel and the Wt-channel. The square of
the magnitude of the CKM matrix element Vtb multiplied by a form factor fLV has
been determined for different production modes and center-of-mass energies by the
ATLAS and CMS collaborations, using the ratio of the measured cross-section to
its theoretical prediction. For the extraction, it is assumed that |Vtb| ≫ |Vtd|, |Vts|
and that the tWb interaction is left-handed as predicted by the Standard Model.
The combination of all |fLV Vtb|2 determinations at

√
s = 7 and

√
s = 8 TeV, yields

|fLV Vtb| = 1.02±0.04 (meas.)±0.02 (theo.) [148], consistent with the corresponding
Standard Model predictions.
CMS also extracted the CKM matrix elements Vtb, Vtd, and Vts simultaneously and
model independent by separating single-top t-channel signal events into multiple
categories depending on the quark interactions at both tWb vertices. The signal
strength of the individual single-top t-channel modes is determined from a likeli-
hood fit to a multivariate discriminator response. A three-fold interpretation of the
measured signal strength parameters is provided, setting limits on the CKM matrix
elements under the SM unitary assumption |Vtb| > 0.970, |Vtd|2 + |Vts|2 < 0.057 and
allowing for more quark families |Vtb| = 0.988 ± 0.051 [3].

4.4.4 Effective Field Theory

Another important approach to interpret SM measurements is the framework of
Effective Field Theory (EFT), which extends the SM Lagrangian from Chapter 4
with additional operators:

LEFT = LSM +
∑

i

ci

Λdi−4 Oi (4.52)

where Oi are the effective operators that characterize the new interactions in the
extended theory and di is the dimension of the operator. The coefficients ci are
called the EFT or Wilson coefficients that parametrize the strength of the new
interactions. The effect of an operator is expected to be suppressed by (1/Λ)di−4,
thus high-dimensional operators can be neglected. By probing anomalous couplings
of higher order operators and their dimensionless coupling strengths represented by
the Wilson coefficients, a model-independent measurement of BSM effects can be
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obtained.
An example of a global EFT interpretation of multiple relevant processes has been
recently published by the CMS collaboration [149]. Multilepton final state events
are analyzed and total yields of the top production modes ttZ, ttW, ttH, tZq, tHq
are parametrized in terms of 16 Wilson coefficients associated with Effective Field
Theory operators relevant to the dominant processes in the data. A simultaneous
fit of the 16 Wilson coefficients to the data is performed and two-standard-deviation
confidence intervals for the coefficients are extracted. The results from fitting the
Wilson coefficients to the data are consistent with the Standard Model prediction.
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In Chapter 4 the most successful theory of fundamental interactions, called the
Standard Model, and its limitations have been discussed. Its predictions, as well as
alternative theoretical models, can be tested by confronting the calculations with
data obtained from the analysis of proton-proton collisions at very high energies. The
Large Hadron Collider (LHC) at CERN and its experiments have been built in order
to record proton-proton collisions in a controlled setting. In this chapter, the design
of the Compact Muon Solenoid (CMS) detector at the LHC, and its techniques to
reconstruct particles produced in proton-proton collisions will be discussed.

5.1 The Large Hadron Collider

The Large Hadron Collider is the world’s largest and most powerful particle acceler-
ator up to date. It is designed to achieve center-of-mass energies up to 14 Tev with
nominal instantaneous luminosities reaching 1 × 1034 cm−1 s−1 for proton-proton
collisions and luminosities of 1027 cm−2 s−1 for heavy ions (Pb) with an energy of
2.8 TeV per nucleon. The LHC accelerator is located on average 100 meters below
the surface in the 26.7 km long accelerator tunnel that previously contained the
LEP accelerator. The accelerator collides beams of protons or ions that travel in
opposite directions almost at the speed of light in two independent vacuum pipes.
The beams are guided around the accelerator ring by a strong magnetic field main-
tained by superconducting electromagnets. The description of the accelerator in the
following sections is based on reference [151].

5.1.1 Injection and Acceleration Chain

The LHC accelerator consists of eight long straight sections and eight arcs where su-
perconducting dipole magnets are installed that deflect the particles [151]. The four
main LHC experiments, ALICE, ATLAS, CMS, and LHCb are installed at interac-
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Figure 5.1: Schematic view of the CERN acceleration complex with its main experi-
ments [150]. The protons are first accelerated in LINAC before they are passed
on to the PS Booster, the PS, the SPS and finally to the LHC.

tion points (IP) in the middle of four long straight sections. A schematic view of the
CERN accelerator complex with the four experiments is shown in Fig. 5.1. In order
to bend protons with a momentum of up to 7 TeV per unit charge, a dipole field of
8.3 T is generated by superconducting dipole magnets made of Niobium–Titanium
(NbTi) [152]. The two beam pipes are contained in a single cryostat. In addition to
the dipole magnets, also quadrupole, sextupole and octupole magnets are installed.
The purpose of the quadrupole and octupoles magnets is the stabilization of the
beam, while the sextupole magnets allow to correct the energy dependence of the
magnetic fields. In total 8000 superconducting magnets are used to control the two
beams. A superfluid helium cooling system with eight continuous cryostats is used
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to cool the superconducting dipole magnets and the quadrupole magnets to a tem-
perature of 1.9 K.

In order to reach beam energies of the order of a few TeV, the protons have to
pass through several components of the CERN accelerator complex [152]. After the
extraction of a low-energy beam of protons, the protons are first accelerated in a
linear accelerator. In the LHC Run I and Run II this was done with the Linear
Accelerator 2 (LINAC2), which accelerated the protons up to 50 MeV. Since 2020
the Linear Accelerator 4 (LINAC4) has become the source of proton beams for the
CERN accelerator complex [153]. The beams from LINAC are further accelerated in
the four Proton Synchrotron Booster (PSB) rings to 1.4 GeV, and in the next step
by the Proton Synchrotron (PS) to 26 GeV. Finally, the Super Proton Synchrotron
(SPS) at the end of the injection chain accelerates the protons for the LHC to an
energy of 450 GeV and injects them in opposite directions in the LHC ring. This
first LHC injection phase lasts 20 to 30 minutes. Subsequently the beams are fur-
ther accelerated with a superconducting radio-frequency system to an energy of up
to 7 TeV in about 20 minutes. Once the LHC accelerator has been filled, the proton
beams can be used to record collisions at the IPs for several hours. In the case that
a problem occurs, the LHC fill can be terminated by forcing the proton bunches to
collide against graphite absorbers that are installed tangent to the beam pipes.

5.1.2 Performance

The particles in the beams are stored in bunches that collide at the interaction points
where the main experiments are installed. The resulting products from the particle
collisions are recorded with the different detectors. A high event rate, characterized
by the luminosity L, is crucial since only a small fraction of the collisions are of
interest. The event rate of a process with cross-section σ is given by:

dn

dt
= L(t) · σ . (5.1)

The instantaneous luminosity depends only on the beam parameters and, assuming
a Gaussian beam distribution, can be calculated as:

Linst = N2
b γrfrevnb

4πϵnβ∗ F (5.2)
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where Nb is the number of particles per bunch, nb the number of bunches per beam,
frev the revolution frequency, γr the relativistic gamma factor, ϵn the normalised
transverse beam emittance, β∗ the beta function at the collision point, and F the
geometric luminosity reduction factor due to the crossing angle at the interaction
points. Since 2010 the LHC has recorded proton-proton data in multiple acquisi-
tion periods at different center-of-mass energies. The different runs and recorded
luminosity by the CMS experiment are summarized in Table 5.1.

Period Year
√
s [TeV] LHC delivered [fb−1] CMS Recorded [fb−1]

2010 7 40.76 × 10−2 40.22 × 10−2

Run I 2011 7 6.13 5.55

2012 8 23.30 21.79

Run II

2015 13 4.22 3.81

2016 13 40.82 37.76

2017 13 49.79 44.98

2018 13 67.86 63.67

Table 5.1: Summary of the cumulative luminosity delivered by the LHC and recorded by
the CMS experiment. The information is accumulated from the CMS Public
Luminosity Website.

5.1.3 The Experiments

Eight experiments with diverse research programs are installed at the LHC. The
experiments are run by collaborations of scientists from institutes all over the world.
The four large particle experiments installed at the LHC interaction points are:

• ALICE [154] - an acronym that stands for “A Large Ion Collider Experiment” -
is a detector dedicated to heavy-ion physics at the LHC. It is designed to study
the physics of strongly interacting matter at extreme energy densities, where
a phase of matter called quark-gluon plasma forms. Studying its properties is
a key ingredient for a better understanding of Quantum Chromodynamics, in
particular the phenomenons of confinement and chiral-symmetry restoration.

• ATLAS [155] - an acronym that stands for “A Toroidal LHC ApparatuS” -
is one of the two general-purpose detectors at the LHC. It investigates a wide
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range of physics, from the search for the Higgs boson to extra dimensions and
particles that could make up dark matter. It is the largest experiment at the
LHC.

• CMS [156] - an acronym that stands for a “Compact Muon Solenoid” - is
the other general-purpose detector at the LHC and will be described in more
detail in the next sections, since the work of this thesis has been done within
this collaboration. It has a broad physics program and although it has similar
scientific goals as the ATLAS experiment, it uses different technical solutions
and a different magnet system design.

• LHCb [157] - an acronym that stands for the “Large Hadron Collider beauty”
- focuses on precision measurements of the properties and decays of b-quark
and c-quark hadrons as well as the search for indirect evidence of new physics
that can explain CP violation.

Besides of the four big experiments, there are four smaller experiments installed at
the LHC: TOTEM [158] and LHCf [159], which focus on measuring protons or heavy
ions at forward rapidity. TOTEM uses detectors positioned on either side of the
CMS interaction point, while LHCf is made up of two detectors located at the LHC
beamline, at 140 m either side of the ATLAS collision point. MoEDAL [160] uses
detectors deployed near LHCb to search for magnetic monopoles. The newest LHC
experiment is FASER [161], located 480 m from the ATLAS collision point with the
goal to search for light new particles and study neutrinos.

5.2 The Compact Muon Solenoid

The Compact Muon Solenoid (CMS) [156] detector at the CERN LHC is a general
purpose detector designed primarily to search for signatures of new physics in proton-
proton and heavy-ion collisions. The CMS detector has a cylindrical geometry that
is azimuthally (ϕ) symmetric with respect to the beamline. Particles that are pro-
duced in a collision in the interaction region first pass through a tracker, in which
the trajectories and vertices of charged particles are reconstructed from signals in
the sensitive layers. The next layer is an electromagnetic calorimeter (ECAL), where
electrons and photons are absorbed. The electromagnetic showers are detected as
clusters of energy in neighbouring cells, from which the energy and direction of the
particles are determined. Subsequently, the hadronic showers of charged and neutral
hadrons are fully absorbed in a hadron calorimeter (HCAL) and the corresponding
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Figure 5.2: Cutaway view of the CMS detector with the main detecting systems and char-
acteristics [162].

clusters are used to estimate their energies. The tracker, as well as the calorimeters,
is contained in a superconducting magnet, which provides a 3.8 T solenoidal field
that bends the trajectories and allows to measure the electric charge and momentum
of the particles. Outside of the solenoid, additional tracking layers are installed that
allow to measure muons which traverse the calorimeters without being stopped in
the dense material. Figure 5.2 displays a 3-dimensional view of the CMS detector
with its main detector sub-components.

The coordinate system used to describe the CMS detector has its center inside the
detector at the nominal interaction point. The x-axis points inwards towards the
LHC ring center, while the y-axis points vertically upwards and the z-axis points
tangent to the beam line. Due to the cylindrical symmetry of the detector, the
coordinate system can be expressed in spherical coordinates, where ϕ is the angle
with respect to the x-axis in the transverse x−y plane and θ is the polar angle with
respect to the LHC plane.
Since the colliding partons carry different longitudinal momentum fractions, the
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center-of-mass frames of the parton-parton collisions have different longitudinal
boosts. It is therefore useful to define the rapidity y for a particle with energy
E and momentum pz as:

y = 1
2 ln

(
E + pz

E − pz

)
. (5.3)

This variable has the advantage that the difference ∆y in rapidity between two par-
ticles is Lorentz invariant under boosts along the longitudinal z-axis. The rapidity
can be approximated by the pseudorapidity η in the relativistic limit, where E ≫ m:

η = − ln
(

tan θ2

)
. (5.4)

With these definitions, the angular distance between two particles can be defined
as:

∆R =
√

(∆ϕ)2 + (∆η)2 (5.5)

which is invariant under boosts along the z direction of the particle in the highly
relativistic limit.

5.2.1 Magnet

The magnetic field at the CMS experiment is generated by a superconducting
solenoid that is 13 m long, has a diameter of 5.9 m and weighs 12000 tons [163].
The radius of the magnet is sufficiently large to contain the inner tracker and the
calorimeters, while outside of it is the flux return system and the muon detector. An
advantage of this setup is the avoidance of energy losses of the particles before the
calorimeters by interactions with the coil material. An axial and uniform magnetic
field of 3.8 T is generated with currents up to 19 kA in NbTi wires that are kept
at a temperature of 4.5 K by a liquid helium cooling system. The magnetic field is
crucial for the momentum measurement of charged particles, since the measurement
is based on the bending of their trajectories in the magnetic field. The combination
of a high magnetic field and high precision on the spatial resolution of the tracker
ensures a high momentum resolution. The direction of the curvature is also used to
determine the electric charge of the particle.

5.2.2 Tracker System

The CMS tracker [164, 165] is a silicon detector with a sensitive area of over 200 m2.
The sensors are located inside the 3.8 T magnetic field provided by the magnet and
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are arranged in concentric cylinders and disks surrounding the interaction point of
the LHC beams. The tracker system provides hits along the curved trajectories of
charged particles with very high precision up to pseudorapidities |η| < 2.5. The

Figure 5.3: Sketch of one quarter of the Phase-1 CMS tracking system in the r − z view.
The pixel detector is shown in green, while single-sided and double-sided strip
modules are depicted as red and blue segments, respectively [164].

tracker consists of two sub-detectors with independent cooling, powering, and read-
out schemes. An overview over the two sub-detectors is shown in Fig. 5.3. A
challenge for the operation and data reconstruction of the tracker is the high particle
flux that induces radiation damage in the inner layers.
The inner sub-detector is the pixel detector which has a surface area of 1.1 m2. It
is segmented into 66 million pixels of size 100 µm by 150 µm and thickness 285 µm.
The detector is arranged in three layers in the barrel region at radii of 4.3 cm, 7.2 cm,
and 11 cm, respectively, and two disks on each side of the barrel and the endcap
regions at 34.5 cm and 46.5 cm from the interaction point.
The second sub-detector is the strip detector which surrounds the pixel detector.
It is segmented into 9.6 million strips with thickness between 320 µm and 500 µm,
and distances between the strips varying from 80 µm to 205 µm. The silicon strip
lengths range from 10 cm to 20 cm. The detector is arranged in 4 layers in the inner
barrel (TIB) and 6 in the outer barrel (TOB) at radii from 25 cm to 110 cm and
up to 120 cm in the z direction. Moreover, it also includes 12 disks in the endcap
region with radii up to 110 cm and in z up to 280 cm.
The pT resolution of the tracker for charged hadrons with transverse momentum
pT < 20 GeV is approximately 1%. With increasing pT the resolution degrades
approximately linearly. The charged particle tracks are used to reconstruct the
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positions of the primary and secondary vertices and the fine granularity allows the
separation of closely-spaced particle trajectories in jets.

5.2.3 Electromagnetic Calorimeter

The electromagnetic calorimeter (ECAL) [166] allows to identify and reconstruct
photons and electrons, and is valuable for the measurement of jets and missing
transverse momentum. The total energy of electrons, positrons and photons is mea-
sured by detecting the light of low energy photons from electromagnetic showers.
The light is produced in lead tungstate (PbWO4) scintillating crystals and is de-
tected and amplified by photodetectors located at the end of each lead tungstate
crystal. The crystals are transparent to their entire scintillation emission spectrum
and the choice of the crystals was made to obtain a high energy resolution by min-
imizing sampling fluctuations. In order to measure the energy with high precision,
an accurate calibration of the calorimeter is necessary.

The CMS ECAL is a homogeneous calorimeter made of 75848 crystals and is lo-
cated inside the CMS superconducting solenoid magnet. It is made up of a barrel
section (EB) covering the central rapidity region (up to |η| = 1.479) and of two disks
called endcaps (EE), which detect incident particles up to |η| = 3. The cylindri-
cal barrel consists of 61200 crystals assembled into 36 supermodules, each weighing
around three tonnes and containing 1700 crystals. The flat ECAL endcaps close
the barrel at either end and consist of almost 15000 crystals. The front face of the
barrel crystals has an area of 2.2×2.2 cm2, and the endcaps have a front-face area of
2.9 × 2.9 cm2. The material choice of PbWO4 with a radiation length X0 = 0.89 cm
and a Molière radius R0 = 2.19 cm results in a fine granularity calorimeter and en-
sures the radiation hardness necessary to handle the high particle flux at the LHC.
The barrel and endcap crystal length of 23 cm and 22 cm corresponds to 25.8 and
24.7 radiation lengths respectively, which is sufficient to contain more than 98% of
the energy of electrons and photons up to 1 TeV. Electrons and photons can be
reconstructed up to |η| < 2.5, while jets are reconstructed up to |η| = 3.0. The
relative energy resolution of the ECAL barrel as a function of the electron energy
has been measured to [167]:

σE

E
= 2.8%√

E/GeV
⊕ 12%
E/GeV ⊕ 0.3% . (5.6)
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In addition to the EE and EB, a pre-shower sampling detector, consisting of two
layers of lead absorber and two layers of silicon strip detectors, is placed in front
of each endcap disk. The detector provides a very high granularity in the forward
region and allows to measure the position of electromagnetic showers with high
accuracy. The main purpose of the pre-shower detector is to indicate the presence
of a photon or an electron in the front ECAL, and resolving photons from neutral
pions to discriminate them from photons stemming from the primary interaction.

5.2.4 Hadronic Calorimeter

The purpose of the CMS hadronic calorimeter (HCAL) [168] is to measure the en-
ergy and position of hadrons, such as pions, kaons, protons, and neutrons. It is also
a crucial component for the measurement of non-interacting, uncharged particles
such as neutrinos via missing transverse energy. The hadronic calorimeter is located

Figure 5.4: A schematic view of one quarter of the CMS HCAL, showing the positions of its
four major components: the hadron barrel (HB), the hadron endcap (HE), the
hadron outer (HO), and the hadron forward (HF) calorimeters [169].

behind the tracker and the electromagnetic calorimeter and consists of four sections.
A schematic overview of one quarter is shown in Fig. 5.4. The HCAL barrel (HB)
and endcap (HE) calorimeters cover regions of |η| < 1.3 and 1.3 < |η| < 3.0, re-
spectively. They are both sampling calorimeters made of alternating layers of brass
absorber and plastic scintillator tiles, with a hybrid photodetector (HPD) readout.
The brass absorbers cause the deposition of the energy of secondary particles due
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to interactions with the nuclei of the material and the scintillators convert a part
of this energy to visible light. The light from each tile produces an electric signal
in the photodetector, which makes it possible to measure the total amount of de-
posited energy. In general, hadrons deposit energy in both ECAL and HCAL, thus
the ECAL and HCAL need to be accurately calibrated to estimate the true hadron
energy. The HCAL absorber thickness in the barrel is about six interaction lengths
at normal incidence and about ten interaction lengths at larger pseudorapidities.
Since the space inside the solenoid is limited and about eleven radiation lengths are
required to absorb about 99% of the total energy of the hadrons, an outer detector
(HO) made of plastic scintillator layers is placed outside of the solenoid, also referred
to as tailcatcher. Including the ECAL, the total depth of the calorimeter system
amounts to at least 12 interaction lengths in the barrel, and about 10 interaction
lengths in the endcaps.
The combined ECAL and HCAL calorimeter energy resolution has been measured
in a pion test beam [170]:

σE

E
= 110%√

E
⊕ 9% (5.7)

where E is expressed in GeV.
The HCAL Forward (HF) is located at |z| = 11 m covering the range 2.9 < |η| < 5. It
is a Cherenkov calorimeter that collects light with scintillating quartz fibres inserted
in a steel absorber, and is read out with photomultiplier tubes. Due to the HF, nearly
the full pseudorapidity is covered, and thus by measuring the energy of charged and
neutral particles, an accurate estimate of the missing energy in the event is possible.

5.2.5 Muon System

The muon system [171] is located outside the solenoid and covers the range |η| < 2.4.
Many of the signatures of the physics that CMS measures include muons, which
are the only type of charged particles that can traverse through all other detector
systems without a significant energy loss. The muon system consists of gaseous
detectors sandwiched between the layers of the steel flux-return yoke that allow a
traversing muon to be detected at multiple points along the track path. A schematic
overview of the muon system is shown in Fig. 5.5. Three different types of gaseous
detectors have been chosen depending on the uniformity and strength of the magnetic
field, expected radiation fluxes and signal readout times: drift tube chambers (DTs),
cathode strip chambers (CSCs), and resistive plate chambers (RPCs). Muons ionize
the gas in the chambers, which causes electric signals that are detected at the wires
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Figure 5.5: Quadrant of the CMS detector that shows the muon system, including resistive
plate chambers, drift tube chambers and cathode strip chambers [171].

and strips. The DT and CSC chambers are located in the regions |η| < 1.2 and
0.9 < |η| < 2.4, respectively, and are complemented by RPCs in the range |η| < 1.9.
The chambers are arranged to maximize the coverage and to provide some overlap
where possible. The DTs are segmented into drift cells and the position of the muon
is determined by measuring the drift time to an anode wire of a cell with a uniform
electric field, such that the drift velocity is approximately constant. The CSCs are
multi-wire proportional counters with a finely segmented cathode strip readout. The
position of the traversing muon is determined by combining information from the
cathode strips and anode wires, which yields an accurate measurement of the (R−ϕ)
coordinate at which the muon crosses the gas volume. The RPCs are double-gap
chambers operated in avalanche mode, designed to provide timing information for
the muon trigger. The inner tracker resolution dominates the muon momentum
measurement up to a pT of about 200 GeV, since the material of the calorimeters
induces multiple scattering. For muons with pT up to 100 GeV, matched to tracks
in the silicon tracker, the relative pT resolution is of 1% in the barrel and 3% in the
endcaps. For muons with pT up to 1 TeV the pT resolution in the barrel is better
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than 7% [171, 172]. The muon system is the key element for high momentum muon
measurements.

5.2.6 Trigger and DAQ

Only a small fraction of the proton-proton collisions contain events of interest to the
CMS physics program, and due to the limited computing budget only a small fraction
of the produced events can be stored for the offline analysis. The trigger system [173]
selects the interesting events for offline storage from the bulk of the proton-proton
collisions. To achieve this, the CMS trigger system utilizes two different levels.
The first level exploits information from the calorimeters and muon detectors in
custom hardware processors to select the most interesting events in a fixed time
interval of less than 4 µs. The second level consists of the high level trigger (HLT),
which further decreases the event rate by using the full event information, including
the information from the silicon tracker. The thresholds of the first trigger level
are adjusted during data taking depending on the value of the LHC instantaneous
luminosity in order to keep the output rate below 100 kHz, which is the upper limit
imposed by the CMS readout electronics. The HLT further reduces the output rate
to 400 Hz for offline storage and improves the purity of the selected physics objects.
The overall output rate of the L1 trigger and HLT can be adjusted by prescaling the
number of events that pass the selection criteria of specific algorithms. Moreover, the
trigger and data acquisition systems also provide information for the monitoring of
the detector. The CMS experiment has also developed two new strategies at the high
level trigger to search for new physics [174]. The first strategy, called Data Scouting,
is based on event-size reduction rather than event filtering and can for example be
used to search for low mass resonances. The second strategy, called Data Parking,
refers to the technique of selecting events at the HLT and immediately moving them
to tape storage in order to skip the prompt reconstruction, such that events can be
stored on tape until there are sufficient computing resources to reconstruct them.
In 2018, a large amount of data containing B hadrons was collected by CMS and
parked for a delayed offline reconstruction.

5.3 Event Reconstruction

The offline event reconstruction for the CMS experiment is based on the Particle
Flow (PF) algorithm [175]. The description of the event reconstruction will focus
on the aspects relevant for the analysis of Run I CMS Open Data. The concept
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of the algorithm is a global event reconstruction by correlating basic elements (i.e.
tracks and clusters) obtained from all sub-detector systems, in order to reconstruct
all particles in the event and measure their properties. The particles are locally re-
constructed in the different sub-detectors which provides the building blocks for the
subsequent overall event description. In order to reconstruct the final state objects,
possible superpositions of the signals are taken into account. The final objects that
are then used in the CMS analyses are Particle Flow candidates such as jets, pho-
tons, electrons, charged and neutral hadrons, muons, taus, and missing transverse
energy. The full detector information is also exploited for particle identification.
Figure 5.6 depicts the interactions of several particle types with the sub-detector
systems of the CMS detector.
A great challenge in the reconstruction of the physics objects is to mitigate pile-up
effects. Pile-up refers to additional proton-proton interactions in the same bunch
crossing. The particles produced in these interactions are also recorded in the de-
tector and the pile-up interactions result in additional charged hadrons, photons,
and neutral hadrons, which affects jets, missing transverse energy, the isolation of
leptons and the identification of hadronic tau-lepton decays. Therefore, dedicated
pile-up mitigation techniques have been implemented, such as the CHS and PUPPI
algorithms [176]. The description of the algorithm is based on reference [175] which
is also recommended for further reading.

5.3.1 Particle Flow Algorithm

The initial step of the CMS event reconstruction is the reconstruction of the trajec-
tories of charged particles in the inner tracker. A combinatorial track finder based
on Kalman Filtering (KF) is used to reconstruct these tracks in three stages. The
first stage consists of the initial seed generation with a few hits that are compatible
with a charged-particle trajectory. In the second step a trajectory is built by gath-
ering hits from all tracker layers along this charged-particle trajectory and in the
third step a final fit is performed to determine the origin, transverse momentum,
and direction of the charged-particle. An additional operation is then applied, that
removes candidate tracks that do not pass a quality threshold and removes possible
duplicates. To increase the tracking efficiency while keeping the mis-reconstructed
track rate low, the combinatorial track finder is applied in several iterations, each
with moderate efficiency but with a high purity.
The reconstructed charged particle trajectories can be used to identify primary and
secondary vertices by applying a custom algorithm for adaptive vertex fitting in
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Figure 5.6: Sketch of the particle interactions in a transverse slice of the CMS detector in
each of the sub-detector systems [175].

combination with deterministic annealing [177]. The primary vertex has to satisfy
several quality criteria. If an event contains multiple possible primary vertices, the
one with the largest transverse momenta squared sum of objects associated with
the vertex is chosen. The selection of a main primary vertex mitigates the effect
of pile-up interactions by removing the contributions from particles linked to pile-
up vertices. In recent years, novel algorithms based on modern machine learning
techniques have been developed that potentially will improve the performance of
tracking [178, 179].

For the clustering of the calorimeter detector readouts, a specific clustering algo-
rithm was developed for the PF event reconstruction, that aims at a high detection
efficiency also for low-energy particles and at separating close energy deposits. The
clustering is performed separately in each sub-detector. In the first step cluster seeds
are identified as cells with an energy greater than a given seed threshold, as well
as greater than the energy of the neighbouring cells. The second step consists of
building topological clusters from the seeds by aggregating cells with at least a cor-
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ner in common with a cell already in the cluster and with an energy greater than a
threshold. Finally, the clusters are reconstructed with an expectation-maximization
algorithm based on a Gaussian-mixture model. The purpose of the clustering algo-
rithm in the calorimeters is fourfold: it detects and measures the energy and direction
of stable neutral particles such as photons and neutral hadrons, it separates these
neutral particles from charged hadron energy deposits, it reconstructs and identifies
electrons and all accompanying bremsstrahlung photons and additionally improves
the energy measurement of charged hadrons for which the track parameters were
not determined accurately, which often affects low-quality and high-pT tracks.

A particle gives rise to several PF elements in the various CMS sub-detectors.
Therefore, the particle is reconstructed with a link algorithm that connects the
PF elements from different sub-detectors. The link algorithm is computationally
expensive and is thus restricted to the nearest neighbours objects. The quality of
the link is quantified by the distance between two linked elements. The link algo-
rithm then constructs a PF block of elements associated either by a direct link or by
an indirect link through common elements. First, the muon candidates are recon-
structed in each PF block, and the corresponding PF elements are removed. Second,
the electrons are reconstructed and isolated photons are identified in the same step.
The remaining elements in the block are then identified as charged hadrons, neutral
hadrons, and photons. In addition, secondary particles originating from nuclear in-
teractions are reconstructed. The reconstruction process is rather conservative and
usually additional selection criteria are specified during a CMS data analysis, de-
pending on the concrete objective of the analysis. Recently, CMS has also started
to use modern machine learning techniques for particle flow reconstruction that aim
at a scalable, flexible full-event reconstruction [180].

5.3.2 Muons

The reconstruction of muons is not PF specific since the muon spectrometer allows to
identify and reconstruct muon tracks with very high efficiency over all the detector
acceptance. This is mainly due to the fact that the calorimeters absorb almost
all particles except for muons and neutrinos. One of the main challenges of muon
reconstruction includes the dismissal of cosmic muons, as well as the rejection of
signals from highly energetic hadrons that produce a response in the muon detectors.
Three different types of muon candidates can be defined depending on how they are
reconstructed:
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• Stand alone muons: are tracks that are built from segments reconstructed
from local hits in the CMS muon spectrometer.

• Global muons: are identified by merging stand-alone tracks and inner tracks
that are reconstructed in the inner tracker system. A combined fit is then
performed and the transverse momentum is reevaluated.

• Tracker muons: are obtained by extrapolating inner tracks to track segments
locally reconstructed in the muon detectors.

The PF algorithm applies an additional set of selection criteria to muon candidates
reconstructed with the standalone, global, or tracker muon algorithms. Additionally,
the PF algorithm also exploits information from muon energy deposits in ECAL and
HCAL which further improves the identification performance. Several selection cri-
teria are defined to balance the desired efficiency and purity during the subsequent
analysis depending on the concrete requirements. The variables are based on track
properties, such as the χ2 or the number of hits per track, and on global properties,
such as compatibility with the primary vertex. Based on these variables, a loose,
medium and tight working point is defined for the muon identification that is com-
monly used in CMS physics analyses.
A particle flow isolation variable is calculated by evaluating the pT of all charged
hadrons h±, photons γ, and neutral hadrons h0 within a ∆R cone between 0.3 and
0.5 around the direction of the muon. The PF isolation relative to the muon pT is
defined as:

IPF = 1
pT

∑
h±

ph±
T +

∑
γ

pγ
T +

∑
h0

ph0
T

 . (5.8)

This isolation variable allows to select prompt muons produced in the electroweak
decay of massive particles such as Z or W bosons, which for example can be used
to identify leptons produced in jets through the decay of heavy-flavour hadrons or
charged pions and kaons .

5.3.3 Electrons and Photons

The reconstruction of electrons is based on the combined information from the inner
tracker and the calorimeters. Since both electrons and photons cause electromag-
netic showers in the ECAL, the energy deposition patterns of electrons and photons
are similar and therefore they are reconstructed together. In a given PF block,
an electron candidate is seeded from a track if the corresponding ECAL cluster is
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not linked to three or more additional tracks. Photon candidates are seeded from
an ECAL supercluster with ET larger than 10 GeV if they are isolated from other
tracks and calorimeter clusters in the event. The total energy of the ECAL clusters
is corrected with analytical functions. The energy of the electrons is estimated by
combining the information from the track and the corrected ECAL energy and the
direction is chosen to be that of the track. In the case of photons the assigned
energy is the corrected ECAL energy and the photon direction is taken to be that
of the cluster and the primary vertex. Electron identification is done by applying
selections to multiple variables based on track and ECAL cluster properties. Since
2012, BDT discriminators are trained separately in the ECAL barrel and endcaps
acceptance with up to 14 of the variables, which improves the identification. During
reconstruction, electron candidates are only required to satisfy loose identification
criteria in order to ensure a high identification efficiency, with the drawback of a
large mis-identification probability for charged hadrons. Typically, the electron iden-
tification is tightened in the physics analysis depending on the specific requirements
of each analysis. Similar to muons, for electrons a PF isolation variable is calculated
as described in equation 5.8 that can be used to identify electrons stemming from
the primary interaction vertex.

5.3.4 Jets and b-Tagging

Jets are reconstructed with the anti-kT algorithm [181], which is a collinear safe and
infrared safe algorithm that allows to compare jet properties with theoretical QCD
calculations. The algorithm clusters all particles reconstructed by the PF algorithm
and the final state objects are referred to as “PF Jets”. The algorithm successively
merges particles into clusters according to the distance dij between two particles i
and j and the distance diB between the particle i and the beam B:

dij = min
(
p2a

T i, p
2a
T j

)∆R2
ij

R2 and diB = p2a
T i (5.9)

where pTi is the transverse momentum of the particle i, ∆Rij is the distance as
defined in equation 5.5, R is the radius parameter and a = −1 in the anti-kT algo-
rithm. The clustering algorithm proceeds by identifying the smallest of the distances
between dij and diB. If it is dij then the physics objects i and j are combined to-
gether, else if it is diB then the object i is called “Jet” and is removed from the list
of objects and the algorithm is repeated until no PF particles are left. The choice
of the parameter R has to provide a balance between including all radiation from
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the initial parton and including noise from the underlying event. The radius of the
parameter R can vary, and in CMS values of 0.4, 0.5 and 0.8 are chosen, where radii
of 0.8 are used for final states with highly boosted particles to detect hadronic decays.

After the primary vertex has been reconstructed, all charged hadrons whose tracks
are associated to a pile-up vertex are removed from the list of particles to be used in
the jet reconstruction for the event. This procedure is called pile-up charged-hadron
subtraction and denoted as CHS. The modern PUPPI algorithm [176] aims to use
information related to local particle distribution, event pile-up properties, and track-
ing information to mitigate the effect of pile-up on observables of clustered hadrons.
The jets need to be calibrated in order to have the correct energy scale which is
achieved by the application of jet energy corrections (JEC) [182]. The energy scale
and the momentum resolution of the jets is often one of the main sources of the
systematic uncertainty, thus a detailed understanding of the corrections is crucial
for many analysis. The jet energy corrections are calculated from MC simulations
and are then tuned to data by combining several channels and data-driven methods.
The JEC successively correct for the offset energy stemming from pile-up, the detec-
tor response to hadrons, and residual differences between data and MC simulation.

A key ingredient of many high precision measurements and searches for new physics
is the identification of jets originating from heavy flavor quarks. The identification
is based on the distinctive properties of heavy flavour hadrons. Typically, they have
relatively large masses, long lifetimes, and decay particles with hard momentum
spectra. If the hadrons are boosted, the long lifetime with a cτ of ∼ 0.5 mm for
b-hadrons and ∼ 0.3 mm for c-hadrons results in displaced tracks with respect to the
primary vertex that can be used to reconstruct secondary decay vertices. A sketch of
this is depicted in Fig. 5.7 for a b-jet. The higher mass results in decay products with
a larger transverse momentum relative to the jet axis compared to jets originating
from light partons. Additionally, heavy hadrons possess a large branching ratio for
semileptonic decays, hence the presence of soft leptons in the produced jets consti-
tutes another feature that can be exploited. Flavour tagging techniques for bottom
and charm hadrons, referred to as b-tagging or c-tagging, combine the information
related to these properties to identify the flavour of the parton of a considered jet.
Several different algorithms are used in CMS, that have been constantly improved in
the last decade. The best performing algorithms are based on multivariate combina-
tions of the available information [184]. The mis-identification versus efficiency curve
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Figure 5.7: Schematic representation of the features of a b-jet that can be exploited for
b-tagging. Diagram adapted under licence CC BY 4.0.

of the main b-tagging algorithms in Run I and Run II is shown in Fig. 5.8 [183]. The
Jet probability algorithm (JP) is based on a calibrated estimation of the displaced
track probabilities. The Combined Secondary Vertex (CSV) algorithm combines
secondary vertex and track-based lifetime in a likelihood discriminator [184]. The
improvement between different versions of the CSV b-tagging algorithm is due to the
application of multivariate techniques and the inclusion of additional discriminating
variables. The CMVA tagger combines the discriminator values of various taggers,
which further improves the identification. The newest generation of b-tagging al-
gorithms in CMS are based on modern deep-learning techniques, which improves
the performance significantly. The DeepCSV approach starts from the same jet fea-
tures as CSVv2, but extends the number of considered tracks per jet and exploits a
deep neural network architecture. As discussed in Chapter 2.4.2, the DeepJet [185]
algorithm uses a network architecture that does not only use a subset of the jet con-
stituents but exploits the full information of all jet constituents, charged and neutral
particles, secondary vertices, and global event variables simultaneously. The most
sophisticated algorithms are based on GNNs, such as the ParticleNet algorithm [47].
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Figure 5.8: Mis-identification probability for c- and light-flavour jets versus b-jet identifica-
tion efficiency for various CMS b-tagging algorithms measured in tt̄ events [183].

5.3.5 Taus

The tau-lepton decay produces either a charged lepton and two neutrinos, or several
hadrons and one neutrino, with the branching fractions given in Table 5.2. Hadronic
tau decays, also denoted as τh, can be distinguished from quark and gluon jets by
exploiting differences in the multiplicity, the collimation, and the isolation of the de-
cay products. The PF algorithm is able to resolve particles produced in the decay of
a tau-lepton and to reconstruct the surrounding particles to determine its isolation.
In order to reconstruct and identify the hadronic decay products of tau leptons, the
hadrons-plus-strips (HPS) algorithm [186] is applied to the reconstructed PF par-
ticles. The algorithm is seeded by jets with pT > 14 GeV and |η| < 2.5. The jet
constituents are combined into τh candidates corresponding to one of the main tau-
lepton decay modes given in Table 5.2. To reconstruct the ρ and a1 resonances, the
HPS algorithm relies not only on photons but on so-called strips in order to include
possible electrons and positrons from photon conversions. Strips are a collection of
electrons or photons, that are collected around the most energetic electromagnetic
particle found within the PF jet associated to the hadronic tau candidate in a win-
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Decay mode Meson resonance B[%]
τ− → e−v̄evτ 17.8
τ− → µ−v̄µvτ 17.4
τ− → h−vτ 11.5
τ− → h−π0vτ ρ(770) 26.0
τ− → h−π0π0vτ a1(1260) 10.8
τ− → h−h+h−vτ a1(1260) 9.8
τ− → h−h+h−π0vτ 4.8

Other modes with hadrons 1.8
All modes containing hadrons 64.8

Table 5.2: Branching fractions of the main τ decay modes [9].

dow with size 0.05 × 0.20 in the (η, ϕ) plane. The most energetic electromagnetic
particle is associated to the strip and the four momentum is recalculated. The as-
sociation is iterated until no further electromagnetic particle is found.
Each τh candidate is required to have a mass compatible with its decay mode. Colli-
mated τh candidates are selected by requiring all charged hadrons and neutral pions
to be contained in a cone of radius ∆R = (3.0 GeV)/pT in the (η, ϕ) plane which
is called the signal cone. The four-momentum of the τh candidate is determined
by summing the four-momenta of its constituent particles. The following decay
signatures are defined:

• Single Hadron which corresponds to h−vτ or h−π0vτ with a low pT π0;

• Hadron + Strip which corresponds to h−π0vτ with the two photons stem-
ming from the π0 being close on the calorimeter surface;

• Hadron + 2 Strips which corresponds to h−π0vτ where the two photons
stemming from the π0 are well separated;

• 3 Hadrons which is equivalent to h−h+h.

The loose, medium, and tight working points of the HPS algorithm refer to the
level of isolation of the tau candidate. The isolation is defined by considering the
additional charged hadrons or photons reconstructed in an isolation cone (∆R = 0.5)
around the tau candidate. The probability for hadronic jets to be mis-tagged as
tau jets can be reduced by the application of isolation discriminators. The newest
generation of tau-identification algorithms exploits recent DNN multi-classification
methods [187].
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5.3.6 Missing Transverse Energy

Particles that do not interact with the detector material, e.g. neutrinos, are mea-
sured indirectly by missing transverse momentum. In the Particle-Flow algorithm
the raw missing transverse momentum vector is computed as the sum of the trans-
verse momenta of all PF reconstructed objects:

p⃗ miss
T,PF(raw) = −

Nparticles∑
i=1

p⃗T,i . (5.10)

The jet-energy-corrected missing transverse momentum includes a term that replaces
the raw momentum of each PF jet with momentum above 10 GeV by its corrected
value:

p⃗ miss
T,PF = −

Nparticles∑
i=1

p⃗T,i −
NPFjets∑

j=1

(
p⃗ corr

T,j − p⃗T,j

)
(5.11)

which improves the resolution of the missing transverse energy.

5.4 Event Simulation

Event simulations are crucial for the design and upgrade of the CMS detector, as
well as to analyze and interpret the recorded data. Most importantly, simulations
indicate which signature a new particle would leave in the detector if it existed.
Typically, detector simulation consists of four steps: the first step is the generation
of primary physics processes with dedicated MC generators, such as PYTHIA [133]
and MadGraph [136]. The second step consists of the simulation of the interactions
of a traversing particle with the detector and the resulting energy depositions in
the detector, followed by the third step which is the digitization, where the energy
deposits in the detector are converted into digital signals. The final step is the
reconstruction, where the objects for physics analysis are reconstructed from the
digital signals [188]. The CMS experiment uses a software package called CMSSW
to produce Monte Carlo simulation events [189, 190]. Primary physics processes are
generated by Monte-Carlo event generators, as discussed in Chapter 4.3. CMS has
developed a full detector simulation framework (FullSim) that produces detailed
simulations of the particle interactions within the CMS detector. It is based on the
“GE-ometry ANd Tracking” package (GEANT4), which is a toolkit capable of de-
scribing complex geometry and the propagation of particles through materials and
fields. It allows detailed modeling of detector geometry and particle interactions.
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FullSim is dominantly used for SM processes in precision measurements or searches
for new physics that require a very high accuracy. However, FullSim needs several
minutes of simulation time per event. In particular, the detector simulation step is
the most expensive in terms of CPU usage, consuming 40% of the total computing
budget of CMS [191].

To mitigate this issue, CMS has developed a parametric fast simulation framework
(FastSim) [192], which reduces the simulation time by approximately two orders of
magnitude and the simulation and reconstruction time by a factor of ∼20, yet repro-
duces FullSim with ∼10% accuracy [193]. The main difference between FullSim and
FastSim lies in the simulation step. While FullSim uses the exact detector geometry
and detailed models for material interactions, FastSim makes use of a simplified
geometry with infinitely thin material layers and simple parametrized interaction
models. In the reconstruction step, FullSim makes use of the PF algorithm that is
used to reconstruct the real CMS data. FastSim uses the standard reconstruction for
calorimetry and muon systems, but a simplified reconstruction for tracking in order
to reduce CPU time. The increasing LHC luminosity will have significant implica-
tions for the CMS computing budget [191] and pile-up will require the simulation of
a higher number of events, thus the importance of fast simulations is expected to
increase. The use of unsupervised machine learning techniques, such as Generative
Adversarial Networks or Variational Autoencoders, may be a possibility to provide
a reliable fast simulation alternative without relying on simplified parametrizations
and could bring orders of magnitude of improvement [194].

105



6 Measurement of the tt̄ → τh + jets
Cross-Section with CMS Open
Data

In Chapter 3 several novel approaches have been discussed that address the problem
of constructing summary statistics with machine learning in the presence of nuisance
parameters. In order to convince large collaborations consisting of several thousand
members of the usefulness and correctness of novel analysis methods, it is beneficial
to test and benchmark the algorithms on datasets that are as realistic as possible.
This motivates the development of a dataset that reproduces a realistic CMS analysis
and is accessible by the public in order to facilitate comparisons between novel
approaches to inference. In this chapter, the reproduction of a full historic CMS
analysis with systematic uncertainty based on real Run I legacy data of the CMS
experiment, available in the CERN Open Data portal, is described. The reproduced
analysis has been published by the CMS experiment in 2013 and measures the tt̄
production cross-section in the τ+jets channel in pp collisions at

√
s = 7 TeV [12].

In the context of testing and benchmarking the inferno algorithm, this analysis
is of interest because it is dominated by systematic uncertainties and uses a neural
network classifier to construct a summary statistic as input for the inference. Thus
it constitutes a use case in which the inferno technique can possibly improve the
precision of the measurement. The reproduction of the analysis is based on the
research paper of the CMS Collaboration [12], who is the original author of this
analysis, and the thesis in [195] that contains additional details. In the following
this analysis will also be referred to as the “original analysis”.

6.1 Motivation

The CMS measurement of the tt̄ production cross-section in the τ+jets channel uses
events that contain one jet identified as a hadronically-decaying tau-lepton and at
least four jets, where at least one is identified as a b-jet. The Feynman diagram of
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this process is shown in the left panel of Fig. 6.1. The branching fraction of a top-
quark decay to a W boson and a b-quark is close to 100% in the Standard Model.
In total, 9.8% of the produced tt̄ pairs are expected to lead to this final state. The
tt̄ production cross-section at

√
s = 7 TeV measured in this analysis is:

σtt = 152 ± 12 (stat.) ± 32 (syst.) ± 3 (lum.) pb (6.1)

which is consistent with the Standard Model prediction of σSM
tt = 164 ± 10 pb.

The data-simulation agreement of the neural network classifier used in the analy-
sis is shown in the right panel of Fig. 6.1. In general, the exact reproduction of a
Run I analysis is difficult due to changes in the software and different processing of
simulation and data. For example, the b-tagging algorithms used by the CMS col-
laborations have been continuously improved and the algorithms recommended for
reprocessed legacy data are different from the algorithms used during the first Run I
measurements. Therefore, this work does not aim at an exact numerical reproduc-
tion of this tt̄ cross-section measurement with CMS Open Data, but uses the same
methodology and shows that the measured cross-section is in agreement with the
original analysis. While the motivation for this work is not measuring new physics,

Figure 6.1: Left panel: Feynman diagram for the decay of a top pair into τ+jets. Right
panel: data-simulation agreement for the neural network classifier used in the
original analysis [12].

but rather testing a novel algorithm, it still is of interest to understand the historical
physics motivation for this measurement. As discussed in Chapter 4.4, the measure-
ment of the tt̄ production cross-section is an important test of the Standard Model,
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since the mass of the top-quark is of particular importance in many extensions of
the Standard Model and the direct measurement of the tt̄ cross-section in the τ+jets
final state offers the opportunity to investigate possible mass- or flavour-dependent
couplings of the top-quark. Moreover, a hypothetical charged Higgs boson where
the top-quark decays via t → H−b and the charged Higgs boson subsequently via
H− → τ−ν̄τ , would result in an enhanced cross-section. A possible deviation from
the SM expectation might thus occur in the tt̄ → τ + jets decay channel [145].

6.2 CMS Open Data and Software

To make the analysis and the study of the inferno algorithm reproducible, the
analysis is performed with CMS Open Data. The CMS experiment at CERN has
released data from recorded proton-proton collisions at the LHC since 2014 that
can be used for research purposes. Most of the data from the first LHC Run In
2010–2012 with the corresponding simulated samples are available in the CERN
Open Data portal and tools to analyze them are provided [196]. The data have
been published in the format and with the same data quality requirements that are
used in official analyses of the CMS collaboration. The main format used in CMS for
Run I data analysis is the Analysis Object Data (AOD) format, based on the ROOT
framework [31] and processed with the CMS software CMSSW [197], which is also
used for data taking, event reprocessing, and analysis, as well as for the production
of MC simulations. The recorded proton-proton collisions are stored in “primary
datasets” depending on the CMS trigger selections. An event typically contains

Figure 6.2: Typical workflow of a CMS analysis [196].
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the data of one hard-scattering event and several pile-up events in the same beam
crossing. The simulated datasets are generated by Monte Carlo generators, and the
interactions of the produced particles with the CMS detector are simulated with
CMSSW. Subsequently, additional events are added on top of the simulated pro-
cess to emulate pile-up effects and the simulated events are processed into the same
format as the collision data. In the analysis of the AOD format, values such as jet
energy corrections or trigger information are accessible from a condition database.
Moreover, a tool is provided that allows the evaluation of luminosity for specific
event selections.

The workflow for the reproduction of the tt̄ cross-section measurement in the τ+jets
channel follows the typical workflow of a CMS analysis as depicted in Fig. 6.2.
The High Performance Computing system HTCondor at CERN is used to process
the data and store the relevant information in a lightweight ROOT format, called
NanoAOD [198] with the 5.3.32 version of the CMS software CMSSW. Processing
all selected samples takes of the order of O(48h). The object and event selection is
done with the awkward array package [199], which is a library for nested, variable-
sized data using numpy-like idioms. The awkward array package allows to do
columnar analysis that is significantly faster than using plain ROOT event loops.
The coffea package [200], which is compatible with awkward array, is used to
calculate several corrections, such as jet energy corrections, for the selected MC
samples. Processing all preselected NanoAODs with systematic uncertainties takes
of the order of O(1h). Further data pre-processing for the machine learning is done
with the pandas package [201], while the machine learning models are implemented
with PyTorch [202]. For visualization matplotlib [203] and ROOT are used. The
final inference is done with the cabinetry [204] package based on the inference tool
pyhf [33]. The CMS combine tool [205], which is based on the RooFit/RooStats
package, is used to cross-check the results obtained with cabinetry. Most of the
python packages for fast columnar analysis and inference have been developed in
the last years and will be crucial for the development of HEP analysis in the future.

6.3 Data and Simulation

The choice of the data and simulation samples follows the choices made in the orig-
inal analysis [12]. The used triggers, called QuadJet40_IsoPFTau40 and Quad-
Jet45_IsoPFTau45, are part of the MultiJet primary dataset [206, 207] which is
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Dataset run range trigger L
(
pb−1

)
Run2011A [206] 160431 − 165969 QuadJet40_IsoPFTau40 357.5

Run2011A [206] 165970 − 166782 QuadJet45_IsoPFTau45 363.5

Run2011A [206] 166783 − 171049 QuadJet40_IsoPFTau40 514.7

Run2011A [206]

Run2011B [207]
171050 − 178420 QuadJet45_IsoPFTau45 2930.2

Total Luminosity 4165.9

Table 6.1: Datasets with the chosen trigger, corresponding run numbers and luminosity. The
version of the datasets is 12Oct2013-v1.

available in the CERN Open Data portal. The design of the triggers will be dis-
cussed in detail in the next section. Table 6.1 summarizes the chosen trigger and
the corresponding integrated luminosity for the 2011 Run-A and Run-B data tak-
ing period. According to the original analysis [12], the QuadJet40_IsoPFTau40
trigger was prescaled by mistake for the runs 165970-166782, for this reason the
QuadJet45_IsoPFTau45 trigger is used instead. Only part of the 2011 Run-B
is used in the analysis since the QuadJet45_IsoPFTau45 trigger is prescaled
from Run-178421 on. In total, about 80 % of the data have been recorded with
the QuadJet45_IsoPFTau45 trigger. All selected runs have passed a set of data
qualification criteria and are contained in a file of validated runs that is provided by
the CMS collaboration [196]:
Cert_160404-180252_7TeV_ReRecoNov08_Collisions11_JSON.txt.
The luminosity is calculated with the official CMS tool brilcalc and the total in-
tegrated luminosity of the analyzed datasets sums up to L = 4.16 fb−1. It yields a
slightly higher luminosity compared to the luminosity quoted by the original analy-
sis (L = 3.9 fb−1).

The legacy Open Data Summer11 simulation provided by the CMS experiment [196]
is used to estimate the signal efficiency and the efficiencies of the electroweak and
tt background processes, which include contributions from the full hadronic, lep-
ton+jets, τh+lepton and τhτh channels. Table 6.2 summarizes the considered sim-
ulated datasets that are available in the CERN Open Data portal, as well as the
corresponding theoretical cross-sections. The acronym “st” denotes simulated single-
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Process σ(pb) Dataset Events

tt̄ 164 ± 10 TTJets-TuneZ2-TTeV-
madgraph-tauola [208]

54,990,752

W + jets 31314 ± 1558 WJetsToLNu_TuneZ2_7TeV-
madgraph-tauola [209]

78,347,691

Z + jets 3048 ± 132 DYJetsToLL_TuneZ2_M-
50_7TeV-madgraph-
tauola [210]

36,408,225

st (s) 2.76 ± 0.1 T_TuneZ2_s-channel_7TeV-
powheg-tauola [211]

229,786

st (tW) 5.3 ± 0.6 T_TuneZ2_tW-channel-
DR_7TeV-powheg-
tauola [212]

744,859

st (t) 42.6 ± 2.4 T_TuneZ2_t-channel_7TeV-
powheg-tauola [213]

3,249,552

st̄ (s) 1.52 ± 0.09 Tbar_TuneZ2_s-
channel_7TeV-powheg-
tauola [214]

139,258

st̄ (tW) 5.3 ± 0.6 Tbar_TuneZ2_tW-
channel-DR_7TeV-powheg-
tauola [215]

801,626

st̄ (t) 22.0 ± 0.9 Tbar_TuneZ2_t-
channel_7TeV-powheg-
tauola [216]

1,943,163

Table 6.2: Simulated datasets for the signal and background samples used in the CMS Open
Data analysis. The values of the theoretical cross-section and the corresponding
uncertainties are taken from [217, 218].
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top events in the s-, t− and tW -channel. The tt̄ signal and background events and
the W/Z + jets events are simulated with the MADGRAPH [136] generator using
the parton distribution function set CTEQ66 [129]. The parton showering, frag-
mentation, hadronization and decays of short lived particles, except tau-leptons, is
simulated with PYTHIA [133]. The tau-leptons are decayed using TAUOLA [219].
Single-top events are simulated with POWHEG [220] interfaced to PYTHIA and
TAUOLA. The used top-quark mass value is 172.5 GeV and the Next-to-Next-
Leading-Log (NNLL) tt̄ cross-section is assumed to be 164 ± 10 pb [217].

6.4 Trigger

According to the original analysis [12], a dedicated multijet trigger was developed to
record pp → tt̄ → τh+jets events. The trigger requires the presence of four calorime-
ter jets, one of them identified as a tau-lepton. It is based on two consecutively
applied filters, referred to as jet and tau filters. Since the event rate increased with
the rising instantaneous luminosity, two versions of the trigger have been developed:
QuadJet40_IsoPFTau40 and QuadJet45_IsoPFTau45, where in the latter
the pT thresholds for the jets and the tau have been raised. The Level-1 decision of
the trigger is based on the identification of four L1 jets with pT > 20 GeV (pT > 28
GeV starting from the beginning of Run2011B). The HLT decision consists of two
steps:

1. the HLT-jet-filter requires the presence of four corrected calorimeter jets with
pT > 40 GeV (respectively pT > 45 GeV for the more stringent trigger) and
|η| < 2.5;

2. the HLT tau filter requires the presence of one isolated particle-flow HLT tau
with pT > 40 GeV (respectively pT > 45 GeV for the more stringent trigger),
with |η| < 2.5 and with leading track pT > 5 GeV. The tau candidate has to
be matched to one of the four trigger jets within ∆R = 0.4.

The efficiencies have been reevaluated with datasets available in the CERN Open
Data portal. The direct measurement of the trigger efficiency is impossible due to
the large QCD background which makes it difficult to select a pure τh +3 jets sample
in data. The efficiency of the trigger is thus evaluated by measuring the efficiencies
for the jets and the tau-lepton separately. The single-jet efficiency has been mea-
sured with the 2011 SingleMu primary dataset of the CMS Open Data [221, 222] in
events selected with a single muon trigger (HLT_mu15, HLT_mu20, HLT_mu24,
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Figure 6.3: Left panel: measured single-jet efficiency for both multijet trigger versions. Right
panel: measured tau-lepton efficiency for both multijet trigger versions.

HLT_mu30). The presence of four central particle-flow jets with |η| < 2.5 is re-
quired that are matched to jet objects used in the HLT-jet-filter within ∆R = 0.4
to satisfy the HLT-jet-filter requirement. Three of the central jets are required to
have pT > 70 GeV and the fourth jet is used as a probe jet to be matched to one of
the HLT jets in the HLT filter within ∆R = 0.4. The efficiency ϵ is then calculated
from the probe jets passing and failing the requirement as:

ε = Npassing
Npassing +Nfailing

. (6.2)

The left panel of Fig. 6.3 shows the obtained efficiency per single-jet for the two
trigger versions QuadJet40_IsoPFTau40 and QuadJet45_IsoPFTau45. The
jet trigger plateau is reached above 120 GeV due to the different energy scale of
particle-flow jets and calorimeter jets.
The tau trigger efficiency is measured in events of the 2011 MultiJet primary dataset
available in the CERN Open Data portal [206, 207]. The events are required to con-
tain four particle-flow jets matched to the HLT-jet objects in the HLT-jet-filter
within ∆R = 0.4 in order to ensure that the HLT-jet-filter has fired. In addition,
the events are required to contain exactly one HPS tau-lepton with medium isolation
matched to one of the four selected particle-flow jets within ∆R = 0.4. The selected
tau-lepton is then used as a probe to be matched to the HLT-tau used in the HLT-
tau-filter within ∆R = 0.4 and the efficiency is calculated with equation 6.2. The
right panel of Fig. 6.3 shows the tau trigger efficiency for the two multijet trigger
versions. The trigger plateau is reached for pT > 45GeV (respectively pT > 50GeV
for the more stringent trigger) yielding an efficiency of ≈ 85%.
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For the simulated samples the trigger efficiency is calculated by multiplying the
trigger efficiencies of the three most energetic central jets and the trigger efficiency
of the tau-lepton candidate. The simulated events are weighted randomly by the
QuadJet40_IsoPFTau40 and QuadJet45_IsoPFTau45 trigger efficiency ac-
cording to the integrated luminosity fraction of the two trigger versions. For recorded
data the offline reconstructed jets and tau-lepton are required to be matched within
∆R < 0.4 to the jet and tau objects in the HLT in order to have similar conditions
in data and simulation.

Figure 6.4: Left panel: comparison of the jet pT spectrum after applying similar selection
criteria between the original analysis [12] and the CMS Open Data analysis.
Right panel: comparison of the tau-lepton pT spectrum after applying similar
selection criteria between the original analysis [12] and the CMS Open Data
analysis.

Figure 6.5: Left panel: jet trigger efficiency comparison between the reproduced analysis
with CMS Open Data and the original analysis [12]. Right panel: tau-lepton
trigger efficiency comparison between the reproduced analysis with CMS Open
Data and the original analysis [12].

A comparison of basic kinematic distributions of the selected jets and the selected
tau-lepton has been performed between the reproduced analysis with CMS Open
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Data and the original analysis, where the same selection criteria have been applied.
The comparison of the pT spectra is shown for the selected jets in the left panel of
Fig. 6.4 and for the tau-lepton in the right panel. While the tau-lepton pT spectra
are very similar, the distribution of the selected jets shows some differences. A pos-
sible explanation are differences in the CMS software versions used to reconstruct
the data for the original analysis (CMSSW with version 4.2) and the CMS Open
Data analysis (CMSSW with version 5.3), as well as differences in the applied jet
energy corrections.
A comparison of the jet trigger efficiencies and the tau trigger efficiencies between
the original analysis and the CMS Open data analysis indicates that the different
pT spectra result in slightly different trigger efficiencies. A comparison of the jet
and tau trigger efficiencies for the QuadJet40_IsoPFTau40 trigger is shown in
the left and right panel of Fig. 6.5. The jet trigger efficiencies are slightly higher
in the CMS Open Data analysis, while the tau trigger efficiencies are slightly lower.
A similar comparison for the more stringent trigger QuadJet45_IsoPFTau45 is
included in Appendix A.1, where a similar trend is observed.

6.5 Event Selection

The event selection follows closely the original analysis [12] and requires the presence
of at least four particle-flow jets, and the presence of one particle-flow tau-lepton
candidate reconstructed with the HPS algorithm. One of the selected particle-flow
jets is required to be b-tagged. The object reconstruction and the particle-flow
algorithm [175] are discussed in detail in Chapter 5.3.

6.5.1 Vertex Selection

The events are required to contain at least one primary vertex fulfilling several
quality criteria. The number of degrees of freedom of the vertex fit is required to be
at least 4, ndof > 3 and the z coordinate of the vertex has to be located inside the
detector center, i.e. z(PV ) < 24 cm. Moreover, the radial coordinate of the primary
vertex w.r.t. the beam line is required to be smaller than 2 cm, ρ(PV ) < 2 cm and
the vertex may not be identified as a fake vertex. A primary vertex is identified as
a fake vertex if it only consists of the beamspot and does not include any tracks in
the fit.

115



6 Measurement of the tt̄ → τh + jets Cross-Section with CMS Open Data

6.5.2 Tau Selection

The hadronically decaying tau-lepton candidate is reconstructed with the HPS al-
gorithm [186] that is described in Chapter 5.3. The tau candidates are required to
be isolated: the sum of the transverse energies of the charged hadrons and photons
reconstructed in an isolation cone of ∆R = 0.5 around the tau candidate is required
to be less than 1 GeV. This is referred to as the “Loose Isolation” working point.
The leading track of the tau candidate is vetoed if it is identified as a muon in order
to suppress the muon contamination. In addition, the charged tau candidate may
not be identified as a minimum ionising particle, therefore the ratio of the sum of the
energy deposits in the ECAL and HCAL calorimeters associated to the tau candidate
over the leading track momentum is required to be larger than 0.2. To be consis-
tent with the trigger conditions, the transverse momentum of the tau candidate is
required to fulfill pT > 45 GeV and the tau candidate is required to be matched
within ∆R < 0.4 to the tau object used in the HLT. The pseudorapidity of the tau
candidate is required to be in the range |η(τh)| < 2.3 and |η(τh)| /∈ [1.444, 1.566] in
order to exclude the barrel-endcap transition region of the electromagnetic calorime-
ter. The transverse momentum of the leading track of the tau is required to fulfill
pT > 10 GeV. To ensure that the tau candidate originates from the collision ver-
tex, the z coordinate of the tau has to fulfill |zvtx(τh) − zPV| < 1 cm and the impact
parameter d0 of the leading track w.r.t to the beam spot has to fulfill |d0| < 0.04 cm.

6.5.3 Lepton Veto

In order to suppress the misidentification of electrons and muons as tau candidates,
a veto on the presence of loosely isolated electrons and muons is applied. The
isolation requirement for the leptons, defined in equation 5.8, is I/pT < 0.15, where
I is the sum of the transverse energy deposits in the ECAL and HCAL calorimeters
and pT is the scalar value of the track momenta within a cone of ∆R = 0.3. For
muons, it is further required that the transverse momentum fulfills pT > 10 GeV
and the pseudorapidity |η(µ)| < 2.4. It is also required that the muon is identified
as a global muon. Moreover, it is required that the z coordinate of the muon fulfills
|zvtx(µ) − zPV| < 1 cm. For electrons it is required that the transverse momentum
fulfills pT > 15 GeV and the pseudorapidity |η(e)| < 2.5. As for the muons, the z
coordinate has to fulfill |zvtx(e) − zPV| < 1 cm. If any lepton is identified as such,
the event is discarded.
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6.5.4 Jet Selection and Transverse Missing Energy

The jets are reconstructed with the particle-flow algorithm and the anti-kT clustering
algorithm [181] with a distance parameter R = 0.5. Selected events are required to
have at least four particle-flow jets with pseudorapidity |η| < 2.4. Jets overlapping
with leptons within ∆R(jet, lepton) > 0.4 are excluded. To be consistent with the
trigger design, three jets are required to have pT > 45 GeV and the fourth jet is
required to have pT > 20 GeV. The jet candidates are required to be matched to
jet objects used in the HLT within ∆R < 0.4. The jet energies are corrected for the
L1FastJets, L2Relative, L3Absolute prescriptions [223]. To account for differences
in the jet energy resolution of the order of 10% between simulation and data, also
the L2L3Residuals correction is applied. Additionally, for simulated events the jet
energy resolution is corrected and smeared following the recommendations of the
CMS Collaboration [196]. The transverse missing energy (MET) is obtained with
the particle-flow algorithm and the jet energy scale corrections are propagated. A
selection on the transverse missing energy, MET > 20 GeV, is applied to reject QCD
background.

6.5.5 B-Jet Identification

The selected events are required to contain at least one b-tagged jet. For the 2011
legacy simulations, the recommended Combined Secondary Vertex algorithm (CSV)
is used at its medium working point [184]. The CSV algorithm combines informa-
tion from secondary vertices and track impact parameters in a tagging variable to
discriminate between jets originating from b-quarks and those from other sources.
The b-tagging efficiency is measured in simulated tt̄ events obtained from the CERN

Figure 6.6: B-tagging efficiency for the CSV algorithm, measured in tt̄ simulated events, as
a function of η and pT for bottom (left), charm (middle) and light (right) quarks.

Open Data portal and shown in Fig. 6.6 for the medium working point. To mitigate
differences between simulation and data, b-tagging scale factors (SF) have to be
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Figure 6.7: B-tagging scale factors for the CSV algorithm as a function of η and pT for b-
and c-quarks (left) and light quarks (right).

applied to the simulated samples. The scale factors, displayed in Fig. 6.7, are pub-
lished by the CMS Collaboration [196] and depend on the transverse momentum and
the pseudorapidity. SFb, SFc, SFl denote the scale factor for b-jets, c-jets and light-
jets respectively. The scale factors for b- and c-quarks, SFb and SFc are assumed
to be equal. The calculation of the b-tagging event weight follows a probabilistic
approach instead of directly selecting the simulated events depending on the value
of the b-tagging discriminant. Following the recommended prescription provided by
the CMS Collaboration [196], the probability that a jet i is selected depending on
the b-tagging discriminant is given by:

Pi = SFi · EffMC
i (6.3)

where EffMC
i is the b-tagging efficiency measured in simulated tt̄ events and SFi the

scale factor associated to the jet. SFi depends on the pT and η of the jet as well
as on its flavour. The probability that the event does not contain a b-tagged jet is
then defined by:

P (0 tag) = Πi(1 − Pi) (6.4)

where the product includes all selected jets in the event. The probability that the
event contains at least one b-tagged jet is then given by:

P (≥ 1 tag) = 1 − P (0 tag) . (6.5)

Therefore in order to select events with at least one b-tagged jet, the simulated
events are weighted by P (≥ 1 tag).
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6.5.6 QCD Background

The dominating background in this analysis are high multiplicity multijet events
where one of the jets is misidentified as a hadronic tau-lepton. The smaller con-
tributions from the electroweak processes are estimated from simulated events and
are normalized to the theoretical cross-section and the total integrated luminosity.
Since accurate simulations of the multijet background at the LHC are difficult, a
data-driven approach is used. The multijet background is estimated by applying
the same selection criteria to the data sample as described above and inverting the
b-tagging requirement, i.e. vetoing the presence of a b-tagged jet selected with the
CSV algorithm. To account for the b-tagging efficiency, the multijet events in data
are weighted by the misidentification probability P (≥ 1 mistag) to select at least
one b-jet in the event. This probability is computed with the probabilistic approach
described in the previous section, where the mis-tagging efficiency for light jets is
assumed for Pi:

P (≥ 1 mistag) = 1 − P (0 tag) . (6.6)

The original analysis has verified with simulations that the resulting sample contains
less than 0.6% of tt signal events, less than 0.3% tt background events and less than
2% W/Z + jets events [12]. This indicates that the sample provides a good represen-
tation of the multijet background and is suitable for the training of a multivariate
classifier.
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6.6 Event Yields

Selection Run A Run B tt → τh+jets tt → X

4 jets + τh 14408 10394 461.8 ± 2.0 339.4 ± 1.7

e, µ veto 14126 10210 452.7 ± 2.0 239.6 ± 1.4

MET 7977 6522 414.1 ± 1.9 164.1 ± 1.2

≥ 1 b-tag 1846 1477 348.5 ± 1.7 134.0 ± 1.1

Selection W + jets Z + jets st (tW) st (tW)

4 jets + τh 286.7 ± 18.3 163.9 ± 6.2 18.2 ± 0.7 19.0 ± 0.7

e, µ veto 260.6 ± 17.4 122.0 ± 5.3 16.2 ± 0.7 17.0 ± 0.7

MET 242.9 ± 16.8 95.8 ± 4.7 13.8 ± 0.6 14.6 ± 0.6

≥ 1 b-tag 44.1 ± 7.1 19.5 ± 2.1 10.5 ± 0.6 11.3 ± 0.6

Selection st (t) st (t) st (s) st (s)

4 jets + τh 8.6 ± 0.6 4.5 ± 0.4 1.0 ± 0.2 0.4 ± 0.1

e, µ veto 8.3 ± 0.5 4.3 ± 0.4 1.0 ± 0.2 0.4 ± 0.1

MET 5.6 ± 0.4 3.2 ± 0.3 0.8 ± 0.2 0.3 ± 0.1

≥ 1 b-tag 4.8 ± 0.4 2.7 ± 0.3 0.7 ± 0.2 0.2 ± 0.1

Table 6.3: Expected number of events for the simulated signal and background samples for
an integrated luminosity of L = 4.16 fb−1 and the number of selected events in
data. The uncertainties are statistical only.

In Table 6.3 the event yields for the various samples are shown at different steps of
the event selection, taking into account trigger weights and b-tagging weights. The
simulated events are normalized to the theoretical cross-sections and an integrated
luminosity of L = 4.16 fb−1. The data-simulation agreement is shown in Fig. 6.8 for
the number of primary vertices and for several kinematic distributions of the selected
jets and the hadronic tau-lepton . The normalization of the data-driven QCD sample
is set to the best fit value after performing the log-likelihood fit described later in
Section 6.9, which will be the case for all data-simulation plots shown in this thesis.
In general, a good data-simulation agreement is observed. For the further analysis,
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Figure 6.8: Data-simulation agreement for the number of primary vertices and kinematic
variables of the selected jets and the tau-lepton candidate.
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the W + jets and Z + jets samples are combined into one W/Z + jets sample and
the different single-top channels are combined into one single-top sample. Table 6.4

Source Original CMS Open Data

Signal tt → τh+ jets 383 348

Background tt → X 151 134

WZ+Jets 83 64

Single-Top 41 30

QCD 2392 2690

Total backgrounds 2667 2918

Data 3050 3323

Table 6.4: Pre-fit event yield comparison between the original analysis [12] and the CMS
Open Data analysis.

shows a comparison of the pre-fit event yields between the analysis reproduced with
CMS Open Data and the events selected by the original analysis. Comparing the
event yields between both analysis shows that there are slight differences in the
number of events for the relevant processes. Possible reasons for the discrepancies
of the numerical values are the slightly different trigger efficiencies discussed in
Section 6.4, the different CMSSW versions used to reconstruct the data, different
jet energy corrections, and also the b-tagging algorithm that has been changed from
the Jet Probability (JP) algorithm for the original analysis to the CSV algorithm in
the CMS Open Data analysis, since the JP algorithm is not supported for the 2011
legacy data. Moreover, it is also possible that slightly different event selections have
been applied that were not obvious from the documentation.

122



6 Measurement of the tt̄ → τh + jets Cross-Section with CMS Open Data

6.7 Systematic Uncertainties

The calculation of the systematic uncertainties follows the list of relevant systematic
sources considered in the original analysis [12] that is shown in Table 6.5. However,
in some cases the updated procedures recommended for the use of the CMS Open
Data datasets are applied [196]. The main sources of systematic uncertainties in

Source Rel. uncert. [%] Shape
Cross-section uncertainty ±3 X
Top-quark mass ±3 X
Renormalization / factorization scale ±2 X
Parton shower matching ±3 X
PDF ±5 ✓
τh trigger efficiency ±7 X
Pile-up +5 − 1 X
τh energy scale ±7. ✓
τh identification ±9 X
Jet energy scale ±11 ✓
Jet energy resolution ±2 ✓
Unclustered MET ±7 X
B-tagging ±3 ✓
Multijet background reweighting ±5 X
Syst. uncert. ±21 X
Stat. uncert. from fit and MC samples ±8 X
Stat. uncert. from trigger ±0.4 ✓
Total stat. uncert. ±8 X

Table 6.5: Relative systematic uncertainties in the cross-section measurement of the original
analysis [12].

the CMS Open Data analysis are due to the PDFs, the jet energy scale (JES), the
tau energy correction and the tau identification. The original analysis considers
several alternative samples for the tt̄+jets sample. However, these samples are not
yet present in the CERN Open Data portal; therefore, the values from the original
analysis are quoted. According to the original analysis these variations only affect
the normalization, but not the shape of the distributions [12]. The following table
describes the systematic uncertainties considered in the CMS Open Data analysis.
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Source Description

Cross-section The uncertainty on the theoretical cross-sections of the dif-
ferent simulated processes is taken from [217, 218], following
the choices of the original analysis.

PDF The uncertainty due to the CTEQ66 proton PDF [224] on all
of the simulated signal and background processes has been
estimated by combining the uncertainties of the twenty-two
alternative PDF variations by summing the varied 1σ-up
and 1σ-down PDF weights in quadrature. This procedure
yields alternative 1σ-up and 1σ-down event weights that al-
low to reweight the nominal distributions.

Luminosity The uncertainty on the luminosity measurement is estimated
to 2% [225].

Tau trigger Following the original analysis, a ± 5% uncertainty is ac-
counted for the tau-leg trigger efficiency measurement, in
order to take into account the fact that the used reference
sample to estimate the tau trigger efficiency consists mainly
of jets misidentified as tau-lepton candidates. This uncer-
tainty is derived from tau-lepton candidates in Z → τ+τ−

events with similar trigger conditions [12].

Tau ID The uncertainty corresponding to the tau identification effi-
ciency has been measured to 6% [226].

Statistical trigger
efficiency

The estimation of the statistical uncertainty corresponding
to the trigger efficiency for the particle-flow jets and the
particle-flow tau is done by recalculating the trigger weight
with a ±1σ statistical variation of the efficiencies of the jets
and the tau for all signal and background processes. This
yields an alternative 1σ-up and 1σ-down event weight.

124



6 Measurement of the tt̄ → τh + jets Cross-Section with CMS Open Data

JES /JER The uncertainty due to the jet energy scale JES and jet en-
ergy resolution JER are estimated for the simulated back-
ground and signal processes according to the prescription
described in [223]. The uncertainty corresponding to the
JES is estimated by shifting the jet energy up and down
by the uncertainties corresponding to one standard devia-
tion. For the jet energy resolution the distribution of the jet
energy has been smeared by one standard deviation. The
corrections are propagated to the missing transverse energy
measurement. The event selection is repeated for each of
the variations which yields alternative up and down datasets
that correspond to the ±1σ JES and JER uncertainty.

Tau energy scale The uncertainty of the tau energy correction is estimated for
the simulated background and signal processes by shifting
the value of the tau energy up and down by ± 3% [227].
The corrections are propagated to the missing transverse
energy. As for the JES, the event selection is repeated with
the varied energy and an alternative 1σ-up and 1σ-down
dataset is obtained.

B-tagging The uncertainty due to the application of the b-tagging scale
factors for b-, c- and light-jets to the simulated events is es-
timated by shifting the value of the applied scale factors
by the uncertainty corresponding to one standard devia-
tion (±1σ) [184]. This yields alternative 1σ-up and 1σ-down
event weights.

B-mistagging For the b-mistagging reweighting method on the multijet
data sample the uncertainty is estimated to 5%, following
the choice of the original analysis [12].
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top-quark mass The uncertainty due to the top-quark mass is taken from
the original analysis [12], since the required samples are not
available in the CERN Open Data portal. The uncertainty
of the top-quark mass is evaluated considering two simulated
samples where the nominal top mass of 172.5 GeV has been
shifted by ±6 GeV. The estimated uncertainty for the tt̄
signal and background processes is 3%.

Renormalization
and factorization
scale

The uncertainty due to the renormalization and factoriza-
tion scale is taken from the original analysis [12], since the
required samples are not available in the CERN Open Data
portal. The dependency of the selection on the renormal-
ization and factorization scale Q, Q2 = m2

top + ∑
p2

T , has
been estimated using dedicated samples for the tt̄ processes,
where the scales have been varied by a factor of 0.5 and
of 2.0. The relative uncertainty for the tt̄ signal and back-
ground processes processes is estimated to be 2%.

Parton shower
matching

The uncertainty due to the parton shower matching is taken
from the original analysis [12], since the required samples are
not available in the CERN Open Data portal. The influence
of the matching thresholds used to associate the matrix ele-
ments to the parton showers has been varied from 20 GeV to
respectively 10 GeV and 40 GeV. The relative uncertainty
for the tt̄ signal and background processes processes is esti-
mated to be 3%.

A main difference to the original analysis is the pile-up correction, that according
to the CMS Open Data description does not require any reweighting [228], since
the distribution used to generate the Monte Carlo events was matched directly to
that observed in the data for the 2011 running. Another important difference is
the treatment of the PDF uncertainties, that sums the alternative PDF variations
in quadrature instead of taking a single alternative PDF that leads to the maximal
1σ-up and 1σ-down variation, as has been done in the original analysis. Moreover,
following the recommendations for the 2011 legacy simulations, no separate uncer-
tainty for the missing transverse energy is considered.
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6.8 Neural Network with BCE

A neural network classifier is trained to discriminate tt̄ signal events from QCD back-
ground events, yielding the final discriminant variable used as input to the statisti-
cal analysis. Feature engineering based on kinematic variables of the selected jets,
tau-lepton and missing transverse energy is applied in order to construct high-level
features that allow to discriminate between signal and background. The following
variables have been calculated and form the input for the multivariate classifier:

Variable Description

HT scalar sum of the transverse momenta of all the selected jets
and hadronic tau-lepton candidate

aplanarity A = 3
2λ1 with λ1 being the smallest eigenvalue of the mo-

mentum tensor Mαβ = ∑
i p

α
i p

β
i /
∑

i|p⃗i|2, where i runs over
the number of jets and the τh candidate and α, β = 1, 2, 3
specify the three spatial components of the momentum.

sphericity A = 3
2(λ1 + λ2) with λ1, λ2 being the smallest eigenvalue

of the momentum tensor Mαβ = ∑
i p

α
i p

β
i /
∑

i|p⃗i|2, where i
runs over the number of jets and the τh candidate.

q × |η(τh)| charge of the tau-lepton candidate multiplied by the absolute
value of the pseudorapidity

MET transverse missing energy

∆ϕ(τh,MET) azimuthal angle between the hadronic tau-lepton candidate
and the transverse missing energy direction

M(τh, jets) invariant mass of the selected jets and the hadronic tau-
lepton candidate

MT (τh,MET) transverse mass of the hadronic tau-lepton candidate and
transverse missing energy
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Figure 6.9: Data-simulation agreement for the high-level features that form the input for the
machine learning.
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Figure 6.10: Data-simulation agreement for the high-level features that form the input for
the machine learning.
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The aplanarity and sphericity account for the spherical topology of the top-quark de-
cay products and the q×|η(τh)| variable exploits the charge-symmetry of tt̄ events in
contrast to W + jets events. In Fig. 6.9 and Fig. 6.10 the data-simulation agreement
for the eight high-level features is shown. As in the previous section, the normal-
ization of the data-driven QCD sample is set to the best fit value after performing
the log-likelihood fit discussed in Section 6.9. In general a good agreement between
data and simulation is observed.

The total number of tt̄ signal events amounts to 43570 and the number of QCD
background events amounts to 11176. The datasamples are split into a training set
of 20000 tt̄ signal events and 5000 QCD background events, the remaining events
are used for validation. The event weights of the signal and the background samples
have been rescaled such that the mean value of the signal event weights equals one
and the class weight of the background relative to the signal is set to four accounting
for the imbalance of the datasets. For the training of the neural network classifier
the PyTorch package [202] is used. A feed-forward neural network architecture
with two hidden layers, ReLU activations and a sigmoid function in the last layer
has been chosen. The standard binary cross-entropy (bce) loss function Lxe as de-
fined in equation 2.10 is used with a batch size of 256. The input to the training
are the eight high-level features described above. The features have been rescaled
to have a mean of zero and a standard deviation of one. A hyperparmater scan for
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Figure 6.11: Left panel: training and validation bce loss as a function of the number of
epochs. Right panel: estimated variable importance using the SHAP pack-
age [229].

the learning rate in the range [10e−4, 10e−1] and the number of neurons per layer
in the range [20, 100] has been performed, with the performance measured by the
lowest bce loss on the validation set. It was found that a wide range of hyperpa-
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rameters give very similar results. This indicates that the performance is limited by
the amount of training data. The chosen hyperparameters for the final bce model
are 20 neurons per layer and a learning rate of 0.001. The model is trained for 100
epochs with the ADAM optimizer and the weights that give the lowest bce loss on
the validation set are stored. In the left panel of Fig. 6.11 the training and valida-
tion loss of the model are shown, indicating a similar performance on both datasets.
The SHAP package [229] which is a game theoretic approach to explain the output
of any machine learning model, has been used with a simple tree-based model to
provide some intuition about the importance of the input features. A summary plot
is depicted in the right panel of Fig. 6.11 that shows the mean average SHAP value
which indicates the average impact on the model output magnitude. According to
this analysis, the most important variable is the missing transverse energy, which is
consistent with the visual impression of Fig. 6.9 and Fig. 6.10. The binned classifier
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Figure 6.12: Left panel: classifier score of a neural network trained with binary cross-entropy.
Right panel: data-simulation agreement for the neural network classifier score.

score of the neural network model is shown in the left panel of Fig. 6.12 for the
validation set and the data-simulation agreement is shown in the right panel. A
good agreement between data and simulation is observed.

The original analysis used a Multi-Layer-Perceptron (MLP) of the TMVA pack-
age [230], which was state-of-the-art when this analysis was carried out in 2011. The
same input variables are used, except of a variable based on the χ2 returned by a
kinematic fit constraining the hadronic W boson and top-quark masses by solving
an event-by-event least square problem together with the application of Langrange
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Multipliers. This variable has not been considered in the analysis with the CMS
Open Data analysis, since it is difficult to reproduce and in the original analysis it
proved to be of little importance [12].

6.9 Cross-Section Measurement

The original analysis estimates the QCD multijet background and the tt̄ signal
fraction with a two-component binned maximum likelihood fit based on the summary
statistic obtained from the neural network classifier output. The normalization
of the minor W/Z + jets, tt̄ and single-top backgrounds is fixed to the theory
prediction and subtracted from the data prior to the fit. The systematic uncertainties
are calculated by repeating the fit with templates varied by ±1σ of the respective
systematic source and summing the differences with respect to the nominal template
in quadrature. This procedure is also referred to as “cut variation” and has been
a standard approach in early LHC analyses. However, this procedure is considered
problematic from a statistical point of view, since it ignores correlations between
the systematic uncertainties and the parameter of interest. In addition, important
statistical quantities, such as confidence intervals, cannot be defined in a meaningful
way. Thus the profile likelihood method is used, which incorporates all relevant
parameters in the likelihood and allows to estimate correct confidence intervals, as
discussed in detail in Chapter 2.3. This will also be of importance in order to compare
the inference with the bce model with the summary statistic that is obtained with
the inferno algorithm, since the main principle of inferno is to take all relevant
uncertainties into account during the training of a neural network classifier. The
inference is thus based on the profile likelihood ratio [84], which for a hypothesized
value of the signal strength µ is given by:

tµ = −2 ln L(µ, θ̂(µ))
L(µ̂, θ̂)

(6.7)

where ˆ̂
θ(µ) refers to the the conditional ML estimators of θ given a strength param-

eter µ, which means that it maximizes L for a given value of µ. The denominator is
the maximized likelihood function, i.e. µ̂, and θ̂ are their ML estimators.

The model trained with a bce loss as described in the previous section is used
to construct a summary statistic by histogramming the predictions of the classi-
fier output. As discussed in the next chapter, it has been found that a value of
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20 bins is optimal for the inference. The events of the training set are discarded
when building the templates for the fit. The fit is performed with cabinetry [204]
based on pyhf [33]. It has been verified that similar results are obtained with the
CMS combine package. The uncertainties and correlation coefficients are calculated
with the minuit package [231, 232]. The standard error estimate is done with hesse
that calculates the full second-derivative matrix by finite differences and inverts it,
which yields the parameter errors and parameter correlations. However, since hesse
assumes a parabolic shape at the minimum of the profile likelihood, the minos algo-
rithm [233] is used to calculate the correct positive and negative errors of µ. minos
uses the profile likelihood method to compute asymmetric confidence intervals by
scanning the negative log-likelihood around the minimum. As listed in Table 6.5, the
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Figure 6.13: Profile likelihood scan for the signal strength µ with the summary statistic
obtained by training a neural network classifier with binary cross-entropy.

systematic uncertainties that are affecting the shape of the templates are the JES
and JER variations, the b-tagging variation, the statistical trigger variation, the τ
energy scale variation and the PDF variation. The shape variations of the templates
are taken into account using morphing techniques. Following the original analysis,
a rate parameter that multiplies the normalization has been added for the QCD
template, which allows this process to float freely in the fit. Therefore the normal-
ization uncertainty corresponding to the mis-tagging of the QCD background has
been pruned. The observed signal strength µ with systematic uncertainties evaluates
to:

µ = 0.99+0.25
−0.19 (syst.) ± 0.09 (stat.) (6.8)
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where the statistical only uncertainty is evaluated by fixing the systematic uncer-
tainties at their best fit value and repeating the fit. An explicit scan of the profile
likelihood, both for the fit with and without systematic uncertainties, is shown in
Fig. 6.13. The presence of the nuisance parameters broadens the profile likelihood as
a function of µ, which reflects the loss of information about µ due to the systematic
uncertainties.

To further analyze the systematic uncertainties, the effects that the systematic uncer-
tainties have on the signal strength are evaluated, which is referred to as calculating
the “impact” of each uncertainty. The impact is calculated by determining the shift
in the signal strength, with respect to the best-fit value, that is induced if a given
nuisance parameter is shifted by its ±1σ post-fit uncertainty values. A large shift
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Figure 6.14: Left panel: impacts and pulls for a profile likelihood fit to Asimov data. Right
panel: impacts and pulls for a profile likelihood fit to the measured data.

in the signal strength indicates, that it has a strong dependency on this systematic
uncertainty. This is strongly related to the correlation coefficient between the signal
strength and the nuisance parameter. The pulls of the nuisance parameters quan-
tify the changes in the nuisance parameter values and uncertainties, relative to their
initial pre-fit values. The central value of the pull is defined as:

(θ − θI)
σI

(6.9)
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where θ is the post-fit value, θI the pre-fit value and σI the pre-fit uncertainty. The
pull uncertainty is calculated as the ratio of the post-fit to the pre-fit uncertainty:

σ

σI
. (6.10)

In case that the nuisance parameter has no pre-fit uncertainty, such as the rate pa-
rameter for the QCD background, a value of 1 is reported. The impact evaluation
and the pulls are shown in Fig. 6.14 for the profile likelihood fit to the optimal
Asimov data in the left panel and to the measured data in the right panel. In the
Asimov dataset all observed quantities are set equal to their expected values. The
impacts will be compared to the results for a fit with an inferno summary statistic
in the next section. It is evident that the largest impact stems from the PDF vari-
ation. The correlation matrices obtained in the profile likelihood fit are included in
Appendix A.1.

In Fig. 6.15 the result for the signal strength µ of the original analysis and the
result of the reproduced CMS Open Data analysis are shown and are in fair agree-
ment. The order of magnitude of the statistical uncertainty and the order of magni-

0.0 0.5 1.0 1.5 2.0

Original

Open Data

Figure 6.15: Comparison of the signal strength µ between the original analysis and the re-
produced analysis with CMS Open Data. The blue bars indicate the statistical
uncertainty.

tude of the total systematic uncertainty are similar for the original analysis and the
CMS Open Data analysis. However, due to the different inference procedures and
different procedures to calculate the systematic variations, the relative importance
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of the single systematic contributions in the original analysis (Table 6.5) and the
CMS Open Data analysis (Fig 6.14) are different. In conclusion, by using the same
methodology, the CMS Open Data analysis is a realistic reproduction of the original
CMS analysis that measures the tt̄ production cross-section in the τ+jets channel
at

√
s = 7 TeV and can be used to study the inferno algorithm.
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7 Application of INFERNO to a
tt̄ cross-section measurement

In this chapter the adaption of the inferno algorithm to a typical HEP problem
will be described and its performance will be evaluated based on the measurement of
the tt̄ production cross-section in the τ+jets channel in proton-proton collisions at
√
s = 7 TeV reproduced with CMS Open Data. In order to quantify the behaviour

of the algorithm, a study has been performed that tests the performance of the
algorithm in a controlled setup by introducing artificial nuisance parameters. In the
final section, the performance with the full systematic uncertainties of the CMS Open
Data analysis will be evaluated and compared to the results obtained in Chapter 6.

7.1 Extension of inferno to HEP Data

The original code for the inferno algorithm described in Ref. [11] has been devel-
oped for the structure of a synthetic problem. However, the systematic uncertainties
typically encountered in HEP have a special structure and thus the algorithm needs
to be adapted to HEP-like systematics. There are two types of systematic uncer-
tainties that one commonly encounters in HEP analysis. The first type are simple
multiplicative uncertainties that affect the normalization of a process; the second
type of systematics affect both the shape of the spectra and the normalization of
a process, which is referred to as “ShapeNorm” systematics. They are often given
as alternative ±1σ MC samples and morphing algorithms are used to interpolate
between the alternative shapes. This has been first implemented in the PyTorch
version of inferno [95], which also reproduces the results of the synthetic problem.
In the following, the two types of systematic uncertainties and an alternative ver-
sion of an interpolation algorithm that is used in the standard fitting tool of CMS,
called combine [234], will be discussed in more detail based on Ref. [235], and a de-
scription of the inferno algorithm that runs with an arbitrary number of HEP-like
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systematics for one signal and one background process will be given. Moreover, an
alternative approach for a differentiable summary statistic will be discussed.

7.1.1 Normalization Uncertainties

The simplest type of systematic uncertainties are multiplicative uncertainties that
affect the normalization of a process [235]. They can be represented by nuisance
parameters in profile likelihoods. For example, the integrated luminosity L̃ ± σL

measured in an auxiliary study can be incorporated into a likelihood as follows:

L =
N∏

i=1
P(ni | µi)G

(
L | L̃, σL

)
(7.1)

where ni are the number of events in each bin i with expected events µi and G is
a normalized Gaussian of mean L̃ and width σL that constrains the value of the
nuisance parameter to its measured value L. The expected number of events µi can
typically be expressed as:

µi =
nsource∑

j=1
Lσjϵji (7.2)

with cross section σj for signal and background sources j, and efficiency ϵji for source
j in bin i, which is often obtained from MC simulations. The negative log likelihood
is then given by

− ln L =
∑

i

[−ni lnµi + µi] + (L− L̃)2

2σ2
L

(7.3)

and the Gaussian term corresponding to the nuisance parameter L can be interpreted
as a penalty on the negative log likelihood. In practical applications it is often useful
to constrain each nuisance parameter θ with a Unit Gaussian, that has a mean value
of zero and a standard deviation of one, and introduce a normalization function that
depends on the nuisance parameter and the measured uncertainty σθ:

L =
N∏

i=1
P(ni | µi)G(θ | 0, 1)fNorm(θ, σθ) . (7.4)

Many different functions are possible, depending on the concrete application. A
common normalization function is given by:

fNorm(θ, σθ) = 1 + θσθ (7.5)
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such that a variation of the nuisance parameter by ±1σ corresponds to a multipli-
cation by 1 ± σθ. In Bayesian terms the constraint functions can be considered as
the prior probability densities of the nuisance parameters. In this way, any mul-
tiplicative uncertainty can be included in the likelihood. It is also possible to use
normalization functions with different properties to constrain the values of the nui-
sance parameters. Usually the physical requirement for a multiplicative nuisance
parameter is that it remains positive. In this case the parameter can be constrained
with a log-normal distribution that does not allow the parameter to become nega-
tive. A log-normal normalization function that depends on a nuisance parameter θ,
constrained with a Unit Gaussian, can be written as:

fLogNorm(θ, κ) = exp (θ ln(κ)) (7.6)

where κ = 1 + σθ. Moreover, it is possible that a process can have asymmetric
uncertainties, such that a variation of +1σ is different from a variation of −1σ.
Following the approach in the CMS combine tool [234], an asymmetric log-normal
distribution can be defined that interpolates between κup = 1 + 1σ and κdown = 1 −
1σ. This is accomplished by defining a heuristic smoothing function, as implemented
in the AsymPow class of the CMS combine tool:

fs(x) = 0.25x (4x2 (12x2 − 10) + 15) (7.7)

which can be used to define a function that interpolates between κup and κdown:

f I(θ, κup, κdown) =
{

0.5(κup − κdown) + (0.5(κup + κdown)fs(θ)) if |θ| < 0.5
κup if θ > 0 otherwise − κdown otherwise

(7.8)
and the asymmetric log-normal function can then be defined as:

fAsymmLN (θ, κlow, κhi) = exp
(
θf I(θ, ln κup, ln κdown)

)
. (7.9)

Within the context of this thesis, the different normalization functions have been
implemented in PyTorch [1].

7.1.2 Shape Uncertainties and Interpolation

Many systematic uncertainties also cause an overall distortion in the shape of the
observed event features [235]. An example is the jet energy scale uncertainty (JES)
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that shifts all jet energies in an event in the same direction. If a selection on
the energy has been applied during analysis, also the overall normalization of the
process changes. The spectral distortions can be modeled by changing parameters
in the MC simulation and recalculating the modified distributions. For example,
raising and lowering the jet energy scale by one standard deviation, and recalculating
the event features, yields three measures of the shape and normalization of the
distributions, which are denoted as snom, sup, and sdown. Another common situation
are systematic uncertainties that are given as event weights corresponding to a +1σ
and −1σ variation. In this case the nominal distribution can be weighted event-by-
event to obtain three measures of the shape and normalization of the distributions.
An example is a systematic uncertainty stemming from the b-tagging scale factors.
The three measures of the spectral shape can be converted into a continuous estimate
in each bin by introducing a “morphing” parameter θ, which is constrained by a
Unit Gaussian distribution. In the technique implemented in the CMS combine
tool this is usually referred to as “vertical morphing” and the spectral distortions
are modelled by interpolating quadratically for |θ < 1| and extrapolating linearly
beyond that range. The idea is to treat the difference in the shifted values in the
bin as if they represent a measurement of the first-order Taylor expansion around
the nominal value [235]. Technically this can be achieved by introducing a heuristic
smoothing function, as implemented in the VerticalInterpHistPdf class of the
CMS combine tool:

gs(x) =
{

0.125x (x2 (3x2 − 10) + 15) if |x| < 1
1 if x > 0 otherwise − 1 otherwise

(7.10)

and defining an interpolation function based on the method of Lagrange interpola-
tion for the i-th bin of the summary statistic:

gI
i (θ, snom, sup, sdown) = 0.5θ

[(
sup

i − sdown
i

)
+
(
(sup

i + sdown
i − 2snom

i )gs(θ)
)]
(7.11)

which has the property that gI
i (θ = 1) = sup

i − snom
i and gI

i (θ = −1) = snom
i − sdown

i

and gI
i (θ = 0) = 0. This morphing method can be extended to several morphing

parameters for different systematic effects by adding linearly the deviations from
the nominal summary statistic due to each effect. For a set of of 1 + 2k summary
statistics s = {snom, sup, sdown}, where the nominal summary statistic is denoted
as snom, the k 1σ-up variations as sup and the k 1σ-down variations as sdown, the
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interpolated summary statistic S with k morphing parameters θ, can be written for
the i-th bin as:

Si(s,θ) = snom
i +

k∑
j=0

gI
i (θj , s

nom, sup
j , sdown

j ) . (7.12)

More accurate representations of the morphing can be obtained by computing ad-
ditional shifted spectra and interpolating with a higher order polynomial, which
however is computationally expensive. Within the context of this thesis, the inter-
polation algorithm has been implemented in PyTorch [1]

7.1.3 Differentiable Summary Statistics

The inferno algorithm requires a differentiable summary statistic, such that the
gradients can be calculated with automatic differentiation in order to optimize the
parameters of a neural network. A possible approach is to modify the summary
statistic that is used in the original inferno paper such that it takes into account
event weights, which is required by systematic uncertainties that are given by vari-
ations of the event weights, such as b-tagging variations of the scale factor. Thus
given a neural network f with parameters ϕ and n samples x with weights w, a
possible summary statistic ssm based on a softmax function can be written for the
i-th component as:

ssm
i (x,w; ϕ) =

n∑
j=0

efi(xj ;ϕ)/τ∑b
k=0 e

fk(xj ;ϕ)/τ
· wj (7.13)

where b is number of output nodes in the last layer of the neural network and τ is
the temperature hyperparameter. The number b of the output nodes of the neural
network defines the number of bins of the summary statistic. After the neural net-
work has been trained, the argmax operator can be applied to the predictions of the
model for unseen data to assign each event to a unique bin.

An alternative approach is the implementation of an approximately differentiable
histogram [236], that approximates the non-differentiable bin edges of a histogram
with sigmoid functions, where a sigmoid function is given by:

σ(x) = 1
exp(−κx) (7.14)
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and κ is a hyperparameter that regulates the smoothness. A sketch of this approach

Figure 7.1: Sketch of a differentiable histogram with bin edges approximated by sigmoid
functions [236].

is shown in Fig. 7.1. A differentiable bin can be defined as:

B(x; ci, δ, κ) = σ(x− ci + δ/2) − σ(x− ci − δ/2) (7.15)

where the bin center is denoted by ci and δ corresponds to the bin width. Given
a neural network f with parameters ϕ and n samples x with weights w, the i-th
component of a summary statistics sdh based on an approximately differentiable
histogram can be written as:

sdh
i (x,w; ϕ) =

∑
j

B(f(xj ; ϕ); ci, δ, κ) · wj . (7.16)

The summary statistic sdh can be used to bin the predictions of a neural network
that has a single sigmoid function in the last layer and thus the predictions are
bound between zero and one. An advantage of this approach is that the output is
a continuous variable and, as will be shown in Section 7.2, its distribution shows
similarities to a model trained with a cross-entropy loss.

142



7 Application of INFERNO to a tt̄ cross-section measurement

7.1.4 Algorithm

Based on the discussed treatment of typical HEP systematics and the introduced
summary statistics, the inferno algorithm has been extended to run with an arbi-
trary number of HEP-like systematics for one signal and one background process.
This approach could be generalized for multiple signal and background processes.
In the following the main aspects of the algorithm, in particular the construction of
the Asimov likelihood, will be described.

Input

The input to the algorithm is a nominal dataset xnom with weights wnom consisting
of nsig signal samples and nbkg background samples. As discussed in the previous
section, there are two types of systematic uncertainties that affect the shape of the
classifier. The first class results in m alternative +1σ (up) and −1σ (down) datasets
xup and xdown with corresponding weights wup and wdown that originate from a
repetition of the analysis with altered parameters in the MC simulation. An exam-
ple for these types of systematic uncertainties are jet energy scale uncertainties. If a
selection criterion is applied, also the normalization of the systematic variations are
different with respect to the nominal dataset. The second type of systematic uncer-
tainties are event weights, such as variations due to the b-tagging scale factors, that
provide k alternative +1σ and −1σ sets of weights wup and wdown for the nominal
data xnom. Thus in total the input to the algorithm consists of 1+2m datasets with
1 + 2m+ 2k sets of weights. This results in m+ k ShapeNorm nuisance parameters
θSN corresponding to the m+ k systematic uncertainties. To facilitate the training
procedure, it is required that each nominal sample has a corresponding 1σ-up and
1σ-down variation for each considered systematic uncertainty. This requires a suit-
able pre-processing of the data, in order to exclude samples from the training set
that have only one up or down variation.

The algorithm is implemented in PyTorch [202] based on the PyTorch_Inferno
implementation [95]. The dimension of the batches X with weights w in a batch
with batchsize b is given by:

dim(X) = [b, dim(features), 1 + 2m] (7.17)
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and the dimension of the weights is:

dim(w) = [b, 1 + 2m+ 2k] . (7.18)

An ordering scheme of the datasets and weights has been defined in order to iden-
tify the 1 + 2m datasets in a batch X with the corresponding weights w. Fur-
thermore, for each ShapeNorm nuisance parameter θSN , an asymmetric uncertainty
σSN in percent is provided that corresponds to the +1σ and −1σ normalization
uncertainty. Besides ShapeNorm uncertainties also multiplicative normalization un-
certainties, such as the luminosity, can be considered in the training process which
requires specifying the multiplicative uncertainties σN in percent. The total set of
nuisance parameters θ consists of the m + k nuisance parameters that correspond
to the ShapeNorm variations θSN , the p nuisance parameters corresponding to the
normalization uncertainties θN and a possible rate parameter θrate that multiplies
the normalization of the background:

θ =
{

θSN ,θN , θrate
}
. (7.19)

Training Loop

Given a neural network f with parameters ϕ, for each batch of data a set of summary
statistics is calculated according to the prescription in equation 7.13 or equation 7.16.
The nominal summary statistic snom is calculated with the nominal dataset xnom

and the nominal set of weights wnom. The m 1σ-up and 1σ-down summary statistics
that correspond to the systematic uncertainties from the repetition of the analysis
are calculated from the m 1σ-up and 1σ-down variations of the datasets xup and
xdown with weights wup and wdown. The k 1σ-up and 1σ-down summary statistics
that correspond to the event weight systematics are calculated by reweighting the
nominal dataset xnom with the k weights wup and k weights wdown. Thus in each
batch a set of 1+2m+2k summary statistics s = {snom, sup, sdown} are obtained both
for the signal and the background samples. All summary statistics are normalized
to the total integral. The set of summary statistics that correspond to the signal
samples are denoted as sS and the set of summary statistics for the background
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samples are denoted as sB. The i-th component of the full model Mi can then be
written as:

Mi(s,θ,ϕ) = s · Si(sS ,θSN )
m+k∏

j

fN (θSN
j )Gu(θSN

j )
p∏
l

fN (θN
l )Gu(θN

l ) +

b · Si(sB,θSN )
m+k∏

j

fN (θSN
j )Gu(θSN

j )
p∏
l

fR(θN
l )Gu(θN

l ) · θR

(7.20)

where s is the expected number of signal events, b is the expected number of back-
ground events and Si is the i-th component of the interpolated summary statistic
defined in equation 7.12. The function fN is one of the normalization functions
defined in Section 7.1.1 that take into account the provided uncertainties for the
ShapeNorm nuisance parameters σSN and the normalization nuisance parameters
σN . The function Gu is a Unit Gaussian that constrains each nuisance parameter.
For the ShapeNorm nuisance parameters θSN the interpolation and normalization
of a single systematic uncertainty are assumed to be fully correlated, thus only one
nuisance parameter is used for the interpolation of the summary statistics and the
normalization function. The full Asimov Poisson Likelihood can then be written as:

L̂A(s,θ; ϕ) =
b∏
i

P(Mi(s,θ,ϕ) | Mi(s,θ,ϕ)) . (7.21)

From the Asimov likelihood the Fisher information matrix is calculated via auto-
matic differentiation according to:

I(s,θ)ij = ∂2

∂ηi∂ηj

(
− log L̂A(s,θ; ϕ)

)
(7.22)

where η = {s,θ} is the complete set of parameters used in the model training. As
described in Chapter 3.3.1, the covariance matrix can then be estimated from the
inverse of the Fisher information matrix if ŝ and θ̂ are unbiased estimators of the
values of s and θ:

cov(ŝ, θ̂) ≥ I(s,θ)−1 (7.23)

and the diagonal elements I−1
ii (s,θ) correspond to the expected variance for the

parameters s and θi. The loss value used to optimize the neural network parameters
ϕ is chosen to be the variance of the expected number of signal events s:

U = I−1
00 (s,θ) (7.24)
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which corresponds to the expected width of the confidence interval for s account-
ing also for the effect of the nuisance parameters θ. It should be noted that the
loss value can be adapted to the particular problem and is not restricted to using
the approximate variance of the POI. For example, it is also possible to optimize
the likelihood ratio between the signal-plus-background model and the background
model. The output of the algorithm is the optimized neural network f that can be
used to construct an optimal summary statistic.

7.2 Performance Study

In order to study the performance of the inferno algorithm with the tt̄ → τh + jets
analysis reproduced with CMS Open Data in Chapter 6, the performance of the
algorithm is evaluated in several simplified setups. As a consistency check, the in-
ference without systematic uncertainties based on a summary statistic obtained with
inferno is evaluated and compared to a summary statistic obtained by training a
model with bce. In a further study, artificial ShapeNorm systematic uncertainties
are introduced in order to quantify possible improvements with inferno if nuisance
parameters are present. Moreover, the effect of normalization uncertainties is stud-
ied. The knowledge gained in these studies is then applied in Section 7.3 to train
a more complex model and perform the full inference with all relevant systematic
uncertainties for the tt̄ → τh + jets analysis.

7.2.1 Training and Inference Setup

For all the studies performed, the chosen number of training events consists of 5000
QCD background and 20000 tt̄ signal events, while the validation set consists of
5600 background and 23000 signal events. For the inferno training, a feed-forward
neural network with two hidden layers and ReLU activations is implemented in Py-
Torch with 10 output nodes in the final layer. The summary statistic based on
the softmax function defined in equation 7.13 is used for all inferno models unless
otherwise stated.
A large batch size of 1000 is used in order to reduce fluctuations when building
the batch-wise summary statistics within the inferno algorithm. The input to the
inferno algorithm are the same eight normalized high-level features that have been
used for the training of a model with the bce loss in Chapter 6. The most important
model parameters have been optimized with a hyperparameter scan. The learning
rate is optimized in the range [10e−4, 10e−1], the number of neurons per layer in
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the range [20, 100] and the temperature in the range [0.01, 0.99]. The models are
compared according to the best validation loss. In general, it has been found that
a wide range of hyperparameters give similar results. Thus for the inferno model
a learning rate of 0.001, 60 neurons per layer, and a temperature τ of 0.1 is chosen.
The training is performed for 100 epochs with the ADAM optimizer. The initial ex-
pected number of events for the signal is set to 348, as predicted by the simulation
normalized to the theoretical cross-section and luminosity (Table 6.4). The number
of background events is set to 2690, which was shown in Section 6.6 to be a realistic
estimation. Both for the signal and background events the event weights are taken
into account during training. The inferno model is compared to an optimized bce
model with 20 neurons per layer and a learning rate of 0.001 trained for 100 epochs
with the ADAM optimizer and a batch size of 256. The choice of different archi-
tectures for the inferno and bce model ensures that each model is optimal for the
respective loss.

The profile likelihood fit is performed with cabinetry based on pyhf. It has been
verified that similar results are obtained with the CMS combine package. The
parameter uncertainties and correlation coefficients are estimated with the hesse
algorithm based on the minuit package. The minos algorithm is used to calculate
the correct positive and negative errors of the signal strength µ. The events of the
training set are discarded when building the templates for the fit. For the summary
statistic based on the softmax function, the argmax operator is applied to the pre-
dictions of the neural network to obtain a one dimensional summary statistic. It is
sometimes possible that inferno predicts zero for all processes in a bin. In this case
the bin is excluded to avoid numerical instabilities. As will be discussed in the next
section, for inferno it has been observed that the performance of the inference has
little dependence on the number of bins, thus in the following the number of the
output nodes for inferno models have been set to 10. The number of bins for the
histograms of the bce model predictions is set to 20.

7.2.2 inferno without Nuisance Parameters

To quantify the behaviour of the inferno algorithm, a neural network is trained
with inferno without including any nuisance parameters. Therefore the only rel-
evant parameter in the algorithm is the number of expected signal events s. Ac-
cording to the Neyman-Pearson Lemma it is expected that a classifier trained with
bce should be optimal for inference and give similar results as a classifier trained
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with inferno if no nuisance parameters are present. The class predictions of the

0 2 4 6 8 10
class prediction

0.0

0.2

0.4

0.6

0.8
ev

en
ts

Signal
Background

0 20 40 60 80 100
epoch

600

800

1000

1200

1400

1600

1800

2000

2 (
s)

BCE
INFERNO

Figure 7.2: Left panel: class prediction of the inferno algorithm without nuisance param-
eters. Right panel: approximated variance σ2(s) for the number of expected
signal events s for the inferno model and bce model.

inferno model for the signal and background components of the validation set is
shown in the left panel in Fig. 7.2. It should be noted that, unlike in a training
with bce, the bins are not ordered by default and the order of the bins can change
randomly with the initialization of the network. However, it is possible to sort the
bins post-training e.g. according to the signal-background ratio, to emulate a bce-
like behaviour. In the right panel of Fig. 7.2 the loss of the inferno training, that
corresponds to the approximated variance σ2(s) of the expected number of signal
events s is shown. The training converges to a summary statistic that provides low
variance for the number of expected signal events s. The value of the variance of
s is also shown for the bce model. This value is obtained by histogramming the
bce output predictions after each epoch and using these histograms as input to the
inferno algorithm to calculate the approximate covariance matrix and thus obtain
the approximate variance of s. Technically this is possible because the inferno
algorithm has been implemented as a callback. Comparing the inferno loss curve
of the variance σ2(s) with the evolution of σ2(s) during the bce training shows that
both models converge to a similar value.

The summary statistic obtained from the predictions of the inferno model and
the histogrammed predictions of the bce model are then used to build summary
statistics for the profile likelihood fit for all the relevant signal and background pro-
cesses of the reproduced tt̄ → τh + jets analysis. In order to compare the inference
with the model training, no nuisance parameters are included in the profile likeli-
hood fit. The agreement between data and simulation for the inferno predictions is
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Figure 7.3: Left panel: data-simulation agreement for the inferno training without nui-
sance parameters. Right panel: comparison of profile likelihood scan of the fit
with bce summary statistics and inferno summary statistics with Asimov data.

shown in the left panel of Fig. 7.3. A good agreement between data and simulation is
observed. The results for the profile likelihood scan with Asimov data, also referred
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Figure 7.4: Left panel: comparison of the profile likelihood scan of the fit with bce summary
statistics and inferno summary statistics with the measured data. Right panel:
measured confidence interval on Asimov data as a function of the number of bins.

to as a saturated model in statistics, is shown in the right panel of Fig. 7.3. The
measured signal strength without systematic uncertainties on the Asimov dataset
based on the inferno and the bce summary statistics are:

µA
bce = 1.00+0.089

−0.087

µA
inf = 1.00+0.088

−0.086

(7.25)
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which confirms that the obtained confidence intervals for the inferno and bce
models are very similar. It can also be seen that the square root of the converged
approximated variance of the expected signal events σ(s) ≈ 28 (Fig 7.2), is a good
approximation of the measured uncertainty of µ, which corresponds to ∼ 30 signal
events. In the fit to the measured data the normalization of the QCD template
can float freely, which however has little effect on the uncertainty of µ. The mea-
sured signal strength evaluated in a profile likelihood fit to the measured data with
inferno and bce summary statistics is:

µbce = 0.99+0.089
−0.087

µinf = 0.96+0.089
−0.085 .

(7.26)

The scan of the profile likelihoods is shown in the left panel of Fig. 7.4. The minima
of the profile likelihoods are slightly different, which can be explained by statistical
fluctuations. The magnitude of the obtained confidence intervals for the bce and
inferno models is similar. This is expected, since a classifier trained with bce
should be optimal for inference if no nuisance parameters are present and inferno
should be optimal for inference by construction.

Moreover, a study has been performed to find the optimal number of bins for infer-
ence. The results are shown in the right panel of Fig. 7.4, where the magnitude of
the 68% confidence interval evaluated on Asimov data has been plotted as a function
of the number of bins. For each bin number, a separate inferno model has been
trained with the number of output nodes in the last layer set to the corresponding
bin value. For the bce model it has been found that a suitable number of bins
should be of 20 or more, which motivates the choice of 20 bins for the binning of the
bce predictions in Chapter 6.

7.2.3 inferno with ShapeNorm Nuisance Parameters

In order to quantify the performance of the inferno algorithm in situations where
nuisance parameters are present that affect the shape and normalization of the clas-
sifier, a study has been performed with artificial ShapeNorm nuisance parameters.
An artificial ShapeNorm systematic uncertainty is introduced by shifting the mean
value of one of the input variables of the analyzed tt̄ → τh + jets data. Out of the
eight input variables, the aplanarity variable has been chosen and the mean value
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of the variable is shifted up and down at 5 points between 0.005 and 0.02 in order
to obtain artificial 1σ-up and 1σ-down variations. The normalization is increased
by 5% for the 1σ-up variations and reduced by 5% for the 1σ-down variations. This
allows to study the confidence interval of the signal strength and the associated co-
variance matrix obtained in profile likelihood fits as as a function of the shift. The
shift can be applied both to the signal and background samples. An example for
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Figure 7.5: Left panel: artificial ±1σ variation for the aplanarity variable of the signal pro-
cess. Right panel: artificial ±1σ variation for the aplanarity variable of the
background process.

a shift of 0.0125 is illustrated in Fig. 7.5. The left panel shows the distribution of
the artificial ±1σ variation for the aplanarity variable of the signal process and the
right panel shows the distribution of the ±1σ variations for the aplanarity variable
of the background process. This setup, although artificial, allows to study the effect
of the ShapeNorm uncertainties in a controlled setup and relates to the studies per-
formed with the synthetic example described in Section 3.3.2. As will be shown in
Section 7.3, the realistic jet energy scale variation shows a similar behaviour as the
systematic uncertainty introduced by this artificial shift.

ShapeNorm Nuisance Parameter for the Signal Process

First, the effect of one artificial ShapeNorm nuisance parameter that affects the sig-
nal process is studied. The 1σ-up and 1σ-down shape variation and the correlated
normalization uncertainty are included in the inferno training according to the
description in Section 7.1. Thus, the total number of parameters in the algorithm
is two and the approximate variance of s is chosen as the loss value. The nuisance
parameter θ is constrained with a Unit Gaussian distribution. The inferno model
is compared to an optimized bce model trained on the same dataset. The approx-
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Figure 7.6: Evolution of the covariance matrix evaluated on the validation set during the
training. The diagonal elements show the variance of the expected number of
signal events s and the variance of the nuisance parameter θ. The off-diagonal
elements show the correlation coefficient ρ(s, θ).

imated covariance matrix is monitored after each epoch on the validation set. As
in the previous section, the approximate variance of the expected number of signal
events s can also be calculated during the training of a bce model by binning the
model predictions to create summary statistics that can be used in the inferno
algorithm. The evolution of the 2 × 2 covariance matrix for a nuisance parameter
corresponding to a shift of 0.0125 is shown in Fig. 7.6 as a function of the number
of epochs for the inferno and bce model. The diagonal elements of the figure
display the variance of the expected number of signal events σ2(s) and the variance
of the nuisance parameter θ, denoted by σ2(θ). The off-diagonal elements show the
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correlation coefficient ρ between s and θ which is defined as the covariance of the
variables divided by the product of their standard deviations:

ρ(s, θ) = Cov(s, θ)
σ(s)σ(θ) . (7.27)

The correlation coefficient ρ is bound between −1 and 1. Evaluating the evolution
of the covariance matrix shows that the variance of the parameter of interest s con-
verges to a lower value with the inferno model compared to classifier trained with
bce. Comparing the evolution of the variance σ2(s) to the one obtained in the previ-
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Figure 7.7: Left panel: comparison of the normalized shapes of the bce predictions for
the signal, background and the 1σ-up and 1σ-down variations. Right panel:
comparison of the normalized shapes of the inferno predictions for the signal,
background and the 1σ-up and 1σ-down variations.

ous section without nuisance parameters, illustrates that in the presence of nuisance
parameters the bce classifier is not optimal any more. It is further observed that
the correlation coefficient ρ converges to a value closer to zero during the inferno
model training, and the variance of the nuisance parameter θ converges to a lower
value with inferno compared to the bce classifier. This indicates that the inferno
algorithm makes optimal use of the data in order to decorrelate the parameter of
interest s from the nuisance parameter θ, which results in a lower variance for s
compared to a model trained with bce.
A comparison of the normalized shapes of the predictions for the signal, background
and the 1σ-up and 1σ-down variations corresponding to the artificial systematic un-
certainty is shown in Fig. 7.7 for the bce model (left panel) and the inferno model
(right panel). The ratio between the nominal shape and the systematic variations
shows that the inferno predictions are arranged in a more balanced way compared
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to the bce predictions.

The summary statistics for all the relevant signal and background processes of the
reproduced tt̄ → τh +jets analysis are obtained from the predictions of the inferno
model and the histogrammed predictions of the bce model. The summaries are then
used as input for the profile likelihood fit. In order to compare the inference with
the model training, only the ShapeNorm nuisance parameter corresponding to the
artificial shift is included in the fit. The measured confidence interval for the sig-
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Figure 7.8: Left panel: profile likelihood scan for the signal strength µ and the ShapeNorm
nuisance parameter θ for the inferno and bce summary statistic. Right panel:
error ellipse for the parameters µ and the ShapeNorm nuisance parameter θ for
the inferno and bce summary statistic.

nal strength µ evaluated on Asimov data based on the inferno and bce summary
statistics is:

µA
bce = 1.00+0.119

−0.108

µA
inf = 1.00+0.091

−0.088

(7.28)

and the post-fit uncertainty of the nuisance parameter θ obtained from the hesse
estimate is:

θA
bce = 0.00 ± 0.975
θA

inf = 0.00 ± 0.442
(7.29)

and the correlation coefficient ρ between µ and θ has been evaluated to:

ρA
bce = −0.17
ρA

inf = −0.62 .
(7.30)
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A scan of the profile likelihood for the parameter µ is shown in the left panel of
Fig. 7.8, both for the inferno and bce model. The result illustrates that the in-
ferno summary statistic yields a narrower confidence interval for the signal strength
µ compared to the bce model if a ShapeNorm nuisance parameter is present. It fur-
ther shows that the estimates of the covariance matrix in the inferno training
(Fig. 7.6) are good estimates of the values obtained from the fit of the Asimov data.
The error ellipse for µ and θ is displayed in the right panel of Fig. 7.8. It visualizes
the correlation and uncertainties for both parameters. As has been observed during
the training, the inferno algorithm reduces the correlations between µ and θ which
results in reduced uncertainties for both parameters compared to the bce classifier.
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Figure 7.9: Comparison of the confidence intervals for µ (top panel), uncertainty of θ (middle
panel) and the correlation coefficient ρ (bottom panel) obtained in a profile
likelihood fit.

The study described above has been repeated for five artificial shifts of the apla-
narity variable of the signal distribution with values between 0.005 and 0.02. For
each shift a separate inferno model has been trained and has been compared to a
bce model. Figure 7.9 shows the results of the profile likelihood fits. The top panel
displays the minos uncertainty of the signal strength µ, the middle panel shows the
standard deviation of the nuisance parameter θ and the last panel displays the corre-
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lation coefficient ρ between µ and θ. Increasing the magnitude of the shift causes the
confidence interval of µ to increase with the bce summary statistic, while it stays
approximately constant with the inferno summary statistic. It further is evident
that the standard deviation of θ is reduced with inferno. Since the parameter θ
has been constrained with a Unit Gaussian, this implies that the post-fit uncertainty
is reduced with respect to the pre-fit uncertainty. The correlations between µ and θ
are closer to zero with the inferno summary statistics compared to the bce sum-
mary statistic. This illustrates again that inferno makes optimal use of the data
to decorrelate the POI µ from the nuisance parameter θ, and also uses the data to
constrain the uncertainty of θ.
This study is repeated with a shift of the aplanarity variable of the background
distribution. The results obtained in this study are similar to the one described for
the signal distribution and a plot with the results of the study has been included in
Appendix A.2.

ShapeNorm for Signal and Background

To further quantify the performance of the algorithm, a setup is considered where
both the signal and the background process depend on an independent ShapeNorm
nuisance parameter. This ensures that the inferno training works correctly if mul-
tiple ShapeNorm parameters are included that affect different processes. Therefore,
for both the signal and the background process the aplanarity variable is shifted by a
value between 0.005 and 0.02. The training of the inferno algorithm then includes
three parameters: the expected number of signal events s, a nuisance parameter θ0

corresponding to the shift in the signal distribution and a nuisance parameter θ1

corresponding to the shift in the background distribution. Both nuisance parame-
ters are constrained with a Unit Gaussian distribution.

The approximated 3 × 3 covariance matrix is monitored after each epoch on the
validation set during the inferno and bce model training. Its evolution with two
nuisance parameters θ0 and θ1 corresponding to a shift of 0.0125 of the aplanarity
variable, is shown in Fig. 7.10 as a function of the number of epochs. The diag-
onal elements of the figure display the variance of the expected number of signal
events σ2(s) and the variance of the nuisance parameters σ2(θ0), and σ2(θ1). The
off-diagonal elements show the correlation coefficients ρ. As has been observed in
the previous studies, the variance of the POI s converges to a lower value with an
inferno model compared to a classifier trained with bce. The correlation coeffi-
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Figure 7.10: Evolution of the 3×3 covariance matrix for the number of expected signal events
s and two artificial nuisance parameters corresponding to a shift of 0.0125 in
the aplanarity variable of the signal (θ0) and background (θ1) process.

cients between the POI s and the nuisance parameters ρ(s, θ0) and ρ(s, θ1) converge
to values closer to zero during the inferno model training and the the approximate
variance of θ0 is reduced compared to the bce model.

Figure 7.11 shows the results of a profile likelihood fit with cabinetry for artificial
shifts of the aplanarity variable between 0.005 and 0.02 in the signal and background
distributions. As in the previous study, a separate inferno model has been trained
for each shift and only the nuisance parameters that have been used during the
training are included in the fit. The top panel shows the minos uncertainty of the
signal strength µ and the following two panels show the uncertainty of the nuisance
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Figure 7.11: Comparison of the confidence intervals for µ (top panel), uncertainty of θ0 and
θ1 (second and third panel) and the correlation coefficients ρ (bottom three
panels) obtained in a profile likelihood fit for the inferno and bce model.

parameters θ0 and θ1. The bottom three panels display the three correlation coeffi-
cients ρ. The correlations between the signal strength µ and the nuisance parameters
θ0 and θ1 are closer to zero with the inferno summary statistic compared to the
bce summary statistic. Thus the confidence intervals obtained with inferno are
significantly narrower and the uncertainty of the nuisance parameters θ0 and θ1 are
reduced. This is consistent with the observations made during the model training,
and further strengthens the hypothesis that the inferno algorithm obtains a lower
variance for the POI s by decorrelating this parameter from the relevant nuisance
parameters.

7.2.4 inferno with Normalization Nuisance Parameters

In order to evaluate if inferno can also outperform a classifier trained with bce
if only normalization uncertainties are considered, a normalization uncertainty has
been included in the inferno training for both the signal and background process.
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An example for a normalization uncertainty is the luminosity. In the studied setup,
the inferno training consists of two parameters: the number of expected signal
events s and the nuisance parameter θ corresponding to a constrained normalization
uncertainty. The magnitude of the normalization uncertainty is increased in five
steps from 2% to 10% and a separate inferno model is trained for each value. The
training is performed with the setup described in Section 7.2.1 and in the profile
likelihood fit only one normalization nuisance parameter is taken into account, in
order to have the same conditions as during the model training. The results of
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Figure 7.12: Comparison of the confidence intervals for µ (top panel), uncertainty of θ (mid-
dle panel) and the correlation coefficient ρ obtained in a profile likelihood fit.
The left panel shows a normalization uncertainty affecting the signal and the
right panel shows a normalization uncertainty affecting the background.

the profile likelihood fit is shown in Fig. 7.12. The left panel shows the minos
uncertainty of the signal strength µ, the uncertainty of the nuisance parameter θ
and the correlation coefficient ρ for a normalization uncertainty affecting the signal
distribution. The right panel shows the same study for a normalization uncertainty
affecting the background distribution. It is observed that in both studies the fit
results obtained with the bce summary statistic and the inferno summary statistic
are similar. In particular, for the confidence intervals and the correlations very
similar values have been obtained. None of the performed studies have indicated
a mitigation of the effect of normalization nuisance parameters by including them
in the inferno algorithm compared to a bce classifier. This indicates that for
the studied tt̄ → τh + jets analysis, an improvement with the inferno algorithm
over the bce classifier is mainly possible by reducing correlations between the signal
strength parameter µ and ShapeNorm nuisance parameters that have a strong effect
on the shape of the classifier. However, it should be noted that so far inferno has
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only be studied with one signal and one background process. It is possible that the
inclusion of the normalization uncertainties in inferno may be beneficial in cases
where multiple background or signal processes are considered in the training, where
each process has its own normalization uncertainties, since in this case different
background processes could be assigned to different bins.

7.2.5 Alternative Summary Statistic

As described in Section 7.1.3, an alternative differentiable summary statistic has
been implemented based on an approximately differentiable histogram. The studies
described in the previous sections have been repeated with this summary statis-
tic and similar results have been obtained as for the original inferno summary
statistic based on a softmax function. To use the approximately differentiable his-
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Figure 7.13: Left panel: Evolution of the covariance matrix evaluated on the validation
set during the training for an artificial ShapeNorm nuisance parameter corre-
sponding to a shift of 0.0125 in the aplanarity variable of the signal distribution.
Right panel: predictions of the inferno model trained with an approximately
differentiable histogram.

togram, a feed-forward neural network with two hidden layers, ReLU actications
and a sigmoid function in the last layer has been implemented. A value of 200 has
been used for the hyperparameter κ that regulates the smoothness of the histogram
bin edges. An example for the training with one artificial ShapeNorm nuisance pa-
rameter corresponding to a shift of 0.0125 in the aplanarity variable of the signal
distribution, as studied in Section 7.2.3, is shown in the left panel of Fig 7.13. The
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7 Application of INFERNO to a tt̄ cross-section measurement

approximated covariance matrix shows a similar behaviour as the training with the
original inferno summary statistic. A lower variance is obtained for the POI with
the inferno model compared to the bce model and the correlation between the
POI and the nuisance parameter is reduced, which is consistent with the findings in
the previous sections.

The predictions of the inferno model for the validation set is shown in the right
panel of Fig. 7.13. The output of this summary statistic is a continuous variable
that is bound between zero and one which has the advantage that it can be eas-
ily rebinned. The shape of the predictions shows similarities to the predictions of
a model trained with bce, where the signal and background are pushed towards
zero and one. A good data-simulation agreement is observed, as displayed in the
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Figure 7.14: Left panel: data-simulation agreement of the predictions obtained from the
inferno model trained with an approximately differentiable histogram. Right
panel: profile likelihood scan for the inferno and bce model on Asimov data.

left panel of Fig. 7.14. The right panel displays a profile likelihood scan evaluated
on Asimov data that has been performed with cabinetry. A similar confidence
interval has been obtained as for the original inferno summary statistic, shown in
Fig. 7.8. This indicates that both summary statistics described in Section 7.1.3 can
be used to train a model with the inferno algorithm depending on the concrete
application.
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7 Application of INFERNO to a tt̄ cross-section measurement

7.3 Measurement of the tt̄ → τh + jets Cross-Section
with inferno

In this section the inferno algorithm will be applied to the tt̄ → τh + jets analysis
reproduced with CMS Open Data. The studies of the ShapeNorm and normaliza-
tion nuisance parameters in the previous section indicate, that inferno has the
potential to mitigate the effect of systematic uncertainties that affect the shape of
the classifier, whereas in the studied setup inferno does not improve normalization
uncertainties. Therefore, first a single inferno model is trained for each of the
considered ShapeNorm uncertainties in the tt̄ → τh +jets analysis in order to obtain
an estimation which uncertainties inferno can potentially improve. Then a model
is trained that takes all relevant ShapeNorm uncertainties and their correlations
into account and a profile likelihood fit with all relevant systematic uncertainties
is performed to compare the cross-section obtained with inferno to the results in
Chapter 6.

7.3.1 Evaluation of ShapeNorm Uncertainties

As discussed in Section 6.7, there are six systematic uncertainties in the tt̄ → τh+jets
analysis that affect the shape and normalization of the classifier (Table 6.5). The
systematic uncertainties due to the jet energy scale (JES), the jet energy resolution
(JER), and the tau energy scale (TauE) are obtained by repeating the analysis with
varied parameters in the MC simulation. The remaining three systematics are given
by event weights: the systematic uncertainty of the PDF weights, the statistical un-
certainty originating from the trigger efficiency measurement, and the variation of
the b-tagging scale factor. To understand the impact of each ShapeNorm system-
atic uncertainty a separate inferno model is trained for each systematic variation
and the results of a profile likelihood fit based on the summary statistic obtained
with inferno is compared to a summary statistic obtained from an optimized clas-
sifier trained with bce. The training and inference setup is the same as described in
Section 7.2.1: a feed-forward neural network with two hidden layers with 60 neurons
per layer, 10 output nodes, a temperature τ of 0.1 and a learning rate of 0.001 is
trained for 100 epochs with the ADAM optimizer. Since the 1σ-up and 1σ-down
variations have different normalizations, the asymmetric log-normal function is used
in the inferno algorithm. The profile likelihood fit is performed with cabinetry.

Figure 7.15 shows the evolution of the 2 × 2 covariance matrix during the train-
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Figure 7.15: Evolution of the covariance matrix evaluated on the validation set during the
training. The diagonal elements show the variance of the expected number of
signal events s and the variance of the JES nuisance parameter θJES. The off
diagonal elements show the correlation coefficient ρ(s, θJES).

ing with the JES systematic uncertainty for an inferno and bce model. The
evolution of the variances of the expected number of signal events s and the nui-
sance parameter θJES are qualitatively similar to the study with artificial nuisance
parameters in Section 7.2.3. The inferno model converges to a lower variance σ2(s)
compared to the bce model and the variance of the nuisance parameter θJES is re-
duced. The correlation coefficient ρ between s and θJES converges to a value closer
to zero with the inferno model, which is consistent with the previous studies. The
obtained summary statistics with the inferno and bce model are used as input
to the profile likelihood fit. A scan of the profile likelihood on Asimov data for the
signal strength µ is shown in Fig. 7.16 and the measured values for the minos error
of µ, the uncertainty of the nuisance parameter θJES and the correlation coefficient
ρ is displayed in Fig. 7.17. The fit has been performed with the same conditions
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Figure 7.16: Profile likelihood scans of the signal strength µ on Asimov data for the consid-
ered ShapeNorm nuisance parameters for the bce and inferno model.

that were used during the training of inferno and the results confirm the trends
that have been seen during the training: a more precise confidence interval has been
obtained by including the JES systematic in the training with inferno and the
correlation between µ and θJES has been reduced.

For each of the remaining ShapeNorm systematic uncertainties a similar model has
been trained and the profile likelihood fit has been performed with the obtained sum-
mary statistics. In Fig. 7.16 the likelihood scans for the signal strength parameter
µ is shown for the six relevant ShapeNorm systematic uncertainties and in Fig. 7.17
the minos uncertainty for µ, the uncertainty of the corresponding nuisance param-
eter θ and the correlation coefficient ρ is shown. Comparing the results between
the inferno and bce model shows that an improvement is mainly possible for the
JES nuisance parameter, where inferno manages to decorrelate it from the signal
strength µ. For the other nuisance parameters the obtained confidence intervals and
correlations are very similar and little improvement is obtained with inferno. A
comparison of the signal and background shapes and the shapes of the systematic
variations is included in Appendix A.2 for the inferno model (Fig. A.5) and the
bce model (Fig. A.6). This comparison shows that, except for the JES variation, the
other nuisance parameters have only a small influence on the shape of the classifier.
Thus inferno cannot decorrelate these parameters from the POI, and hardly any
improvement with inferno over bce is obtained.
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Figure 7.17: Comparison of the confidence intervals for µ (top panel), uncertainty of the
respective ShapeNorm nuisance parameter θ (middle panel) and the correla-
tion coefficient ρ obtained in a profile likelihood fit for each of the considered
ShapeNorm nuisance parameters.

7.3.2 Model Training

For the complete cross-section measurement, a model is trained that takes all rele-
vant ShapeNorm nuisance parameters discussed in the previous section into account.
Thus the model consists of seven parameters: the signal strength µ, and six nuisance
parameters corresponding to the JES variation, the JER variation, the tau energy
scale variation, the PDF variation, the b-tagging variation and the variation corre-
sponding to the trigger efficiency. As in the previous studies, the chosen number of
training events consists of 5000 QCD background and 20000 tt̄ signal events, while
the validation set consists of 5600 background and 23000 signal events. A feed-
forward neural network with two hidden layers, ReLU activations and 10 output
nodes in the final layer is used for the inferno training with the summary statistic
based on the softmax function defined in equation 7.13. A hyperparamter scan has
been performed to optimize the learning rate in the range [10e−4, 10e−1], the num-
ber of neurons in the range [20, 100] and the temperature in the range [0.01, 0.99].
The best loss on the validation set has been used as figure of merit. For each set
of hyperparamters three randomly initialized models have been trained and it has
been found that slightly higher temperatures are favourable. Figure 7.18 shows the
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Figure 7.18: Square root of the best inferno validation loss for different numbers of neurons
per layer and three values of the temperature for a fixed learning rate of 0.001.

square root of the best validation loss σ2(s) for different numbers of neurons and
three values of the temperature with a fixed learning rate of 0.001. Finally, an in-
ferno model with 60 neurons per layer, a learning rate of 0.001 and a temperature
τ of 0.9 has been trained with a batch size of 1000 for 100 epochs with the ADAM
optimizer. The inferno model is compared to the optimized bce model described
in Section 6.8.

The evolution of a 4 × 4 subset of the covariance matrix as a function of the number
of epochs is shown in Fig. 7.19 for the number of expected signal events s and the
three most important ShapeNorm nuisance parameters θJES, θTauE and θPDF. The
variances and correlations have also been calculated for a model trained with bce
by histogramming the bce predictions to create a summary statistic and running
the inferno algorithm to obtain the approximated covariance matrix. Comparing
the evolution of the variances and correlations between the bce and inferno model
indicates that there is a moderate improvement in the variance of the POI s and
inferno manages to reduce the correlation between some of the nuisance parame-
ters, particularly of the nuisance parameter corresponding to the JES variation. The
correlations and variances for the tau energy scale θTauE and the PDF θPDF converge
to similar values during the inferno and bce model training. This behaviour is
expected according to the evaluation of the individual nuisance parameters in the
previous section. The data-simulation agreement for the inferno class predictions
is shown in the left panel of Fig. 7.20 and a good agreement between data and sim-
ulation is obtained.
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Figure 7.19: Evolution of a 4 × 4 subset of the variances (diagonal) and correlations (off-
diagonal) evaluated on the validation set for the inferno and bce model. The
number of expected signal events s, and the three most important ShapeNorm
nuisance parameters for the JES θJES, the tau energy scale θTauE and the PDF
θPDF are shown.
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Figure 7.20: Left panel: data-simulation agreement for the inferno model taking into ac-
count all relevant ShapeNorm nuisance parameters. Right panel: profile likeli-
hood scan on Asimov data for the inferno and bce model.

In order to verify the approximations made during the training, the resulting sum-
mary statistics are used as input for a profile likelihood fit to the Asimov data where
the same nuisance parameters as used during the training are included, i.e. the six
shape norm nuisance parameters that affect the tt̄ signal. The model training and
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Figure 7.21: Left panel: correlation matrix for the bce model. Right panel: correlation
matrix for the inferno model.
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profile likelihood fit has been repeated with ten randomly initialized models, both
for the inferno and bce summary statistics. The measured values are

µA
bce = 1.00+0.1864 (±0.0013)

−0.1479 (±0.0005)

µA
inf = 1.00+0.1735 (±0.0021)

−0.1401 (±0.0007)

(7.31)

where the upper and lower minos bound of the confidence interval has been averaged
and the standard deviation of the bounds obtained from the ten fits is quoted. The
obtained confidence interval is slightly narrower for inferno, as expected from the
evaluation of the model training. The profile likelihood scan for the signal strength
µ evaluated on the Asimov data is shown in the right panel of Fig. 7.20. The correla-
tion matrix obtained from one profile likelihood fit is shown in Fig. 7.21 for the bce
model (left panel) and the inferno model (right panel). The correlation between
µ and θJES is reduced with the inferno model, as was observed during the model
training. Comparing the correlation matrices to the approximated correlations with
the inferno algorithm in Fig. 7.19 shows, that they are in good agreement. In gen-
eral, the improvement with the inferno algorithm is moderate since, as discussed
in Section 7.3.1, except of the JES systematic most of the ShapeNorm nuisance pa-
rameters only have a small effect on the shape of the classifier in which case the
training with bce is a very good approximation.

169



7 Application of INFERNO to a tt̄ cross-section measurement

Source tt̄ → τh + jets tt̄ → X W/Z + jets Single-top QCD
JES ✓ ✓ ✓ ✓
JER ✓ ✓ ✓ ✓
τh scale ✓ ✓ ✓ ✓
PDF ✓ ✓ ✓ ✓
Stat. trigger ✓ ✓ ✓ ✓
b-tagging ✓ ✓ ✓ ✓
Cross-section ✓ ✓ ✓ ✓
Top-quark mass ✓ ✓
Renorm. scale ✓ ✓
PS matching ✓ ✓
τh trigger ✓ ✓ ✓ ✓
τh identification ✓ ✓ ✓ ✓
Multijet norm ✓

Table 7.1: Relevant systematic uncertainties for the signal and background processes in the
tt̄ → τh +jets analysis. The first block are the systematic uncertainties that affect
the shape and the normalization. The second block lists the uncertainties that
only affect the normalization.

7.3.3 Cross-Section Measurement with inferno

Based on the model trained in the previous section, the inference is performed in-
cluding all relevant nuisance parameters for the various processes, as done in the
measurement of the cross-section in Section 6.9. Table 7.1 summarizes the consid-
ered systematic uncertainties and lists the signal and background processes that are
affected by the different systematic sources. During the training and fit in the pre-
vious studies, the systematic uncertainties have only be taken into account for the
signal and background process that were used in the inferno training. In order to
compare with the result obtained for the signal strength µ in Chapter 6, the full
profile likelihood fit that includes all relevant nuisance parameters for all relevant
processes is performed with cabinetry. This makes the assumption that the effect
of the minor backgrounds were negligible for the training of inferno and the ob-
tained summary statistic is still optimal.

The resulting confidence interval for µ based on the inferno summary statistic
evaluated on Asimov data is measured to:

µA
inf = 1.00+0.22

−0.17 (syst.) ± 0.09 (stat.) (7.32)
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Figure 7.22: Left panel: comparison of the profile likelihood scan for a fit to Asimov data for
the inferno and bce model with all relevant nuisance parameters included.
Right panel: comparison of the profile likelihood scan for a fit to the observed
data for the inferno and bce model with all relevant nuisance parameters
included.

and the resulting confidence interval for µ evaluated on the observed data is measured
to:

µinf = 1.02+0.23
−0.18 (syst.) ± 0.09 (stat.) . (7.33)

The profile likelihood scan of µ evaluated on Asimov data is shown in the left panel
of Fig. 7.22 and the profile likelihood scan evaluated on the observed data is dis-
played in the right panel. The likelihood scans obtained with the classifier trained
with bce in Chapter 6.9 are included for comparison. The central values measured
for the signal strength µ are in good agreement. A moderate improvement in the
precision of the confidence interval is obtained with the inferno summary statistic
compared to the bce summary statistic. In Fig. 7.23 the impacts and the pulls for
the profile likelihood fit with the inferno summary statistic is shown for Asimov
data in the left panel and for the observed data in the right panel. Comparing the
impacts for the inferno model with the impacts for the bce model obtained in
Section 6.9, shows that the inferno model reduces the impact and uncertainty of
the JES nuisance parameter, which is consistent with the studies in the previous
sections. Also the impact of the most important uncertainty that stems from the
PDF variation is slightly reduced compared to the bce model. Thus, the moderate
improvement in the confidence interval of µ can be explained by the mitigation of
the effect of the ShapeNorm nuisance parameters that have been included in the
inferno training. The correlation matrices obtained in the profile likelihood fit
have been included in Appendix A.2.
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Figure 7.23: Left panel: impacts for the inferno model evaluated on Asimov data. Right
panel: impacts for the inferno model evaluated on the observed data

This result shows that inferno can be used in a realistic LHC analysis with HEP-
like systematic uncertainties. inferno has the potential to improve the precision
of confidence intervals if nuisance parameters are present that affect the shape of
the classifier by reducing the correlations between the parameter of interest and the
relevant nuisance parameters. The calculation of the covariance matrix in the in-
ferno algorithm is a good approximation to the values obtained during inference.
A possible improvement would be the extension of the inferno algorithm to take
all relevant background processes into account, as well as potentially multiple signal
processes, in order to ensure that the obtained summary statistic is fully optimal
for the inference problem.
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8 Conclusions and Prospects

A crucial ingredient in precision measurements and searches for new physics at the
LHC is the construction of powerful low-dimensional summary statistics by train-
ing neural network classifiers with a cross-entropy loss function to distinguish small
signals from large backgrounds in a multi-dimensional space of observed event fea-
tures. The summary statistics are used as input for the statistical inference and the
use of neural network classifiers has significantly improved the precision of the LHC
measurements in the last decade. However, the cross-entropy loss and the standard
measures of performance for the learning task are not aligned with the inference
goal when the simulations depend on nuisance parameters that represent systematic
uncertainties. The presence of nuisance parameters then causes a reduction of the
statistical power of the summary statistics during inference.

To address this problem, the novel inferno technique, that constructs powerful
summary statistics that account directly for the final inference objective, has been
extended to deal with systematic uncertainties that are common for HEP problems.
The main idea of the inferno technique is the minimization of a loss function of a
neural network that approximates the covariance matrix of the parameter of interest
and the nuisance parameters with automatic differentiation. The expected variance
of the the parameter of interest can then be used to optimize the parameters of the
neural network and the output of the model is the optimal summary statistic that
accounts for the effect of the nuisance parameters. The strength of the inferno
technique is that it allows to formally describe the objective of the problem one
tries to solve and does not rely on a standard loss-function such as the binary cross-
entropy that is not aligned with the inference problem in the presence of nuisance
parameters. In particular, not only approximate variances but also likelihood ra-
tios can be optimized. The extension of the inferno algorithm to HEP problems
is based on a differentiable morphing algorithm that allows to interpolate between
the nominal summary statistic and 1σ-up and 1σ-down variations corresponding to
systematic uncertainties, inspired by techniques used in the CMS combine tool.
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8 Conclusions and Prospects

Two differentiable summary statistics have been implemented that allow to take
event weights into account. The inferno procedure is inspired by the standard ma-
chine learning and inference procedures used in HEP and does not require a large
paradigm change, such as simulation based inference, which makes it easier to be
put in practice.

In order to test and benchmark the inferno algorithm, a systematics-dominated
analysis of the CMS experiment, “Measurement of the tt̄ production cross section in
the τ+jets channel in pp collisions at

√
s = 7 TeV” has been reproduced with CMS

Open Data. The code is released to the public [1] and the analysis can serve as a
benchmark for future studies. The observed signal strength measured with a profile
likelihood fit based on a summary statistic obtained by training a neural network
with a binary cross-entropy loss is:

µbce = 0.99+0.25
−0.19 (syst.) ± 0.09 (stat.) (8.1)

which is in agreement with the original analysis and the SM prediction. Based on the
reproduced analysis, several studies have been performed that compare the inference
with summary statistics obtained with inferno to summary statistics obtained by
training a model with binary cross-entropy. In simplified setups it has been shown
that inferno has the potential to mitigate the effect of nuisance parameters that
affect the shape of the classifier by decorrelating the expected number of signal
events from the nuisance parameters which improves the precision of the confidence
intervals during inference. For the reproduced top pair cross-section measurement
it has been shown that the impact of the jet energy scale systematic can be reduced
and a moderate improvement in the resulting confidence interval has been obtained.
The observed signal strength measured with an inferno summary statistic is:

µinf = 1.02+0.23
−0.18 (syst.) ± 0.09 (stat.) . (8.2)

The analysis demonstrates that the construction of summary statistics with inferno
has the potential to improve the precision of LHC analysis that are dominated by
systematic uncertainties that affect the shape of event features used to train proba-
bilistic classifiers.

A vast physics program is expected at the CMS experiment in the next decades.
Since so far the LHC has not observed any new physics yet, model independent
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searches will become increasingly important and the understanding and mitigation
of systematic uncertainties will be crucial for precise measurements. A potential
next step in the development of inferno is the extension of the algorithm to take
multiple background processes and channels into account. In the near future, it
is planned to apply the inferno algorithm in a novel CMS physics analysis. In
the larger context, inferno is part of an ambitious new program developed by
the MODE collaboration [6] that aims at optimizing complete analysis workflows,
such as the end-to-end optimization of detectors. Making optimal use of the data
recorded by the LHC in the next decades and optimal use of the financial resources
to build new detectors will be crucial for the progress of high energy physics. The
inferno technique is an important step to understand and unlock the full potential
to optimize complex workflows by using modern machine learning techniques with
custom loss functions that are aligned with the exact objective of the problem.
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A.1 Additional Figures for Chapter 6

Figure A.1: Left panel: jet trigger efficiency comparison between the reproduced anal-
ysis with CMS Open Data and the original analysis [12] for the Quad-
Jet45_IsoPFTau45 trigger. Right panel: tau-lepton trigger efficiency com-
parison between the reproduced analysis with CMS Open Data and the original
analysis [12] for the QuadJet45_IsoPFTau45 trigger.
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Figure A.2: Correlation matrix for the profile likelihood fit with the bce model to Asimov
data.
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Figure A.3: Correlation matrix for the profile likelihood fit with the bce model to measured
data.
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A.2 Additional Figures for Chapter 7
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Figure A.5: Shapes of the signal, background and systematic variations for a classifier trained
with inferno for the relevant ShapeNorm parameters.
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Figure A.6: Shapes of the signal, background and systematic variations for a classifier trained
with bce for the relevant ShapeNorm parameters.
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Figure A.7: Correlation matrix for the profile likelihood fit with the inferno model to
Asimov data.
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Figure A.8: Correlation matrix for the profile likelihood fit with the inferno model to
measured data.
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