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ABSTRACT

Despite the remarkable success of machine learning in various domains in recent
years, our understanding of its fundamental limitations remains incomplete. This
knowledge gap poses a grand challenge when deploying machine learning methods
in critical decision-making tasks, where incorrect decisions can have catastrophic
consequences. To effectively utilize these learning-based methods in such contexts,
it is crucial to explicitly characterize their performance. Over the years, significant
research efforts have been dedicated to learning and control of dynamical systems
where the underlying dynamics are unknown or only partially known a priori, and
must be inferred from collected data. However, much of these classical results have
focused on asymptotic guarantees, providing limited insights into the amount of
data required to achieve desired control performance while satisfying operational
constraints such as safety and stability, especially in the presence of statistical noise.

In this thesis, we study the statistical complexity of learning and control of unknown
dynamical systems. By utilizing recent advances in statistical learning theory, high-
dimensional statistics, and control theoretic tools, we aim to establish a fundamental
understanding of the number of samples required to achieve desired (i) accuracy in
learning the unknown dynamics, (ii) performance in the control of the underlying
system, and (iii) satisfaction of the operational constraints such as safety and stabil-
ity. We provide finite-sample guarantees for these objectives and propose efficient
learning and control algorithms that achieve the desired performance at these sta-
tistical limits in various dynamical systems. Our investigation covers a broad range
of dynamical systems, starting from fully observable linear dynamical systems to
partially observable linear dynamical systems, and ultimately, nonlinear systems.

We deploy our learning and control algorithms in various adaptive control tasks
in real-world control systems and demonstrate their strong empirical performance
along with their learning, robustness, and stability guarantees. In particular, we
implement one of our proposed methods, Fourier Adaptive Learning and Control
(FALCON), on an experimental aerodynamic testbed under extreme turbulent flow
dynamics in a wind tunnel. The results show that FALCON achieves state-of-the-
art stabilization performance and consistently outperforms conventional and other
learning-based methods by at least 37%, despite using 8 times less data. The supe-
rior performance of FALCON arises from its physically and theoretically accurate
modeling of the underlying nonlinear turbulent dynamics, which yields rigorous
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finite-sample learning and performance guarantees. These findings underscore the
importance of characterizing the statistical complexity of learning and control of
unknown dynamical systems.
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Õ(
√
𝑇) Regret. These works achieve this result using different meth-

ods for different safety aspects with different constraint types and for
different numbers of constraints. . . . . . . . . . . . . . . . . . . . . 38

3.1 Works that attain �̃� (
√
𝑇) regret on LQR, † = 1-dim LQRs. . . . . . . 55

3.2 Regret Performance after 200 Time Steps in Marginally Unstable
Laplacian System. StabL outperforms other algorithms by a signifi-
cant margin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3 Maximum State Norm in the Laplacian System. . . . . . . . . . . . . 70
3.4 Regret Performance after 200 Time Steps in Boeing 747 Flight Control. 72
3.5 Maximum State Norm in Boeing 747 Control. . . . . . . . . . . . . 72
3.6 Regret after 200 Time Steps in Stabilizable but Not Controllable System. 72
3.7 Maximum State Norm in Stabilizable but Not Controllable System. . 73
3.8 Regret and Maximum State Norm in Boeing 747 Flight Control. . . . 87
5.1 Comparison with prior works in learning and control of partially

observable linear dynamical systems. . . . . . . . . . . . . . . . . . 127
6.1 Comparison of Works with Regret Guarantees in Nonlinear Systems . 208
6.2 Disturbance rejection performance of the methods over 10 indepen-

dent 90-second test runs. . . . . . . . . . . . . . . . . . . . . . . . . 241
6.3 Hyperparameters of FALCON in our experiments. . . . . . . . . . . 252
6.4 Hyperparameters of TD3 in our experiments. . . . . . . . . . . . . . 255
6.5 Hyperparameters of LSTM-TD3 in our experiments. . . . . . . . . . 256
6.6 Hyperparameters of SAC in our experiments. . . . . . . . . . . . . . 257
6.7 Hyperparameters of PID in our experiments. . . . . . . . . . . . . . 257



1

C h a p t e r 1

INTRODUCTION

Controlling dynamical systems involves designing a control policy or set of actions
to govern the behavior of the system in a desired manner. Typically, this problem
has three components: a dynamical system/environment, a controlling agent, and a
control objective. When the dynamics of the system are well-understood and can be
modeled mathematically, the problem of controlling the system can be formulated as
an optimization problem. Optimal control theory has a long history of applications
and success in solving these optimization problems [19, 28, 105].

However, in most real-world applications, the underlying dynamics are either un-
known or only partially known a priori, making the problem of controlling the
system significantly more challenging. In this setting, learning and control are in-
tertwined processes, where the agent uses feedback from the environment to update
its knowledge of the dynamics and adjust its actions accordingly. To optimize the
overall control objective, the controlling agent must "explore" the environment to
gain a better understanding of the system dynamics, which is often called system
identification in control theory. The agent then uses this understanding to design a
set of controllers that simultaneously reduce the possible future costs, i.e., "exploit",
and also enable the agent to explore the important and unknown aspects of the
system. This process is often referred to as adaptive control design.

This procedure captures the fundamental trade-off in decision-making under uncer-
tainty tasks: exploration vs. exploitation. In recent decades, this challenging prob-
lem has been extensively studied and resulted in a set of foundational steps to study
the consistency of the model estimates and asymptotic convergence to optimal con-
trollers. In particular, in system identification of dynamical systems, the primary fo-
cus is on the asymptotic recovery guarantees of the underlying system [89, 126, 130]
or the practical aspects of the proposed methods [53, 282, 296]. Similarly, clas-
sical works in adaptive control provide asymptotic performance guarantees of the
designed controllers, assuming that the system is perfectly recovered asymptoti-
cally [88, 152, 157, 158], or they design new practical methods [145, 154, 221].

While asymptotic analyses set the ground for the design of optimal control, under-
standing the finite-sample behavior of adaptive control algorithms is critical for real-
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world applications. This is particularly important in safety-critical decision-making
tasks where incorrect actions can have catastrophic consequences. Moreover, the
emergence of autonomous and data-driven agents in challenging interactive tasks,
such as self-driving vehicles and agile robotic systems, requires the joint study of
system identification and adaptive control termed as learning and control of dy-
namical systems [227]. Recent developments in the fields of statistics and machine
learning along with control theory [158, 218, 280] empowers us to not only advance
the study of the asymptotic efficiency of learning and control algorithms but also to
analyze their finite-sample behavior [2, 88].

In this thesis, we study the statistical complexity of learning and control of dynamical
systems. Combining the modern advancements in statistics, machine learning, and
reinforcement learning, with well-established control theoretic ideas, we take steps
toward developing theoretical foundations on finite-sample behavior of learning
and control algorithms. Throughout the thesis, we aim to shed light on several
fundamental research questions on learning and control of dynamical systems.

1.1 Research Questions Studied in This Thesis

“What is the required amount of data for learning and control algorithms to
achieve the desired accuracy in learning the unknown dynamics?”

This question focuses on the system identification aspect of learning and control
and seeks sample complexity guarantees for learning the unknown dynamics. In
this thesis, we study the problem of learning the underlying system dynamics from
a single trajectory in various dynamical systems. In linear dynamical systems, we
investigate the learning of model parameters that govern the system dynamics.

Addressing this question involves careful considerations due to the inherent dynam-
ics of the systems. The data collected from dynamical systems are not identically
and independently distributed (i.i.d.) but instead highly correlated, as observations
at any given time may carry the effects of prior observations and inputs. These
correlations pose a challenge for system identification, even in open-loop scenarios
where control inputs are chosen i.i.d. These difficulties are further amplified in
closed-loop scenarios where a feedback controller designs inputs based on previous
observations. The conventional statistical learning theory tools developed for i.i.d.
data are not suitable for handling these correlations, requiring novel approaches to
address these issues.



3

Learning the dynamics in nonlinear dynamical systems is even more challenging
since local behavior in some parts of the state space does not determine global
behavior, unlike in linear systems. To address this, one can select suitable nonlinear
basis functions for learning the system dynamics. While this approach is feasible, it
requires new tools for its approximation theoretic analysis to provide finite sample
learning guarantees.

Despite these statistical and structural challenges, on a positive note, the dynamical
system construction can be leveraged to learn underlying dynamics. System identi-
fication methods could exploit control-theoretic concepts such as the controllability
or stability of the system to simplify the learning task.

“What is the required amount of data for learning and control algorithms to
achieve the desired performance in the control of an unknown dynamical system?”

This research question focuses on the adaptive control aspect of learning and control
and seeks finite-time performance guarantees in the control of unknown dynamical
systems. In this thesis, we study the problem of regret minimization as the perfor-
mance metric for learning and control algorithms. Regret measures the performance
of the learning agent as the difference between the cumulative cost encountered by
the learning agent and that of a baseline policy, such as an optimal controller that
knows the system dynamics. Thus, it measures the sub-optimality gap in the control
performance due to the lack of knowledge of system dynamics.

In the regret minimization framework, the desirable behavior of the learning agent is
to achieve sublinear regret, i.e., a regret of 𝑜(𝑇) after𝑇 time steps. This scaling shows
that the performance of the learning agent approaches that of the optimal controller as
more data is collected, indicating learning to control behavior. However, achieving
this requires a careful balance of the exploration vs. exploitation trade-off. Too
much exploration can result in linear regret due to not being able to exploit the
gathered information toward optimizing the control objective. In contrast, too little
exploration can lead to linear regret due to being stuck at sub-optimal policies.

To address this fundamental problem, various methodologies to balance exploration
and exploitation have been proposed and studied in reinforcement learning literature,
as shown in Figure 1.1. One promising methodology is to use the optimism in the face
of uncertainty (OFU) principle [156]. OFU-based methods estimate the environment
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Figure 1.1: Methodologies to balance the exploration vs. exploitation trade-off:
Certainty Equivalence (CE), Optimism in the Face of Uncertainty (OFU), Thompson
Sampling (TS).

model up to a confidence interval and construct a set of plausible models within this
interval. Among those models, they choose the one with the lowest expected cost,
i.e., the optimistic one, and follow the optimal behavior suggested by the selected
model. Therefore, these methods are also referred to as the upper-confidence bound
algorithms. The intuition behind these methods is that if the chosen model is in
fact a low-cost achieving model, then we minimize the regret and achieve desirable
exploitation. On the other hand, if it is not, then we reduce the uncertainty around
these models, providing desirable exploration.

Another prominent methodology is Thompson Sampling (TS) [263]. In TS, the
agent samples a model from a distribution computed based on prior actions and
observations, and then takes the optimal action for this sampled model and updates
the distribution based on its new observation. Similar to OFU, it balances the
exploration and exploitation by refining the uncertainties in the estimates, thus
skewing the sampling distribution toward low-cost achieving models.

Moreover, several control theoretic concepts unique to dynamical systems, such as
stability and stabilizability, also impact the regret of learning and control in dynam-
ical systems. Understanding the roles of these concepts and problem-dependent
constants, such as dimension dependencies, is crucial for deriving finite-time per-
formance guarantees of learning and control in dynamical systems.
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“What is the required amount of data for learning and control algorithms to satisfy
operational constraints such as stabilization of the underlying dynamics?”

This research question focuses on the finite-time stabilization and safety aspects
in the learning and control of dynamical systems. While learning-based control
methods show promise for improved control performance, there are significant
challenges that must be addressed before they can be deployed in real-world systems.
Safety-critical systems in particular have high standards for stability, and learning
and control algorithms must meet operational constraints while also achieving good
performance guarantees.

Achieving stability in an unknown dynamical system is one of the fundamental
challenges in control systems engineering. This involves finding a stabilizing con-
troller with minimal interactions with the system to perform tasks like maintaining
a dynamical system around a desired equilibrium point or tracking a reference sig-
nal. Stability is crucial not only for minimizing regret, as discussed earlier, but
also for avoiding saturation and maintaining the validity of linearization around
a certain point for nonlinear dynamical systems [258]. Therefore, stabilizing the
system dynamics is often the first step toward solving more complex control tasks,
and learning and control algorithms need to quickly stabilize the underlying system
dynamics. In this thesis, we investigate the sample complexity of designing stabi-
lizing controllers for the underlying dynamical systems, either as the primary goal
or as an intermediate step toward regret minimization.

“Can we design computationally efficient learning and control algorithms that
achieve these desired finite-time performances in unknown dynamical systems?”

In this thesis, besides obtaining statistically efficient learning and control in dynam-
ical systems, i.e., state-of-the-art finite-sample guarantees for the performance met-
rics above, we aim to achieve these results via computationally efficient methods. To
address this research question, we either provide computationally efficient learning
and control algorithms for various dynamical systems or propose and discuss ways to
improve possible computational inefficiencies to obtain effective implementations.

“Can we design learning and control algorithms that not only have strong
theoretical guarantees but also perform well empirically in real-world systems?”
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The ultimate goal of studying the finite-sample guarantees in the learning and
control of dynamical systems is to design and deploy robust and high-performing
control systems in practice. While statistical learning guarantees are essential
for robustness purposes, they may not always guarantee practical performance.
Complex algorithms that achieve strong statistical guarantees may not perform well
in practice due to their added complexity to handle all possible situations. Therefore,
it is important to design simpler algorithms with strong empirical performance. In
real-world applications, besides statistical efficiency and robustness, other practical
aspects such as latency, scalability, interpretability, and implementability are also
crucial. These aspects may be hard to quantify statistically, so statistically efficient
learning and control algorithms should aim to achieve efficiency in the simplest way
possible to allow for real-world implementation and strong empirical performance.

1.2 Outline and Scope of the Thesis
This thesis studies the learning and control of various dynamical systems ranging
from the most basic stateless dynamical systems of stochastic linear bandits to the
most complicated partially observable nonlinear dynamical systems. In our inves-
tigation, we follow the guideline of the fundamental research questions posed in
the previous section and try to answer and shed light on them in each dynamical
system setting. Our central goal is to provide finite-time performance characteriza-
tion of learning and control of dynamical systems and propose efficient algorithms
that achieve these fundamental limits. The chapters of this thesis are organized in
order of increasing complexity of learning and control tasks. In particular, as the
initial setting, we study stochastic linear bandits in Chapter 2. In Chapter 3, we
consider learning and control of canonical linear time-invariant dynamical systems,
namely, linear quadratic regulators. Then, we focus on linear time-varying systems
in Chapter 4. Chapter 5 studies the measurement feedback setting of linear dynam-
ical systems, where the dynamical system evolves with respect to a latent state and
the decision-making agent only observes noisy linear measurements of this state.
Finally, Chapter 6 considers the most general setting of learning and control in
partially observable nonlinear dynamical systems. We end the thesis with some
interesting future research directions in Chapter 7.The following briefly outlines the
scope of each chapter.
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Stochastic Linear Bandits with Practical Concerns (Chapter 2)

We start our study with stochastic linear bandits (SLB). The standard formulation of
SLB is the simplest sequential decision-making under uncertainty problem and is
often regarded as a “stateless” dynamical system since the feedback/reward of each
action is independent and does not impact the overall condition of the environment.
In this setting, at each round of SLB, an agent chooses an action 𝑥𝑡 from the given
set of actions 𝐷𝑡 and receives a stochastic reward from the environment,

𝑟𝑡 = 𝑥
⊤
𝑡 \∗ + [𝑡 ,

whose expected value is an unknown linear function \∗ of the 𝑑-dimensional action
representation vector 𝑥𝑡 ∈ 𝐷𝑡 , i.e., [𝑡 is a random variable with zero mean. The
agent’s goal is to maximize its cumulative reward. Clearly, with the knowledge
of \∗, the optimal strategy is to choose argmax𝑥∈𝐷𝑡 𝑥

⊤\∗. However, due to the
lack of knowledge of the true environment model, the agent makes mistakes by
picking sub-optimal actions. Thus, the goal in SLB is to design a strategy for
the agent to minimize the cumulative cost of these mistakes, known as regret.
For this task, the agent needs to dedicate its actions to not only maximize the
immediate reward but also to explore other actions to build a better estimate of the
unknown linear function and guarantee higher future rewards. Therefore, despite
their simplicity, stochastic linear bandits fundamentally capture the trade-off between
exploration and exploitation, which is the crux of sequential decision-making under
uncertainty problems. For this very reason, they have been widely adopted as
modeling tools to improve decision making in clinical trials, ad display optimization,
energy management, and recommendation systems.

The fundamental understanding and finite-time performance (regret) guarantees
have been developed in the canonical setting described above using different policy
design strategies such as the OFU principle or Thompson Sampling. However,
real-world decision-making tasks often involve high-dimensional action representa-
tions and unknown safety constraints, which pose additional challenges that are not
addressed by the standard algorithms. This chapter addresses these practical aspects
of modern-day decision-making under uncertainty tasks in the context of stochastic
linear bandits: (i) high-dimensional feature representations for the action vectors
and (ii) unknown (nonlinear) safety constraints.

For the first aspect, we propose an algorithm called Projected Stochastic Linear
Bandits (PSLB) that leverages principal component analysis-based projection to ef-
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ficiently recover the low-dimensional subspace structure of high-dimensional action
representations. PSLB exploits the underlying hidden structure to guide exploration
and exploitation, which yields improved performance compared to existing algo-
rithms. We prove that PSLB obtains a regret upper bound that scales with the
intrinsic dimension of the subspace, rather than the large ambient dimension of
the action space. Empirical studies on image classification tasks show that PSLB
significantly reduces regret and converges faster to an accurate model compared to
state-of-the-art bandit algorithms.

For the second aspect, we study stochastic linear bandits with unknown safety
constraints and local feedback. We propose optimism (upper confidence bound)
and Thompson Sampling-based algorithms that carefully incorporate an additional
exploration incentive to ensure the selection of high-reward actions that are also
safe and encourage exploration in the relevant constraint sets to recover the optimal
safe action. We provide tight regret bounds for these algorithms, showing that
they achieve optimal sublinear regret without any safety violations. Empirical
studies on various safety constraints and a real-world credit dataset demonstrate the
effectiveness of the proposed algorithms in safely exploring and recovering optimal
safe actions quickly.

Learning and Control in Linear Quadratic Regulator (Chapter 3)

With this chapter, we begin our study of learning and control of dynamical systems
with an underlying state that evolves over time based on the executed actions. We
consider the canonical setting of learning and control in dynamical systems: fully
observable (state-feedback) linear time-invariant systems

𝑥𝑡+1 = 𝐴∗𝑥𝑡 + 𝐵∗𝑢𝑡 + 𝑤𝑡 , (1.1)

where 𝑥𝑡 is the state of the system, 𝑢𝑡 is the control input, 𝑤𝑡 is the stochastic
process noise at time 𝑡, and 𝐴∗, 𝐵∗ are the model parameters. In particular, we study
the problem of adaptive control of the linear time-invariant systems given in (1.1)
with quadratic regulatory cost 𝑐𝑡 = 𝑥⊤𝑡 𝑄𝑥𝑡 + 𝑢⊤𝑡 𝑅𝑢𝑡 , commonly referred to as linear-
quadratic regulators (LQRs) [134], with unknown parameters 𝐴∗ and 𝐵∗, and without
a priori known stabilizing controller. This framework has been the main focus of
providing finite-time guarantees in learning and control of dynamical systems due
to its simplicity and ability to capture the crux of the problem in terms of system
identification and adaptive control synthesis [2, 7, 71, 85, 137, 166, 191, 242]. When
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the model dynamics are known, the LQR control problem becomes an optimization
problem with a scalar cost objective, whose optimal solution is given as a linear
state-feedback controller [134]. However, when the model is unknown, the learning
agent needs to learn the dynamics and find the optimal control policy online, i.e.,
online LQR, which is a core challenge in reinforcement learning and control theory.

The ultimate goal of the online LQR problem is to design RL agents that can adapt
autonomously to unknown environments with minimal information while ensuring
finite-time stability and performance guarantees. Despite significant research in-
terest, there are few approaches that provide a complete treatment of the problem
without initial model estimates or stabilizing controllers, and the existing methods
that learn from scratch often suffer from exponential regret and unstable dynamics,
limiting their practical deployment.

To address these challenges, we propose two learning and control algorithms for
online LQRs. The first algorithm, Stabilizing Learning (StabL), incorporates the
optimism principle into the online LQ control problem. StabL achieves fast stabi-
lization of the system by effectively exploring the environment with an improved
exploration strategy, resulting in O(

√
𝑇) regret after T time steps, which is optimal

for online LQR. We also show that the regret of StabL has only a polynomial depen-
dence on the problem dimensions, which is an exponential improvement over prior
methods. The key ingredient that allows these results is our exploration strategy
that combines the sophisticated exploration approach of optimism with isotropic
exploration to achieve fast system identification and stabilization, hence, optimal
regret. We also demonstrate that StabL outperforms prior algorithms empirically in
various adaptive control tasks.

The second algorithm, Thompson Sampling-based Adaptive Control (TSAC), ad-
dresses possible computational inefficiencies of StabL due to optimism by using
Thompson Sampling (TS) to balance exploration and exploitation trade-off in con-
troller design. Despite the computational efficiency of TS, prior works in online
LQR were able to attain optimal regret only for scalar systems, whose extension
to multi-dimensional LQR systems has been proposed as an open problem in [6].
We design TSAC according to the algorithmic insights obtained from StabL, and
show that it achieves the optimal O(

√
𝑇) regret even for multidimensional systems,

thereby solving the open problem posed in prior work. Similar to StabL, TSAC does
not require a known stabilizing controller and achieves fast stabilization through ef-
fective exploration in the early stages. Our breakthrough in TSAC lies in developing
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a novel lower bound on the probability of obtaining an optimistic sample with TS.
By carefully prescribing an early exploration strategy and policy update rule, we
show that TSAC achieves optimal regret in adaptive control of multidimensional
stabilizable LQRs. Our empirical results demonstrate the effective performance and
efficiency of TSAC in adaptive control of Boeing 747 with linearized dynamics.

These results make StabL and TSAC the first algorithms that achieve optimal regret
in stabilizable LQRs without an initial stabilizing policy. This feat highlights the
benefit of early improved exploration to achieve fast stabilization and reduce the
cumulative regret at the expense of a slight increase in regret in the early stages.
Moreover, our optimal regret guarantee on TSAC also shows that a simple sampling
strategy based on confidence sets provides effective exploration to recover low-cost
and eventually optimal controllers in adaptive control of LQRs.

Learning and Control in Linear Time-Varying Systems (Chapter 4)

Time-invariant systems such as LQRs considered in Chapter 3 have traditionally been
the main focus in the learning and control perspective by the reinforcement learning
and control communities. However, real-world dynamical systems are often time-
varying, e.g., power systems, autonomous vehicles, and financial markets. While
not all time-varying systems have linear dynamics, many applications with nonlinear
dynamics can be approximated by linear time-varying (LTV) systems via a local
linear approximation at each time step. In this chapter, we study the learning and
control of LTV systems through the lenses of stability and online stabilization.

There are several notions of stability considered in the study of stability in LTV
systems. Of all these notions, we focus on the input-to-state stability (ISS) and
mean-square stability of LTV systems in this chapter. ISS aims to guarantee the
boundedness of the state given bounded initial conditions, which is crucial for many
applications of LTV systems to avoid saturation, and maintain the robustness, and
validity of linearization around a certain point. Mean-square stability, on the other
hand, is crucial in stochastic systems and implies that the system converges to its
fixed point asymptotically in a mean-square sense.

While there is considerable prior work focused on stabilizing the LTV systems,
most of these works study stability in the offline setting, where the sequence of
system parameters is known or has a particular variation pattern. Maintaining
stability guarantees becomes significantly harder in the online setting, where the
system parameters are observed in real-time and may have arbitrary variations,
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which is most relevant to many real-world applications. Moreover, when designing
a controller, the designer must not only stabilize the dynamics but also aim to have
a low cost, as controllers that only focus on stability may result in sub-optimal cost.
Yet the converse may also be true, as controllers that only focus on minimizing the
regulatory cost myopically may result in unstable dynamics.

In this chapter, we aim to answer the question of whether it is possible for an
online controller to guarantee stability and maintain low costs in LTV systems.
We propose an efficient online control algorithm, Covariance Constrained Online
Linear Quadratic (COCO-LQ) control, that guarantees ISS for a large class of LTV
systems while also minimizing the control cost. COCO-LQ incorporates a novel
state covariance constraint into the semidefinite programming (SDP) formulation
of the optimal LQ control problem. We show that this constraint promotes a joint
stabilization property for the sequence of controllers designed by COCO-LQ, which
gives the desired ISS property even under modeling errors in the online setting which
we quantify precisely. We empirically demonstrate the performance of COCO-LQ in
both synthetic experiments and a real-world power system frequency control setting.

Next, we investigate the effect of asynchrony and randomization on the stability
of linear dynamical systems. Asynchrony and randomization are inherent in many
computational tasks and dynamical systems and have been considered as means to
increase computation speed and reduce cost, albeit at the expense of accuracy and
convergence rate. Motivated by this, we propose random asynchronous LTI systems,
a novel LTV system model, that generalizes the standard “synchronous” LTI systems,
i.e., (1.1). In this model, each state variable is updated randomly and asynchronously
with some probability, following the underlying LTI system structure.

We first explore the mean-square stability properties of these systems and analyze
how stability varies with respect to randomization and asynchrony. Surprisingly, we
show that the stability of random asynchronous LTI systems does not necessarily
imply or is not necessarily implied by the stability of the synchronous variant of the
system. We also demonstrate that an unstable synchronous system can be stabilized
via randomization and/or asynchrony. This result highlights the novel challenges
and opportunities brought about by the new dynamical system evolution formulation
based on randomness and asynchrony.

We further investigate a special case of the introduced model, namely randomized
LTI systems, where each state element is updated randomly with some fixed but un-
known probability. We consider the problem of system identification for unknown
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randomized LTI systems, utilizing the precise characterization of mean-square sta-
bility via the extended Lyapunov equation. We propose a system identification
method to recover the underlying dynamics of unknown randomized LTI systems,
including the model parameters, update probabilities of state variables, and noise
covariance. Finally, we present empirical results that demonstrate the effectiveness
of our proposed method in consistently recovering the underlying dynamics at the
optimal rate. Our findings highlight the potential of using randomness and asyn-
chrony in dynamical systems to achieve improved performance and shed light on the
challenges and opportunities associated with analyzing input/output data from linear
dynamical systems with a fixed network structure and random asynchronous updates.

Learning and Control in Partially Observable Linear Dynamical Systems
(Chapter 5)

The focus of this chapter is on understanding the challenges posed by partial observ-
ability in learning and control of linear dynamical systems. Unlike the dynamical
systems studied in Chapters 3 and 4, in partially observable linear dynamical sys-
tems, the decision-making agent does not have direct access to the state of the system.
Instead, the learning agent is only able to observe a noisy linear measurement of the
underlying latent state:

𝑥𝑡+1 = 𝐴∗𝑥𝑡 + 𝐵∗𝑢𝑡 + 𝑤𝑡
𝑦𝑡 = 𝐶∗𝑥𝑡 + 𝑧𝑡 , (1.2)

where 𝑦𝑡 is the measurement from the latent state 𝑥𝑡 , and 𝑧𝑡 is the measurement noise.
Thus, these systems are commonly referred to as measurement-feedback systems.
In this chapter, we study finite-time system identification, stabilization, and control
performance of learning and control in partially observable linear dynamical systems
given in (1.2) with quadratic regulatory costs 𝑐𝑡 = 𝑦⊤𝑡 𝑄𝑦𝑡 + 𝑢⊤𝑡 𝑅𝑢𝑡 for 𝑄 ⪰ 0 and
𝑅 ≻ 0, commonly referred to as Linear Quadratic Gaussian (LQG) control systems
with Gaussian 𝑤𝑡 and 𝑧𝑡 , for unknown parameters 𝐴∗, 𝐵∗, and 𝐶∗.

To begin, we explore the problem of learning unknown system dynamics and high-
light the limitations of existing finite-time estimation techniques in the literature.
We then present the first system identification method that enables model param-
eter estimation with finite-time guarantees in both open and closed-loop control
settings. The key idea behind this learning method is to represent the dynamics in
(1.2) in its predictor form introduced by Kalman in his seminal paper [134], which
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is an input-output parametrization of the dynamics. We show that this learning
method successfully overcomes the dependencies of covariates and noise terms,
recovers a balanced realization of the model parameters with confidence intervals,
and achieves optimal estimation error rate for both i.i.d. Gaussian control inputs
and measurement-feedback controllers as long as the inputs are persistently exciting.
The persistence of excitation (PE) condition refers to linear scaling of the smallest
singular value of the Gram matrix, i.e., the sample covariance matrix of the covari-
ates. At a high level, this condition refers to a full-row rank mapping of a short
history of process and measurement noises to the covariates. Using this definition,
we characterize the PE condition for the underlying system when it is controlled by
its optimal controller.

Building on this novel closed-loop system identification method, we investigate the
adaptive control problem in unknown partially observable linear dynamical systems.
Our study mostly focuses on the canonical setting of LQG control systems, yet, we
extend our results in various directions along the way. Overall, we propose three
new algorithmic frameworks for learning and control of unknown partially observ-
able linear dynamical systems. The first framework, LQG control via Optimism
(LqgOpt), employs the OFU principle to strike a balance between exploration and
exploitation when designing controllers. Our analysis reveals that LqgOpt retains
the PE condition, despite model estimation errors, if the optimal controller of the
underlying system meets the aforementioned condition. After establishing the con-
tinuous optimal rate of improvement of model parameter estimates in LqgOpt, we
determine the number of samples required to ensure closed-loop stability of its
optimistic policies. Finally, we analyze the regret of LqgOpt against the optimal
average expected cost and show that it achieves a state-of-the-art regret of Õ(

√
𝑇)

after 𝑇 interactions with the system. Our study introduces new learning and control
theoretic techniques for analyzing the finite-time performance of adaptive control
algorithms, which can be used to derive new regret guarantees in partially observ-
able linear systems. These tools are of independent interest for future work in this
area. Finally, we extend the results of LqgOpt to ARX systems.

Next, we delve into our second algorithmic framework, namely Thompson Sam-
pling under Partial Observability (TSPO). TSPO uses our novel closed-loop system
identification method to continuously improve the model parameter estimates and
their confidence intervals and employs Thompson Sampling with these confidence
intervals for control design in adaptive control of unknown LQG control systems.
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Although TSPO has a larger problem-dependent constant in regret compared to Lq-
gOpt due to replacing the optimization procedure for finding optimistic models with
an efficient sampling method, we demonstrate that it still attains the state-of-the-art
regret upper bound of Õ(

√
𝑇) after 𝑇 time steps.

Lastly, we study a more general setting of partially observable linear systems with
strongly convex cost functions, which can be possibly time-varying. For this chal-
lenging learning and control problem, we study the finite-time regret performance
of learning agents against the best controller, in hindsight, from a given set of con-
trollers. For this learning and control problem, we propose an efficient adaptive
control algorithm, Adaptive Control Online Learning (AdaptOn). AdaptOn turns
the learning and control problem in partially observable linear dynamical systems
into an online convex optimization problem. It adaptively learns the model dynam-
ics via our novel model learning method, which overcomes the dependencies in data
due to closed-loop control, and continuously optimizes the controller using a convex
policy parameterization of measurement feedback controllers, which alleviates the
highly nonlinear dependencies due to the feedback loop and gives a linear map that
is computationally and statistically efficient to optimize. We show that this unique
combination of tools from control theory and online learning allows AdaptOn to
achieve optimal logarithmic regret in learning and control of partially observable lin-
ear dynamical systems with strongly convex cost. This is the first logarithmic regret
bound for partially observable linear dynamical systems with unknown dynamics,
which include the canonical setting of LQG control systems, and it improves the
prior Õ(

√
𝑇) regret bounds of LqgOpt and TSPO. We show that the strong convexity

of the cost functions plays a major role in this improved regret performance, so much
so that under (weakly) convex functions AdaptOn attains Õ(

√
𝑇) regret, matching

LqgOpt and TSPO. Finally, we extend our study of AdaptOn to the adaptive control
of ARX systems and demonstrate that the results hold even in these more general
systems with relaxed assumptions on system dynamics.

Learning and Control in Nonlinear Dynamical Systems (Chapter 6)

In the penultimate chapter of this thesis, we examine learning and control in dynam-
ical systems in their most general setting: partially observable nonlinear dynamical
systems. These nonlinear dynamical systems are commonly encountered in real-
world applications as they capture complex systems with nonlinear hidden dynamics
and observations. Drawing inspiration from the results of partially observable linear
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dynamical systems, we propose novel system identification methods with finite-time
learning guarantees for partially observable nonlinear systems. We consider two
function classes for the system dynamics: systems that live in Reproducing Kernel
Hilbert Spaces (RKHS) or Sobolev space of periodic functions. For nonlinear sys-
tems in RKHS, we utilize Random Fourier Features (RFF) [226] to represent and
learn the system dynamics. Specifically, by generating a 𝐷-dimensional RFF basis,
we learn the nonlinear system dynamics as a linear system over this basis. We provide
a precise characterization of the required number of samples to optimally learn the
nonlinear dynamics up to the desired error. To this end, we derive a novel function
approximation theoretic guarantee for RFF learning, which can be of independent
interest. In particular, we show that the best RFF approximation of a nonlinear
system has an approximation error of Õ(1/

√
𝐷), where 𝐷 is the dimension of RFF

representation. By combining this result with the linear system learning guarantees
from previous chapters, we offer rigorous system identification guarantees for the
underlying nonlinear system that lives in an RKHS, using RFF-based model learning.

Building upon this method, we present an efficient online control framework, Model
Learning Predictive Control (MLPC), that learns to control unknown partially ob-
servable nonlinear systems using the estimated system dynamics via RFF-based
system identification. MLPC deploys a model predictive control (MPC) method
with the estimated dynamics for planning, and occasionally updates the model esti-
mates to enhance the accuracy and effectiveness of the control policies. We provide
stability guarantees for single trajectory online control via MLPC, presuming that the
given MPC method stabilizes the underlying system for sufficiently small estimation
errors. Finally, we prove that MLPC attains Õ(𝑇2/3) regret with respect to the agent
that uses the same MPC policy with the true system dynamics. To demonstrate the
efficacy of MLPC empirically, we showcase its performance on the classical inverted
pendulum task using two different MPC methods.

We then shift our attention to the nonlinear systems that live in the Sobolev space
of periodic functions. For such systems, we introduce a model learning method that
employs a finite order Fourier series basis. Similar to the RFF setting, we propose
to learn the nonlinear system dynamics as a linear system over the selected Fourier
basis. We establish that this approach estimates the underlying nonlinear system
with a near-optimal estimation error of Õ(𝑇Y−0.5), after𝑇 samples, where Y depends
on the smoothness of the Sobolev space and the order of the Fourier basis.

Inspired by this effective modeling strategy, we tackle the challenging real-world
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aerodynamic control problem of disturbance rejection in extreme turbulence. Con-
trolling aerodynamic forces in gusty and turbulent conditions is essential for the safe
and effective operation of unmanned aerial vehicles (UAVs). However, since these
extreme flow conditions are difficult to predict and model explicitly, it is challeng-
ing to design effective flow-informed controllers beyond traditional reactive control
methods. Moreover, the noise and error in onboard sensor measurements bring
further uncertainties in designing control policies. To address these challenges,
we introduce Fourier Adaptive Learning and Control (FALCON), which is the first
model-based reinforcement learning method capable of efficiently learning to con-
trol aerodynamic forces acting on an airfoil under extreme turbulence. Using the
Fourier basis-based model learning strategy, FALCON achieves effective modeling
and control of the aerodynamic forces due to turbulent flow dynamics and achieves
state-of-the-art disturbance rejection performance.

FALCON builds on two key observations: that the chaotic dynamics involved in
turbulent flows are well-modeled in the frequency domain and that most of the
energy in turbulent flows is stored in low-frequency components. Leveraging these
observations, FALCON selects a concise Fourier basis to learn the underlying sys-
tem dynamics using only 35 seconds of flow data. To address the issue of partial
observability due to sensor measurements, FALCON uses a short history of actions
and measurements to model the system dynamics. With this physically sound and
accurate model-learning approach, FALCON employs an MPC method similar to
MLPC for safe and efficient control design. When evaluated under highly turbulent
wind conditions generated in Caltech’s closed-loop wind tunnel, FALCON learns the
underlying nonlinear dynamics and adapts to the changing flow conditions with less
than 9 minutes of data and consistently outperforms the state-of-the-art methods by
at least 37%.

In addition to strong empirical performance, FALCON comes with performance
guarantees which certify the stability and robustness of the proposed framework.
In particular, building upon the near-optimal estimation error rate of finite-order
Fourier-basis learning, we show that FALCON can achieve desired estimation error
for stability in finite time and provide closed-loop stability with a given MPC policy.
We then show that FALCON follows a trajectory close to the agent that uses the same
MPC method with the true system dynamics, and attains Õ(

√
𝑇) regret against this

agent. To the best of our knowledge, FALCON is the first efficient RL algorithm that
achieves O(

√
𝑇) regret in online control of nonlinear dynamical systems, and its
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guarantees extend to a wide range of partially observable nonlinear dynamical sys-
tems such as real-world dynamical systems governed by partial differential equations.

Lastly, we focus on addressing the limitations of our previous results in this chapter,
which assumed that given MPC methods stabilize the underlying system for small
enough estimation errors. To overcome this limitation, we incorporate a control
theoretic stability verification method in the policy design for adaptive control of
nonlinear dynamical systems. In particular, we design a new policy optimization
problem that adopts Krasovskii’s construction of quadratic Lyapunov functions as
a stability constraint in the control design. We prove that if the underlying system
satisfies Krasovskii’s Lyapunov function construction for a class of controllers 𝑔\ (·)
parameterized by \, then the new constrained policy optimization problem is guaran-
teed to stabilize the underlying system even under modeling errors, e.g., estimation
errors. Furthermore, we provide a characterization of the required estimation errors
to achieve stabilization. This leads to a policy design method with a stability margin,
which can be used for a wide range of nonlinear dynamical systems.

To deploy this policy optimization problem in an RL pipeline, we propose a primal-
dual method to solve this problem and show that at convergence this method guaran-
tees the recovery of a stabilizing policy even under modeling error. Combining this
result with the RFF model learning method, we propose a novel model-based RL
framework called Krasovskii-Constrained RL (KCRL). We formally guarantee that
KCRL learns a stabilizing policy in finite time/samples with an explicit characteriza-
tion of the required number of samples. Finally, we evaluate the performance of the
KCRL framework in a real-world application of voltage control in a distributed power
system under different operating conditions. We show that KCRL guarantees stability
under all operating conditions, whereas standard RL methods fail to stabilize.
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C h a p t e r 2

STOCHASTIC LINEAR BANDITS WITH PRACTICAL
CONCERNS

In this chapter, we study stochastic linear bandits (SLB) which can be regarded as
the most basic dynamical system without an evolving state over time, yet with the
control goal of maximizing the reward1. In this classical setting of decision-making,
we consider 2 practical aspects which are present in modern-day decision-making
under uncertainty tasks: (i) high-dimensional feature representations for the action
vectors and (ii) unknown (nonlinear) safety constraints.

For setting (i), we propose Projected Stochastic Linear Bandits (PSLB), a sequential
decision-making algorithm for high-dimensional stochastic linear bandits. We show
that when the representation of actions has an underlying unknown low-dimensional
subspace structure, PSLB deploys principal component analysis-based projection to
efficiently recover this structure. PSLB exploits this hidden structure to better guide
the exploration and exploitation, resulting in a significant improvement in perfor-
mance. We prove that PSLB notably advances the previously known regret upper
bounds and obtains a regret upper bound, which scales with the intrinsic dimension
of the subspace, rather than the large ambient dimension of the action space. We
empirically study PSLB on a range of image classification tasks formulated as bandit
problems. We show that when a pre-trained deep neural network provides the high-
dimensional action (label) representations, deploying PSLB results in a significant
reduction of regret and faster convergence to an accurate model compared to the
state-of-art algorithm.

In many real-world decision-making tasks, e.g., clinical trials, the agents must satisfy
a diverse set of unknown safety constraints at all times while getting feedback only
on the safety constraints relevant to the chosen action, e.g., the ones close to the
violation. For setting (ii), we study stochastic linear bandits with such unknown
safety constraints and local safety feedback. The agent’s goal is to maximize the
cumulative reward while satisfying multiple unknown affine or nonlinear safety
constraints. At each time step, the agent receives noisy feedback on a particular
safety constraint only if the chosen action belongs to the associated constraint set,

1This chapter is based on [14, 159].
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i.e., local safety feedback. For this setting, we design upper confidence bound
and Thompson Sampling-based algorithms. In the design of these algorithms, we
carefully prescribe an additional exploration incentive that guarantees the selection
of high-reward actions that are also safe and ensures sufficient exploration in the
relevant constraint sets to recover the optimal safe action. We show that for 𝑀
distinct constraints, both of these algorithms attain Õ(

√
𝑀𝑇) regret after𝑇 time steps

without any safety violations. We empirically study the performance of the proposed
algorithms under various safety constraints and with a real-world credit dataset. We
show that both algorithms safely explore and quickly recover the optimal safe actions.

2.1 Motivation and Background
Fundamentals of SLB problem: In the SLB problems, the goal is to strike a bal-
ance between exploration and exploitation such that the decision-making agent mini-
mizes the regret with respect to the optimal policy. One promising approach is to uti-
lize the optimism in the face of uncertainty (OFU) principle [156]. OFU-based meth-
ods estimate the environment model up to a confidence interval and construct a set of
plausible models within this interval. Among those models, they choose the most op-
timistic one and follow the optimal behavior suggested by the selected model. There-
fore, these methods are also referred to as the upper-confidence bound algorithms.

Another prominent strategy to balance the exploration vs. exploitation trade-off is
Thompson Sampling (TS). In TS, the agent samples a model from a distribution
computed based on prior action and reward pairs, and then selects the optimal action
for this sampled model and updates the distribution based on its novel reward. Since
it relies solely on sampling, this approach provides polynomial-time algorithms and
can be more efficient than OFU-based methods.

For general stochastic linear bandit problems, Abbasi-Yadkori et al. [3] deploys the
OFU principle, proposes OFUL algorithm, and for a 𝑑-dimensional stochastic lin-
ear bandit and 𝑇 time steps of agent-environment interaction, derives a regret upper
bound of Õ(𝑑

√
𝑇). These types of regret bounds in high-dimensional problems,

especially when 𝑑 and𝑇 are about the same order are not practically tolerable. Fortu-
nately, real-world problems may contain hidden low intrinsic dimensional structures.
For example, in classical recommendation systems, each item is represented by a
large and highly detailed hand-engineered feature vector; however, not all the com-
ponents of the features are helpful for the recommendation task. Therefore, the
true underlying linear function in stochastic linear bandits can be considered to be
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highly sparse. Abbasi-Yadkori et al. [4] and Carpentier and Munos [47] show how
to exploit this additional structure and, under slightly different assumptions, derive
regret upper bounds of Õ

(√
𝑠𝑑𝑇

)
and Õ

(
𝑠
√
𝑇

)
respectively where 𝑠 is the sparsity

level of the true underlying linear function.

High-dimensional SLB framework: The recent successes of deep neural net-
works (DNN) in representation learning provide significant promises in advancing
machine learning to high-dimensional real-world tasks [26, 172, 173], where SLB
is one of them. DNNs receive the raw features of the input and pass them through
a variety of potentially nonlinear layers and construct new feature representations
which can arguably replace the hand-engineered feature vectors. When a DNN
provides the feature representations for actions, the sparse structure is not relevant
anymore; instead, the low-rank sub-space structure might be considered as suitable.

At each round of SLB, the agent chooses an action from a given decision set,
and the environment reveals the reward associated with that action. Therefore,
the chosen action is assigned a supervised reward signal, while other actions in
the decision sets remain unsupervised. One of the primary motivations of the
SLB framework is the study of decision-making under uncertainty in large decision
sets with potentially possible intrinsic hidden structures. For the SLB framework,
the majority of the prior works are mainly devoted to the general cases where
no possible hidden or low intrinsic dimensional structures in the decision sets are
considered [67, 169, 180, 232]. For example, the groundbreaking work by [3] utilizes
only the supervised actions, i.e., the actions selected by the algorithm, to estimate
the environment model. It ignores all other unsupervised actions in the decision set.
On the contrary, in the presence of such latent structures, the large number of actions
in the decision sets can be utilized to understand the latent structure, reducing the
dimension of the problem, and improving the learning and sample complexity.

Safety in SLB setting: In many real-world decision-making problems, the agents
require satisfaction of some safety/operational constraints while aiming to maximize
the cumulative reward. Thus, the tools developed for unconstrained stochastic linear
bandit framework do not directly apply to real-world safety-critical decision-making
tasks such as clinical trials [286]. There have been several new frameworks with
different forms of safety constraints proposed to model these tasks. Some of these
frameworks include safety constraints through stage-wise reward [143, 202], while
some of them focus on cumulative or policy-based constraints [140, 187, 216].
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Another line of work considers a more challenging setting of hard constraints on
the actions, where the safety constraint needs to be met at every time step (stage-
wise) [12, 203]. This setting is more suitable for safety-critical tasks where executing
even one unsafe action may lead to catastrophic results. However, prior works in
this setting only consider very simple models where there is a single unknown
linear constraint depending on the reward function that the agent observes feedback
from at every time step. Despite giving an initial understanding of safety in the
stochastic linear bandit, these works do not capture the complex constraint and
feedback structure of real-world decision-making tasks. The following considers a
safety-critical decision-making scenario in which the prior works fail to model.

2.2 Stochastic Linear Bandits with Hidden Low-Rank Structure
In this section, we demonstrate a method that utilizes unsupervised actions in the
decision sets to improve the performance in stochastic linear bandits. We de-
ploy the principal component analysis (PCA), one of the highly celebrated sub-
space recovery methods, to exploit the subspace structure of the action set using
the massive number of unsupervised actions observed in the decision sets and fi-
nally reduce the dimensionality and the complexity of stochastic linear bandits.
We propose Projected Stochastic Linear Bandits (PSLB), an algorithm for high-
dimensional stochastic linear bandits, and show that if the actions come from a
perturbed 𝑚-dimensional subspace, deploying PSLB improves the regret upper
bound to min

{
Õ

(
Υ
√
𝑇

)
, Õ

(
𝑑
√
𝑇

) }
. Here Υ captures the effect of the difficulty

of the subspace recovery in stochastic linear bandit as a function of the problem
structure. If the underlying subspace is easily identifiable, e.g., large decision sets
per round, recovering the subspace provides faster learning of the underlying linear
function; therefore, resulting in a smaller regret. In contrast, if learning the sub-
space is hard, e.g., the number of actions (unsupervised signals) in each round is
small, then subspace recovery-based approaches might not provide many benefits in
learning the underlying system; therefore, resulting in a similar performance of the
plain OFUL.

We test the performance of PSLB both on artificial data and real-world data and com-
pare it with OFUL. We first generate a stochastic linear bandit problem with a hidden
low-rank structure with different levels of perturbation. We empirically demonstrate
that as the subspace recovery gets easier due to a decreased level of perturbations,
PSLB explores more efficiently and learns the underlying model faster, resulting in
smaller regret compared to OFUL. We then adapt the image classification tasks on
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MNIST [172], CIFAR-10 [150], and ImageNet [151] datasets to the stochastic linear
bandit framework and apply both PSLB and OFUL on these datasets. We first ver-
ify that the feature representation of the DNNs exhibits a low-dimensional subspace
structure when a pre-trained DNN produces the 𝑑-dimensional feature vectors. We
empirically show that PSLB learns the underlying model significantly faster than
OFUL and provides orders of magnitude smaller regret in stochastic linear bandits
obtained from MNIST, CIFAR-10, and ImageNet datasets.

2.2.1 Problem Formulation
Model: At each round 𝑡, the agent is given a decision set 𝐷𝑡 with 𝐾 actions,
𝑥𝑡,1, . . . , 𝑥𝑡,𝐾 ∈ R𝑑 . Let 𝑉 be an 𝑑 × 𝑚 orthonormal matrix with 𝑚 ≤ 𝑑, where
span(𝑉) defines a𝑚-dimensional subspace in R𝑑 . The followings are the translation
of the standard considerations in the PCA-based subspace recovery methods [204,
284] to stochastic linear bandits. Consider a zero mean true action vector, 𝑥𝑡,𝑖 ∈ R𝑑 ,
such that 𝑥𝑡,𝑖 ∈ span(𝑉) for all 𝑖 ∈ [𝐾]. Let 𝜓𝑡,𝑖 ∈ R𝑑 be zero mean random vectors
which are uncorrelated with true action vectors, i.e., E[𝑥𝑡,𝑖𝜓𝑇𝑡,𝑖] = 0 for all 𝑖 ∈ [𝐾].
Each action vector 𝑥𝑡,𝑖 is generated as follows,

𝑥𝑡,𝑖 = 𝑥𝑡,𝑖 + 𝜓𝑡,𝑖 . (2.1)

This model states that each 𝑥𝑡,𝑖 in 𝐷𝑡 is a perturbed version of the true underlying 𝑥𝑡,𝑖.
Denote the covariance matrix of 𝑥𝑡,𝑖 by Σ𝑥 . Notice that Σ𝑥 is rank-𝑚. Perturbation
vectors, 𝜓𝑡,𝑖, are isotropic, thus covariance matrix Σ𝜓 = 𝜎2𝐼𝑑 . Let _+ B _1(Σ𝑥) and
_− B _𝑚 (Σ𝑥).

Assumption 2.2.1 (Bounded Action and Perturbation Vectors). There exists finite
constants, 𝑑𝑥 and 𝑑𝜓 , such that for all 𝑖 ∈ [𝐾] ,

∥𝑥𝑡,𝑖∥22 ≤ 𝑑𝑥_+, ∥𝜓𝑡,𝑖∥22 ≤ 𝑑𝜓𝜎
2.

Both 𝑑𝑥 and 𝑑𝜓 can be dependent on 𝑚 or 𝑑 and they can be interpreted as the ef-
fective dimensions of the corresponding vectors. At each round 𝑡, the agent chooses
an action, �̂�𝑡 ∈ 𝐷𝑡 and observes a reward 𝑟𝑡 such that

𝑟𝑡 = �̂�
𝑇
𝑡 \∗ + [𝑡 ∀𝑡 ∈ [𝑇], (2.2)

where \∗ ∈ span(𝑉) is the unknown parameter vector and [𝑡 is the random noise
at round 𝑡. Notice that since \∗ ∈ span(𝑉), 𝑟𝑡 = �̂�𝑇𝑡 \∗ + [𝑡 = (𝑃�̂�𝑡)𝑇\∗ + [𝑡 , where
𝑃 = 𝑉𝑉𝑇 is the projection matrix to the 𝑚-dimensional subspace span(𝑉). We later
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exploit this equivalence in finding the optimistic action. Consider {𝐹𝑡}∞𝑡=0 as any
filtration of 𝜎-algebras such that for any 𝑡 ≥ 1, �̂�𝑡 is 𝐹𝑡−1 measurable and [𝑡 is 𝐹𝑡
measurable.

Assumption 2.2.2 (Sub-Gaussian Noise). For all 𝑡, [𝑡 is conditionally R-sub-
Gaussian where 𝑅 ≥ 0 is a fixed constant, i.e., ∀_ ∈ R, E[𝑒_[𝑡 |𝐹𝑡−1] ≤ 𝑒

_2𝑅2
2 .

The goal of the agent is to maximize the total expected reward accumulated in
any 𝑇 rounds,

∑𝑇
𝑡=1 �̂�

𝑇
𝑡 \∗. With the knowledge of \∗, the oracle chooses the action

�̂�∗𝑡 = arg max𝑥∈𝐷𝑡 𝑥𝑇\∗ at each round 𝑡. We evaluate the agent’s performance against
this oracle’s performance. Define the regret at round 𝑇 as the difference between
the expected reward of the oracle and the agent,

𝑅𝑇 B
𝑇∑︁
𝑡=1

�̂�∗𝑇𝑡 \∗ −
𝑇∑︁
𝑡=1

�̂�𝑇𝑡 \∗ =
𝑇∑︁
𝑡=1
(𝑋∗𝑡 − �̂�𝑡)𝑇\∗. (2.3)

The agent aims to minimize this quantity over time. Similar to the problem of sparse
linear bandit where the sparsity level is known to the agent [4, 169], in the setting
described above, the dimensionality of subspace 𝑚 is known to the agent. This
assumption is also needed and standard to PCA analyses [204, 284]. In practice,
𝑚, along with other problem-dependent quantities, can be estimated and updated at
each round. Finally, we define the following quantities about the structure of the
problem. For all 𝛿 ∈ (0, 1):

𝑔𝑥 =
_+
_−
, 𝑔𝜓 =

𝜎2

_−
, Γ = 2𝑔𝜓 + 4√𝑔𝑥𝑔𝜓 , 𝛼 = max(𝑑𝑥 , 𝑑𝜓),

𝑛𝛿 = 4𝛼
(
Γ

√︂
log

2𝑑
𝛿
+

√︂
2𝑔𝑥 log

𝑚

𝛿

)2
. (2.4)

2.2.2 Projected Stochastic Linear Bandits (PSLB)
We propose Projected Stochastic Linear Bandits (PSLB), a stochastic linear bandit
algorithm that employs subspace recovery to extract information from the unsuper-
vised data accumulated in the stochastic linear bandit. The PSLB is illustrated in
Algorithm 1. PSLB consists of three key elements: subspace estimation, creating
confidence sets, and acting optimistically. In the following, we discuss each of these
elements.

Subspace estimation: At each round 𝑡, the agent exploits the action vectors observed
up to round 𝑡, ⊎𝑡

𝑖=1𝐷𝑖, to estimate the underlying 𝑚-dimensional subspace. In
particular, the agent performs PCA on action vectors and computes �̂�𝑡 , the matrix of
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Algorithm 1 PSLB
1: Input: m, _+, _−, 𝜎2, 𝛼, 𝛿
2: for t = 1 to 𝑇 do
3: Compute PCA over ⊎𝑡

𝑖=1𝐷𝑖
4: Create �̂�𝑡 with first m eigenvectors
5: Construct C𝑝,𝑡 , high probability confidence set on �̂�𝑡
6: Construct C𝑚,𝑡 , high probability confidence set for \∗ using subspace recovery
7: Construct C𝑑,𝑡 , high probability confidence set for \∗ without using subspace

recovery
8: Construct C𝑡 = C𝑚,𝑡 ∩ C𝑑,𝑡
9: (\̃𝑡 , �̂�𝑡) = argmax(\,𝑥)∈C𝑡×𝐷𝑡 𝑥

𝑇\

10: Play �̂�𝑡 and observe 𝑟𝑡

top 𝑚 eigenvectors of 1
𝑡𝐾

∑
𝑥∈⊎𝑡

𝑖=1𝐷𝑖
𝑥𝑥𝑇 . span(�̂�𝑡) is the estimate of the underlying

𝑚-dimensional subspace. The agent uses �̂�𝑡 to compute �̂�𝑡 B �̂�𝑡�̂�
𝑇
𝑡 , the projection

matrix onto span(�̂�𝑡), and constructs a confidence set C𝑝,𝑡 around �̂�𝑡 which contains
both �̂�𝑡 and 𝑃 with high probability.

Next, we demonstrate the construction of C𝑝,𝑡 , and show that as the agent observes
more action vectors, C𝑝,𝑡 shrinks and the estimation error on �̂�𝑡 vanishes.

Confidence set construction: At the beginning of each round 𝑡, the agent uses �̂�𝑡
and projects the supervised actions, the actions that have been chosen, and assigned
rewards in the previous rounds, onto the estimated 𝑚-dimensional subspace. The
𝑑-dimensional linear bandit problem reduces to a 𝑚-dimensional problem. The
agent then estimates the model parameter \∗, as \𝑡 , up to a high probability confi-
dence set C𝑚,𝑡 . The tightness of this confidence interval, besides the action-reward
pairs, depends on the confidence in the estimation of the subspace and its confidence
interval C𝑝,𝑡 .

Simultaneously, relying only on the history of action-reward pairs, the supervised
actions, the agent estimates the model parameter \∗, as \̂𝑡 , up to another high-
probability confidence setC𝑑,𝑡 . This is the same confidence set generation subroutine
as OFUL [3]. Since \∗ lives in both of these sets with high probability, it lies in the
intersection of them with high probability. Finally, the agent takes the intersection of
the constructed confidence sets to create the main confidence set, C𝑡 = C𝑚,𝑡 ∩C𝑑,𝑡 . If
an efficient recovery of the subspace is possible, then the plausible parameter set of
C𝑚,𝑡 is significantly smaller than the set of C𝑑,𝑡 , resulting in smaller C𝑡 as well as more
confident parameter estimation. If the subspace recovery is hard, then C𝑚,𝑡 might
not provide much information, and the intersection would mainly result in C𝑑,𝑡 .
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Acting optimistically: The agent finally searches for the highest reward-bringing
model and action pair from C𝑡 ×𝐷𝑡 and executes the reward maximizing action, line
9 in Algorithm 1.

2.2.3 Theoretical Analysis of PSLB
In this section, we state the regret upper bound of PSLB and provide the theoretical
components that build up to this result. Recalling the quantities defined in (2.4),
define Υ such that

Υ = O
((

1 + Γ
√︂
𝛼

𝐾

) (
Γ
√
𝑚𝛼

√
𝐾
√︁
_− + 𝜎2

+ 𝑚
))
. (2.5)

It represents the overall effect of the deploying subspace recovery on the regret in
terms of structural properties of the stochastic linear bandit setting.

Theorem 2.2.3 (Regret Upper Bound of PSLB). Fix any 𝛿 ∈ (0, 1). Assume that
for all 𝑥𝑡,𝑖 ∈ 𝐷𝑡 , 𝑥𝑇𝑡,𝑖\∗ ∈ [−1, 1]. Under Assumptions 2.2.1 & 2.2.2, ∀𝑡 ≥ 1, with
probability at least 1 − 6𝛿, the regret of PSLB satisfies

𝑅𝑡 = min
{
Õ

(
Υ
√
𝑡

)
, Õ

(
𝑑
√
𝑡

) }
. (2.6)

The proof of the theorem involves three main pieces: the projection error analysis,
the construction of projected confidence sets, and the regret analysis.

Projection Error Analysis

Consider the matrix �̂�𝑇𝑡 𝑉 and its 𝑖th singular value denoted as 𝜎𝑖 (�̂�𝑇𝑡 𝑉), such that
𝜎1(�̂�𝑇𝑡 𝑉) ≥ . . . ≥ 𝜎𝑚 (�̂�𝑇𝑡 𝑉). Using the definition of the aperture of two linear
manifolds [11], we write the following equivalence:

∥�̂�𝑡 − 𝑃∥2 = max
{

max
𝑥∈span(𝑉),∥𝑥∥2=1

∥(𝐼𝑑 − �̂�𝑡)𝑥∥2, max
𝑦∈span(�̂�𝑡 ),∥𝑦∥2=1

∥(𝐼𝑑 − 𝑃)𝑦∥2
}

= max
{
∥(𝐼 − �̂�𝑡�̂�𝑇𝑡 )𝑉 ∥2, ∥(𝐼 −𝑉𝑉𝑇 )�̂�𝑡 ∥2

}
=

√︄
_𝑚𝑎𝑥

(
𝑉𝑇 (𝐼𝑑 − �̂�𝑡�̂�𝑇𝑡 ) (𝐼𝑑 − �̂�𝑡�̂�𝑇𝑡 )𝑉

)
(2.7)

=

√︄
_𝑚𝑎𝑥

(
𝐼𝑚 − (�̂�𝑇𝑡 𝑉)𝑇 (�̂�𝑇𝑡 𝑉)

)
=

√︃
1 − 𝜎2

𝑚 where 𝜎𝑚 is the smallest singular value of �̂�𝑇𝑡 𝑉,

=

√︃
1 − cos2 Θ𝑚 (span(𝑉), span(�̂�)) = sinΘ𝑚, (2.8)
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where (2.7) follows since 𝑉 , and �̂�𝑡 have same dimensions, and (2.8) follows from
the fact that cosΘ𝑖 (span(𝑉), span(�̂�)) = 𝜎𝑖 (�̂�𝑇𝑡 𝑉) where Θ𝑚 is the largest principal
angle between the column spans of 𝑉 and �̂�𝑡 . Thus, bounding the projection error
between two projection matrices is equivalent to bounding the sine of the largest
principal angle between the subspaces that they project. In light of this relation,
and the prior analysis of Davis-Kahan sinΘ Theorem [68], we provide the following
Lemma on the concentration of the sine and the finite sample projection error.

Lemma 2.2.4 (Finite Sample Projection Error). Fix any 𝛿 ∈ (0, 1). Let 𝑡𝑤,𝛿 = 𝑛𝛿
𝐾

.
Suppose Assumption 2.2.1 holds. Then with probability at least 1 − 3𝛿, ∀𝑡 ≥ 𝑡𝑤,𝛿,

∥�̂�𝑡 − 𝑃∥2 ≤
𝜙𝛿√
𝑡

, where 𝜙𝛿 = 2Γ
√︂
𝛼

𝐾
log

2𝑑
𝛿
. (2.9)

Lemma 2.2.4 improves the existing bounds on the projection error (Corollary 2.9 in
Vaswani and Narayanamurthy [284]) by using the matrix Chernoff inequality [268].
It also provides the precise problem-dependent quantities in the bound which are
required for defining the minimum number of samples required to construct tight
confidence sets by using subspace estimation. The formal and detailed version of
the Lemma 2.2.4 and the details of the proof are provided in Appendix A.1.1.

Note that, as discussed in Section 2.2.2, we define the confidence set C𝑝,𝑡 in (2.9)
for all 𝑡 ≥ 𝑡𝑤,𝛿. Due to the equivalence ∥�̂�𝑡 − 𝑃∥2 = sinΘ𝑚, ∀𝑡 ≥ 1 we have that
∥�̂�𝑡 − 𝑃∥2 is always less than or equal to 1, i.e., ∥�̂�𝑡 − 𝑃∥2 ≤ 1. Therefore, any
projection error bound greater than 1 is vacuous. Consequently, we state that, with
high probability, the bound on the projection error in (2.9) becomes less than 1 when
𝑡 ≥ 𝑡𝑤,𝛿. After round 𝑡𝑤,𝛿, PSLB starts to produce non-trivial confidence sets C𝑝,𝑡
around �̂�𝑡 . However, note that 𝑡𝑤,𝛿 can be significantly large for problems that have
latent structures that are hard to recover, e.g., having 𝛼 linear in 𝑑.

The term 𝜙𝛿 in Lemma 2.2.4 also provides several important intuitions about the
subspace estimation problem in terms of the problem structure. Recalling the defini-
tion of Γ in (2.4), as 𝑔𝜓 decreases, the projection error shrinks since the underlying
subspace becomes more distinguishable. Conversely, as 𝑔𝑥 diverges from 1, it
becomes harder to recover the underlying 𝑚-dimensional subspace. Additionally,
since 𝛼 is the maximum of the effective dimensions of the true action vector and
the perturbation vector, having large 𝛼 makes the subspace recovery harder and the
projection error bound looser, whereas observing more action vectors, 𝐾 , in each
round produces tighter bound on ∥�̂�𝑡−𝑃∥2. The effects of these structural properties
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on the subspace estimation translate to confidence set construction and ultimately
to the regret upper bound.

Projected Confidence Sets

In this section, we analyze the construction of C𝑚,𝑡 and C𝑑,𝑡 . For any round 𝑡 ≥ 1,
define Σ̂𝑡 B

∑𝑡
𝑖=1 �̂�𝑖 �̂�

𝑇
𝑖
= X̂𝑡X̂𝑇

𝑡 . At round 𝑡, let 𝐴𝑡 B �̂�𝑡 (Σ̂𝑡−1+_𝐼𝑑)�̂�𝑡 for_ > 0. Let
𝐵𝑡 be a symmetric matrix such that 𝐴𝑡 = �̂�𝑡𝐵𝑡�̂�𝑇𝑡 . Notice that 𝐵𝑡 is a full rank 𝑚 ×𝑚
matrix. The rewards obtained up to round 𝑡 are denoted as r𝑡−1. At round 𝑡, after
estimating the projection matrix �̂�𝑡 associated with the underlying subspace, PSLB
finds \𝑡 , an estimate of \∗, while having \∗ living within the estimated subspace with
high probability. Therefore, \𝑡 is the solution to the following Tikhonov-regularized
least squares problem with regularization parameters _ > 0 and �̂�𝑡 ,

\𝑡 = argmin
\

∥(�̂�𝑡X̂𝑡−1)𝑇\ − r𝑡−1∥22 + _∥�̂�𝑡\∥
2
2.

Notice that regularization is applied along the estimated subspace. Solving for \
gives \𝑡 = 𝐴

†
𝑡

(
�̂�𝑡X̂𝑡−1r𝑡−1

)
. Let 𝑆𝑡 B

∑𝑡
𝑖=1 �̂�𝑡 �̂�𝑖−1[𝑖−1 = �̂�𝑡X𝑡−1[[[𝑡−1. Before pre-

senting the confidence set construction, we provide a self-normalized bound on 𝑆𝑡 .

Theorem 2.2.5 (Self-Normalized Bound for Vector-Valued Martingales). For any
𝛿 ∈ (0, 1), with probability at least 1 − 𝛿, for all 𝑡 ≥ 1,

∥𝑆𝑡 ∥2
𝐴
†
𝑡

≤ 2𝑅2 log
(
det(𝐵𝑡)1/2 det(_𝐼𝑚)−1/2

𝛿

)
.

This result is a similar self-normalized bound for vector-valued martingales in
Abbasi-Yadkori et al. [3], and it can be considered as the projected version of their
Theorem 1. The proof of Theorem 2.2.5 is given in Appendix A.1.2. Define 𝐿 such
that for all 𝑡 ≥ 1 and 𝑖 ∈ [𝐾], ∥𝑥𝑡,𝑖∥2 ≤ 𝐿 and let 𝛾 = 𝐿2

_ log
(
1+ 𝐿2

_

) . Consider the

following lemmas that will be useful in proving confidence set construction, and
their proofs are given in Appendix A.1.3.

Lemma 2.2.6. Suppose Assumptions 2.2.1 & 2.2.2 hold. Then, det(𝐵𝑡) ≤
(
_+ 𝑡𝐿2

𝑚

)𝑚
.

Lemma 2.2.7. Suppose Assumptions2.2.1 & 2.2.2 hold. Then,

∥(𝐴†𝑡 )1/2�̂�𝑡 Σ̂𝑡−1∥2 ≤ 𝐿
√
𝑡
√
𝛾𝑚

√︄
log

(
1 + 𝑡𝐿

2

𝑚_

)
.

The following theorem gives the construction of the projected confidence set, C𝑚,𝑡 .
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Theorem 2.2.8 (Projected Confidence Set Construction, C𝑚,𝑡). Fix any 𝛿 ∈ (0, 1).
Let Assumptions 2.2.1 & 2.2.2 hold, and ∀𝑡 ≥ 1 and 𝑖 ∈ [𝐾], ∥𝑥𝑡,𝑖∥2 ≤ 𝐿. If
∥\∗∥2 ≤ 𝑆 then, with probability at least 1 − 4𝛿, ∀𝑡 ≥ 𝑡𝑤,𝛿, \∗ lies in the set

C𝑚,𝑡 =
{
\ ∈ R𝑑 : ∥\𝑡 − \∥𝐴𝑡 ≤ 𝛽𝑡,𝛿

}
, where

𝛽𝑡,𝛿 = 𝑅

√︄
2 log

(
1
𝛿

)
+ 𝑚 log

(
1 + 𝑡𝐿

2

𝑚_

)
+ 𝐿𝑆𝜙𝛿

√︄
𝛾𝑚 log

(
1 + 𝑡𝐿

2

𝑚_

)
+ 𝑆
√
_. (2.10)

Proof. From the definition of \𝑡 and 𝑟𝑡 , we get the following:

\𝑡 = 𝐴
†
𝑡 𝑆𝑡 + 𝐴

†
𝑡 �̂�𝑡 Σ̂𝑡−1𝑃\∗ since \∗ ∈ span(𝑉)

= 𝐴
†
𝑡 𝑆𝑡 + 𝐴

†
𝑡

(
�̂�𝑡 Σ̂𝑡−1(�̂�𝑡 + 𝑃 − �̂�𝑡) + _�̂�𝑡 − _�̂�𝑡

)
\∗

= 𝐴
†
𝑡 𝑆𝑡 + �̂�𝑡\∗ + 𝐴

†
𝑡 (�̂�𝑡 Σ̂𝑡−1(𝑃 − �̂�𝑡))\∗ − _𝐴†𝑡 \∗.

Using this, we derive the following for 𝑥 = 𝐴𝑡 (\𝑡 − \∗):

𝑥𝑇\𝑡 − 𝑥𝑇\∗ = 𝑥𝑇 𝐴†𝑡 𝑆𝑡 + 𝑥𝑇 𝐴
†
𝑡 (�̂�𝑡 Σ̂𝑡−1(𝑃 − �̂�𝑡))\∗ − _𝑥𝑇 𝐴†𝑡 \∗

= ⟨𝑥, 𝑆𝑡⟩𝐴†𝑡 + ⟨𝑥, �̂�𝑡 Σ̂𝑡−1(𝑃 − �̂�𝑡)\∗⟩𝐴†𝑡 − _⟨𝑥, \∗⟩𝐴†𝑡 .

Using Cauchy-Schwarz inequality, we can upper bound the magnitude of the differ-
ence as follows:

|𝑥𝑇\𝑡 − 𝑥𝑇\∗ | ≤ ∥𝑥∥𝐴†𝑡
(
∥𝑆𝑡 ∥𝐴†𝑡 + ∥�̂�𝑡 Σ̂𝑡−1(𝑃 − �̂�𝑡)\∗∥𝐴†𝑡 + _∥\∗∥𝐴†𝑡

)
≤ ∥𝑥∥

𝐴
†
𝑡

(
∥𝑆𝑡 ∥𝐴†𝑡 + ∥(𝐴

†
𝑡 )1/2�̂�𝑡 Σ̂𝑡−1(𝑃 − �̂�𝑡)\∗∥2 +

√
_∥\∗∥2

)
(2.11)

≤ ∥𝑥∥
𝐴
†
𝑡

(
∥𝑆𝑡 ∥𝐴†𝑡 + ∥(𝐴

†
𝑡 )1/2�̂�𝑡 Σ̂𝑡−1∥2∥𝑃 − �̂�𝑡 ∥2∥\∗∥2 +

√
_∥\∗∥2

)
.

Plugging in 𝑥 = 𝐴𝑡 (\𝑡 − \∗), we get

∥\𝑡−\∗∥2𝐴𝑡 ≤ ∥𝐴𝑡 (\𝑡−\∗)∥𝐴†𝑡

(
∥𝑆𝑡 ∥𝐴†𝑡 +∥(𝐴

†
𝑡 )1/2�̂�𝑡 Σ̂𝑡−1∥2∥𝑃−�̂�𝑡 ∥2∥\∗∥2+

√
_∥\∗∥2

)
.

Since ∥𝐴𝑡 (\𝑡 − \∗)∥𝐴†𝑡 = ∥\𝑡 − \∗∥𝐴𝑡 , dividing both sides with ∥\𝑡 − \∗∥𝐴𝑡 gives and
using the fact that ∥\∗∥ ≤ 𝑆,

∥\𝑡 − \∗∥𝐴𝑡 ≤ ∥𝑆𝑡 ∥𝐴†𝑡 + 𝑆∥(𝐴
†
𝑡 )1/2�̂�𝑡 Σ̂𝑡−1∥2∥𝑃 − �̂�𝑡 ∥2 + 𝑆

√
_. (2.12)

Notice that the first term is the projected version of Theorem 1 in [3] and the second
term is the additional term appearing in the confidence interval construction due to
non-zero projection error. As it can be seen with the knowledge of true projection
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matrix, the confidence interval reduces to the one in [3] with replacement of 𝑑 with
𝑚.

Using Theorem 2.2.5 and Lemma 2.2.4, we get:

∥\𝑡 − \∗∥𝐴𝑡 ≤ 𝑅
√︂

2 log
det(𝐵𝑡)1/2 det(_𝐼𝑚)−1/2

𝛿
+ 𝑆𝜙𝛿√

𝑡
∥(𝐴†𝑡 )1/2�̂�𝑡 Σ̂𝑡−1∥2 + 𝑆

√
_.

Finally, combining this with Lemma 2.2.6 and Lemma 2.2.7 gives the statement of
the Theorem 2.2.8. □

Notice that the overall proof follows a similar machinery used by [3]. Specifically,
the first term of 𝛽𝑡,𝛿 in (2.10) is derived similarly by a self-normalized tail inequal-
ity, Theorem 2.2.5. However, since at each round PSLB projects the supervised
actions to an estimated 𝑚-dimensional subspace to estimate \∗, 𝑑 is replaced by
𝑚 in the bound using Lemma 2.2.6. While enjoying the benefit of projection, this
construction of the confidence set suffers from the finite sample projection error, i.e.,
uncertainty in the subspace estimation. This effect is observed via the second term in
(2.10). The second term involves the confidence bound for the estimated projection
matrix, 𝜙𝛿. This is critical in determining the tightness of the confidence set on \∗.
As discussed before, 𝜙𝛿 reflects the difficulty of subspace recovery of the given prob-
lem and it depends on the underlying structure of the problem and SLB. This shows
that as estimating the underlying subspace gets easier, having a projection-based
approach in the construction of the confidence sets on \∗ provides tighter bounds.

In order to tolerate the possible difficulty of subspace recovery, PSLB also constructs
C𝑑,𝑡 , which is the confidence set for \∗ without having subspace recovery. The
construction of C𝑑,𝑡 follows OFUL [3]. Let 𝑍𝑡 = Σ̂𝑡−1 + _𝐼𝑑 . The algorithm tries to
find \̂𝑡 which is the ℓ2-regularized least squares estimate of \∗ in the ambient space.
Construction of C𝑑,𝑡 is done under the same assumptions of Theorem 2.2.8, such that
with probability at least 1− 𝛿, \∗ lies in the set C𝑑,𝑡 =

{
\ ∈ R𝑑 : ∥\̂𝑡 − \∥𝑍𝑡 ≤ Ω𝑡,𝛿

}
,

where Ω𝑡,𝛿 = 𝑅

√︄
2 log

(
1
𝛿

)
+ 𝑑 log

(
1 + 𝑡𝐿2

𝑚_

)
+ 𝑆
√
_. The search for an optimistic

parameter vector happens in C𝑚,𝑡 ∩C𝑑,𝑡 . Notice that \∗ ∈ C𝑚,𝑡 ∩C𝑑,𝑡 with probability
at least 1 − 5𝛿. Optimistically choosing the pair, ( �̂�𝑡 , \̃𝑡), within the described
confidence sets gives PSLB a way to tolerate the possibility of failure in recovering
an underlying structure. If confidence set C𝑚,𝑡 is loose or PSLB is not able to
recover an underlying structure, then C𝑑,𝑡 provides the useful confidence set to
obtain desirable learning behavior.
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Regret Analysis

PSLB uses the intersection of C𝑚,𝑡 and C𝑑,𝑡 as the confidence set at round 𝑡. Using
only C𝑑,𝑡 is equivalent to following OFUL and the regret analysis can be found in
[3]. The regret analysis of using only the projected confidence set C𝑚,𝑡 is the main
contribution of this work. The following lemmas will be key in obtaining the regret
analysis.

Lemma 2.2.9. At round 𝑘 , for any 𝑥 ∈ 𝐷𝑘 , if a ∈ C𝑘 , then | (�̂�𝑘𝑥)𝑇 (a − \𝑘 ) | ≤
𝛽𝑘,𝛿∥𝑥∥𝐴†

𝑘

.

Define 𝑡𝑟,𝛿 such that 𝑡𝑟,𝛿 = 1 +
( (

2𝑚−1
2𝑚

) 4𝐿2Γ
√︃
𝛼
𝐾

log 2𝑑
𝛿
+
√

2𝐿 (_−+𝜎2) log 𝑚
𝛿

_−+𝜎2

)2
.

Lemma 2.2.10. For all 𝑡 ≥ 𝑡𝑤,𝛿, with probability at least 1 − 𝛿,

_𝑚 (�̂�𝑡 Σ̂𝑡−1�̂�𝑡) ≥ (𝑡−1) (_−+𝜎2)−
√
𝑡−1

(
4𝐿2Γ

√︂
𝛼

𝐾
log

2𝑑
𝛿
+
√︂

2𝐿 (_−+𝜎2) log
𝑚

𝛿

)
.

(2.13)
Also, for all 𝑡 ≥ 𝑡𝑟,𝛿, with probability at least 1 − 𝛿,

_𝑚 (�̂�𝑡 Σ̂𝑡−1�̂�𝑡) ≥
(_− + 𝜎2)

2𝑚
(𝑡 − 1). (2.14)

The proofs of Lemma 2.2.9 and 2.2.10 are in Supplementary Material A.1.4. The
following theorem gives the regret upper bound for using only the projected confi-
dence set C𝑚,𝑡 .

Theorem 2.2.11 (Regret Upper Bound of using only C𝑚,𝑡). Fix any 𝛿 ∈ (0, 1).
Assume that for all 𝑥𝑡,𝑖 ∈ 𝐷𝑡 , 𝑥𝑇𝑡,𝑖\∗ ∈ [−1, 1]. Under Assumptions 1 and 2, ∀𝑡 ≥ 1,
with probability at least 1 − 6𝛿, the regret of using only C𝑚,𝑡 satisfies

𝑅𝑡,C𝑚,𝑡 ≤ Õ
((

1 + Γ
√︂
𝛼

𝐾

) (
Γ
√
𝑚𝛼

√
𝐾
√︁
_− + 𝜎2

+ 𝑚
)
√
𝑡

)
. (2.15)

Proof. The instantaneous regret, 𝑙𝑖 = �̂�∗𝑇
𝑖
\∗ − �̂�𝑇𝑖 \∗, of the algorithm at 𝑖th round

can be decomposed as follows:

�̂�∗𝑇𝑖 \∗ − �̂�𝑇𝑖 \∗
≤ (�̃�𝑖 �̂�𝑖)𝑇 \̃𝑖 − (𝑃�̂�𝑖)𝑇\∗ (2.16)

= �̂�𝑇𝑖 (�̃�𝑖 − �̂�𝑖 + �̂�𝑖)\̃𝑖 − �̂�𝑇𝑖 (�̂�𝑖 + 𝑃 − �̂�𝑖)\∗
= (�̂�𝑖 �̂�𝑖)𝑇 (\̃𝑖−\𝑖) + (�̂�𝑖 �̂�𝑖)𝑇 (\𝑖−\∗) + ((�̂�𝑖 − 𝑃) �̂�𝑖)𝑇\∗ + ((�̃�𝑖 − �̂�𝑖) �̂�𝑖)𝑇 \̃𝑖
≤ 2𝛽𝑖,𝛿∥ �̂�𝑖∥𝐴†

𝑖

+ 2𝐿𝑆∥�̂�𝑖 − 𝑃∥2, (2.17)
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where (2.16) follows since (�̃�𝑖, �̂�𝑖, \̃𝑖) is optimistic and (2.17) holds for all 𝑖 with
probability at least 1 − 4𝛿 due to Lemma 2.2.9 and Theorem 2.2.8. Combining this
decomposition with the fact that 𝑙𝑖 ≤ 2, we get

𝑙𝑖 ≤ 2 min

(
𝛽𝑖,𝛿∥ �̂�𝑖∥𝐴†

𝑖

+ 𝐿𝑆∥�̂�𝑖−𝑃∥2, 1
)

(2.18)

≤ 2𝛽𝑖,𝛿 min(∥ �̂�𝑖∥𝐴†
𝑖

, 1) + 2𝐿𝑆min(∥�̂�𝑖−𝑃∥2, 1).

Now we can provide an upper bound on the regret. For all 𝑡 ≥ 1, with probability at
least 1 − 5𝛿,

𝑅𝑡 ≤
𝑡∑︁
𝑖=1

2𝛽𝑖,𝛿 min(∥ �̂�𝑖∥𝐴†
𝑖

, 1) + 2𝐿𝑆min(∥�̂�𝑖 − 𝑃∥2, 1)

= 2𝐿𝑆
𝑡∑︁
𝑖=1

min(∥�̂�𝑖 − 𝑃∥2, 1) +
𝑡∑︁
𝑖=1

2𝛽𝑖,𝛿 min(∥ �̂�𝑖∥𝐴†
𝑖

, 1)

≤ 2𝐿𝑆
𝑡∑︁
𝑖=1

min(∥�̂�𝑖 − 𝑃∥2, 1) + 2𝛽𝑡,𝛿
𝑡∑︁
𝑖=1

min(∥ �̂�𝑖∥𝐴†
𝑖

, 1) (2.19)

≤ 2𝐿𝑆
𝑡∑︁
𝑖=1

min(∥�̂�𝑖 − 𝑃∥2, 1) + 2𝛽𝑡,𝛿

√√√
𝑡

𝑡∑︁
𝑖=1

min(∥ �̂�𝑖∥2
𝐴
†
𝑖

, 1)

≤ 2𝐿𝑆
𝑡∑︁
𝑖=1

min(∥�̂�𝑖 − 𝑃∥2, 1) + 2
√
𝑡𝛽𝑡,𝛿

√√√ 𝑡∑︁
𝑖=1

min
(
_max(𝐴†𝑖 )𝐿2, 1

)
(2.20)

≤ 2𝐿𝑆
𝑡∑︁
𝑖=1

min(∥�̂�𝑖 − 𝑃∥2, 1) + 2
√
𝑡𝛽𝑡,𝛿

√√√ 𝑡∑︁
𝑖=1

min
(

𝐿2

_ + _𝑚 (�̂�𝑖Σ̂𝑖−1�̂�𝑖)
, 1

)
(2.21)

≤ 2𝐿𝑆
(
𝑡𝑤,𝛿 + 2Γ

√︂
𝛼

𝐾
log

2𝑑
𝛿

𝑡∑︁
𝑖=𝑡𝑤,𝛿

1
√
𝑖

)
+2𝐿
√
𝑡𝛽𝑡,𝛿

√√√
𝑡𝑟,𝛿

_
+ 2𝑚
_−+𝜎2

𝑡∑︁
𝑖=𝑡𝑟 , 𝛿

1
𝑖
,

(2.22)

where (2.19) follows from the fact that 𝛽1,𝛿 ≤ · · · ≤ 𝛽𝑡,𝛿. Since ∥𝑥∥𝑀 ≤_max(𝑀)∥𝑥∥2,
we get (2.20). The maximum eigenvalue of 𝐴†𝑡 is equivalent to 𝑚th eigenvalue of
𝐴𝑡 , thus (2.21) is obtained. Recall that ∥�̂�𝑖 − 𝑃∥2 < 1 for 𝑡 ≥ 𝑡𝑤,𝛿. Using Lemma
2.2.4 and the second statement of Lemma 2.2.10 we get (2.22). Finally, Lemma
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A.1.5 provides the following regret upper bound

𝑅𝑡 ≤ 2𝐿𝑆𝑡𝑤,𝛿 + 4𝐿𝑆Γ
√︂
𝛼

𝐾
log

2𝑑
𝛿
(2
√
𝑡 − 2

√︁
𝑡𝑤,𝛿 + 1 + 1)

+ 2𝐿
√
𝑡𝛽𝑡,𝛿

√︄
𝑡𝑟,𝛿

_
+ 2𝑚 + 2𝑚 log 𝑡 − 2𝑚 log(𝑡𝑟,𝛿 + 1)

_− + 𝜎2 . (2.23)

Recall that 𝛽𝑡,𝛿 = O
(
Γ
√︁
𝛼𝑚
𝐾

log 𝑡 +
√︁
𝑚 log 𝑡

)
. Therefore, last term dominates the

asymptotic upper bound on regret. Using the definition of 𝑡𝑟,𝛿 and the fact that√
𝑎 + 𝑏 ≤

√
𝑎 +
√
𝑏 for 𝑎, 𝑏 > 0, we get that the regret of the algorithm is

𝑅𝑡 = O
( √

𝑚

_− + 𝜎2

(
Γ

√︂
𝛼

𝐾
+ 𝛼Γ

2

𝐾

) √︁
𝑡 log 𝑡 + 𝑚√︁

_− + 𝜎2

(
1 + Γ

√︂
𝛼

𝐾

) √
𝑡 log 𝑡

)
= Õ

((
1 + Γ

√︂
𝛼

𝐾

) (
Γ
√
𝑚𝛼

√
𝐾
√︁
_− + 𝜎2

+ 𝑚
)
√
𝑡

)
= Õ

(
Υ
√
𝑡

)
.

□

Proof of Theorem 2.2.3: Using the intersection of C𝑚,𝑡 and C𝑑,𝑡 as the confidence
set at round 𝑡, gives PSLB the ability to obtain the lowest possible instantaneous
regret among both confidence sets. Therefore, the regret of PSLB is upper bounded
by the minimum of the regret upper bounds on the individual strategies. Thus,
Theorem 2.2.11 and Theorem 3 of Abbasi-Yadkori et al. [3] give the statement of
Theorem 2.2.3.

Interpreting the Regret Bound

Υ is the reflection of the finite sample projection error at the beginning of the
algorithm. It captures the difficulty of subspace recovery based on the structural
properties of the problem and determines the regret of deploying projection-based
methods in SLBs. Recall that 𝛼 is the maximum of the effective dimensions of the
true action vectors and the perturbation vectors. Depending on the structure of the
problem, 𝛼 can be O(𝑑), e.g., the perturbation can be uniform in all dimensions,
which prevents the projection error from shrinking; thus, causes Υ = O(𝑑

√
𝑚)

resulting in Õ(𝑑
√
𝑚𝑡) regret. The eigengap within the true action vectors 𝑔𝑥 and the

eigengap between the true action vectors and the perturbation vectors 𝑔𝜓 are critical
factors that determine the identifiability of the hidden subspace. As 𝜎2 increases,
the subspace recovery becomes harder since the effect of perturbation increases.
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Conversely, as _− increases, the underlying subspace becomes easier to identify.
These effects are significant and translate to the regret of PSLB via Γ in Υ.

Moreover, having finite samples to estimate the subspace affects the regret bound
through Υ. Due to the nature of SLB, i.e., finite action vectors in decision sets,
this is unavoidable. Note that if the decision set contained infinitely many actions,
the subspace recovery would be accomplished perfectly. Thus, the problem would
reduce to a 𝑚-dimensional SLB which has a regret upper bound of Õ(𝑚

√
𝑡). This

behavior can be seen in Υ. As 𝐾 → ∞, Υ = O(𝑚) which gives the regret upper
bound of Õ(𝑚

√
𝑡) as expected.

Theorem 2.2.3 states that if the underlying structure is easily recoverable, e.g., Υ =

O(𝑚), then using PCA-based dimension reduction and construction of confidence
sets provides substantially better regret upper bound for large 𝑑. If that is not the
case, then due to the best-of-the-both-worlds approach provided by PSLB, the agent
obtains the best possible regret upper bound. Note that the bound for using only
C𝑚,𝑡 is a worst-case bound, and as we present in Section 2.2.4, in practice PSLB can
give significantly better results.

2.2.4 Experiments
Synthetic example: We study PSLB on 50 dimensional SLBs with 4-dimensional
hidden subspace structure. At each round 𝑡, there are 𝐾 = 200 actions in 𝐷𝑡 . Each
action is generated as 𝑥𝑡,𝑖 = 𝑥𝑡,𝑖+𝜓𝑡,𝑖. 𝜓𝑡,𝑖 ∈ R𝑑 is drawn from Normal distribution but
rejected if ∥𝜓𝑡,𝑖∥22 > 𝑑𝜓 for some 𝑑𝜓 . We picked an orthonormal matrix 𝑉 ∈ R50×4

and generate 𝑥𝑡,𝑖 such that 𝑥𝑡,𝑖 = 𝑉𝜖 where 𝜖 ∼ 𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚( [−1, 1])4. For 𝑇 = 10, 000
rounds, we generate 3 different decision sets using 𝑑𝜓 = 1, 10 and 20.

Figure 2.1(A) is a 2-D representation of the effect of increasing perturbation level,
𝑑𝜓 . Assume that the underlying subspace, span(𝑉), is the horizontal line segment.
The blue, orange, and green data points represent 𝑥𝑡,𝑖 obtained by 𝑑𝜓 = 1, 10, and 20
respectively. As we increase the perturbation level, the hidden structure is concealed.
Using these SLB settings, we studied the performance of PSLB and OFUL. Figure
2.1(B) provides the change in regrets as we increase the perturbation level from
𝑑𝜓 = 1 to 𝑑𝜓 = 20. Note that 𝑑𝜓 can be interpreted as the effective dimension of the
perturbation vectors. As 𝑑𝜓 increases, the perturbations become more dominant,
the subspace recovery becomes harder and PSLB loses its advantage of recovering
the underlying subspace. The size of the 𝐶𝑚,𝑡 increases and PSLB starts performing
similar to OFUL. As suggested in the analysis through 𝛼, having 𝑑𝜓 close to the
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Figure 2.1: (A) 2-D representation of the effect of increasing perturbation level
in concealing the underlying subspace. (B) Regrets of PSLB vs. OFUL under
𝑑𝜓 = 1, 10 and 20. As the effect of perturbation increases, PSLB’s performance
approaches the performance of OFUL.

dimension of the ambient space leads to poor subspace recovery performance, thus
resulting in higher regret in SLBs. This example demonstrates the overall effect
of perturbation level on the subspace estimation, confidence set construction, and
ultimately regret.

Image Classification in SLB Setting: In the image classification experiments,
we study MNIST, CIFAR-10, and ImageNet datasets and use them to create the
decision sets for the SLB setting. A simple 5-layer CNN, a pre-trained ResNet-18,
and a pre-trained ResNet-50 are deployed respectively for MNIST, CIFAR-10, and
ImageNet. Before training, we modify the architecture of the representation layer
(the layer before the final layer) to make it suitable for the SLB study and obtain
decision sets for each image.

Consider a standard network whose dimension of the representation layer is 𝑑.
Therefore, the final layer for 𝐾 class classification is fully connected and it is a
𝑑 × 𝐾 matrix that outputs 𝐾 values to be used for classification. In this study,
instead of having a final layer of 𝑑 × 𝐾 matrix, we construct the final layer as a
𝑑-dimensional vector and make the feature representation layer a 𝐾𝑑 dimensional
vector. We treat this vector as the concatenation of 𝐾 contexts of 𝑑-dimensions i.e.,
[𝑥1, . . . , 𝑥𝐾]. The final 𝑑-dimensional layer is \∗ of the SLB, where the logit for
each class is computed as an inner product of the class context 𝑥𝑖 and \∗. We train
these architectures for different 𝑑 values using cross entropy loss.

Removing the final layer, the resulting trained networks are used to generate the
feature representations of each image for each class which produces the decision
sets at each time step of SLB. Since MNIST and CIFAR-10 have 10 classes, in each
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decision set we obtain 10 action vectors where each of them are segments in the
representation layer. On the other hand, from the ImageNet dataset we get 1000
actions per decision set due to 1000 classes in the datasets. In the SLB setting, the
agent receives a reward of 1 if it chooses the right action, which is the segment in
the representation layer corresponding to correct label according to trained network,
and 0 otherwise. We apply both PSLB and OFUL on these SLBs. We measure the
regret by counting the number of mistakes each algorithm makes.

Through computing PCA of the empirical covariance matrix of the action vectors,
surprisingly we found that projecting action vectors onto the 1-dimensional subspace
defined by the dominant eigenvector is sufficient for these datasets in the SLB setting.
While surprising, a similar observation is obtained in [50] that the diffusion matrix
which depends on the architecture, weights, and the dataset has a significantly
low-rank structure for MNIST and CIFAR-10 datasets. Yet, in order to display the
learning behavior, we present the regret obtained by PSLB and OFUL for the MNIST
dataset with 𝑑 = 1000 and 𝑚 = 8, CIFAR-10 dataset with 𝑑 = 1000 and 𝑚 = 2 and
ImageNet with 𝑑 = 100 and 𝑚 = 8 in Figure 2.2(a), (c), and (e) respectively.

With the help of subspace recovery and projection, PSLB provides a massive reduc-
tion in the dimensionality of the SLB problem and immediately estimates a fairly
accurate model for \∗. On the other hand, OFUL naively tries to sample from all
dimensions in order to learn \∗. This difference yields orders of magnitude improve-
ment in regret in high-dimensional SLB problems. During the SLB experiment,
we also sample the optimistic models that are chosen by PSLB and OFUL. We use
these models to test the model accuracy of the algorithms, i.e., perform classification
over the entire dataset. The model accuracy comparisons for the aforementioned
experiment settings are depicted in Figure 2.2 (b), (d), (f). This portrays the learn-
ing behavior of PSLB and OFUL. Using projection, PSLB learns the underlying
linear model in the first few rounds, whereas OFUL suffers from the high dimension
of the SLB framework and lack of knowledge besides chosen action-reward pairs.
An extensive study of PSLB and OFUL in these datasets with different subspace
constructions is given in Lale et al. [159].

We would like to particularly highlight Figure 2.2 (e), (f). Since there are 1000
different classes in the dataset, the SLB framework synthesized from the ImageNet
dataset has 1000 actions in each decision set. Therefore, even if 𝑑 = 100 is not
a fairly high-dimensional feature space, having 1000 actions makes the learning
task harder. Thus, SLB algorithms are expected to have higher regrets and slower
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(a) (b)

(c) (d)

(e) (f)

Figure 2.2: Regret of PSLB vs. OFUL in a stochastic linear bandit setting created
using MNIST, CIFAR-10, and ImageNet datasets in (a), (c), and (e) respectively. Im-
age classification accuracy of periodically sampled optimistic models of PSLB and
OFUL in MNIST, CIFAR-10, and ImageNet datasets in (b), (d), and (f) respectively.

convergence to the underlying model. However, a large number of actions is key
to having lower regret for PSLB. Instead of ignoring actions that are not chosen
at the current round, PSLB uses them to get an idea about the structure of the
action vectors. This setting clearly points out the advantage of PSLB over OFUL.
While OFUL obtains linear regret in the beginning and struggles to construct a
meaningful confidence set, PSLB uses hidden information in the massive number
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of action vectors and reduces the dimensionality of the SLB framework. Then it
exploits this information and converges to the accurate model without committing
many mistakes.

2.3 Stochastic Linear Bandits with Unknown Safety Constraints
In this section, we study a novel stochastic linear bandit framework with unknown
safety constraints where we model safety constraints as either multiple unknown
affine or nonlinear functions, which generalizes the constraints considered in prior
works. Given a set of actions, the goal of the decision-making agent is to maximize
its reward by selecting safe actions defined by these constraints at every time step.
Since the safety functions are unknown, the agent needs to learn them through feed-
back. To design a realistic feedback mechanism, we model these safety constraints
locally in the action space and associate feedback sets for each constraint. The
agent receives a noisy observation of the constraint function only when it picks
actions from the corresponding constraint feedback set. This local feedback mech-
anism captures the feedback structure in many applications where choosing actions
outside of a known safe set is subject to safety constraints.

We first consider the framework with multiple unknown affine safety constraints.
For this setting, we propose two novel safe stochastic linear bandit algorithms. The
first algorithm is the safe version of the linear upper confidence bound (UCB) al-
gorithm [3] (OFUL): Safe-OFUL. In the design of Safe-OFUL, we decouple the
exploration for learning the reward parameter and the safety constraints. This is in
contrast to prior works which rely on the same exploration strategy for both reward
and safety which fails in the affine safety function setting. The main technical chal-
lenge in the design of Safe-OFUL is to carefully prescribe an additional exploration
within the UCB framework which guarantees the selection of optimistic safe actions
and ensures sufficient exploration of the relevant constraint sets. For 𝑀 distinct
unknown affine constraints, we prove that Safe-OFUL attains Õ(

√
𝑀𝑇) regret after

𝑇 time steps without violating any safety constraints.

We propose the safe version of the well-known Thompson Sampling algorithm [5]
(LinTS): Safe-LinTS. Safe-LinTS is a computationally efficient alternative to Safe-
OFUL which can possibly have computational challenges in finding optimistic ac-
tions similar to the other UCB algorithms. In the design of Safe-LinTS, unlike
prior works, we also decouple the exploration for the reward parameter and safety
functions such that the agent chooses the optimal action with respect to the sampled
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Table 2.1: Comparison with prior works on safe stochastic linear bandit with Õ(
√
𝑇)

Regret. These works achieve this result using different methods for different safety
aspects with different constraint types and for different numbers of constraints.

Work Safety Aspect Constraint Type # of Constraints Method
[140] Reward Cumulative Single UCB
[143] Reward Stage-wise - Linear Single UCB
[202] Reward Stage-wise - Linear Single UCB + TS
[216] Policy Stage-wise - Linear Multiple UCB

[12] Action Stage-wise - Linear Single UCB
[203] Action Stage-wise - Linear 1 TS

Our Work Action Stage-wise - Affine/Nonlinear Multiple UCB + TS

reward parameter from the estimated safe action sets at every time step.

The main technical challenge in the design of Safe-LinTS is to lower bound the prob-
ability of being optimistic for the sampled reward parameter while satisfying the
safety constraints. To this end, we carefully design the sampling distributions for the
reward parameter and safety functions such that the sampled parameters satisfy cer-
tain concentration and anti-concentration properties, and give a novel lower bound
for this probability tailored for our stochastic linear bandit framework. For𝑀 distinct
unknown affine constraints, we also show that Safe-LinTS attains Õ(

√
𝑀𝑇) regret.

Finally, we study the setting of multiple unknown nonlinear constraints. We extend
Safe-OFUL and Safe-LinTS for this setting via a novel initial exploration strategy.
We propose learning Taylor approximations of the underlying safety constraints and
designing a new initial exploration phase that uses a priori known safe action per
constraint to achieve uniform exploration, i.e., the persistence of excitation. We
show that this exploration strategy allows the error in the estimates of the safety
functions to be well-controlled and guarantees the identification of a safety set that
contains the optimal safe action with high probability. We eventually show that the
proposed method also attains Õ(

√
𝑇) regret.

We empirically study all of these algorithms on both synthetic and real-world
datasets. On the synthetic dataset with various safety constraints, we observe that
both algorithms achieve sublinear regret without any safety violations, concurring
with our theoretical results. We then modify a credit classification task on the Ger-
man Credit dataset [141] into the loan approval stochastic linear bandit setting with
two safety constraints by featurizing each individual as discussed in the case study
above. We demonstrate the benefit of additional exploration in achieving improved
regret while maintaining zero safety violations.
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Our results subsume and generalize the state-of-the-art algorithms for stochastic
linear bandit with stage-wise safe action constraints, see Table 2.1 for comparison.

2.3.1 Problem Formulation
Reward Model: At each time step 𝑡, the agent plays an action 𝑥𝑡 ∈ 𝐷0, where
𝐷0 denotes the fixed decision set. Subsequently, the agent observes the reward
𝑟𝑡 = `

⊤𝑥𝑡 + [𝑟𝑡 , where ` ∈ R𝑑 is unknown and [𝑟𝑡 is random noise.

Safety Constraints: The environment is subjected to 𝑀 distinct safety constraints,
where M B [𝑀] is the index set of the constraints. We model these constraints as
affine functions unknown to the agent (they will be modeled as nonlinear functions in
Section 2.3.5). We consider localized safety constraints, where we define associated
constraint feedback sets Γ𝑖 ⊆ 𝐷0,∀𝑖 ∈ M. At each time step, the agent needs to
satisfy all the constraints corresponding to the feedback sets that the chosen action
𝑥𝑡 belongs to. More precisely, if 𝑥𝑡 ∈ Γ𝑖, the agent needs to have

𝛾⊤𝑖 𝑥𝑡 + 𝑐𝑖 ≤ 𝜏, ∀𝑡, (2.24)

for some 𝛾𝑖 and 𝑐𝑖 are unknown and 𝜏 known to the agent ∀𝑖 ∈ M. These constraints,
therefore, form a region of safe actions 𝐷safe

0 ⊆ 𝐷0, where

𝐷safe
0 B

⋃
𝑖∈𝑀

{
𝑥 ∈ Γ𝑖 : 𝛾⊤𝑖 𝑥𝑡 + 𝑐𝑖 ≤ 𝜏

}
. (2.25)

We consider the setting where the agent is subject to hard constraints, i.e., the agent
needs to play actions that belong to 𝐷safe

0 with high probability at all time steps.
This safety constraint formulation captures many safety-critical real-world decision-
making applications. Since the safety constraints are unknown to the agent, the
agent needs to learn them via feedback and conservatively pick actions to ensure
that the constraints are satisfied. In particular, we consider localized feedback such
that the agent gets noisy observations of the constraint functions only when it picks
actions from their corresponding constraint feedback set, i.e.,

�̃�𝑖𝑡 = 𝛾
⊤
𝑖 𝑥𝑡 + 𝑐𝑖 + [𝑖𝑡 if 𝑥𝑡 ∈ Γ𝑖 . (2.26)

Figure 2.3 illustrates an example safety constraint structure.

Regret: We study the (pseudo) regret of the agent

𝑅𝑇 =
∑︁𝑡=𝑇

𝑡=1
`⊤𝑥∗ − `⊤𝑥𝑡 ,

for 𝑇 time steps, where 𝑥∗ = arg max𝑥∈𝐷safe
0
`⊤𝑥, i.e., the optimal safe action. The

goal of the agent is to minimize the regret over time and achieve sublinear regret
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Figure 2.3: Illustration of the safety constraints: 𝐷0 represents all actions. Γ𝑖
represents the constraint feedback regions where the affine constraints (2.24) need
to be satisfied. 𝐷safe

0 is the safe set of actions formed by the union of the safe regions
from each Γ𝑖.

while satisfying the safety constraints at all time steps. Let 𝐹𝑡 denote the 𝜎-algebra
(history) up to time 𝑡, such that 𝑥𝑡 is 𝐹𝑡−1 measurable and the noise terms, i.e., [𝑟𝑡 and
[
𝑖𝑡
𝑡 , are 𝐹𝑡 measurable. Before describing our first algorithm for this setting, we adopt

some technical assumptions, which are standard in the literature, [3, 5, 12, 143].

Assumption 2.3.1 (Subgaussian Noise). For all 𝑡 ∈ [𝑇] and 𝑖 ∈ M, [𝑟𝑡 ,[𝑖𝑡 are
conditionally 𝑅-sub-Gaussian where 𝑅 ≥ 0 is a fixed constant, i.e., ∀_ ∈ R,
E[𝑒_[𝑟𝑡 |𝐹𝑡−1] ≤ exp(_2𝑅2/2),E[𝑒_[𝑖𝑡 |𝐹𝑡−1] ≤ exp(_2𝑅2/2).

Assumption 2.3.2 (Boundedness). 𝑠 < ∥`∥2, ∥𝛾𝑖∥2<𝑆, ∥𝑥∥2 < 𝐿, ∥𝑥−𝑥𝑠
𝑖
∥2 < 𝐿𝑐 ≤

𝐿, if 𝑥 ∈ Γ𝑖 and `⊤𝑥 ∈ [−1, 1],∀𝑥 ∈𝐷0 for some 𝑠, 𝑆, 𝐿, 𝐿𝑐 >0.

Assumption 2.3.3 (Known safe actions). For every constraint 𝑖 ∈ M, the agent
knows a safe action 𝑥𝑠

𝑖
∈Γ𝑖 such that 𝑥𝑠

𝑖
∈ 𝐷safe

0 and 𝛾⊤
𝑖
𝑥𝑠
𝑖
+ 𝑐𝑖 = 𝜏𝑠𝑖 < 𝜏 where 𝜏, 𝜏𝑠

𝑖

are known.

Note that Assumption 2.3.3 holds in many real-world decision-making tasks such as
robotics and clinical trials where there are known safe actions. Note that the known
safe actions do not need to be unique. If 𝜏𝑠

𝑖
s are unknown, the agent can sample the

known safe actions to estimate the values of 𝜏𝑠
𝑖
s.
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2.3.2 Safe-OFUL
In this section, we propose Safe-OFUL, the safe version of the well-known linear
upper confidence bound algorithm studied in the literature [3], (also named OFUL as
discussed in Section 2.2). Similar to OFUL, Safe-OFUL deploys the OFU principle
to balance the exploration vs. exploitation trade-off. This algorithmic approach
proposes constructing confidence sets for the underlying parameter ` using the
history of actions and rewards and playing the optimal action for the most optimistic
model within these sets. However, unlike the unconstrained setting of OFUL, the
agent in our stochastic linear bandit framework needs to satisfy the unknown safety
constraints at every time step.

To address this, Safe-OFUL conservatively explores starting around the known safe
actions to learn the safety constraints as well as the underlying reward parameter
while avoiding safety violations. During the course of interaction, besides the
confidence set for the underlying reward parameter `, it forms confidence sets for
the unknown safety functions, i.e., affine parameters 𝛾𝑖, and includes this information
to safely expand its estimate of the safety set𝐷safe

0 . In deploying the OFU principle, it
includes an additional exploration to tolerate the uncertainty in the safety set estimate
which enforces the algorithm to pick conservatively to avoid safety violations. Safe-
OFUL is given in Algorithm 2. Safe-OFUL consists of 3 key elements: parameter
estimation, safety construction, and acting optimistically.

Parameter Estimation: At each time step 𝑡, Safe-OFUL uses the history of action-
reward pairs to obtain a ℓ2-regularized (for some _ > 0) least squares (RLS) estimate
of the underlying reward parameter ` via

ˆ̀𝑡 = 𝑉−1
𝑡

∑︁𝑡−1

𝑘=1
𝑟𝑘𝑥𝑘 , (2.27)

where 𝑉𝑡 = _𝐼 +
∑𝑡−1
𝑘=1 𝑥𝑘𝑥

⊤
𝑘
. Safe-OFUL then builds a confidence set around this

RLS estimate
C𝑡 =

{
𝑣 ∈ R𝑑 : ∥𝑣 − ˆ̀𝑡 ∥𝑉𝑡 ≤ 𝛽𝑡

}
, (2.28)

where 𝛽𝑡 = 𝑅

√︃
𝑑 log

(
(1+(𝑡−1)𝐿2/_)/𝛿

)
+
√
_𝑆, for 𝛿 ∈ (0, 1). The choice of

𝛽𝑡 follows from Theorem 2 of Abbasi-Yadkori et al. [3], such that ` ∈ C𝑡 with
probability at least 1−𝛿, for all 𝑡 > 0. Thus, Safe-OFUL guarantees that the event
E` = {` ∈ C𝑡} holds with high probability.

Similarly, Safe-OFUL estimates the unknown safety functions, i.e., parameters 𝛾𝑖
for all 𝑖 ∈ M, via RLS as

�̂�𝑖,𝑡 = 𝐴
−1
𝑖,𝑡

∑︁𝑁𝑖 (𝑡)
𝑘=1

𝑦𝑖𝑘 (𝑥𝑘 − 𝑥
𝑠
𝑖 ), (2.29)
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Algorithm 2 Safe-OFUL
1: Input: 𝜏𝑠

𝑖
, 𝑥𝑠
𝑖
, 𝜏, 𝐿, 𝑆, 𝑅

2: for t=1,. . . ,T do
3: Compute ˆ̀𝑡 via (2.27) & �̂�𝑖,𝑡 via (2.29)
4: Construct 𝛽𝑡 in (2.28) & 𝛽𝑖𝑡 ∀𝑖 ∈ M in (2.30)
5: Construct 𝐷safe

𝑡 according to (2.31)
6: Find 𝑥𝑡 =argmax𝑖∈M,𝑥∈Γ̂𝑖,𝑡ucb(𝑥, 𝑖, 𝑡−1) via (2.32)
7: Play 𝑥𝑡 and observe reward 𝑟𝑡

for 𝑦𝑖𝑡 = �̃�𝑖𝑡 − 𝜏𝑠𝑖 ,∀𝑡, where 𝐴𝑖,𝑡 = _𝐼 +
∑𝑁𝑖 (𝑡)
𝑘=1 (𝑥𝑘 − 𝑥

𝑠
𝑖
) (𝑥𝑘 − 𝑥𝑠𝑖 )⊤ and 𝑁𝑖 (𝑡) denotes

the number of times the agent has gotten feedback from the constraint set Γ𝑖 until
time 𝑡. It also builds confidence sets around these estimates

C𝑖𝑡 =
{
𝑣 ∈ R𝑑 :

𝑣 − �̂�𝑖,𝑡𝐴𝑖𝑡 ≤ 𝛽𝑖𝑡} , (2.30)

with 𝛽𝑖𝑡 = 𝑅

√︃
𝑑 log

(
|𝑀 | (1 + 𝑁𝑖 (𝑡)𝐿2/_)/𝛿

)
+ _1/2𝑆𝛾, such that the event E𝛾𝑖 =

{𝛾𝑖 ∈ C𝑖𝑡 } holds with probability at least 1 − 𝛿, for all 𝑡 > 0 and 𝑖 ∈ M.

Safety Construction: Next, conditioned in the joint event E B E` ∪
⋃
𝑖∈𝑀 E𝛾𝑖 ,

Safe-OFUL aims to satisfy the unknown safety constraints when picking actions.
To achieve this, it conservatively constructs a safe set of actions Γ̂𝑖,𝑡 B {𝑥 ∈ Γ𝑖 :
�̂�⊤
𝑖,𝑡
(𝑥 − 𝑥𝑠

𝑖
) + 𝛽𝑖𝑡 | |𝑥 − 𝑥𝑠𝑖 | |𝐴−1

𝑖,𝑡
≤ 𝜏 − 𝜏𝑠

𝑖
}, where

𝐷safe
𝑡 =

⋃
𝑖∈𝑀

Γ̂𝑖,𝑡 . (2.31)

For this constructed safety set, we have the following result.

Lemma 2.3.4. Conditioned on E, 𝐷safe
𝑡 ⊆ 𝐷safe

0 , for all 𝑡 > 0.

The proof is given in Appendix A.2.1, where we show that conditioned on E,
�̂�⊤
𝑖,𝑡
(𝑥 − 𝑥𝑠

𝑖
) + 𝛽𝑖𝑡 | |𝑥 − 𝑥𝑠𝑖 | |𝐴−1

𝑖,𝑡
is an upper bound on 𝛾⊤

𝑖
(𝑥 − 𝑥𝑠

𝑖
), ∀𝑖 ∈ 𝑀 . This ensures

that 𝐷safe
𝑡 is a conservative estimate of 𝐷safe

0 , such that Safe-OFUL satisfies the
safety constraints with high probability.

Acting Optimistically: At the final step, Safe-OFUL picks an action 𝑥𝑡 from the
constructed safe set 𝐷safe

𝑡 which maximizes the Upper Confidence Bound (ucb)
defined as

ucb(𝑥, 𝑖, 𝑡) = ˆ̀⊤𝑡 𝑥 + 𝛽𝑡 | |𝑥 | |𝑉−1
𝑡
+ 𝑘𝑖𝛽𝑖𝑡 | |𝑥 − 𝑥𝑠𝑖 | |𝐴−1

𝑖,𝑡
, (2.32)

∀𝑖 ∈M, where 𝑘𝑖 ≥ 2𝐿𝑆/(𝜏−𝜏𝑠
𝑖
). In the following, we show that this construction

of ucb ensures sufficient exploration of the safety constraint set in order to balance
exploration vs. exploitation via optimistic action selection.
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2.3.3 Theoretical guarantees for Safe-OFUL
Before presenting the theoretical guarantees, we place the following technical as-
sumption on the safety feedback sets that the optimal safe action belongs to, denoted
as Γ𝑖∗ .

Assumption 2.3.5 (Star convex optimal constraint sets). Γ𝑖∗ is star convex around
the safe known action 𝑥𝑠

𝑖∗ such that the convex combination 𝛼𝑥∗ + (1 − 𝛼)𝑥𝑠
𝑖
∈

Γ𝑖∗ ,∀𝛼 ∈ [0, 1].

Note that since the constraint sets are localized around a particular safe action 𝑥𝑠
𝑖
, this

assumption is reasonable in the safe stochastic linear bandit framework, and weaker
than the prior work, e.g., [13], where the entire space of actions is considered to be
star convex. In the regret analysis of Safe-OFUL, we follow the standard analysis of
UCB and decompose the regret 𝑅𝑇 into two terms: (i)

∑𝑡=𝑇
𝑡=1 (`⊤𝑥∗ − ucb(𝑥𝑡 , 𝑖𝑡 , 𝑡))

and (ii)
∑𝑡=𝑇
𝑡=1 (ucb(𝑥𝑡 , 𝑖𝑡 , 𝑡) − `⊤𝑥𝑡).

In the unconstrained setting, the optimism principle is satisfied by construction,
since the optimal action belongs to the decision set 𝐷0, yielding (i) to be non-
positive. However, in the safe stochastic linear bandit framework, the optimal safe
action 𝑥∗ may not belong to the constructed safe set 𝐷safe

𝑡 where optimistic action
selection happens. Thus, we first show that the new construction of ucb in (2.32)
still provides optimistic actions.

Theorem 2.3.6 (Optimism). For all 𝑖 ∈ M, setting 𝑘𝑖 ≥ 2𝐿𝑆/(𝜏−𝜏𝑠
𝑖
) guarantees

optimism with high probability:

max𝑖∈𝑀,𝑥∈Γ̂𝑖,𝑡 ucb(𝑥, 𝑖, 𝑡) ≥ `⊤𝑥∗ ∀𝑡.

The proof is given in Appendix A.2.1. To sketch the proof idea, we consider two
cases of whether 𝑥∗ ∈ 𝐷safe

𝑡 or not. If yes, via standard UCB arguments, we guar-
antee that Safe-OFUL selects optimistic actions. If not, we show that the additional
exploration bonus 𝑘𝑖𝛽𝑖𝑡 | |𝑥 − 𝑥𝑠𝑖 | |𝐴𝑖−1

𝑡
ensures optimistic action selection for the given

choice of 𝑘𝑖. This shows that adjusting the additional exploration bonus around the
known safe actions ensures that the relevant constraint regions are well-explored,
i.e., 𝑥∗ eventually belongs to 𝐷safe

𝑡 .

The choice of 𝑘𝑖 highlights the key challenge in our proposed stochastic linear bandit
framework. In contrast to prior works, the agent gets feedback from a constraint only
if it plays an action within the associated feedback set. Therefore, while aiming to
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learn the underlying reward function, Safe-OFUL needs to cautiously choose actions
from the constraint sets where it wants to learn the constraints at the cost of not
receiving any feedback from the non-active constraints. The new ucb term in (2.32)
captures this trade-off and selecting 𝑘𝑖 as in Theorem 2.3.6 balances it effectively.
In particular, we see that this exploration bonus is inversely proportional to the gap
between the safety threshold and the value of the known safe action. Intuitively,
this means that if the known safe action is close to violation, Safe-OFUL needs to
explore more/act more optimistically to learn the optimal safe action. We pay an
extra price in regret due to this additional effort.

Theorem 2.3.7 (Regret Bound). Suppose Assumptions 2.3.1–2.3.3 and 2.3.5 hold.
Then for any 𝛿∈ (0, 1) and 𝑘𝑖 =2𝐿𝑆/(𝜏−𝜏𝑠

𝑖
), with probability at least 1−2𝛿, the regret

of Safe-OFUL is 𝑅𝑇 ≤ 𝑅` + 𝑅𝛾, where 𝑅` = 2𝛽𝑇
√︁

2𝑇𝑑 log((1 + 𝑇𝐿2/(𝑑_))/𝛿) and
𝑅𝛾 = (𝑘𝑖𝑚𝑎𝑥 𝛽

𝑖𝑚𝑎𝑥
𝑇
+2)

√︁
2|𝑀 |𝑇𝑑 log((1 + 𝑇𝐿2/(𝑑_))/𝛿), for 𝛽𝑖𝑚𝑎𝑥

𝑇
= max 𝑗∈M 𝛽

𝑗

𝑇
and

𝑘𝑖𝑚𝑎𝑥 = max 𝑗∈M 𝑘 𝑗 .

The proof is given in Appendix A.2.1. In the proof, since (i) is non-positive via
Theorem 2.3.6, we study (ii) and decompose it into 2 terms. 𝑅` results from learning
the unknown reward parameter and 𝑅𝛾 is due to learning 𝑀 different constraints.
Notice that 𝑅𝛾 scales with the hardest, i.e., the most exploration needed, constraint
through 𝛽𝑖𝑚𝑎𝑥

𝑇
and 𝑘𝑖𝑚𝑎𝑥 . Moreover, the regret rate of Safe-OFUL matches the prior

unconstrained UCB results [3] and single linear constrained UCB results [12, 216],
where the additional price of learning under 𝑀 distinct constraints with local safety
feedback, which generalizes the prior work, appears as

√
𝑀 .

2.3.4 Safe-LinTS
In many scenarios, solving the bilinear optimization problem of UCB-type algo-
rithms, i.e., Line 6 of Algorithm 2, can be computationally challenging. To this
end, Thompson Sampling (TS)-based methods are proposed, e.g., LinTS [5, 10].
These approaches sample a model within the constructed confidence set of plausible
models and find the optimal action with respect to this sampled model. Therefore,
they consider a linear optimization problem for decision-making, which can be
solved efficiently. Because of this computational efficiency, simplicity, and possibly
better empirical performance, they are adopted in many decision-making scenar-
ios [7, 137]. In this section, we propose Safe-LinTS, the safe version of LinTS. The
pseudocode of Safe-LinTS is given in Algorithm 3.
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Algorithm 3 Safe-LinTS
1: Input: 𝜏𝑠

𝑖
, 𝑥𝑠
𝑖
, 𝜏, 𝐿, 𝑆, 𝑅,P𝑇𝑆,P𝑇𝑆𝑐

2: for 𝑡 = 1, 2, . . . , 𝑇 do
3: Compute ˆ̀𝑡 via (2.27) & �̂�𝑖,𝑡 via (2.29)
4: Construct 𝛽𝑡 in (2.28) & 𝛽𝑖𝑡 ∀𝑖 ∈ 𝑀 in (2.30)
5: Construct 𝐷safe

𝑡 according to (2.31)
6: Sample [𝑡 ∼ P𝑇𝑆 and [𝑐𝑡 ∼ P𝑇𝑆𝑐
7: Compute ˜̀𝑡 = ˆ̀𝑡 + 𝛽𝑡𝑉−1/2

𝑡 [𝑡

8: Compute �̃�𝑖,𝑡 = 𝛽𝑖𝑡𝐴
−1/2
𝑖,𝑡

[𝑐𝑡 ,∀𝑖 ∈ M
9: Find 𝑥𝑡 =argmax𝑖∈M,𝑥∈Γ̂𝑖,𝑡 ˜̀⊤𝑡 𝑥 + �̃�𝑖,𝑡⊤(𝑥 − 𝑥𝑠𝑖 )

10: Play 𝑥𝑡 and observe reward 𝑟𝑡

The construction of Safe-LinTS follows similarly to Safe-OFUL regarding the es-
timation of the reward parameter and safety parameters and safety construction
(Lines 3–5). After this, it draws two random perturbations [𝑡 ∈ R𝑑 and [𝑐𝑡 ∈ R𝑑

from i.i.d. distributions P𝑇𝑆 and P𝑇𝑆𝑐 respectively (will be characterized shortly).
Among these perturbations, while Safe-LinTS uses [𝑡 in a standard way to sample
a reward parameter, it uses [𝑐𝑡 in a novel way to expand the estimated safe set to
satisfy optimistic action selection.

The main novelty in the design of Safe-LinTS lies in this decoupling of the explo-
ration for the reward parameter and the safety functions. In particular, the prior
work in safe linear bandits [203] relies on using the same Gram matrix to learn both
the safety and reward parameters simultaneously. However, learning in the affine
setting involves separate Gram matrices, thus, Safe-LinTS explicitly balances the
exploration trade-off between learning the unknown reward parameter and the safety
parameters, ensuring safety and optimism for the entire horizon.

To this end, P𝑇𝑆 and P𝑇𝑆𝑐 are chosen to satisfy certain concentration and anti-
concentration properties. In particular, for some 𝛿 ∈ (0, 1) and constants 𝑐, 𝑐′,
Safe-LinTS selects P𝑇𝑆 such that P(∥[𝑡 ∥2 ≤

√︁
𝑐𝑑 log(𝑐′𝑑/𝛿)) ≥ 1− 𝛿2 , and P(𝑢⊤[𝑡 ≥

1) = 𝑝1 > 0, for any 𝑢 ∈ R𝑑 with ∥𝑢∥ = 1. Similarly, P𝑇𝑆𝑐 is chosen such that
P(∥[𝑐𝑡 ∥2 ≤ 2𝐿𝑆𝛾

𝜏−𝜏𝑠∗

√︁
𝑐𝑑 log(𝑐′𝑑/𝛿))) ≥ 1 − 𝛿

2 and P(𝑢⊤[𝑐𝑡 ≥ 2𝐿𝑆𝛾
𝜏−𝜏𝑠∗ ) = 𝑝2 > 0, where

𝑆𝛾 > max𝑖∈M ∥𝛾𝑖∥ and 𝜏𝑠∗ = max𝑖∈M 𝜏𝑠
𝑖
. These requirements imply that these

distributions with high probability should concentrate, yet, still provide a certain
amount of exploration (anti-concentration), which is crucial in achieving low regret.
Natural candidates for P𝑇𝑆 and P𝑇𝑆𝑐 are N(0, 𝐼) and N(0, 2𝐿𝑆𝛾

𝜏−𝜏𝑠∗ 𝐼), respectively.

Safe-LinTS uses [𝑡 ∼ P𝑇𝑆 to sample ˜̀𝑡 around ˆ̀𝑡 which provides the balance
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between exploration and exploitation while learning the unknown reward parameter,
i.e., ˜̀𝑡 = ˆ̀𝑡 + 𝛽𝑡𝑉−1/2

𝑡 [𝑡 . It then uses [𝑐𝑡 ∼ P𝑇𝑆𝑐 to sample �̃�𝑖,𝑡 = 𝛽𝑖𝑡𝐴
−1/2
𝑖,𝑡

[𝑐𝑡 ,∀𝑖 ∈ M,
which will be used to provide the exploration needed to expand the estimated safe
set to include higher rewarding actions, i.e., optimistic actions.

At the final step, Safe-LinTS picks an action 𝑥𝑡 from 𝐷safe
𝑡 by maximizing ˜̀⊤𝑡 𝑥 +

�̃�⊤
𝑖,𝑡
(𝑥 − 𝑥𝑠

𝑖
). Note that this is a linear objective with transparent exploration goals.

In particular, the reward exploration is similar to LinTS in Abeille and Lazaric [5],
whereas the second term adds exploration along the safety constraints using the
known safe actions. Notice that this approach generalizes the algorithm proposed in
[203] whose setting is a special case of the SLB framework considered in this study.

Theorem 2.3.8. Suppose Assumptions 2.3.1–2.3.3 and 2.3.5 hold. Then for any 𝛿∈
(0, 1), with probability at least 1−𝛿, the regret of Safe-LinTS is 𝑅𝑇 = Õ(𝑑3/2√︁|𝑀 |𝑇).
The proof and the exact expressions are given in Appendix A.2.2. In the proof, we
first show that Safe-LinTS selects safe (via Lemma 2.3.4) optimistic actions with
at least 𝑝1𝑝2 probability by showing that [𝑡 and [𝑐𝑡 provide sufficient exploration.
Finally, we use the regret decomposition in [5] to give the regret upper bound.
Notably, this result matches the regret upper bound in [203] for their setting. In the
exact regret expression, the leading term has 1/(𝑝1𝑝2) i.e., the inverse of optimistic
action probability. This relation is similar to that of 𝑘𝑖𝑚𝑎𝑥 in Safe-OFUL. In particu-
lar, similar to Safe-OFUL, for a smaller worst-case safety gap of known safe actions,
Safe-LinTS needs to explore more to learn the optimal safe action which results in
increased regret through 𝑝2.

2.3.5 Linear Bandits with Nonlinear Constraints
In this section, we consider the most general setting of multiple nonlinear safety
constraints, which captures the most diverse class of decision-making scenarios.

Safety Constraints: The environment is subject to 𝑀 distinct nonlinear safety
constraints, such that if 𝑥𝑡 ∈ Γ𝑖, the agent needs to have 𝑓𝑖 (𝑥𝑡) ≤ 𝜏,∀𝑡 for some
unknown 𝑓𝑖 and known 𝜏,∀𝑖 ∈ M. The region of safe actions corresponds to𝐷safe

0 :=⋃
𝑖∈M{𝑥 ∈ Γ𝑖 : 𝑓𝑖 (𝑥) ≤ 𝜏}. Similar to the affine case, we consider localized feedback

for the agent: �̃�𝑖𝑡 = 𝑓𝑖 (𝑥𝑡) + [𝑖𝑡 if 𝑥𝑡 ∈ Γ𝑖. Moreover, without loss of generality, we
consider Γ𝑖 = {𝑥 ∈ R𝑑 : ∥𝑥 − 𝑥𝑠

𝑖
∥2 ≤ 𝛿 𝑓 } for some 𝛿 𝑓 > 0 for all 𝑖 ∈ M. In parallel

with Assumption 2.3.3, we assume that the agent knows a safe action for each
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constraint, 𝑥𝑠
𝑖
∈ 𝐷safe

0 ,∀𝑖 ∈ M, as well as their safety values 𝑓𝑖 (𝑥𝑠𝑖 ) = 𝜏𝑠𝑖 < 𝜏. Finally,
we adopt the following simple regularity assumption on the nonlinear constraints.

Assumption 2.3.9 (Smooth & Lipschitz Safety Constraints). 𝑓𝑖 (𝑥) is Z-smooth and
𝑆-Lipschitz, ∀𝑥 ∈Γ𝑖, ∀𝑖 ∈M.

The local smoothness assumption is a significantly weak assumption [24], while
the local Lipschitzness is the nonlinear analog to Assumption 2.3.2 with affine con-
straints. The setting characterized above subsumes and generalizes the affine case in
Section 2.3.1. Using the first-order Taylor expansion about the known safe actions,
we obtain 𝑓𝑖 (𝑥) = 𝑓𝑖 (𝑥𝑠𝑖 )+∇ 𝑓𝑖 (𝑥𝑠𝑖 )⊤(𝑥−𝑥𝑠𝑖 )+𝜖𝑖 (𝑥), where 𝜖𝑖 (𝑥) represents the remain-
der terms. Notice that for small enough 𝛿 𝑓 , this expansion behaves very similarly
to affine functions studied in previous sections, which motivates the following our
algorithm design. To avoid any further structural assumptions and keep the setting
as general as possible, while keeping the problem tractable, we assume some safety
gap for the optimal safe action to account for the function approximation errors.

Assumption 2.3.10 (Safety gap for optimal action). The optimal safe action 𝑥∗ has
at least Δ safety gap from constraint boundary, i.e., 𝑓𝑖∗ (𝑥∗) ≤ 𝜏 − Δ, such that
Δ > Z𝛿2

𝑓
.

This is a mild assumption since for a nonlinear function the optimal action need
not be at the boundary, unlike linear constraints. Moreover, this assumption holds
in many safe decision-making tasks, where the optimal safe action might be a sig-
nificantly safe one, yet, to learn this action one might need to consider a higher
threshold in the learning process.

Safe-OFUL/LinTS with Pure Exploration

We propose an extension of our prior algorithms to achieve safe and effective
decision-making for the SLB with multiple nonlinear safety constraints. Due to
Assumption 2.3.9, we know that there exists a safe ball of actions around each 𝑥𝑠

𝑖
,∀𝑖 ∈

M, i.e., 𝑓𝑖 (𝑥𝑡) ≤ 𝜏 if 𝑥𝑡 ∈ {𝑥 ∈ Γ𝑖 : | |𝑥 − 𝑥𝑠
𝑖
| |2 < 𝛿𝑟} for 𝛿𝑟 ≤ (𝜏 − 𝜏𝑠𝑖 )/(𝑆 + Z𝛿 𝑓 ).

The existence of this ball helps the agent to estimate the gradient of the nonlinear
function around the known safe actions 𝑥𝑠

𝑖
. The main idea in our algorithm design is

to learn the first-order function approximation in each Γ𝑖 while taking into account
the estimation error so that the agent can eventually get to the optimal action 𝑥∗
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Algorithm 4 Safe-LinUCB/LinTS with Pure Exploration
1: Input: 𝜏𝑠

𝑖
, 𝑥𝑠
𝑖
, 𝜏, Z , 𝑆,Δ, 𝛿 𝑓

2: for 𝑖 ∈ M do
3: for 𝑡 = 1, 2, . . . , 𝑇 ′ do
4: Play 𝑥𝑡 = arg max𝑥∈𝐷𝑤

𝑖
∥𝑥 − 𝑥𝑠

𝑖
∥𝐴−1

𝑖,𝑡

5: Construct 𝐷safe
𝑀𝑇 ′

6: Run Safe-LinUCB/LinTS for the remainder with 𝐷safe
𝑀𝑇 ′

without violating safety. The algorithm consists of two phases: (i) Pure Exploration
and (ii) Safe-LinUCB/LinTS. The pseudocode is given in Algorithm 4.

Pure Exploration: In this phase, the agent samples 𝑇 ′ actions from each constraint
set Γ𝑖. It uniformly excites all the directions by playing 𝑥𝑡 =arg max𝑥∈𝐷𝑤

𝑖
∥𝑥−𝑥𝑠

𝑖
∥𝐴−1

𝑖,𝑡

for 𝑇 ′ steps, where 𝐷𝑤
𝑖

is the 𝑑 − 1 dimensional boundary surface of the 𝛿𝑟-ball
around the known safe actions 𝑥𝑠

𝑖
defined as 𝐷𝑤

𝑖
= {𝑥 ∈ Γ𝑖 : | |𝑥−𝑥𝑠

𝑖
| |2 = 𝛿𝑟}, and

𝐴𝑖,𝑡 = _𝐼 +
∑𝑁𝑖 (𝑡)
𝑘=1 (𝑥𝑘 −𝑥

𝑠
𝑖
) (𝑥𝑘 −𝑥𝑠𝑖 )⊤. By construction of 𝐷𝑤

𝑖
, the agent achieves

safe exploration. Moreover, this exploration strategy ensures that the agent always
picks the direction of the smallest eigenvalue, resulting in persistent excitation in all
directions since actions in 𝐷𝑤

𝑖
have the same norm.

At the end of this phase, the algorithm estimates the gradient of the constraint
functions using RLS such that ∇ 𝑓𝑖𝑡 = 𝐴−1

𝑖,𝑡

∑𝑁𝑖 (𝑡)
𝑘=1 𝑦𝑖

𝑘
(𝑥𝑘 − 𝑥𝑠𝑖 ) for 𝑦𝑖𝑡 = �̃�𝑖𝑡 − 𝜏𝑠𝑖 ,∀𝑡.

Note that 𝑁𝑖 (𝑡) is equal to 𝑇 ′ for all 𝑖 at the end of this phase. Next, the algorithm
further decomposes

∇ 𝑓𝑖𝑡 =∇ 𝑓 𝐿𝑆𝑖𝑡 + 𝜖𝑖𝑡 ,

where ∇ 𝑓 𝐿𝑆
𝑖𝑡

= 𝐴−1
𝑖,𝑡

∑𝑁𝑖 (𝑡)
𝜏=1 (𝑥𝜏−𝑥

𝑠
𝑖
) (∇ 𝑓 (𝑥𝑠

𝑖
)⊤(𝑥𝜏−𝑥𝑠𝑖 ) +[𝑖𝑡) and 𝜖𝑖𝑡 = 𝐴−1

𝑖,𝑡

∑𝑁𝑖 (𝑡)
𝜏=1 (𝑥𝜏−

𝑥𝑠
𝑖
)𝜖𝑖 (𝑥𝜏). Notice that the expression for ∇ 𝑓 𝐿𝑆

𝑖𝑡
is the nonlinear analog of (2.29).

Thus, the algorithm builds confidence sets around the estimates ∇ 𝑓 𝐿𝑆
𝑖𝑡
,∀𝑖 ∈ M:

C𝑖𝑡 = {𝑣 ∈ R𝑑 : ∥𝑣 − ∇ 𝑓 𝐿𝑆𝑖𝑡 ∥𝐴𝑖𝑡 ≤ 𝛽
𝑖
𝑡},

with 𝛽𝑖𝑡 = 𝑅

√︃
𝑑 log

(
|𝑀 | (1 + 𝑇 ′𝐿2/_)/𝛿

)
+ _1/2𝑆. It also defines the event E∇ 𝑓𝑖 =

{∇ 𝑓𝑖 (𝑥𝑠𝑖 ) ∈ C𝑖𝑡 } which holds with probability at least 1 − 𝛿, for all 𝑡 > 0 and 𝑖 ∈ M.

Safety Construction: Next, conditioned in the joint event E∇ 𝑓𝑡 :=
⋃
𝑖∈𝑀 E∇ 𝑓𝑖𝑡 , the

algorithm aims to satisfy safety constraints when picking actions. To achieve this,
it conservatively constructs a safe set of actions Γ̂𝑖𝑡 = {𝑥 ∈ Γ𝑖 : ∇ 𝑓 ⊤

𝑖𝑡
(𝑥 − 𝑥𝑠

𝑖
) + Δ

2 ≤
𝜏 − 𝜏𝑠

𝑖
}, where 𝐷safe

𝑀𝑇
=

⋃
𝑖∈𝑀 Γ̂𝑖,𝑡 .
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Figure 2.4: 𝐷0 and 𝐷safe
0 respectively for affine constraints. Different colors repre-

sent different feedback sets Γ𝑖.

Figure 2.5: 𝐷0 and 𝐷safe
0 respectively for nonlinear (ℓ2 norm bound) constraints.

Different colors represent different feedback sets Γ𝑖.

Theorem 2.3.11. Suppose Assumptions 2.3.9 & 2.3.10 hold. For any 𝛿 ∈ (0, 1),
after 𝑇 ′ time steps of pure exploration per constraint set, we have i) 𝑥∗ ∈ 𝐷safe

𝑀𝑇 ′ and

ii) 𝐷safe
𝑀𝑇 ′ ⊆ 𝐷

safe
0 with probability at least 1 − 𝛿, if 𝑇 ′

log2 𝑇 ′
≥

(
2𝑑

4𝛿2
𝑓

(Δ−Z𝛿2
𝑓
)2

)2
.

The proof is in Appendix A.2.3. The main idea of the proof is to show that we can
control the error from non-linearity using smoothness and simultaneously learn the
gradient at that point by uniformly playing actions around and close to the known
safe actions. We then build 𝐷safe

|𝑀 |𝑇 ′ using ∇̂ 𝑓𝑖 (𝑥𝑠𝑖 ) and add error margin to compen-
sate for smoothness approximation error, away from 𝑥𝑠

𝑖
. After this phase, the agent

executes the previously proposed algorithms using 𝐷safe
|𝑀 |𝑇 ′ .

Corollary 2.3.12 (Regret Bound). Suppose 2.3.9 & 2.3.10 hold. Then for the given
duration of 𝑇 ′ in Theorem 2.3.11, for any 𝛿 ∈ (0, 1), with probability at least 1−2𝛿,
the regret of Algorithm 4 the above algorithm is Õ(|𝑀 |𝑇 ′ +

√
𝑇).
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Figure 2.6: Left: Cumulative regret of Safe-OFUL (Safe-LinUCB) and Safe-LinTS
for the setting in Figure 2.4 (Solid line is the average, shaded region is one std),
Right: Cumulative regret of Algorithm 4 (Safe-OFUL with initial pure exploration)
for the setting in Figure 2.5.

Figure 2.7: Cumulative regret in loan approval problem. Comparison of Safe-
OFUL(Safe-LinUCB) with and without additional exploration.

2.3.6 Experiments
Illustrative 2D Simulations: We first empirically study the proposed algorithms
in 2D action space. In the setting with 6 unknown affine constraints and feedback
regions, we perform 5 independent runs of Safe-LinUCB and Safe-LinTS for 2000
time steps and report their performance. An example of the decision set 𝐷0 with
different (color) feedback regions and the region of safe actions determined by the
affine constraints are shown in Figure 2.4. The cumulative regret of the algorithms
in this setting is given in the first plot of Figure 2.6. We observe that both of the
algorithms achieve competitive, i.e., sublinear, regret without any safety violations.
We show that Safe-LinTS achieves improved practical performance in this setting
with optimized exploration parameters [𝑡 and [𝑐𝑡 , which further motivates the use
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of sampling-based methods in practice.

Next, we study the setting with 10 unknown nonlinear constraints and feedback
regions. We model the constraints as ℓ2-norm bound constraints. An example
of 𝐷0 and 𝐷safe

0 are given in Figure 2.5. We consider an optimal action with a
safety gap in parallel with Assumption 2.3.10. We implement Algorithm 4 using
Safe-LinUCB and provide the cumulative regret in Figure 2.6. As predicted by the
theory, algorithm attains linear regret during its orthogonal pure exploration phase.
However, this phase allows sufficient exploration of the safety sets and unknown
reward function such that Algorithm 4 discovers a safe action that achieves at least
as high reward as the optimal action, yielding constant regret after pure exploration.
This shows that the novel initial exploration strategy in Section 2.3.5 is effective in
uniformly exploring the decision set without any safety violations.

Loan Approval as a Safe SLB Problem: We consider the German Credit Dataset
from Keogh et al. [141]. The data classify customers as good or bad for credit
for loan approval and provide 24 attributes per user. To turn this into a safe SLB
problem, we featurize the user attributes using a neural network and pose the bandit
problem as a regression problem with affine safety constraints in the feature space.
We impose two safety violations as picking bad customers with 1) high credit and 2)
with high age, where the last one is a surrogate to retirement discussed in the case
study at the beginning. We compare Safe-LinUCB with a naive version which does
not include the additional exploration bonus needed to ensure optimism under safety.

Figure 2.7 gives the cumulative regret comparison. Initially, Safe-LinUCB attains
higher regret than the naive version due to additional exploration incentives as
expected. However, this additional exploration provides the sufficient exploration
needed in the relevant constraint regions and allows Safe-LinUCB to achieve lower
cumulative regret in the long run with no safety violations, concurring with the
theory. The naive method, on the other hand, does not select optimistic actions and
fails to explore efficiently, resulting in sub-optimal actions. This result highlights
the importance of the carefully tuned exploration bonus under safety constraints to
recover the underlying reward parameter.

2.4 Conclusion and Future Directions
In this chapter, we studied decision-making under uncertainty in the context of
“stateless” dynamical systems, i.e., stochastic linear bandits, by addressing the chal-
lenges of high-dimensional feature representations and unknown safety constraints.
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The proposed algorithms, PSLB, and safety-constrained stochastic linear bandits
algorithms, Safe-OFUL and Safe-LinTS provide novel solutions to these challenges
and have the potential to improve the performance and safety of decision-making
tasks in various real-world applications. The empirical studies validate the effec-
tiveness of the proposed algorithms and highlight their applicability to practical
decision-making scenarios.

The PSLB framework can be generalized in various ways. Even though we chose
PCA for the subspace recovery method for this study, it would be an interesting
future directions to study the PSLB framework under robust principal component
analysis or dictionary learning settings. Extending this line of study to the general
class of low-dimensional manifold structured problems is also another interesting
future direction. Moreover, deploying Thompson Sampling instead of optimism
would mitigate the computational complexity of PSLB as shown in the safe bandit
study.

In our study of stochastic linear bandits with unknown safety constraints and local
safety feedback, our main contribution is to decouple the safety exploration from
the reward exploration and find the right balance to ensure effective recovery of
the safety functions while not overly exploring the system. This dichotomized
approach captures the essence of safe decision-making under uncertainty problems.
Extending this approach to other RL and safety frameworks is an important future
direction. Another interesting future direction is to establish lower bounds for the
multiple constraint setting. Even though our regret results are tight in terms of the
horizon 𝑇 , the tightness of

√
𝑀 scaling of the regret upper bound requires further

investigation.
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C h a p t e r 3

LEARNING AND CONTROL IN LINEAR QUADRATIC
REGULATOR (LQR)

In this chapter, we study the problem of learning and control of unknown state-
feedback linear time-invariant systems with quadratic cost, i.e., adaptive control of
stabilizable linear-quadratic regulators (LQRs) without an a priori known stabilizing
controller1. LQR is the canonical setting for linear dynamical systems with quadratic
regulatory costs and observable state evolution. For a known LQR model, the
optimal control policy is given by a stabilizing linear state feedback controller [28].
When the underlying model is unknown, the learning agent needs to learn the
dynamics in order to (1) stabilize the system and (2) find the optimal control policy.
This online control task is one of the core challenges in RL and control theory.

The ultimate goal in online control is to design learning agents that can autonomously
adapt to the unknown environment with minimal information and also enjoy finite-
time stability and performance guarantees. This problem has sparked a flurry of
research interest in the control and RL communities. However, there are only a few
approaches that provide a complete treatment of the problem and strive for learning
from scratch with no initial model estimates [2, 7, 56]. Other than these, the prior
works focus either on the problem of finding a stabilizing policy while ignoring the
control costs [82], or on achieving low control costs while assuming access to an
initial stabilizing controller [8, 242].

The existing works [2, 6, 7] that learn from scratch in LQRs aim to minimize the
regret, which is the additional cumulative control cost of an agent compared to
the expected cumulative cost of the optimal policy. These algorithms suffer from
regret that has an exponential dependence in the LQR dimensions since they do not
assume access to an initial stabilizing policy. They also face system blow-ups due
to unstable system dynamics. Besides poor regret performance, the uncontrolled
dynamics prevent the deployment of these learning algorithms in practice.

In this chapter, we design model-based RL agents for online LQRs that achieve low
regret and fast stabilization. To design stabilizing policies without prior knowledge,
the agent needs to effectively explore the environment and estimate the system

1This chapter is based on [137, 166].
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dynamics. However, in order to achieve low regret, the agent should also strategically
exploit the gathered knowledge. Thus, the agent requires balancing exploration and
exploitation such that it designs stabilizing policies to avoid dire consequences of
unstable dynamics and minimize regret.

We consider the stabilizable multi-dimensional LQR setting. Stabilizability is the
necessary and sufficient condition to have a well-posed LQR control problem [132].
On the contrary, prior works usually consider the controllable LQR setting, which is
a subclass of stabilizable LQRs [56, 62] or their algorithms have guarantees only for
scalar systems [6, 7]. While the controllability condition simplifies the learning and
control problem, it is also often violated in many real-world control systems [91].

For this setting, we propose 2 model-based reinforcement learning algorithms. The
first algorithm, Stabilizing Learning, StabL, deploys the optimism principle, dis-
cussed in Chapter 2 for Safe-OFUL, into online LQ control problem. StabL certifies
fast stabilization of the underlying system by effectively exploring the environment
with an improved exploration strategy. We show that StabL attains Õ(

√
𝑇) regret af-

ter𝑇 time steps of agent-environment interaction. Here Õ(·) presents the order up to
logarithmic terms. We also show that the regret of the proposed algorithm has only
a polynomial dependence in the problem dimensions, which gives an exponential
improvement over the prior methods. Our improved exploration method is simple,
yet efficient, and it combines a sophisticated exploration policy of optimism with
an isotropic exploration strategy to achieve fast stabilization and improved regret.
We empirically demonstrate that the proposed algorithm outperforms other popular
methods in several adaptive control tasks.

The second algorithm, Thompson Sampling-based Adaptive Control, TSAC, over-
comes possible computational inefficiencies of StabL by using TS to balance explo-
ration vs. exploitation trade-off and design the controllers. Despite the computa-
tional efficiency of TS, prior work [7] was able to achieve the optimal Õ(

√
𝑇) regret

only for scalar systems. TSAC builds on the algorithmic intuitions gathered in StabL
and achieves Õ(

√
𝑇) regret even for multidimensional systems, thereby solving the

open problem posed in [7]. Similar to StabL, TSAC does not require an a priori
known stabilizing controller and achieves fast stabilization of the underlying sys-
tem by effectively exploring the environment in the early stages. Our breakthrough
hinges on developing a novel lower bound on the probability that the TS provides
an optimistic sample. By carefully prescribing an early exploration strategy and
a policy update rule, we show that TS achieves order-optimal regret in adaptive
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Table 3.1: Works that attain �̃� (
√
𝑇) regret on LQR, † = 1-dim LQRs.

Work Setting Stabilizing Controller Computation
Mania et al. [191] Controllable Required P
Cohen et al. [62] Controllable Required P
Abbasi-Yadkori and Szepesvári [2] Controllable Not required NP
Chen and Hazan [56] Controllable Not required P
Faradonbeh et al. [83] Stabilizable Required P
Faradonbeh et al. [81] Stabilizable Required NP
Simchowitz and Foster [242] Stabilizable Required P
Abeille and Lazaric [7] Stabilizable† Not Required P
StabL (Algorithm 5) Stabilizable Not required NP
TSAC (Algorithm 6) Stabilizable Not required P

control of multidimensional stabilizable LQRs. We empirically demonstrate the
performance and the efficiency of TSAC in the adaptive control task of Boeing 747.

3.1 Motivation and Background
The learning and control problem in LQRs have been studied in an array of prior
works [1, 7, 8, 56, 81, 85, 191, 242]. These works provide finite-time performance
guarantees of adaptive control algorithms in terms of regret. In particular, they
show that �̃� (

√
𝑇) regret after 𝑇 time steps is optimal in adaptive control of LQRs.

They utilize several different paradigms for algorithm design such as Certainty
Equivalence, Optimism or Thompson Sampling, yet, they suffer either from the
inherent algorithmic drawbacks or limited applicability in practice. Table 3.1 gives
an overall comparison of these works in terms of their setting, the requirement
of stabilizing controllers, and computational complexities. In the following, we
compare these works in more detail.

Certainty equivalent control: Certainty equivalent control (CEC) is one of the
most straightforward paradigms for control design in adaptive control of dynamical
systems. In CEC, an agent obtains a nominal estimate of the system, and executes
the optimal control law for this estimated system (Figure 1.1). Even though Mania
et al. [191] and Simchowitz and Foster [242] show that this simple approach attains
order-optimal regret in LQRs, the proposed algorithms have several drawbacks.
First and foremost, CEC is sensitive to model mismatch and requires significantly
small model estimation errors to the point that exploration of the system dynamics is
not required. Since this level of refinement is challenging to obtain for an unknown
system, these methods rely on access to an initial stabilizing controller to enable a
long exploration. In practice, such a priori known controllers may not be available,
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which hinders the deployment of these algorithms.

Moreover, CEC-based approaches follow the given non-adaptive initial stabilizing
policy for a long period of time with isotropic perturbations. Thus, they provide
an order-optimal theoretical regret upper bound with an additional large constant
regret. However, in many applications such as medical, such constant regret and
non-adaptive controllers are not tolerable. Our methods StabL and TSAC aim
to address these challenges and provide learning and control algorithms that can
be deployed in practice. As we will show in Sections 3.2.3 and 3.3.4, they achieve
significantly improved performance over the prior baseline RL algorithms in various
adaptive control tasks.

Optimism in the face of uncertainty (OFU) principle: As we have seen in
Chapter 2, one of the most prominent methods to effectively balance exploration
and exploitation is optimism in the face of uncertainty (OFU) principle [156]. An
agent that follows the OFU principle deploys the optimal policy of the model with the
lowest optimal cost within the set of plausible models (Figure 1.1). This guarantees
the asymptotic convergence to the optimal policy for the LQR [30]. Using the OFU
principle, the learning algorithms of [2, 86] attain order-optimal O(

√
𝑇) regret after

𝑇 time steps, but their regret upper bounds suffer from an exponential dependence
in the LQR model dimensions.

This is due to the fact that the OFU principle relies heavily on the confidence-set
constructions. An agent following the OFU principle mostly explores parts of state
space with the lowest expected cost and with higher uncertainty. When the agent
does not have reliable model estimates, this may cause a lack of exploration in certain
parts of the state space that are important in designing stabilizing policies. This
problem becomes more evident in the early stages of agent-environment interactions
due to the lack of reliable knowledge about the system. Note that this issue is unique
to control problems and not as common in other RL settings, e.g., bandits and
gameplay. With the early improved exploration strategy of StabL, we alleviate this
problem, achieve fast stabilization, and thus attain O(

√
𝑇) regret upper bound with

polynomial dimension dependency.

Thompson Sampling: Thompson Sampling (TS) is one of the oldest strategies to
balance the exploration vs. exploitation trade-off [263]. In TS, the agent samples
a model from a distribution computed based on prior control input and observation
pairs, and then takes the optimal action for this sampled model and updates the
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distribution based on its novel observation (Figure 1.1). Since it relies solely on
sampling, this approach provides polynomial-time algorithms for adaptive control.
Therefore, it is a promising alternative to overcome the possible computational bur-
den of optimism-based methods, since they solve a non-convex optimization problem
to find the optimistic controllers, which is an NP-hard problem in general [9].

For this reason, [6, 7] propose adaptive control algorithms using TS. In particular,
Abeille and Lazaric [7] provide the first TS-based adaptive control algorithm for
LQRs that attains optimal regret of Õ(

√
𝑇). However, their result only holds for

scalar stabilizable systems, since they were able to show that TS samples optimistic
parameters with constant probability in only scalar systems. Further, they conjecture
that this is true in multidimensional systems as well and TS-based adaptive control
can provide optimal regret in multidimensional LQRs, and provide a simple numer-
ical example to support their claims. In the analysis of TSAC, we derive a new lower
bound which in fact proves that TS samples optimistic parameters with a constant
probability for all stabilizable LQRs. Further, we design TSAC with the required
algorithmic improvements to attain Õ(

√
𝑇) in multidimensional stabilizable LQRs.

Finding a stabilizing controller: Similar to the regret minimization, there has
been a growing interest in finite-time stabilization of linear dynamical systems
[72, 82, 84]. Among these works, Faradonbeh et al. [82] is the closest to our
study. However, there are significant differences in the methods and the span of
the results. In Faradonbeh et al. [82], random linear controllers are used solely for
finding a stabilizing set without a control goal. This results in the explosion of state,
presumably exponentially in time, leading to a regret that scales exponentially in
time. The proposed method provides many insightful aspects for finding a stabilizing
set in finite time, yet a cost analysis of this process or an adaptive control policy
have not been provided. Moreover, the stabilizing set in [82] relates to the minimum
value that satisfies a specific condition for the roots of a polynomial. This results
in a somewhat implicit sample complexity for constructing such a set. On the other
hand, in this chapter, we provide a complete study of an autonomous learning and
control algorithm for the online LQR problem. Among our results, we give an
explicit formulation of the stabilizing set and a sample complexity that only relates
to the minimal stabilizability information of the system.

Generalized LQR setting: Another line of research considers the generalizations
of the online LQR problem under partial observability [160–162, 191, 245] or ad-
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versarial disturbances [56, 108]. These works either assume a given stabilizing
controller or open-loop stable system dynamics, except Chen and Hazan [56]. In-
dependently and concurrently, the recent work by Chen and Hazan [56] designs an
autonomous learning algorithm and regret guarantees that are similar to StabL and
TSAC. However, the approaches and the settings have major differences. Chen and
Hazan [56] consider the restrictive setting of controllable systems, yet with adver-
sarial disturbances and general cost functions. They inject significantly big inputs,
exponential in system parameters, with a pure exploration intent to guarantee the
recovery of system parameters and stabilization. This negatively affects the practi-
cality of the algorithm. On the other hand, in StabL and TSAC, we inject isotropic
Gaussian perturbations to improve the exploration in the stochastic (sub-Gaussian
noise) stabilizable LQR while still aiming to control, i.e., no pure exploration phase.
This yields practical RL algorithms that attain state-of-the-art performance.

Notation

We denote the Euclidean norm of a vector 𝑥 as ∥𝑥∥2. For a matrix 𝐴 ∈ R𝑛×𝑑 , we
denote 𝜌(𝐴) as the spectral radius of 𝐴, ∥𝐴∥𝐹 as its Frobenius norm and ∥𝐴∥ as
its spectral norm. tr(𝐴) denotes its trace, 𝐴⊤ is the transpose. For any positive
definite matrix 𝑉 , ∥𝐴∥𝑉 = ∥𝑉1/2𝐴∥𝐹 . For matrices 𝐴, 𝐵 ∈ R𝑛×𝑑 , 𝐴 • 𝐵 = tr(𝐴𝐵⊤)
denotes their Frobenius inner product. The j-th singular value of a rank-𝑛 matrix
𝐴 is 𝜎𝑗 (𝐴), where 𝜎max(𝐴) := 𝜎1(𝐴) ≥ . . . ≥ 𝜎min(𝐴) := 𝜎𝑛 (𝐴). 𝐼 represents the
identity matrix with the appropriate dimensions. M𝑛 = R

𝑛×𝑛 denotes the set of
𝑛-dimensional square matrices. N(`, Σ) denotes normal distribution with mean `
and covariance Σ. 𝑄(·) denotes the Gaussian 𝑄-function. 𝑂 (·) and 𝑜(·) denote the
standard asymptotic notation and 𝑓 (𝑇) = 𝜔(𝑔(𝑇)) is equivalent to 𝑔(𝑇) = 𝑜( 𝑓 (𝑇)).
�̃� (·) presents the order up to logarithmic terms.

Problem Setting

Consider a discrete-time linear time-invariant system,

𝑥𝑡+1 = 𝐴∗𝑥𝑡 + 𝐵∗𝑢𝑡 + 𝑤𝑡 , (3.1)

where 𝑥𝑡 ∈ R𝑛 is the state of the system, 𝑢𝑡 ∈ R𝑑 is the control input, 𝑤𝑡 ∈ R𝑛 is the
process noise at time 𝑡. We consider the systems with sub-Gaussian noise.

Assumption 3.1 (Sub-Gaussian Noise). The process noise 𝑤𝑡 is a martingale differ-
ence sequence with respect to the filtration (F𝑡−1). Moreover, it is component-wise
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conditionally 𝜎2
𝑤-sub-Gaussian and isotropic such that for any 𝑠 ∈ R,

E
[
exp

(
𝑠𝑤𝑡, 𝑗

)
|F𝑡−1

]
≤ exp

(
𝑠2𝜎2

𝑤/2
)

and E
[
𝑤𝑡𝑤

⊤
𝑡 |F𝑡−1

]
= �̄�2

𝑤 𝐼 for some �̄�2
𝑤 > 0.

Note that the results of this chapter only require the conditional covariance matrix
𝑊 = E[𝑤𝑡𝑤⊤𝑡 |F𝑡−1] to be full rank. The isotropic noise assumption is chosen to ease
the presentation, and similar results can be obtained with upper and lower bounds
on𝑊 , i.e.,𝑊𝑢𝑝 > 𝜎max(𝑊) ≥ 𝜎min(𝑊) > 𝑊𝑙𝑜𝑤 > 0.

At each time step 𝑡, the system is at state 𝑥𝑡 . After observing 𝑥𝑡 , the agent applies
a control input 𝑢𝑡 and the system evolves to 𝑥𝑡+1 at time 𝑡 + 1. At each time step
𝑡, the agent pays a cost 𝑐𝑡 = 𝑥⊤𝑡 𝑄𝑥𝑡 + 𝑢⊤𝑡 𝑅𝑢𝑡 , where 𝑄 ∈ R𝑛×𝑛 and 𝑅 ∈ R𝑑×𝑑 are
positive definite matrices such that ∥𝑄∥, ∥𝑅∥ < 𝛼 and 𝜎min(𝑄), 𝜎min(𝑅) > 𝛼. The
problem is to design control inputs based on past observations in order to minimize
the average expected cost

𝐽∗ = lim
𝑇→∞

min
𝑢=[𝑢1,...,𝑢𝑇 ]

1
𝑇
E
[∑︁𝑇

𝑡=1
𝑥⊤𝑡 𝑄𝑥𝑡 + 𝑢⊤𝑡 𝑅𝑢𝑡

]
, (3.2)

by designing control inputs based on past observations. This problem is the canonical
example for the control of linear dynamical systems and is termed as linear quadratic
regulator (LQR). The system (3.1) can be represented as 𝑥𝑡+1 = Θ⊤∗ 𝑧𝑡 + 𝑤𝑡 , where
Θ⊤∗ = [𝐴∗ 𝐵∗] and 𝑧𝑡 = [𝑥⊤𝑡 𝑢⊤𝑡 ]⊤. Knowing Θ∗, the optimal control policy, is a
linear state feedback control 𝑢𝑡 = 𝐾 (Θ∗)𝑥𝑡 with𝐾 (Θ∗) = −(𝑅+𝐵⊤∗ 𝑃∗𝐵∗)−1𝐵⊤∗ 𝑃∗𝐴∗,
where 𝑃∗ is the unique solution to the discrete-time algebraic Riccati equation
(DARE) [28]:

𝑃∗ = 𝐴
⊤
∗ 𝑃∗𝐴∗ +𝑄 − 𝐴⊤∗ 𝑃∗𝐵∗(𝑅 + 𝐵⊤∗ 𝑃∗𝐵∗)−1𝐵⊤∗ 𝑃∗𝐴∗. (3.3)

The optimal cost for Θ∗ is denoted as 𝐽 (Θ∗) = 𝐽∗ = Tr(�̄�2
𝑤𝑃∗). In this work,

unlike the controllable LQR setting of the prior adaptive control algorithms without
a stabilizing controller [2, 56], we study the online LQR problem in the general
setting of stabilizable LQR.

Definition 3.1 (Stabilizability vs. Controllability). The linear dynamical system
Θ∗ is stabilizable if there exists 𝐾 such that 𝜌(𝐴∗ + 𝐵∗𝐾) < 1. On the other
hand, the linear dynamical system Θ∗ is controllable if the controllability matrix
[𝐵∗ 𝐴∗𝐵∗ 𝐴2

∗𝐵∗ . . . 𝐴
𝑛−1
∗ 𝐵∗] has full row rank.
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Note that the stabilizability condition is the minimum requirement to define the op-
timal control problem. It is strictly weaker than controllability, i.e., all controllable
systems are stabilizable but the converse is not true [28]. Similar to Cohen et al.
[62], we quantify the stabilizability of Θ∗ for the finite-time analysis.

Definition 3.2 ((^, 𝛾)-Stabilizability). The linear dynamical system Θ∗ is (^, 𝛾)-
stabilizable for (^ ≥ 1 and 0 < 𝛾 ≤ 1) if ∥𝐾 (Θ∗)∥ ≤ ^ and there exists 𝐿 and 𝐻 ≻ 0
such that 𝐴∗ + 𝐵∗𝐾 (Θ∗) = 𝐻𝐿𝐻−1, with ∥𝐿∥ ≤ 1 − 𝛾 and ∥𝐻∥∥𝐻−1∥ ≤ ^.

Note that this is merely a quantification of stabilizability. In other words, any
stabilizable system is also (^, 𝛾)-stabilizable for some ^ and 𝛾 and conversely (^, 𝛾)-
stabilizability implies stabilizability. In particular, for all stabilizable systems, by
setting 1 − 𝛾 = 𝜌(𝐴∗ + 𝐵∗𝐾 (Θ∗)) and ^ to be the condition number of 𝑃(Θ∗)1/2

where 𝑃(Θ∗) is the positive definite matrix that satisfies the following Lyapunov
equation:

(𝐴∗ + 𝐵∗𝐾 (Θ∗))⊤𝑃(Θ∗) (𝐴∗ + 𝐵∗𝐾 (Θ∗)) ⪯ 𝑃(Θ∗), (3.4)

one can show that 𝐴∗ + 𝐵∗𝐾 (Θ∗) = 𝐻𝐿𝐻−1, where 𝐻 = 𝑃(Θ∗)−1/2 and 𝐿 =

𝑃(Θ∗)1/2(𝐴∗ + 𝐵∗𝐾 (Θ∗))𝑃(Θ∗)−1/2 with ∥𝐻∥∥𝐻−1∥ ≤ ^, and ∥𝐿∥ ≤ 1 − 𝛾, (see
Lemma B.1 of Cohen et al. [61]).

Assumption 3.2 (Stabilizable Linear Dynamical System). The unknown parameter
Θ∗ ∈ S such that S =

{
Θ′ = [𝐴′, 𝐵′]

�� Θ′ is (^, 𝛾)-stabilizable, ∥Θ′∥𝐹 ≤ 𝑆
}
.

Notice that S denotes the set of all bounded systems that are (^, 𝛾)-stabilizable,
whereΘ∗ is an element of, and the membership toS can be easily verified. Moreover,
the proposed algorithm in this work only requires the upper bounds on these relevant
control-theoretic quantities ^, 𝛾, and 𝑆, which are also standard in prior works, e.g.,
[2, 62]. In practice, when there is a total lack of knowledge about the system, one
can start with conservative upper bounds and adjust these based on the behavior of
the system, e.g., the growth of the state. From (^, 𝛾)-stabilizability, we have that
𝜌(𝐴′ + 𝐵′𝐾 (Θ′)) ≤ 1 − 𝛾, and sup{∥𝐾 (Θ′)∥ | Θ′ ∈ S} ≤ ^. The following lemma
shows that for any (^, 𝛾)-stabilizable system the solution of (3.3) is bounded.

Lemma 3.1 (Bounded DARE Solution). For any Θ that is (^, 𝛾)-stabilizable and
has bounded regulatory cost matrices, i.e., ∥𝑄∥, ∥𝑅∥ < 𝛼, the solution of (3.3), 𝑃,
is bounded as ∥𝑃∥ ≤ 𝐷 B 𝛼𝛾−1^2(1 + ^2).
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Proof. The solution of DARE in (3.3) corresponds to recursively applying the
following

∥𝑃∗∥ =
∑︁∞

𝑡=0

(
(𝐴∗ + 𝐵∗𝐾 (Θ∗))𝑡

)⊤ (
𝑄 + 𝐾 (Θ∗)⊤𝑅𝐾 (Θ∗)

)
(𝐴∗ + 𝐵∗𝐾 (Θ∗))𝑡


=

∑︁∞
𝑡=0

(
𝐻𝐿𝑡𝐻−1

)⊤ (
𝑄 + 𝐾 (Θ∗)⊤𝑅𝐾 (Θ∗)

) (
𝐻𝐿𝑡𝐻−1

)
≤ 𝛼(1 + ∥𝐾 (Θ∗)∥2)∥𝐻∥2∥𝐻−1∥2

∑︁∞
𝑡=0
∥𝐿∥2𝑡 (3.5)

≤ 𝛼𝛾−1^2(1 + ^2), (3.6)

where (3.5) follows from the upper bound on ∥𝑄∥, ∥𝑅∥ ≤ 𝛼 and (3.6) follows from
the definition of (^, 𝛾)-stabilizability. □

This lemma also shows that for the underlying stabilizable system, 𝐽 (Θ∗) < ∞.

Finite-Time Adaptive Control/Model-based RL Problem in LQRs

In our study, we consider the adaptive control setting where the model parameters
𝐴∗ and 𝐵∗, i.e., Θ∗, are unknown. In this scenario, the learning agent needs to
interact with the environment to learn these parameters and aims to minimize the
cumulative cost

∑𝑇
𝑡=1 𝑐𝑡 . Note that the cost matrices 𝑄 and 𝑅 are the designer’s

choice and given. After 𝑇 time steps, we evaluate the regret of the learning agent as

𝑅𝑇 =
∑︁𝑇

𝑡=0
(𝑐𝑡 − 𝐽 (Θ∗)),

which is the difference between the performance of the agent and the expected
performance of the optimal controller.

3.2 Optimism-Based Adaptive Control
In this section, we describe Stabilizing Learning algorithm, StabL, for the online
LQR problem and study its performance both theoretically and empirically. We
carefully prescribe an early exploration strategy and a policy update rule in the
design of StabL. We show that StabL quickly stabilizes the underlying system,
and henceforth certifies the stability of the dynamics with high probability in the
stabilizable LQRs. We show that StabL attains O(poly(𝑛, 𝑑)

√
𝑇) regret in the online

control of unknown stabilizable LQRs. This makes StabL the first RL algorithm
to achieve order-optimal regret in all stabilizable LQRs without a given initial
stabilizing policy.

The design of StabL is motivated by the importance of stabilizing the unknown
dynamics and the need for exploration in the early stages of agent-environment
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interactions. StabL deploys the OFU principle to balance the exploration vs. ex-
ploitation trade-off. Due to the lack of reliable estimates in the early stages of
learning, an optimistic controller, guided by OFU, neither provides sufficient ex-
ploration required to achieve stabilizing controllers nor achieves sub-linear regret.
Therefore, StabL uses isotropic exploration along with the optimistic controller in
the early stages to achieve an improved exploration strategy. This allows StabL to
excite all dimensions of the system uniformly as well as the dimensions that have
a more promising impact on the control performance. By carefully adjusting the
early improved exploration, we guarantee that the inputs of StabL are persistently
exciting the system under the sub-Gaussian process noise. We show that using this
improved exploration quickly results in stabilizing policies with high probability,
therefore a much smaller regret in the long term.

We conduct extensive experiments to verify the theoretical claims about StabL and
study the performance of StabL in various adaptive control tasks. We empirically
show that the improved exploration strategy of StabL persistently excites the system
in the early stages and achieves effective system identification required for stabiliza-
tion. We observe that the optimism-based learning algorithm of Abbasi-Yadkori and
Szepesvári [2] fails to achieve effective exploration in the early stages and suffers
from unstable dynamics and high regret. In contrast, StabL obtains reliable model
estimates for stabilization, and the balanced strategy prescribed by the OFU prin-
ciple effectively guides StabL to regret-minimizing policies, resulting in-orders-of
magnitude improvement in regret compared to the existing certainty equivalent and
optimism-based methods in all settings.

3.2.1 StabL
We present StabL, a sample efficient stabilizing RL algorithm for the online stabi-
lizable LQR problem. The algorithmic outline is provided in Algorithm 5. StabL
only requires minimal information about the stabilizability of the underlying system
and does not need a stabilizing controller. Therefore, along with the ultimate goal of
minimizing regret, StabL puts its primary focus on achieving stabilizing controllers
for unknown system dynamics.
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Algorithm 5 StabL
1: Input: ^, 𝛾, 𝑄, 𝑅, 𝜎2

𝑤 �̄�
2
𝑤, 𝑉0 = `𝐼, Θ̂0 = 0, 𝜏 = 0

2: for 𝑡 = 0, . . . , 𝑇 do
3: if (det(𝑉𝑡) > 2 det(𝑉0)) and (𝑡 − 𝜏 >𝐻0) then
4: Estimate Θ̂𝑡 & find optimistic Θ̃𝑡 ∈ C𝑡 (𝛿) ∩ S
5: Set 𝑉0 = 𝑉𝑡 and 𝜏 = 𝑡.
6: else
7: Θ̃𝑡 = Θ̃𝑡−1

8: if 𝑡 ≤ 𝑇𝑤 then
9: 𝑢𝑡 =𝐾 (Θ̃𝑡−1)𝑥𝑡+a𝑡 ▷ Improved Exploration

10: else
11: 𝑢𝑡 =𝐾 (Θ̃𝑡−1)𝑥𝑡 ▷ Stabilizing Control
12: Pay cost 𝑐𝑡 & Observe 𝑥𝑡+1
13: Update 𝑉𝑡+1=𝑉𝑡+𝑧𝑡𝑧⊤𝑡 for 𝑧𝑡 = [𝑥⊤𝑡 𝑢⊤𝑡 ]⊤

Adaptive Control with Improved Exploration

In order to quickly design stabilizing controllers, StabL needs to explore the system
dynamics effectively. To this end, StabL solves

min
Θ

∑︁𝑡−1

𝑠=0
∥𝑥𝑠+1 − Θ⊤𝑧𝑠∥2 + `∥Θ∥2𝐹 , (3.7)

using the past state-input pairs to estimate the system dynamics as Θ̂𝑡 . Using this
estimate, StabL constructs a high probability confidence set C𝑡 (𝛿) that contains the
underlying parameter Θ∗ with high probability. In particular, for 𝛿 ∈ (0, 1), at time
step 𝑡, it forms

C𝑡 (𝛿) = {Θ : ∥Θ−Θ̂𝑡 ∥𝑉𝑡 ≤ 𝛽𝑡 (𝛿)}, (3.8)

for 𝛽𝑡 (𝛿) = 𝜎𝑤

√︃
2𝑛 log(𝛿−1

√︁
det (𝑉𝑡) /det(`𝐼)) + √`𝑆 and 𝑉𝑡 = `𝐼 + ∑𝑡−1

𝑖=0 𝑧𝑖𝑧
⊤
𝑖

such that Θ∗ ∈ C𝑡 (𝛿) with probability at least 1 − 𝛿 for all time steps 𝑡. Note that
this estimation method and the learning guarantee is standard in learning linear
dynamical systems since Abbasi-Yadkori and Szepesvári [2]. Instead of solving
(3.7) from scratch, the model estimate updates can be done via batch or online
updates using the standard linear regression techniques.

The confidence set given in (3.8) provides a self-normalized bound on the model
parameter estimates via design matrix 𝑉𝑡 . StabL uses the OFU principle in this
confidence set to design a policy. In particular, it chooses an optimistic parameter
Θ̃𝑡 from C𝑡 ∩ S, which has the lowest expected optimal cost, and constructs the
optimal linear controller 𝐾 (Θ̃𝑡) for Θ̃𝑡 , i.e., the optimistic controller. At time 𝑡,
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StabL uses the optimistic controller 𝐾 (Θ̃𝑡−1). This choice is for technical reasons
to guarantee the persistence of excitation (Appendix B.1.1).

The optimistic controllers allow StabL to adaptively balance exploration and ex-
ploitation. They guide the exploration toward the region of state space with the
lowest expected cost. The key idea in this design is that as the confidence set
shrinks, the performance of StabL improves over time [30].

Due to lack of an initial stabilizing policy, StabL aims to rapidly stabilize the system
to avoid the consequences of unstable dynamics. To stabilize an unknown LQR,
one requires sufficient exploration in all directions of the state-space (Lemma 3.3).
Unfortunately, due to lack of reliable estimates in the early stages, the optimistic
policies come short to guarantee such an effective exploration.

Therefore, StabL deploys an adaptive control policy with an improved exploration
in the early stages of interactions with the system. In particular, for the first 𝑇𝑤
time-steps, StabL uses isotropic perturbations along with the optimistic controller.
For 𝑡 ≤ 𝑇𝑤, it injects an i.i.d. Gaussian vector a𝑡 ∼N(0, 𝜎2

a 𝐼) to the system besides
the optimistic policy 𝐾 (Θ̃𝑡−1)𝑥𝑡 , where 𝜎2

a = 2^2�̄�2
𝑤.

StabL effectively excites and explores all dimensions of the system via this improved
exploration strategy (Theorem 3.1). The duration of the adaptive control with
improved exploration phase is chosen such that StabL quickly finds a stabilizing
controller. In particular, after 𝑇𝑤 B 𝑝𝑜𝑙𝑦(𝜎𝑤, 𝜎a, 𝑛, 𝑑, 𝛾−1, ^, 𝛼, log(1/𝛿)) time
steps, StabL has the guarantee that the linear controllers 𝐾 (Θ̃𝑡−1) stabilize Θ∗ for all
𝑡 ≥ 𝑇𝑤 with high probability (Lemma 3.2 & 3.3).

Moreover, StabL avoids frequent updates in the system estimates and the controller.
It uses the same controller at least for a fixed time period of 𝐻0 = 𝑂 (𝛾−1 log(^))
and also waits for a significant improvement in the estimates. The latter is achieved
by updating the controller if the determinant of the design matrix 𝑉𝑡 is doubled
since the last update. This update rule is chosen such that policy changes do not
cause unstable dynamics for the stabilizable LQR. The effects of this update rule on
maintaining a bounded state for StabL are studied in detail in Section 3.2.2.

Stabilizing Adaptive Control

After guaranteeing the stabilizing policy design, StabL starts the adaptive control
that stabilizes the underlying system. In this phase, StabL stops injecting isotropic
perturbations and relies on the balanced exploration and exploitation via the op-
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timistic controller design. The stabilizing optimistic controllers further guide the
exploration to adapt the structure of the problem and fine-tune the learning process
to achieve optimal performance. However, note that frequent policy changes can
still cause unbounded growth of the state even though the policies are stabilizing.
Therefore, StabL continues the same policy update rule in this phase to maintain a
bounded state.

Unlike the prior works that constitute two distinct phases, StabL has a very sub-
tle two-phase structure. In particular, the same subroutine (optimism) is applied
continuously with the aim of balancing exploration and exploitation. An additional
isotropic perturbation is only deployed for an improved exploration in the early
stages to achieve stable learning for the autonomous agent.

3.2.2 Theoretical Analysis of StabL
In this section, we study the main theoretical guarantees of StabL. We first discuss
the challenges that the stabilizability setting brings compared to the setting of the
prior learning algorithms for the online LQR. We then introduce our approaches to
overcome these challenges in the design of StabL. Later in the section, we provide
the formal statements for the theoretical guarantees of StabL and, finally, we give
the regret upper bound of StabL.

Challenges in the Online Stabilizable LQR Problem

The main challenge for learning algorithms in control problems is to achieve input-
to-state stability (ISS), which requires having a well-bounded state in future time
steps via using bounded inputs. Achieving this becomes significantly more chal-
lenging in the setting of stabilizable LQR compared to their controllable counterpart
considered in many recent works [2, 56, 191]. A controllable system can be brought
to 𝑥𝑡 = 0 in finite time steps. Furthermore, some of these works assume that the un-
derlying system is closed-loop contractible, i.e., ∥𝐴∗ − 𝐵∗𝐾 (Θ∗)∥ < 1. These facts
significantly simplify the overall stabilization problem. Moreover, recalling Defini-
tion 3.1, for controllable systems, the controllability matrix is full row rank. In prior
works, this has been a prominent factor in guaranteeing the persistence of excitation
(PE) of the inputs, identifying the system, and deriving regret bounds, e.g., [56, 108].

Unfortunately, we do not have these properties in the general stabilizable LQR
setting. Recall Assumption 3.2 that states the system is (^, 𝛾)-stabilizable, which
yields 𝜌(𝐴∗ + 𝐵∗𝐾 (Θ∗)) ≤ 1− 𝛾 for the optimal policy 𝐾 (Θ∗) ≤ ^. Therefore, even
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if the optimal policy of the underlying system is chosen by the learning algorithm,
it may not produce a contractive closed-loop system, i.e., we can have 𝜌(𝐴∗ +
𝐵∗𝐾 (Θ∗)) < 1 < ∥𝐴∗ + 𝐵∗𝐾 (Θ∗)∥ since for any matrix 𝑀 , 𝜌(𝑀) ≤ ∥𝑀 ∥.

Moreover, from the definition of stabilizability in Definitions 3.1 and 3.2, we know
that for any stabilizing controller 𝐾′, there exists a similarity transformation 𝐻′ ≻ 0
such that it makes the closed-loop system contractive, i.e., 𝐴∗ + 𝐵∗𝐾′ = 𝐻′𝐿𝐻′−1,
with ∥𝐿∥ < 1. However, even if all the policies that StabL executes stabilize the
underlying system, these different similarity transformations of different policies
can further cause an explosion of state during the policy changes. If policy changes
happen frequently, this may even lead to linear growth of the state over time.

In order to resolve these problems, StabL carefully designs the timing of the policy
updates and applies all the policies long enough, so that the state stays well controlled,
i.e., ISS is achieved. To this end, StabL applies the same policy at least for 𝐻0 =

2𝛾−1 log(2^
√

2) time steps. This particular choice prevents state blow-ups due to
policy changes in the optimistic controllers in the stabilizable LQR setting (see
Appendix B.1.3).

To achieve persistence of excitation and consistent model estimates under the stabi-
lizability condition, we leverage the early improved exploration strategy which does
not require controllability. Using the isotropic exploration in the early stages, we
derive a novel lower bound for the smallest eigenvalue of the design matrix 𝑉𝑡 in the
stabilizable LQR with sub-Gaussian noise setting. Moreover, we derive our regret
results using the fast stabilization and the optimistic policy design of StabL. The
results only depend on the stabilizability and other trivial model properties such as
the LQR dimensions.

Benefits of Early Improved Exploration

To achieve effective exploration in the early stages, StabL deploys isotropic pertur-
bations along with the optimistic policy for 𝑡 ≤ 𝑇𝑤. Define 𝜎★ > 0 where 𝜎★ is a
problem and in particular �̄�𝑤, 𝜎𝑤, 𝜎a-dependent constant (See Appendix B.1.1 for
exact definition). The following shows that for a long enough improved exploration,
the inputs are persistently exciting the system.

Theorem 3.1 (Persistence of Excitation During the Improved Exploration). If StabL
follows the early improved exploration strategy for𝑇 ≥ 𝑝𝑜𝑙𝑦(𝜎2

𝑤, 𝜎
2
a , 𝑛, log( 1

𝛿
)) time

steps, then with probability at least 1 − 𝛿, StabL has 𝜎min(𝑉𝑇 ) ≥ 𝜎2
★𝑇 .



67

This theorem shows that having isotropic perturbations along with the optimistic
controllers provides persistence excitation of the inputs, i.e., linear scaling of the
smallest eigenvalue of the design matrix 𝑉𝑡 . This result is quite technical and
its proof is given in Appendix B.1.1. At a high level, we show that isotropic
perturbations allow the covariates to have a Gaussian-like tail lower bound even in
the stabilizable LQR with sub-Gaussian process noise setting. Using the standard
covering arguments, we prove the statement of the theorem. This result guarantees
that the inputs excite all dimensions of the state space and allows StabL to obtain
uniformly improving estimates at a faster rate.

Lemma 3.2 (Parameter estimation error). Suppose Assumptions 3.1 and 3.2 hold.
For 𝑇 ≥ 𝑝𝑜𝑙𝑦(𝜎2

𝑤, 𝜎
2
a , 𝑛, log(1/𝛿)) time steps of adaptive control with improved ex-

ploration, with probability at least 1−2𝛿, StabL achieves ∥Θ̂𝑇−Θ∗∥2≤ 𝛽𝑡 (𝛿)/(𝜎★
√
𝑇).

This lemma shows that early improved exploration strategy using a𝑡 ∼N(0, 𝜎2
a ) for

𝜎2
a =2^2�̄�2

𝑤 enables guarantee of the consistency of the parameter estimation. The
proof is in Appendix B.1.2, where we combine the confidence set construction in
(3.8) with Theorem 3.1. This bound is utilized to guarantee stabilizing controllers
after early improved exploration. However, first we have the following lemma, which
shows that there is a stabilizing neighborhood around Θ∗, such that 𝐾 (Θ′) stabilizes
Θ∗ for any Θ′ in this region.

Lemma 3.3 (Strongly Stabilizable Neighborhood). For 𝐷 = 𝛼𝛾−1^2(1 + ^2), let
𝐶0 = 142𝐷8 and 𝜖 = 1/(54𝐷5). For any (^, 𝛾)-stabilizable system Θ∗ and for any
Y ≤ min{

√︁
�̄�2
𝑤𝑛𝐷/𝐶0, 𝜖}, such that ∥Θ′ − Θ∗∥ ≤ Y, 𝐾 (Θ′) produces (^′, 𝛾′)-stable

closed-loop dynamics on Θ∗ where ^′ = ^
√

2 and 𝛾′ = 𝛾/2.

Proof. For stabilizable systems, we know that the solution of (3.3) is unique and
positive definite. Let 𝐽∗ ≤ J . The following lemma is adapted from Simchowitz
and Foster [242] and shows that if the estimation error on the system parameters is
small enough, then the performance of the optimal controller synthesized by these
model parameter estimates scales quadratically with the estimation error.

Lemma 3.4 (Adapted from [242]). For constants 𝐶0 = 142∥𝑃∗∥8 and 𝜖 = 54
∥𝑃∗∥5

,
such that, for any 0 ≤ Y ≤ 𝜖 and for ∥Θ′−Θ∗∥ ≤ Y, the infinite horizon performance
of the policy 𝐾 (Θ′) on Θ∗ obeys the following 𝐽 (𝐾 (Θ′), 𝐴∗, 𝐵∗, 𝑄, 𝑅) − 𝐽∗ ≤ 𝐶0Y

2.

This result shows that there exists a 𝜖-neighborhood around the system param-
eters that stabilizes the system. One can extend this result further to quantify



68

the stability as in Cassel et al. [48]. In particular, for bounded infinite horizon
cost obtained by a policy 𝐾 (Θ′) on Θ∗, Lemma 41 of Cassel et al. [48] shows
that 𝐾 (Θ′) produces (^′, 𝛾′)-stable closed-loop dynamics where ^′ =

√︃
J ′
𝛼�̄�2

𝑤
and

𝛾′ = 1/2^′2. Under Assumptions 3.1 & 3.2, for Y ≤ min{
√︁
J/𝐶0, 𝜖}, we obtain

𝐽 (𝐾 (Θ′), 𝐴∗, 𝐵∗, 𝑄, 𝑅) ≤ 2J . Plugging this in J ′ gives the advertised result. □

This lemma shows that to guarantee the stabilization of the unknown dynamics, a
learning agent should have uniformly sufficient exploration in all directions of the
state-space. By the choice of 𝑇𝑤 (precise expression given in Appendix B.1.3) and
using Lemma 3.2, StabL guarantees quickly finding this stabilizing neighborhood
with high probability due to the adaptive control with improved exploration phase
of 𝑇𝑤 time steps. For the remaining time steps, 𝑡 ≥ 𝑇𝑤, StabL starts redressing the
possible state explosion due to unstable controllers and the perturbations in the early
stages. Define 𝑇𝑏𝑎𝑠𝑒 and 𝑇𝑟 such that 𝑇𝑏𝑎𝑠𝑒 = (𝑛+ 𝑑) log(𝑛+ 𝑑)𝐻0 and 𝑇𝑟 = 𝑇𝑤+𝑇𝑏𝑎𝑠𝑒.
Recall that 𝐻0 is the minimum duration for a controller such that the state is well-
controlled despite the policy changes. The following shows that the stabilizing
controllers are applied long enough that the state stays bounded for 𝑇 >𝑇𝑟 .

Lemma 3.5 (Bounded states). Suppose Assumption 3.1 & 3.2 hold. For given 𝑇𝑤
and 𝑇𝑏𝑎𝑠𝑒, StabL controls the state such that ∥𝑥𝑡 ∥ = 𝑂 ((𝑛 + 𝑑)𝑛+𝑑) for 𝑡 ≤ 𝑇𝑟 , with
probability at least 1 − 2𝛿 and ∥𝑥𝑡 ∥ ≤ (12^2+2^

√
2)𝛾−1𝜎𝑤

√︁
2𝑛 log(𝑛(𝑡−𝑇𝑤)/𝛿) for

𝑇 ≥ 𝑡 >𝑇𝑟 , with probability at least 1 − 4𝛿.

In the proof (Appendix B.1.3), we show the policies seldom change via the deter-
minant doubling condition or the lower bound of 𝐻0 for the adaptive control with
improved exploration phase to keep the state bounded. For the stabilizing adaptive
control, we show that deploying stabilizing policies for at least 𝐻0 time-steps pro-
vides an exponential decay on the state and after 𝑇𝑏𝑎𝑠𝑒 time-steps brings the state to
an equilibrium.

Regret Upper Bound of StabL

After showing the effect of fast stabilization, we can finally present the regret upper
bound of StabL.

Theorem 3.2 (Regret of StabL). Suppose Assumptions 3.1 and 3.2 hold. For the
given choices of 𝑇𝑤 and 𝑇𝑏𝑎𝑠𝑒, with probability at least 1− 4𝛿, StabL achieves regret
of O

(
poly(𝑛, 𝑑)

√︁
𝑇 log(1/𝛿)

)
, for long enough 𝑇 .
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Table 3.2: Regret Performance after 200 Time Steps in Marginally Unstable Lapla-
cian System. StabL outperforms other algorithms by a significant margin.

Algorithm Average Regret Top 90% Top 75% Top 50%
StabL 1.5 × 104 1.3 × 104 1.1 × 104 8.9 × 103

OFULQ 6.2 × 1010 4.0 × 106 3.5 × 105 4.7 × 104

CEC-Fix 3.7 × 1010 2.1 × 104 1.9 × 104 1.7 × 104

CEC-Dec 4.6 × 104 4.0 × 104 3.5 × 104 2.8 × 104

The proofs and the exact expressions are presented in Appendix B.1.5. Here, we
provide a proof sketch. The regret decomposition leverages the optimistic controller
design. Recall that for the early improved exploration, StabL applies independent
perturbations through the controller yet still deploys the optimistic policy. Thus, we
consider this external perturbation as a part of the underlying system and study the
regret obtained by the improved exploration strategy separately.

In particular, denote the system evolution noise at time 𝑡 as Z𝑡 . For 𝑡 ≤ 𝑇𝑤, system
evolution noise can be considered as Z𝑡 = 𝐵∗a𝑡 + 𝑤𝑡 and for 𝑡 > 𝑇𝑤, Z𝑡 = 𝑤𝑡 .
We denote the optimal average cost of system Θ̃ under Z𝑡 as 𝐽∗(Θ̃, Z𝑡). Using the
Bellman optimality equation for LQR [28], we consider the system evolution of the
optimistic system Θ̃𝑡 using the optimistic controller 𝐾 (Θ̃𝑡) in parallel with the true
system evolution of Θ∗ under 𝐾 (Θ̃𝑡) such that they share the same process noise
(see details in Appendix B.1.5). Using the confidence set construction, optimistic
policy, Lemma 3.5, Assumption 3.2, and Lemma 3.1, we get a regret decomposition
and bound each term separately.

At a high level, the exact regret expression has a constant regret term due to early
additional exploration for𝑇𝑤 time-steps with exponential dimension dependency and
a term that scales with the square root of the duration of stabilizing adaptive control
with polynomial dimension dependency, i.e., (𝑛 + 𝑑)𝑛+𝑑𝑇𝑤 + poly(𝑛, 𝑑)

√
𝑇 − 𝑇𝑤.

Note that 𝑇𝑤 is a problem-dependent expression. Thus, for large enough 𝑇 , the
polynomial dependence dominates, giving Theorem 3.2.

3.2.3 Experiments
In this section, we evaluate the performance of StabL in three adaptive control
tasks: (1) a marginally unstable Laplacian system [71], (2) the longitudinal flight
control of Boeing 747 with linearized dynamics [123], and (3) a stabilizable but not
controllable linear dynamical system. For each task, we compare StabL with three
RL algorithms: (i) OFULQ of Abbasi-Yadkori and Szepesvári [2]; (ii) certainty
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Table 3.3: Maximum State Norm in the Laplacian System.

Algorithm Average max∥x∥2 Worst 5% Worst 10% Worst 25%
StabL 1.3 × 101 2.2 × 101 2.1 × 101 1.9 × 101

OFULQ 9.6 × 103 1.8 × 105 9.0 × 104 3.8 × 104

CEC-Fix 3.3 × 103 6.6 × 104 3.3 × 104 1.3 × 104

CEC-Dec 2.0 × 101 3.5 × 101 3.3 × 101 2.9 × 101

equivalent controller with fixed isotropic perturbations (CEC-Fix), which is the
standard baseline in control theory; and (iii) certainty equivalent controller with
decaying isotropic perturbations (CEC-Dec), which is shown to achieve optimal
regret with a given initial stabilizing policy [71, 191, 242]. In the implementation
of CEC-Fix and CEC-Dec, the optimal control policies of the estimated model are
deployed. Furthermore, in finding the optimistic parameters for StabL and OFULQ,
we use projected gradient descent within the confidence sets. We perform 200
independent runs for each algorithm for 200 time steps starting from 𝑥0 = 0. We
present the performance of the best parameter choices for each algorithm. For
further details and the experimental results please refer to [166].

Before discussing the experimental results, we would like to highlight the baseline
choices. Unfortunately, there are only a few works in literature that consider RL
in LQRs without a stabilizing controller. These works are OFULQ of [2], [7],
and [56]. Among these, [56] considers LQRs with adversarial noise setting and
deploys impractically large inputs, e.g., 1028 for task (1), whereas the algorithm of
[7] only works in the scalar setting. These prohibit meaningful regret and stability
comparisons, thus, we compare StabL against the only relevant comparison of
OFULQ among these. Moreover, there are only a few limited experimental studies
in the literature of RL in LQRs. Among these, [71, 83, 85] highlight the superior
performance of CEC-Dec. Therefore, we compare StabL against CEC-Dec with the
best-performing parameter choice, as well as the standard baseline of CEC-Fix.

(1) Laplacian system (Appendix I.1 of [166]). Table 3.2 provides the regret
performance for the average, top 90%, top 75%, and top 50% of the runs of the
algorithms. We observe that StabL attains at least an order of magnitude improve-
ment in regret over OFULQ and CECs. This setting combined with the unstable
dynamics is challenging for the solely optimism-based learning algorithms. Our
empirical study indicates that, at the early stages of learning, the smallest eigenvalue
of the design matrix 𝑉𝑡 for OFULQ is much smaller than that of StabL as shown
in Figure 3.1. The early improved exploration strategy helps StabL achieve linear
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Figure 3.1: Evolution of the smallest eigenvalue of the design matrix for StabL and
OFULQ in the Laplacian system. The solid line is the mean and the shaded region
is one standard deviation. StabL attains linear scaling whereas OFULQ suffers from
the lack of early exploration.

scaling in _min(𝑉𝑡), thus persistence of excitation and identification of stabilizing
controllers. In contrast, the only OFU-based controllers of OFULQ fail to achieve
persistence of excitation and accurate estimate of the model parameters. Therefore,
due to lack of reliable estimates and the skewed cost, OFULQ cannot design effective
strategies to learn model dynamics and results in unstable dynamics (see Table 3.3).
Table 3.3 displays the stabilization capabilities of the deployed RL algorithms. In
particular, it provides the averages of the maximum norms of the states for all runs,
the worst 5%, 10% and 25% runs. Of all algorithms, StabL keeps the state smallest.

(2) Boeing 747 (Appendix I2 of [166]). In practice, nonlinear systems, like Boeing
747, are modeled via local linearizations which hold as long as the states are within
a certain region. Thus, to maintain the validity of such linearizations, the state of
the underlying system must be well-controlled, i.e., stabilized. Table 3.4 provides
the regret performances and Table 3.5 displays the stabilization capabilities of the
deployed RL algorithms similar to (1). Once more, among all algorithms, StabL
maintains the maximum norm of the state smallest and operates within the smallest
radius around the linearization point of origin.

(3) Stabilizable but not controllable system (Appendix I4 of [166]). We consider
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Table 3.4: Regret Performance after 200 Time Steps in Boeing 747 Flight Control.

Algorithm Average Regret Top 90% Top 75% Top 50%
StabL 1.3 × 104 9.6 × 103 7.6 × 103 5.3 × 103

OFULQ 1.5 × 108 9.9 × 105 5.6 × 104 8.9 × 103

CEC-Fix 4.8 × 104 4.5 × 104 4.3 × 104 3.9 × 104

CEC-Dec 2.9 × 104 2.5 × 104 2.2 × 104 1.9 × 104

Table 3.5: Maximum State Norm in Boeing 747 Control.

Algorithm Average max∥x∥2 Worst 5% Worst 10% Worst 25%
StabL 3.4 × 101 7.5 × 101 7.0 × 101 5.2 × 101

OFULQ 1.6 × 103 2.2 × 104 1.4 × 104 6.3 × 103

CEC-Fix 5.0 × 101 7.8 × 101 7.3 × 101 6.5 × 101

CEC-Dec 4.6 × 101 8.0 × 101 7.3 × 101 6.3 × 101

Table 3.6: Regret after 200 Time Steps in Stabilizable but Not Controllable System.

Algorithm Average Regret Top 90% Top 75% Top 50%
StabL 1.68 × 106 7.21 × 105 3.72 × 105 1.29 × 105

OFULQ 5.20 × 1012 8.27 × 1011 2.13 × 1011 4.51 × 1010

CEC w/t Decay 1.56 × 107 9.75 × 106 5.96 × 106 2.33 × 106

the online LQ control problem with the following parameters:

𝐴∗ =


−2 0 1.1
1.5 0.9 1.3
0 0 0.5

 , 𝐵∗ =


1 0
0 1
0 0

 , 𝑄 = 𝐼, 𝑅 = 𝐼, 𝑤 ∼ N(0, 𝐼), (3.9)

This problem is particularly challenging in terms of system identification and con-
troller design since the system is not controllable but stabilizable. As expected,
besides StabL, which is tailored for the general stabilizable setting, other algorithms
perform poorly in this challenging setting. In particular, CEC-Fix drastically blows
the state up due to significantly unstable dynamics for the uncontrollable part of
the system. Therefore, the performances of only StabL, OFULQ, and CEC-Dec
are presented. Table 3.6 provides the regret of the algorithms after 200 time steps,
while Table 3.7 displays the maximum norm of the state during the execution of
the algorithms. This setting is where OFULQ fails dramatically due to not being
tailored for the stabilizable systems. The evolution of the regret performance of
the algorithms is provided in Figure 3.2. Note that Figure 3.2 is in a semi-log
scale. StabL provides an order-of-magnitude improved regret compared to the best
performing state-of-the-art baseline CEC-Dec.
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Table 3.7: Maximum State Norm in Stabilizable but Not Controllable System.

Algorithm Average max ∥𝑥∥2 Worst 5% Worst 10% Worst 25%
StabL 3.02 × 102 1.04 × 103 8.88 × 102 6.68 × 102

OFULQ 4.39 × 105 3.10 × 106 2.40 × 106 1.39 × 106

CEC w/t Decay 1.37 × 103 4.07 × 103 3.54 × 103 2.78 × 103

Figure 3.2: Regret Comparison of three algorithms in controlling a stabilizable but
not controllable system (3.9). The solid lines are the average regrets and the shaded
regions are the quarter standard deviations.

3.3 Thompson Sampling-Based Adaptive Control
Even though in the prior section we showed that StabL achieves optimal regret
without a stabilizing controller, the adaptive control procedure of StabL requires
solving a non-convex optimization problem to find the optimistic controller. Unfor-
tunately, finding the optimistic parameters among the plausible models is an NP-hard
problem in general, and requires computational heuristics for large-scale dynamical
systems [9]. This computational inefficiency severely limits the practicality of the
optimistic controller design approach. Even though [8] recently proposed a relax-
ation to the optimistic controller computation, which makes the optimism-based
controllers efficient, their approach requires significantly well-refined model esti-
mates and a given initial stabilizing policy similar to certainty equivalence-based
controllers discussed before.

This section provides a computationally efficient adaptive control algorithm alter-
native to StabL with similar regret upper bound guarantees. In particular, we study
Thompson Sampling-based Adaptive Control (TSAC), which attains �̃� (

√
𝑇) regret
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in multidimensional stabilizable LQRs. This makes TSAC the first efficient adaptive
control algorithm to achieve order-optimal regret in all stabilizable LQRs without
the prior knowledge of a stabilizing policy, thereby solving the open problem posed
in [7]. We empirically demonstrate the performance of TSAC and compare it to
StabL and TS-based methods that do not require an initial stabilizing policy in flight
control of Boeing 747 with linearized dynamics considered in the previous section.
We show that TSAC effectively explores the system to find a stabilizing policy and
achieves competitive regret performance while being computationally feasible.

The design of TSAC and our regret guarantee hinge on three important pieces
missing in prior works: fixed policy update rule, improved exploration in early
stages of adaptive control, and a novel lower bound that shows that TS samples
optimistic parameters with non-zero probability in multidimensional LQRs. Unlike
the frequent policy update rule of Abeille and Lazaric [7] in scalar LQRs, TSAC
updates its policy with fixed time periods. This policy update rule prevents fast
policy changes that would cause state blow-ups in stabilizable LQRs.

Due to the results of StabL, at the beginning of agent-environment interaction, TSAC
focuses on quickly finding a stabilizing controller to avoid state blow-ups due to the
lack of a known initial stabilizing policy. By using isotropic exploration in the
early stages along with the exploration of TS policy, we show that TSAC achieves
fast stabilization. After stabilizing the unknown system dynamics, TSAC relies on
the effective exploration of the TS to find desirable controllers. In particular, we
show that the TS samples optimistic parameters with a constant probability in any
LQR setting. This novel lower bound shows that the TS is an efficient alternative to
optimism in all adaptive control problems in LQRs. Combining this lower bound
with the fixed policy update rule, we derive the optimal regret guarantee for TSAC.

3.3.1 TSAC
We present TSAC, a sample efficient TS-based adaptive control algorithm for the
unknown stabilizable LQRs. The algorithm is summarized in Algorithm 6. It has
two phases: 1) TS with improved exploration and 2) stabilizing TS.

TS with Improved Exploration

Due to the lack of an a priori known stabilizing controller, TSAC focuses on rapidly
learning stabilizing controllers in the early stages of the algorithm. To achieve this,
TSAC explores the system dynamics effectively in this phase. At any time-step
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Algorithm 6 TSAC
1: Input: ^, 𝛾, 𝑄, 𝑅, 𝜎2

𝑤 , 𝑉0 = `𝐼, Θ̂0 = 0
2: for 𝑖 = 0, 1, . . . do
3: Estimate Θ̂𝑖 using (3.7) & Sample Θ̃𝑖 = RS (Θ̂𝑖 + 𝛽𝑡𝑉−1/2

𝑡 [𝑡)
4: for 𝑡 = 𝑖𝜏0, . . . , (𝑖 + 1)𝜏0 − 1 do
5: if 𝑡 ≤ 𝑇𝑤 then
6: Deploy 𝑢𝑡 =𝐾 (Θ̃𝑖)𝑥𝑡+a𝑡 ▷ TS with Improved Explorationn
7: else
8: Deploy 𝑢𝑡 =𝐾 (Θ̃𝑖)𝑥𝑡 ▷ Stabilizing TS

𝑡, given the RLS estimate Θ̂𝑡 and the design matrix 𝑉𝑡 as described in (3.8) for
StabL, TSAC samples a perturbed model parameter Θ̃𝑡 = RS (Θ̂𝑡 + 𝛽𝑡 (𝛿)𝑉−1/2

𝑡 [𝑡),
where RS denotes the rejection sampling operator associated with the set S given
in Assumption 3.2 and [𝑡 ∈ R(𝑛+𝑑)×𝑛 is a matrix with independent standard normal
entries. Here RS guarantees that Θ̃𝑡 ∈ S and 𝛽𝑡 (𝛿)𝑉−1/2

𝑡 [𝑡 randomizes the sampled
parameter coherently with the RLS estimate and the uncertainty associated with it.
Using this sampled model parameter, TSAC constructs the optimal linear controller
�̄�𝑡 = 𝐾 (Θ̃𝑡)𝑥𝑡 for Θ̃𝑡 .

However, to obtain stabilizing controllers for an unknown linear dynamical system,
one needs to explore the state-space in all directions, Lemma 3.3. Unfortunately,
due to the lack of reliable estimates in the early stages, deploying the policy achieved
via TS, �̄�𝑡 , may not achieve such effective exploration. Therefore, in the early stages
of interactions with the underlying system, TSAC deploys isotropic perturbations
along with the sampled policy. In particular, for the first 𝑇𝑤 time-steps, TSAC
uses 𝑢𝑡 = �̄�𝑡 + a𝑡 as the control input where a𝑡 ∼ N(0, 2^2𝜎2

𝑤 𝐼). This improved
exploration policy effectively excites and explores all dimensions of the system to
certify the design of stabilizing controllers. TSAC sets 𝑇𝑤 such that all the sampled
controllers 𝐾 (Θ̃𝑡) are guaranteed to stabilize the underlying system Θ∗ for all 𝑡 > 𝑇𝑤
(Appendix B.2.1).

Unlike most of the popular RL strategies that follow lazy updates, TSAC updates
its sampled policy in every fixed 𝜏0 steps, i.e., the same sampled policy 𝐾 (Θ̃𝑡) is
deployed for 𝜏0 time-steps. This update rule is carefully chosen such that TSAC
samples enough optimistic policies to reduce the cumulative regret and avoids too
frequent policy changes which would cause state blow-ups.
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Stabilizing TS

After guaranteeing the design of stabilizing policies with improved exploration in
the first phase, TSAC starts the adaptive control with only TS. In particular, for the
remaining time-steps, TSAC deploys 𝑢𝑡 = 𝐾 (Θ̃𝑡)𝑥𝑡 for Θ̃𝑡 = RS (Θ̂𝑡 + 𝛽𝑡 (𝛿)𝑉−1/2

𝑡 [𝑡)
and updates the sampled model parameter in every 𝜏0 time-steps. Note that, even
though all the policies during this phase are stabilizing, frequent policy changes can
still cause undesirable state growth. TSAC prevents this possibility by applying the
same control policy for 𝜏0 time-steps in this phase as well. During this phase, TSAC
decays the possible state blow-ups in the first phase and maintains stable dynamics.

3.3.2 Theoretical Analysis of TSAC
In this section, we study the theoretical guarantees of TSAC. For simplicity of
presentation, we consider the Gaussian process noise for the system dynamics. In
particular, we assume that there exists a filtration F𝑡 such that for all 𝑡 ≥ 0, 𝑥𝑡 , 𝑧𝑡
are F𝑡-measurable and 𝑤𝑡 |F𝑡 = N(0, 𝜎2

𝑤 𝐼) for some known 𝜎𝑤 > 0. The following
results can be extended to sub-Gaussian process noise setting, i.e., Assumption 3.1,
using the techniques developed in the previous section (see Lemma 3.1 and its proof
in Appendix B.1.1). The following states the first order-optimal frequentist regret
bound for TS in multidimensional stabilizable LQRs, our main result.

Theorem 3.3 (Regret of TSAC). Suppose Assumption 3.2 holds and set 𝜏0 =

2𝛾−1 log(2^
√

2) and 𝑇0 = poly(log(1/𝛿), 𝜎−1
𝑤 , 𝑛, 𝑑, �̄�, 𝛾−1, ^). Then, for long

enough 𝑇 , TSAC achieves the regret 𝑅𝑇 = Õ
(
(𝑛 + 𝑑) (𝑛+𝑑)

√︁
𝑇 log(1/𝛿)

)
w.p. at

least 1 − 10𝛿, if 𝑇𝑤 = max
(
𝑇0, 𝑐1(

√
𝑇 log𝑇)1+𝑜(1)

)
for a constant 𝑐1 > 0. Fur-

thermore, if the closed loop matrix of the optimally controlled underlying sys-
tem, 𝐴𝑐,∗ B 𝐴∗ + 𝐵∗𝐾∗, is non-singular, i.e., 𝐴∗ is non-singular, w.p. at least
1 − 10𝛿, TSAC achieves the regret 𝑅𝑇 = Õ

(
poly(𝑛, 𝑑)

√︁
𝑇 log(1/𝛿)

)
if 𝑇𝑤 =

max
(
𝑇0, 𝑐2(log𝑇)1+𝑜(1)

)
for a constant 𝑐2 > 0.

This makes TSAC the first efficient adaptive control algorithm that achieves optimal
regret in adaptive control of all LQRs without an initial stabilizing policy. To
prove this result, we follow a similar approach as StabL in the previous section
and [7], and define the high probability joint event 𝐸𝑡 = �̂�𝑡 ∩ �̃�𝑡 ∩ �̄�𝑡 , where �̂�𝑡
states that the RLS estimate Θ̂ concentrates around Θ∗, �̃�𝑡 states that the sampled
parameter Θ̃ concentrates around Θ̂, and �̄�𝑡 states that the state remains bounded
respectively. Conditioned on this event, we decompose the frequentist regret as
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𝑅𝑇1𝐸𝑇 ≤ 𝑅
exp
𝑇𝑤
+ 𝑅RLS

𝑇
+ 𝑅mart

𝑇
+ 𝑅TS

𝑇
+ 𝑅gap

𝑇
, where 𝑅exp

𝑇𝑤
accounts for the regret

attained due to improved exploration, 𝑅RLS
𝑇

represents the difference between the
value function of the true next state and the predicted next state, 𝑅mart

𝑇
is a martingale

with bounded difference, 𝑅TS
𝑇

measures the difference in optimal average expected
cost between the true model Θ∗ and the sampled model Θ̃, and 𝑅gap

𝑇
measures the

regret due to policy changes. The decomposition and expressions are given in
Appendix B.2.3. In the analysis, we bound each term separately (Appendix B.2.4).
Note that 𝑅RLS

𝑇
and 𝑅mart

𝑇
appear in the regret analysis of StabL due to algorithmic and

problem setting construction, thus, follow directly from the prior analysis. Before
discussing the further details of the analysis, we first consider the prior works that
use TS for adaptive control of LQRs and discuss their shortcomings. Further, we
highlight the challenges in adaptive control of multidimensional stabilizable LQRs
using TS and present our approaches to overcome these.

Prior Work on TS-based Adaptive Control and Challenges

For the frequentist regret minimization problem, the state-of-the-art adaptive control
algorithm that uses TS is Abeille and Lazaric [7]. They consider the “contractible”
LQR systems, i.e. |𝐴∗ + 𝐵∗𝐾 (Θ∗) | < 1, and provide �̃� (

√
𝑇) regret upper bound

for scalar LQRs, i.e. 𝑛 = 𝑑 = 1. Notice that the set of contractible systems is a
small subset of the set S defined in Assumption 3.2 and they are only equivalent
for scalar systems since 𝜌(𝐴∗ − 𝐵∗𝐾 (Θ∗)) = |𝐴∗ − 𝐵∗𝐾 (Θ∗) |. This simplified
setting allow them to reduce the regret analysis into the trade-off between 𝑅TS

𝑇
=∑𝑇

𝑡=0{𝐽 (Θ̃𝑡) − 𝐽 (Θ∗)} and 𝑅gap
𝑇

=
∑𝑇
𝑡=0 E[𝑥⊤𝑡1 (𝑃(Θ̃𝑡+1)−𝑃(Θ̃𝑡)𝑥𝑡+1

��F𝑡].
These regret terms are central in the analysis of several adaptive control algorithms.
In the certainty equivalent control approaches, 𝑅TS

𝑇
is bounded by the quadratic

scaling of model estimation error after a significantly long exploration with a known
stabilizing controller [191, 242]. In the optimism-based algorithms such as StabL,
𝑅TS
𝑇

is bounded by 0 by design [2, 81]. Similarly, in the Bayesian regret setting,
[212] assume that the underlying parameter Θ∗ comes from a known prior that the
expected regret is computed with respect to. This true prior yields E[𝑅TS

𝑇
] = 0

in certain restrictive LQRs. Whereas the conventional approach in the analysis of
𝑅

gap
𝑇

is to have lazy policy updates, i.e., 𝑂 (log𝑇) policy changes such as StabL, via
doubling the determinant of𝑉𝑡 or exponentially increasing epoch durations [48, 85].

On the other hand, Abeille and Lazaric [7] bound 𝑅TS
𝑇

by showing that TS samples
the optimistic parameters, Θ̃𝑡 such that 𝐽 (Θ̃𝑡) ≤ 𝐽 (Θ∗), with a constant probability,
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which reduces the regret of non-optimistic steps. Unlike the conventional policy
update approaches, the key idea in Abeille and Lazaric [7] is to update the control
policy every time-steps via TS, which increases the number of optimistic policies
during the execution. They show that while this frequent update rule reduces 𝑅TS

𝑇
,

it only results with 𝑅gap
𝑇

= Õ(
√
𝑇). However, they were only able to show that this

constant probability of optimistic sampling holds for scalar LQRs.

The difficulty of the analysis for the probability of optimistic parameter sampling lies
in the challenging characterization of the optimistic set. Since 𝐽 (Θ̃)=𝜎2

𝑤 tr(𝑃(Θ̃)),
one needs to consider the spectrum of 𝑃(Θ̃) to define optimistic models, which
makes the analysis difficult. In particular, decreasing the cost along one direction
may result in an increase in other directions. However, for the scalar LQR setting
considered in Abeille and Lazaric [7], 𝐽 (Θ̃)=𝑃(Θ̃) and using standard perturbation
results on DARE suffices. As mentioned in Abeille and Lazaric [7], one can naively
consider the surrogate set of being optimistic in all directions, i.e., 𝑃(Θ̃) ≼ 𝑃(Θ∗).
Nevertheless, this would result in a probability that decays linearly in time and does
not yield sub-linear regret. In this study, we propose new surrogate sets to derive
a lower bound on the probability of having optimistic samples and show that TS in
fact samples optimistic model parameters with constant probability.

In designing TS-based adaptive control algorithms for multidimensional stabilizable
LQRs, one needs to maintain a bounded state. In bounding the state, Abeille and
Lazaric [7] rely on the fact that the underlying system is contractive, ∥ �̃�+ �̃�𝐾 (Θ̃)∥ <
1. However, under Assumption 3.2, even if the optimal policy of the underlying
system is chosen by the learning agent, the closed-loop system may not be contractive
since for any symmetric matrix 𝑀 , 𝜌(𝑀) ≤ ∥𝑀 ∥. Thus, to avoid dire consequences
of unstable dynamics, TS-based adaptive control algorithms should focus on finite-
time stabilization of the system dynamics in the early stages.

Moreover, the lack of contractive closed-loop mappings in stabilizable LQRs pre-
vents frequent policy changes used in Abeille and Lazaric [7]. From the def-
inition of (^, 𝛾)-stabilizability, for any stabilizing controller 𝐾′, we have that
𝐴∗ + 𝐵∗𝐾′ = 𝐻′𝐿𝐻′−1, with ∥𝐿∥ < 1 for some similarity transformation 𝐻′. Thus,
as noted in the analysis of StabL, even if all the policies are stabilizing, changing the
policies at every time step could cause couplings of these similarity transformations
and result in linear growth of the state over time. Thus, TS-based adaptive control
algorithms need to find the balance in the rate of policy updates, so that frequent
policy switches are avoided, yet, enough optimistic policies are sampled. In light of
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these observations, our results hinge on the following:

1) Improved exploration that allows fast stabilization of the dynamics;

2) Fixed policy update rule that prevents state blow-up and reduces 𝑅gap
𝑇

and 𝑅TS
𝑇

;

3) A novel result that shows TS samples optimistic model parameters with a constant
probability for multidimensional LQRs and gives a novel bound on 𝑅TS

𝑇
.

Details of the analysis

The improved exploration along with TS in the early stages allows TSAC to effec-
tively explore the state space in all directions. The following shows that for a long
enough improved exploration phase, TSAC achieves consistent model estimates and
guarantees the design of stabilizing policies.

Lemma 3.6 (Model Estimation Error and Stabilizing Policy Design). Suppose
Assumption 3.2 holds. For 𝑡 ≥ 200(𝑛 + 𝑑) log 12

𝛿
time-steps of TS with im-

proved exploration, with probability at least 1 − 2𝛿, TSAC obtains model esti-
mates such that ∥Θ̂𝑡 − Θ∗∥2 ≤ 7𝛽𝑡 (𝛿)/(𝜎𝑤

√
𝑡). Moreover, after 𝑇𝑤 ≥ 𝑇0 B

poly(log(1/𝛿), 𝜎−1
𝑤 , 𝑛, 𝑑, �̄�, 𝛾−1, ^) length TS with improved exploration phase, with

probability at least 1 − 3𝛿, TSAC samples controllers 𝐾 (Θ̃𝑡) such that the closed-
loop dynamics on Θ∗ is (^

√
2, 𝛾/2) strongly stable for all 𝑡 > 𝑇𝑤, i.e., there exists

𝐿 and 𝐻 ≻ 0 such that 𝐴∗ + 𝐵∗𝐾 (Θ̃𝑡) = 𝐻𝐿𝐻−1, with ∥𝐿∥ ≤ 1 − 𝛾/2 and
∥𝐻∥∥𝐻−1∥ ≤ ^

√
2.

The proof and the precise expression of 𝑇𝑤 can be collected in Appendix B.2.1. In
the proof, we show that the inputs 𝑢𝑡 = 𝐾 (Θ̃𝑖)𝑥𝑡 +a𝑡 for a𝑡 ∼N(0, 2^2𝜎2

𝑤 𝐼) guarantee
the persistence of excitation with high probability, i.e., the smallest eigenvalue of the
design matrix𝑉𝑡 scales linearly over time. Combining this result, with the confidence
set construction in (3.8), we derive the first result. Using the first result and the
fact that there exists a stabilizing neighborhood around the model parameter Θ∗,
such that all the optimal linear controllers of the models within this region stabilize
Θ∗, we derive the final result. Due to early improved exploration, TSAC stabilizes
the system dynamics after 𝑇𝑤 samples and starts stabilizing adaptive control with
only TS. Using the stabilizing controllers for fixed 𝜏0 =2𝛾−1 log(2^

√
2) time-steps,

TSAC decays the state magnitude and remedy possible state blow-ups in the first
phase. To study the boundedness of state, define 𝑇𝑟 = 𝑇𝑤 + (𝑛+ 𝑑)𝜏0 log(𝑛+ 𝑑). The
following shows that the state is bounded and well-controlled.
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Lemma 3.7 (Bounded states). Suppose Assumption 3.2 holds. For given 𝑇𝑤 and 𝑇𝑟 ,
TSAC controls the state such that ∥𝑥𝑡 ∥ = 𝑂 ((𝑛 + 𝑑)𝑛+𝑑) for 𝑡 ≤ 𝑇𝑟 , with probability
at least 1 − 3𝛿 and ∥𝑥𝑡 ∥ ≤ (12^2+2^

√
2)𝛾−1𝜎𝑤

√︁
2𝑛 log(𝑛(𝑡−𝑇𝑤)/𝛿) for 𝑇 ≥ 𝑡 >𝑇𝑟 ,

with probability at least 1 − 4𝛿.

This result is a trivial extension of Lemma 3.5 for StabL since rejection sampling
guarantees that the sampled model is an element of S, thus, it is (^, 𝛾)−stabilizable
by its corresponding optimal controller, 1 − 𝛾 ≥ max𝑡≤𝑇 𝜌( �̃�𝑡 + �̃�𝑡𝐾 (Θ̃𝑡)). Using
this fact, following the proof Lemma 3.5 in Appendix B.1.3 one can show that for
𝑡 ≤ 𝑇𝑟 , deploying the same policy for 𝜏0 time-steps in the first phase maintains a
well-controlled state except for 𝑛 + 𝑑 time-steps, under the high probability event
of �̂�𝑡 ∩ �̃�𝑡 . For bounding the state after 𝑡 > 𝑇𝑟 , the proof of Lemma 3.5 follows
directly such that after (𝑛 + 𝑑) log(𝑛 + 𝑑) policy updates, the state is well-controlled
and brought to equilibrium. This result shows that the joint event 𝐸𝑡 = �̂�𝑡 ∩ �̃�𝑡 ∩ �̄�𝑡
holds with probability at least 1 − 4𝛿 for all 𝑡 ≤ 𝑇 .

Conditioned on this event, we analyze the regret terms individually (Appendix
B.2.4). We show that with probability at least 1 − 𝛿, 𝑅exp

𝑇𝑤
yields Õ((𝑛 + 𝑑)𝑛+𝑑𝑇𝑤)

regret due to isotropic perturbations. 𝑅RLS
𝑇

and 𝑅mart
𝑇

are Õ((𝑛 + 𝑑)𝑛+𝑑
√
𝑇𝑟 +

poly(𝑛, 𝑑)
√
𝑇 − 𝑇𝑟) with probability at least 1 − 𝛿 due to standard arguments based

on the event 𝐸𝑇 . More importantly, conditioned on the event 𝐸𝑇 , we prove that
𝑅

gap
𝑇

= Õ((𝑛+𝑑)𝑛+𝑑
√
𝑇𝑟 +poly(𝑛, 𝑑)

√
𝑇−𝑇𝑟) with probability at least 1 − 2𝛿, and

𝑅TS
𝑇

= Õ(𝑛𝑇𝑤+poly(𝑛, 𝑑)
√
𝑇−𝑇𝑤) with probability at least 1 − 2𝛿, whose analyses

require several novel fundamental results.

To bound on 𝑅
gap
𝑇

, we extend the results in Abeille and Lazaric [7] to multidi-
mensional stabilizable LQRs and incorporate the slow update rule and the early
improved exploration. We show that while TSAC enjoys well-controlled state with
polynomial dimension dependency on regret due to slow policy updates, it also
maintains the desirable Õ(

√
𝑇) regret of frequent updates with only a constant 𝜏0

scaling. As discussed before, bounding 𝑅TS
𝑇

requires selecting optimistic models
with constant probability, which has been an open problem in the literature for mul-
tidimensional systems. In this study, we provide a solution to this problem and show
that TS indeed selects optimistic model parameters with a constant probability for
multidimensional LQRs. The precise statement of this result and its proof outline
are given in Section 3.3.3. Leveraging this result, we derive the upper bound on
𝑅TS
𝑇

. Combining all these terms yields the regret upper bound of TSAC given in
Theorem 3.3.
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3.3.3 Proof Outline of Sampling Optimistic Models with Constant Probability
In this section, we provide the precise statement that the probability of sampling
an optimistic parameter is lower bounded by a fixed constant with high probability.
Then we give the proof outline with the main steps. The complete proof with the
intermediate results is given in Appendix B.2.2.

Theorem 3.4 (Optimistic probability). Let F cnt
𝑡 B 𝜎(𝐹𝑡−1, 𝑥𝑡) be the information

available to the controller up to time 𝑡. Denote the optimistic set by Sopt B{
Θ∈R(𝑛+𝑑)×𝑛

�� 𝐽 (Θ) ≤ 𝐽 (Θ∗)}. If 𝑇𝑤 = 𝑐𝑛2(
√
𝑇 log𝑇)1+𝑜(1) for a constant 𝑐 > 0,

then under the event 𝐸𝑇 for large enough 𝑇 , we have that

𝑝
opt
𝑡 B P

{
Θ̃𝑡 ∈ Sopt ��F cnt

𝑡 , �̂�𝑡
}
≥ 𝑄(1)

1 + 𝑜(1) ,

for any 𝑇𝑟 < 𝑡 ≤ 𝑇 . Furthermore, if the closed-loop matrix, 𝐴𝑐,∗ = 𝐴∗ + 𝐵∗𝐾∗,
is non-singular, then the bound above still holds when 𝑇𝑤 = 𝑐(log𝑇)1+𝑜(1) for a
constant 𝑐 > 0.

Surrogate Set Definition

First, we define a surrogate subset Ssurr to the optimistic set Sopt. The construction
of Ssurr is important as the geometry of Sopt is complicated to study due to (3.3)
that controls the spectrum of 𝑃(Θ).

Lemma 3.8 (Surrogate set). Let 𝐽 (Θ, 𝐾)Btr ((𝑄+𝐾⊤𝑅𝐾)Σ(Θ, 𝐾)) be the expected
average cost of controlling a system Θ ∈ S by a fixed stabilizing control policy
𝐾 ∈ R𝑑×𝑛 where Σ(Θ, 𝐾) B lim𝑡→∞ E

[
𝑥𝑡𝑥
⊤
𝑡

]
is the covariance of the state. The

following surrogate set is a subset of Sopt:

SsurrB
{
Θ= (𝐴, 𝐵)⊤ ∈R(𝑛+𝑑)×𝑛

�� 𝐽 (Θ, 𝐾 (Θ∗)) ≤ 𝐽 (Θ∗, 𝐾 (Θ∗))= 𝐽 (Θ∗)} ⊂ Sopt.

Note that Σ(Θ, 𝐾) satisfies the Lyapunov equation Σ(Θ, 𝐾)−Θ⊤𝐻𝐾Σ(Θ, 𝐾)𝐻⊤𝐾Θ=

𝜎2
𝑤 𝐼, where 𝐻⊤

𝐾
B [𝐼, 𝐾⊤], and Θ⊤𝐻𝐾 = 𝐴 + 𝐵𝐾 , given that 𝐾 stabilizes the

system Θ. We can analytically express Σ(Θ, 𝐾) as a converging infinite sum
Σ(Θ, 𝐾) =𝜎2

𝑤

∑∞
𝑡=0(𝐴+𝐵𝐾)𝑡 (𝐴⊤+𝐾⊤𝐵⊤)𝑡 [132]. Using the properties of the trace

operator, one can write 𝐽 (Θ, 𝐾 (Θ∗)) = 𝐿 (Θ⊤𝐻∗), where 𝐿 (𝐴𝑐) B 𝜎2
𝑤

∑∞
𝑡=0

𝐴𝑡𝑐2
𝑄∗

for any stable matrix 𝐴𝑐, 𝑄∗ B 𝑄 +𝐾 (Θ∗)⊤𝑅𝐾 (Θ∗), and 𝐻⊤∗ B [𝐼, 𝐾 (Θ∗)⊤].
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Therefore, we can lower bound the probability of being optimistic as

𝑝
opt
𝑡 ≥ P

{
Θ̃𝑡 ∈ Ssurr ��F cnt

𝑡 , �̂�𝑡
}
= P

{
𝐿 (Θ̃⊤𝑡 𝐻∗) ≤ 𝐿 (Θ⊤∗ 𝐻∗)

��F cnt
𝑡 , �̂�𝑡

}
≥ min

Θ̂∈ERLS
𝑡

P𝑡{𝐿 (Θ̂⊤𝐻∗ + [⊤𝛽𝑡𝑉
− 1

2
𝑡 𝐻∗) ≤ 𝐿 (Θ⊤∗ 𝐻∗)} (3.10)

= min
Θ̂∈ERLS

𝑡

P𝑡{𝐿 (Θ̂⊤𝐻∗ + Ξ
√︁
𝐹𝑡) ≤ 𝐿 (Θ⊤∗ 𝐻∗)}, (3.11)

where P𝑡{·}BP{· | F cnt
𝑡 }, 𝐹𝑡B 𝛽2

𝑡 𝐻
⊤
∗ 𝑉
−1
𝑡 𝐻∗ and Ξ is a matrix of size 𝑛×𝑛 with iid

N(0, 1) entries. Here (3.10) considers the worst possible estimate within ERLS
𝑡 and

(3.11) is the whitening transformation.

Reformulation in Terms of Closed-Loop Matrix

In the second step, we reformulate the probability of sampling optimistic parameters
in terms of closed-loop system matrix �̃�𝑐 B Θ̃⊤𝐻∗ = �̃� + �̃�𝐾 (Θ∗) of the sampled
system Θ̃ = ( �̃�, �̃�)⊤ driven by the policy 𝐾 (Θ∗). Transitioning to the closed-loop
formulation allows tighter bounds on the optimistic probability. To complete this
reformulation, we need to construct an estimation confidence set for the closed-loop
system matrix �̂�𝑐 B Θ̂⊤𝐻∗ = �̂�+�̂�𝐾 (Θ∗) of the RLS-estimated system Θ̂ = ( �̂�, �̂�)⊤

and show that the constructed confidence set is a superset to ERLS
𝑡 .

Lemma 3.9 (Closed-loop confidence). Let 𝐹𝑡 (𝛿)B 𝛽2
𝑡 (𝛿)𝐻⊤∗ 𝑉−1

𝑡 𝐻∗. For any 𝑡 ≥ 0,
define by

Ecl
𝑡 (𝛿) B

{
Θ̂ ∈ R(𝑛+𝑑)×𝑛

�� tr
[
(Θ̂⊤𝐻∗ − Θ⊤∗ 𝐻∗)𝐹−1

𝑡 (𝛿) (Θ̂⊤𝐻∗ − Θ⊤∗ 𝐻∗)⊤
]
≤ 1

}
,

the closed-loop confidence set. Then, for all times 𝑡 ≥ 0 and 𝛿 ∈ (0, 1), we have that
ERLS
𝑡 (𝛿) ⊆Ecl

𝑡 (𝛿).

Note that the definition of Ecl
𝑡 (𝛿) only involves closed-loop matrices �̂�𝑐B Θ̂⊤𝐻∗ and

𝐴𝑐,∗ B Θ⊤∗ 𝐻∗. We can use the result of Lemma 3.9 to reformulate the probability
of sampling optimistic parameters, Θ̃ = ( �̃�, �̃�), as sampling optimistic closed-loop
system matrices, �̃�𝑐. We bound 𝑝opt

𝑡 from below as

𝑝
opt
𝑡 ≥ min

Θ̂∈Ecl
𝑡

P𝑡{𝐿 (Θ̂⊤𝐻∗ + Ξ
√︁
𝐹𝑡) ≤ 𝐿 (𝐴𝑐,∗)} (3.12)

= min
�̂�𝑐 : ∥ �̂�⊤𝑐 −𝐴⊤𝑐,∗∥𝐹−1

𝑡
≤1
P𝑡{𝐿 ( �̂�𝑐 + Ξ

√︁
𝐹𝑡) ≤ 𝐿 (𝐴𝑐,∗)} (3.13)

= min
Υ̂ : ∥Υ̂∥𝐹≤1

P𝑡{𝐿 (𝐴𝑐,∗ + Υ̂
√︁
𝐹𝑡 + Ξ

√︁
𝐹𝑡) ≤ 𝐿 (𝐴𝑐,∗)}, (3.14)
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where (3.12) is due to Lemma 3.9 and (3.13) follows from the fact that 𝐻∗ has full
column rank. Observe that, in Equation (3.14), Υ̂ is a unit Frobenius norm matrix
of size 𝑛 × 𝑛 and the term 𝐴𝑐,∗ + Υ̂

√
𝐹𝑡 accounts for the confidence ellipsoid for the

estimated closed-loop matrix, �̂�𝑐. The event in (3.14) corresponds to finding the
closed-loop matrix, 𝐴𝑐,∗ + (Ξ + Υ̂)

√
𝐹𝑡 of the TS sampled system in the sublevel

manifoldM∗ B
{
𝐴𝑐 ∈ M𝑛 | 𝐿 (𝐴𝑐) ≤ 𝐿 (𝐴𝑐,∗)

}
as illustrated in Figure 3.3.

Local Geometry of Optimistic Set under Perturbations

Next, we further simplify the form of the probability in (3.14) by exploiting the local
geometric structure of the function 𝐿 : 𝐴𝑐 ↦→ 𝜎2

𝑤

∑∞
𝑡=0

𝐴𝑡𝑐2
𝑄∗

defined over the set
of (Schur-)stable matrices,MSchurB {𝐴𝑐 ∈M𝑛 | 𝜌(𝐴𝑐)<1}. The following lemma
characterizes perturbative properties of 𝐿.

Lemma 3.10 (Perturbations). The function 𝐿 : MSchur → R+ defined as 𝐿 (𝐴𝑐) =
𝜎2
𝑤

∑∞
𝑡=0

𝐴𝑡𝑐2
𝑄∗

is smooth in its domain. For any 𝐴𝑐 ∈ MSchur, there exists 𝜖 > 0
such that for any perturbation ∥𝐺∥𝐹 ≤ 𝜖 , the function 𝐿 admits a quadratic Taylor
expansion as

𝐿 (𝐴𝑐 + 𝐺) = 𝐿 (𝐴𝑐) + ∇𝐿 (𝐴𝑐) • 𝐺 +
1
2
𝐺 • H𝐴𝑐+𝑠𝐺 (𝐺) (3.15)

for an 𝑠 ∈ [0, 1] where H𝐴𝑐 : M𝑛 → M𝑛 is the Hessian operator evaluated
at a point 𝐴𝑐 ∈ MSchur. In particular, we have that ∇𝐿 (𝐴𝑐∗) = 2𝑃(Θ∗)𝐴𝑐,∗Σ∗.
Furthermore, there exists a constant 𝑟 > 0 such that

��𝐺 • H𝐴𝑐+𝑠𝐺 (𝐺)
�� ≤ 𝑟 ∥𝐺∥2

𝐹
for

any 𝑠 ∈ [0, 1] and ∥𝐺∥𝐹 ≤ 𝜖 .

Lemma 3.10 guarantees that if a perturbation is sufficiently small, the perturbed
function can be locally expressed as a quadratic function of the perturbation. Since
the set of stable matrices,MSchur, is globally non-convex and Taylor’s theorem only
holds in convex domains, we restrict the perturbations in a ball of radius 𝜖 > 0. The
fact that there is a neighborhood of stable matrices around a matrix 𝐴𝑐 enables us
to apply Taylor’s theorem in this neighborhood.

Given the optimal closed-loop system matrix 𝐴𝑐,∗, let 𝜖∗ > 0 be chosen such that
the expansion in (3.15) holds for perturbations ∥𝐺∥𝐹 ≤ 𝜖∗ around 𝐴𝑐,∗. Denote the
perturbation due to Thompson sampling and estimation error as 𝐺 𝑡 = (Ξ + Υ̂)

√
𝐹𝑡
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M∗

Mqd
∗

B∗

𝐴𝑐,∗

∇𝐿∗

−𝑟
−1
∗ ∇

𝐿∗

𝑇𝐴𝑐,∗M∗

Mqd
∗ ∩ B∗

𝑂

Figure 3.3: A visual representation of sublevel manifoldM∗. 𝑂 is the origin and
𝐴𝑐,∗ is the optimal closed-loop system matrix. 𝑇𝐴𝑐,∗M∗ is the tangent space to the
manifold M∗ at the point 𝐴𝑐,∗ and ∇𝐿∗ is the Jacobian of the function 𝐿 at 𝐴𝑐,∗.
Mqd
∗ is the sublevel manifold of the quadratic approximation to 𝐿 and B∗ is a small

ball of stable matrices around 𝐴𝑐,∗. The intersectionMqd
∗ ∩ B∗ is a subset ofM∗.

and let ∥𝐺 𝑡 ∥𝐹 ≤ 𝜖∗. Then, we can write

𝐿 (𝐴𝑐,∗ + 𝐺 𝑡) = 𝐿 (𝐴𝑐,∗) + ∇𝐿 (𝐴𝑐,∗) • 𝐺 𝑡 +
1
2
𝐺 𝑡 • H𝐴𝑐,∗+𝑠𝐺𝑡 (𝐺 𝑡)

≤ 𝐿 (𝐴𝑐,∗) + ∇𝐿 (𝐴𝑐,∗) • 𝐺 𝑡 +
𝑟∗
2
∥𝐺 𝑡 ∥2𝐹 , (3.16)

where 𝑟∗>0 is a constant due to Lemma 3.10. Using (3.16), we have the following
lower bound on (3.14),

𝑝
opt
𝑡 ≥ min

Υ̂ : ∥Υ̂∥𝐹≤1
P𝑡

{𝑟∗
2
∥(Ξ+Υ̂)𝐹

1
2
𝑡 ∥2𝐹+∇𝐿∗• (Ξ+Υ̂)𝐹

1
2
𝑡 ≤0, and ∥(Ξ+Υ̂)𝐹

1
2
𝑡 ∥𝐹 ≤ 𝜖∗

}
,

(3.17)

where∇𝐿∗B∇𝐿 (𝐴𝑐,∗). The event in (3.17) corresponds to finding 𝐴𝑐,∗+(Ξ+Υ̂)
√
𝐹𝑡

at the intersection of the stable ball B∗B
{
𝐴𝑐 ∈ M𝑛 | ∥𝐴𝑐 − 𝐴𝑐,∗∥𝐹 ≤ 𝜖∗

}
and the

sublevel manifold Mqd
∗ B

{
𝐴𝑐 ∈ M𝑛 | ∥𝐴𝑐 − 𝐴𝑐,∗ + 𝑟−1

∗ ∇𝐿∗∥𝐹 ≤ ∥𝑟−1
∗ ∇𝐿∗∥𝐹

}
as

illustrated in Figure 3.3.

The intersectionMqd
∗ ∩ B∗ ⊂ M∗ serves as another surrogate to sublevel manifold

M∗. Switching to the new surrogateMqd
∗ helps us overcome the issue of working

with intractable and complicated geometry ofM∗ due to infinite sum in 𝐿 (𝐴c). We
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can utilize techniques relating to Gaussian probabilities as the geometry ofMqd
∗ is

described by a quadratic form.

Final Bound

Equipped with the preceding results, we can bound the optimism probability
tractably from below by the probability of a TS sampled closed-loop system matrix
lying inside the intersection of two ballsMqd

∗ ∩ B∗ as given in (3.17). By bound-
ing the weighted Frobenius norms in (3.17) from above by _max,𝑡 , the maximum
eigenvalue of 𝐹𝑡 , and normalizing the matrix ∇𝐿∗

√
𝐹𝑡 , we can write

𝑝
opt
𝑡 ≥ min

∥Υ̂∥𝐹≤1
P𝑡

{𝑟∗
2
_max,𝑡 ∥Ξ+Υ̂∥2𝐹+(∇𝐿∗

√︁
𝐹𝑡) • (Ξ+Υ̂) ≤0, and _max,𝑡 ∥Ξ+Υ̂∥2𝐹 ≤ 𝜖2

∗

}
= min
∥Υ̂∥𝐹≤1

P𝑡

{
(∇𝐿∗𝐹

1/2
𝑡 )•(Ξ+Υ̂)

∥∇𝐿∗𝐹
1/2
𝑡 ∥𝐹

≤
−_max,𝑡𝑟∗∥Ξ+Υ̂∥2𝐹

2∥∇𝐿∗𝐹
1/2
𝑡 ∥𝐹

, and ∥Ξ+Υ̂∥2𝐹 ≤
𝜖2
∗

_max,𝑡

}
.

(3.18)

Observe that the inner product (∇𝐿∗𝐹
1/2
𝑡 ) • Υ̂ is maximized by Υ#B

(∇𝐿∗𝐹
1/2
𝑡 )

∥∇𝐿∗𝐹
1/2
𝑡 ∥𝐹

sub-

ject to ∥Υ̂∥𝐹 ≤ 1. Since the probability distribution of ∥Ξ+Υ̂∥2
𝐹

is invariant under
orthogonal transformation of Ξ and Υ̂, (3.18) also attains its minimum at Υ#. Thus,
we can rewrite (3.18) as

𝑝
opt
𝑡 ≥ P𝑡

{
(∇𝐿∗𝐹

1/2
𝑡 )•Ξ

∥∇𝐿∗𝐹
1/2
𝑡 ∥𝐹

+1≤ −_max,𝑡𝑟∗

2∥∇𝐿∗𝐹
1/2
𝑡 ∥𝐹

∥Ξ+Υ#∥2𝐹 , and ∥Ξ + Υ#∥2𝐹 ≤
𝜖2
∗

_max,𝑡

}
= P𝑡

{
b + 1 ≤ − _max,𝑡𝑟∗

2∥∇𝐿∗𝐹
1/2
𝑡 ∥𝐹

(
(b + 1)2 + 𝑋

)
, and (b + 1)2 + 𝑋 ≤ 𝜖2

∗
_max,𝑡

}
,

(3.19)

where b ∼N(0, 1) and 𝑋 ∼ 𝜒2
𝑛2−1 are independent standard normal and chi-squared

distributions, and (3.19) is derived by rotating Ξ so that its first element is along the
direction of ∇𝐿∗𝐹

1/2
𝑡 . We use the following lemma to characterize the eigenvalues

of 𝐹𝑡 and control the lower bound (3.19) on 𝑝opt
𝑡 .

Lemma 3.11 (Bounded eigenvalues). Suppose 𝑇𝑤 = 𝑂 ((
√
𝑇)1+𝑜(1)). Denote the

minimum and maximum eigenvalues of 𝐹𝑡 by _min,𝑡 and _max,𝑡 , respectively. Under
the event 𝐸𝑇 , for large enough 𝑇 , we have that _max,𝑡 ≤ 𝐶 log𝑇

𝑇𝑤
and _max,𝑡

_min,𝑡
≤ 𝐶 𝑇 log𝑇

𝑇𝑤

for any 𝑇𝑟 < 𝑡 ≤ 𝑇 for a constant 𝐶 = poly(𝑛, 𝑑, log(1/𝛿)).

Lemma 3.11 states that maximum eigenvalue and the condition number of 𝐹𝑡 are
controlled inversely by the length of initial exploration phase 𝑇𝑤 and proportionally
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by log𝑇 and𝑇 log𝑇 given that exploration time is bounded by a certain amount. The
length of initial exploration 𝑇𝑤 relative to the horizon 𝑇 is critical in guaranteeing
asymptotically constant optimistic probability 𝑝opt

𝑡 . Although more lengthy initial
exploration will lead to better convergence to constant optimistic probability, it also
incurs higher asymptotic regret due to linear scaling of exploration regret with 𝑇𝑤.

Using the relation ∥∇𝐿∗𝐹
1
2
𝑡 ∥𝐹 ≥max(𝜎min,∗∥𝐹

1
2
𝑡 ∥𝐹 , _

1
2
min,𝑡 ∥∇𝐿∗∥𝐹) where 𝜎min,∗ is

the minimum singular value of ∇𝐿∗, we can further bound (3.19) from below. From
Lemma 3.10, we can write ∇𝐿∗=2𝑃(Θ∗)𝐴𝑐,∗Σ∗ where 𝑃(Θ∗) ≻0 is the solution to
the DARE in (3.3) and Σ∗ = Σ(Θ∗, 𝐾∗) ≻ 0 is the stationary state covariance matrix.
Notice that the minimum singular value of ∇𝐿∗ is positive (i.e., ∇𝐿∗ is full-rank) if
and only if the closed-loop system matrix, 𝐴𝑐,∗, is non-singular.

In general, 𝐴𝑐,∗ can be singular. Assuming that 𝑇𝑤 =𝑂 ((
√
𝑇)1+𝑜(1)), under the event

𝐸𝑇 , we can use ∥∇𝐿∗𝐹
1
2
𝑡 ∥𝐹 ≥

√︁
_min,𝑡 ∥∇𝐿∗∥𝐹 to obtain the following lower bound

on 𝑝opt
𝑡 for 𝑇𝑟 <𝑡 ≤𝑇 :

𝑝
opt
𝑡 ≥ P𝑡

{
b + 1 ≤ −

√︁
_max,𝑡

2𝜌∗

√︄
_max,𝑡

_min,𝑡

(
(b + 1)2 + 𝑋

)
, and (b + 1)2 + 𝑋 ≤ 𝜖2

∗
_max,𝑡

}
,

≥ P
{
b + 1 ≤ − 𝐶

2𝜌∗

√
𝑇 log𝑇
𝑇𝑤

(
(b + 1)2 + 𝑋

)
, and (b + 1)2 + 𝑋 ≤ 𝜖2

∗𝑇𝑤
𝐶 log𝑇

}
,

where 𝜌∗ B ∥𝑟−1
∗ ∇𝐿∗∥𝐹 . Choosing the exploration time as 𝑇𝑤 = 𝜔(

√
𝑇 log𝑇)

makes the coefficients
√
𝑇 log𝑇
𝑇𝑤

= 𝑜(1) to be very small and 𝑇𝑤
log𝑇 to be very large,

leading to constant lower bound on limiting optimistic probability lim inf𝑇→∞ 𝑝opt
𝑇
≥

P{b + 1 ≤ 0} C 𝑄(1).

On the other hand, if 𝐴𝑐,∗ is non-singular, then we can use the alternative bound
∥∇𝐿∗

√
𝐹𝑡 ∥𝐹 ≥ 𝜎min,∗∥

√
𝐹𝑡 ∥𝐹 ≥ 𝜎min,∗

√︁
_max,𝑡 to obtain the following lower bound

for 𝑇𝑟 <𝑡 ≤𝑇 :

𝑝
opt
𝑡 ≥ P𝑡

{
b + 1 ≤ −

√︁
_max,𝑡

2𝜎min,∗

(
(b + 1)2 + 𝑋

)
, and (b + 1)2 + 𝑋 ≤ 𝜖2

∗
_max,𝑡

}
,

≥ P
b + 1 ≤ −

√
𝐶

2𝜎min,∗

√︄
log𝑇
𝑇𝑤

(
(b + 1)2 + 𝑋

)
, and (b + 1)2 + 𝑋 ≤ 𝜖2

∗𝑇𝑤
𝐶 log𝑇

 .
Similarly, choosing the exploration time as 𝑇𝑤 = 𝜔(log𝑇) makes the coefficients√︃

log𝑇
𝑇𝑤

= 𝑜(1) to be very small and 𝑇𝑤
log𝑇 = 𝜔(1) to be very large, leading to constant

lower bound on limiting optimistic probability lim inf𝑇→∞ 𝑝opt
𝑇
≥ 𝑄(1).
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Table 3.8: Regret and Maximum State Norm in Boeing 747 Flight Control.

Algorithm
Average
Regret Top 95% Top 90%

Average
max ∥𝑥∥2 Top 95% Top 90%

TSAC 4.58 × 107 1.43 × 105 9.49 × 104 1.23 × 103 1.07 × 102 9.77 × 101

StabL 1.34 × 104 1.05 × 103 9.60 × 103 3.38 × 101 3.14 × 101 2.98 × 101

OFULQ 1.47 × 108 4.19 × 106 9.89 × 105 1.62 × 103 5.21 × 102 2.78 × 102

TS-LQR 5.63 × 1011 3.07 × 107 5.33 × 106 6.26 × 104 1.08 × 103 6.39 × 102

In both cases, the optimistic probability achieves a constant lower bound for large
enough 𝑇 as 𝑝opt

𝑇
≥ 𝑄(1) (1 + 𝑜(1))−1. This result can be interpreted in a geometric

way as follows. As the time passes, the estimates of the system become more
accurate in the sense that the confidence region of the estimate shrinks very quickly
as controlled by the eigenvalues of 𝐹𝑡 . Similarly, the high-probability region of TS
samples also shrink very fast controlled by the covariance matrix 𝐹𝑡 . Therefore, for
large enough𝑇 , the confidence region of the model estimate and the high-probability
region of TS samples get significantly smaller compared to the surrogate optimistic
setMqd

∗ ∩ B∗. This size difference effectively reduces the probability of finding a
sampled system inMqd

∗ ∩ B∗ to the probability of finding a sampled system in the
half-space separated by the tangent space 𝑇𝐴𝑐,∗M∗.

3.3.4 Numerical Experiments
Finally, we evaluate the performance of TSAC in longitudinal flight control of
Boeing 747 with linearized dynamics [123]. We compare TSAC with three adaptive
control algorithms in the literature that do not require an initial stabilizing policy: (i)
OFULQ of Abbasi-Yadkori and Szepesvári [2], (ii) TS-LQR of Abeille and Lazaric
[7], and (iii) StabL. We perform 200 independent runs for 200 time steps for each
algorithm and report their average, top 95% and top 90% regret, and maximum state
norm performances. We present the performance of the best parameter choices for
each algorithm. For a fair comparison, we also adopt slow policy updates in OFULQ
and TS-LQR. For further details and the experimental results please refer to [166].
The results are presented in Table 3.8. Notice that TSAC achieves the second-best
performance after StabL. As expected, StabL outperforms TSAC since it performs
much heavier computations to find the optimistic controller in the confidence set,
whereas TSAC samples optimistic parameters only with some fixed probability.
However, TSAC compares favorably against both OFULQ and TS-LQR, making it
the best-performing computationally efficient algorithm.
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3.4 Conclusion and Future Directions
In this chapter, we proposed two learning and control algorithms StabL and TSAC
that both attain optimal regret of �̃� (

√
𝑇) in stabilizable LQRs without an initial

stabilizing policy. StabL follows the OFU principle to balance exploration and
exploitation in interaction with LQRs. We showed that if an additional random
exploration is enforced in the early stages of the agent’s interaction with the envi-
ronment, StabL has the guarantee to design a stabilizing controller sooner. We then
show that while the agent enjoys the benefit of stable dynamics in further stages, the
additional exploration does not alter the early performance of the agent considerably.
Finally, we prove that the regret upper bound of StabL is O(

√
𝑇) with polynomial

dependence in the problem dimensions of the LQRs in stabilizable systems.

Using the idea of early improved exploration to reduce regret, we designed TSAC
to alleviate the possible computational difficulties of StabL. TSAC follows Thomp-
son Sampling to balance exploration and exploitation in interaction within LQRs.
Quickly stabilizing the system dynamics and relying only on sampling from the
confidence sets make TSAC the first efficient adaptive control algorithm that attains
optimal regret of �̃� (

√
𝑇) in stabilizable LQRs without an initial stabilizing policy.

The main technical contribution in the development of TSAC is to show that TS sam-
ples optimistic parameters with constant probability in all LQRs, thereby resolving
the conjecture in Abeille and Lazaric [7] and achieving optimal regret performance,
similar to StabL. Note that our numerical experiments show that TSAC performs
slightly worse on regret and stabilization than StabL, corroborating our theoretical
results (StabL uses an optimistic parameter whereas TSAC samples one with at least
a non-zero probability). However, the computational efficiency of TSAC makes it a
viable option in practice where complicated projected gradient descent surrogate of
optimistic model selection of StabL is not feasible all the time.

Our results highlight the benefit of early improved exploration to achieve improved
regret at the expense of a slight increase in regret in the early stages. An important
future direction is to study this phenomenon in more challenging online control
problems in linear systems, e.g., under partial observability. Another interesting
direction is to combine this mindset with the existing state-of-the-art model-based
RL approaches for the general systems and study their performance.

Moreover, our results with TS show that a simple sampling strategy provides ef-
fective exploration to recover low-cost achieving controllers in adaptive control of
LQRs which yields order optimal regret. An important future direction is to in-
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vestigate whether TS achieves optimal regret in partially observable LTI systems,
e.g., [160, 163]. Even though we will provide some preliminary results in Chap-
ter 5 relying on the persistence of excitation, the general question of applying TS in
the measurement-feedback setting is still an open question. Moreover, to obtain a
constant probability of sampling optimistic parameters for general LQRs, TSAC re-
quires 𝑇𝑤 = 𝜔(

√
𝑇 log𝑇) time-steps of improved exploration (Theorem 3.4), which

causes the regret to be dominated by this phase. This long exploration is avoided
in LQRs with non-singular optimal closed-loop matrix, which results in regret that
scales polynomially in system dimensions (Theorem 3.3). It remains an open prob-
lem whether this polynomial dimension dependency in regret can be achieved via
TS in general LQRs.
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C h a p t e r 4

LEARNING AND CONTROL IN LINEAR TIME-VARYING
SYSTEMS

Time-invariant systems such as the ones considered in Chapter 3 have traditionally
been the main focus of the study for the linear dynamical systems community [305].
However, real-world systems are often time-varying. For example, consider a power
system that includes renewable generation (e.g., solar/wind). Due to the intermit-
tency of renewable energy, the system dynamics for frequency regulation in the
power system are time-varying. Applying a time-invariant controller in this setting
may lead to frequency instability and line failures [276]. Time-varying systems are
also crucial for many other applications, such as autonomous vehicles and aircraft
control [79]. While not all time-varying systems have linear dynamics, many ap-
plications can be approximated by linear time-varying (LTV) systems via a local
linear approximation at each time step [265], e.g., the frequency control example
described above. As a result, LTV systems are widely-used and there is a large
literature focused on designing controllers for LTV systems [14, 212].

Perhaps the most fundamental challenge in dynamical systems is stability. As
discussed in Chapter 3, the design of stable linear time-invariant (LTI) systems is
well understood, on the other hand, the same cannot be said for LTV systems. To
this point, several notions of stability have received attention, e.g., input-to-state
stability (ISS), mean-square stability, and Lyapunov stability. In this chapter, we
will study ISS and mean-square stability in two different LTV system examples1.

ISS is one of the most widely adopted notions in the stability of LTV systems. It aims
to guarantee the boundedness of the state given bounded initial conditions [114].
In most applications of LTV systems, it is crucial to guarantee ISS both in order to
avoid saturation and maintain the robustness and validity of linearization [142, 258].

In stochastic systems, mean-square stability is the crucial notion of stability. For a
system with a fixed-point, mean-square stability means that the system converges to
its fixed point asymptotically in the mean-square sense. For a noisy system, it implies
that the covariance matrix of the state vector stays finite and converges to the solution
of the Lyapunov equation of the system, i.e., the steady-state covariance matrix.

1This chapter is based on [165, 225].
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While there is considerable prior work focused on stability in LTV systems, most
prior work studies stability in the offline setting where either the sequence of system
parameters are known, e.g., [14, 182], or the system parameters have a particular
variation pattern, e.g., [94]. Maintaining stability guarantees becomes significantly
harder in the online setting where the system parameters are observed in real-time
and may have arbitrary variations. This online setting is the most relevant to many
real-world applications, e.g., frequency regulation.

Though stability is crucial, it is not enough for a controller to be stable. A controller
must also have low-cost. For instance, in order to stabilize the dynamics, a controller
may use arbitrarily big control inputs, which may result in sub-optimal costs. In
classical optimal control problems, e.g., the LQR in the previous chapter, the goal is
to design a stabilizing controller that minimizes the cost for a particular finite horizon
while assuming access to the whole trajectory for that duration. It is possible to
characterize the optimal policy in such settings [28]; however, in the online setting
when only current or short-termed system information is available, these methods
may not guarantee stability, e.g., see Section 4.2.2. There have been recent efforts
to provide sub-optimality guarantees on the acquired cost in the online LTV setting,
e.g., [98], but it is unclear if the proposed controllers maintain stability for all
time-steps since the main focus is on minimizing the cumulative cost.

Thus, in this chapter, we first consider the classical LTV system formulation and
aim to answer the following question:

Is it possible for an online controller to guarantee stability and maintain low cost
in LTV systems?

We propose an efficient online control algorithm, COvariance Constrained Online
Linear Quadratic (COCO-LQ) control, that guarantees input-to-state stability for a
large class of LTV systems while also minimizing the control cost. The proposed
method incorporates a state covariance constraint into the semi-definite program-
ming (SDP) formulation of the LQ optimal controller. We empirically demonstrate
the performance of COCO-LQ in both synthetic experiments and a power system
frequency control example.

After studying the classical LTV system setting, we study the effect of asynchrony
and randomization in the dynamical systems. In many computational tasks and
dynamical systems, asynchrony and randomization are naturally present and have
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been considered as ways to increase the speed and reduce the cost of computation
while compromising the accuracy and convergence rate. With this motivation,
we introduce a natural model for random asynchronous linear time-invariant (LTI)
systems which generalizes the standard (synchronous) LTI systems considered in
Chapter 3, and gives a new LTV system construction.

In this model, each state variable is updated randomly and asynchronously with
some probability according to the underlying system dynamics. We examine how
the mean-square stability of random asynchronous LTI systems vary with respect to
randomization and asynchrony. Surprisingly, we show that the stability of random
asynchronous LTI systems does not imply or is not implied by the stability of
the synchronous variant of the system and an unstable synchronous system can be
stabilized via randomization and/or asynchrony. We further study a special case of
the introduced model, namely randomized LTI systems, where each state element is
updated randomly with some fixed but unknown probability.

We consider the problem of system identification of unknown randomized LTI sys-
tems using the precise characterization of mean-square stability via the extended
Lyapunov equation. For unknown randomized LTI systems, we propose a sys-
tem identification method to recover the underlying dynamics. Given a single
input/output trajectory, our method estimates the model parameters that govern the
system dynamics, the update probability of state variables, and the noise covariance
using the correlation matrices of collected data and the extended Lyapunov equation.
Finally, we empirically demonstrate that the proposed method consistently recovers
the underlying system dynamics with the optimal rate.

4.1 Related Work and Background
This chapter builds on the design of linear time-invariant controllers to provide
a new approach for the design of stable controllers for linear-time-varying (LTV)
systems. As such, we describe related work on both LTI and LTV systems below.

In the study of the control of LTI systems, linear quadratic regulator (LQR) has been
considered in detail. In the classical setting where the underlying system is known,
the optimal control law is given by a linear feedback controller obtained by solving
Riccati equations [28]. Alternatively, the optimal control problem can also be posed
via semi-definite programming (SDP) [283], which is the approach we build on in
the current study.

Recently, there has been growing interest in online control of these linear systems
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when the underlying dynamics are unknown. Most of these works study the prob-
lem with a regret minimization perspective, e.g., [2, 71, 162, 166]. However, these
methods have so far only been applied in LTI systems with time-varying costs and
disturbances. Extensions to LTV dynamics, which are the focus of this chapter, are
not known.

As in the case of LTI systems, optimal control of LTV systems where the sequence
of system parameters can be obtained by solving backwards Riccati equations [28].
However, in the online case when the sequence of systems is unknown, the design
of controllers is challenging. There are several lines of work in adaptive control
and model-predictive control (MPC) that have been studied to this point. In adap-
tive control of LTV systems, the underlying systems are unknown and the results
generally assume slow and bounded or fixed systematic variation of dynamics with
bounded disturbances [193, 199, 212]. In MPC of LTV systems, a finite horizon of
sequence of systems (predictions) is known and the system is again assumed to be
slowly varying or open-loop stable, e.g., [78, 304]. Different from prior works, in
this chapter we consider the online problem and make no assumptions about how
the system varies over time. As in the LTI setting, the study of regret minimization
in LTV systems has recently received attention. Gradu et al. [98] are most related to
the current study. Gradu et al. [98] studies the adaptive regret of online control in
LTV systems with bounded cost. Note that when the cost is bounded, a finite regret
need not guarantee stability. In contrast, we use a quadratic (unbounded) cost and
we can guarantee stability.

Randomization and asynchrony are crucial to many computational tasks that involve
a large number of agents working cooperatively with each other [77, 135]. They
allow speed-ups and cost reductions in many artificial and biological processes
by removing the synchronization time, relaxing the communication bottlenecks,
minimizing the cost of cooperation, and increasing efficiency. For example, large-
scale control systems with multiple sensors adopt random asynchronous updates
from their sensors due to power saving and difficulty of synchronization [110].
Similarly, asynchrony and randomization are central elements in the dynamical
systems of biological neural networks [246, 273]. In various studies, e.g., [40,
75], researchers have found that the synchrony/asynchrony balance phenomenon is
ubiquitous in cortical networks. They show the existence of a delicate equilibrium
between synchrony and asynchrony of neural firings in many cognitive tasks and
regions of the brain such as visual, auditory, and memory maintenance to obtain
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stable dynamics during computations. Any disturbance to this natural equilibrium
may result in neurological disorders [274].

In modeling stochastic or varying dynamics like random asynchronous LTI systems,
there has been a strong interest in switching linear systems/Markov jump systems
[63, 210, 254, 257, 300, 301], in which state variables evolve according to a randomly
selected model among all possible models. Although randomized linear models
can be studied under this framework, the number of possible models becomes
exponential in the number of state variables, making this approach prohibitive for
large-scale systems. Moreover, the connections between the nodes in randomized
systems are mostly fixed without any switching between different systems. Having
these connections on or off is the main cause of randomization within the system.
Thus, in these dynamical systems, the underlying system is time-invariant while the
active interaction within the system is time-varying. Prior works that adopt switching
linear systems fail to capture the nature of random asynchronous LTI systems.

In addition to the switching systems viewpoint, the statistical behavior of LTV
systems can be also studied from the product of random matrices perspective [21,
74, 100, 104, 131, 219]. However, these frameworks usually come with additional
constraints on the state transition matrix, e.g., Hartfiel [104] requires it to be element-
wise nonnegative and Avron et al. [21] requires the state transition matric to be
positive definite. Similarly, approaches based on joint spectral radius are too
restrictive to reveal the effect of randomization [131].

In modeling the dynamics of a system, the underlying system is usually unknown and
only a sequence of inputs and outputs is available. This raises the system identifica-
tion problem which aims to recover the parameters that govern the dynamics from
the data collected. The classical and recent system identification methods mainly
focus on linear dynamical systems (LDS) and consider stable synchronous LTI sys-
tems or switching linear systems [160, 189, 214, 233]. For switching linear systems,
the system identification methods require the knowledge of the order of switched
systems, otherwise, they become computationally intractable and sample inefficient
due to exponential dimension dependency [170]. Thus, they have limited applica-
bility to large-scale practical random asynchronous LTI systems. This highlights
the necessity of a careful and systematic approach in deriving stability conditions
and system identification framework of random asynchronous LTI systems.
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Notation. We denote the Euclidean norm of a vector 𝑥 as ∥𝑥∥. For a matrix 𝐴,
∥𝐴∥ is its spectral norm, 𝐴⊤ is its transpose, and Tr(𝐴) is its trace, 𝜌(𝐴) denotes
the spectral radius of 𝐴, i.e., the largest absolute value of its eigenvalues. 𝛿(𝑡)
denotes the unit impulse function. The Kronecker product is denoted as ⊗ and ⊙
denotes the Hadamard product. N(`, Σ) denotes normal distribution with mean `
and covariance Σ. 𝐴 ≻ 𝐵 and 𝐴 ⪰ 𝐵 denote that 𝐴 − 𝐵 is positive definite and
positive semi-definite respectively. 𝐴 • 𝐵 denotes the element-wise inner product of
𝐴 and 𝐵, i.e., Tr(𝐴⊤𝐵). I𝑑 denotes 𝑑 × 𝑑 identity matrix.

4.2 Stable Online Control of Linear Time-Varying Systems
In this section, we design an online controller which guarantees ISS and main-
tains low regulating cost in LTV systems. Specifically, we propose Covariance
Constrained Online Linear Quadratic (COCO-LQ) control, a novel online control
algorithm that aims to minimize the control cost while ensuring provable stability
guarantees in LTV systems without restricting how slow or fast the underlying sys-
tem changes. Further, we demonstrate the performance of the proposed method in
various synthetic LTV systems and in the power system frequency control example
that motivated our study.

The main technical contribution of our study is a stability guarantee for COCO-LQ
in LTV systems. Specifically, we show that COCO-LQ guarantees ISS in online
time-varying systems. The key technique that underpins the proposed algorithm is
the addition of a novel semi-definiteness constraint on the state covariance matrix
into the standard online semi-definite programming (SDP) formulation of linear
quadratic optimal control. We show that this constraint promotes the sequential
strong stability of the controllers [61], which in turn guarantees ISS with a proper
choice of an algorithm hyperparameter. Adding this additional constraint is simple
and does not result in a significant increase of computational complexity compared
to the standard LQ formulation. Moreover, we prove that if the proposed SDP is
not directly feasible, short-term predictions on the future system parameters are
necessary and can be used in COCO-LQ in order to ensure ISS.

4.2.1 Problem Setting
We consider the following linear time-varying (LTV) system,

𝑥𝑡+1 = 𝐴𝑡𝑥𝑡 + 𝐵𝑡𝑢𝑡 + 𝑤𝑡 , (4.1)
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where 𝑥𝑡 ∈ R𝑑 is the system state, 𝑢𝑡 ∈ R𝑝 is the control input and 𝑤𝑡 ∈ R𝑑

is the disturbance at time 𝑡. The system is stochastic, i.e., 𝑤𝑡 ∼ N(0,𝑊) for
𝑊 ≻ 0. The cost at each time-step is a quadratic function of the state and control,
𝑥⊤𝑡 𝑄𝑥𝑡 + 𝑢⊤𝑡 𝑅𝑢𝑡 , where 𝑄, 𝑅 ≻ 0. The decision maker operates in an online setting.
That is, at each time-step 𝑡, the learner observes the state 𝑥𝑡 and system matrix
(𝐴𝑡 , 𝐵𝑡) before choosing action 𝑢𝑡 and suffering cost 𝑥⊤𝑡 𝑄𝑥𝑡 + 𝑢⊤𝑡 𝑅𝑢𝑡 . We assume
that the cost matrices (𝑄, 𝑅) are time-invariant and known to the learner. However,
future system matrices (𝐴𝑡+1, ..., 𝐴𝑇 ) and (𝐵𝑡+1, ..., 𝐵𝑇 ) are unknown to the learner
and are chosen by the environment, potentially stochastically or adversarially.

Stability. One of the most central goals for controller design is to ensure stability.
In this section, we focus on the notion of input-to-state stability (ISS) and strive
to design controllers that provide ISS. ISS has been the main notion of stability
considered in designing stabilizing controllers both in linear and nonlinear systems
[114, 127, 249]. To formally define ISS, let K∞ be the set of functions from
nonnegative reals to nonnegative reals that are continuous, strictly increasing, and
bĳective. Then, ISS is defined as follows.

Definition 4.1 (ISS). A LTV system with deterministic policy A is said to be input
to state stable if there exists functions 𝛽1 : [0,∞) × N→ [0,∞) and 𝛽2 ∈ K∞ that
satisfy 𝛽1(·, 𝑡) ∈ K∞ for any 𝑡 ∈ N, lim𝑡→∞ 𝛽1(𝑎, 𝑡) = 0 for any 𝑎 ≥ 0 such that, for
any disturbance sequence {𝑤𝑡}∞𝑡=0, any initial time 𝑡0, any initial state 𝑥𝑡0 , and any
𝑡 ≥ 𝑡0, we have ∥𝑥𝑡 ∥ ≤ 𝛽1(∥𝑥𝑡0 ∥, 𝑡 − 𝑡0) + 𝛽2(sup𝑡′∈N ∥𝑤𝑡′ ∥).

Cost. In addition to stability, another important objective for controller design is
maintaining a small, near-optimal control cost. Here we adopt the standard linear
quadratic (LQ) cost model, i.e.,

𝐽𝑇 (A) = lim
𝑇→∞

1
𝑇
E

[∑︁𝑇

𝑡=1
𝑥⊤𝑡 𝑄𝑥𝑡 + 𝑢⊤𝑡 𝑅𝑢𝑡

]
, (4.2)

where 𝑢1, . . . , 𝑢𝑡 are chosen according to policy A, and the expectation is taken
with respect to the randomness of noise sequence 𝑤𝑡 .

In this section, our goal is to ensure both stability and near-optimal cost. It should
be noted that there is a trade-off between these two goals. On the one hand, a
stabilizing controller without cost-awareness may produce arbitrarily large control
inputs and induce high cost, which is impractical to implement. On the other hand,
a greedy approach that merely focuses on cost minimization may lead to instability,
as we highlight in the Section 4.2.2 below.
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Though our focus is on LTV systems, our approach builds on the SDP formulation
of the optimal controller for LTI systems in [283].

Proposition 4.1. [283] When 𝐴𝑡 = 𝐴, 𝐵𝑡 = 𝐵 and (𝐴, 𝐵) is controllable, the optimal
𝐾∗ = 𝐿𝑄𝑅(𝐴, 𝐵, 𝑄, 𝑅) where 𝑢𝑡 = 𝐾∗𝑥𝑡 , can be obtained by the following SDP

min
Σ⪰0

[
𝑄 0
0 𝑅

]
• Σ s.t. Σ𝑥𝑥 =

[
𝐴𝑡 𝐵𝑡

]
Σ

[
𝐴𝑡 𝐵𝑡

]⊤
+𝑊,

which has a unique symmetric solution Σ∗ that decomposes to the following blocks

Σ∗ =

[
Σ∗𝑥𝑥 Σ∗𝑥𝑢
Σ∗𝑥𝑢
⊤ Σ∗𝑢𝑢

]
, where Σ∗𝑥𝑥 ∈ R𝑑×𝑑 , Σ∗𝑥𝑢 ∈ R𝑑×𝑝 and Σ∗𝑢𝑢 ∈ R𝑝×𝑝. Then, the

optimal controller is 𝐾∗ = Σ∗𝑥𝑢
⊤(Σ∗𝑥𝑥)−1.

The optimal LQR controller described above both stabilizes the system and achieves
the minimum cost. The current study makes a step toward understanding if it is
possible to extend this formulation to the case of LTV systems.

4.2.2 Naive Approach
How to achieve stable, cost-optimal control of LTI systems is well-known; however
this is not the case in LTV systems. To illustrate the challenge of online control of
LTV systems, we start by studying the performance of a naive “plug-in” approach
where upon receiving (𝐴𝑡 , 𝐵𝑡), an optimal controller for 𝐴𝑡 , 𝐵𝑡 is computed under
the assumption that the system is time-invariant. Due to its simplicity, this approach
has been employed in many contexts, e.g., Li et al. [183] for a Markov decision
process setting. In this section we provide an example that shows that such a myopic
approach based on optimal LTI control described above fails to stabilize the system
even in simple settings where 𝐴𝑡 can only switch between two possible choices and
𝐵𝑡 is fixed. This highlights that one cannot naively apply LTI design approaches in
LTV systems and expect to maintain stability.

Example 4.1. Consider a system with 𝑄 = 𝜖 𝐼, 𝑅 = 𝐼, 𝑤𝑡 = 0, and

𝐴 =

[
𝜌 0
𝑎 𝜌

]
, 𝐴′ =

[
𝜌 𝑎

0 𝜌

]
,

where 0 < 𝜌 < 1, and 𝑎 >
√

2. Suppose 𝐴𝑡 alternates between 𝐴 and 𝐴′ and
𝐵𝑡 =𝐵= 𝐼. Define the optimal LTI controllers for 𝐴 and 𝐴′ as 𝐾 :=𝐿𝑄𝑅(𝐴, 𝐵, 𝑄, 𝑅)
and 𝐾′ := 𝐿𝑄𝑅(𝐴′, 𝐵, 𝑄, 𝑅). To show that the optimal LTI controllers will not
stabilize the system, we consider a case where 𝜖 → 0. In this case, one can check



98

that 𝐾, 𝐾′ → 0. Since 𝐴𝑡 alternates between 𝐴, 𝐴′, 𝐾𝑡 also alternates between 𝐾
and 𝐾′ under the myopic design we are considering. Thus, the system state follows
𝑥𝑡+2 = (𝐴 + 𝐾) (𝐴′ + 𝐾′)𝑥𝑡 . Notice that as 𝜖 → 0,

(𝐴 + 𝐾) (𝐴′ + 𝐾′) → 𝐴𝐴′ =

[
𝜌2 𝑎𝜌

𝑎𝜌 𝑎2 + 𝜌2

]
.

Here, 𝐴𝐴′ is unstable since its largest eigenvalue is greater than 1
2 Tr(𝐴𝐴′) =

𝜌2+ 𝑎2

2 > 1. Thus, for small enough 𝜖 , the naive strategy that uses the LTI controller
at each time-step leads to instability.

4.2.3 Main Result
The previous section highlights that a naive application of LTI control cannot guar-
antee stability for LTV systems. We now propose a new approach, COvariance
Constrained Online LQ (COCO-LQ) control. Our main technical result shows that
COCO-LQ provably guarantees stability in LTV systems when the SDP is feasible.
Then, we discuss how to handle the situation when the SDP is infeasible. Finally,
we discuss the effect of model estimation error.

COvariance Constrained Online LQ (COCO-LQ)

The naive approach discussed in Section 4.2.2 seeks to solve the LTI problem at
every time step, which is equivalent to solving the SDP in Proposition 4.1 for every
(𝐴𝑡 , 𝐵𝑡). The reason this method fails is that it only considers cost minimization
without explicitly considering stability. The main idea of COCO-LQ is to enforce
stability via a state covariance constraint embedded into the SDP framework. The
proposed algorithm is stated formally in Algorithm 7.

COCO-LQ solves an SDP (4.3) at each time step that is similar to that in Propo-
sition 4.1. The crucial difference is the new constraint (4.3c), which involves
parameter 𝛼. Plugging (4.3a) into constraint (4.3c) yields the following:

Σ𝑥𝑥 ⪯
1

1 − 𝛼𝑊.

This highlights that constraint (4.3c) can be interpreted as an upper bound on the
state covariance matrix Σ𝑥𝑥 . When 𝛼 = 0, the controller essentially cancels out the
dynamics, without taking into account the cost of doing so. This ensures stability
but can lead to large cost. At another extreme, when 𝛼→ 1, the SDP solved at each
time step is the same as for the LTI setting, and so COCO-LQ matches the naive
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Algorithm 7 COCO-LQ: COvariance Constrained Online LQ
1: Input: 𝛼 ∈ [0, 1), 𝑄, 𝑅,𝑊 ≻ 0
2: for 𝑡 = 1, 2, ... do
3: Receive state 𝑥𝑡 , and system parameter 𝐴𝑡 , 𝐵𝑡
4: Solve the following SDP for Σ𝑡 ∈ R(𝑑+𝑝)×(𝑑+𝑝):

minimize
[
𝑄 0
0 𝑅

]
• Σ

subject to Σ𝑥𝑥 =
[
𝐴𝑡 𝐵𝑡

]
Σ

[
𝐴𝑡 𝐵𝑡

]⊤ +𝑊 (4.3a)
Σ ⪰ 0 (4.3b)[
𝐴𝑡 𝐵𝑡

]
Σ

[
𝐴𝑡 𝐵𝑡

]⊤ ⪯ 𝛼Σ𝑥𝑥 (4.3c)

5: Compute the control gain 𝐾𝑡 = Σ⊤𝑥𝑢Σ
−1
𝑥𝑥 , where Σ𝑡 =

[
Σ𝑥𝑥 Σ𝑥𝑢
Σ𝑥𝑢
⊤ Σ𝑢𝑢

]
6: Execute control action 𝑢𝑡 = 𝐾𝑡𝑥𝑡

approach. Thus, 𝛼 trades off between stability and cost. In the following section, we
show that this novel state covariance constraint promotes sequential strong stability
[61], which in turn guarantees ISS with a proper choice of 𝛼.

Stability

We now state our main technical result, which provides a formal stability guarantee
for COCO-LQ.

Theorem 4.1. Let 0 ≤ 𝛼 < 1/2, and suppose (4.3) is feasible for all 𝑡, then
the resulting dynamical system satisfies ISS in the sense that for any disturbance
sequence {𝑤𝑡}∞𝑡=0 and for any 𝑡 ≥ 𝑡0,

∥𝑥𝑡 ∥ ≤ 𝜌𝑡−𝑡0 ∥𝑥𝑡0 ∥ +
^𝜌

1 − 𝜌 sup
𝑡0≤𝑘<𝑡

∥𝑤𝑘 ∥

for 𝜌 =
√︁

𝛼
1−𝛼 ∈ [0, 1) and ^ =

^𝑊√
1−𝛼

, where ^𝑊 = ∥𝑊 ∥∥𝑊−1∥ is the condition
number of𝑊 .

The key intuition underpinning this result is that the additional state covariance
constraint (4.3c) implicitly enforces sequential strong stability [61], which in turn
ensures ISS. These results are formally stated in Lemma 4.1 and Lemma 4.2 respec-
tively. First, we formally define sequential strong stability.

Definition 4.2 (Sequential Strong Stability). A sequence of policies 𝐾1, 𝐾2, ..., such
that 𝑢𝑡 = 𝐾𝑡𝑥𝑡 is (^, 𝛾, 𝜌)-sequential strongly stable (for ^ > 0, 0 < 𝛾 ≤ 1 and
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0 ≤ 𝜌 < 1) if there exist matrices 𝐻1, 𝐻2, ..., and 𝐿1, 𝐿2..., such that 𝐴𝑡 + 𝐵𝑡𝐾𝑡 =
𝐻𝑡𝐿𝑡𝐻

−1
𝑡 for all 𝑡, with the following properties: (a) ∥𝐿𝑡 ∥ ≤ 1 − 𝛾; (b) ∥𝐻𝑡 ∥ ≤ 𝛽1

and | |𝐻−1
𝑡 | | ≤ 1/𝛽2 with ^ = 𝛽1/𝛽2; (c) ∥𝐻−1

𝑡+1𝐻𝑡 ∥ ≤
𝜌

1−𝛾 .

With this definition in place, we present the connection between the condition
in (4.3c) and sequential strong stability.

Lemma 4.1. Under the conditions in Theorem 4.1, the policies designed by COCO-
LQ are (^, 𝛾, 𝜌)-sequential strongly stability for ^ =

^𝑊√
1−𝛼

, 𝛾 = 1 −
√
𝛼, 𝜌 =

√︁
𝛼

1−𝛼
where ^𝑊 = ∥𝑊 ∥∥𝑊−1∥.

Proof. To prove Lemma 4.1, we first show that the optimal solution to the SDP in
(4.3) has a specific low rank structure. In particular, we claim that if (4.3) has a
minimizer Σ∗, then there exists a 𝐾 ∈ R𝑝×𝑑 s.t. Σ∗ can be written as

Σ∗ =

[
Σ∗𝑥𝑥 Σ∗𝑥𝑢
(Σ∗𝑥𝑢)⊤ Σ∗𝑢𝑢

]
=

[
Σ∗𝑥𝑥 Σ∗𝑥𝑥𝐾

⊤

𝐾Σ∗𝑥𝑥 𝐾Σ∗𝑥𝑥𝐾
⊤

]
. (4.4)

To see this, first note that Σ∗𝑥𝑥 ⪰ 𝑊 ≻ 0, and therefore we can simply define
𝐾 = (Σ∗𝑥𝑢)⊤(Σ∗𝑥𝑥)−1, and the only thing we need to show is Σ∗𝑢𝑢 = 𝐾Σ∗𝑥𝑥𝐾⊤. Suppose
this is not true, then since Σ∗ ⪰ 0, there must exist 𝐷 ≠ 0, 𝐷 ⪰ 0 s.t.

Σ∗𝑢𝑢 = 𝐾Σ
∗
𝑥𝑥𝐾

⊤ + 𝐷. (4.5)

Then, by (4.3a), we also have,

Σ∗𝑥𝑥 = (𝐴𝑡 + 𝐵𝑡𝐾)Σ∗𝑥𝑥 (𝐴𝑡 + 𝐵𝑡𝐾)⊤ + 𝐵𝑡𝐷𝐵⊤𝑡 +𝑊. (4.6)

Viewing the above as a Lyapunov equation in terms ofΣ∗𝑥𝑥 , and since 𝐵𝑡𝐷𝐵⊤𝑡 +𝑊 ≻ 0
and Σ∗𝑥𝑥 ≻ 0, we get 𝐴𝑡 + 𝐵𝑡𝐾 is a stable matrix. Next, since 𝐴𝑡 + 𝐵𝑡𝐾 is stable, we
can construct Σ̃𝑥𝑥 to be the unique solution to the following Lyapunov equation,

Σ̃𝑥𝑥 = (𝐴𝑡 + 𝐵𝑡𝐾)Σ̃𝑥𝑥 (𝐴𝑡 + 𝐵𝑡𝐾)⊤ +𝑊. (4.7)

We further define,

Σ̃ =

[
Σ̃𝑥𝑥 Σ̃𝑥𝑥𝐾

⊤

𝐾Σ̃𝑥𝑥 𝐾Σ̃𝑥𝑥𝐾
⊤

]
,
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and we claim that Σ̃ is a feasible solution to (4.3). Clearly Σ̃ is positive semi-definite,
and further, it satisfies (4.3a). We now check that (4.3c) is met below.[
𝐴𝑡 𝐵𝑡

]
Σ̃

[
𝐴𝑡 𝐵𝑡

]⊤
− 𝛼Σ̃𝑥𝑥

= (𝐴𝑡 + 𝐵𝑡𝐾)Σ̃𝑥𝑥 (𝐴𝑡 + 𝐵𝑡𝐾)⊤ − 𝛼Σ̃𝑥𝑥
= (𝐴𝑡+𝐵𝑡𝐾)Σ∗𝑥𝑥 (𝐴𝑡+𝐵𝑡𝐾)⊤−𝛼Σ∗𝑥𝑥+(𝐴𝑡+𝐵𝑡𝐾) (Σ̃𝑥𝑥−Σ∗𝑥𝑥) (𝐴𝑡+𝐵𝑡𝐾)⊤−𝛼(Σ̃𝑥𝑥−Σ∗𝑥𝑥)
= [𝐴𝑡 ,𝐵𝑡]Σ∗ [𝐴𝑡 ,𝐵𝑡]⊤−𝐵𝑡𝐷𝐵⊤𝑡 −𝛼Σ∗𝑥𝑥+(𝐴𝑡+𝐵𝑡𝐾) (Σ̃𝑥𝑥−Σ∗𝑥𝑥) (𝐴𝑡+𝐵𝑡𝐾)⊤−𝛼(Σ̃𝑥𝑥−Σ∗𝑥𝑥)
⪯ −𝐵𝑡𝐷𝐵⊤𝑡 + (𝐴𝑡 + 𝐵𝑡𝐾) (Σ̃𝑥𝑥 − Σ∗𝑥𝑥) (𝐴𝑡 + 𝐵𝑡𝐾)⊤ − 𝛼(Σ̃𝑥𝑥 − Σ∗𝑥𝑥), (4.8)

where (4.8) is due to Σ∗ must satisfy (4.3c). Subtracting (4.6) from (4.7), we have,

Σ̃𝑥𝑥 − Σ∗𝑥𝑥 = (𝐴𝑡 + 𝐵𝑡𝐾) (Σ̃𝑥𝑥 − Σ∗𝑥𝑥) (𝐴𝑡 + 𝐵𝑡𝐾)⊤ − 𝐵𝑡𝐷𝐵⊤𝑡 . (4.9)

Plugging (4.9) into (4.8), we have,[
𝐴𝑡 𝐵𝑡

]
Σ̃

[
𝐴𝑡 𝐵𝑡

]⊤
− 𝛼Σ̃𝑥𝑥 ⪯ (1 − 𝛼) (Σ̃𝑥𝑥 − Σ∗𝑥𝑥).

Therefore, to check (4.3c) it remains to show Σ̃𝑥𝑥 − Σ∗𝑥𝑥 ⪯ 0. To see this, we view
(4.9) as a Lyapunov equation in terms of Σ̃𝑥𝑥 − Σ∗𝑥𝑥 , and as 𝐴𝑡 + 𝐵𝑡𝐾 is stable, and
𝐵𝑡𝐷𝐵

⊤
𝑡 ⪰ 0, we have Σ̃𝑥𝑥 − Σ∗𝑥𝑥 ⪯ 0. As a result, (4.3c) holds and Σ̃𝑥𝑥 is indeed a

feasible solution to (4.3).

Further, we can show Σ̃ achieves a strictly lower cost than Σ∗. To see this, note we
have already shown Σ̃𝑥𝑥 ⪯ Σ∗𝑥𝑥 , which also implies Σ̃𝑢𝑢 = 𝐾Σ̃𝑥𝑥𝐾

⊤ ⪯ 𝐾Σ∗𝑥𝑥𝐾⊤ =

Σ∗𝑢𝑢−𝐷 with 𝐷 ⪰ 0, 𝐷 ≠ 0. Coupled this with the fact that𝑄, 𝑅 are strictly positive
definite, we deduce that Σ̃ must achieve a lower cost. So we get a contradiction, and
verified that (4.4) holds.

Now that we established the decomposition in (4.4) for the solution of (4.3), we
proceed with the proof of Lemma 4.1. Let Σ𝑡 be the solution to the SDP (4.3) at
step 𝑡. Then, Σ𝑡 can be rewritten as,

Σ𝑡 =

[
Σ𝑡,𝑥𝑥 Σ𝑡,𝑥𝑥𝐾

⊤
𝑡

𝐾𝑡Σ𝑡,𝑥𝑥 𝐾𝑡Σ𝑡,𝑥𝑥𝐾
⊤
𝑡

]
,

for some Σ𝑡,𝑥𝑥 ≻ 0, and 𝐾𝑡 is the linear controller at step 𝑡. With this, we can re-write
the left side of constraint (4.3c) as follows,[
𝐴𝑡 𝐵𝑡

]
Σ𝑡

[
𝐴𝑡 𝐵𝑡

]⊤
=

[
𝐴𝑡 𝐵𝑡

] [
Σ𝑡,𝑥𝑥 Σ𝑡,𝑥𝑥𝐾

⊤
𝑡

𝐾𝑡Σ𝑡,𝑥𝑥 𝐾𝑡Σ𝑡,𝑥𝑥𝐾
⊤
𝑡

] [
𝐴⊤𝑡
𝐵⊤𝑡

]
= 𝐴𝑡Σ𝑡,𝑥𝑥𝐴

⊤
𝑡 +𝐴𝑡𝐾𝑡Σ𝑡,𝑥𝑥𝐵⊤𝑡 +𝐵𝑡Σ𝑡,𝑥𝑥𝐾⊤𝑡 𝐴⊤𝑡 +𝐵𝑡𝐾𝑡Σ𝑡,𝑥𝑥𝐾⊤𝑡 𝐵⊤𝑡

= (𝐴𝑡 + 𝐵𝑡𝐾𝑡)Σ𝑡,𝑥𝑥 (𝐴𝑡 + 𝐵𝑡𝐾𝑡)⊤.
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As a result, (4.3c) can be equivalently expressed as,

(𝐴𝑡 + 𝐵𝑡𝐾𝑡)Σ𝑡,𝑥𝑥 (𝐴𝑡 + 𝐵𝑡𝐾𝑡)⊤ ⪯ 𝛼Σ𝑡,𝑥𝑥 . (4.10)

Left and right multiplying the above by Σ
−1/2
𝑡,𝑥𝑥 , we get

Σ
−1/2
𝑡,𝑥𝑥 (𝐴𝑡 + 𝐵𝑡𝐾𝑡)Σ

1/2
𝑡,𝑥𝑥Σ

1/2
𝑡,𝑥𝑥 (𝐴𝑡 + 𝐵𝑡𝐾𝑡)⊤Σ

−1/2
𝑡,𝑥𝑥 ⪯ 𝛼𝐼 . (4.11)

Let 𝐻𝑡 = Σ
1/2
𝑡,𝑥𝑥 , 𝐿𝑡 = Σ

−1/2
𝑡,𝑥𝑥 (𝐴𝑡 + 𝐵𝑡𝐾𝑡)Σ

1/2
𝑡,𝑥𝑥 . We get the following decomposition,

(𝐴𝑡 + 𝐵𝑡𝐾𝑡) = 𝐻𝑡𝐿𝑡𝐻−1
𝑡 . (4.12)

We now show that this decomposition yields the desired sequential stability property.
To do so, we need to check the three conditions in Definition 4.2.

To check condition (a) in Definition 4.2, note that (4.11) provides an upper bound
on ∥𝐿𝑡 ∥, that is 𝐿𝑡𝐿⊤𝑡 ⪯ 𝛼𝐼. Therefore, ∥𝐿𝑡 ∥ ≤

√
𝛼 = 1 − 𝛾 with 𝛾 = 1 −

√
𝛼.

To check condition (b) which is an upper bound on ∥𝐻𝑡 ∥ and ∥𝐻−1
𝑡 ∥, we recall

constraint (4.3a), [
𝐴𝑡 𝐵𝑡

]
Σ𝑡

[
𝐴𝑡 𝐵𝑡

]⊤
= Σ𝑡,𝑥𝑥 −𝑊.

As the left-hand side of the above is positive semi-definite, we must have Σ𝑡,𝑥𝑥 ⪰ 𝑊 .
Further, plugging (4.3a) into (4.3c), we can get, Σ𝑡,𝑥𝑥 −𝑊 ⪯ 𝛼Σ𝑡,𝑥𝑥 . These can be
equivalently written as

𝑊 ⪯ Σ𝑡,𝑥𝑥 ⪯
𝑊

1 − 𝛼 . (4.13)

Therefore, ∥𝐻𝑡 ∥ = ∥Σ1/2
𝑡,𝑥𝑥 ∥ ≤

∥𝑊1/2∥√
1−𝛼

, ∥𝐻−1
𝑡 ∥ = ∥Σ

−1/2
𝑡,𝑥𝑥 ∥ ≤ ∥𝑊−1/2∥, ∥𝐻𝑡 ∥∥𝐻−1

𝑡 ∥ ≤
∥𝑊1/2∥∥𝑊−1/2∥√

1−𝛼
=

^𝑊√
1−𝛼

. Therefore, condition (b) holds with ^ = ^𝑊√
1−𝛼

.

Lastly, we check condition (c), which is an upper bound on ∥𝐻−1
𝑡+1𝐻𝑡 ∥. Note that,

𝐻−1
𝑡+1𝐻𝑡𝐻

⊤
𝑡 (𝐻−1

𝑡+1)
⊤=𝐻−1

𝑡+1Σ𝑡,𝑥𝑥 (𝐻
−1
𝑡+1)
⊤⪯ 1

1−𝛼 (Σ𝑡+1,𝑥𝑥)
−1/2𝑊 (Σ𝑡+1,𝑥𝑥)−1/2⪯ 1

1−𝛼 𝐼,

where the two inequalities in the above derivations are due to (4.13). As a result,
we have ∥𝐻−1

𝑡+1𝐻𝑡 ∥ ≤
1√

1−𝛼
=

𝜌

1−𝛾 with 𝜌 =
√
𝛼√

1−𝛼
. As 𝛼 < 1/2, we have 𝜌 < 1.

As such, condition (c) holds. In summary, the (^, 𝛾, 𝜌) strong sequential stability
holds, with ^ = ^𝑊√

1−𝛼
, 𝛾 = 1 −

√
𝛼, and 𝜌 =

√︁
𝛼

1−𝛼 , which concludes the proof. □

Now that we established the sequential strong stability of the policies obtained via
COCO-LQ, we require relating this fact to ISS. The following provides the remaining
piece in the proof of Theorem 4.1.
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Lemma 4.2. Suppose a sequence of policies 𝐾1, . . . , 𝐾𝑡 is (^, 𝛾, 𝜌)-sequential
strongly stable. Then, the closed-loop system obtained via the sequence of these
policies is input-to-state stable in the sense that for any 𝑡 ≥ 𝑡0 ≥ 1,

∥𝑥𝑡 ∥ ≤ ^𝜌𝑡−𝑡0 ∥𝑥𝑡0 ∥ +
^𝜌

1 − 𝜌 max
𝑡0≤𝑠<𝑡

∥𝑤𝑠∥.

Proof. For notational simplicity, we only prove the case with 𝑡0 = 1; the general case
follows similarly, at the cost of heavier notations. Let 𝑥1, 𝑥2, ... be a sequence of states
starting from initial state 𝑥1, and generated by the dynamics 𝑥𝑡+1 = 𝐴𝑡𝑥𝑡 +𝐵𝑡𝑢𝑡 +𝑤𝑡 =
(𝐴𝑡 + 𝐵𝑡𝐾𝑡)𝑥𝑡 + 𝑤𝑡 . Hence, 𝑥𝑡 = 𝑀1𝑥1 +

∑𝑡−1
𝑠=1 𝑀𝑠+1𝑤𝑠, where

𝑀𝑡 = 𝐼;𝑀𝑠 = 𝑀𝑠+1(𝐴𝑠 + 𝐵𝑠𝐾𝑠) = (𝐴𝑡−1 + 𝐵𝑡−1𝐾𝑡−1) · · · (𝐴𝑠 + 𝐵𝑠𝐾𝑠).

By the sequential strong stability, there exist matrices 𝐻1, 𝐻2, ... and 𝐿1, 𝐿2, ...

such that 𝐴 𝑗 + 𝐵 𝑗𝐾 𝑗 = 𝐻 𝑗𝐿 𝑗𝐻
−1
𝑗

, and 𝐻 𝑗 , 𝐿 𝑗 satisfy the properties specified in
Definition 4.2. Thus we have for all 1 ≤ 𝑠 < 𝑡,

∥𝑀𝑠∥ = ∥𝐻𝑡−1𝐿𝑡−1𝐻
−1
𝑡−1𝐻𝑡−2𝐿𝑡−1𝐻

−1
𝑡−2 · · ·𝐻𝑠𝐿𝑠𝐻

−1
𝑠 ∥

≤ ∥𝐻𝑡−1∥
(
𝑡−1∏
𝑗=𝑠

∥𝐿 𝑗 ∥
) (

𝑡−2∏
𝑗=𝑠

∥𝐻−1
𝑗+1𝐻 𝑗 ∥

)
∥𝐻−1

𝑠 ∥ ,

≤ 𝛽1(1 − 𝛾)𝑡−𝑠 (
𝜌

1 − 𝛾 )
𝑡−𝑠−1(1/𝛽2) ≤

^(1 − 𝛾)
𝜌

𝜌𝑡−𝑠 .

As ^ ≥ 1, the same holds for 𝑀𝑡 . Thus, we have,

∥𝑥𝑡 ∥ ≤ ∥𝑀1∥∥𝑥1∥ +
𝑡−1∑︁
𝑠=1
∥𝑀𝑠+1∥∥𝑤𝑠∥

≤ ^𝜌𝑡−1∥𝑥1∥ + ^
𝑡−1∑︁
𝑠=1

𝜌𝑡−𝑠−1∥𝑤𝑠∥ ≤ ^𝜌𝑡−1∥𝑥1∥ +
^𝜌

1 − 𝜌 max
1≤𝑠<𝑡

∥𝑤𝑠∥.

□

Proof of Theorem 4.1. Combining Lemma 4.1 with Lemma 4.2 gives the advertised
result of stability for COCO-LQ. □

A critical assumption in Theorem 4.1 is that (4.3) is feasible for 0 ≤ 𝛼 < 1/2. The
following result provides a condition when the problem is always feasible.

Lemma 4.3. When 𝐵𝑡 is full row rank, then the SDP (4.3) is always feasible.
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Proof. We prove this result by explicitly constructing a feasible solution for (4.3).
As 𝐵𝑡 has full row rank, 𝐵𝑡𝐵⊤𝑡 is invertible. Let

Σ0 =

[
𝑊 −𝑊𝐴⊤𝑡 (𝐵𝑡𝐵⊤𝑡 )−1𝐵𝑡

−𝐵⊤𝑡 (𝐵𝑡𝐵⊤𝑡 )−1𝐴𝑡𝑊 𝐵⊤𝑡 (𝐵𝑡𝐵⊤𝑡 )−1𝐴𝑡𝑊𝐴
⊤
𝑡 (𝐵𝑡𝐵⊤𝑡 )−1𝐵𝑡

]
=

[
𝐼

−𝐵⊤𝑡 (𝐵𝑡𝐵⊤𝑡 )−1𝐴𝑡

]
𝑊

[
𝐼

−𝐵⊤𝑡 (𝐵𝑡𝐵⊤𝑡 )−1𝐴𝑡

]⊤
.

It suffices to show that Σ0 satisfies (4.3a), (4.3b), and (4.3c). Notice that

[𝐴𝑡 , 𝐵𝑡]Σ0 [𝐴𝑡 , 𝐵𝑡]⊤ = (𝐴𝑡 − 𝐵𝑡𝐵⊤𝑡 (𝐵𝑡𝐵⊤𝑡 )−1𝐴𝑡)𝑊 (𝐴𝑡 − 𝐵𝑡𝐵⊤𝑡 (𝐵𝑡𝐵⊤𝑡 )−1𝐴𝑡)⊤ = 0.

Therefore, constraint (4.3a) is equivalent to Σ𝑥𝑥 = 𝑊 , which holds by the construc-
tion of Σ0. Next, as 𝑊 ≻ 0, Σ0 is clearly positive semi-definitive and (4.3b) holds.
Finally, note the left-hand side of (4.3c) is 0, and the right-hand side of (4.3c) is
positive semi-definite. As a result, (4.3c) holds. □

Note that having 𝐵𝑡 full row rank is a sufficient but not necessary condition for the
feasibility of (4.3) of COCO-LQ. When 𝐵𝑡 is not full row rank, the feasibility as-
sumption may still hold, and therefore our assumption is weaker than the invertibility
assumption used in the literature, e.g., Lai [155]. More broadly, in Theorem 4.1,
𝛼 < 0.5 is a sufficient condition for stability. For 𝛼 ≥ 0.5, stability may still hold for
some problem instances (𝐴𝑡 , 𝐵𝑡) as will be shown in the simulations in Section 4.2.4.
How to provide a more refined instance-dependent threshold on 𝛼 is an interesting
future direction.

Infeasibility and the Role of Predictions

We now turn our attention to the case when the SDP given in (4.3) is infeasible. In
this case it is necessary for the controller to use additional information in order to
stabilize the system. In particular, the following example shows that when 𝐵𝑡 is not
full row rank, for any (deterministic) online control algorithm that has causal access
to system matrices, there exists a future sequence of (𝐴𝑡 , 𝐵𝑡) such that the system
state will blow up from a given initial state.

Example 4.2. Set 𝑑 = 2, 𝑝 = 1, i.e., 𝐴𝑡 is 2-by-2 and 𝐵𝑡 is 2-by-1. For all 𝑡, we
set 𝐵𝑡 = [1, 0]⊤, and for even time indices 𝑡 = 2𝑘 , we set 𝐴𝑡 = 𝐼. Further, assume
that 𝑥0 = [1, 1]⊤ and 𝑤𝑡 = 0. Our construction is based on induction. Suppose
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Algorithm 8 COCO-LQ with Predictions
1: Input: 𝛼 ∈ [0, 1), 𝑄, 𝑅,𝑊 ≻ 0
2: for 𝑡 = 1, 2, ... do
3: Receive state 𝑥𝑡
4: if 𝑡 ≡ 1 (mod 𝐻) then
5: Receive system parameters (𝐴𝑡 , 𝐵𝑡), . . . , (𝐴𝑡+𝐻−1, 𝐵𝑡+𝐻−1)
6: Solve (4.3) by replacing 𝑅 with �̃�= I𝐻 ⊗ 𝑅, 𝐴𝑡 with �̃�𝑡≔ [𝐴𝑡+𝐻−1 · · · 𝐴𝑡],

and 𝐵𝑡 with �̃�𝑡 ≔ [𝐵𝑡+𝐻−1, 𝐴𝑡+𝐻−1𝐵𝑡+𝐻−2, . . . , 𝐴𝑡+𝐻−1 · · · 𝐴𝑡+1𝐵𝑡] to
recover Σ𝑡

7: Compute Kt = [𝐾⊤𝑡 , . . . , 𝐾⊤𝑡+𝐻−1]
⊤=Σ⊤𝑥𝑢Σ

−1
𝑥𝑥 , where Σ𝑡 =

[
Σ𝑥𝑥 Σ𝑥𝑢
Σ𝑥𝑢
⊤ Σ𝑢𝑢

]
8: Execute control action 𝑢𝑡 = 𝐾𝑡𝑥𝑡

at an even index 𝑡 = 2𝑘 , 𝑥2𝑘 = [𝑥2𝑘,1, 𝑥2𝑘,2]⊤ with 𝑥2𝑘,2 ≥ 0. Then, after 𝑢2𝑘 is
determined, we set

𝐴2𝑘+1 =

[
1 0
𝜖 2

]
with 𝜖 = 0.5 |𝑥2𝑘,2 |

max( |𝑥2𝑘,1 |,1) sign(𝑢2𝑘 ) Then, after (𝐴2𝑘+1, 𝐵2𝑘+1) is revealed to the agent,
it takes an action𝑢2𝑘+1, resulting in 𝑥2𝑘+2 = 𝐴2𝑘+1𝐴2𝑘𝑥2𝑘+𝐴2𝑘+1𝐵2𝑘𝑢2𝑘+𝐵2𝑘+1𝑢2𝑘+1.
Since 𝐴2𝑘 = 𝐼 and 𝐵2𝑘 = 𝐵2𝑘+1 = [1, 0]⊤, the second coordinate of 𝑥2𝑘+2 can then
be written as 𝑥2𝑘+2,2 = 𝜖𝑥2𝑘,1 + 2𝑥2𝑘,2 + 𝜖𝑢2𝑘 . By the way 𝜖 is chosen, we have
𝜖𝑢2𝑘 ≥ 0, and |𝜖𝑥2𝑘,1 | ≤ 0.5|𝑥2𝑘,2 |, and therefore, 𝑥2𝑘+2,2 ≥ 1.5𝑥2𝑘,2. Since the
system starts with 𝑥0 = [1, 1]⊤, applying the argument above recursively, we have
for any 𝑘 , 𝑥2𝑘,2 ≥ 1.5𝑘 , i.e., the state blows up.

In this section, we show that using (𝐴𝑡 , 𝐵𝑡) together with short-term predictions of
future system matrices is enough to stabilize the system under standard controlla-
bility assumptions. Specifically, we extend COCO-LQ to include future 𝐻 steps of
predictions in Algorithm 8. The key idea is to rewrite the dynamics as

𝑥𝑡+𝐻 = �̃�𝑡𝑥𝑡 + �̃�𝑡 �̄�𝑡 + [𝐼, 𝐴𝑡+𝐻−1, · · · , 𝐴𝑡+𝐻−1...𝐴𝑡+1]�̄�𝑡 , (4.14)

where �̃�𝑡 := 𝐴𝑡+𝐻−1 · · · 𝐴𝑡 , �̃�𝑡 := [𝐵𝑡+𝐻−1, 𝐴𝑡+𝐻−1𝐵𝑡+𝐻−2, . . . , 𝐴𝑡+𝐻−1 · · · 𝐴𝑡+1𝐵𝑡],
�̄�𝑡 := [𝑢⊤

𝑡+𝐻−1, 𝑢
⊤
𝑡+𝐻−2, . . . , 𝑢

⊤
𝑡 ]⊤ and �̄�𝑡 := [𝑤⊤

𝑡+𝐻−1, 𝑤
⊤
𝑡+𝐻−2, . . . , 𝑤

⊤
𝑡 ]⊤. Notice that

�̃�𝑡 is in the form of the controllability matrix for this LTV system. When 𝐻 is long
enough such that �̃�𝑡 is full row rank, i.e., LTV system is 𝐻-controllable, we can use
Algorithm 8 on �̃�𝑡 and �̃�𝑡 and avoid the infeasibility issue, and we have the stability
guarantee.
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Theorem 4.2. Suppose for each 𝑡, matrix �̃�𝑡 defined above satisfies �̃�𝑡 �̃�⊤𝑡 ⪰ 𝜎𝐼

for some 𝜎 > 0, and ∥𝐴𝑡 ∥ ≤ 𝑎, ∥𝐵𝑡 ∥ ≤ 𝑏 for some 𝑎, 𝑏 > 0. Then, the SDP in
Algorithm 8 is always feasible. Further, when 𝛼 < 1/2, the closed-loop system is
ISS for any 𝑡,

∥𝑥𝑡 ∥ ≤ ^′𝐴𝜌
𝑡
𝐻
−1∥𝑥1∥ + ^′𝐴^𝐴^max(1, 𝜌

1 − 𝜌 ) sup
1≤𝑠<𝑡

∥𝑤𝑠∥,

where the same as Theorem 4.1, 𝜌 =
√︁

𝛼
1−𝛼 ∈ [0, 1) and ^ =

^𝑊√
1−𝛼

with ^𝑊 =

∥𝑊 ∥∥𝑊−1∥ being the condition number of𝑊; further, ^𝐴=1 + 𝑎 + . . . + 𝑎𝐻−1, and
^′
𝐴
= 𝑎𝐻−1 + 𝑏2^2

𝐴
^𝑅

^+𝑎𝐻
𝜎

with ^𝑅 being the condition number of 𝑅.

Proof. The feasibility directly follows Lemma 4.3. For stability, using the dynamics
given in (4.14), from Theorem 4.1, we have, ∀𝑘 ≥ 1

∥𝑥𝑘𝐻+1∥ ≤ 𝜌𝑘 ∥𝑥1∥ +
^𝜌

1 − 𝜌 sup
0≤𝜏<𝑘

∥�̃�𝜏𝐻+1∥.

Note that, for any 𝜏,

∥�̃�𝜏𝐻+1∥ ≤
𝐻∑︁
ℓ=1
∥𝐴𝜏𝐻+𝐻 ∥ · · · ∥𝐴𝜏𝐻+ℓ+1∥∥𝑤𝜏𝐻+ℓ∥

≤ (1 + 𝑎 + . . . + 𝑎𝐻−1) sup
𝜏𝐻+1≤𝑠≤(𝜏+1)𝐻

∥𝑤𝑠∥ := ^𝐴 sup
𝜏𝐻+1≤𝑠≤(𝜏+1)𝐻

∥𝑤𝑠∥.

These show that,

∥𝑥𝑘𝐻+1∥ ≤ 𝜌𝑘 ∥𝑥1∥ +
^𝐴^𝜌

1 − 𝜌 sup
1≤𝑠≤𝑘𝐻

∥𝑤𝑠∥.

The above already shows the boundedness of states for time indexes 𝑡 = 1 mod (𝐻).

To show the boundedness of the states for all 𝑡, we need to consider the effect of
control inputs in all 𝐻 sequences. Note that Theorem 4.1 shows that the policies
𝐾𝑘𝐻+1 is (^, 𝛾, 𝜌)-sequential strongly stable, with 𝛾 = 1 −

√
𝛼 and ^ =

^𝑊√
1−𝛼

. This
implies ∥ �̃�𝑘𝐻+1 + �̃�𝑘𝐻+1𝐾𝑘𝐻+1∥ ≤ (1 − 𝛾)^, showing

∥�̃�𝑘𝐻+1𝐾𝑘𝐻+1∥ ≤ (1 − 𝛾)^ + 𝑎𝐻 ,

which further leads to

∥𝐾𝑘𝐻+1∥ ≤ 𝐾max = ^𝑅
𝑏(1 + 𝑎 + . . . + 𝑎𝐻−1)

𝜎
((1 − 𝛾)^ + 𝑎𝐻).
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Therefore, we have

∥𝑥𝑘𝐻+ℓ∥ ≤ ∥𝐴𝑘𝐻+ℓ−1 · · · 𝐴𝑘𝐻+1∥∥𝑥𝑘𝐻+1∥

+ ∥
[
𝐵𝑘𝐻+ℓ−1, 𝐴𝑘𝐻+ℓ−1𝐵𝑘𝐻+ℓ−2, . . . , 𝐴𝑘𝐻+ℓ−1 · · · 𝐴𝑘𝐻+2𝐵𝑘𝐻+1

] 
𝑢𝑘𝐻+ℓ−1

...

𝑢𝑘𝐻+1

 ∥
+ ∥[𝐼, 𝐴𝑡+𝐻−1, · · · , 𝐴𝑘𝐻+ℓ−1...𝐴𝑘𝐻+1]


𝑤𝑘𝐻+ℓ−1

...

𝑤𝑘𝐻+1

 ∥
< ^′𝐴∥𝑥𝑘𝐻+1∥ + ^𝐴 sup

𝑘𝐻+1≤𝑠<𝑘𝐻+ℓ
∥𝑤𝑠∥.

For any 𝑡, let 𝑘 be such that 𝑡 = 𝑘𝐻 + ℓ with 1 ≤ ℓ ≤ 𝐻. Then, we have,

∥𝑥𝑡 ∥ ≤ ^′𝐴∥𝑥𝑘𝐻+1∥ + ^𝐴 sup
𝑘𝐻+1≤𝑠<𝑡

∥𝑤𝑠∥

≤ ^′𝐴𝜌
𝑘 ∥𝑥1∥ + ^′𝐴

^𝐴^𝜌

1 − 𝜌 sup
1≤𝑠≤𝑘𝐻

∥𝑤𝑠∥ + ^𝐴 sup
𝑘𝐻+1≤𝑠<𝑡

∥𝑤𝑠∥

≤ ^′𝐴𝜌
𝑡
𝐻
−1∥𝑥1∥ + ^′𝐴^𝐴^max(1, 𝜌

1 − 𝜌 ) sup
1≤𝑠≤𝑡

∥𝑤𝑠∥.

□

Estimation Error

In both Algorithm 7 and Algorithm 8, the exact knowledge of state-transition ma-
trices (𝐴𝑡 , 𝐵𝑡) or the extended state-transition matrices ( �̃�𝑡 , �̃�𝑡) are needed when
deriving the control actions. In this section, we show that COCO-LQ can still obtain
a stabilizing controller in the case where only approximations are known, if the
estimation error is controlled. Our main result is the following.

Theorem 4.3. Let ( �̂�𝑡 , �̂�𝑡) be an estimate of (𝐴𝑡 , 𝐵𝑡). Given 𝛼 ∈ [0, 1
2 ), let

𝜌 =
√︁

𝛼
1−𝛼 , ^ =

∥𝑊 ∥∥𝑊−1∥√
1−𝛼

and 𝛾 = 1 −
√
𝛼. Let 𝐾1, 𝐾2, ... be the policies designed

by COCO-LQ for ( �̂�𝑡 , �̂�𝑡) with parameter 𝛼. When the estimation error satisfies,

max{| | �̂�𝑡 − 𝐴𝑡 | |2, | |�̂�𝑡 − 𝐵𝑡 | |2} ≤ 𝛿
𝛾

^(1 + 𝐾𝑚𝑎𝑥)
, (4.15)

where 𝛿 can be any number in (0,
√

1−𝛼−
√
𝛼

1−
√
𝛼
), and 𝐾𝑚𝑎𝑥 is any uniform upper bound

on ∥𝐾𝑡 ∥. Then, the policies 𝐾𝑡 are ISS when applied to the system (𝐴𝑡 , 𝐵𝑡),

∥𝑥𝑡 ∥ ≤ (𝜌′)𝑡−𝑡0 ∥𝑥𝑡0 ∥ +
^𝜌′

1 − 𝜌′ sup
𝑡0≤𝑘<𝑡

∥𝑤𝑘 ∥,
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where 𝜌′ =
1−(1−𝛿)𝛾

1−𝛾 𝜌 ∈ (0, 1). Finally, when ∥ �̂�𝑡 ∥ ≤ �̄�𝐴, ∥�̂�𝑡 ∥ ≤ �̄�𝐵 and
�̂�𝑡 �̂�

⊤
𝑡 ⪰ 𝜎2

𝐵
𝐼, one uniform upper bound for ∥𝐾𝑡 ∥ is 𝐾𝑚𝑎𝑥 = ^𝑅 �̄�𝐵𝜎2

𝐵

(^(1 − 𝛾) + �̄�𝐴)
with ^𝑅 = ∥𝑅∥∥𝑅−1∥.

Proof. The proof is divided by two parts. For the first part, we prove the ISS
property given the upper bound 𝐾𝑚𝑎𝑥 on the controllers ∥𝐾𝑡 ∥. In the second part,
we provide such an upper bound 𝐾𝑚𝑎𝑥 .

Proof of ISS. By Lemma 4.2, to show ISS we only need to show that (𝐾𝑡)∞𝑡=0
is sequential strongly stable for system (𝐴𝑡 , 𝐵𝑡)∞𝑡=0. {𝐾𝑡}∞𝑡=0 is (^, 𝛾, 𝜌)-sequential
strongly stable for the system ( �̂�𝑡 , �̂�𝑡)∞𝑡=0 with (^, 𝛾, 𝜌) defined by Lemma 4.1 as
^ =

^𝑊√
1−𝛼

, 𝛾 = 1 −
√
𝛼, 𝜌 =

√︁
𝛼

1−𝛼 where ^𝑊 = ∥𝑊 ∥∥𝑊−1∥. Thus, there exist
matrices 𝐻1, 𝐻2, ..., and 𝐿1, 𝐿2..., such that �̂�𝑡 := �̂�𝑡 + �̂�𝑡𝐾𝑡 = 𝐻𝑡𝐿𝑡𝐻

−1
𝑡 with the

following properties: (a) ∥𝐿𝑡 ∥ ≤ 1 − 𝛾; (b) ∥𝐻𝑡 ∥ ≤ 𝛽1 and ∥𝐻−1
𝑡 ∥ ≤ 1/𝛽2 with

^ = 𝛽1/𝛽2; (c) ∥𝐻−1
𝑡+1𝐻𝑡 ∥ ≤

𝜌

1−𝛾 . With this decomposition for �̂�𝑡 , we show that
𝑀𝑡 := 𝐴𝑡 + 𝐵𝑡𝐾𝑡 can be decomposed similarly. Let Δ𝑡 = 𝑀𝑡 − �̂�𝑡 . Then,

𝑀𝑡 = �̂�𝑡 + Δ𝑡 = 𝐻𝑡𝐿𝑡𝐻−1
𝑡 + 𝐻𝑡𝐻−1

𝑡 Δ𝑡𝐻𝑡𝐻
−1
𝑡 = 𝐻𝑡 (𝐿𝑡 + 𝐻−1

𝑡 Δ𝑡𝐻𝑡)𝐻−1
𝑡 = 𝐻𝑡𝐿

′
𝑡𝐻
−1
𝑡 .

(4.16)
We next upper bound ∥𝐿′𝑡 ∥. Notice that

∥Δ𝑡 ∥ = ∥𝑀𝑡 − �̂�𝑡 ∥ = ∥𝐴𝑡 + 𝐵𝑡𝐾𝑡 − �̂�𝑡 − �̂�𝑡𝐾𝑡 ∥
≤ ∥𝐴𝑡 − �̂�𝑡 ∥ + ∥𝐵𝑡 − �̂�𝑡 ∥∥𝐾𝑡 ∥
≤ max{∥𝐴𝑡 − �̂�𝑡 ∥, ∥𝐵𝑡 − �̂�𝑡 ∥}(1 + ∥𝐾𝑡 ∥)

≤ 𝛿 𝛾

^(1 + 𝐾𝑚𝑎𝑥)
(1 + ∥𝐾𝑡 ∥) ≤ 𝛿

𝛾

^
.

Then, we have the following bound on ∥𝐿′𝑡 ∥,

∥𝐿′𝑡 ∥= ∥𝐿𝑡+𝐻−1
𝑡 Δ𝑡𝐻𝑡 ∥ ≤ ∥𝐿𝑡 ∥+∥𝐻−1

𝑡 ∥∥Δ𝑡 ∥∥𝐻𝑡 ∥ ≤1−𝛾+𝛿𝛾=1−(1−𝛿)𝛾. (4.17)

Define 𝛾′ = (1 − 𝛿)𝛾 and 𝜌′ = 1−(1−𝛿)𝛾
1−𝛾 𝜌. We claim that (𝐾𝑡)∞𝑡=0 is (^, 𝛾′, 𝜌′)

sequential strongly stable for system (𝐴𝑡 , 𝐵𝑡)∞𝑡=0. In the decomposition (4.16), 𝐿′𝑡
satisfies ∥𝐿′𝑡 ∥ ≤ 1−𝛾′ (which we have proved in (4.17)), and by definition𝐻𝑡 satisfies
∥𝐻𝑡 ∥ ≤ 𝛽1 and ∥𝐻−1

𝑡 ∥ ≤ 1/𝛽2 with ^ = 𝛽1/𝛽2; ∥𝐻−1
𝑡+1𝐻𝑡 ∥ ≤

𝜌

1−𝛾 =
𝜌′

1−𝛾′ . Therefore,
the only conditions we need to verify are (a) 0 < 𝛾′ ≤ 1 and (b) 0 ≤ 𝜌′ < 1.
Condition (a) is trivial since for any 𝛼 ∈ [0, 1

2 ), we have 𝛿 ∈ (0,
√

1−𝛼−
√
𝛼

1−
√
𝛼
) ⊂ (0, 1)

and hence 𝛾′ = (1−𝛿)𝛾 lies in (0, 1]. For condition (b), as 𝜌′ = 1−(1−𝛿)𝛾
1−𝛾 𝜌, where 𝜌 =
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𝛼

1−𝛼 and 𝛾 = 1−
√
𝛼, it follows that 𝜌′ < 1 is equivalent to the following condition:

𝜌′ =
1 − (1 − 𝛿)𝛾

1 − 𝛾 𝜌 =
𝛿 + (1 − 𝛿)

√
𝛼

√
1 − 𝛼

< 1. (4.18)

Reorganizing the terms we have 𝛿<
√

1−𝛼−
√
𝛼

1−
√
𝛼

, which is satisfied by our condition on 𝛿.

Upper bounding ∥𝐾𝑡 ∥. The only thing that remains to be shown is that there exists an
upper bound on the controller gain matrix under the conditions stated in the theorem.

Note that 𝐾𝑡 must satisfy �̂�𝑡 = �̂�𝑡 + �̂�𝑡𝐾𝑡 . On the other hand, by the COCO-LQ
formulation, 𝐾𝑡 solves the following problem

min
𝐾𝑡

Tr(𝑅𝐾𝑡Σ𝑥𝑥𝐾⊤𝑡 )

s.t. �̂�𝑡 = �̂�𝑡 + �̂�𝑡𝐾𝑡 ,

where Σ𝑥𝑥 is the solution to the COCO-LQ formulation at time 𝑡. The Lagrangian
of the above optimization is

𝐿 (𝐾𝑡 , Γ) = Tr(𝑅𝐾𝑡Σ𝑥𝑥𝐾⊤𝑡 ) + Tr(Γ⊤( �̂�𝑡 + �̂�𝑡𝐾𝑡 − �̂�𝑡)).

The optimizer 𝐾𝑡 must satisfy the following condition,

∇𝐾𝑡 𝐿 (𝐾𝑡 , Γ) = 2𝑅𝐾𝑡Σ𝑥𝑥 + �̂�⊤𝑡 Γ = 0.

�̂�𝑡 = �̂�𝑡 + �̂�𝑡𝐾𝑡 .

Together, we obtain 𝐾𝑡 = 𝑅−1�̂�⊤𝑡 (�̂�𝑡𝑅−1�̂�⊤𝑡 )−1(�̂�𝑡 − �̂�𝑡) and

∥𝐾𝑡 ∥ ≤ ∥𝑅−1∥∥�̂�⊤𝑡 ∥
1

𝜎min(𝑅−1)𝜎min(�̂�𝑡 �̂�⊤𝑡 )
(^(1 − 𝛾) + ∥ �̂�𝑡 ∥), (4.20)

where we have used by the (^, 𝛾, 𝜌) sequential strong stability of (𝐾𝑡)∞𝑡=0 for system
( �̂�𝑡 , �̂�𝑡)∞𝑡=0, we have ∥�̂�𝑡 ∥ = ∥ �̂�𝑡 + �̂�𝑡𝐾𝑡 ∥ ≤ ^(1 − 𝛾). By our condition, we have
∥ �̂�𝑡 ∥ ≤ �̄�𝐴, ∥�̂�𝑡 ∥ ≤ �̄�𝐵, �̂�𝑡 �̂�⊤𝑡 ⪰ 𝜎2

𝐵
, and ^𝑅 = ∥𝑅∥∥𝑅−1∥. Then, we have ∥𝐾𝑡 ∥

upper bounded as follows,

∥𝐾𝑡 ∥ ≤ ^𝑅
�̄�𝐵

𝜎2
𝐵

(^(1 − 𝛾) + �̄�𝐴).

□

This result highlights the tradeoff between the estimation error and the algorithm
performance. If we choose a small 𝛼, the algorithm can tolerate a larger estimation
error (i.e., larger right-hand side of (4.15) can be obtained) but may lead to high
control cost due to the tight state covariance constraint. If we choose a larger 𝛼, the
algorithm tolerates smaller estimation errors while its performance improves due to
the less strict state covariance constraint.
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4.2.4 Experiments
The results in the previous section focus on stability of the COCO-LQ approach.
Here, we use experimental results to highlight that COCO-LQ also performs near-
optimally in terms of cost while also stabilizing systems that the naive approach
based on LTI control cannot. We first test our method on random, synthetic linear
time-varying systems, and then demonstrate the performance of COCO-LQ in real-
world power system frequency control settings. Finally, we test the performance of
COCO-LQ for online control of linear time varying systems that are derived from
local linearization of nonlinear systems.

Synthetic Time-Varying Systems

We first consider the control of switching and time-varying systems. The cost
function is set as 𝑄 = 0.2𝐼, 𝑅 = 𝐼, and system is subject to Gaussian disturbance
𝑤𝑡 ∼ 𝑁 (0, 0.12). We average the simulation results over 5 runs and visualize the
mean performance and standard deviation.

a) We consider a switching system similar to Example 4.1 in Section 4.2.2, where
𝐴𝑡 alternates between

𝐴 =

[
0.99 0
𝑎 1.5

]
, 𝐴′ =

[
0.99 1.5

0 0.99

]
,

and 𝐵𝑡 = 𝐼.

b) We consider a system with

𝐴𝑡 =

[
0.99 sin( 𝜋𝑡2 ) |𝑒

𝑡/60

| cos( 𝜋𝑡2 ) |𝑒
𝑡/60 0.99

]
that is continually changing over time, and 𝐵𝑡 = 𝐼.

As we can see in Figure 4.1, COCO-LQ is able to quickly and effectively stabilize
the system under various time-varying scenarios, which corraborates our theoretical
findings. As 𝛼 increases, the acquired cost of COCO-LQ first decreases and then
increases (explosion of state), highlighting that 𝛼 can explicitly control the tradeoff
between cost and stability. With proper selection of 𝛼, COCO-LQ achieves near-
optimal cost (within 30% of the offline optimal for both system a) and b).
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Figure 4.1: Performance comparison of COCO-LQ and naive LQ control on syn-
thetic systems given in a) and b). The left two figures show the state evolution, and
right two figures show the normalized cost (cost of COCO-LQ divided by cost of
the offline optima) under different 𝛼.

Frequency Control with Renewable Generation

We now consider a power system frequency control problem on standard IEEE
WECC 3-machine 9-bus system (Figure 4.2(Left)), which is a widely adopted
system used in frequency stability studies. The state space model of power system
frequency dynamics follows [111],[

¤\
¤𝜔

]
︸︷︷︸
¤x

=

[
0 𝐼

−𝑀−1
𝑡 𝐿 −𝑀−1

𝑡 𝐷

]
︸                    ︷︷                    ︸

𝐴𝑡

[
\

𝜔

]
+

[
0
𝑀−1
𝑡

]
︸ ︷︷ ︸

𝐵𝑡

𝑝𝑖𝑛︸︷︷︸
ut

, (4.21)

where the state variable is defined as the stacked vector of the voltage angle \
and frequency 𝜔. 𝑀𝑡 = diag(𝑚𝑡,𝑖) is the inertia matrix, where 𝑚𝑡,𝑖 represents the
equivalent rotational inertia at bus 𝑖 and time 𝑡. 𝑀𝑡 is time-varying and depends
on the mix of online generators, since only thermal generators provide rotational
inertia and renewable generation does not [276]. 𝐷 = diag(𝑑𝑖) is the damping
matrix, where 𝑑𝑖 is the generator damping coefficient. 𝐿 is the network susceptance
matrix. The control variable 𝑝𝑖𝑛 corresponds to the electric power generation.

We assume the system is changing between two states: a high renewable generation
scenario where 𝑚𝑡,𝑖 = 2 (i.e., 80 percent renewable with zero inertia and 20 percent
of thermal generation with 10s inertia), and a low renewable generation scenario
where 𝑚𝑡,𝑖 = 8 (i.e., 20 percent renewable and 80 percent thermal generation), with
additional random fluctuations between [0, 0.2]. This setup represents the real-
world situation where we have high solar output during the daytime, and low output
in the morning/evening, with intra-day variations due to clouds and weather changes.
Notice that 𝐵𝑡 is not full rank, thus we need to leverage predictions, i.e., 𝐴𝑡+1 and
𝐵𝑡+1. For fair comparison, we compete against the𝐻-horizon optimal control in [28],
which is the extension of naive LTI controller to use 𝐻-step predictions. In both
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Figure 4.2: (Left) IEEE WECC 3-machine 9-bus system schematic with generators
at bus 1, 5, 9 are mixture of thermal generation and renewable. (Right) Frequency
dynamics under offline optima, baseline H-horizon control, and COCO-LQ. The dot-
ted grey lines (±0.05Hz) are the safety margin of power system frequency variation.

cases, we assume the prediction is accurate and use the exact value of 𝐴𝑡+1 and 𝐵𝑡+1
for computing control actions.

Figure 4.2(Right) visualizes the power system frequency dynamics under three con-
trollers: the offline optimal control, the baseline 𝐻-horizon optimal controller, and
the proposed COCO-LQ-Prediction method. We ideally desire a controller that is
able to maintain the frequency variation within ±0.05Hz and eventually stabilize
the system. It can be observed that our algorithm succeeds at maintaining the fre-
quency stability under random, time-varying renewable generations. Furthermore,
the performance of COCO-LQ is very close to the offline optimal, while the system
frequency diverges under the baseline 𝐻-horizon optimal control.

Inverted Pendulum Swingup Task

We further test COCO-LQ for online control of linear time-varying systems that are
derived from the local linearization of nonlinear systems. In particular, we consider
the pendulum swing-up task, where the system dynamics are described by[

¤\
¥\

]
=

[
¤\

𝑔

𝑙
𝑠𝑖𝑛\

]
+

[
0
1
𝑚𝑙2

]
𝑢 = 𝑓 (𝑥, 𝑢), (4.22)

where 𝑥 = [\, ¤\] represents the system state, in which \, ¤\ and ¥\ are the angle,
angular velocity and angular acceleration. 𝑔 is the gravitational acceleration, 𝑙 and
𝑚 are the length and mass of the pendulum. The control goal is to stabilize the
pendulum at the straight up position with \ = 0 and ¤\ = 0, starting from any initial
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Figure 4.3: Performance comparison of COCO-LQ and LQ on inverted pendulum
via locally linearization. The left two figures show the state evolution of angle \ and
angular velocity ¤\. Initial angle is set as \ = 1.2rad, and the desired state is \ = ¤\ = 0.
The right two figures show the control action and cost comparison, with𝑄 = 𝑅 = 𝐼.

angle and velocity. The pendulum dynamics described by (4.22) is a nonlinear
system, by taking local linear approximation at each 𝑥𝑡 , we can approximate the
nonlinear system via a linear time varying system,[

¤\
¥\

]
=

[
0 1

𝑔

𝑙
cos \𝑡 0

]
︸          ︷︷          ︸

𝐴𝑡

[
\

¤\

]
+

[
0
1
𝑚𝑙2

]
︸︷︷︸
𝐵𝑡

𝑢, (4.23)

Fig 4.3 compares the performance of the proposed COCO-LQ approach and baseline
LQ approach. As we can observe from the left two plots, COCO-LQ is able to
stabilize the pendulum at the desired position due to its robustness under model
estimation error (caused by local linear approximation) and time-varying dynamics,
while the naive LQR approach fails to achieve the swing-up task and stabilize the
system. The right two plots show the evolution of the control efforts and cost.
COCO-LQ initially outputs significantly larger control actions compared to the
baseline LQ controller, to stop the pendulum from falling over. The overall control
cost of COCO-LQ quickly converges once the swing-up task is finished, while the
cost of LQ control keeps growing.

4.2.5 Conclusion
In this section, we studied the stability of LTV systems. Our results demonstrate
the challenge of ensuring stability for LTV systems compared to LTI systems.
Motivated by this challenge, we propose a COCO-LQ/COCO-LQ-prediction policy
that can guarantee stability for LTV systems under certain assumptions. There are
many interesting open questions that remain. For example, the bound 𝛼 < 1/2
in Theorem 4.1 is a sufficient condition, and studying how to relax the bound and
how to derive instance-dependent bounds is an interesting future question. Another
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important direction is to analyze the performance (e.g., the regret) of the proposed
approach in order to quantify the trade-off between stability and performance.

4.3 Stability and Identification of Random Asynchronous LTI Systems
In this section, we introduce the random asynchronous LTI systems, a new form of
linear time-varying systems, and study the stability characterization and the system
identification problem in that setting. We empirically show that the new dynamical
system evolution formulation based on randomness and asynchrony brings novel
challenges and opportunities in terms of stabilization of linear dynamical systems
(LDS). We empirically demonstrate that the mean-square stability of random asyn-
chronous LTI systems has a delicate dependency on the update and asynchrony
probabilities. Furthermore, the stability of synchronous LDS does not imply sta-
bility of asynchronous LDS, and vice versa. For a randomly generated system, by
changing the asynchrony or the update probability in the system, we show that unsta-
ble synchronous LTI systems may be stabilized or stable synchronous LTI systems
may have unstable dynamics.

We consider the mean-square stability characterization of randomized LTI systems,
which are special cases of random asynchronous LTI systems with no delay. We
show that this setting corresponds to the model introduced in Teke and Vaidyanathan
[261], and the stability is governed by an extended Lyapunov equation. Relating
the extended Lyapunov equation to standard Lyapunov equation of synchronous
LTI system, we discuss the precise characterization of the mean-square stability of
randomized LTI systems.

We propose a novel method to recover the impulse response of the “average system",
as well as the true underlying system parameters, the update probability, noise, and
input covariances for unknown stable randomized LTI systems. In order to achieve
this, we first visit the well-known central limit theorem for Markov chains and solve
a least-squares problem to obtain an estimate of the average system parameters of the
underlying system. Then, we propose an optimization problem to estimate the update
probability and noise covariances that optimally satisfy the extended Lyapunov
equation for the estimated average system parameters. By solving the optimization
problem analytically, we present a closed-form expression for an estimate of the
update probability and noise covariances for the system. The underlying true system
parameters that govern the dynamics are ultimately recovered via the estimates of
the update probability and the average system parameters.
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Finally, we empirically demonstrate the performance of the novel method on a
simulated randomized LTI system and show that our proposed method reliably and
efficiently recovers the underlying dynamics with the optimal rate. This shows that
the presented model and the system identification framework provide a more realistic
and computationally efficient alternative to the general switching linear systems in
analyzing input/output data collected from an LDS that has a fixed network structure
with random asynchronous updates.

4.3.1 Problem Setting
Recall the state-space model of LTI systems introduced in Chapter 3:

𝑥𝑡+1 = A𝑥𝑡 + B𝑢𝑡 + 𝑤𝑡 , (4.24)

where 𝑥𝑡 , 𝑢𝑡 , and 𝑤𝑡 are the state, input, and noise vectors respectively. In this
section, we refer to this model as “synchronous LTI system" since all state elements
are updated in every time step using the most recent information on all state elements.
We study a random asynchronous variant of this LTI system where the states evolve
randomly and asynchronously. The model studied here generalizes (4.24) in two
different directions:

1) The state elements get updated randomly in every iteration. If a state element
gets updated, it follows the state dynamics. Otherwise, its value remains the same;

2) When a state element is being updated, it may use out-dated information regarding
the other state elements. We assume that the delay in information flow is also
probabilistic.

More precisely, given a node update probability 0 < 𝑝 ≤ 1, we consider the follow-
ing random and asynchronous state-space model for all state variables 𝑖 at each time
step 𝑡:

(𝑥𝑡+1)𝑖 =

∑︁𝑛

𝑗=1
𝐴𝑖, 𝑗 (𝑥𝑡−𝑘𝑖, 𝑗 ) 𝑗 + (B 𝑢𝑡 + 𝑤𝑡)𝑖, w.p. 𝑝,

(𝑥𝑡 + 𝑤𝑡)𝑖, w.p. 1 − 𝑝,
(4.25)

where 𝑤𝑡 denotes the noise component for the state elements. More importantly,
𝑘𝑖, 𝑗 ≥ 0 denotes the delay in information observed by the 𝑖𝑡ℎ element regarding
the 𝑗 𝑡ℎ element. So, state variables are allowed to observe different amount of
delay regarding other state variables. In our model, we will consider random and



116

independent delays with the following distribution:

P[𝑘𝑖, 𝑗 = 𝜏] =

𝑞 (1 − 𝑞)𝜏, 𝜏 = {0, . . . , ℎ − 1},

(1 − 𝑞)ℎ, 𝜏 = ℎ,
(4.26)

for some fixed delay probability 0 < 𝑞 ≤ 1 and finite ℎ. So, higher values of 𝑞
implies lower amount of delay in information flow. In summary, in every time-step,
each state element is updated with probability 𝑝 using linear dynamics based on the
most recent data available from other state variables, or its value remains the same
(up to an input noise) with probability 1 − 𝑝.

The model (4.25) captures the random asynchrony of large-scale LDS (e.g., net-
worked control systems, social networks, and biological networks), where each
state variable could be considered as a sensor/node. At any time step, the update
on the node happens randomly. The node may not have the most recent data from
the other nodes, and it updates its state based on the available (possibly outdated)
information. It is possible to extend this model in such a way that each state vari-
able has a different update probability, a different delay probability or updated and
non-updated state elements have different noise components. However, for the sake
of simplicity, we assume that all the state variables are updated with the same prob-
ability, the same delay scheme, and the same noise characteristics. Notice that the
model (4.25) reduces to the standard synchronous state-space model (4.24) when the
probabilities are selected as 𝑝 = 1 and 𝑞 = 1. As a result, one can consider (4.25)
as a random asynchronous extension of synchronous LTI systems that are studied in
the last century.

For the given system in (4.25), 𝑥𝑡 , 𝑤𝑡 ∈ R𝑑𝑥 , 𝑢𝑡 ∈ R𝑑𝑢 , and the system matrices A
and B have appropriate dimensions accordingly. Note that this work considers the
problem in real domain for a simpler presentation. Nevertheless, the results can be
easily extended to complex domain with proper conjugation operations. Without
loss of generality, we assume that 𝑥0 = 0. Furthermore, we assume that the input
and noise vectors are zero mean and have unknown variance, i.e.,

E[𝑢𝑡] = E[𝑤𝑡] = 0, E[𝑢𝑡 𝑢⊤𝑘 ] = U, E[𝑤𝑡 𝑤⊤𝑘 ] = 𝛿(𝑡 − 𝑘) 𝜎
2
𝑤 I𝑑𝑥 (4.27)

for some unknown U ⪰ 0 and 𝜎2
𝑤 > 0.

4.3.2 Stability of Random Asynchronous LTI Systems
Since the random asynchronous LTI systems have stochastic behavior, the stability
of the state vector 𝑥𝑘 should be considered statistically. Therefore, we numerically
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study the mean-square stability of (4.25). Note that for this setting, the mean-square
stability implies almost-sure stability [147].

Consider the random asynchronous systems given in (4.25) with the following
transition matrices,

A1 =


0.05 0.36 0.39
0.01 −0.37 0.23
0.23 0.23 −0.98

 , A2 =


0.78 −1.45 −1.12
−0.20 −0.25 0.36
0.49 −0.58 0.20

 , (4.28)

with ℎ = 2. Note that the spectral radius of 𝜌(A1) ≈ 1.1065, i.e., the synchronous
LTI system with A1 is unstable. In order to numerically examine the mean-square
stability of the random asynchronous system, we study the system from Markov-
jump linear system perspective. In particular, the system in (4.25) can be represented
as a Markov-jump linear system of 𝑑𝑥 (ℎ + 1) dimensions that switches between
(1 + (ℎ + 1)𝑑𝑥 )𝑑𝑥 possible systems. Let Sℎ ∈ R(𝑑𝑥 (ℎ+1))

2×(𝑑𝑥 (ℎ+1))2 be the matrix
that governs the evolution of the correlation matrix of 𝑑𝑥 (ℎ + 1) variables for the
Markov-jump system. The stability of Sℎ is equivalent to the mean-square stability
of the Markov-jump linear system [63] and thus the mean-square stability of (4.25).
Therefore, for all 𝑝 and 𝑞 values, we construct the corresponding Sℎ and consider the
spectral radius of Sℎ. The first figure in Figure 4.4 depicts the mean-square stable and
unstable regions for all 𝑝 and 𝑞 values for the random asynchronous system with A1.

In this figure, we observe that the synchronous variant (𝑝 = 𝑞 = 1) of this system is
unstable as expected. However, it also shows that by randomizing the updates, i.e.,
decreasing 𝑝, or increasing the asynchrony in the updates, i.e., decreasing 𝑞, one can
achieve stable system dynamics from this unstable system. This observation provides
a novel perspective to the common perception of randomization and asynchrony.
Even though they are usually considered as the ways to decrease the cost or delays
in the expense of accuracy and convergence, this result shows that they can be also
utilized as the mechanisms to stabilize the dynamical systems. On the other hand, we
should note that for this particular system, a drastic increase in asynchrony still results
in unstable system dynamics (top left region on the figure). Moreover, for totally non-
random system (𝑝 = 1), moderate levels of asynchrony (𝑞 ∈ [0.25, 0.65]) stabilizes
the system but we obtain unstable dynamics toward both extremes of asynchrony.
This highlights the fact that a careful study is required for understanding the precise
effects of randomization and asynchrony on the stability of LTI systems. Next, we
consider a stable synchronous LTI system with the state transition matrix of A2,
i.e., 𝜌(A2) ≈ 0.9778. Similar to the unstable case, we compute Sℎ for this random
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Figure 4.4: The spectral radius of Sℎ that represents mean-square stability of the
random asynchronous systems with ℎ = 2 and (a) unstable A1 and (b) stable A2
state transition matrices

asynchronous system and the second plot in Figure 4.4 shows the spectral radius of
it for all 𝑝 and 𝑞 values. The stability behavior of this random asynchronous system
is significantly different. Surprisingly, increasing randomization for this system
provides mean-square unstable dynamics in all asynchrony conditions. In addition,
for moderately non-random updates (𝑝 > 0.6), all levels of asynchrony provides
mean-square stability.

In these settings, the numerical computation of Sℎ was feasible since the systems
in (4.28) have 𝑑𝑥 = 3 and ℎ = 2, yielding 21952 possible systems to switch
between. For large-scale LDS, one needs to compute the closed-form expression
of Sℎ in order to characterize the mean-square stability of random asynchronous
LTI systems. The theoretical analysis of the mean-squared stability of the general
system given in (4.25) is left for future work. However, in the following section, we
provide the precise closed-form characterization of Sℎ for ℎ = 0 which is a special
case of random asynchronous LTI systems where 𝑞 = 1 and 0 < 𝑝 ≤ 1, named as
randomized LTI systems.

4.3.3 Randomized LTI Systems
Since 𝑞 = 1, randomized LTI systems do not have any delays or asynchrony in the
system, i.e., if the state element getting updated it has access to the most recent
information on all states. The random delay probabilities reduces to P[𝑘 𝑗 = 0] = 1
for all 𝑗 . Thus, we get the following model:

(𝑥𝑡+1)𝑖 =

(A 𝑥𝑡 + B 𝑢𝑡 + 𝑤𝑡)𝑖, w.p. 𝑝,

(𝑥𝑡 + 𝑤𝑡)𝑖, w.p. 1 − 𝑝.
(4.29)
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This model corresponds to the setting first introduced in Teke and Vaidyanathan
[261]. In the following, we consider the properties of randomized LTI systems.

Markov Parameters

Markov parameters of an LDS is the unique matrix impulse response of the system.
For a synchronous LTI system, the Markov parameters of the system (A,B) are
given as H𝑘 = A𝑘−1B for 𝑘 ≥ 1. From the input-output viewpoint, the randomized
updates on the system with (A,B) can be represented in an average sense as a
synchronous LTI system with parameters (A,B) where the average state-transition
matrix A and the average input matrix B are given as follows:

A = 𝑝A + (1 − 𝑝) I𝑑𝑥 , B = 𝑝 B. (4.30)

As a result, Markov parameters of the average system can be obtained as H𝑘 =

A𝑘−1B, for 𝑘 ≥ 1. Notice that Markov parameters of the underlying system and
the randomized system can be directly obtained from each other. The 𝑘 𝑡ℎ Markov
parameter of the randomized system, H𝑘 , can be written as a linear combination of
the first 𝑘 Markov parameters of the synchronous system:

H𝑘 =
(
𝑝A + (1 − 𝑝)I𝑑𝑥

) 𝑘−1
𝑝B=

∑︁𝑘

𝑖=1

(𝑘−1
𝑖−1

)
𝑝𝑖 (1 − 𝑝)𝑘−𝑖H𝑖 .

More generally, define the first 𝐾 Markov parameters matrices G = [H1 H2 · · · H𝐾]
and G = [H1 H2 · · · H𝐾]. We have G=G(T ⊗ I𝑑𝑢), where T∈R𝐾×𝐾 is an upper
triangular matrix with T𝑖, 𝑗 =

( 𝑗−1
𝑖−1

)
𝑝𝑖 (1− 𝑝) 𝑗−𝑖 for 𝑗 ≥ 𝑖 ≥ 1. Notice that T does

not depend on the system parameters (A,B), and it is determined solely by the
probability 𝑝. Moreover, T has diagonal entries (thus eigenvalues) of T𝑖,𝑖 = 𝑝𝑖−1.
Thus, T is always invertible since we trivially assumed that 𝑝 > 0. This shows
that once the average system behavior and the rate of updates are known, one can
identify the underlying system parameters exactly. When the update probability is
𝑝 = 1 (synchronous), we get T = I𝐾 so that G = G. Note that the properties above
could be trivially extended to measurement feedback systems, i.e., randomized
partially observed LTI systems.

Mean-Squared Stability

In this section, we precisely characterize the mean-square stability of randomized
LTI systems which corresponds to the rightmost vertical axes of plots in Figure 4.4.
As discussed above, the dynamics of the randomized LTI system is determined by
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the matrix A in an average sense. The stability of the matrix A is necessary, but
not sufficient for the stability of the system. In order to analyze the mean-square
stability, we look for the condition that ensures E[𝑥𝑡 𝑥⊤𝑡 ] stays finite as 𝑡 →∞. In
fact, the steady-state covariance matrix, i.e., lim𝑡→∞ E[𝑥𝑡 𝑥⊤𝑡 ] = 𝚪, can be found as
the solution of the following extended Lyapunov equation introduced in Teke and
Vaidyanathan [262]:

𝚪 = 𝜙(𝚪) + B U B⊤ +
( 1
𝑝
−1

) (
B U B⊤

)
⊙ I + 𝜎2

𝑤I, (4.31)

where the function 𝜙(·) is defined as follows:

𝜙(𝑥)=A𝑥A⊤+(𝑝−𝑝2)
(
(A−I)𝑥(A⊤−I)

)
⊙I=A𝑥A⊤+

(
1
𝑝
−1

) (
(A−I)𝑥(A⊤−I)

)
⊙I.

The function 𝜙(·) is a positive linear map that controls the evolution of the state
covariance matrix in the extended Lyapunov equation. It can be vectorized as
vec(𝜙(𝑥)) = S vec(𝑥) where

S = A ⊗ A + (𝑝 − 𝑝2) J (A − I) ⊗ (A − I), (4.32)

for J =
∑𝑑𝑥
𝑖=1

(
𝑒𝑖𝑒
⊤
𝑖

)
⊗

(
𝑒𝑖𝑒
⊤
𝑖

)
. S ∈ R𝑑2

𝑥×𝑑2
𝑥 is the matrix representation of the linear

map 𝜙(·) and corresponds to Sℎ introduced in Section 4.3.2 at ℎ = 0. Note that
to extend this to complex valued systems, (4.32) needs element-wise conjugate
operations on the left-side of Kronecker products.2 Recall that in Section 4.3.2,
the mean-square stability of the random asynchronous LTI systems is demonstrated
numerically. However, with the closed-form expression of S in (4.32), we can
analytically characterize the stability of the randomized LTI system.

Lemma 4.4. [260, 262] The randomized LTI systems given in (4.29) are mean-
square stable if and only if 𝜌(S) < 1.

This result is due to the fact that one can recursively represent the covariance matrix
of the state variables at time 𝑡 + 1 as a function of the covariance matrix at time
𝑡. Since S represents this mapping, stability of S is a necessary and sufficient
condition for the convergence of the covariance matrix, which implies mean-square
stability for the state variables. The key observation in Lemma 4.4 is that the

2Element-wise conjugation ensures that S always has a real nonnegative eigenvalue that is equal
to its spectral radius, and the corresponding eigenvector is the vectorized version of a positive
semidefine matrix. This follows from the extensions of the Perron-Frobenius theorem to positive
maps in more general settings, Theorem 5 of Karlin [139].
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mean-square stability of the randomized LTI system and the stability of A do not
imply each other, i.e., 𝜌(S)<1 and 𝜌(A)<1 are not equivalent in general. Note that
Lemma 4.4 provides the precise characterization of the rightmost axes of the plots
in Figure 4.4.

In order to visualize the convergence behavior of the randomized updates, we
consider a numerical test example of size 𝑑𝑥 = 2 with a constant input (i.e., fixed-
point iteration), and initialize 𝑥0 with independent Gaussian random variables (left-
most block in Figure 4.5). Then, the distribution of the state vector 𝑥𝑡 (at time
𝑡) follows a Gaussian mixture model (GMM) due to the randomized nature of the
updates (See Figure 4.5). Furthermore, the stability of the matrix S ensures that
the mean of 𝑥𝑡 converges to the fixed-point of the system while the variance of 𝑥𝑡
converges to zero.

The key insight to the convergence behavior in Figure 4.5 is as follows: When rep-
resented as a switching system, the randomized LTI model (4.29) switches between
2𝑑𝑥 systems randomly, and it can be shown that all these 2𝑑𝑥 systems (including the
original system) have the same fixed-point. It should also be noted that not all 2𝑑𝑥

systems are stable by themselves, and an arbitrary switching does not necessarily
ensure the convergence. Nevertheless, with a careful selection of the probability,
the randomized model can obtain convergence even when the synchronous system
is unstable.

When the system is mean-square stable, the steady-state covariance matrix, 𝚪, is
given as

vec(𝚪) = (I − S)−1
((
𝑝2 I + (𝑝 − 𝑝2) J

)
vec(B U B⊤) + 𝜎2

𝑤 vec(I)
)
. (4.33)

When 𝑝 = 1, we have 𝜙(𝑥) = A 𝑥A⊤, which implies that 𝚪 = A 𝚪A⊤+B U B⊤+𝜎2
𝑤 I

and 𝜌(S) = 𝜌2(A). So, we have 𝜌(S) < 1 if and only if 𝜌(A) < 1 for synchronous
LTI systems, which recovers the well-known stability result in the classical systems
theory.

4.3.4 System Identification for Randomized LTI Systems
In this section, we propose a system identification method for learning unknown
mean-square stable randomized LTI systems from a single input-output trajectory.
Regarding the underlying system, we do not have any other assumptions besides
stability, i.e. 𝜌(S) < 1, and the assumptions in (4.27).
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Figure 4.5: Evolution of the state vector for a mean-square stable (but synchronously
unstable) 2-dimensional randomized LTI system with a fixed input and Gaussian
initialization

First, recall the Markov chain central limit theorem (MC-CLT). Assume that we
have a Markov chain at its stationary distribution. MC-CLT states that, the sample
average of any measurable, finite-variance and real-valued function of a sequence of
𝑛 variables from this Markov chain converge to a Gaussian distribution as 𝑛 → ∞,
where mean is the expected value of this function at the stationary distribution and
the variance linearly decays in 𝑛 [129].

Notice that the randomized updates of (4.29) form an ergodic Markov chain (due
to independent selection in every iteration) and the stability of the system guar-
antees the stationary distribution. We also know that the stable systems converge
exponentially fast to their steady state, i.e., Markov chain formed by (4.29) quickly
approaches to its stationary distribution. In light of these observations, we can
deduce that, as the number of collected input-output samples 𝑇 increases, the sam-
ple state correlation and input-output cross correlation matrices converge to their
expected values with the rate of 1/

√
𝑇 . In particular, given a sequence of inputs and

outputs {𝑥0, 𝑢0, 𝑥1, . . . , 𝑢𝑇−1, 𝑥𝑇 }, let

C0 =
1
𝑇

∑︁𝑇−1

𝑡=0

[
𝑥𝑡

𝑢𝑡

] [
𝑥𝑡

𝑢𝑡

]⊤
, C1 =

1
𝑇

∑︁𝑇

𝑡=1
𝑥𝑡

[
𝑥𝑡−1

𝑢𝑡−1

]⊤
. (4.34)

According to MC-CLT, as 𝑇 → ∞, C0 and C1 converge to E[C0] and E[C1]
respectively, where

E [C0] =
[
𝚪 0
0 U

]
, E [C1] =

[
A𝚪 BU

]
. (4.35)

Therefore, using C1C−1
0 converges to the average state transition and input matrices[

A B
]
. Notice that C1C−1

0 is in fact the solution of the following least squares
problem:

arg min
Θ

∑︁𝑇

𝑡=1
tr

((
𝑥𝑡 − Θ

[
𝑥𝑡−1

𝑢𝑡−1

] ) (
𝑥𝑡 − Θ

[
𝑥𝑡−1

𝑢𝑡−1

] )⊤)
. (4.36)
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Thus, we are guaranteed to recover the average system consistently via (4.36). This
result could be extended to recover first 𝐾 Markov parameters of the randomized
partially observable LTI systems. Define E = [I𝑑𝑥 0] ∈ R𝑑𝑥×(𝑑𝑥+𝑑𝑢) . Then, the
extended Lyapunov equation can be written as

E
[
𝚪 0
0 U

]
E⊤=

[
A B

] [𝚪 0
0 U

] [
A B

]⊤
+
(
1/𝑝−1

)( [
A−I B

] [𝚪 0
0 U

] [
A−I B

]⊤)
⊙I+𝜎2

𝑤I,

(4.37)

We know that covariance matrices of the state variables 𝚪 and inputs U must
satisfy (4.37) for a stable randomized LTI system. The central idea for our system
identification method is to exploit this fact and recover the randomization probability
𝑝, the noise covariance 𝜎2

𝑤 and the system parameters A,B of a stable randomized
LTI system. Therefore, we can write extended Lyapunov equation (4.37) in terms
of C0 and C1 and due to (4.35) expect to have ly(C0,C1) = 0, where

ly(C0,C1)BEC0E⊤−C1C−1
0 C⊤1−

( 1
𝑝
−1

) (
(C1C−1

0 −E)C0(C1C−1
0 −E)⊤

)
⊙I−𝜎2

𝑤I.

Thus, to identify the underlying system dynamics, we propose to solve the following:

𝑝, �̂�2
𝑤 = arg min

𝑝,𝜎2
𝑤

∥ly(C0,C1)∥2F . (4.38)

This problem can be further simplified to

𝑝, �̂�2
𝑤 = arg min

𝑝,𝜎2
𝑤

𝑴1 − (1/𝑝) 𝑴2 − 𝜎2
𝑤 I

2
F , (4.39)

where 𝑴2=
(
(C1C−1

0 −E)C0(C1C−1
0 −E)⊤

)
⊙ I and 𝑴1=E C0 E⊤−C1C−1

0 C⊤1+𝑴2.
Notice that 𝑝 and𝜎2

𝑤 appear decoupled in (4.39). Therefore, we can first solve (4.39)
for �̂�2

𝑤 for a fixed value of 𝑝 to get an optimal solution. Then, substituting �̂�2
𝑤 into

the problem and solving for 𝑝 we obtain the optimal estimate for 𝑝. The described
procedure yields the following optimal estimates:

𝑝 =
𝑑𝑥 tr(𝑴⊤2 𝑴2) − tr2(𝑴2)

𝑑𝑥 tr(𝑴⊤1 𝑴2) − tr(𝑴1) tr(𝑴2)
, �̂�2

𝑤 =
tr(𝑴1) − (1/𝑝) tr(𝑴2)

𝑑𝑥
. (4.40)

Using the estimate of randomization probability 𝑝 and C1C−1
0 = [Â B̂], i.e., the

estimate of average system transition parameters, the underlying system parameters
could be recovered as Â = (1/𝑝)Â+ (1−1/𝑝)I𝑑𝑥 and B̂ = (1/𝑝)B̂. To study the
performance of the proposed system identification method, we consider a random-
ized LTI system with state transition matrix of A1 and a random B with 𝑝 = 0.5
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Figure 4.6: Average estimation error for the unknown system parameters of the
stable randomized LTI system with state transition matrix of A1 and random B for
100 independent single trajectories

which guarantees the stability (verified by Lemma 4.4) and set 𝜎𝑤 = 1. We run
100 independent single trajectories and present the average rate of decay for the
estimation errors of 𝑝, 𝜎2

𝑤 in the first plot and A and B in the second plot of Figure
4.6. Notice that the estimation errors behave irregularly at the beginning where
there are few samples, corresponding to burn-in period to converge to steady-state.
On the other hand, Figure 4.6 show that, as predicted by MC-CLT, the estimation
errors decay with 1/

√
𝑇 rate as we get more samples. This estimation error rate

is the optimal behavior in linear regression problems with independent noise and
covariates [106]. This depicts the consistency and efficiency of the proposed system
identification method for randomized LTI systems.

4.3.5 Conclusion
In this study, we introduced a natural model of random asynchronous LTI systems
that can be used to model various LDS with randomized and asynchronous updates.
We numerically and analytically studied the mean-square stability of these systems
and showed that the stability of random asynchronous systems is governed by the
matrix representation of a positive linear map that controls the evolution of the
state covariance matrix, rather than the state transition matrix. We proposed a
system identification method for stable randomized LTI systems and observed that
the method is consistent and efficient based on the empirical study.

In future work, we aim to derive the precise characterization of mean-square sta-
bility and extend the proposed system identification method in the general random
asynchronous systems. We also plan to study the finite-time adaptive control and
stabilization of random asynchronous LTI systems.
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C h a p t e r 5

LEARNING AND CONTROL IN PARTIALLY OBSERVABLE
LINEAR DYNAMICAL SYSTEMS

In this chapter, we study the problem of learning and control of unknown partially
observable linear dynamical systems, also known as measurement-feedback sys-
tems1. Unlike the dynamical systems considered in Chapters 3 and 4, the state of
the dynamical system in this setting is not directly available to the decision-making
agent. Instead, the learning agent observes a noisy (Gaussian or sub-Gaussian)
linear measurement of the underlying hidden state. Due to this partial observability,
learning the system dynamics with finite time guarantees brings substantial chal-
lenges, making it a long-lasting problem in adaptive control. In particular, when the
latent states of a system are not fully observable, future observations are correlated
with the past inputs and observations through the latent states. These correlations
are even magnified when closed-loop controllers, i.e., those that naturally use past
experiences to come up with control inputs, are deployed. Therefore, more sophisti-
cated estimation methods that consider these complicated and unknown correlations
are required for learning the dynamics.

In recent years, a series of works have studied this learning problem and presented
a range of novel methods with finite-sample learning guarantees. These studies
propose to employ i.i.d. Gaussian excitation as the control input, collect system out-
puts, and estimate the model parameters using the data collected through the Markov
parameters of the system. The use of i.i.d. Gaussian noise as the open-loop control
input is effective in mitigating the correlation between the inputs and output observa-
tions. For stable systems, these methods provide efficient ways to learn the model dy-
namics with confidence bounds of Õ(1/

√
𝑇), after𝑇 times step of agent-environment

interaction [213, 234, 245, 269]. Since then, this approach has become the standard
practice in adaptive control, as it is challenging to learn the model dynamics when
closed-loop controllers are used [223]. Closed-loop controllers that design inputs
based on the history of inputs and observations result in highly correlated inputs with
past process noise sequences, preventing reliable finite-time estimation of Markov
parameters using the available system identification methods in the literature.

1This chapter is based on [138, 160–163].
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These open-loop identification methods later have been deployed to propose explore-
then-commit-based RL algorithms to minimize regret. In particular, these algo-
rithms deploy i.i.d. Gaussian noise as the control input to learn the model parameters
in the explore phase and then exploit these estimates during the commit phase to
minimize regret. Among these works, Simchowitz et al. [245] propose using online
convex optimization [17] during the commit phase. They show that their approach
attains regret of Õ(𝑇2/3) when in the case of convex cost functions. Moreover, in the
case of strongly convex cost functions, Mania et al. [191], Simchowitz et al. [245]
show that exploiting the strong convexity allows guaranteeing regret of Õ(

√
𝑇).

These methods heavily rely on the lack of correlation achieved by using i.i.d. Gaus-
sian noise as the open-loop control input to estimate the model. Therefore, they
do not generalize to the adaptive settings, where the past observations are used to
continuously improve both model estimates and the controllers. These challenges
pose the following two open problems:

“Can we learn the underlying model parameters in closed-loop setting with
finite-sample guarantees?”

“Can we leverage such learning method to design adaptive control algorithms with
improved regret guarantees in partially observable linear dynamical systems?”

In the following sections, we give affirmative answers to both of these questions.

We introduce the first system identification method that allows estimating the model
parameters with finite-time guarantees in both open and closed-loop settings. We
exploit the classical predictive form representation of the system that goes back to
Kalman [134] and reformulate each output as a linear function of previous control
inputs and outputs with an additive i.i.d. Gaussian noise, named as the innovation
process. This reformulation allows for addressing the limitations of the prior esti-
mation methods in handling the correlations in inputs and outputs. We state a novel
least squares problem to recover the Markov parameters of the system and propose a
subspace identification method SysId, to obtain a balanced realization of the model
parameters. We show that when the controllers persistently excite the system, i.e.,
the smallest singular value of the Gram matrix of the covariates scales linearly, the
parameter estimation error of this novel closed-loop system identification method
is Õ(1/

√
𝑇) after 𝑇 samples. This approach allows updating the model estimates

while controlling the system with an adaptive controller.
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Table 5.1: Comparison with prior works in learning and control of partially observ-
able linear dynamical systems.

Work Regret Cost Identification

Mania et al. [191]
√
𝑇 Strongly Convex Open-Loop

Simchowitz et al. [245]
√
𝑇 Strongly Convex Open-Loop

AdaptOn
√
𝑇 Strongly Convex Closed-Loop (No PE)

AdaptOn polylog(𝑇) Strongly Convex Closed-Loop

Simchowitz et al. [245] 𝑇2/3 Convex Open-Loop
LqgOpt & TSPO & AdaptOn 𝑇2/3 Convex Closed-Loop (No PE)
LqgOpt & TSPO & AdaptOn

√
𝑇 Convex Closed-Loop

Using this effective closed-loop system identification method, we focus on an-
swering the second question and design adaptive control algorithms with improved
regret guarantees. To this end, we mostly investigate the adaptive control of Lin-
ear Quadratic Gaussian (LQG) control systems and design three novel algorithmic
frameworks: LQG control via Optimism (LqgOpt), Thompson Sampling under
Partial Observability (TSPO), and Adaptive Control Online Learning (AdaptOn).
These algorithms use three different methodologies to balance the exploration vs.
exploitation trade-off and design adaptive controllers: optimism, Thompson Sam-
pling, and online learning, respectively. We show the benefit of our closed-loop
system identification method in achieving continuous model updates throughout the
entire timeline of the adaptive control process, which yields significantly improved
regret guarantees compared to prior work, see Table 5.1. In particular, due to
the unique combination of the efficient closed-loop system identification method,
strong convexity of the cost functions, convex policy parametrization, and the statis-
tical efficiency of online gradient descent, we show that AdaptOn achieves the first
logarithmic regret in learning and control of unknown partially observable linear
dynamical systems. This surprising result sheds light on an interesting phenomenon
that the learning and control in partially observable linear systems can be statistically
easier than in the fully observable setting discussed in Section 3, see Remark 5.2.
Furthermore, we also extend the guarantees of these algorithms to the more gen-
eral setting of ARX systems with sub-Gaussian noise which are discussed in the
subsequent sections.

The rest of the chapter is organized as follows: in the following, we review the prior
work on finite-time guarantees of learning and control in partially observable linear
dynamical systems. In Section 5.1, we introduce the relevant concepts and the prob-
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lem setting. In Section 5.2, we review an open-loop system identification method
adopted widely in the literature and explain its shortcomings. Section 5.3 introduces
our novel closed-loop system identification method with finite-time guarantees and
highlights how it overcomes the dependencies of covariates and noise terms by
adopting a simple reparametrization of the system dynamics. In Section 5.4 and
Section 5.5, we introduce LqgOpt and TSPO with their corresponding learning and
control guarantees, respectively. Finally, in Section 5.6, we present AdaptOn and
highlight the contributing pieces to its logarithmic regret. We end our discussion
with Section 5.7 where we present several interesting future directions building on
the results presented in this chapter.

Background and Motivation

Our study lies at the intersection of statistical learning, control, and reinforcement
learning. Recently, there have been considerable efforts to give finite-time regret
guarantees for adaptive control algorithms in linear dynamical systems (see Sec-
tion 3.1 for the rich finite-time learning and control literature in fully observable
linear dynamical systems). On the other hand, in partially observable linear dynam-
ical systems the finite-time learning and control literature is more sparse due to the
challenges of partial observability.

Learning with Finite-time Guarantees: The classical open or closed-loop sys-
tem identification methods either consider the asymptotic behavior of the estimators
or demonstrate the positive and negative empirical performances without theoreti-
cal guarantees [89, 188, 189, 224, 281, 282, 285]. Most of the prior work exploits
the state-space form or the innovations form representation of the system, while
only a handful consider the predictor form representation for system identification
[58, 126], which will be the system dynamics representation used in our novel
learning method. Interested readers can refer to [223] for an extensive overview.

In contrast to classical results in both of these problems that analyze the asymptotic
performances, recently, there has been a flurry of studies that consider the finite-
time learning guarantees. In finite-time system identification setting pioneered by
Campi and Weyer [43, 44], currently, the main focus has been on obtaining the
optimal learning rate of 1/

√
𝑇 after 𝑇 samples. Using open-loop data collection

to avoid correlations in the inputs and outputs, Oymak and Ozay [213], Sarkar
et al. [234], Simchowitz et al. [244], Tsiamis and Pappas [269] suggest methods
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that achieve this rate for stable dynamical systems. However, due to the difficulty
in handling the correlations caused by the feedback controller, finite-time closed-
loop system identification guarantees are scarce in the literature. To the best of
our knowledge, only [174] considers finite-time closed-loop system identification.
However, they analyze the output estimation error rather than explicitly recovering
the model parameters as presented in our study.

Adaptive Control with Finite-time Guarantees: Besides the results presented
in this chapter, there are only a couple of works that study the challenging topic of
adaptive control with finite-time guarantees in partially observable linear dynamical
systems [191, 245]. Among these, the CE-based method in [191] attains Õ(

√
𝑇)

regret if the quadratic cost in the LQG control systems is strongly convex (𝑄, 𝑅≻0).
Similarly, under strongly convex cost condition, [245] show that O(

√
𝑇) regret is

attainable using online learning, while in the setting of convex cost they show sub-
optimal regret of O(𝑇2/3). In our results for LqgOpt, TSPO, and AdaptOn we match
these results in the most general setting, see Corollaries 5.5.1, 5.8.1, and 5.10.3,
respectively. However, when a PE condition is satisfied for the underlying system,
then we significantly advance the known regret results in the literature due to our
novel closed-loop system identification method. In particular, we show that for
partially observable systems with convex cost, our algorithms can attain O(

√
𝑇)

regret rate, see Theorem 5.5, 5.8, and Corollary 5.10.3, respectively. Perhaps
surprisingly, for the setting of strongly convex cost functions, we show that AdaptOn
achieves logarithmic regret in Theorem 5.10. Furthermore, we extend these results
to the more general setting of ARX systems with sub-Gaussian noise and relax
certain restrictive assumptions such as controllability and observability of the system
dynamics to the stabilizability and detectability, see Sections 5.4.6 and 5.6.5.

5.1 Preliminaries
5.1.1 Notation
We denote the Euclidean norm of a vector 𝑥 as ∥𝑥∥2. For a given matrix 𝐴,
∥𝐴∥2 denotes the spectral norm, ∥𝐴∥𝐹 denotes the Frobenius norm while 𝐴⊤ is its
transpose, 𝐴† is the Moore-Penrose inverse, and Tr(𝐴) gives the trace of matrix 𝐴.
The j-th singular value of a rank-𝑛matrix 𝐴 is denoted by 𝜎𝑗 (𝐴), where 𝜎max(𝐴) :=
𝜎1(𝐴) ≥ 𝜎2(𝐴) ≥ . . . ≥ 𝜎min(𝐴) := 𝜎𝑛 (𝐴) > 0. 𝐼 is the identity matrix with the
appropriate dimension. In the following, N(`, Σ) denotes a multivariate normal
distribution with mean vector ` and covariance matrix Σ.
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5.1.2 Partially Observable Linear Dynamical Systems
In this chapter, we will first study the canonical measurement-feedback linear control
systems known as Linear Quadratic Gaussian (LQG) control systems. As their name
suggests, these systems have linear dynamics, quadratic control costs, and Gaussian
noise disturbances. These systems will be our starting point, and we will consider
various generalizations such as without the exact knowledge of the noise covariance,
sub-Gaussian noise, and general (strongly) convex cost functions in our results.

In the LQG control systems, we have Θ = (𝐴, 𝐵, 𝐶) with 𝐴 ∈ R𝑛×𝑛, 𝐵 ∈ R𝑛×𝑝,
𝐶 ∈ R𝑚×𝑛 as the model parameters of a partially observable linear time-invariant
dynamical system in the state-space form:

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝑤𝑡
𝑦𝑡 = 𝐶𝑥𝑡 + 𝑧𝑡 , (5.1)

where 𝑥𝑡 ∈ R𝑛 is the (latent) state of the system, 𝑢𝑡 ∈ R𝑝 is the control input, the
observation 𝑦𝑡 ∈ R𝑚 is the output of the system, 𝑤𝑡 ∼ N (0,𝑊) , and 𝑧𝑡 ∼ N (0, 𝑍)
are i.i.d. process noise and measurement noise, respectively. Note that for simplicity
of presentation, in LQG control systems, we will consider isotropic Gaussian process
and measurement noise, i.e.,𝑊 = 𝜎2

𝑤 𝐼 and 𝑍 = 𝜎2
𝑧 𝐼. At each time step 𝑡, the system

is at state 𝑥𝑡 and the agent observes 𝑦𝑡 , i.e., imperfect state information. Then, the
agent applies a control input 𝑢𝑡 and the system evolves to 𝑥𝑡+1 at time step 𝑡 + 1. We
will assume that the underlying system is controllable and observable.

Definition 5.1. A linear system Θ = (𝐴, 𝐵, 𝐶) is (𝐴, 𝐵) controllable if the control-
lability matrix,

C(𝐴, 𝐵, 𝑛) = [𝐵 𝐴𝐵 𝐴2𝐵 . . . 𝐴𝑛−1𝐵]

has full row rank. For all 𝐻 ≥ 𝑛, C(𝐴, 𝐵, 𝐻) defines the extended (𝐴, 𝐵) control-
lability matrix. Similarly, a linear system Θ = (𝐴, 𝐵, 𝐶) is 𝐴,𝐶 observable if the
observability matrix,

O(𝐴,𝐶, 𝑛) = [𝐶⊤ (𝐶𝐴)⊤ (𝐶𝐴2)⊤ . . . (𝐶𝐴𝑛−1)⊤]⊤

has full column rank. For all 𝐻 ≥ 𝑛, O(𝐴,𝐶, 𝐻) defines the extended (𝐴,𝐶)
observability matrix.

By assuming controllability and observability of the underlying system with state
dimension 𝑛, we implicitly assume the order of the underlying system is also 𝑛, i.e.,
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the system is in its minimal representation. We adopt this assumption for ease of
presentation. There are several efficient algorithms that find the order of an unknown
linear dynamical system [234]. Using these techniques, we can lift the assumption
on the order of the system without jeopardizing any performance guarantees.

Notice that unlike the dynamical systems studied in Chapters 3 and 4, in this system
the agent does not observe the state, thus it is needed to be estimated. For this
setting, in his seminal work, Kalman derived a closed-form expression for 𝑥𝑡 |𝑡,Θ, the
minimum mean squared error (MMSE) estimate of the underlying state 𝑥𝑡 using the
past information of control inputs and observations, and the model parameters Θ,
where 𝑥0|−1,Θ = 0. This formulation is denoted as the Kalman filter and is efficiently
obtained via

𝑥𝑡 |𝑡,Θ = (𝐼 − 𝐿𝐶) 𝑥𝑡 |𝑡−1,Θ + 𝐿𝑦𝑡 , (5.2)

𝑥𝑡 |𝑡−1,Θ = (𝐴𝑥𝑡−1|𝑡−1,Θ + 𝐵𝑢𝑡−1), (5.3)

𝐿 = Σ𝐶⊤
(
𝐶Σ𝐶⊤ + 𝜎2

𝑧 𝐼

)−1
, (5.4)

where Σ is the unique positive semidefinite solution to the following Discrete Alge-
braic Riccati Equation (DARE):

Σ = 𝐴Σ𝐴⊤ − 𝐴Σ𝐶⊤
(
𝐶Σ𝐶⊤ + 𝜎2

𝑧 𝐼

)−1
𝐶Σ𝐴⊤ + 𝜎2

𝑤 𝐼 . (5.5)

Σ can be interpreted as the steady state error covariance matrix of state estimation
under Θ. There are various equivalent characterizations of the dynamics of the
discrete-time linear time-invariant system Θ besides the state-space form given in
(5.1) [132, 160, 270]. Note that these representations all have the same second-order
statistics. One of the most common forms is the innovations form2 of the system
characterized as

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝐹𝑒𝑡
𝑦𝑡 = 𝐶𝑥𝑡 + 𝑒𝑡 , (5.6)

where 𝐹 = 𝐴𝐿 is the Kalman gain in the observer form and 𝑒𝑡 is the zero mean
white innovation process. In this equivalent representation of the system, the
state 𝑥𝑡 can be seen as the estimate of the state in the state space representation,
which is the expression stated in (5.3), i.e., the MMSE estimate of state 𝑥𝑡 given

2For simplicity, all of the system representations are presented for the steady-state of the system.
Note that the system converges to the steady state exponentially fast [211].
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(𝑦𝑡−1, . . . , 𝑦0, 𝑢𝑡−1, . . . , 𝑢0). In the steady state, 𝑒𝑡 ∼ N
(
0, 𝐶Σ𝐶⊤ + 𝜎2

𝑧 𝐼
)
. Using

the relationship between 𝑒𝑡 and 𝑦𝑡 , we obtain the following characterization of the
system Θ, known as the predictor form of the system,

𝑥𝑡+1 = �̄�𝑥𝑡 + 𝐵𝑢𝑡 + 𝐹𝑦𝑡
𝑦𝑡 = 𝐶𝑥𝑡 + 𝑒𝑡 , (5.7)

where �̄� = 𝐴−𝐹𝐶 and 𝐹 = 𝐴𝐿. Notice that at steady state, the predictor form allows
the current output 𝑦𝑡 to be described by the history of inputs and outputs with an i.i.d.
Gaussian disturbance 𝑒𝑡 ∼ N

(
0, 𝐶Σ𝐶⊤ + 𝜎2

𝑧 𝐼
)
. In our results, we exploit these fun-

damental properties to estimate the underlying system, even with feedback control.

The predictor form dynamics given in (5.7) belong to a larger class of dynami-
cal systems named Autoregressive Exogenous (ARX) systems. ARX systems are
central dynamical systems in time-series modeling due to input-output form rep-
resentation as given in (5.7). Due to their ability to approximate linear systems
in a parametric model structure, they have been crucial in many areas including
chemical engineering, power engineering, medicine, economics, and neuroscience
[23, 42, 87, 118, 209]. These models provide a general representation of LDS
with arbitrary stochastic disturbances. In our study, besides LQG control systems
in predictor form (5.7) with 𝑒𝑡 being the innovation process, we will consider the
general setting of dynamical systems of the form (5.7) with sub-Gaussian 𝑒𝑡 and
arbitrary �̄� and 𝐹.

Definition 5.2. A matrix 𝑀 ∈R𝑛×𝑛 (^, 𝛾)-stable for ^ ≥ 0 and 0 < 𝛾 ≤ 1 if there ex-
ists a similarity transformation 𝑀 = 𝑆Λ𝑆−1 where ∥𝑆∥ ∥𝑆−1∥ ≤ ^ and ∥Λ∥ ≤ 1− 𝛾.

We will consider (^1, 𝛾1) open-loop stable LQG control systems. From the definition
above, this means that for all 𝑘 , ∥𝐴𝑘 ∥ ≤ ^1(1 − 𝛾1)𝑘 . Notice that Definition 5.2
is the stability corresponding to the stabilizability definition given in Definition 3.2
in Chapter 3. The stability of 𝐴 is required to have a simply bounded state in the
analysis and is not a fundamental requirement in the predictor form nor for the ARX
systems. In particular, in the predictor form of LQG, �̄� is stable due to observability
assumption and in the ARX systems, we will explicitly assume the stability of �̄�
which captures an extensive number of systems including all detectable partially
observable linear dynamical systems [132]. Thus, for the LQG control systems, one
can show exponential in dimension bound on state 𝑥𝑡 similar to the analysis provided
in Chapter 3. We leave this analysis for future work.
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To summarize, we assume that the underlying system lives in the following set.

Assumption 5.1. The unknown system Θ = (𝐴, 𝐵, 𝐶) is a member of a set S, such
that,

S ⊆


Θ′ = (𝐴′, 𝐵′, 𝐶′, 𝐹′)

𝐴′ is (^1, 𝛾1)-stable,
(𝐴′, 𝐵′) is controllable,
(𝐴′, 𝐶′) is observable,
(𝐴′, 𝐹′) is controllable,
max(∥𝐴∥ , ∥𝐵∥ , ∥𝐶∥ , ∥𝐹∥) ≤ 𝜓.


,

where 𝜓 > 0, ^1 > 0, and 𝛾1 ∈ (0, 1]. In particular, we assume that there exist
constants ^2, ^3>0 and 𝛾2, 𝛾3 ∈ (0, 1] such that the systems are (^2, 𝛾2)-stabilizable
as defined in Definition 3.2 and �̄�′ ≔ 𝐴′−𝐹′𝐶′ is (^3, 𝛾3)-stable for all Θ′∈S .

Note that (^2, 𝛾2)-stabilizability follows directly from the controllability of the
system and the closed-loop stability of 𝐴′−𝐹′𝐶′ also follows from the observability
of the system, in other words, it can be considered as the stabilizability property
with respect to the filtering problem.

The behavior of an LQG control system or an ARX system is uniquely governed by
its Markov parameters, i.e., impulse response.

Definition 5.3 (Markov Parameters). The set of matrices that maps the previous
inputs to the output is called input-to-output Markov parameters and the ones that
map the previous outputs to the output are denoted as output-to-output Markov
parameters of the system Θ. In particular, for the dynamics in (5.1), the set of
Markov parameters is defined as 𝐺𝑖𝑢→𝑦 =𝐶𝐴𝑖−1𝐵,∀𝑖 ≥ 1. For the predictor form
or ARX systems given in (5.7), the matrices that map inputs and outputs to the
output are the elements of the Markov operator, G= {𝐺𝑖𝑢→𝑦, 𝐺𝑖𝑦→𝑦}𝑖≥1 where ∀𝑖≥1,
𝐺𝑖𝑢→𝑦 =𝐶�̄�

𝑖−1𝐵 and 𝐺𝑖𝑦→𝑦 =𝐶�̄�𝑖−1𝐹 which are unique.

In learning the system dynamics, we will aim to learn the Markov parameters of the
system since they are uniquely identifiable.

5.1.3 Control Problem Under Quadratic Costs
To define the control problem in the partially observable linear dynamics introduced
in the previous section, we will consider two different cost functions. The first one
is the canonical quadratic cost on the inputs and outputs of the LQG control system
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setting. In this setting, at time 𝑡, when the agent applies a control input it receives a
cost of

𝑐𝑡 = 𝑦
⊤
𝑡 𝑄𝑦𝑡 + 𝑢⊤𝑡 𝑅𝑢𝑡 ,

where 𝑄 and 𝑅 are positive semidefinite (psd) and positive definite (pd) matrices,
respectively. We denote this cost as the convex quadratic cost since 𝑄 is psd. The
goal of the controlling agent is to reduce the cumulative cost

∑𝑇
𝑡=0 𝑐𝑡 by deploying

control actions after 𝑇 ≥ 0 number of interactions with the environment. This can
be achieved by finding the best control policy that minimizes the average expected
cost subject to the dynamical constraints in (5.1) as

𝐽∗(Θ)= lim
𝑇→∞

min
𝑢=[𝑢1,...,𝑢𝑇 ]

1
𝑇
E

[
𝑇∑︁
𝑡=1

𝑦⊤𝑡 𝑄𝑦𝑡 + 𝑢⊤𝑡 𝑅𝑢𝑡

]
. (5.8)

This problem is known as the LQG control. Here 𝐽∗(Θ) is the optimal average
expected cost of the system Θ. The optimal solution to the LQG control problem
is obtained by estimating the latent state of the system and deploying the optimal
controller synthesis described in Chapter 3. This is known as the separation principle
in control theory [19]. In particular, the optimal controller is given as the linear
feedback policy

𝑢𝑡 = −𝐾𝑥𝑡 |𝑡,Θ, (5.9)

where 𝐾 is the optimal feedback gain matrix,

𝐾 =
(
𝑅 + 𝐵⊤𝑃𝐵

)−1
𝐵⊤𝑃𝐴,

as defined in Chapter 3 and 𝑃 is the unique positive semidefinite solution to the
following discrete-time algebraic Riccati equation (DARE):

𝑃 = 𝐴⊤𝑃𝐴 + 𝐶⊤𝑄𝐶 − 𝐴⊤𝑃𝐵
(
𝑅 + 𝐵⊤𝑃𝐵

)−1
𝐵⊤𝑃𝐴, (5.10)

and 𝑥𝑡 |𝑡,Θ is the MMSE estimate given in (5.2). The optimal average expected cost
of LQG control system that satisfies Assumption 5.1 takes a finite value and can be
computed as

𝐽∗(Θ) = Tr
( (
𝑄 + 𝐿⊤𝑃𝐿 − 𝐿⊤𝐶⊤𝑄𝐶𝐿

) (
𝐶Σ𝐶⊤ + 𝜎2

𝑧 𝐼

))
. (5.11)

The majority of this chapter studies adaptive control under quadratic cost for LQG
control systems and ARX systems. However, in Section 5.6, we consider general
strongly convex cost functions which can be adversarially chosen and provide new
sets of results using online gradient descent for the aforementioned settings.
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5.1.4 Regret
Due to a lack of knowledge of model parameters, i.e., system dynamics, the learning
and control agent cannot design the discussed optimal control law. Therefore,
the agent needs to learn them through interaction with the system with the aim
of minimizing the cumulative costs

∑𝑇
𝑡=1 𝑐𝑡 after 𝑇 time steps. We measure the

performance of the agent using regret, i.e., the difference between the agent’s cost
and the optimal expected cost:

Regret(𝑇) =
∑︁𝑇

𝑡=0
(𝑐𝑡 − 𝐽∗(Θ)). (5.12)

In the majority of this chapter, we consider this regret metric for adaptive control
performance in LQG control and ARX systems. However, in Section 5.6 we consider
the regret with respect to the best controller in the hindsight from a given class of
controllers and show improved regret guarantees.

5.2 Open-Loop System Identification
In this section, we study the open-loop system identification methods that are adopted
in the literature. In order to minimize the regret given in (5.12), the learning agent
needs to efficiently explore the environment to learn the system dynamics, and
exploit the gathered experiences to minimize overall cost [171]. However, since
the underlying states of the systems are not fully observable, learning the system
dynamics with finite time guarantees brings substantial challenges, making it a long-
lasting problem in adaptive control. In particular, when the latent states of a system
are not fully observable, future observations are correlated with the past inputs and
observations through the latent states. These correlations are even magnified when
closed-loop controllers, those that naturally use past experiences to come up with
control inputs, are deployed. Therefore, more sophisticated estimation methods that
consider these complicated and unknown correlations are required for learning the
dynamics.

An Open-loop System Identification Method

In recent years, a series of works have studied this learning problem and presented
a range of novel methods with finite-sample learning guarantees. These studies
propose to employ i.i.d. Gaussian excitation as the control input, i.e., open-loop
control, collect system outputs, and estimate the model parameters using the data
collected. These methods study the system identification problem using the state-
space representation (5.1) and aim to recover the input-to-output Markov parameters
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𝐺𝑖𝑢→𝑦 =𝐶𝐴
𝑖−1𝐵 introduced in Definition 5.3. The use of i.i.d. Gaussian noise as

the open-loop control input (not using past experiences) mitigates the correlation
between the inputs and the output observations. For stable systems, these methods
provide efficient ways to learn the model dynamics with confidence bounds of
Õ(1/

√
𝑇), after 𝑇 times step of agent-environment interaction [166, 213, 234, 245,

269]. Here Õ(·) denotes the order up to logarithmic factors. Deploying i.i.d.
Gaussian noise for a long period of time to estimate the model parameters has
been the common practice in adaptive control since incorporating a closed-loop
controller introduces significant challenges to learning the model dynamics [223].
In this section, we review one of such open-loop system identification methods and
discuss the reason why methods that use the state-space representation of the system
(5.1) cannot provide reliable estimates in closed-loop estimation problems.

Using the state-space representation in (5.1), for any positive integer 𝐻, one can
rewrite the output at time 𝑡 as follows,

𝑦𝑡 =
∑︁𝐻

𝑖=1
𝐶𝐴𝑖−1𝐵𝑢𝑡−𝑖 + 𝐶𝐴𝐻𝑥𝑡−𝐻 + 𝑧𝑡 +

∑︁𝐻−1

𝑖=0
𝐶𝐴𝑖𝑤𝑡−𝑖−1. (5.13)

Recalling Definition 5.3, for ^G ≥ 1, let the Markov operator of Θ be bounded, i.e.,∑
𝑖≥0 ∥𝐺𝑖𝑢→𝑦∥ ≤ ^G. Due to Assumption 5.1, i.e., the stability of 𝐴, the second

term in (5.13) decays exponentially, and for large enough 𝐻 it becomes negligible.
Therefore, we obtain the following for the output at time 𝑡,

𝑦𝑡 ≈
∑︁𝐻

𝑖=1
𝐺𝑖𝑢→𝑦𝑢𝑡−𝑖 + 𝑧𝑡 +

∑︁𝐻−1

𝑖=0
𝐶𝐴𝑖𝑤𝑡−𝑖−1. (5.14)

From this formulation, a least squares estimation problem can be formulated using
outputs as the dependent variable and the concatenation of 𝐻 input sequences �̄�𝑡 =
[𝑢𝑡−1, . . . , 𝑢𝑡−𝐻] as the regressor to recover the Markov parameters of the system:

Ĝ𝑢→𝑦 = [𝐺1
𝑢→𝑦, . . . , 𝐺

𝐻
𝑢→𝑦] = argmin

𝑋

∑︁𝑇

𝑡=𝐻
∥𝑦𝑡 − 𝑋�̄�𝑡 ∥22. (5.15)

Prior finite-time system identification algorithms propose using i.i.d. zero-mean
Gaussian noise for the input, to make sure that the two noise terms in (5.14)
are not correlated with the inputs. In particular, exciting the system with i.i.d.
𝑢𝑡 ∼ N(0, 𝜎2

𝑢 𝐼) for 1 ≤ 𝑡 ≤ 𝑇𝑒𝑥𝑝 provides a lack of correlation between the regres-
sor and the noise components in (5.14) and allows solving (5.15) in closed-form
with finite-time estimation error guarantees for the unknown input-to-output Markov
parameters [161, 166, 213, 234, 244]. Note that besides lack of correlation, the i.i.d
Gaussian control inputs persistently excite the system allows consistent estimation
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of the Markov parameters. Interested readers can find the general analysis in [213]
where Oymak and Ozay, show that using i.i.d. Gaussian control inputs allows
estimating the Markov parameters with the optimal rate of Õ(1/

√︁
𝑇𝑒𝑥𝑝), i.e.,

∥Ĝ𝑢→𝑦 −G𝑢→𝑦∥ ≤
𝑐

𝜎𝑢
√︁
𝑇𝑒𝑥𝑝

(5.16)

for some problem-dependent constant 𝑐 after large enough 𝑇𝑒𝑥𝑝 time steps. This rate
is the same error rate one would get from solving a linear regression problem with
independent noise and independent covariates [106].

Even though Markov parameters uniquely determine the underlying system, to
design the controller for the underlying system as described in Section 5.1.3, one
needs to find a balanced realization of Θ from Ĝ𝑢→𝑦. To achieve this, the well-
known subspace method Ho-Kalman algorithm is the primary choice [112]. The
Ho-Kalman algorithm is given in Algorithm 9. It takes the Markov parameter matrix
estimate Ĝ𝑢→𝑦, 𝐻, the systems order 𝑛, and dimensions 𝑑1, 𝑑2, as the input and
computes an order 𝑛 system Θ̂ = ( �̂�, �̂�, �̂�). It is worth restating that the dimension
of the latent state, 𝑛, is the order of the system for observable and controllable
dynamics. With the assumption that 𝐻 ≥ 2𝑛 + 1, we pick 𝑑1 ≥ 𝑛 and 𝑑2 ≥ 𝑛

such 𝑑1 + 𝑑2 + 1 = 𝐻. This guarantees that the system identification problem is
well-conditioned.

Algorithm 9 Ho-Kalman Algorithm
1: Input: Ĝ𝑢→𝑦, 𝐻, system order 𝑛, 𝑑1, 𝑑2 such that 𝑑1 + 𝑑2 + 1 = 𝐻

2: Form the Hankel Matrix Ĥ ∈ R𝑚𝑑1×𝑝(𝑑2+1) from Ĝ𝑢→𝑦
3: Set Ĥ− ∈ R𝑚𝑑1×𝑝𝑑2 as the first 𝑝𝑑2 columns of Ĥ
4: Using SVD obtain N̂ ∈ R𝑚𝑑1×𝑝𝑑2 , the rank-𝑛 approximation of Ĥ−
5: Obtain U,𝚺,V = SVD(N̂)
6: Construct Ô = U𝚺1/2 ∈ R𝑚𝑑1×𝑛

7: Construct Ĉ = 𝚺1/2V ∈ R𝑛×𝑝𝑑2

8: Obtain �̂� ∈ R𝑚×𝑛, the first 𝑚 rows of Ô
9: Obtain �̂� ∈ R𝑛×𝑝, the first 𝑝 columns of Ĉ

10: Obtain Ĥ+ ∈ R𝑚𝑑1×𝑝𝑑2 , the last 𝑝𝑑2 columns of Ĥ
11: Obtain �̂� = Ô†Ĥ+Ĉ† ∈ R𝑛×𝑛

Since only the order 𝑛 input-output response of the system is uniquely identifi-
able [188], the system parameters Θ (even with the correct Markov parameters
matrix G𝑢→𝑦) are recovered up to similarity transformation. More generally, for
any invertible T ∈ R𝑛×𝑛, the system 𝐴′ = T−1𝐴T, 𝐵′ = T−1𝐵,𝐶′ = 𝐶T gives the
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same Markov parameters matrix G𝑢→𝑦, equivalently, the same input-output impulse
response.

For 𝐻 ≥ 2𝑛 + 1, using [𝐺1
𝑢→𝑦, . . . , 𝐺

𝐻
𝑢→𝑦] ∈ R𝑚×𝐻𝑝, the Ho-Kalman algorithm

constructs a (𝑛×𝑛+1) block Hankel matrix Ĥ ∈ R𝑛𝑚×(𝑛+1)𝑝 such that (𝑖, 𝑗)th block
of Hankel matrix is �̂�𝑖+ 𝑗−1

𝑢→𝑦 . It is worth noting that if the input to the algorithm was
G𝑢→𝑦 then the corresponding Hankel matrix,H is rank 𝑛, more importantly,

H = [𝐶⊤ (𝐶𝐴)⊤ . . . (𝐶𝐴𝑛−1)⊤]⊤ [𝐵 𝐴𝐵 . . . 𝐴𝑛𝐵] = O[C 𝐴𝑛𝐵] = O[𝐵 𝐴C],

where O and C are observability and controllability matrices respectively. Essen-
tially, the Ho-Kalman algorithm estimates these matrices using Ĝ𝑢→𝑦. In order to
estimate O and C, the algorithm constructs Ĥ−, the first 𝑛𝑝 columns of Ĥ and calcu-
lates N̂ , the best rank-𝑛 approximation of Ĥ−. Therefore, the singular value decom-
position of N̂ provides us with the estimates of O,C, i.e., N̂ = U𝚺1/2 𝚺1/2V = ÔĈ.
From these estimates, the algorithm recovers �̂� as the first 𝑛 × 𝑝 block of Ĉ, �̂� as
the first 𝑚 × 𝑛 block of Ô, and �̂� as Ô†Ĥ+Ĉ† where Ĥ+ is the submatrix of Ĥ ,
obtained by discarding the left-most 𝑛𝑚 × 𝑝 block.

Note that if we feed G𝑢→𝑦 to the Ho-Kalman algorithm, the H− is the first 𝑛𝑝
columns ofH , it is rank-𝑛, andN =H−. Using the outputs of the Ho-Kalman algo-
rithm, i.e., ( �̂�, �̂�, �̂�), we can construct confidence sets centered around these outputs
that contain a similarity transformation of the system parametersΘ = (𝐴, 𝐵, 𝐶) with
high probability. Theorem 5.1 states the construction of confidence sets and it is a
slight modification of Corollary 5.4 of Oymak and Ozay [213].

Theorem 5.1 (Confidence Set Construction). Suppose H is the rank-𝑛 Hankel
matrix obtained from G𝑢→𝑦. Let �̄�, �̄�, �̄� be the system parameters that Ho-Kalman
algorithm provides for G𝑢→𝑦. Define the rank-𝑛 matrix N such that it is the
submatrix of H obtained by discarding the last block column of H . Suppose
𝜎𝑛 (N) > 0 and ∥N̂ − N∥ ≤ 𝜎𝑛 (N)

2 . Then, there exists a unitary matrix T ∈ R𝑛×𝑛

such that, Θ̄ = ( �̄�, �̄�, �̄�) ∈ (C𝐴 × C𝐵 × C𝐶) for

C𝐴 =

{
𝐴′ ∈ R𝑛×𝑛 : ∥ �̂� − T⊤𝐴′T∥ ≤

(
31𝑛∥H ∥
𝜎2
𝑛 (H)

+ 13𝑛
2𝜎𝑛 (H)

)
∥Ĝ𝑢→𝑦 −G𝑢→𝑦∥

}
C𝐵 =

{
𝐵′ ∈ R𝑛×𝑝 : ∥�̂� − T⊤𝐵′∥ ≤ 7𝑛√︁

𝜎𝑛 (H)
∥Ĝ𝑢→𝑦 −G𝑢→𝑦∥

}
C𝐶 =

{
𝐶′ ∈ R𝑚×𝑛 : ∥�̂� − 𝐶′T∥ ≤ 7𝑛√︁

𝜎𝑛 (H)
∥Ĝ𝑢→𝑦 −G𝑢→𝑦∥

}
,
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where �̂�, �̂�, �̂� obtained from the Ho-Kalman algorithm using the least squares
estimate of the Markov parameter matrix Ĝ𝑢→𝑦.

Proof. The proof is similar to the proof of Theorem 4.3 in [213]. The difference in
the presentation arises due to providing a different characterization of the dependence
on ∥N − N̂ ∥ and centering the confidence ball over the estimations rather than the
output of Ho-Kalman algorithm with the input of 𝐺. In Oymak and Ozay [213],
from the inequality

∥�̄� − T⊤�̂�∥2𝐹 ≤
2𝑛∥N − N̂ ∥2

(
√

2 − 1)
(
𝜎𝑛 (N) − ∥N − N̂ ∥

) ,
the authors use the assumption ∥N − N̂ ∥ ≤ 𝜎𝑛 (N)

2 to cancel out numerator and
denominator. In this presentation, we define 𝑇𝑁 such that for large enough ex-
ploration time 𝑇𝑒𝑥𝑝 such that 𝑇𝑒𝑥𝑝 ≥ 𝑇𝑁 , we have ∥N − N̂ ∥ ≤ 𝜎𝑛 (N)

2 with high
probability. See [166] for the precise expression of 𝑇𝑁 . Note that 𝑇𝑁 depends on
𝜎𝑛 (𝐻), due to the fact that singular values of submatrices by column partitioning are
interlaced, i.e., 𝜎𝑛 (N) = 𝜎𝑛 (H−) ≥ 𝜎𝑛 (H). Then, we redefine the denominator
based on 𝜎𝑛 (N) and again use the fact 𝜎𝑛 (N) = 𝜎𝑛 (H−) ≥ 𝜎𝑛 (H). Following the
proof steps provided in Oymak and Ozay [213] and combining with the fact that
∥N − N̂ ∥ ≤ 2

H− − Ĥ− ≤ 2
√︁

min {𝑑1, 𝑑2}∥Ĝ𝑢→𝑦 −G𝑢→𝑦∥ (see Lemma B.1 of
[213]), we obtain the presented theorem. □

Combining Theorem 5.1 with (5.16) shows that using the open-loop system iden-
tification method, a balanced realization of Θ could be recovered with the optimal
estimation rate with high probability. However, when a controller designs the inputs
based on the history of inputs and observations, the inputs become highly correlated
with the past process noise sequences, {𝑤𝑖}𝑡−1

𝑖=0 . This correlation prevents the con-
sistent and reliable estimation of Markov parameters using (5.15). Therefore, these
prior open-loop estimation methods do not generalize to the systems that adaptive
controllers generate the inputs for estimation, i.e., closed-loop estimation. For this
very reason, the open-loop system identification techniques have been only deployed
to propose explore-then-commit-based adaptive control algorithms to minimize re-
gret as discussed at the beginning of this chapter. In the following section, we
provide a closed-loop system identification algorithm that alleviates the correlations
in the covariates and the noise sequences by considering the predictor form of the
system dynamics (5.7) rather than the state space form (5.1).



140

5.3 A Novel Closed-Loop System Identification Method
In this section, we introduce the first system identification method that allows esti-
mating the model parameters with finite-time guarantees in both open and closed-
loop settings. Without loss of generality, since the Kalman filter converges exponen-
tially fast to the steady-state gain in observer form, we assume that 𝑥0 ∼ N(0, Σ),
i.e., the system starts at the steady state. This consideration eases the presentation
of our method. To analyze any arbitrary and almost surely finite initialization we
refer the interested reader to Appendix G of [162].

For the LQG control systems or ARX systems, using the predictor form repre-
sentation (5.7), for a positive integer 𝐻, the output at time 𝑡 can be rewritten as
follows,

𝑦𝑡 =
∑︁𝐻−1

𝑘=0
𝐶�̄�𝑘 (𝐹𝑦𝑡−𝑘−1 + 𝐵𝑢𝑡−𝑘−1) + 𝑒𝑡 + 𝐶�̄�𝐻𝑥𝑡−𝐻 . (5.17)

Using the open- or closed-loop generated input-output sequences up to time 𝜏,
{𝑦𝑡 , 𝑢𝑡}𝜏𝑡=1, we construct subsequences of 𝐻 input-output pairs for 𝐻 ≤ 𝑡 ≤ 𝜏,

𝜙𝑡 =
[
𝑦⊤𝑡−1, . . . , 𝑦

⊤
𝑡−𝐻 , 𝑢

⊤
𝑡−1, . . . , 𝑢

⊤
𝑡−𝐻

]⊤ ∈ R(𝑚+𝑝)𝐻 .
Recall the predictor form Markov parameters defined in Definition 5.3, i.e., input-
to-output Markov parameters𝐺𝑖𝑢→𝑦 = 𝐶�̄�𝑖−1𝐵 and output-to-output Markov param-
eters 𝐺𝑖𝑦→𝑦 = 𝐶�̄�𝑖−1𝐹. Then, the output of the system, 𝑦𝑡 can be represented using
𝜙𝑡 as:

𝑦𝑡 = Gyu𝜙𝑡 + 𝑒𝑡 + 𝐶�̄�𝐻𝑥𝑡−𝐻 (5.18)

for
Gyu = [𝐺1

𝑦→𝑦, . . . , 𝐺
𝐻
𝑦→𝑦, 𝐺

1
𝑢→𝑦, . . . , 𝐺

𝐻
𝑢→𝑦] . (5.19)

Notice that �̄� is stable due to (𝐴, 𝐹)-controllability and observability of Θ for
LQG systems (in fact it only requires the weaker conditions of stabilizability and
detectability), and in the ARX systems, we explicitly assume the stability of �̄�.
Therefore, with a similar argument used in (5.13), for 𝐻 = 𝑂 (log(𝑇)), the last term
in (5.17) is negligible. This yields into a linear model of the dependent variable 𝑦𝑡
and the regressor 𝜙𝑡 with additive i.i.d. Gaussian noise 𝑒𝑡 :

𝑦𝑡 ≈ Gyu𝜙𝑡 + 𝑒𝑡 . (5.20)

For this model, we achieve consistent and reliable estimates by solving the following
regularized least squares problem,

Ĝyu = argmin
𝑋

_∥𝑋 ∥2𝐹 +
∑︁𝜏

𝑡=𝐻
∥𝑦𝑡 − 𝑋𝜙𝑡 ∥22. (5.21)
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Algorithm 10 SysId

1: Input: Ĝyu, 𝐻, system order 𝑛, 𝑑1, 𝑑2 such that 𝑑1 + 𝑑2 + 1 = 𝐻

2: Form two 𝑑1×(𝑑2+1) Hankel matrices Ĥy→y and Ĥu→y from Ĝyu and construct
Ĥ =

[
Ĥy→y, Ĥu→y

]
∈ R𝑚𝑑1×(𝑚+𝑝) (𝑑2+1)

3: Obtain Ĥ− by discarding (𝑑2 + 1)th and (2𝑑2 + 2)th block columns of Ĥ
4: Using SVD obtain N̂ ∈ R𝑚𝑑1×(𝑚+𝑝)𝑑2 , the best rank-𝑛 approximation of Ĥ−
5: Obtain U,𝚺,V = SVD(N̂)
6: Construct Ô( �̄�, 𝐶, 𝑑1) = U𝚺1/2 ∈ R𝑚𝑑1×𝑛

7: Construct [Ĉ( �̄�, 𝐹, 𝑑2 + 1), Ĉ( �̄�, 𝐵, 𝑑2 + 1)] = 𝚺1/2V ∈ R𝑛×(𝑚+𝑝)𝑑2

8: Obtain �̂� ∈ R𝑚×𝑛, the first 𝑚 rows of Ô( �̄�, 𝐶, 𝑑1)
9: Obtain �̂� ∈ R𝑛×𝑝, the first 𝑝 columns of Ĉ( �̄�, 𝐵, 𝑑2 + 1)

10: Obtain �̂� ∈ R𝑛×𝑚, the first 𝑚 columns of Ĉ( �̄�, 𝐹, 𝑑2 + 1)
11: Obtain Ĥ+ by discarding 1st and (𝑑2 + 2)th block columns of Ĥ
12: Obtain ˆ̄𝐴 = Ô†( �̄�, 𝐶, 𝑑1) Ĥ+ [Ĉ( �̄�, 𝐹, 𝑑2 + 1), Ĉ( �̄�, 𝐵, 𝑑2 + 1)]†
13: Obtain �̂� = ˆ̄𝐴 + �̂��̂�
14: Obtain �̂� ∈ R𝑛×𝑚, as the first 𝑛 × 𝑚 block of �̂�†Ô†( �̄�, 𝐶, 𝑑1)Ĥ−

Notice that the noise 𝑒𝑡 and the covariates of the estimation problem in (5.21), 𝜙,
are independent, and the dependencies in the prior least squares methods (5.15) are
alleviated. In particular, this problem does not require any specification on how the
inputs are generated and therefore can be deployed in both open- and closed-loop
estimation problems.

Exploiting the specific structure of Gyu in (5.19), we design a procedure named
SysId, given in Algorithm 10, which recovers model parameters from Ĝyu. SysId is a
variant of the Ho-Kalman procedure. Similar to the standard Ho-Kalman algorithm,
SysId takes Ĝyu, the two sets of Markov parameters estimates of the predictor form,
𝐻, the systems order 𝑛, and dimensions 𝑑1, 𝑑2, as the inputs and computes an order
𝑛 system Θ̂ = ( �̂�, �̂�, �̂�, �̂�). Note that �̂� is an estimate of the optimal Kalman gain
𝐿 given in (5.4) for the LQG control systems, and our novel estimation method
allows us to estimate it, which will be also useful in control design in the upcoming
sections. SysId constructs two separate 𝑑1 × (𝑑2 + 1) Hankel matrices from the
Markov parameter estimates and similar to the Ho-Kalman algorithm, since the
order of the system is 𝑛, by choosing 𝐻 ≥ 2𝑛 + 1 and picking 𝑑1 ≥ 𝑛 and 𝑑2 ≥ 𝑛
such 𝑑1+𝑑2+1 = 𝐻, we guarantee a well-conditioned system identification problem.

From the blocks of Ĝyu ∈ R𝑚×𝐻 (𝑚+𝑝) , SysId constructs two (𝑛× 𝑛+1) block Hankel
matrices Ĥy→y ∈ R𝑛𝑚×(𝑛+1)𝑚 and Ĥu→y ∈ R𝑛𝑚×(𝑛+1)𝑝, such that (𝑖, 𝑗)th block of
Ĥy→y is �̂�𝑖+ 𝑗−1

𝑦→𝑦 and (𝑖, 𝑗)th block of Ĥu→y is �̂�𝑖+ 𝑗−1
𝑢→𝑦 from Ĝyu due to the structure
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in (5.19). Then, it forms the following matrix Ĥ :

Ĥ =

[
Ĥy→y, Ĥu→y

]
.

Notice that from the Definition 5.1, if the input to the SysId was Gyu then constructed
Hankel matrix,H would be rank 𝑛,

H = [𝐶⊤, . . . , (𝐶�̄�𝑛−1)⊤]⊤ [𝐹, . . . , �̄�𝑛𝐹, 𝐵, . . . , �̄�𝑛𝐵]
= O( �̄�, 𝐶, 𝑛) [C( �̄�, 𝐹, 𝑛 + 1), �̄�𝑛𝐹, C( �̄�, 𝐵, 𝑛 + 1), �̄�𝑛𝐵]
= O( �̄�, 𝐶, 𝑛) [𝐹, �̄�C( �̄�, 𝐹, 𝑛 + 1), 𝐵, �̄�C( �̄�, 𝐵, 𝑛 + 1)] .

Notice that Gyu and H are uniquely identifiable for a given system Θ, whereas for
any invertible T ∈ R𝑛×𝑛, the system resulting from

𝐴′ = T−1𝐴T, 𝐵′ = T−1𝐵, 𝐶′ = 𝐶T, 𝐹′ = T−1𝐹

gives the same Gyu and H . Similar to the Ho-Kalman algorithm, SysId computes
the SVD of Ĥ and estimates the extended observability and controllability matrices
and eventually system parameters up to similarity transformation. To this end, SysId
constructs Ĥ− by discarding (𝑛 + 1)th and (2𝑛 + 2)th block columns of Ĥ , i.e., if it
wasH then we have,

H− = O( �̄�, 𝐶, 𝑛) [C( �̄�, 𝐹, 𝑛 + 1), C( �̄�, 𝐵, 𝑛 + 1)] .

The SysId procedure then calculates N̂ , the best rank-𝑛 approximation of Ĥ−,
obtained by setting its all but top 𝑛 singular values to zero. The estimates of
O( �̄�, 𝐶, 𝑛), C( �̄�, 𝐹, 𝑛 + 1) and C( �̄�, 𝐵, 𝑛 + 1) are given as

N̂ = U𝚺1/2 𝚺1/2V⊤ = Ô( �̄�, 𝐶, 𝑛) [Ĉ( �̄�, 𝐹, 𝑛 + 1), Ĉ( �̄�, 𝐵, 𝑛 + 1)] .

From these estimates SysId recovers �̂� as the first 𝑚 × 𝑛 block of Ô( �̄�, 𝐶, 𝑛), �̂� as
the first 𝑛× 𝑝 block of Ĉ( �̄�, 𝐵, 𝑛+1) and �̂� as the first 𝑛×𝑚 block of Ĉ( �̄�, 𝐹, 𝑛+1).
Let Ĥ+ be the matrix obtained by discarding 1st and (𝑛 + 2)th block columns of Ĥ ,
i.e., if it wasH then

H+ = O( �̄�, 𝐶, 𝑛) �̄� [C( �̄�, 𝐹, 𝑛 + 1), C( �̄�, 𝐵, 𝑛 + 1)] .

Therefore, SysId recovers ˆ̄𝐴 as,

ˆ̄𝐴 = Ô†( �̄�, 𝐶, 𝑛) Ĥ+ [Ĉ( �̄�, 𝐹, 𝑛 + 1), Ĉ( �̄�, 𝐵, 𝑛 + 1)]†.
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For identifying the model parameters of an ARX model, these are all needed by the
learning agent. For the LQG control systems, the learning agent requires recovering
𝐴 and 𝐿. Using the definition of �̄� = 𝐴 − 𝐹𝐶, the algorithm obtains �̂� = ˆ̄𝐴 + �̂��̂�.
For an estimate of 𝐿, SysId selects the first 𝑛 × 𝑚 block of �̂�†Ô†( �̄�, 𝐶, 𝑛)Ĥ−.
For the persistently exciting inputs, the following gives the first finite-time system
identification guarantee in both open and closed-loop estimation problems.

Theorem 5.2 (Estimation Error Guarantees of the Novel System Identification
Method). If the inputs are persistently exciting, then for𝑇 input-output pairs, as long
as 𝑇 is large enough, solving the least squares problem in (5.21) provides Markov
parameter estimates Ĝ𝑦→𝑦, Ĝ𝑢→𝑦 and deploying SysId procedure gives model param-
eter estimates ( �̂�, �̂�, �̂�, �̂�, �̂�) in which there exists a similarity transformation T ∈
R𝑛×𝑛 such that, with high probability, ∥Ĝ𝑦→𝑦 −G𝑦→𝑦∥, ∥Ĝ𝑢→𝑦 −G𝑢→𝑦∥, as well as
∥ �̂�−T−1𝐴T∥, ∥�̂�−T−1𝐵∥, ∥�̂�−𝐶T∥, ∥�̂�−T−1𝐹∥, and ∥ �̂�−T−1𝐿∥ are all Õ(1/

√
𝑇).

The proof is given in Section 5.3.1. The above theorem shows that our proposed
estimation method overcomes the correlations in the dynamics estimation problem,
does not care about the way control inputs are generated, and provides the optimal
estimation error rate of linear regression with independent noise and independent
covariates. One key aspect to highlight in the above result is the persistence of
excitation (PE) condition. This condition refers to the characterizations of the
covariates in the least squares problem and has been the key element of the system
identification algorithms to allow reliable and consistent estimation [18, 37, 38, 206].
Precisely it means that

𝜎min

(
𝜏∑︁
𝑖=1

𝜙𝑖𝜙
⊤
𝑖

)
≥ 𝜎2

★𝜏, (5.22)

for some constant 𝜎2
★, i.e., for some time 𝜏, the minimum singular value of the

design matrix scales linearly. Even though one can recover the model parameters in
a self-normalized way, i.e., via quantifying the uncertainties in the estimates based
on inputs, to obtain uniformly improving estimates, the persistence of excitation is
required. The i.i.d. Gaussian inputs utilized in the previous section for open-loop
system identification and in Chapter 3 during the improved exploration phases for
StabL and TSAC allow such results. In the closed-loop control setting, one approach
is to explicitly inject isotropic perturbations along with the control actions. How-
ever, as one can expect, this approach will give sub-optimal control performance.
Luckily, in partially observable dynamical systems like LQG control systems or
ARX systems, the closed-loop systems can reflect the effect of measurement noise
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onto the regressors by construction which gives the PE condition for free. For in-
stance, the PE condition holds in many well-known controllers such as optimalH2

and H∞ controllers. Moreover, if a controller is PE, then there exists a neighbor-
hood around it consisting of persistently exciting controllers, which is important to
achieve consistent estimation under modeling error. Therefore, it is a mild condition
to hold and it only requires a significantly wide matrix that maps a short history
of noise sequences to the inputs, to be full row rank. The precise characterization
of the PE condition in the open-loop setting is given in Section 5.3.2, while the
precise characterization and analysis of how the PE condition is met for closed-loop
controllers in the adaptive control setting are given in Sections 5.4-5.6.

5.3.1 Proof of Theorem 5.2
In this section, we first present the proof of Theorem 5.2 under the PE assumption
with precise expressions. In particular, we show the self-normalized error bound
on the (5.21), Theorem 5.3. Then, assuming the PE condition, we convert the self-
normalized bound into a Frobenius norm bound to be used for parameter estimation
error bounds in Theorem 5.4, which concludes the proof of Theorem 5.2.

First, consider the effect of the truncation bias term, 𝐶�̄�𝐻𝑥𝑡−𝐻 in (5.18). From
Assumption 5.1, we have that �̄� is (^3, 𝛾3) stable. Thus, 𝐶�̄�𝐻𝑥𝑡−𝐻 scales with the
order of (1 − 𝛾3)𝐻 for bounded 𝑥. In order to get consistent estimation, for some
problem-dependent constant 𝑐𝐻 , we set 𝐻 ≥ log(𝑐𝐻𝑇

√
𝑚/
√
_)

log(1/(1−𝛾3)) , resulting in a negligible
bias term of order 1/𝑇 . Note that 𝑐𝐻 is determined by the underlying system and
the control policy since it is related to the scaling of the latent state. Using this we
first obtain a self-normalized finite sample estimation error of (5.21):

Theorem 5.3 (Self-normalized Estimation Error). Let Ĝyu be the solution to (5.21)
at time 𝜏. For 𝐻 ≥ log(𝑐𝐻𝑇

√
𝑚/
√
_)

log(1/(1−𝛾3)) , define 𝑉𝜏 = _𝐼 + ∑𝜏
𝑖=𝐻 𝜙𝑖𝜙

⊤
𝑖

. Let ∥Gyu∥𝐹 ≤ 𝑆.
For 𝛿 ∈ (0, 1), with probability at least 1− 𝛿, for all 𝑡 ≤ 𝜏, Gyu lies in the set CGyu,𝑡 ,
where

CGyu,𝑡 = {Gyu
′ : Tr((Ĝyu − Gyu

′)𝑉𝑡 (Ĝyu − Gyu
′)⊤) ≤ 𝛽2

𝜏},

for 𝛽𝜏 =
√︂
𝑚Σ𝑒 log

(
det(𝑉𝜏)1/2
𝛿 det(_𝐼)1/2

)
+ 𝑆
√
_ + 𝜏

√
𝐻
𝑇

, where Σ𝑒B ∥𝐶Σ𝐶⊤+𝜎2
𝑧 𝐼 ∥𝐹 .

The proof is given in Appendix C.1. Note that the above result holds under sub-
Gaussian 𝑒𝑡 and is satisfied in both LQG control systems and ARX systems. Using
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this result, we have

𝜎min(𝑉𝜏)∥Ĝyu − Gyu∥2𝐹 ≤ Tr((Ĝyu − Gyu)𝑉𝑡 (Ĝyu − Gyu)⊤) ≤ 𝛽2
𝜏,

Assume that 𝜙𝑖 is bounded (which will be rigorously shown for different adaptive
control algorithms, i.e., Sections 5.4–5.6) such that max𝑖≤𝜏 ∥𝜙𝑖∥ ≤ Υ

√
𝐻. For

persistently exciting inputs, i.e.,𝜎min(𝑉𝜏) ≥ 𝜎2
★𝜏 for𝜎★ > 0, we get, with probability

at least 1 − 𝛿,

∥Ĝyu − Gyu∥𝐹 ≤

√︂
𝑚Σ𝑒

(
log( 1

𝛿
) + 𝐻 (𝑚+𝑝)

2 log
(
_(𝑚+𝑝)+𝜏Υ2

_(𝑚+𝑝)

))
+ 𝑆
√
_ +
√
𝐻

𝜎★
√
𝜏

(5.23)

after 𝜏 time steps. Note that Ĝyu−Gyu = [Ĝ𝑦→𝑦, Ĝ𝑢→𝑦]−[G𝑦→𝑦,G𝑢→𝑦], thus (5.23)
translates to the same error bounds for ∥Ĝ𝑦→𝑦−G𝑦→𝑦∥ and ∥Ĝ𝑢→𝑦−G𝑢→𝑦∥, proving
the first part of Theorem 5.2. This result shows that the novel least squares problem
provides consistent estimates and the estimation error is Õ(1/

√
𝑇) after 𝑇 samples.

For the second part of Theorem 5.2, we show that SysId provides a balanced realiza-
tion of Θ such that we have confidence sets around the estimated model parameters
in which a similarity transformation of Θ lives in with high probability similar to
Theorem 5.1. For this, define 𝑇Gyu as the number of samples required such that
∥Ĝyu − Gyu∥ ≤ 1 in (5.23). Let

𝑇𝑁 = 𝑇Gyu
8𝐻

𝜎2
𝑛 (H)

, 𝑇𝐵 = 𝑇Gyu
20𝑛𝐻
𝜎𝑛 (H)

. (5.24)

We have the following result on the model parameter estimates.

Theorem 5.4 (Model Parameters Estimation Error). LetH be the concatenation of
two Hankel matrices obtained from Gyu. Let �̄�, �̄�, �̄�, �̄�, �̄� be the system parameters
that SysId provides for Gyu. At time step 𝑡, let �̂�𝑡 , �̂�𝑡 , �̂�𝑡 , �̂�𝑡 , �̂�𝑡 denote the system
parameters obtained by SysId using Ĝyu. For all 𝑡 ≥ max{𝑇Gyu , 𝑇𝑁 , 𝑇𝐵}, for 𝐻 ≥
max

{
2𝑛 + 1, log(𝑐𝐻𝑇

√
𝑚/
√
_)

log(1/(1−𝛾3))

}
, there exists a unitary matrix T ∈ R𝑛×𝑛 such that,

Θ̄ = ( �̄�, �̄�, �̄�, �̄�, �̄�) ∈ (C𝐴 × C𝐵 × C𝐶 × C𝐹 × C𝐿) where

C𝐴 (𝑡)=
{
𝐴′∈R𝑛×𝑛 : ∥ �̂�𝑡−T⊤𝐴′T∥ ≤ 𝛽𝐴𝑡

}
, C𝐵 (𝑡)=

{
𝐵′∈R𝑛×𝑝 : ∥�̂�𝑡−T⊤𝐵′∥ ≤ 𝛽𝐵𝑡

}
,

C𝐶 (𝑡)=
{
𝐶′∈R𝑚×𝑛 : ∥�̂�𝑡−𝐶′T∥ ≤ 𝛽𝐶𝑡

}
, C𝐹 (𝑡)=

{
𝐹′∈R𝑛×𝑚 : ∥�̂�𝑡−T⊤𝐹′∥ ≤ 𝛽𝐹𝑡

}
,

C𝐿 (𝑡)=
{
𝐿′∈R𝑛×𝑚 : ∥ �̂�𝑡−T⊤𝐿′∥ ≤ 𝛽𝐿 (𝑡)

}
, (5.25)
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for

𝛽𝐴𝑡 =𝑐1

(√
𝑛𝐻 (∥H ∥+𝜎𝑛 (H))

𝜎2
𝑛 (H)

)
∥Ĝyu−Gyu∥, 𝛽𝐵𝑡 = 𝛽𝐶𝑡 = 𝛽𝐹𝑡 =

√︄
20𝑛𝐻
𝜎𝑛 (H)

∥Ĝyu−Gyu∥,

𝛽𝐿𝑡 =
𝑐2∥H ∥√︁
𝜎𝑛 (H)

𝛽𝐴+𝑐3

√
𝑛𝐻 (∥H ∥ + 𝜎𝑛 (H))

𝜎
3/2
𝑛 (H)

∥Ĝyu−Gyu∥,

for some problem-dependent constants 𝑐1, 𝑐2 and 𝑐3.

Before presenting the proof, we state the following lemmas which are adapted from
Oymak and Ozay [213] with slight modifications to fit our setting. In particular, they
are originally used for the Ho-Kalman algorithm and SysId is a variant of this algo-
rithm. These results will be useful in proving error bounds on system parameters.

Lemma 5.1. H , Ĥ𝑡 and N , N̂𝑡 satisfies the following perturbation bounds,

max
{H+ − Ĥ+𝑡  , H− − Ĥ−𝑡 } ≤ ∥H − Ĥ𝑡 ∥ ≤ √︁

min {𝑑1, 𝑑2 + 1}∥Ĝyu − Gyu∥

∥N − N̂𝑡 ∥ ≤ 2
H− − Ĥ−𝑡  ≤ 2

√︁
min {𝑑1, 𝑑2}∥Ĝyu − Gyu∥.

Lemma 5.2. Suppose𝜎min(N) ≥ 2∥N−N̂ ∥ where𝜎min(N) is the smallest nonzero
singular value (i.e., 𝑛th largest singular value) ofN . Let rank-𝑛matricesN , N̂ have
singular value decompositions U𝚺V⊤ and Û�̂�V̂⊤. There exists an 𝑛 × 𝑛 unitary
matrix T so thatU𝚺1/2 − Û�̂�1/2T

2

𝐹
+

V𝚺1/2 − V̂�̂�1/2T
2

𝐹
≤ 5𝑛∥N − N̂ ∥2

𝜎𝑛 (N) − ∥N − N̂ ∥
.

Proof. For brevity, we note O=O( �̄�, 𝐶, 𝑑1), CF=C( �̄�, 𝐹, 𝑑2+1), CB=C( �̄�, 𝐵, 𝑑2+
1), Ôt = Ôt( �̄�, 𝐶, 𝑑1), ĈFt = Ĉt( �̄�, 𝐹, 𝑑2 + 1), ĈBt = Ĉt( �̄�, 𝐵, 𝑑2 + 1). In the
definition of 𝑇𝑁 , we use 𝜎𝑛 (𝐻), due to the fact that singular values of submatrices
by column partitioning are interlaced, i.e., 𝜎𝑛 (N) = 𝜎𝑛 (H−) ≥ 𝜎𝑛 (H). Directly
applying Lemma 5.2 with the condition that for given 𝑡 ≥ 𝑇𝑁 , we have 𝜎min(N) ≥
2∥N − N̂ ∥, we can guarantee that there exists a unitary transform T such thatÔt −OT

2
𝐹
+

[ĈFt ĈBt] − T⊤ [CF CB]
2
𝐹
≤ 10𝑛∥N − N̂𝑡 ∥2

𝜎𝑛 (N)
. (5.26)

Since �̂�𝑡 − �̄�T is a submatrix of Ôt −OT, �̂�𝑡 − T⊤�̄� is a submatrix of ĈBt − T⊤CB

and �̂�𝑡 −T⊤�̄� is a submatrix of ĈFt −T⊤CF, we get the same bounds for them stated
in (5.26). Using Lemma 5.1, with the choice of 𝑑1, 𝑑2 ≥ 𝐻

2 , we have

∥N − N̂𝑡 ∥ ≤
√

2𝐻∥Ĝyu − Gyu∥.
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This provides the advertised bounds in the theorem:

∥�̂�𝑡 − T⊤�̄�∥, ∥�̂�𝑡 − �̄�T∥, ∥�̂�𝑡 − T⊤�̄�∥ ≤
√

20𝑛𝐻∥Ĝyu − Gyu∥√︁
𝜎𝑛 (N)

.

Notice that for 𝑡 ≥ 𝑇𝐵, we have all the terms above to be bounded by 1. In order to
determine the closeness of �̂�𝑡 and �̄� we first consider the closeness of ˆ̄𝐴𝑡 − T⊤ ¯̄𝐴T,
where ¯̄𝐴 is the output obtained by SysId for �̄� when the input is Gyu. Let 𝑋 = OT
and 𝑌 = T⊤ [CF CB]. Thus, we have

∥ ˆ̄𝐴𝑡 − T⊤ ¯̄𝐴T∥𝐹 = ∥Ô†t Ĥ
+
𝑡 [ĈFt ĈBt]† − 𝑋†H+𝑌†∥𝐹

≤
(Ô†t − 𝑋†) Ĥ+𝑡 [ĈFt ĈBt]†


𝐹
+

𝑋† (Ĥ+𝑡 −H+) [ĈFt ĈBt]†

𝐹

+
𝑋†H+ (

[ĈFt ĈBt]† − 𝑌†
)
𝐹
.

For the first term, we have the following perturbation bound [197, 291],

∥Ô†t − 𝑋
†∥𝐹 ≤ ∥Ôt − 𝑋 ∥𝐹 max{∥𝑋†∥2, ∥Ô†t ∥

2}

≤ ∥N − N̂𝑡 ∥

√︄
10𝑛
𝜎𝑛 (N)

max{∥𝑋†∥2, ∥Ô†t ∥
2}.

Since we already had 𝜎𝑛 (N) ≥ 2∥N − N̂ ∥, we have ∥N̂ ∥ ≤ 2∥N ∥ and 2𝜎𝑛 (N̂) ≥
𝜎𝑛 (N). Thus,

max{∥𝑋†∥2, ∥Ô†t ∥
2} = max

{
1

𝜎𝑛 (N)
,

1
𝜎𝑛 (N̂)

}
≤ 2
𝜎𝑛 (N)

. (5.27)

Combining these and following the same steps for ∥ [ĈFt ĈBt]†−𝑌†∥𝐹 , we getÔ†t − 𝑋
†

𝐹
,

[ĈFt ĈBt]†−𝑌†

𝐹
≤

N − N̂𝑡√︄
40𝑛
𝜎3
𝑛 (N)

. (5.28)

The following individual bounds obtained by using (5.27), (5.28) and triangle in-
equality:(Ô†t − 𝑋†) Ĥ+𝑡 [ĈFt ĈBt]†


𝐹
≤ ∥Ô†t − 𝑋

†∥𝐹 ∥Ĥ+𝑡 ∥∥ [ĈFt ĈBt]†∥

≤
4
√

5𝑛
N − N̂𝑡
𝜎2
𝑛 (N)

(
∥H+∥ + ∥Ĥ+𝑡 −H+∥

)
𝑋† (Ĥ+𝑡 −H+) [ĈFt ĈBt]†


𝐹
≤

2
√
𝑛∥Ĥ+𝑡 −H+∥
𝜎𝑛 (N)𝑋†H+ (

[ĈFt ĈBt]† − 𝑌†
)
𝐹
≤ ∥𝑋†∥∥H+∥∥ [ĈFt ĈBt]† − 𝑌†∥

≤
2
√

10𝑛
N − N̂𝑡

𝜎2
𝑛 (N)

∥H+∥.
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Combining these we get

∥ ˆ̄𝐴𝑡− T⊤ ¯̄𝐴T∥𝐹 ≤
31
√
𝑛∥H+∥

N−N̂𝑡
2𝜎2

𝑛 (N)
+ ∥Ĥ+𝑡 −H+∥

(
4
√

5𝑛
N−N̂𝑡

𝜎2
𝑛 (N)

+ 2
√
𝑛

𝜎𝑛 (N)

)
≤ 31
√
𝑛∥H+∥

2𝜎2
𝑛 (N)

N − N̂𝑡 + 13
√
𝑛

2𝜎𝑛 (N)
∥Ĥ+𝑡 −H+∥.

These results give the estimation error guarantees for the ARX systems. For LQG
control systems we additionally need to recover 𝐴 and 𝐿. Now consider �̂�𝑡 =

ˆ̄𝐴𝑡 + �̂�𝑡�̂�𝑡 . Using Lemma 5.1,

∥ �̂�𝑡 − T⊤ �̄�T∥𝐹
= ∥ ˆ̄𝐴𝑡 + �̂�𝑡�̂�𝑡 − T⊤ ¯̄𝐴T − T⊤�̄��̄�T∥𝐹
≤ ∥ ˆ̄𝐴𝑡 − T⊤ ¯̄𝐴T∥𝐹 + ∥(�̂�𝑡 − T⊤�̄�)�̂�𝑡 ∥𝐹 + ∥T⊤�̄� (�̂�𝑡 − �̄�T)∥𝐹
≤ ∥ ˆ̄𝐴𝑡−T⊤ ¯̄𝐴T∥𝐹 + ∥(�̂�𝑡−T⊤�̄�)∥𝐹 ∥�̂�𝑡−�̄�T∥𝐹

+∥(�̂�𝑡−T⊤�̄�)∥𝐹 ∥�̄�∥+∥�̄�∥∥(�̂�𝑡−�̄�T)∥𝐹

≤ 31
√

2𝑛𝐻∥H ∥
2𝜎2

𝑛 (N)
∥Ĝyu − Gyu∥ +

13
√
𝑛𝐻

2
√

2𝜎𝑛 (N)
∥Ĝyu − Gyu∥ +

20𝑛𝐻∥Ĝyu − Gyu∥2

𝜎𝑛 (N)

+ (∥�̄�∥+∥�̄�∥)∥Ĝyu − Gyu∥

√︄
20𝑛𝐻
𝜎𝑛 (N)

.

Using the result above, to obtain an estimation error bound for �̂�𝑡 , we define 𝑇𝐴
as the samples required to have ∥ �̂�𝑡 − T⊤ �̄�T∥ ≤ 𝜎𝑛 ( �̄�)/2 for all 𝑡 ≥ 𝑇𝐴, i.e.,

𝑇𝐴 = 𝑇Gyu

(
62
√

2𝑛𝐻 ∥H∥
2𝜎2
𝑛 (N)

+ 26
√
𝑛𝐻

2
√

2𝜎𝑛 (N)
+(∥�̄�∥+∥�̄�∥)

√︃
80𝑛𝐻
𝜎𝑛 (N) +

√︃
40𝑛𝐻𝜎𝑛 ( �̄�)
𝜎𝑛 (N)

𝜎𝑛 ( �̄�)

)2

. From Weyl’s inequality,

we have 𝜎𝑛 ( �̂�𝑡) ≥ 𝜎𝑛 ( �̄�)/2. Recalling that 𝑋 = O( �̄�, 𝐶, 𝑑1)T, under Assumption
5.1, we consider �̂�𝑡 :

∥ �̂�𝑡 − T⊤ �̄�∥𝐹
= ∥ �̂�†𝑡 Ô

†
t Ĥ
−
𝑡 − T⊤ �̄�†O†H−∥𝐹

≤ ∥( �̂�†𝑡 −T⊤ �̄�†T)Ô†t Ĥ
−
𝑡 ∥𝐹+∥T⊤ �̄�†T(Ô†t −𝑋

†)Ĥ−𝑡 ∥𝐹+∥T⊤ �̄�†T𝑋†(Ĥ−𝑡 −H−)∥𝐹
≤ ∥ �̂�†𝑡 −T⊤�̄�†T∥𝐹 ∥Ô†t ∥∥Ĥ

−
𝑡 ∥+∥Ô†t −𝑋

†∥𝐹 ∥ �̄�†∥∥Ĥ−𝑡 ∥+
√
𝑛∥Ĥ−𝑡 −H−∥∥ �̄�†∥∥𝑋†∥

≤
(
∥ �̂�†𝑡 −T⊤ �̄�†T∥𝐹

√︄
2

𝜎𝑛 (N)
+

N−N̂𝑡√︄
40𝑛
𝜎3
𝑛 (N)

∥ �̄�†∥
) (
∥H−∥+∥Ĥ−𝑡 −H−∥

)
+
√
𝑛∥ �̄�†∥ 1√︁

𝜎𝑛 (N)
∥Ĥ−𝑡 −H−∥.
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Again using the perturbation bounds of the Moore–Penrose inverse under the
Frobenius norm [197], we have ∥ �̂�†𝑡 − T⊤ �̄�†T∥𝐹 ≤ 2

𝜎2
𝑛 ( �̄�)
∥ �̂�𝑡 − T⊤ �̄�T∥. No-

tice that the similarity transformation that transfers 𝐴 to �̄� is bounded since
𝑆 =

(
[𝐶⊤ (𝐶�̄�)⊤ . . . (𝐶�̄�𝑑1−1)⊤]⊤

)†O( �̄�, 𝐶, 𝑑1). Combining all and using Lemma
5.1, we obtain the confidence set for �̂�𝑡 given in Theorem 5.4. □

Combining Theorem 5.4 with the guarantee that ∥Ĝyu−Gyu∥ = Õ(1/
√
𝑇) given in

(5.23), finishes the proof of the second part of Theorem 5.2. Overall, we showed that
our novel system identification method allows closed-loop and open-loop estimation
in both LQG and ARX systems. This method will be the key piece in our adaptive
control design.

Remark 5.1. Note that to recover Gyu using the closed-loop system identification
method presented in this section, we only require stabilizability condition on (𝐴, 𝐵)
and detectability conditions on (𝐴,𝐶), i.e., there exists a matrix 𝐾 and 𝐹 such that
𝐴− 𝐵𝐾 and 𝐴− 𝐹𝐶 are stable, rather than controllability and observability condi-
tions provided in Assumption 5.1. Stabilizability and detectability are necessary and
sufficient conditions to have a well-defined learning and control problem in partially
observable linear dynamical systems, and they provide the conditions required for
our novel closed-loop system identification method to work, i.e., stable �̄�. However,
controllability and observability assumptions are required for the subspace identifi-
cation method SysId, since it requires rank-𝑛 observability and controllability matri-
ces to achieve a balanced realization. If the goal is to recover the Markov parameters
of the system or if one can design adaptive control methods only using Markov param-
eter estimates, e.g., Section 5.6.5, stabilizability and detectability of the underlying
system are sufficient to have reliable estimates as in Theorem 5.3 and (5.23).

5.3.2 PE Condition in the Open-Loop Setting
Before studying the adaptive control problem in partially observable linear dynam-
ical systems, at the end of this section, we show that the PE condition required
for consistent estimation is satisfied for the open-loop control, i.e., i.i.d. Gaussian
control inputs. To this end, we introduce the truncated open-loop noise evolution
parameter G𝑜𝑙 . G𝑜𝑙 represents the effect of noises in the system on the outputs. We
define G𝑜𝑙 for 2𝐻 time steps back in time and show that the last 2𝐻 process and
measurement noises provide sufficient persistent excitation for the covariates in the
estimation problem. In the following, we show that there exists a positive 𝜎𝑜 such
that 𝜎𝑜 < 𝜎min(G𝑜𝑙), i.e., G𝑜𝑙 is full row rank. Let 𝜙𝑡 = 𝑃𝜙𝑡 for a permutation
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matrix 𝑃 that gives

𝜙𝑡 =
[
𝑦⊤𝑡−1 𝑢⊤𝑡−1 . . . 𝑦

⊤
𝑡−𝐻 𝑢⊤𝑡−𝐻

]⊤ ∈ R(𝑚+𝑝)𝐻 .
We will consider the state space representation for the analysis for LQG control
systems given in (5.1), but one can apply the same analysis for predictor form/ARX
systems (see [163] for the details). For the control input of 𝑢𝑡 ∼ N(0, 𝜎2

𝑢 𝐼), let
𝑓𝑡 = [𝑦⊤𝑡 𝑢⊤𝑡 ]⊤. From the evolution of the system with given input we have the
following:

𝑓𝑡 = Go
[
𝑤⊤
𝑡−1 𝑧⊤𝑡 𝑢⊤𝑡 . . . 𝑤⊤

𝑡−𝐻 𝑧⊤
𝑡−𝐻+1 𝑢⊤

𝑡−𝐻+1

]⊤
+ ro

t

where

Go :=

[
0𝑚×𝑛 𝐼𝑚×𝑚 0𝑚×𝑝 𝐶 0𝑚×𝑚 𝐶𝐵 . . . 𝐶𝐴𝐻−2 0𝑚×𝑚 𝐶𝐴𝐻−2𝐵

0𝑝×𝑛 0𝑝×𝑚 𝐼𝑝×𝑝 0𝑝×𝑛 0𝑝×𝑚 0𝑝×𝑝 . . . 0𝑝×𝑛 0𝑝×𝑚 0𝑝×𝑝

]
,

and ro
t is the residual vector that represents the effect of [𝑤𝑖−1 𝑧𝑖 𝑢𝑖] for 0 ≤ 𝑖 <

𝑡 − 𝐻, which are independent. Notice that Go is full row rank even for 𝐻 = 1, due
to first (𝑚 + 𝑝) × (𝑚 + 𝑛 + 𝑝) block. Using this, we can represent 𝜙𝑡 as follows

𝜙𝑡 =


𝑓𝑡−1
...

𝑓𝑡−𝐻

︸ ︷︷ ︸
R(𝑚+𝑝)𝐻

+


ro

t−1
...

ro
t−H

 = G𝑜𝑙



𝑤𝑡−2

𝑧𝑡−1

𝑢𝑡−1
...

𝑤𝑡−2𝐻−1

𝑧𝑡−2𝐻

𝑢𝑡−2𝐻

︸      ︷︷      ︸
R2(𝑛+𝑚+𝑝)𝐻

+


ro

t−1
...

ro
t−H

 where

G𝑜𝑙B



[ Go ] 0(𝑚+𝑝)×(𝑚+𝑛+𝑝) 0(𝑚+𝑝)×(𝑚+𝑛+𝑝) 0(𝑚+𝑝)×(𝑚+𝑛+𝑝) . . .
0(𝑚+𝑝)×(𝑚+𝑛+𝑝) [ Go ] 0(𝑚+𝑝)×(𝑚+𝑛+𝑝) 0(𝑚+𝑝)×(𝑚+𝑛+𝑝) . . .

. . .

0(𝑚+𝑝)×(𝑚+𝑛+𝑝) 0(𝑚+𝑝)×(𝑚+𝑛+𝑝) . . . [ Go ] 0(𝑚+𝑝)×(𝑚+𝑛+𝑝)
0(𝑚+𝑝)×(𝑚+𝑛+𝑝) 0(𝑚+𝑝)×(𝑚+𝑛+𝑝) 0(𝑚+𝑝)×(𝑚+𝑛+𝑝) . . . [ Go ]


.

(5.29)

Recall Assumption 5.1. The following lemma shows that covariates 𝜙s are bounded
for the given system under open-loop control.
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Lemma 5.3. After applying the control inputs of 𝑢𝑡 ∼ N(0, 𝜎2
𝑢 𝐼) for 𝑇𝑤 time steps

for all 1 ≤ 𝑡 ≤ 𝑇𝑤, with probability 1 − 𝛿/2,

∥𝑥𝑡 ∥ ≤ 𝑋𝑤 B
(𝜎𝑤 + 𝜎𝑢∥𝐵∥)^1(1 − 𝛾1)√︁

1 − (1 − 𝛾1)2
√︁

2𝑛 log(12𝑛𝑇𝑤/𝛿), (5.30)

∥𝑧𝑡 ∥ ≤ 𝑍 B 𝜎𝑧
√︁

2𝑚 log(12𝑚𝑇𝑤/𝛿), (5.31)

∥𝑢𝑡 ∥ ≤ 𝑈𝑤 B 𝜎𝑢
√︁

2𝑝 log(12𝑝𝑇𝑤/𝛿), (5.32)

∥𝑦𝑡 ∥ ≤ ∥𝐶∥𝑋𝑤 + 𝑍. (5.33)

Thus, we have max𝑖≤𝑡≤𝑇𝑤 ∥𝜙𝑖∥ ≤ Υ𝑤
√
𝐻, where Υ𝑤 = ∥𝐶∥𝑋𝑤 + 𝑍 +𝑈𝑤.

Proof. For all 1 ≤ 𝑡 ≤ 𝑇𝑤, Σ(𝑥𝑡) ≼ 𝚪∞, where 𝚪∞ is the steady state covariance
matrix of 𝑥𝑡 such that,

𝚪∞ =
∑︁∞

𝑖=0
𝜎2
𝑤𝐴

𝑖 (𝐴⊤)𝑖 + 𝜎2
𝑢 𝐴

𝑖𝐵𝐵⊤(𝐴⊤)𝑖 .

From the Assumption 5.1, we have ∥𝐴𝜏∥ ≤ ^1(1 − 𝛾1)𝜏 for all 𝜏 ≥ 0. Thus,
∥𝚪∞∥ ≤ (𝜎2

𝑤 + 𝜎2
𝑢 ∥𝐵∥2)

^2
1 (1−𝛾1)2

1−(1−𝛾1)2
. Notice that each 𝑥𝑡 is component-wise

√︁
∥𝚪∞∥-

sub-Gaussian random variable. Using standard sub-Gaussian vector norm upper
bound with a union bound argument, we get the advertised result. □

The following lemma shows that the i.i.d. Gaussian inputs uniformly excite the
system and satisfy the PE condition after enough interactions.

Lemma 5.4 (Persistence of Excitation in Open-Loop Control Setting). G𝑜𝑙 is full
row-rank such that 𝜎min(G𝑜𝑙) > 𝜎𝑜 > 0. For some 𝛿 ∈ (0, 1), and Υ𝑤 defined in
Lemma 5.3, let 𝑇𝑜 = 32Υ4

𝑤𝜎
−4
𝑜 log2

(
2𝐻 (𝑚+𝑝)

𝛿

)
max{𝜎−4

𝑤 , 𝜎−4
𝑧 , 𝜎

−4
𝑢 }. After applying

the control inputs of 𝑢𝑡 ∼ N(0, 𝜎2
𝑢 𝐼) for 𝑇𝑤 ≥ 𝑇𝑜 time steps, with probability at least

1 − 𝛿 we have 𝜎min
(∑𝑡

𝑖=1 𝜙𝑖𝜙
⊤
𝑖

)
≥ 𝑡 𝜎

2
𝑜

2 min{𝜎2
𝑤, 𝜎

2
𝑧 , 𝜎

2
𝑢 }.

Proof. Let 0̄ = 0(𝑚+𝑝)×(𝑚+𝑛+𝑝) . Since each block row is full row-rank, we get the
following decomposition using QR decomposition for each block row:

G𝑜𝑙 =



𝑄𝑜 0𝑚+𝑝 0𝑚+𝑝 0𝑚+𝑝 . . .

0𝑚+𝑝 𝑄𝑜 0𝑚+𝑝 0𝑚+𝑝 . . .

. . .

0𝑚+𝑝 0𝑚+𝑝 . . . 𝑄𝑜 0𝑚+𝑝
0𝑚+𝑝 0𝑚+𝑝 0𝑚+𝑝 . . . 𝑄𝑜

︸                                        ︷︷                                        ︸
R(𝑚+𝑝)𝐻×(𝑚+𝑝)𝐻



𝑅𝑜 0̄ 0̄ 0̄ . . .

0̄ 𝑅𝑜 0̄ 0̄ . . .

. . .

0̄ 0̄ . . . 𝑅𝑜 0̄
0̄ 0̄ 0̄ . . . 𝑅𝑜

︸                          ︷︷                          ︸
R(𝑚+𝑝)𝐻×2(𝑚+𝑛+𝑝)𝐻

,
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where 𝑅𝑜 =


× × × × × × . . .

0 × × × × × . . .

. . .

0 0 0 × × × . . .


∈ R(𝑚+𝑝)×𝐻 (𝑚+𝑛+𝑝) where the elements

in the diagonal are positive numbers. Notice that the first matrix with 𝑄0 is full
rank. Also, all the rows of the second matrix are in row echelon form and the
second matrix is full row-rank. Thus, we can deduce that G𝑜𝑙 is full row-rank, i.e.,
𝜎min(G𝑜𝑙) > 𝜎𝑜 > 0. Since G𝑜𝑙 is full row rank, we have that

E[𝜙𝑡𝜙⊤𝑡 ] ⪰ G𝑜𝑙Σ𝑤,𝑧,𝑢G𝑜𝑙⊤,

where Σ𝑤,𝑧,𝑢 ∈ R2(𝑛+𝑚+𝑝)𝐻×2(𝑛+𝑚+𝑝)𝐻 = diag(𝜎2
𝑤, 𝜎

2
𝑧 , 𝜎

2
𝑢 , . . . , 𝜎

2
𝑤, 𝜎

2
𝑧 , 𝜎

2
𝑢 ). This

gives us
𝜎min(E[𝜙𝑡𝜙⊤𝑡 ]) ≥ 𝜎2

𝑜 min{𝜎2
𝑤, 𝜎

2
𝑧 , 𝜎

2
𝑢 }

for all 𝑡. From Lemma 5.3, we have max𝑖≤𝜏 ∥𝜙𝑖∥ ≤ Υ𝑤
√
𝐻 with probability at least

1 − 𝛿/2. Given this holds, one can use Matrix Azuma inequality in [267], to obtain
the following which holds with probability 1 − 𝛿/2:

_max

(
𝑡∑︁
𝑖=1

𝜙𝑖𝜙
⊤
𝑖 − E[𝜙𝑖𝜙⊤𝑖 ]

)
≤ 2
√

2𝑡Υ2
𝑤𝐻

√︄
log

(
2𝐻 (𝑚 + 𝑝)

𝛿

)
.

Using Weyl’s inequality, during the warm-up period with probability 1− 𝛿, we have

𝜎min

(
𝑡∑︁
𝑖=1

𝜙𝑖𝜙
⊤
𝑖

)
≥ 𝑡𝜎2

𝑜 min{𝜎2
𝑤, 𝜎

2
𝑧 , 𝜎

2
𝑢 } − 2

√
2𝑡Υ2

𝑤𝐻

√︄
log

(
2𝐻 (𝑚 + 𝑝)

𝛿

)
.

For all 𝑡 ≥ 𝑇𝑜, we have the stated lower bound. □

This result verifies that the PE condition holds in the open-loop control setting, which
shows that the estimation error guarantees given in Theorem 5.2 hold for open-loop
data collection. Therefore, even if the closed-loop PE condition is not satisfied such
that we cannot guarantee the estimation error guarantees given in Theorem 5.2 for
the closed-loop control, one can use the novel system identification method with
the i.i.d. control inputs to obtain state-of-the-art guarantees. However, if one has
PE in the closed-loop setting we can further guarantee consistent improvement of
estimates which would not be possible with prior methods. This novelty will be
crucial in the adaptive control tasks discussed next.
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5.4 Optimism-Based Adaptive Control
After studying the novel system identification method in Section 5.3, we study
adaptive control of partially observable linear dynamical systems in this section. In
particular, we will use the principle of optimism in the face of uncertainty (OFU) to
design the controllers using the confidence sets given by the system identification
method and balance exploration and exploitation trade-off. Recall that the optimism
principle has been used in Chapter 2 and Chapter 3 in the design of StabL to achieve
state-of-the-art regret guarantees in the learning and control of various systems. In
this section, we will first consider this control design method in obtaining regret
guarantees for learning and control of LQG control systems and then we will extend
these results to the ARX systems.

We propose LQG control via Optimism (LqgOpt), an adaptive control algorithm
for learning and controlling unknown LQG control systems. LqgOpt interacts with
the system, collects samples, estimates the model parameters, and adapts accord-
ingly. LqgOpt deploys OFU principle to balance the exploration vs. exploitation
trade-off. Using the predictor form of the state-space equations of the partially ob-
servable linear systems, we deploy the least-squares estimation problem introduced
in Section 5.3 and obtain confidence sets on the system parameters.

LqgOpt then uses these confidence sets to find the optimistic model and use the
optimal controller for the chosen model for further exploration-exploitation. To
analyze the finite-time regret of LqgOpt, we first provide a stability analysis for
the sequence of optimistic controllers. We then present a novel way of regret
decomposition by deriving the Bellman optimality equation for average cost per stage
LQG control. Utilizing the OFU principle, we prove that LqgOpt achieves a regret
upper bound of Õ(

√
𝑇) for adaptive control of partially observable linear dynamical

systems with convex quadratic cost if the underlying optimal controller (5.9) allows
PE condition, where 𝑇 is the number of total interactions. If the PE condition does
not hold for the underlying optimal LQG controller, which results in inconsistent
system identification under closed-loop control, then we show that LqgOpt achieves
a regret upper bound of Õ(𝑇2/3). These results make LqgOpt the state-of-the-art
learning and control algorithm for partially observable linear dynamical systems
with convex quadratic cost.

Finally, we consider the ARX models with a convex quadratic cost function. We
show that with appropriate changes in the control design of LqgOpt, the same regret
guarantees hold for ARX systems with sub-Gaussian noise. In particular, we show
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Algorithm 11 LqgOpt
1: Input: 𝑇𝑤, 𝐻, 𝛿 > 0, 𝑄, 𝑅

—— Warm-Up ————————————————
2: for 𝑡 = 1, . . . , 𝑇𝑤 do
3: Deploy 𝑢𝑡 ∼N(0, 𝜎2

𝑢 𝐼) and store D1= {𝑦𝑡 , 𝑢𝑡}𝑇𝑤𝑡=1
—— Adaptive Control in Epochs ————————-

4: for 𝑖 = 1, . . . do
5: Calculate Ĝ𝑖yu using D𝑖 = {𝑦𝑡 , 𝑢𝑡}2

𝑖−1𝑇𝑤
𝑡=1 via (5.21)

6: Deploy SysId (𝐻, Ĝ𝑖yu, 𝑛) for �̂�𝑖, �̂�𝑖, �̂�𝑖, �̂�𝑖
7: Construct the confidence sets C𝐴 (𝑖), C𝐵 (𝑖), C𝐶 (𝑖), C𝐿 (𝑖) given in (5.25)
8: Find Θ̃𝑖 = ( �̃�𝑖, �̃�𝑖, �̃�𝑖, �̃�𝑖) ∈C𝑖∩S for C𝑖B (C𝐴 (𝑖)×C𝐵 (𝑖)×C𝐶 (𝑖)×C𝐿 (𝑖)) s.t.

𝐽 (Θ̃𝑖) ≤ infΘ′∈C𝑖∩S 𝐽 (Θ′) + 𝑇−1

9: for 𝑡 = 2𝑖−1𝑇𝑤, . . . 2𝑖𝑇𝑤 − 1 do
10: Execute the optimal controller for Θ̃𝑖

that without the closed-loop PE condition for the optimal ARX controller, LqgOpt
yields regret of �̃� (𝑇2/3) and with the PE condition which allows continuously
updated model estimates via closed-loop data, we attain regret of �̃� (

√
𝑇) in adaptive

control of ARX systems.

The rest of this section is organized as follows: in Section 5.4.1, we describe the
algorithm of LqgOpt and provide the main regret guarantees for the adaptive control
of LQG control systems. In Section 5.4.2 we provide the PE condition in the closed-
loop control using the underlying optimal controller and show that this condition
can be satisfied by LqgOpt with small enough estimation error. Then, we show that
LqgOpt keeps the measurements and the state estimates bounded in Section 5.4.3,
and in Sections 5.4.4 and 5.4.5 we give the regret decomposition and the proofs of
the main results respectively. Finally, in Section 5.4.6 we extend the prior results to
the ARX systems.

5.4.1 Adaptive Control via LqgOpt

In this section, we present LqgOpt, and describe its compounding components. The
outline of LqgOpt is given in Algorithm 11. The early stage of deploying LqgOpt
involves a fixed warm-up period dedicated to pure exploration using Gaussian excita-
tion. In particular it excites the system with 𝑢𝑡 ∼ N(0, 𝜎2

𝑢 𝐼) for 1 ≤ 𝑡 ≤ 𝑇𝑤. LqgOpt
requires this exploration period to estimate the model parameters reliably enough
that the controller designed based on the parameter estimation and their confidence
set results in a stabilizing controller on the real system. The duration of this period
𝑇𝑤 depends on how stabilizable the true parameters are and how accurate the model
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estimations should be, i.e., characterizations provided in Assumption 5.1. We will
formally quantify these statements and the length of the warm-up period shortly.

After the warm-up period, LqgOpt utilizes the model parameter estimations and
their confidence sets to design a controller corresponding to an optimistic model in
the confidence sets, obtained by following the OFU principle. Due to the reliable
estimation from the warm-up period, this controller and all the future designed
controllers stabilize the underlying true unknown model. The agent deploys the
prescribed controller on the real system for exploration and exploitation. The
agent collects samples throughout its interaction with the environment and uses
these samples for further improvement in model estimation, confidence interval
construction, and design of the controller regarding an optimistic model. This
process functions in epochs of doubling length until the end of execution. In
particular, in an epoch, the agent uses the most recent optimistic controller to
control the underlying system Θ for twice as long as the duration of the previous
control policy, i.e., each epoch 𝑖 for 𝑖 = {1, 2, . . . , } is of length 2𝑖−1𝑇𝑤 time steps.
This technique is known as “the doubling trick” in reinforcement learning and online
learning which prevents frequent policy updates and balances the policy changes so
that the overall regret of the algorithm is affected by a constant factor only.

System Identification

LqgOpt uses the novel system identification procedure described in Section 5.3,
which allows both open-loop and closed-loop data collection to obtain consis-
tent estimates of the dynamics. In particular, at the beginning of each epoch 𝑖,
it solves the regularized least squares problem given in (5.21) to recover input-
to-output and output-to-output Markov parameters of Θ in predictor form using
the entire history of data up to the current time-step, D𝑖 = {𝑦𝑡 , 𝑢𝑡}2

𝑖−1𝑇𝑤
𝑡=1 . The

estimated Markov parameters Ĝ𝑖yu are then used with SysId to obtain a balanced
realization of the underlying model parameters, �̂�𝑖, �̂�𝑖, �̂�𝑖, �̂�𝑖 with corresponding
confidence sets C𝐴 (𝑖), C𝐵 (𝑖), C𝐶 (𝑖), C𝐿 (𝑖) as presented in (5.25). This confi-
dence set C𝑖 B (C𝐴 (𝑖) × C𝐵 (𝑖) × C𝐶 (𝑖) × C𝐿 (𝑖)) contains the underlying parameters
Θ = (𝐴, 𝐵, 𝐶, 𝐿) up to a similarity transformation with high probability. LqgOpt
uses this confidence set with the set S defined in Assumption 5.1 to select the
optimistic model among the plausible models. As LqgOpt collects more data, the
confidence sets shrink with the rate given in Theorem 5.2, providing significantly
refined estimates of the model parameters. LqgOpt adapts and updates its policy by
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deploying the OFU principle on the new confidence sets.

Recall that in Section 5.3.2, we showed that using control inputs of 𝑢𝑡 ∼ N(0, 𝜎2
𝑢 𝐼)

allows PE condition and consistent estimation. In particular, we defined G𝑜𝑙 which
encodes the open-loop evolution of the disturbances in the system and represents
the responses to these disturbances on the batch of observations and actions history
and showed that G𝑜𝑙 is full row-rank, i.e., 𝜎min(G𝑜𝑙) > 𝜎𝑜 > 0 for some known 𝜎𝑜,
allowing PE condition. Thus, we have the guarantee that after the warm-up period of
LqgOpt, the estimation error of model parameters is Õ(1/

√
𝑇𝑤), due Theorem 5.2.

Similarly, in order to obtain the PE condition and the consistent system identification
during the adaptive control which happens with a closed-loop controller, we define
the truncated closed-loop noise evolution parameter G𝑐𝑙 . When the controller is
set to be the optimal policy for the underlying system in (5.9), i.e., closed-loop
system, G𝑐𝑙 ∈ R𝐻 (𝑚+𝑝)×2𝐻 (𝑛+𝑚) represents the translation of the truncated history of
process and measurement noises on the inputs, 𝜙’s. The exact construction of G𝑐𝑙

is provided in detail in Equation (5.38) of the next section. Briefly, it is formed by
shifting a block matrix Ḡ ∈ R(𝑚+𝑝)×2𝐻 (𝑛+𝑚) by 𝑚 + 𝑛 in each block row where Ḡ
is constructed by 𝐻 (𝑚 + 𝑝) × (𝑛 + 𝑚) matrices. Assuming that 𝐻 used in LqgOpt
is large enough such that Ḡ is full row rank for the given system, we will show
that G𝑐𝑙 is also full row rank. Thus, we have that for the choice of 𝐻 in LqgOpt,
𝜎min(G𝑐𝑙) is lower bounded by some positive value, i.e., 𝜎min(G𝑐𝑙) > 𝜎𝑐 > 0,
where LqgOpt only knows 𝜎𝑐 and searches for an optimistic system whose closed-
loop noise evolution parameter satisfies this lower bound. Note that we define G𝑐𝑙

based on the optimal closed-loop system and we need to make sure that our model
parameter estimates are close enough to the true ones such that the PE condition
is also satisfied for the constructed controller. This analysis is provided in the next
section, Lemma 5.5. With the guarantee of the PE condition in the closed-loop
setting, LqgOpt is guaranteed to continuously refine the model parameter estimates,
thus it improves the controllers and effectively balances the exploration-exploitation
trade-off.

Adaptive Control

After estimating the model parameters effectively at the beginning of epoch 𝑖, LqgOpt
uses these confidence sets along with the set S to implement the OFU principle. In
particular, at time 𝑡 = 2𝑖−1𝑇𝑤, the algorithm chooses a system Θ̃𝑖 = ( �̃�𝑖, �̃�𝑖, �̃�𝑖, �̃�𝑖)
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from C𝑖 ∩ S such that

𝐽 (Θ̃𝑖) ≤ inf
Θ′∈C𝑖∩S

𝐽 (Θ′) + 1/𝑇. (5.34)

LqgOpt then designs the optimal feedback policy (�̃�𝑡 , �̃�𝑡) for the chosen system
Θ̃𝑡 as shown in (5.9), i.e., it uses �̃�𝑡 , �̃�𝑡 , �̃�𝑡 , and �̃�𝑡 for estimating the underlying
state and deploys the feedback gain matrix of �̃�𝑡 to design the control inputs. This
measurement feedback policy is executed until the end of the epoch, whose duration
is twice the previous epoch. The following gives the regret guarantee for LqgOpt.

Theorem 5.5 (Regret of LqgOpt with closed-loop PE condition). Given an LQG
control system Θ = (𝐴, 𝐵, 𝐶), and regulating parameters 𝑄 ⪰ 0 and 𝑅 ≻ 0,
suppose Assumptions 5.1 and 5.2 hold such that the underlying system satisfies the
PE condition with its optimal policy, i.e., 𝜎min(G𝑐𝑙) > 𝜎𝑐 > 0. Fixing a horizon 𝑇 ,
let 𝐻 ≥ max

{
2𝑛 + 1, log(𝑐𝐻𝑇

√
𝑚/
√
_)

log(1/(1−𝛾3))

}
and

𝑇𝑤 = poly
(
𝐻, 𝜎𝑜, 𝜎𝑐, ^1, ^2, ^3,

1
1−𝛾1

,
1

1−𝛾2
,

1
1−𝛾3

, 𝜓, 𝑚, 𝑛, 𝑝

)
.

Then, with high probability, the regret of LqgOpt with a warm-up duration of 𝑇𝑤 is
Regret(𝑇) = Õ

(√
𝑇

)
.

The proof of this result will be presented in Section 5.4.5 with intermediate results
given in Sections 5.4.2–5.4.4. Here 𝑇𝑤 is chosen to guarantee well-refined model
estimates, the PE condition during the warm-up and adaptive control periods, the
stability of the optimistic controllers, and the boundedness of the measurements and
state estimations. The exact requirements on 𝑇𝑤 are given in the following sections
with detailed expressions. Nevertheless, the warm-up duration is a fixed problem-
dependent constant. This result shows that LqgOpt achieves the same regret rate
of LQR systems shown in Chapter 3 in the challenging partially observable LQG
control system setting. Moreover, this makes LqgOpt the first adaptive control
algorithm to attain Õ

(√
𝑇

)
regret for partially observable linear dynamical systems

with convex cost. The following corollary is the direct extension of the result above
and considers the case when the underlying optimal controller does not satisfy the PE
condition. In this case, closed-loop system identification cannot provide reliable and
consistent estimates and LqgOpt relies solely on the warm-up duration with i.i.d.
Gaussian inputs, i.e., the open-loop control. Therefore, throughout the adaptive
control process all the model parameter estimation errors scale with Õ

(
1/
√
𝑇𝑤

)
.
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Corollary 5.5.1 (Regret of LqgOpt without the closed-loop PE condition). For the
system given in Theorem 5.5 with the choices of 𝐻 and 𝑇𝑤, if the underlying system
is not persistently excited with its optimal policy, LqgOpt incurs the following regret
with high probability, Regret(𝑇) = Õ

(
𝑇𝑤 + 𝑇−𝑇𝑤√

𝑇𝑤

)
. Therefore, the optimal regret

upper bound of this setting is obtained with a warm-up duration of 𝑇𝑤 = O(𝑇2/3),
which gives the regret of Regret(𝑇) = Õ

(
𝑇2/3

)
for LqgOpt.

This result shows that if the PE condition does not hold for the underlying system
with the optimal controller, then LqgOpt requires a longer open-loop exploration,
i.e., warm-up, to compensate for this lack of improvement during the adaptive
control.

5.4.2 PE Condition in the Closed-Loop Setting
As the previous result shows, having the PE condition satisfied during the adaptive
control provides a significant improvement in regret due to the novel closed-loop
system identification method proposed in Section 5.3. In this section, we explore
this condition and give its precise characterization in the closed-loop control setting
when the system is controlled by its optimal controller. Then, we show that this
condition holds under small enough estimation errors which can be guaranteed with
the warm-up period of LqgOpt.

After the warm-up period, for 𝑡 ≥ 𝑇𝑤, at epoch 𝑖, LqgOpt executes the control input
of 𝑢𝑡 = −�̃�𝑡𝑥𝑡 |𝑡,Θ̃ using the optimistic model Θ̃𝑖. Using the state estimation update
equations given in (5.2)-(5.4) with the optimistic parameters, we have:

𝑥𝑡 |𝑡−1,Θ̃ = �̃�𝑡−1𝑥𝑡−1|𝑡−1,Θ̃ − �̃�𝑡−1�̃�𝑡−1𝑥𝑡−1|𝑡−1,Θ̃

𝑥𝑡 |𝑡,Θ̃ = 𝑥𝑡 |𝑡−1,Θ̃ + �̃�𝑡 (𝑦𝑡 − �̃�𝑡𝑥𝑡 |𝑡−1,Θ̃)
= ( �̃�𝑡−1− �̃�𝑡−1�̃�𝑡−1)𝑥𝑡−1|𝑡−1,Θ̃+ �̃�𝑡 (𝐶𝑥𝑡 + 𝑧𝑡−�̃�𝑡 ( �̃�𝑡−1− �̃�𝑡−1�̃�𝑡−1)𝑥𝑡−1|𝑡−1,Θ̃)
= (𝐼− �̃�𝑡�̃�𝑡) ( �̃�𝑡−1− �̃�𝑡−1�̃�𝑡−1)𝑥𝑡−1|𝑡−1,Θ̃+ �̃�𝑡 (𝐶 (𝐴𝑥𝑡−1−𝐵�̃�𝑡−1𝑥𝑡−1|𝑡−1,Θ̃ + 𝑤𝑡−1)+𝑧𝑡).

(5.35)

Similar to Section 5.3.2, let 𝑓𝑡 = [𝑦⊤𝑡 , 𝑢⊤𝑡 ]⊤ and x𝑡 = [𝑥⊤𝑡 , 𝑥⊤𝑡 |𝑡,Θ̃]
⊤. Using (5.1) and

(5.35), we have the following equations,

x𝑡 =
[
𝐴 −𝐵�̃�𝑡−1

�̃�𝑡𝐶𝐴 (𝐼− �̃�𝑡�̃�𝑡) ( �̃�𝑡−1− �̃�𝑡−1�̃�𝑡−1)− �̃�𝑡𝐶𝐵�̃�𝑡−1

]
︸                                                            ︷︷                                                            ︸

G̃(t)2

x𝑡−1 +
[
𝐼 0
�̃�𝑡𝐶 �̃�𝑡

]
︸       ︷︷       ︸

G̃(t)3

[
𝑤𝑡−1

𝑧𝑡

]
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𝑓𝑡 =

[
𝐶 0
0 −�̃�𝑡

]
︸      ︷︷      ︸

�̃�t

G̃(t)2

[
𝑥𝑡−1

𝑥𝑡−1|𝑡−1,Θ̃

]
+

[
𝐶 0
0 −�̃�𝑡

]
︸      ︷︷      ︸

�̃�t

[
𝐼 0
�̃�𝑡𝐶 �̃�𝑡

]
︸       ︷︷       ︸

G(t)3

[
𝑤𝑡−1

𝑧𝑡

]
+

[
𝑧𝑡

0

]
.

Rolling back in time for 𝐻 time steps we get the following,

𝑓𝑡 = �̃�t

(
𝑡∑︁

𝑖=𝑡−𝐻+1

(
𝑡∏
𝑗=𝑖

G̃(j)2

)
G̃(i−1)

3

[
𝑤𝑖−2

𝑧𝑖−1

])
+

[
𝐶 𝐼

−�̃�𝑡 �̃�𝑡𝐶 −�̃�𝑡 �̃�𝑡

]
︸                  ︷︷                  ︸

G̃(t)1

[
𝑤𝑡−1

𝑧𝑡

]
+rc

t , (5.36)

where rc
t is the residual vector that represents the effect of [𝑤𝑖−1 𝑧𝑖] for 0 ≤ 𝑖 < 𝑡−𝐻,

which are independent. Let 𝜙𝑡 = 𝑃𝜙𝑡 for a permutation matrix 𝑃 that gives

𝜙𝑡 =
[
𝑦⊤𝑡−1 𝑢⊤𝑡−1 . . . 𝑦

⊤
𝑡−𝐻 𝑢⊤𝑡−𝐻

]⊤ ∈ R(𝑚+𝑝)𝐻 .
Using (5.36), we can represent 𝜙𝑡 as follows

𝜙𝑡 =


𝑓𝑡−1
...

𝑓𝑡−𝐻

︸ ︷︷ ︸
R(𝑚+𝑝)𝐻

+


rc

t−1
...

rc
t−H

 = G𝑐𝑙𝑡



𝑤𝑡−2

𝑧𝑡−1
...

𝑤𝑡−2𝐻−1

𝑧𝑡−2𝐻

︸      ︷︷      ︸
R2(𝑛+𝑚)𝐻

+


rc

t−1
...

rc
t−H

 where

G𝑐𝑙𝑡 =



[ Ḡt−1 ] 0(𝑚+𝑝)×(𝑚+𝑛) 0(𝑚+𝑝)×(𝑚+𝑛) 0(𝑚+𝑝)×(𝑚+𝑛) . . .
0(𝑚+𝑝)×(𝑚+𝑛) [ Ḡt−2 ] 0(𝑚+𝑝)×(𝑚+𝑛) 0(𝑚+𝑝)×(𝑚+𝑛) . . .

. . .

0(𝑚+𝑝)×(𝑚+𝑛) 0(𝑚+𝑝)×(𝑚+𝑛) . . . [ Ḡt−H+1 ] 0(𝑚+𝑝)×(𝑚+𝑛)
0(𝑚+𝑝)×(𝑚+𝑛) 0(𝑚+𝑝)×(𝑚+𝑛) 0(𝑚+𝑝)×(𝑚+𝑛) . . . [ Ḡt−H ]


for

(5.37)
Ḡt =

[
G̃(t)1 , �̃�tG̃(t)2 G̃(t−1)

3 , �̃�tG̃(t)2 G̃(t−1)
2 G̃(t−2)

3 , . . . , �̃�tG̃(t)2 G̃(t−1)
2 · · · G̃

(t−H)
3

]
∈R(𝑚+𝑝)×𝐻 (𝑛+𝑚).

Notice that if the agent knows the underlying model parameters, it can deploy the
optimal control policy. Therefore, we denote G𝑐𝑙 as the translation of the process
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and measurement noises into 𝜙𝑡 while using the optimal policy in (5.9):

G𝑐𝑙 =



[ Ḡ ] 0(𝑚+𝑝)×(𝑚+𝑛) 0(𝑚+𝑝)×(𝑚+𝑛) 0(𝑚+𝑝)×(𝑚+𝑛) . . .

0(𝑚+𝑝)×(𝑚+𝑛) [ Ḡ ] 0(𝑚+𝑝)×(𝑚+𝑛) 0(𝑚+𝑝)×(𝑚+𝑛) . . .

. . .

0(𝑚+𝑝)×(𝑚+𝑛) 0(𝑚+𝑝)×(𝑚+𝑛) . . . [ Ḡ ] 0(𝑚+𝑝)×(𝑚+𝑛)
0(𝑚+𝑝)×(𝑚+𝑛) 0(𝑚+𝑝)×(𝑚+𝑛) 0(𝑚+𝑝)×(𝑚+𝑛) . . . [ Ḡ ]


(5.38)

where

Ḡ =

[
G1, 𝚪G2G3, 𝚪G2

2G3, . . . , 𝚪G2
𝐻−1G3

]
∈ R(𝑚+𝑝)×𝐻 (𝑛+𝑚) (5.39)

for G1 =

[
𝐶 𝐼

−𝐾𝐿𝐶 −𝐾𝐿

]
,G2 =

[
𝐴 −𝐵𝐾

𝐿𝐶𝐴 (𝐼−𝐿𝐶) (𝐴−𝐵𝐾)−𝐿𝐶𝐵𝐾

]
,G3 =

[
𝐼 0
𝐿𝐶 𝐿

]
,

and 𝚪=

[
𝐶 0
0 −𝐾

]
.

Assumption 5.2 (PE structure of the underlying system with its optimal control).
𝐻 is large enough such that Ḡ given in (5.39) is full row rank.

Note that this assumption is solely dependent on the underlying system and for long
enough 𝐻 one can show that it holds. Similar to the case with truncated open-
loop noise evolution parameter in Section 5.3.2, having full row rank block rows
provides a full row rank G𝑐𝑙 via the same QR decomposition argument. Therefore,
under Assumption 5.2, we have a lower bound of the smallest singular value of
the 𝐻−length truncated closed-loop noise evolution parameter, 𝜎min(G𝑐𝑙) > 𝜎𝑐 >

0. However, we need to show that LqgOpt can satisfy this condition even under
modeling errors, which is shown in the following.

Due to Assumption 5.1, i.e., the boundedness of the set S that LqgOpt is searching
on, let ∥G̃𝑐𝑙 ∥𝐹 ≤ 𝐺 for all model inS. For bounded covariates 𝜙, max𝑇𝑤≤𝑡≤𝑇 ∥𝜙𝑖∥ ≤
Υ𝑐
√
𝐻, which will be rigorously shown shortly in Section 5.4.3, define 𝐺𝑟 = 𝐺 +

𝜎𝑐
√
𝐻 (𝑚+𝑝)
2 , [𝑇 = 𝜎𝑤

√︂
2𝑛 log

(
2𝑛𝑇
𝛿

)
+ 𝜎𝑧

√︂
2𝑚 log

(
2𝑚𝑇
𝛿

)
, and

𝑇𝑐 =
2048Υ4

𝑐𝐻
2
(
log( 𝐻 (𝑚+𝑝)

𝛿
)+𝐻2 (𝑚+𝑝) (𝑚+𝑛) log(𝐺𝑟+

32𝐻Υ𝑐
√

2[𝑇+32𝐻[2
𝑇
+16 max{𝜎2

𝑤,𝜎
2
𝑧 }

𝜎2
𝑐 min{𝜎2

𝑤,𝜎
2
𝑧 }

)
)

𝜎4
𝑐 min{𝜎4

𝑤 ,𝜎
4
𝑧 }

.

With these definitions, the following lemma shows that LqgOpt persistently excites
the system during the adaptive control period after a long enough warm-up period.
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Lemma 5.5. Let 𝑇𝑤 ≥ 𝑇G B 𝑇𝐵

(
2𝐻+2𝐻^2𝜓+2𝐻 (𝐻−1)^2𝜓

𝜎𝑐

)2
, where 𝑇𝐵 is defined in

(5.24). Suppose Assumption 5.2 holds. After 𝑇𝑐 time steps in adaptive control
period, with probability 1 − 3𝛿, we have the following for all 𝑡 ≥ 𝑇𝑐,

𝜎min

(
𝑡∑︁
𝑖=1

𝜙𝑖𝜙
⊤
𝑖

)
≥ 𝑡

𝜎2
𝑐 min{𝜎2

𝑤, 𝜎
2
𝑧 }

16
. (5.40)

Proof. Define G̃𝑐𝑙 , which is the translation parameter for the process and measure-
ment noises into 𝜙𝑡 for the system that is governed by the optimistically chosen
parameter by LqgOpt while using the optimal optimistic controller. Recall that
we are searching for the optimistic system model which attains the optimal LQG
cost over the set of C𝑡 ∩ S and whose closed-loop noise evolution parameter sat-
isfies the lower bound on the smallest singular value of the 𝐻−length truncated
closed-loop noise evolution parameter, 𝜎𝑐. Therefore, LqgOpt has the guarantee
that 𝜎min(G̃𝑐𝑙) ≥ 𝜎𝑐. Picking 𝑇𝑤 ≥ 𝑇G , guarantees that in adaptive control period
for all 𝑡 ≥ 𝑇𝑤, ∥G𝑐𝑙𝑡 − G̃𝑐𝑙 ∥ ≤

𝜎𝑐
2 . Using Weyl’s inequality on singular values, we

have that 𝜎min(G𝑐𝑙𝑡 ) ≥
𝜎𝑐
2 . Hence, for all 𝑡 ≥ 𝑇𝑤, we have that

E[𝜙𝑡𝜙⊤𝑡 ] ⪰ G𝑐𝑙𝑡 Σ𝑤,𝑧G𝑐𝑙⊤𝑡 ,

where Σ𝑤,𝑧 ∈ R2(𝑛+𝑚)𝐻×2(𝑛+𝑚)𝐻 = diag(𝜎2
𝑤, 𝜎

2
𝑧 , . . . , 𝜎

2
𝑤, 𝜎

2
𝑧 ). This gives us

𝜎min(E[𝜙𝑡𝜙⊤𝑡 ]) ≥
𝜎2
𝑐

4
min{𝜎2

𝑤, 𝜎
2
𝑧 }

for 𝑡 ≥ 𝑇𝑤. Let 𝜙 be bounded during the adaptive control as ∥𝜙𝑡 ∥ ≤ Υ𝑐
√
𝐻 with

probability at least 1−2𝛿. Given this holds, for a given optimistic model, one can use
Matrix Azuma inequality [267] similar to the proof of G𝑜𝑙 , to obtain the following
which holds with probability 1 − 𝛿:

𝚲𝑡 = _max

(
𝑡∑︁
𝑖=1

𝜙𝑖𝜙
⊤
𝑖 − E[𝜙𝑖𝜙⊤𝑖 ]

)
≤ 2
√

2𝑡Υ2
𝑐𝐻

√︄
log

(
𝐻 (𝑚 + 𝑝)

𝛿

)
. (5.41)

Notice that this upper bound holds only for a single model. However, we need to
show that for any random model within the confidence set, it holds. Thus, we use a
standard covering argument. Using the perturbation result that holds for all 𝑡 ≥ 𝑇𝑤,
we have ∥G𝑐𝑙𝑡 ∥𝐹 ≤ 𝐺𝑟 . We have the following upper bound on the covering number:

N(𝐵(𝐺𝑟), ∥ · ∥𝐹 , 𝜖) ≤
(
𝐺𝑟 +

2
𝜖

) (𝑚+𝑝) (𝑛+𝑚)𝐻2

.
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Thus, the following holds for all the centers of 𝜖-balls in ∥G𝑐𝑙𝑡 ∥𝐹 , for all 𝑡 ≥ 𝑇𝑤, with
probability 1 − 𝛿:

𝚲𝑡 ≤ 2
√

2𝑡Υ2
𝑐𝐻

√︄
log

(
𝐻 (𝑚 + 𝑝)

𝛿

)
+ 𝐻2(𝑚 + 𝑝) (𝑚 + 𝑛) log

(
𝐺𝑟 +

2
𝜖

)
. (5.42)

Considering all the systems in the 𝜖-balls, during the adaptive control period with
probability 1 − 3𝛿, we have

𝜎min

(
𝑡∑︁
𝑖=1

𝜙𝑖𝜙
⊤
𝑖

)
≥ 𝑡

(
𝜎2
𝑐

4
min{𝜎2

𝑤, 𝜎
2
𝑧 }−2𝜖

(
𝐻Υ𝑐
√

2[𝑇+𝐻[2
𝑇+max{𝜎2

𝑤/2, 𝜎2
𝑧 /2}

))
− 2
√

2𝑡Υ2
𝑐𝐻

√︄
log

(
𝐻 (𝑚+𝑝)

𝛿

)
+𝐻2(𝑚+𝑝) (𝑚+𝑛) log

(
𝐺𝑟+

2
𝜖

)
.

Let 𝜖 = 𝜎2
𝑐 min{𝜎2

𝑤 ,𝜎
2
𝑧 }

16
(
𝐻Υ𝑐
√

2[𝑇+𝐻[2
𝑇
+max{𝜎2

𝑤/2,𝜎2
𝑧 /2}

) . This gives the following bound

𝜎min
(∑𝑡

𝑖=1 𝜙𝑖𝜙
⊤
𝑖

)
≥ 𝑡

(
𝜎2
𝑐

8 min{𝜎2
𝑤, 𝜎

2
𝑧 }

)
−2
√

2𝑡Υ2
𝑐𝐻

√︄
log

(
𝐻 (𝑚+𝑝)

𝛿

)
+𝐻2(𝑚+𝑝) (𝑚 + 𝑛) log

(
𝐺𝑟+

32𝐻Υ𝑐
√

2[𝑇+32𝐻[2
𝑇
+16 max{𝜎2

𝑤 ,𝜎
2
𝑧 }

𝜎2
𝑐 min{𝜎2

𝑤 ,𝜎
2
𝑧 }

)
.

For all 𝑡 ≥ 𝑇𝑐, we have the stated lower bound. □

Since the first adaptive control epoch is of length𝑇𝑤, due to doubling epoch durations,
by setting 𝑇𝑤 ≥ 𝑇𝑐, we guarantee that the estimates obtained at the end of the first
epoch are consistent and have the estimation error rate of Õ(1/

√
2𝑇𝑤), including the

data of the warm-up phase while solving (5.21) for system identification. This result
verifies that the PE condition holds in the closed-loop control setting for LqgOpt as
long as Assumption 5.2 holds. This shows that the estimation error guarantees given
in Theorem 5.2 hold for closed-loop data collection as well, which allows LqgOpt
to update its model parameter estimates and reduce the regret consistently. Note
that this consistent improvement is made possible by the novel system identification
method discussed in Section 5.3, since even if the PE condition holds, the prior works
which only use input-to-output Markov parameters for system identification would
not be able to achieve this improvement due to the correlations in the covariates
mentioned in Section 5.2.

5.4.3 Boundedness of the Output and State Estimation
In the previous sections, we established the warm-up duration to achieve persistence
of excitation throughout the entire execution of LqgOpt, in both open and closed-
loop settings, which verified the consistent estimation property in Theorem 5.2



163

for LqgOpt. The only thing that remains is to analyze the regret of LqgOpt. In
Section 5.4.5, we will show that the regret of the warm-up phase scales linearly as
expected due to i.i.d. Gaussian inputs. In order to analyze the regret obtained during
the adaptive control period, we first need to show that system will be well-controlled
during the adaptive control period.

This result is critical for regret analysis due to the nature of the adaptive control
problem in partially observable environments. The inaccuracies in the system pa-
rameter estimates affect both the optimal feedback gain synthesis and the estimation
of the underlying state. If these inaccuracies are not tolerable in the adaptive control
of the system, they will accumulate fast and cause explosion and unboundedness
in the input and output of the system. This would result in linear, and potentially
super-linear regret. Therefore, we need to show that the policies designed by LqgOpt
stabilize the system dynamics right after the warm-up period. To this end, we need
to set the warm-up duration such that the model estimation error after the warm-up
phase is small enough to yield stable closed-loop dynamics and yield bounded inputs
and outputs. To this end, define

𝑇max = poly
(
𝐻, 𝜎𝑜, 𝜎𝑐, ^1, ^2, ^3,

1
1−𝛾1

,
1

1−𝛾2
,

1
1−𝛾3

, 𝜓, 𝑚, 𝑛, 𝑝

)
. (5.43)

The following lemma shows that for a long enough warm-up, we have this desired
closed-loop stability.

Lemma 5.6. Suppose Assumptions 5.1 holds. After the warm-up period of 𝑇𝑤 ≥
𝑇max, LqgOpt has the (^′, 𝛾′)−stable closed-loop dynamics when applied to the
underlying system with probability 1 − 𝛿 where

^′ = poly(^1, ^2, ^3, 𝜓, (1 − 𝛾2)−1, (1 − 𝛾3)−1), 𝛾′ = poly(𝛾2, 𝛾3). (5.44)

Moreover, for all 𝑇𝑤 ≤ 𝑡 ≤ 𝜏 and 𝛿 ∈ (0, 1), with probability 1 − 𝛿, we have that

∥𝑥𝑡 ∥ ≤ �̄�𝜏, ∥𝑦𝑡 ∥ ≤ 𝑌𝜏,
∥𝑥𝑡 |𝑡,Θ̃∥ ≤ X̄𝜏, ∥𝑢𝑡 ∥ ≤ �̄�𝜏,

(5.45)

for �̄�𝜏, 𝑌𝜏, X̄𝜏, �̄�𝜏 =O(
√︁

log(𝜏/𝛿)). Here, O hides the problem-dependent constants.

The proof of the lemma with the precise expressions is given in Appendix C.2.1.
Here, we provide a proof sketch. Given the optimal control policy of Θ̃𝑖 at epoch
𝑖, we construct a 2𝑛-dimensional autonomous linear dynamical system of the joint
evolution of the state 𝑥𝑡 and the MMSE estimate using Θ̃𝑖, 𝑥𝑡 |𝑡,Θ̃. By showing that
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the joint evolution is stable when the system Θ is controlled by its own optimal
controller, we can create a neighborhood (𝜌-ball) around Θ such that any model in
the proximity yields a (^′, 𝛾′)-stable joint evolution. We use the following result in
our proof, whose proof is also provided in the Appendix.

Lemma 5.7 (Strong stability of perturbation). Suppose the matrix 𝐴 ∈ R𝑛×𝑛 is
(^, 𝛾)-stable for ^ ≥ 1 and 𝛾 ∈ (0, 1]. For 𝛾′ ∈ (0, 𝛾] and perturbation Δ ∈ R𝑛×𝑛,
the perturbed matrix 𝐴 + Δ is (^, 𝛾′)-stable whenever ∥Δ∥ ≤ ^−1(𝛾 − 𝛾′).

Similar to finding a stabilizing neighborhood in Chapter 3, i.e., Lemma 3.3, we
use Lemma 5.7 to deduce the estimation error that we can tolerate such that the
optimistic controllers for the systems selected within the confidence sets stabilize
the underlying system. By setting𝑇𝑤 long enough such that the first adaptive control
epoch is long enough to provide bounded inputs and outputs we conclude the proof.

Lemma 5.5 and Lemma 5.6 together show that by setting 𝑇𝑤 ≥ 𝐻 + 𝑇max, LqgOpt
guarantees that while the system parameter estimates are continuously refining,
the input to the system and the system’s output stay bounded during the adaptive
control period, i.e., LqgOpt stabilizes and persistently excites the underlying system
right after the warm-up during the first epoch in the adaptive control period. Note
that collecting more data in the subsequent epochs does not decrease the design
matrix, i.e., making it less positive definite, after the warm-up period even if the PE
condition does not hold. Therefore, we can argue that the model estimation error in
the adaptive control epochs is worst-case Õ(1/

√
𝑇𝑤) even if Assumption 5.2 does not

hold. Therefore, all controllers designed by LqgOpt in the adaptive control epochs
after a warm-up period of 𝑇𝑤 stabilize the underlying system due Lemma 5.6.

5.4.4 Regret Decomposition
Given the verification of stability in the adaptive control period in Lemma 5.6, we
now focus on the regret of adaptive control. To analyze the regret expression given
in (5.12), we leverage the optimistic controller design. Recall that in Chapter 3
for the analysis of StabL and TSAC, we use the Bellman optimality equation for
LQR [28], and consider the system evolution of the optimistic system using the
optimistic controller in parallel with the true system evolution under the optimistic
controller such that they share the same process noise. With this approach, for StabL
and TSAC, we divide the regret into several pieces which account for the model
estimation error, the martingale property of the value function with a bounded
difference, the policy updates, and the difference in optimal average expected cost
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between the underlying model 𝐽∗(Θ) and the model parameter used in the controller
design 𝐽∗(Θ̃). Since StabL uses optimistic controllers similar to LqgOpt, we get
𝐽∗(Θ̃) − 𝐽∗(Θ) ≤ 0.

In order to provide a similar analysis to the LQR case, we first derive the Bellman op-
timality equation for the average cost-per-step LQG control problem. Surprisingly,
this result was not stated in the literature and can be of independent interest. For
infinite state and control space average cost per step problems, e.g., the LQG control
system Θ with regulating parameters 𝑄 and 𝑅, the optimal average cost per stage
𝐽∗(Θ) as given in (5.8) and the differential(relative) cost satisfy Bellman optimality
equation [28]. In the following lemma, we identify the correct differential cost for
LQG systems and derive the Bellman optimality equation.

Lemma 5.8 (Bellman Optimality Equation for LQG). Given state estimation 𝑥𝑡 |𝑡−1 ∈
R𝑛 and an observation 𝑦𝑡 ∈ R𝑚 pair at time 𝑡, the Bellman optimality equation
of average cost per stage control of LQG system Θ = (𝐴, 𝐵, 𝐶) with regulating
parameters 𝑄 and 𝑅 is

𝐽∗(Θ)+𝑥⊤𝑡 |𝑡 (𝑃 −𝐶
⊤𝑄𝐶)𝑥𝑡 |𝑡 + 𝑦⊤𝑡 𝑄𝑦𝑡 (5.46)

= min
𝑢

{
𝑦⊤𝑡 𝑄𝑦𝑡 + 𝑢⊤𝑅𝑢+E

[
𝑥𝑢⊤
𝑡+1|𝑡+1

(
𝑃−𝐶⊤𝑄𝐶

)
𝑥𝑢
𝑡+1|𝑡+1+𝑦

𝑢⊤
𝑡+1𝑄𝑦

𝑢
𝑡+1

]}
,

where 𝑃 is the unique solution to DARE of Θ (5.10), 𝑥𝑡 |𝑡 = (𝐼 − 𝐿𝐶)𝑥𝑡 |𝑡−1 + 𝐿𝑦𝑡 ,
𝑦𝑢
𝑡+1 = 𝐶 (𝐴𝑥𝑡 + 𝐵𝑢 + 𝑤𝑡) + 𝑧𝑡+1, and 𝑥𝑢

𝑡+1|𝑡+1 = (𝐼 − 𝐿𝐶) (𝐴𝑥𝑡 |𝑡 + 𝐵𝑢) + 𝐿𝑦𝑢𝑡+1. The
equality is achieved by the optimal controller of Θ given in (5.9).

Proof. Define �̂�𝑡 = 𝐴𝑥𝑡−𝐴𝑥𝑡 |𝑡 +𝑤𝑡 . Notice that �̂�𝑡 is independent of the policy used
and depends only on the estimation error and noise in the steady state. Also notice
that E

[
�̂�𝑡�̂�

⊤
𝑡

]
= Σ where Σ is the positive semidefinite solution to the algebraic

Riccati equation given in (5.5):

Σ = 𝐴Σ̄𝐴⊤ + 𝜎2
𝑤 𝐼, Σ̄ = Σ − Σ𝐶⊤

(
𝐶Σ𝐶⊤ + 𝜎2

𝑧 𝐼

)−1
𝐶Σ. (5.47)

Recall the state estimation updates given in (5.2)-(5.4) such that, for any given 𝑦𝑡 and
𝑥𝑡 |𝑡−1 at time 𝑡, the optimal state estimation and the output at 𝑡 + 1 can be written as

𝑥𝑡 |𝑡 = (𝐼−𝐿𝐶) 𝑥𝑡 |𝑡−1 + 𝐿𝑦𝑡 , 𝑥𝑡+1|𝑡,𝑢 = 𝐴𝑥𝑡 |𝑡+𝐵𝑢, 𝑦𝑡+1,𝑢 =𝐶𝐴𝑥𝑡 |𝑡+𝐶𝐵𝑢+𝐶�̂�𝑡+𝑧𝑡+1.
(5.48)

Since the aim is to minimize the average cost per stage of controlling Θ, the optimal
control input is given as 𝑢 = −𝐾𝑥𝑡 |𝑡 . Recall that optimal average stage cost of LQG
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is 𝐽∗(Θ) = Tr(𝐶⊤𝑄𝐶Σ̄) + Tr(𝑃(Σ − Σ̄)) + Tr(𝜎2
𝑧𝑄). Suppose the differential cost

ℎ is a quadratic function of 𝑠𝑡 where 𝑠𝑡 = [𝑥⊤𝑡 |𝑡−1 𝑦
⊤
𝑡 ]⊤ ∈ R𝑛+𝑚, i.e.,

ℎ(𝑠𝑡) = 𝑠⊤𝑡

[
𝐺1 𝐺2

𝐺⊤2 𝐺3

]
𝑠𝑡 = 𝑥

⊤
𝑡 |𝑡−1𝐺1𝑥𝑡 |𝑡−1 + 2𝑥⊤

𝑡 |𝑡−1𝐺2𝑦𝑡 + 𝑦⊤𝑡 𝐺3𝑦𝑡 .

One needs to verify that there exists 𝐺1, 𝐺2, 𝐺3 such that they satisfy Bellman
optimality equation for the chosen differential cost:

𝐽∗(Θ) + 𝑥⊤𝑡 |𝑡−1𝐺1𝑥𝑡 |𝑡−1 + 2𝑥⊤
𝑡 |𝑡−1𝐺2𝑦𝑡 + 𝑦⊤𝑡 𝐺3𝑦𝑡 =

𝑦⊤𝑡 𝑄𝑦𝑡 + 𝑥⊤𝑡 |𝑡𝐾
⊤𝑅𝐾𝑥𝑡 |𝑡 + E

[
𝑥⊤
𝑡+1|𝑡𝐺1𝑥𝑡+1|𝑡 + 2𝑥⊤

𝑡+1|𝑡𝐺2𝑦𝑡+1 + 𝑦⊤𝑡+1𝐺3𝑦𝑡+1
]

Using the fact that Σ̄ = Σ − 𝐿
(
𝐶Σ𝐶⊤ + 𝜎2

𝑧 𝐼
)
𝐿⊤, we can write the optimal aver-

age cost as 𝐽∗(Θ) = Tr
(
(𝑄 + 𝐿⊤𝑃𝐿 − 𝐿⊤𝐶⊤𝑄𝐶𝐿)

(
𝐶Σ𝐶⊤ + 𝜎2

𝑧 𝐼
) )

. Expanding the
expectation given 𝑥𝑡 |𝑡−1, 𝑦𝑡 and using (5.48) , we get

𝑥⊤
𝑡 |𝑡−1𝐺1𝑥𝑡 |𝑡−1 + 2𝑥⊤

𝑡 |𝑡−1𝐺2𝑦𝑡 + 𝑦⊤𝑡 𝐺3𝑦𝑡 (5.49)

= 𝑦⊤𝑡 𝑄𝑦𝑡 + 𝑥⊤𝑡 |𝑡𝐾
⊤𝑅𝐾𝑥𝑡 |𝑡 + 𝑥⊤𝑡 |𝑡 (𝐴 − 𝐵𝐾)

⊤𝐺1(𝐴 − 𝐵𝐾)𝑥𝑡 |𝑡
+ 2𝑥⊤

𝑡 |𝑡 (𝐴 − 𝐵𝐾)
⊤𝐺2𝐶 (𝐴 − 𝐵𝐾)𝑥𝑡 |𝑡 + 𝑥⊤𝑡 |𝑡 (𝐴 − 𝐵𝐾)

⊤𝐶⊤𝐺3𝐶 (𝐴 − 𝐵𝐾)𝑥𝑡 |𝑡

+ E
[
�̂�⊤𝑡 𝐶

⊤𝐺3𝐶�̂�𝑡 + 𝑧⊤𝑡+1𝐺3𝑧𝑡+1
]
−Tr

( (
𝑄 + 𝐿⊤𝑃𝐿 − 𝐿⊤𝐶⊤𝑄𝐶𝐿

) (
𝐶Σ𝐶⊤+𝜎2

𝑧 𝐼

))
.

Notice that E
[
�̂�⊤𝑡 𝐶

⊤𝐺3𝐶�̂�𝑡 + 𝑧⊤𝑡+1𝐺3𝑧𝑡+1
]
= Tr

(
𝐺3

(
𝐶Σ𝐶⊤ + 𝜎2

𝑧 𝐼
) )

. In order to
match with the last term of (5.49), set 𝐺3 = 𝑄 + 𝐿⊤ (𝑃 − 𝐶⊤𝑄𝐶) 𝐿. Inserting 𝐺3

to (5.49), we get following 3 equations to solve for 𝐺1 and 𝐺2:
1) From quadratic terms of 𝑦𝑡 :

𝐿⊤𝑃𝐿 − 𝐿⊤𝐶⊤𝑄𝐶𝐿
= 𝐿⊤𝐾⊤𝑅𝐾𝐿 + 𝐿⊤(𝐴 − 𝐵𝐾)⊤𝐺1(𝐴 − 𝐵𝐾)𝐿 + 2𝐿⊤(𝐴 − 𝐵𝐾)⊤𝐺2𝐶 (𝐴 − 𝐵𝐾)𝐿
+ 𝐿⊤(𝐴 − 𝐵𝐾)⊤𝐶⊤

(
𝑄 + 𝐿⊤𝑃𝐿 − 𝐿⊤𝐶⊤𝑄𝐶𝐿

)
𝐶 (𝐴 − 𝐵𝐾)𝐿;

2) From quadratic terms of 𝑥𝑡 |𝑡−1:

𝐺1 = (𝐼 − 𝐿𝐶)⊤𝐾⊤𝑅𝐾 (𝐼 − 𝐿𝐶) + (𝐼 − 𝐿𝐶)⊤(𝐴 − 𝐵𝐾)⊤𝐺1(𝐴 − 𝐵𝐾) (𝐼 − 𝐿𝐶)
+ 2(𝐼 − 𝐿𝐶)⊤(𝐴 − 𝐵𝐾)⊤𝐺2𝐶 (𝐴 − 𝐵𝐾) (𝐼 − 𝐿𝐶)
+ (𝐼 − 𝐿𝐶)⊤(𝐴 − 𝐵𝐾)⊤𝐶⊤

(
𝑄 + 𝐿⊤𝑃𝐿 − 𝐿⊤𝐶⊤𝑄𝐶𝐿

)
𝐶 (𝐴 − 𝐵𝐾) (𝐼 − 𝐿𝐶);

3) From bilinear terms of 𝑥𝑡 |𝑡−1 and 𝑦𝑡 :

𝐺2 = (𝐼 − 𝐿𝐶)⊤𝐾⊤𝑅𝐾𝐿 + (𝐼 − 𝐿𝐶)⊤(𝐴 − 𝐵𝐾)⊤𝐺1(𝐴 − 𝐵𝐾)𝐿
+ 2(𝐼 − 𝐿𝐶)⊤(𝐴 − 𝐵𝐾)⊤𝐺2𝐶 (𝐴 − 𝐵𝐾)𝐿
+ (𝐼 − 𝐿𝐶)⊤(𝐴 − 𝐵𝐾)⊤𝐶⊤

(
𝑄 + 𝐿⊤𝑃𝐿 − 𝐿⊤𝐶⊤𝑄𝐶𝐿

)
𝐶 (𝐴 − 𝐵𝐾)𝐿.
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𝐺1 = (𝐼−𝐿𝐶)⊤ (𝑃 − 𝐶⊤𝑄𝐶) (𝐼−𝐿𝐶) and𝐺2 = (𝐼−𝐿𝐶)⊤ (𝑃 − 𝐶⊤𝑄𝐶) 𝐿 satisfies
all 3 equations. Thus one can write the Bellman optimality equation as

𝐽∗(Θ)+𝑥⊤𝑡 |𝑡−1(𝐼−𝐿𝐶)
⊤ (𝑃−𝐶⊤𝑄𝐶)

(𝐼−𝐿𝐶)𝑥𝑡 |𝑡−1

+2𝑥⊤
𝑡 |𝑡−1(𝐼−𝐿𝐶)

⊤ (
𝑃−𝐶⊤𝑄𝐶

)
𝐿𝑦𝑡+𝑦⊤𝑡

(
𝑄+𝐿⊤

(
𝑃−𝐶⊤𝑄𝐶

)
𝐿
)
𝑦𝑡 =

𝑦⊤𝑡 𝑄𝑦𝑡 + 𝑥⊤𝑡 |𝑡𝐾
⊤𝑅𝐾𝑥𝑡 |𝑡 + E

[
𝑥⊤
𝑡+1 |𝑡 (𝐼 − 𝐿𝐶)

⊤ (
𝑃 − 𝐶⊤𝑄𝐶

)
(𝐼 − 𝐿𝐶)𝑥𝑡+1 |𝑡

]
+ 2E

[
𝑥⊤
𝑡+1 |𝑡 (𝐼 − 𝐿𝐶)

⊤ (
𝑃 − 𝐶⊤𝑄𝐶

)
𝐿𝑦𝑡+1 + 𝑦⊤𝑡+1

(
𝑄 + 𝐿⊤

(
𝑃 − 𝐶⊤𝑄𝐶

)
𝐿
)
𝑦𝑡+1

]
.

Combining terms using (5.48) gives the advertised result. □

Using this result, we decompose the regret similar to the optimistic controllers in the
LQR setting. In particular, we use (5.8) to study the one-step (instantaneous) system
evolution of the optimistic system Θ̃𝑡 using the optimistic controller 𝑢𝑡 = −�̃�𝑡𝑥𝑡 |𝑡,Θ̃𝑡
in parallel with the true system Θ evolution under the same optimistic controller
such that they share the exact process and measurement noises, which was not
present in the LQR setting. Notice that, this is equivalent to providing the regret
decomposition for a system that is obtained via similarity transformation S, i.e.,
𝐴′ = S−1𝐴S, 𝐵′ = S−1𝐵, 𝐶′ = 𝐶S. Therefore, without loss of generality, we
will assume that S = 𝐼 in the regret decomposition and the concentration bounds
used in the regret analysis. To formally define two different instantaneous system
revolutions described above, for given 𝑥𝑡 |𝑡−1 and 𝑦𝑡 at time 𝑡, we define the following
expressions for time step 𝑡 + 1 using the model specified as a subscript:

𝑥𝑡 |𝑡,Θ̃𝑡 =
(
𝐼 − �̃�𝑡�̃�𝑡

)
𝑥𝑡 |𝑡−1 + �̃�𝑡𝑦𝑡 (5.50)

𝑦𝑡+1,Θ̃𝑡 =�̃�𝑡
(
�̃�𝑡 − �̃�𝑡�̃�𝑡

)
𝑥𝑡 |𝑡,Θ̃𝑡 + �̃�𝑡 �̃�𝑡

(
𝑥𝑡 − 𝑥𝑡 |𝑡,Θ̃𝑡

)
+ �̃�𝑡𝑤𝑡 + 𝑧𝑡+1 (5.51)

𝑥𝑡+1|𝑡+1,Θ̃𝑡 =
(
�̃�𝑡 − �̃�𝑡�̃�𝑡

)
𝑥𝑡 |𝑡,Θ̃ + �̃�𝑡�̃�𝑡 �̃�𝑡

(
𝑥𝑡 − 𝑥𝑡 |𝑡,Θ̃

)
+ �̃�𝑡�̃�𝑡𝑤𝑡 + �̃�𝑡𝑧𝑡+1 (5.52)

𝑦𝑡+1,Θ=𝐶𝐴𝑥𝑡 |𝑡,Θ̃ − 𝐶𝐵�̃�𝑡𝑥𝑡 |𝑡,Θ̃ + 𝐶𝑤𝑡 + 𝐶𝐴(𝑥𝑡 − 𝑥𝑡 |𝑡,Θ̃) + 𝑧𝑡+1 (5.53)

𝑥𝑡+1|𝑡+1,Θ= (𝐴−𝐵�̃�𝑡)𝑥𝑡 |𝑡,Θ̃+𝐿𝐶𝑤𝑡+𝐿𝐶𝐴(𝑥𝑡−𝑥𝑡 |𝑡,Θ̃𝑡 )+(𝐼−𝐿𝐶)𝐴(𝑥𝑡 |𝑡,Θ−𝑥𝑡 |𝑡,Θ̃𝑡 )+𝐿𝑧𝑡+1.
(5.54)

Notice that given 𝑥𝑡 |𝑡−1 and 𝑦𝑡 first and fourth terms in (5.54) are deterministic.
Using this fact and the definitions given in (5.50)–(5.54), we obtain the following
decomposition starting from the Bellman optimality equation for the optimistic
system:

𝐽∗(Θ̃)+𝑅1+𝑅2−𝑅u=
(
𝑦⊤𝑡 𝑄𝑦𝑡+𝑢⊤𝑡 𝑅𝑢𝑡

)
+𝑅3+𝑅4+𝑅5+𝑅6+𝑅7+𝑅8+𝑅9+𝑅10+𝑅11, (5.55)
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where

𝑅1=𝑥
⊤
𝑡 |𝑡 ,Θ̃

(
�̃�𝑡 − �̃�⊤𝑡 𝑄�̃�𝑡

)
𝑥𝑡 |𝑡 ,Θ̃−E

[
𝑥⊤
𝑡+1 |𝑡+1,Θ

(
�̃�𝑡+1 − �̃�⊤𝑡+1𝑄�̃�𝑡+1

)
𝑥𝑡+1 |𝑡+1,Θ

���𝑥𝑡 |𝑡−1, 𝑦𝑡 , 𝑢𝑡

]
,

𝑅𝑢=E
[
𝑥⊤
𝑡+1 |𝑡+1,Θ

(
(�̃�𝑡 − �̃�⊤𝑡 𝑄�̃�𝑡 ) − (�̃�𝑡+1 − �̃�⊤𝑡+1𝑄�̃�𝑡+1)

)
𝑥𝑡+1 |𝑡+1,Θ

���𝑥𝑡 |𝑡−1, 𝑦𝑡 , 𝑢𝑡

]
,

𝑅2= 𝑦
⊤
𝑡 𝑄𝑦𝑡 − E

[
𝑦⊤𝑡+1,Θ𝑄𝑦𝑡+1,Θ

���𝑥𝑡 |𝑡−1, 𝑦𝑡 , 𝑢𝑡

]
,

𝑅3=𝑥
⊤
𝑡 |𝑡 ,Θ̃ ( �̃�𝑡− �̃�𝑡 �̃�𝑡 )

⊤�̃�⊤𝑡 𝑄�̃�𝑡 ( �̃�𝑡− �̃�𝑡 �̃�𝑡 )𝑥𝑡 |𝑡 ,Θ̃−𝑥⊤𝑡 |𝑡 ,Θ̃ (𝐴 − 𝐵�̃�𝑡 )
⊤𝐶⊤𝑄𝐶 (𝐴 − 𝐵�̃�𝑡 )𝑥𝑡 |𝑡 ,Θ̃,

𝑅4=𝑥
⊤
𝑡 |𝑡 ,Θ̃ ( �̃�𝑡− �̃�𝑡 �̃�𝑡 )

⊤ (�̃�𝑡−�̃�⊤𝑡 𝑄�̃�𝑡 ) ( �̃�𝑡− �̃�𝑡 �̃�𝑡 )𝑥𝑡 |𝑡 ,Θ̃
−𝑥⊤

𝑡 |𝑡 ,Θ̃ (𝐴−𝐵�̃�𝑡 )
⊤ (�̃�𝑡 − �̃�⊤𝑡 𝑄�̃�𝑡 ) (𝐴−𝐵�̃�𝑡 )𝑥𝑡 |𝑡 ,Θ̃,

𝑅5=−2𝑥⊤
𝑡 |𝑡 ,Θ̃ (𝐴 − 𝐵�̃�𝑡 )

⊤ (�̃�𝑡 − �̃�⊤𝑡 𝑄�̃�𝑡 ) (𝐼 − 𝐿𝐶)𝐴(𝑥𝑡 |𝑡 ,Θ − 𝑥𝑡 |𝑡 ,Θ̃),

𝑅6=−(𝑥𝑡 |𝑡 ,Θ − 𝑥𝑡 |𝑡 ,Θ̃)⊤𝐴⊤ (𝐼 − 𝐿𝐶)⊤ (�̃�𝑡 − �̃�⊤𝑡 𝑄�̃�𝑡 ) (𝐼 − 𝐿𝐶)𝐴(𝑥𝑡 |𝑡 ,Θ − 𝑥𝑡 |𝑡 ,Θ̃),

𝑅7=E
[
𝑤⊤𝑡 �̃�

⊤
𝑡 𝑄�̃�𝑡𝑤𝑡

]
− E

[
𝑤⊤𝑡 𝐶

⊤𝑄𝐶𝑤𝑡
]
,

𝑅8=E
[
𝑤⊤𝑡 �̃�

⊤
𝑡 �̃�
⊤
𝑡

(
�̃�𝑡 − �̃�⊤𝑡 𝑄�̃�𝑡

)
�̃�𝑡�̃�𝑡𝑤𝑡

]
− E

[
𝑤⊤𝑡 𝐶

⊤𝐿⊤
(
�̃�𝑡 − �̃�⊤𝑡 𝑄�̃�𝑡

)
𝐿𝐶𝑤𝑡

]
,

𝑅9=E

[ (
𝑥𝑡 − 𝑥𝑡 |𝑡 ,Θ̃

)⊤
�̃�⊤𝑡 �̃�

⊤
𝑡 𝑄�̃�𝑡 �̃�𝑡

(
𝑥𝑡 − 𝑥𝑡 |𝑡 ,Θ̃

) ���𝑥𝑡 |𝑡−1, 𝑦𝑡

]
− E

[(
𝑥𝑡 − 𝑥𝑡 |𝑡 ,Θ̃

)⊤
𝐴⊤𝐶⊤𝑄𝐶𝐴

(
𝑥𝑡 − 𝑥𝑡 |𝑡 ,Θ̃

) ���𝑥𝑡 |𝑡−1, 𝑦𝑡

]
,

𝑅10=E

[ (
𝑥𝑡 − 𝑥𝑡 |𝑡 ,Θ̃

)⊤
�̃�⊤𝑡 �̃�

⊤
𝑡 �̃�
⊤
𝑡

(
�̃�𝑡 − �̃�⊤𝑡 𝑄�̃�𝑡

)
�̃�𝑡�̃�𝑡 �̃�𝑡

(
𝑥𝑡 − 𝑥𝑡 |𝑡 ,Θ̃

) ���𝑥𝑡 |𝑡−1, 𝑦𝑡

]
− E

[(
𝑥𝑡 − 𝑥𝑡 |𝑡 ,Θ̃

)⊤
𝐴⊤𝐶⊤𝐿⊤

(
�̃�𝑡 − �̃�⊤𝑡 𝑄�̃�𝑡

)
𝐿𝐶𝐴

(
𝑥𝑡 − 𝑥𝑡 |𝑡 ,Θ̃

) ���𝑥𝑡 |𝑡−1, 𝑦𝑡

]
,

𝑅11=2E
[
𝑧⊤𝑡+1𝐿

⊤(�̃�𝑡−�̃�⊤𝑡 𝑄�̃�𝑡 ) ( �̃�𝑡−𝐿)𝑧𝑡+1]+E [
𝑧⊤𝑡+1 ( �̃�𝑡−𝐿)

⊤(�̃�𝑡−�̃�⊤𝑡 𝑄�̃�𝑡 ) ( �̃�𝑡−𝐿)𝑧𝑡+1] .
Recall the regret definition in (5.12):

Regret(𝑇) =
∑︁𝑇

𝑡=0

(
𝑦⊤𝑡 𝑄𝑦𝑡+𝑢⊤𝑡 𝑅𝑢𝑡 − 𝐽∗(Θ)

)
.

Due to optimistic parameter selection such that 𝐽∗(Θ̃) ≤ 𝐽∗(Θ) + 𝑇−1, from (5.55),
we get

𝑦⊤𝑡 𝑄𝑦𝑡+𝑢⊤𝑡 𝑅𝑢𝑡−𝐽∗(Θ) ≤ 𝑅1+𝑅2−𝑅u−𝑅3−𝑅4−𝑅5−𝑅6−𝑅7−𝑅8−𝑅9−𝑅10−𝑅11 +𝑇−1.

Therefore, we can bound the regret of LqgOpt as

Regret(𝑇) < 𝑅warm-up+
𝑇∑︁

𝑡=𝑇𝑤

𝑅1+𝑅2−𝑅u−𝑅3−𝑅4−𝑅5−𝑅6−𝑅7−𝑅8−𝑅9−𝑅10−𝑅11, (5.56)

where 𝑅warm-up is the regret of the warm-up phase. In the following, we bound each
term separately.
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5.4.5 Regret Analysis and Proofs of Theorem 5.5 and Corollary 5.5.1
In this section, we provide the regret analysis of LqgOpt that leads to the guarantees
in Theorem 5.5 and Corollary 5.5.1. At first, we discuss the regret due to exploring
the system with 𝑢𝑡 ∼ N(0, 𝜎2

𝑢 𝐼) in warm-up phase for 1 ≤ 𝑡 ≤ 𝑇𝑤, i.e., 𝑅warm-up.
Then, we provide the regret of deploying the optimistic controllers in adaptive
control in epochs phase for 𝑇𝑤 + 1 ≤ 𝑡 ≤ 𝑇 , i.e., 𝑅𝑢, and 𝑅1−11.

Lemma 5.9. Suppose Assumption 5.1 holds. Given an LQG control system Θ =

(𝐴, 𝐵, 𝐶), the regret of deploying 𝑢𝑡 ∼ N(0, 𝜎2
𝑢 𝐼) for 1 ≤ 𝑡 ≤ 𝑇𝑤 is upper bounded

as follows with high probability

𝑅warm-up = 𝑐∗𝑇𝑤 + Õ
(√︁
𝑇𝑤

)
, (5.57)

where 𝑐∗ is a problem-dependent constant.

This lemma might feel intuitive to many readers. One of the main reasons we
provide Lemma 5.9 is the importance and contribution of Õ

(√
𝑇𝑤

)
terms in (5.57)

to the final regret bound in particular to Corollary 5.5.1. The proof and the precise
expressions are in Appendix C.2.3. Before presenting the upper bounds on the
regret components in the adaptive control phase, we provide the following lemma
on ∥Σ̃ − Σ∥ where Σ̃𝑖 is the solution to DARE given in (5.5) for the system Θ̃𝑖 in
epoch 𝑖 and Σ is the solution to (5.5) for the underlying system Θ.

Lemma 5.10. Suppose Assumption 5.1 holds. For 𝛿 ∈ (0, 1) and long enough
warm-up duration 𝑇𝑤, there exists a similarity transformation S ∈ R𝑛×𝑛 such that,
with probability at least 1 − 7𝛿,

∥Σ̃𝑖 − S−1ΣS∥ ≤ ΔΣ B
^2

1 (8𝜓 + 4)𝐷2 + 𝜎2
𝑧 (8^1 + 4)𝐷

𝜎2
𝑧 (1 − (1 − 𝛾3)2)

max
{
𝛽𝐴𝑖 , 𝛽

𝐶
𝑖

}
for all adaptive control epochs, where 𝐷 is an upper bound on the operator norm of
the solution to the DARE (5.5) for Θ, i.e., ∥Σ∥ ≤ 𝐷 = 𝜎2

𝑧 𝛾
−1
3 ^2

3 (1 + ^
2
3), and 𝛽𝐴

𝑖
, 𝛽𝐶

𝑖

are defined in Theorem 5.4.

The proof is given in Appendix C.2.2, where we deploy a fixed point argument for
the solution of (5.5). With this result at the hand, we are ready to bound individual
terms in the regret decomposition.

Lemma 5.11. Under the setting of Theorem 5.5, for 𝛿 ∈ (0, 1), with probability at
least 1 − 5𝛿,

|𝑅𝑖 | = Õ
(
𝑇𝑤 log(1/𝛿)
√
𝑇𝑤

+ 2𝑇𝑤 log(1/𝛿)
√

2𝑇𝑤
+ 4𝑇𝑤 log(1/𝛿)

√
4𝑇𝑤

+ . . .
)
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for 𝑖 = 1, 3 . . . , 11, and 𝑅2 = Õ(
√
𝑇 − 𝑇𝑤 log(1/𝛿)). Moreover, LqgOpt makes at

most O(log(𝑇/𝛿)) policy changes which yields |𝑅𝑢 | = O(log(𝑇)) with the same
probability.

The proof of this lemma studies each component individually and can be collected
from Appendix H of [161] by combining the doubling update rule of LqgOpt.
Combining all the results above we give the proof of Theorem 5.5.

Proof of Theorem 5.5. Using the doubling trick, i.e., Lemma C.3.11, on the results
of Lemma 5.11, we have |𝑅𝑖 | = Õ(

√
𝑇) for all 𝑖 = 1, . . . , 11, with probability

at least 1 − 5𝛿. Therefore, for the regret of adaptive control in epochs phase we
have Regret(𝑇 − 𝑇𝑤) = Õ

(√
𝑇

)
. Combining this with Lemma 5.9, which states

that warm-up period has regret that scales linearly with 𝑇𝑤 which depends on the
horizon as O(log(𝑇)), we conclude with the advertised result of Theorem 5.5. □

Next, we bound the regret of the adaptive control phase when the underlying system
and its optimal controller do not satisfy the PE condition, i.e., Assumption 5.2, and
LqgOpt solely relies on the warm-up period.

Lemma 5.12. Under the setting of Corollary 5.5.1, for 𝛿 ∈ (0, 1), with probability
at least 1 − 5𝛿,

|𝑅𝑖 | = Õ
(
(𝑇 − 𝑇𝑤) log(1/𝛿)

√
𝑇𝑤

)
for 𝑖 = 1, 3 . . . , 11, and 𝑅2 = Õ(

√
𝑇 − 𝑇𝑤 log(1/𝛿)).

The proof of this simply uses the same regret decomposition as Lemma 5.11 with the
observation that the agent’s model parameter estimates have the error of Õ(1/

√
𝑇𝑤)

during the entire adaptive control phase due to the lack of persistence of excitation.

Proof of Corollary 5.5.1. Combining Lemma 5.12 and 5.9, the first statement fol-
lows trivially, since 𝑇−𝑇𝑤√

𝑇𝑤
is the dominating term in the regret of the adaptive control

phase. Taking the derivative of the total regret expression with respect to 𝑇𝑤 and
finding its roots gives the minimizing solution of 𝑇𝑤 = 𝑇2/3. Inserting it to the
overall regret expression proves the final statement. □
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5.4.6 Extensions to the ARX systems
In this section, we generalize the results for LqgOpt to the ARX systems, i.e., the
systems with the dynamics of the form (5.7) with sub-Gaussian 𝑒𝑡 with covariance
matrix of Σ𝐸 and arbitrary �̄� and 𝐹. First, for the given quadratic control problem in
(5.8) in an ARX system that satisfies Assumption 5.1, we derive the optimal control
law, i.e., the analog of (5.9), using the average cost optimality equation. From the
first principles [28], the value function of the given ARX system is quadratic, and
due to stochasticity we have the following format:

𝑉 (𝑥, 𝑦) =
[
𝑥

𝑦

]⊤ [
𝑃11 𝑃12

𝑃21 𝑃22

] [
𝑥

𝑦

]
+ _.

Using the average cost optimality equation, we can determine the value function for
the given system Θ as follows:[
𝑥

𝑦

]⊤ [
𝑃11 𝑃12

𝑃21 𝑃22

] [
𝑥

𝑦

]
+ _ = min𝑢

{
𝑦⊤𝑄𝑦 + 𝑢⊤𝑅𝑢 + E

[ [
𝐴𝑥 + 𝐵𝑢 + 𝐹𝑦

𝐶𝐴𝑥 + 𝐶𝐵𝑢 + 𝐶𝐹𝑦 + 𝑒

]⊤ [
𝑃11 𝑃12

𝑃21 𝑃22

] [
𝐴𝑥 + 𝐵𝑢 + 𝐹𝑦

𝐶𝐴𝑥 + 𝐶𝐵𝑢 + 𝐶𝐹𝑦 + 𝑒

] ] }
.

Expanding all and minimizing for 𝑢 gives the optimal control of

𝑢 = −(𝑅 + 𝐵⊤P𝐵)−1 [
𝐵⊤P𝐴𝑥 + 𝐵⊤P𝐹𝑦

]
,

where P = 𝑃11 + 𝑃12𝐶 + 𝐶⊤𝑃21 + 𝐶⊤𝑃22𝐶. Inserting the expression for 𝑢, we get
_ = Tr(𝑃22𝐸) where[
𝑥

𝑦

]⊤ [
𝑃11 𝑃12

𝑃21 𝑃22

] [
𝑥

𝑦

]
=

[
𝑥

𝑦

]⊤[
𝐴⊤

(
P−P𝐵(𝑅+𝐵⊤P𝐵)−1𝐵⊤P

)
𝐴 𝐴⊤

(
P−P𝐵(𝑅+𝐵⊤P𝐵)−1𝐵⊤P

)
𝐹

𝐹⊤
(
P−P𝐵(𝑅+𝐵⊤P𝐵)−1𝐵⊤P

)
𝐴 𝑄+𝐹⊤

(
P − P𝐵(𝑅 + 𝐵⊤P𝐵)−1𝐵⊤P

)
𝐹

] [
𝑥

𝑦

]
.

This must hold for all 𝑥 and 𝑦. Therefore, using the definition of P, we conclude
that P satisfies the DARE

P=𝐶⊤𝑄𝐶+(𝐴+𝐹𝐶)⊤P(𝐴+𝐹𝐶)−(𝐴+𝐹𝐶)⊤P𝐵(𝑅+𝐵⊤P𝐵)−1𝐵⊤P(𝐴+𝐹𝐶), (5.58)

and the infinite horizon optimal cost of this system is

𝐽∗(Θ) = Tr
(
Σ𝐸

(
𝑄 + 𝐹⊤

(
P − P𝐵(𝑅 + 𝐵⊤P𝐵)−1𝐵⊤P

)
𝐹

))
. (5.59)

Therefore, we can write the optimal control law of ARX systems, 𝜋∗, as a linear
feedback policy,

𝑢∗𝑡 = 𝐾
∗
𝑥𝑥𝑡 + 𝐾∗𝑦𝑦𝑡 = −(𝑅 + 𝐵⊤P𝐵)−1𝐵⊤P (𝐴𝑥𝑡 + 𝐹𝑦𝑡) , (5.60)
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where P is the unique positive semidefinite solution to the discrete-time algebraic
Riccati equation given in (5.58). We assume that the systems in the set S are
stabilizable such that the optimal controller produces stable closed-loop system
dynamics for the state and the output, i.e., 𝜌(𝐴 + 𝐵𝐾∗𝑥 ) < 1 and 𝜌(𝐹 + 𝐵𝐾∗𝑦) < 1.
In the regret metric for this problem we consider the optimal cost given in (5.59) as
the baseline.

LqgOpt for ARX systems: The only algorithmic change required to LqgOpt is
the confidence set construction since for an ARX system, the learning agent needs
to construct the confidence sets of C𝐴 (𝑖), C𝐵 (𝑖), C𝐶 (𝑖), and C𝐹 (𝑖). Moreover, in the
optimistic model selection Θ̃𝑖, we consider the sublevel sets of optimal cost with the
structure of (5.59). Note that the open-loop PE condition of Section 5.3.2 still holds
in ARX systems. In the following, we characterize the closed-loop PE condition for
the underlying ARX system with its optimal controller. This will allow us to have
PE in the adaptive control phase of LqgOpt, under small enough estimation errors
which can be guaranteed with the long enough warm-up duration in ARX systems,
as in Lemma 5.5.

PE Condition in the Closed-Loop Setting: After the warm-up phase, for 𝑡 ≥ 𝑇𝑤,
Algorithm LqgOpt executes the input of 𝑢𝑡 = �̃�𝑥𝑡 𝑥𝑡 + �̃�

𝑦
𝑡 𝑦𝑡 . Let 𝑓𝑡 = [𝑦⊤𝑡 𝑢⊤𝑡 ]⊤. Using

the state-space representation of ARX model, we get

𝑓𝑡 =

[
𝐶

�̃�𝑥𝑡 + �̃�
𝑦
𝑡 𝐶

]
︸         ︷︷         ︸

�̃�t

𝑥𝑡 +
[
𝐼

�̃�
𝑦
𝑡

]
︸︷︷︸
�̃�t

𝑒𝑡 .

Moreover, 𝑥𝑡 = [𝐴 + 𝐵�̃�𝑥𝑡−1 + 𝐹𝐶 + 𝐵�̃�
𝑦

𝑡−1𝐶]︸                                ︷︷                                ︸
�̃�t−1

𝑥𝑡−1 + [𝐹 + 𝐵�̃� 𝑦𝑡−1]︸         ︷︷         ︸
�̃�t−1

𝑒𝑡−1. Thus for 𝑓𝑡 ,

we get:
𝑓𝑡 = �̃�t�̃�t−1𝑥𝑡−1 + �̃�t�̃�t−1𝑒𝑡−1 + �̃�t𝑒𝑡 .

Rolling back for 𝐻 time steps, we get the following,

𝑓𝑡 = �̃�t

(
𝑡∑︁

𝑖=𝑡−𝐻+1

(
𝑡−1∏
𝑗=𝑖

�̃�j

)
�̃�i−1𝑒𝑖−1

)
+ �̃�t𝑒𝑡 + rc

t ,

where rc
t is the residual vector that represents the effect of 𝑒𝑖 for 0 ≤ 𝑖 < 𝑡 − 𝐻,

which are independent. Using this, one can write the full characterization of 𝜙𝑡 as
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follows

𝜙𝑡 =


𝑓𝑡−1
...

𝑓𝑡−𝐻

 +

rc

t−H
...

rc
t−H

 = G𝑐𝑙𝑡



𝑒𝑡−1

𝑒𝑡−2
...

𝑒𝑡−2𝐻−1

𝑒𝑡−2𝐻

︸     ︷︷     ︸
R2𝐻𝑚

+


rc

t−1
...

rc
t−H

 ,

where

G𝑐𝑙𝑡 =



[ Ḡt−1 ] 0(𝑚+𝑝)×𝑚 0(𝑚+𝑝)×𝑚 0(𝑚+𝑝)×𝑚 . . .

0(𝑚+𝑝)×𝑚 [ Ḡt−2 ] 0(𝑚+𝑝)×𝑚 0(𝑚+𝑝)×𝑚 . . .

. . .

0(𝑚+𝑝)×𝑚 0(𝑚+𝑝)×𝑚 . . . [ Ḡt−H+1 ] 0(𝑚+𝑝)×𝑚
0(𝑚+𝑝)×𝑚 0(𝑚+𝑝)×𝑚 0(𝑚+𝑝)×𝑚 . . . [ Ḡt−H ]


(5.61)

for

Ḡt=
[
�̃�t, �̃�t�̃�t−1, �̃�t�̃�t−1�̃�t−2, . . . , �̃�t�̃�t−1�̃�t−2 . . . �̃�t+H−1�̃�t−H

]
∈ R(𝑚+𝑝)×ℎ𝑚 .

If the underlying system is known, then the optimal control law for the ARX system
could be applied to control the system. In the following, G𝑐𝑙 is the closed-loop
mapping of noise process to the covariates 𝜙 via optimal policy

G𝑐𝑙 =



[ Ḡ ] 0(𝑚+𝑝)×𝑚 0(𝑚+𝑝)×𝑚 0(𝑚+𝑝)×𝑚 . . .

0(𝑚+𝑝)×𝑚 [ Ḡ ] 0(𝑚+𝑝)×𝑚 0(𝑚+𝑝)×𝑚 . . .

. . .

0(𝑚+𝑝)×𝑚 0(𝑚+𝑝)×𝑚 . . . [ Ḡ ] 0(𝑚+𝑝)×𝑚
0(𝑚+𝑝)×𝑚 0(𝑚+𝑝)×𝑚 0(𝑚+𝑝)×𝑚 . . . [ Ḡ ]


(5.62)

for
Ḡ=

[
𝛀, 𝚪𝚵, 𝚪𝚲𝚵, . . . , 𝚪𝚲𝐻−1𝚵

]
where

𝛀 =

[
𝐼

𝐾∗𝑦

]
, 𝚪 =

[
𝐶

𝐾∗𝑥 + 𝐾∗𝑦𝐶

]
, 𝚲 = [𝐴 + 𝐵𝐾∗𝑥 + 𝐹𝐶 + 𝐵𝐾∗𝑦𝐶], 𝚵 = [𝐹 + 𝐵𝐾∗𝑦] .

Note that Ḡ corresponds to truncated closed-loop noise to covariate Markov operator.
Notice that if Ḡ is full row rank, following a similar approach with Section 5.3.2,
G𝑐𝑙 is also full row rank. Thus, we have the following persistence of excitation
condition on the optimal control law for the ARX system:
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Assumption 5.3 (PE structure of the underlying ARX system with its optimal
control). 𝐻 is large enough such that Ḡ formed via optimal control policy of the
given ARX system is full row rank.

Therefore, under Assumption 5.3, we have a lower bound of the smallest singular
value of the𝐻−length truncated closed-loop noise evolution parameter,𝜎min(G𝑐𝑙) >
𝜎𝑐 > 0. Using the same definitions of 𝑇𝑐 and 𝐺𝑟 given in Section 5.4.2, Lemma 5.5
guarantees that under Assumption 5.3, after 𝑇𝑐 time steps of adaptive control period
of LqgOpt, with probability 1−3𝛿, the following holds for the remainder of adaptive
control period,

𝜎min

(
𝑡∑︁
𝑖=1

𝜙𝑖𝜙
⊤
𝑖

)
≥ 𝑡

𝜎2
𝑐𝜎

2
𝑒

16
. (5.63)

After establishing, the closed-loop PE condition in ARX systems, we are ready
to state the regret guarantee of LqgOpt in ARX systems. Note that for a long
enough warm-up period, we have the stability of the closed-loop system dynamics
via LqgOpt, hence bounded 𝑥𝑡 and 𝑦𝑡 throughout the entire horizon, i.e., Lemma 5.6.

Theorem 5.6 (Regret of LqgOpt in ARX systems with closed-loop PE condition).
Let 𝛿 ∈ (0, 1). For the unknown ARX system Θ and long enough warm-up phase, if
Assumption 5.3 holds such that the optimal controller for Θ persistently excites the
underlying system, then LqgOpt attains regret of

Regret(𝑇) = Õ
(√
𝑇

)
, (5.64)

with probability at least 1 − 5𝛿 after 𝑇 time steps.

Corollary 5.6.1 (Regret of LqgOpt in ARX Sytems without closed-loop PE con-
dition). For the system given in Theorem 5.6 with the choices of 𝐻 and 𝑇𝑤, if the
underlying system is not persistently excited with its optimal policy, LqgOpt incurs
the following regret with high probability, Regret(𝑇) = Õ

(
𝑇𝑤 + 𝑇−𝑇𝑤√

𝑇𝑤

)
. Therefore,

the optimal regret upper bound of this setting is obtained with a warm-up duration
of 𝑇𝑤 = O(𝑇2/3), which gives the regret of Regret(𝑇) = Õ

(
𝑇2/3

)
for LqgOpt.

The proof of these results follows similarly to Theorem 5.5 and Corollary 5.5.1.
In particular, we use the Bellman optimality equation for the average cost-per-step
ARX LQ control problem and consider the system evolution of the optimistic system
using the optimistic controller in parallel with the true system evolution under the
optimistic controller such that they share the same process noise. The following
gives the Bellman optimality equation for the ARX linear quadratic control problem.
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Lemma 5.13 (Bellman Optimality Equation for ARX System). Given state 𝑥𝑡 ∈ R𝑛

and an observation 𝑦𝑡 ∈ R𝑚 pair at time 𝑡, Bellman optimality equation of average
cost per stage control of the system Θ = (𝐴, 𝐵, 𝐶, 𝐹) with regulating parameters 𝑄
and 𝑅 is

𝐽∗(Θ) + 𝑥⊤𝑡
(
P − P𝐵(𝑅 + 𝐵⊤P𝐵)−1𝐵⊤P

)
𝑥𝑡 + 𝑦⊤𝑡 𝑄𝑦𝑡

= 𝑦⊤𝑡 𝑄𝑦𝑡+𝑢⊤𝑡 𝑅𝑢𝑡+E
[
𝑥⊤𝑡+1(P−P𝐵(𝑅+𝐵⊤P𝐵)−1𝐵⊤P)𝑥𝑡+1+𝑦⊤𝑡+1𝑄𝑦𝑡+1

]
(5.65)

for 𝑥𝑡 = 𝐴𝑥𝑡 + 𝐹𝑦𝑡 and 𝑥𝑡+1 = 𝐴𝑥𝑡+1 + 𝐹𝑦𝑡+1.

The proof follows similarly to the proof of Lemma 5.8 and can be found in [163].
Following the decomposition steps given in Section 5.4.4, we get

𝐽∗(Θ̃𝑡)+𝑅1+𝑅2 − 𝑅𝑢 =
(
𝑦⊤𝑡 𝑄𝑦𝑡+𝑢⊤𝑡 𝑅𝑢𝑡

)
+𝑅3+𝑅4+𝑅5,

where

𝑅1= ( �̃�𝑡𝑥𝑡 + �̃�𝑡 𝑦𝑡 )⊤ ¯̃P𝑡 ( �̃�𝑡𝑥𝑡 + �̃�𝑡 𝑦𝑡 ) − E
[
(𝐴𝑥𝑡+1,Θ + 𝐹𝑦𝑡+1,Θ)⊤ ¯̃P𝑡+1 (𝐴𝑥𝑡+1,Θ + 𝐹𝑦𝑡+1,Θ) |𝑥𝑡 , 𝑦𝑡 , 𝑢𝑡

]
𝑅𝑢=E

[
(𝐴𝑥𝑡+1,Θ + 𝐹𝑦𝑡+1,Θ)⊤

(
¯̃P𝑡 − ¯̃P𝑡+1

)
(𝐴𝑥𝑡+1,Θ + 𝐹𝑦𝑡+1,Θ) |𝑥𝑡 , 𝑦𝑡 , 𝑢𝑡

]
,

𝑅2= 𝑦
⊤
𝑡 𝑄𝑦𝑡 − E

[
𝑦⊤𝑡+1,Θ𝑄𝑦𝑡+1,Θ

���𝑥𝑡 , 𝑦𝑡 , 𝑢𝑡 ]
𝑅3=𝑥

⊤
𝑡 ,Θ̃𝑡
(𝐼 − �̃�𝑡 �̃�𝑡 )⊤�̃�⊤𝑡 𝑄�̃�𝑡 (𝐼 − �̃�𝑡 �̃�𝑡 )𝑥𝑡 ,Θ̃ − 𝑥⊤𝑡+1,Θ𝐶

⊤𝑄𝐶𝑥𝑡+1,Θ

𝑅4=𝑥
⊤
𝑡 ,Θ̃𝑡
(𝐼− �̃�𝑡 �̃�𝑡 )⊤ ( �̃�𝑡+�̃�𝑡�̃�𝑡 )⊤ ¯̃P𝑡 ( �̃�𝑡+�̃�𝑡�̃�𝑡 ) (𝐼− �̃�𝑡 �̃�𝑡 )𝑥𝑡 ,Θ̃𝑡

−𝑥⊤𝑡+1,Θ (𝐴 + 𝐹𝐶)
⊤ ¯̃P𝑡 (𝐴 + 𝐹𝐶)𝑥𝑡+1,Θ

𝑅5=2E
[
𝑒⊤𝑡+1𝐹

⊤ ¯̃P𝑡 (�̃�𝑡 − 𝐹)𝑒⊤𝑡+1
]
+ E

[
𝑒⊤𝑡+1 (�̃�𝑡 − 𝐹)

⊤ ¯̃P𝑡 (�̃�𝑡 − 𝐹)𝑒⊤𝑡+1
]
,

where 𝑀 = (𝑅+𝐵⊤P𝐵)−1𝐵⊤P, �̃�𝑡 = (𝑅+ �̃�⊤𝑡 P̃𝑡 �̃�𝑡)−1�̃�⊤𝑡 P̃𝑡 , and ¯̃P𝑡 = �̃�𝑡 − �̃�𝑡 �̃�𝑡 (𝑅+
�̃�⊤𝑡 �̃�𝑡 �̃�𝑡)−1�̃�⊤𝑡 �̃�𝑡 . Using the fact that Θ̃𝑡 is optimistically chosen, we have

Regret(𝑇) < 𝑅warm-up +
𝑇∑︁

𝑡=𝑇𝑤

𝑅1+𝑅2−𝑅u−𝑅3−𝑅4−𝑅5,

for the regret of LqgOpt in the given ARX system. Following the proof steps of
Lemma 5.11, we have

𝑅𝑖 = Õ
(
𝑇𝑤√
𝑇𝑤
+ 2𝑇𝑤√

2𝑇𝑤
+ 4𝑇𝑤√

4𝑇𝑤
+ . . .

)
= Õ

(√
𝑇

)
,

for 𝑖 = 1, 3, 4, 5, 𝑅2 = Õ
(√
𝑇−𝑇𝑤

)
, and |𝑅𝑢 | = O(log(𝑇)), which gives the desired

result of Theorem 5.6. Corollary 5.6.1 is proved similarly, i.e., through the steps of
Lemma 5.12.
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5.5 Thompson Sampling-Based Adaptive Control
Even though in the prior section we showed that LqgOpt achieves Õ(

√
𝑇) regret

in learning and control of LQG control systems, the adaptive control procedure of
LqgOpt requires solving a non-convex optimization problem to find the optimistic
controller. Unfortunately, finding the optimistic parameters among the plausible
models is an NP-hard problem in general, and requires computational heuristics for
large-scale dynamical systems [9]. This computational inefficiency severely limits
the practicality of the optimistic controller design approach.

As discussed in Chapter 2 and 3, Thompson Sampling (TS) is a promising alterna-
tive to overcome the computational burden of finding the optimistic policy [252].
In TS, the agent samples at random from the posterior distribution of models com-
puted from a given prior distribution and the observed data and executes the cor-
responding LQG-optimal policy for this model [263]. This approach replaces the
cumbersome optimization in optimism with straightforward sampling and results in
a polynomial-time method. Motivated by the Thompson Sampling-based Adaptive
Control (TSAC) algorithm in Chapter 3 for LQRs, we theoretically and empirically
study TS in adaptive control of unknown partially observable LQG control systems.

We propose an efficient TS-based adaptive control algorithm, Thompson Sampling
under Partial Observability, TSPO, for learning and controlling unknown LQG
control systems. We show that TSPO attains O(

√
𝑇) regret after 𝑇 time steps,

which makes TSPO the first efficient adaptive control algorithm to achieve this
regret rate for adaptive control of partially observable LQ control systems with
convex cost (Table 5.1). Furthermore, we empirically study the performance of
TSPO in the measurement-feedback control of a 2nd−order SISO system. We show
that TSPO effectively explores the model dynamics and achieves competitive regret
performance in a computationally efficient way.

TSPO starts with a short warm-up period to gather data to generate an initial model
estimate. It then interacts with the system in epochs where it uses a fixed controller
throughout each epoch. At the beginning of each epoch, TSPO uses the closed-loop
system identification method introduced in Section 5.3 and estimates the underly-
ing model parameters along with confidence intervals. Using these estimates and
associated uncertainties, TSPO constructs a posterior distribution on the model pa-
rameters and randomly samples a model from it. Throughout the epoch, it uses the
optimal LQG control policy for this sampled model. Similar to LqgOpt, TSPO uses
epochs with doubling length, and adaptively improves the model estimates and the
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Figure 5.1: TSPO Framework.

controllers. The outline of TSPO is given in Figure 5.1.

Conceptually, TSPO is the Thompson Sampling extension of LqgOpt and builds
upon its analysis. Therefore, the algorithmic methodology may not seem very sur-
prising. What is surprising is that the simple TSPO also achievesO(

√
𝑇) regret. The

main technical challenge of this work is to establish this fact. To do so, we first show
that the regret of a fixed TS policy scales linearly over time with respect to the estima-
tion error in the model parameters. Further, we prove that TS policies maintain sta-
ble system dynamics and bounded inputs/outputs provided a long enough warm-up
duration. Finally, we show that model the estimates and the TS samples jointly con-
centrate around the true model parameters over time. Combining these results with
the logarithmic policy updates of TSPO, we prove that the regret of TSPO is O(

√
𝑇).

5.5.1 TSPO
In this section, we present our proposed algorithm TSPO, the first computationally
efficient and regret optimal RL algorithm for partially observable linear-quadratic
control systems with convex instantaneous cost. TSPO is provided in Algorithm 12.
It consists of two phases: (i) warm-up period for pure exploration, (ii) adaptive
control using TS.

Warm-up: In the early stages, TSPO excites the system by injecting i.i.d. isotropic
Gaussian noise 𝑢𝑡 ∼ N(0, 𝜎2

𝑢 ) for a duration of 𝑇𝑤 ≥ 0 and collects samples of
observed output and control input, D0 = {(𝑦𝑡 , 𝑢𝑡)}𝑇𝑤𝑡=0. By exciting the system with
i.i.d. inputs, TSPO explores the system effectively and generates a reliable initial
estimate of the underlying model using the data collected. The warm-up duration,
𝑇𝑤, is set to meet a desired estimation accuracy so that any policy designed from
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Algorithm 12 TSPO
1: Input: (𝑛, 𝑚, 𝑑), (𝑄, 𝑅), 𝑇𝑤, 𝐻, 𝛿 > 0, _ > 0, 𝜓 > 0

—— Warm-Up ————————————————
2: for 𝑡 = 0, 1, . . . , 𝑇𝑤 do
3: Deploy 𝑢𝑡 ∼N(0, 𝜎2

𝑢 𝐼) and store D0= {𝑦𝑡 , 𝑢𝑡}𝑇𝑤𝑡=1
—— Adaptive Control ———————————–

4: for 𝑖 = 1, . . . do
5: Calculate Ĝ𝑖yu using D𝑖 = {𝑦𝑡 , 𝑢𝑡}2

𝑖−1𝑇𝑤
𝑡=1 via (5.21)

6: Sample G̃𝑖yu ← RS (Ĝ𝑖yu+𝛽𝑖𝑉
−1

2
𝑖
Ξ), [Ξ]𝑖 𝑗 ∼N(0, 1)

7: Θ̃𝑖 ← SysId (G̃𝑖yu, 𝐻, 𝑛)
8: for 𝑡 = 2𝑖−1𝑇𝑤, . . . , 2𝑖𝑇𝑤 − 1 do
9: Execute the optimal controller for Θ̃𝑖

the confidence set is guaranteed to stabilize and persistently excite the underlying
system, following the guarantees derived in Lemma 5.6 and Lemma 5.5, respectively.

Adaptive Control: After guaranteeing the design of stabilizing and persistently
exciting policies during the warm-up phase, TSPO proceeds to the adaptive control
phase. In this phase, TSPO cycles through epochs of fixed-policy control with
doubling duration. At the beginning of each epoch, TSPO updates its policy based
on input-output data gathered up to that time. The policy design involves three steps.

In the first step, TSPO deploys regularized least squares (RLS) subroutine of (5.21)
to perform a closed-loop model estimation from the collected input-output data. In
the second step, TSPO calls subroutine of Thompson Sampling, similar to TSAC
introduced in Section 3.3, to further explore the unknown system by sampling
a random model from a distribution incorporating the estimated model and the
associated uncertainty in the estimation. Given the estimate Ĝ𝑖yu and the design
matrix 𝑉𝑡 at time 𝑡 ≥ 𝑇𝑤, the TS samples a perturbed truncated ARX model G̃𝑖yu as
follows

G̃𝑖yu = RS (Ĝ𝑖yu+𝛽𝑡𝑉
−1

2
𝑡 Ξ), (5.66)

where RS denotes the rejection sampling operator associated with the set S given
in Assumption 5.1, 𝛽𝑡 is the confidence ellipsoid bound in Theorem 5.3, and Ξ ∈
R𝑚×(𝑚+𝑑)𝐻 is the random perturbation matrix with iid standard normal entries,
[Ξ]𝑖 𝑗 ∼N(0, 1). The perturbation 𝛽𝑡𝑉

− 1
2

𝑡 Ξ randomizes the RLS estimate coherently
with the uncertainty conveyed by the design matrix. The rejection sampling operator
RS keeps sampling independent random perturbations Ξ until the perturbed model
Ĝ𝑖yu+𝛽𝑡𝑉

− 1
2

𝑡 Ξ lies in set S. The following lemma gives the confidence set for the
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sampled G̃𝑖yu.

Lemma 5.14 (TS confidence set). For all 𝑡 ≥ 𝐻, the sampled ARX model G̃𝑖yu lies
in the set C𝑡 defined as

C𝑡 B
{
Gyu

�� tr((Ĝ𝑖yu − Gyu)𝑉𝑡 (Ĝ𝑖yu − Gyu)⊤) ≤ a2
𝑡

}
, (5.67)

with probability at least 1 − 𝛿 where

a𝑡 B 𝛽𝑡𝑚

√︃
2(𝑚 + 𝑑)𝐻 log

(
2𝑚(𝑚 + 𝑑)𝐻𝑇𝛿−1) . (5.68)

Proof. We bound the probability of belonging to C𝑡 as

P(∀𝑡 ≤ 𝑇, G̃𝑖yu ∈ C𝑡) = 1 − P(∃𝑡 ≤ 𝑇, G̃𝑖yu ∉ C𝑡) (5.69)

≥ 1 −
∑︁𝑇

𝑖=0
P(G̃𝑖yu ∉ C𝑡) (5.70)

≥ 1 −
∑︁𝑇

𝑖=0
P(∥Ξ∥𝐹 ≥ a𝑡/𝛽𝑡) (5.71)

≥ 1 − 𝛿, (5.72)

where (5.70) is due to union bound, (5.71) is due to rejection sampling, and (5.72)
is due to Gaussian norm bound. □

In the last step of policy design, TSPO deploys subroutine SysId introduced in
Section 5.3 to obtain a balanced state-space realization from the sampled truncated
ARX matrix. By taking in G̃𝑖yu, SysId recovers model parameters Θ̃𝑡 B ( �̃�𝑡 , �̃�𝑡 , �̃�𝑡).
The propagation of error from the truncated ARX model to the state-space realization
designed by SysId is linear as shown in Theorem 5.4.

In the rest of the epoch, TSPO deploys the optimal control policy of the sampled
model Θ̃𝑡 given as 𝑢𝑡 = −�̃�𝑡𝑥𝑡 |𝑡,Θ̃ where �̃�𝑡 is the optimal feedback matrix of
Θ̃𝑡 and 𝑥𝑡 |𝑡,Θ̃ is the MMSE estimate of the state assuming system Θ̃𝑡 . Repeating
this, TSPO keeps collecting samples during each epoch and uses the gathered data
for refined model estimation, uncertainty quantification, and uncertainty-informed
model sampling to further improve controller design in the next epoch. Due to
reliable model estimation from the warm-up period, the controller designed right
after the warm-up and all subsequently designed controllers stabilize and persistently
excite the underlying model (Lemma 5.6 and Lemma 5.5)
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5.5.2 Algorithmic Guarantees
In this section, we derive the regret guarantees of TSPO. We use asymptotic no-
tation and hide problem-dependent constants to streamline the exposition as we
are mainly interested in the regret rate with respect to the horizon, 𝑇 . We also
note that all the constants in this manuscript, where some are omitted to ease the
presentation, have polynomial dependence in the problem-dependent constants. As
shown in Lemma 5.4, the underlying LQG control system is persistently excited,
i.e., 𝜎min(𝑉𝑇𝑤 ) = Ω(𝑇𝑤) during the warm-up period by injection of Gaussian input,
which yields the estimation error given in (5.23), i.e., ∥Ĝ1

yu − Gyu∥𝐹 = Õ(1/
√
𝑇𝑤).

Similarly, for the perturbation error in TS, we have ∥G̃1
yu − Ĝ1

yu∥𝐹 = Õ(1/
√
𝑇𝑤).

Combining these gives ∥G̃1
yu−Gyu∥𝐹 = Õ(1/

√
𝑇𝑤), which also translates to the same

behaving bounds on ∥ �̃�𝑡−T⊤�̄�T∥, ∥�̃�𝑡−T⊤�̄�∥, and ∥�̃�𝑡−�̄�T∥ from Theorem 5.4,
where T is a unitary matrix and ( �̄�, �̄�, �̄�) are the model parameters obtained by
SysId using true Markov parameters, Gyu. Therefore, from the appropriate selection
of 𝑇𝑤, i.e., long enough warm-up period, we can use Lemma 5.6 and Lemma 5.5 for
the sampled model parameters ( �̄�, �̄�, �̄�) to get closed-loop stability and if Assump-
tion 5.2 holds closed-loop persistence of excitation for TSPO. In particular, with
closed-loop PE condition and the doubling epoch duration, for epoch 𝑖, we have
∥G̃𝑖yu − Gyu∥𝐹 = Õ(1/

√︁
2𝑖−1𝑇𝑤).

The following meta-theorem provides an upper bound on the regret of controlling
a system Θ by deploying the optimal policy of another system Θ̃𝑡 for a fixed period
of time. This result shows that inaccuracies due to model mismatch are propagated
linearly in regret with linear-time growth. By controlling the model mismatch error
in each fixed-policy epoch, we can reduce the regret to a desired level.

Theorem 5.7 (Regret of Model Mismatch). Suppose that the LQG control system
Θ ∈ S, whose Markov parameters are Gyu, is controlled by the optimal policy of a
model Θ̃ ∈ S, which is obtained as an output of SysId for G̃yu. For 𝛿 ∈ (0, 1), the
regret incurred due to model mismatch after 𝜏≥0 steps is bounded as

𝑅Θ̃𝑡 (𝜏) ≤ Õ
(
𝜏∥G̃𝑖yu − Gyu∥𝐹

)
, (5.73)

with probability at least 1 − 𝛿, whenever the model mismatch error satisfies the
conditions of Lemma 5.6 and Lemma 5.5, i.e., after a long enough warm-up period.

Proof. We split the regret as follows:

𝑅Θ̃𝑡 (𝜏) =
𝜏∑︁
𝑡=0
(𝑐𝑡 − 𝐽∗(Θ̃)) + (𝐽∗(Θ̃) − 𝐽∗(Θ)), (5.74)
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where 𝐽∗(Θ̃) is the optimal average expected cost of LQG control system Θ̃. Note that
the dynamical variables are all bounded by Lemma 5.6 due to closed-loop stability
achieved after the warm-up period. Recall the Bellman optimality equation-based
decomposition given in (5.55), and consider it for the sampled Θ̃. Via Lemma 5.11,
we can bound the first term as Õ

(
𝜏∥G̃𝑖yu − Gyu∥𝐹

)
. The second regret term in the

analysis of LqgOpt is trivially zero due to optimistic model selection. However, in
TSPO, we sample a model parameter and the sampled parameter is not necessarily
optimistic. In fact in TSAC for LQRs, we show that Thompson Sampling selects
optimistic parameters with only a non-zero probability. Instead, for the second term,
we consider 𝛿ΘB Θ̃−Θ, i.e., the difference between the models. Without loss of
generality, due to similarity transformations, we can argue

𝜖Bmax(∥𝛿𝐴∥𝐹 , ∥𝛿𝐶∥𝐹 , ∥𝛿𝐶∥𝐹) = max
{
∥ �̃�𝑡−T⊤�̄�T∥, ∥�̃�𝑡−T⊤�̄�∥, ∥�̃�𝑡−�̄�T∥

}
,

where T is a unitary matrix and ( �̄�, �̄�, �̄�) are the model parameters obtained by
SysId using true Markov parameters, Gyu. Recall that the optimal average expected
cost function, 𝐽∗(Θ′) = Tr

(
(𝑄 + 𝐿′⊤𝑃′𝐿′ − 𝐿′⊤𝐶′⊤𝑄𝐶′𝐿′)

(
𝐶′Σ′𝐶′⊤ + 𝜎2

𝑧 𝐼
) )

, for
Θ′ = (𝐴′, 𝐵′, 𝐶′). This function is a smooth function of its parameters, Θ′ within
the highly non-convex domainS. In order to obtain an error bound on the difference
𝐽∗(Θ̃) − 𝐽∗(Θ), we can use linearized Taylor expansion in the close vicinity of Θ. In
other words, there exists a problem dependent constant 𝜖𝑟 > 0 such that for 𝜖 ≤ 𝜖𝑟 ,
we have that

𝐽∗(Θ̃) − 𝐽∗(Θ) = ∇Θ′𝐽 (Θ′) • 𝛿Θ
≤ max(∥∇𝐴𝐽 (Θ′)∥ , ∥∇𝐵𝐽 (Θ′)∥ , ∥∇𝐶𝐽 (Θ)∥)𝜖 B ΓS𝜖, (5.75)

where Θ1 •Θ2 B Tr(𝐴1𝐴
⊤
2 ) +Tr(𝐵1𝐵

⊤
2 ) +Tr(𝐶1𝐶

⊤
2 ) is the Euclidean inner product

and Θ′ = Θ + 𝑡𝛿Θ for 𝑡 ∈ [0, 1]. Taking the supremum of the last inequality over all
Θ ∈ S and noting that ∇Θ′𝐽 (Θ′) is a continuous function over the compact set S,
we obtain the error bound 𝐽∗(Θ̃) − 𝐽∗(Θ) ≤ ΓS𝜖 where ΓS is the maximum norm of
∇Θ′𝐽 (Θ′) attained in S. Substituting this result into the regret decomposition yields
the desired regret bound. □

With these results in hand, we give the upper bound on the overall regret of TSPO.

Theorem 5.8 (Regret of TSPO). Suppose Assumptions 5.1 and 5.2 hold such that the
underlying system satisfies the PE condition with its optimal policy, i.e., 𝜎min(G𝑐𝑙) >
𝜎𝑐 > 0. Fixing a horizon 𝑇 >0, let 𝐻=max(2𝑛 + 1,Ω(log𝑇)) and

𝑇𝑤 = poly
(
𝐻, 𝜎𝑜, 𝜎𝑐, ^1, ^2, ^3,

1
1−𝛾1

,
1

1−𝛾2
,

1
1−𝛾3

, 𝜓, 𝑚, 𝑛, 𝑝

)
.
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The regret incurred by TSPO up to horizon 𝑇 is bounded with high probability as

Regret(𝑇) = Õ(
√
𝑇). (5.76)

Proof. We split the overall regret into individual regrets incurred during the warm-
up period and each of the epochs in the adaptive control period as

Regret(𝑇) = 𝑅warm-up +
𝑖𝑇∑︁
𝑖=0

𝑅Θ̃𝑖 (𝜏𝑖+1 − 𝜏𝑖), (5.77)

where 𝑅Θ̃𝑖 is the regret incurred during epoch 𝑖 and 𝜏𝑖 denotes the start time of epoch
𝑖. From Lemma 5.9, we have that 𝑅warm-up = Õ(𝑇𝑤). From Theorem 5.7, we can
bound each regret term as

𝑅Θ̃𝑖 (𝜏𝑖+1 − 𝜏𝑖) ≤ O((𝜏𝑖+1 − 𝜏𝑖)∥G̃
𝑖
yu − Gyu∥𝐹). (5.78)

Noting that due to the closed-loop PE condition and the doubling epoch duration,
for epoch 𝑖, we have ∥G̃𝑖yu − Gyu∥𝐹 = Õ(1/

√︁
2𝑖−1𝑇𝑤) and 𝜏𝑖+1 − 𝜏𝑖 = 2𝑖−1𝑇𝑤, we get

𝑅Θ̃𝑖 (𝜏𝑖+1 − 𝜏𝑖) = O
(√︁

2𝑖−1𝑇𝑤

)
. (5.79)

Summing all these terms for 𝑖𝑇 = ⌊log(𝑇/𝑇𝑤)⌋, we obtain Regret(𝑇) = O(
√
𝑇). □

For the systems which do not satisfy Assumption 5.2, i.e., whose optimal policy
does not satisfy the PE condition, we have the following regret bound.

Corollary 5.8.1 (Regret of TSPO without the closed-loop PE condition). For the
system given in Theorem 5.8 with the choices of 𝐻 and 𝑇𝑤, if the underlying system
is not persistently excited with its optimal policy, TSPO incurs the following regret
with high probability, Regret(𝑇) = Õ

(
𝑇𝑤 + 𝑇−𝑇𝑤√

𝑇𝑤

)
. Therefore, the optimal regret

upper bound of this setting is obtained with a warm-up duration of 𝑇𝑤 = O(𝑇2/3),
which gives the regret of Regret(𝑇) = Õ

(
𝑇2/3

)
for TSPO.

Proof. Similar to the proof of Theorem 5.8, TSPO incurs O(𝑇𝑤) regret during
warm-up. Since the system is not guaranteed to be persistently excited, the best
error bound for model mismatch error is attained right after warm-up. In other
words, ∥G̃𝑖yu−Gyu∥𝐹 = Õ(1/

√
𝑇𝑤) for all epochs. By substituting this error result in

the regret decomposition by invoking Theorem 5.7, the desired bound is obtained.
Substituting 𝑇𝑤 = 𝑂 (𝑇2/3) yields the specified bound. □
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Figure 5.2: Regret Performance of TSPO.

These results show that the regret guarantees obtained via optimism in Section 5.4
for LqgOpt, also hold adaptive control via Thompson Sampling for TSPO. Note that
in our presentation we hide the constants. Intuitively, due to the sampling nature,
the constants of TSPO are larger than that of LqgOpt, e.g., ΓS for all Θ′ ∈ S in (5.75)
can be arbitrarily big, whereas in LqgOpt 𝐽∗(Θ̃) − 𝐽∗(Θ) ≤ 0 by design. Thus, if the
optimistic model selection can be achieved efficiently, LqgOpt comes with a tighter
regret upper bound. However, in certain cases, the nonconvex optimization problem
to find the optimistic parameters in the LQG control setting yields an NP-hard
problem. In such situations, TSPO provides a more effective and efficient solution
to adaptive control.

5.5.3 Numerical Simulations
In this section, we evaluate the performance of TSPO in a simulated adaptive
measurement-feedback control task. In the simulations, we used state-space pa-
rameters given as

𝐴 =

[
0.9 0
0 0.7

]
, 𝐵 =

[
1
2

]
, 𝐶 =

[
2 1

]
, (5.80)

with𝑄=𝑅= 𝐼 and isotropic Gaussian process and measurement noise with standard
deviations as 𝜎𝑤 = 𝜎𝑣 = 0.05. We set the hyperparameters of TSPO as follows:
ARX model truncation length 𝐻=10, warm-up period 𝑇𝑤 =12, Gaussian excitation
covariance 𝜎𝑢 =0.01, RLS regularization parameter _=0.01, and 𝛿=0.05.

We perform 100 independent runs for 200 time-steps for TSPO and report their
average and 90% confidence interval. The results are presented in Figure 5.2. The
simulation results demonstrate that the regret over time almost stabilizes for the
given system and the growth is sub-quadratic, matching the theoretical findings.
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5.6 Online Gradient Descent-Based Adaptive Control
In this section, we consider another generalization of the adaptive control problem
in LQG control systems which has been the main focus in Sections 5.4 and 5.5.
In particular, we consider the system given in (5.1) with general strongly convex
cost functions, which can possibly be chosen adversarially at each time step. For
this general model, we consider the regret minimization problem against the best
controller in hindsight from a given set of controllers, known as policy regret [17].

Leveraging the closed-loop model estimation method introduced in Section 5.3, we
propose Adaptive Control Online Learning algorithm (AdaptOn) that adaptively
learns the model dynamics and efficiently uses the model estimates to continuously
optimize the controller and reduce the cumulative cost. Similar to prior algorithms
in this setting, AdaptOn operates in growing size epochs and, at the beginning
of each epoch, estimates the model parameters using our novel model estimation
method. However, different from the prior algorithms such as LqgOpt and TSPO,
during each epoch, AdaptOn follows an online learning procedure. It utilizes a
convex policy reparameterization of linear dynamic (feedback) controllers and the
estimated model dynamics to construct counterfactual loss functions. AdaptOn then
deploys online gradient descent on these counterfactual loss functions to gradually
optimize the controller. This additional optimization within the given set of convex
parameterized controllers provides continuous improvement during the adaptive
control epochs. We show that as the model estimates improve, the gradient updates
become more accurate, resulting in improved controllers.

We show that AdaptOn attains a regret upper bound of polylog(𝑇) after 𝑇 time steps
of agent-environment interaction when the cost functions are strongly convex and
the given set of controllers satisfies the PE condition. To the best of our knowledge,
this is the first logarithmic regret bound for partially observable linear dynamical
systems with unknown dynamics which include the canonical LQG setting studied
in this chapter. The presented regret bound improves Õ(

√
𝑇) regret of LqgOpt and

TSPO, as well as prior works in stochastic partially observable linear dynamical
systems [191, 245] with the help of novel estimation method which allows updating
model estimates during control.

We also show that if the cost function is convex, e.g., the convex quadratic function
studied in prior sections, then AdaptOn attains Õ(

√
𝑇), which matches the prior

results in this chapter, i.e., Theorems 5.5 and 5.8. Furthermore, we show that
if the PE condition does not hold under the closed-loop setting then AdaptOn
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attains Õ(
√
𝑇) regret for strongly convex cost function and Õ(𝑇2/3) for convex cost

function, which also matches the regret upper bound presented in Corollaries 5.5.1
and 5.8.1. Finally, we prove that the results above also extend to the more general
setting of ARX systems with sub-Gaussian perturbations and general (strongly)
convex cost functions. Along the way, we relax several restrictive assumptions on
the system dynamics such as controllability and observability to stabilizability and
detectability, which are the necessary conditions to have meaningful learning and
control problems.

5.6.1 Preliminaries
Partially Observable LTI System: We consider the unknown discrete-time linear
time-invariant system Θ introduced in 5.1. At each time step 𝑡, the system is at state
𝑥𝑡 and the agent observes 𝑦𝑡 , i.e., an imperfect state information. Then, the agent
applies a control input 𝑢𝑡 , observes the loss function ℓ𝑡 , pays the cost of 𝑐𝑡 = ℓ𝑡 (𝑦𝑡 , 𝑢𝑡),
and the system evolves to a new 𝑥𝑡+1 at time step 𝑡 + 1. Let (F𝑡 ; 𝑡 ≥ 0) be the
corresponding filtration. For any 𝑡, conditioned on F𝑡−1, 𝑤𝑡 and 𝑧𝑡 are N(0, 𝜎2

𝑤 𝐼)
and N(0, 𝜎2

𝑧 𝐼) respectively. In this section, in contrast to the standard assumptions
on the process and measurement noises in Sections 5.4 and 5.5 such that both 𝜎2

𝑤

and 𝜎2
𝑧 are known, we only assume the knowledge of their upper and lower bounds,

i.e., 𝜎2
𝑤, 𝜎

2
𝑤
, 𝜎2

𝑧 , and 𝜎2
𝑧
, such that, 0 < 𝜎2

𝑤
≤ 𝜎2

𝑤 ≤ 𝜎2
𝑤 and 0 < 𝜎2

𝑧
≤ 𝜎2

𝑧 ≤ 𝜎2
𝑧 ,

for some finite 𝜎2
𝑤, 𝜎

2
𝑧 . Note that this is a significant generalization compared to the

previous sections. We would like to highlight that this relaxation can be achieved
since we do not explicitly construct a Kalman filter for state estimation in this
section. Instead, we will consider the online learning setting where a set of possible
controller parameters are given for the decision-making algorithm to select. Finally,
we assume that the underlying system Θ satisfies Assumption 5.1, which guarantees
that the adaptive control problem is well-defined.

Strongly Convex Cost Function: For the system above, we study the case when
the cost function at time 𝑡, ℓ𝑡 , is smooth and strongly convex for all 𝑡, i.e., 0 ≺
𝛼
𝑙𝑜𝑠𝑠

𝐼 ⪯ ∇2ℓ𝑡 (·, ·) ⪯ 𝛼𝑙𝑜𝑠𝑠 𝐼 for a finite constant 𝛼𝑙𝑜𝑠𝑠. Note that this is also a
generalization of the standard quadratic regulatory costs studied in previous sections
where ℓ𝑡 (𝑦𝑡 , 𝑢𝑡) = 𝑦⊤𝑡 𝑄𝑡𝑦𝑡 + 𝑢⊤𝑡 𝑅𝑡𝑢⊤𝑡 with bounded positive definite matrices𝑄𝑡 and
𝑅𝑡 are special cases of the current setting. For all 𝑡, the unknown lost function
𝑐𝑡 = ℓ𝑡 (·, ·) is non-negative strongly convex and associated with a parameter 𝐿, such
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that for any 𝑅 with ∥𝑢∥, ∥𝑢′∥, ∥𝑦∥, ∥𝑦′∥ ≤ 𝑅, we have,

|ℓ𝑡 (𝑦, 𝑢) − ℓ𝑡 (𝑦′, 𝑢′) | ≤ 𝐿𝑅(∥𝑦 − 𝑦′∥ + ∥𝑢 − 𝑢′∥) and |ℓ𝑡 (𝑦, 𝑢) | ≤ 𝐿𝑅2. (5.81)

Linear dynamic controller (LDC): An LDC policy 𝜋 is a linear controller with
internal state dynamics governed by (𝐴𝜋, 𝐵𝜋, 𝐶𝜋, 𝐷𝜋) such that

𝑠𝜋𝑡+1 = 𝐴𝜋𝑠
𝜋
𝑡 + 𝐵𝜋𝑦𝑡 , 𝑢𝜋𝑡 = 𝐶𝜋𝑠

𝜋
𝑡 + 𝐷𝜋𝑦𝑡 , (5.82)

where 𝑠𝜋𝑡 ∈ R𝑠 is the state of the controller, 𝑦𝑡 is the input to the controller, i.e.,
observation from the system that controller is designing a policy for, and 𝑢𝜋𝑡 is
the output of the controller. LDC controllers provide a large class of controllers.
For instance, the optimal controller for the LQG control systems given in (5.9)
is an LDC policy. Deploying a LDC policy 𝜋 on the system Θ = (𝐴, 𝐵, 𝐶) with
dynamics 5.1 induces the following joint dynamics of the 𝑥𝜋𝑡 , 𝑠𝜋𝑡 and the observation-
action process:[

𝑥𝜋
𝑡+1
𝑠𝜋
𝑡+1

]
=

[
𝐴 + 𝐵𝐷𝜋𝐶 𝐵𝐶𝜋

𝐵𝜋𝐶 𝐴𝜋

]
︸                   ︷︷                   ︸

𝐴′𝜋

[
𝑥𝜋𝑡

𝑠𝜋𝑡

]
+

[
𝐼𝑛 𝐵𝐷𝜋

0𝑠×𝑛 𝐵𝜋

]
︸           ︷︷           ︸

𝐵′𝜋

[
𝑤𝑡

𝑧𝑡

]
,

[
𝑦𝜋𝑡

𝑢𝜋𝑡

]
=

[
𝐶 0𝑚×𝑠
𝐷𝜋𝐶 𝐶𝜋

]
︸           ︷︷           ︸

𝐶′𝜋

[
𝑥𝜋𝑡

𝑠𝜋𝑡

]
+

[
0𝑚×𝑛 𝐼𝑛

0𝑝×𝑛 𝐷𝜋

]
︸         ︷︷         ︸

𝐷′𝜋

[
𝑤𝑡

𝑧𝑡

]
,

where (𝐴′𝜋, 𝐵′𝜋, 𝐶′𝜋, 𝐷′𝜋) are the associated parameters of induced closed-loop sys-
tem. We define the Markov operator for the system (𝐴′𝜋, 𝐵′𝜋, 𝐶′𝜋, 𝐷′𝜋), as G′𝜋 =

{𝐺′𝜋 [𝑖]}𝑖=0, where 𝐺′𝜋 [0] = 𝐷′𝜋, and ∀𝑖 > 0, 𝐺′𝜋 [𝑖] = 𝐶′𝜋𝐴
′𝑖−1
𝜋 𝐵′𝜋. Note that the

Markov operator G′𝜋 has the structure of the input-to-output Markov parameters
{𝐺𝑖𝑢→𝑦}𝑖≥1 introduced in Definition 5.3, yet for the closed-loop system created by
the LDC policy.

Proper Decay Function: Let 𝜓 : N→ R≥0 be a proper decay function, such that
𝜓 is non-increasing and limℎ′→∞ 𝜓(ℎ′) = 0. For a input-to-output Markov operator
G, 𝜓G(ℎ) defines the induced decay function on G = {𝐺𝑖𝑢→𝑦}𝑖≥1, i.e., 𝜓G(ℎ) B∑
𝑖≥ℎ ∥𝐺 [𝑖] ∥. Π(𝜓) denotes the class of LDC policies associated with a proper decay

function 𝜓, such that for all 𝜋 ∈ Π(𝜓), and all ℎ ≥ 0,
∑
𝑖≥ℎ ∥𝐺′𝜋 [𝑖] ∥ ≤ 𝜓(ℎ). Let

^𝜓 B 𝜓(0).
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Nature’s output: Using (5.13), we can further decompose the generative compo-
nents of 𝑦𝑡 to obtain,

𝑦𝑡 = 𝑧𝑡 + 𝐶𝐴𝑡𝑥0 +
∑︁𝑡−1

𝑖=0
𝐶𝐴𝑡−𝑖−1𝑤𝑖 +

∑︁𝑡

𝑖=0
𝐺𝑖𝑢→𝑦𝑢𝑡−𝑖

Notice that first three components generating 𝑦𝑡 are derived from the uncontrollable
noise processes in the system, while the last one is a linear combination of control
inputs. The first three components are known as Nature’s 𝑦, i.e., Nature’s output [245,
299], of the system,

𝑏𝑡 (G) B 𝑦𝑡 −
∑︁𝑡−1

𝑖=0
𝐺𝑖𝑢→𝑦𝑢𝑡−𝑖 = 𝑧𝑡 + 𝐶𝐴𝑡𝑥0 +

∑︁𝑡−1

𝑖=0
𝐶𝐴𝑡−𝑖−1𝑤𝑖 . (5.83)

The ability to define Nature’s 𝑦 is a unique characteristic of linear dynamical sys-
tems. At any time step 𝑡, after following a sequence of control inputs {𝑢𝑖}𝑡𝑖=0, and
observing 𝑦𝑡 , we can compute 𝑏𝑡 (G) using (5.83). This quantity allows for coun-
terfactual reasoning about the outcome of the system. Particularly, having access to
{𝑏𝜏−𝑡 (G)}𝑡≥0, we can reason what the outputs 𝑦′𝜏−𝑡 of the system would have been,
if the agent, instead, had taken other sequence of control inputs {𝑢′

𝑖
}𝜏−𝑡
𝑖=0 , i.e.,

𝑦′𝜏−𝑡 = 𝑏𝜏−𝑡 (G) +
∑︁𝜏−𝑡−1

𝑖=0
𝐺𝑖𝑢→𝑦𝑢

′
𝜏−𝑡−𝑖 .

This property indicates that we can use {𝑏𝜏−𝑡 (G)}𝑡≥0 to evaluate the quality of any
other potential input sequences and build a desirable controller, as elaborated in the
following.

Disturbance feedback control (DFC): In this section, we adopt a convex policy
reparametrization called DFC introduced by Simchowitz et al. [245]. A DFC policy
of length 𝐻′ is defined as a set of parameters, M(𝐻′) := {𝑀 [𝑖]}𝐻′−1

𝑖=0 , prescribing the
control input of

𝑢M
𝑡 =

∑︁𝐻′−1

𝑖=0
𝑀 [𝑖]𝑏𝑡−𝑖 (G) (5.84)

for Nature’s 𝑦, {𝑏𝑡−𝑖 (G)}𝐻
′−1

𝑖=0 , and resulting in state 𝑥M
𝑡+1 and observation 𝑦M

𝑡+1. The
DFC policy construction is in parallel with the classical Youla parametrization [299]
which states that any linear controller can be prescribed as acting on past noise
sequences. Thus, DFC policies can be regarded as truncated approximations to
LDCs, or any stabilizing LDC policy can be well-approximated as a DFC policy.
More formally, in the following, we show that for any 𝜋 ∈ Π(𝜓) and any input 𝑢𝜋𝑡 at
time step 𝑡, there is a set of parameters M(𝐻′), such that 𝑢M

𝑡 is sufficiently close to
𝑢𝜋𝑡 , and the resulting 𝑦𝜋𝑡 is sufficiently close to 𝑦M

𝑡 .
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Lemma 5.15. Suppose ∥𝑏𝑡 (G)∥ ≤ ^𝑏 for all 𝑡 ≤ 𝑇 for some ^𝑏. For any LDC policy
𝜋 ∈ Π(𝜓), there exists a𝐻′ length DFC policy M(𝐻′) such that ∥𝑢𝜋𝑡−𝑢M

𝑡 ∥ ≤𝜓(𝐻′)^𝑏,
and ∥𝑦𝜋𝑡 −𝑦M

𝑡 ∥ ≤𝜓(𝐻′)^G^𝑏. One of the DFC policies that satisfies this is 𝑀 [0] =𝐷𝜋,
and 𝑀 [𝑖] =𝐶′𝜋,𝑢𝐴′𝜋𝑖−1𝐵′𝜋,𝑧 for 0<𝑖 <𝐻′.

The proof is provided in Appendix C.3. This lemma further entails that any stabiliz-
ing LDC can be well approximated by a DFC that belongs to a bounded set of DFCs
such as

M =

{
M(𝐻′) := {𝑀 [𝑖]}𝐻′−1

𝑖=0 :
∑︁𝐻′−1

𝑖≥0
∥𝑀 [𝑖] ∥ ≤ ^M

}
,

indicating that using the class of DFC policies as an approximation to LDC policies
is justified. Using this fact, define the convex compact sets of DFCs,M𝜓 andM
such that the DFC controllers M(𝐻′0) ∈ M𝜓 are bounded i.e.,

∑𝐻′0−1
𝑖≥0 ∥𝑀

[𝑖] ∥ ≤ ^𝜓
and M is an 𝑟-expansion of M𝜓 , i.e., M = {M(𝐻′) = M(𝐻′0) + Δ : M(𝐻′0) ∈
M𝜓 ,

∑𝐻′−1
𝑖≥0 ∥Δ[𝑖] ∥ ≤ 𝑟^𝜓} where 𝐻′0 = ⌊𝐻′2 ⌋ −𝐻. Thus, all controllers M(𝐻′) ∈ M

are also bounded
∑𝐻′−1
𝑖≥0 ∥𝑀 [𝑖] ∥ ≤ ^M where ^M = ^𝜓 (1 + 𝑟). Throughout the

interaction with the system, we assume that the agent has access toM.

Policy Regret: We evaluate the agent’s performance by its regret with respect
to M★, the optimal, in hindsight, DFC policy in the given set M𝜓 , i.e., M★ =

argminM∈M𝜓

∑𝑇
𝑡=1 ℓ𝑡 (𝑦M

𝑡 , 𝑢
M
𝑡 ). After 𝑇 step of interaction, the agent’s regret is de-

noted as
Regret(𝑇) =

∑︁𝑇

𝑡=1
𝑐𝑡 − ℓ𝑡 (𝑦M★, 𝑢M★). (5.85)

Note that we assume the agent has access to an overparameterized set of controllers
M while competing against the best controller in hindsight in M𝜓 . This over-
parameterization is required to obtain the persistence of excitation and desirable
approximation of the underlying optimal controller even under model learning er-
ror. The rest of this section is organized as follows: in Section 5.6.2, we describe
the algorithm of AdaptOn and provide the main regret guarantees, in particular the
first logarithmic regret bound for the adaptive control of LQG control systems. In
Section 5.6.3, we provide the PE condition in the closed-loop control and show that
this condition can be satisfied by AdaptOn with a small enough estimation error
throughout the entire adaptive control. Then, we present the key pieces that allow
the superior regret of AdaptOn in Section 5.6.4. Finally, in Section 5.6.5 we extend
the guarantees of AdaptOn to the ARX systems with sub-Gaussian noise.
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Figure 1: ADAPTON

Assumption 4.1. For all t, the unknown lost function ct = !t(·, ·) is non-negative strongly convex204

and associated with a parameter L, such that for any R with ‖u‖, ‖u′‖, ‖y‖, ‖y′‖ ≤ R, we have,205

|!t(y, u)− !t(y′, u′)| ≤ LR(‖y − y′‖+ ‖u− u′‖) and |!t(y, u)| ≤ LR2.

Regret definition: Throughout the interaction with the system, the agent has access to a convex206

compact set of DFCs, M, such that all the controllers M(H ′) ∈ M persistently excite the system207

Θ and
∑H′−1

i≥0 ‖M [i]‖ ≤ κM. The precise definition of persistence of excitation condition is given208

in Appendix E.2. We evaluate the agent’s performance by its regret with respect to M!, which is the209

optimal DFC policy in the given set M, i.e., M! = arg minM∈M
∑T

t=1 !t(y
M
t , uM

t ). After T step210

of interaction, the agent’s regret is denoted as211

REGRET(T ) =
∑T

t=1
ct − !t(yM! , uM!). (15)

5 ADAPTON212

In this section, we present ADAPTON, a sample efficient adaptive control online learning algorithm213

which learns the model dynamics through interaction with the environment and continuously deploys214

online convex optimization to improve the control policy. ADAPTON is illustrated in Figure 1 and215

the detailed pseudo-code is provided in Appendix C.216

Warm-up: ADAPTON starts with a fixed warm-up period and applies ut ∼ N (0,σ2
uI) for first Tw217

time steps. The length of the warm-up period is chosen to guarantee an accountable first estimate of218

the system, the persistence of excitation during the adaptive control period and the stability of the219

online learning algorithm on the underlying system.220

Adaptive Control in epochs: After warm-up, ADAPTON starts controlling the system and operates221

in epochs with doubling length. ADAPTON sets the base period Tbase to the initial value Tbase = Tw222

and for each epoch i, it runs for 2i−1Tbase time steps.223

Model estimation in the beginning of epochs: At the beginning of each epoch i, ADAPTON exploits224

the past experiences up to epoch i. It deploys our novel closed-loop estimation method and solves225

(10) to estimate Gy. ADAPTON then exploits the construction of true Gy to estimate model parameter226

estimates Âi, B̂i, Ĉi and constructs an estimate of H-length Markov parameters matrix, Ĝi(H), via227

SYSID described in Section 3 and provided in Appendix B.228

Control Input, Output and Loss during the epochs: ADAPTON utilizes Ĝi(H) and the past inputs229

to estimate the Nature’s outputs, bt(Ĝi) = yt −
∑H

j=1 Ĝ
[j]
i ut−j . Using these estimates, ADAPTON230

executes a DFC policy Mt ∈ M such that uMt
t =

∑H′−1
j=0 M

[j]
t bt−j(Ĝi) and observes the output231

of yMt
t . Finally, ADAPTON receives the loss function !t, pays a cost of !(yMt

t , uMt
t ).232

Counterfactual input, output, loss: ADAPTON uses counterfactual reasoning introduced in Sim-233

chowitz et al. [6] to update its controller. After observing the loss function !t, it constructs,234

ũt−j(Mt, Ĝi) =
∑H′−1

l=0
M

[l]
t bt−j−l(Ĝi), (16)

6

Figure 5.3: AdaptOn.

5.6.2 Adaptive Control via AdaptOn
In this section, we present AdaptOn, a sample efficient adaptive control online
learning algorithm which learns the model dynamics through interaction with the
environment and continuously deploys online convex optimization to improve the
control policy. AdaptOn is illustrated in Figure 5.3 and the detailed pseudo-code is
provided in Algorithm 13.

Warm-up: AdaptOn starts with a fixed warm-up period and applies 𝑢𝑡 ∼ N(0, 𝜎2
𝑢 𝐼)

for the first 𝑇𝑤 time steps. The length of the warm-up period is chosen to guarantee
an accountable first estimate of the system, the persistence of excitation during the
adaptive control period, and the stability of the online learning algorithm on the
underlying system. The details are provided in the following section.

Adaptive control in epochs: After the warm-up, AdaptOn starts controlling the
system and operates in epochs with doubling length. AdaptOn sets the base period
to the initial value of 𝑇𝑤 and for each epoch 𝑖, it runs for 2𝑖−1𝑇𝑤 time steps. Note
that this doubling update rule is the same as LqgOpt.

Model estimation in the beginning of epochs: At the beginning of each epoch 𝑖,
AdaptOn exploits the past experiences up to epoch 𝑖. It deploys the proposed closed-
loop estimation method and solves (5.21) to estimateGyu. AdaptOn then exploits the
construction of true Gyu to estimate model parameter estimates �̂�𝑖, �̂�𝑖, �̂�𝑖 via SysId
as described in Section 5.3 and constructs an estimate of 𝐻-length input-to-output
Markov parameters matrix, Ĝ𝑖 (ℎ) = [𝐺1

𝑢→𝑦, . . . , 𝐺
ℎ
𝑢→𝑦].

Control input, output and loss during the epochs: AdaptOn utilizes Ĝ𝑖 (𝐻) and
the past inputs to estimate the Nature’s outputs, 𝑏𝑡 (Ĝ𝑖) = 𝑦𝑡 −

∑ℎ
𝑗=1𝐺

𝑗
𝑢→𝑦𝑢𝑡− 𝑗 .

Using these estimates, AdaptOn executes a DFC policy M𝑡 ∈ M such that 𝑢M𝑡

𝑡 =



190∑𝐻′−1
𝑗=0 𝑀

[ 𝑗]
𝑡 𝑏𝑡− 𝑗 (Ĝ𝑖) and observes the output of 𝑦M𝑡

𝑡 . Finally, AdaptOn receives the
loss function ℓ𝑡 , pays a cost of ℓ(𝑦𝑡 , 𝑢M𝑡

𝑡 ).

Counterfactual input, output, loss: AdaptOn uses counterfactual reasoning intro-
duced in Simchowitz et al. [245] to update its controller. After observing the loss
function ℓ𝑡 , it constructs,

�̃�𝑡− 𝑗 (M𝑡 , Ĝ𝑖) =
∑︁𝐻′−1

𝑙=0
𝑀
[𝑙]
𝑡 𝑏𝑡− 𝑗−𝑙 (Ĝ𝑖), (5.86)

the counterfactual inputs, which are the recomputations of past inputs as if the
current DFC policy is applied using Nature’s 𝑦 estimates. Then, AdaptOn reasons
about the counterfactual output of the system. Using the current Nature’s 𝑦 estimate
and the counterfactual inputs, the agent approximates what the output of the system
could be, if counterfactual inputs had been applied,

�̃�𝑡 (M𝑡 , Ĝ𝑖) = 𝑏𝑡 (Ĝ𝑖) +
∑︁ℎ

𝑗=1
𝐺
𝑗
𝑢→𝑦�̃�𝑡− 𝑗 (M𝑡 , Ĝ𝑖). (5.87)

Using the counterfactual inputs, output, and the revealed loss function ℓ𝑡 , AdaptOn
finally constructs,

𝑓𝑡 (M𝑡 , Ĝ𝑖) = ℓ𝑡 ( �̃�𝑡 (M𝑡 , Ĝ𝑖), �̃�𝑡 (M𝑡 , Ĝ𝑖)), (5.88)

which is termed counterfactual loss. It is AdaptOn’s approximation of what the cost
would have been at time 𝑡, if the current DFC policy was applied until time 𝑡. It
gives a performance evaluation of the current DFC policy to AdaptOn for updating
the policy. Note that the Markov parameter estimates are crucial in the accuracy of
this performance evaluation.

Online convex optimization: In order to optimize the controller during the epoch,
at each time step, AdaptOn runs online gradient descent on the counterfactual loss
function 𝑓𝑡 (M𝑡 , Ĝ𝑖) while keeping the updates in the setM via projection [245],

M𝑡+1 = 𝑝𝑟𝑜 𝑗M

(
M𝑡 − [𝑡∇M 𝑓𝑡

(
M, Ĝ𝑖

) ���
M𝑡

)
.

Notice that if AdaptOn had access to the underlying input-to-output Markov opera-
tor G, the counterfactual loss would have been the true loss of applying the current
DFC policy until time 𝑡, up to truncation. By knowing the exact performance of the
DFC policy, online gradient descent would have obtained accurate updates. Using
the counterfactual loss for optimizing the controller causes an error in the gradient
updates which is a function of the estimation error of Ĝ𝑖. Therefore, as the Markov
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Algorithm 13 AdaptOn
1: Input: 𝑇 , ℎ, 𝐻, 𝐻′, 𝑇𝑤,M

—— Warm-Up ——————————————————————
2: for 𝑡 = 1, . . . , 𝑇𝑤 do
3: Deploy 𝑢𝑡 ∼N(0, 𝜎2

𝑢 𝐼)
4: Store D𝑇𝑤 = {𝑦𝑡 , 𝑢𝑡}

𝑇𝑤
𝑡=1, set 𝑡1=𝑇𝑤, 𝑡=𝑇𝑤+1, and M𝑡 as any member ofM

—— Adaptive Control ———————————————————–
5: for 𝑖 = 1, 2, . . . do
6: Solve (5.21) using D𝑡 , estimate �̂�𝑖, �̂�𝑖, �̂�𝑖 using SysId and construct Ĝ𝑖 (ℎ)
7: Compute 𝑏𝜏 (Ĝ𝑖) := 𝑦𝜏 −

∑ℎ
𝑗=1𝐺

𝑗
𝑢→𝑦𝑢𝜏− 𝑗 , ∀𝜏 ≤ 𝑡

8: while 𝑡 ≤ 𝑡𝑖 + 2𝑖−1𝑇𝑤 and 𝑡 ≤ 𝑇 do
9: Observe 𝑦𝑡 , and compute 𝑏𝑡 (Ĝ𝑖) := 𝑦𝑡 −

∑ℎ
𝑗=1𝐺

𝑗
𝑢→𝑦𝑢𝑡− 𝑗

10: Commit to 𝑢𝑡 =
∑𝐻′−1
𝑗=0 𝑀

[ 𝑗]
𝑡 𝑏𝑡− 𝑗 (Ĝ𝑖), observe ℓ𝑡 , and pay a cost of ℓ𝑡 (𝑦𝑡 , 𝑢𝑡)

11: Update M𝑡+1= 𝑝𝑟𝑜 𝑗M (M𝑡−[𝑡∇ 𝑓𝑡 (M𝑡 , Ĝ𝑖)),D𝑡+1=D𝑡∪{𝑦𝑡 , 𝑢𝑡}, set 𝑡= 𝑡+1
12: 𝑡𝑖+1 = 𝑡𝑖 + 2𝑖−1𝑇𝑤

estimates improve via our closed-loop estimation method, the gradient updates get
more and more accurate.

For the convex compact DFC policy sets,M𝜓 andM, one can have all the controllers
in these sets persistently excite the systemΘ. The precise definition of the persistence
of excitation condition is given in Section 5.6.3. As discussed in previous sections,
the PE condition is a mild condition and in this case, it only requires a significantly
wide matrix that maps past 𝐻′ noise sequences to input to be full row rank. This
condition holds in many well-known controllers such as H2,H∞, as well as their
DFC approximations. Moreover, for a DFC policy that satisfies the PE condition,
there exists a neighborhood around it consisting of persistently exciting controllers
such that the convex compact sets ofM𝜓 andM could be characterized as. Given
the construction of AdaptOn andM, we have the following results.

Theorem 5.9. Suppose for an unknown partially observable linear dynamical sys-
tem Θ = (𝐴, 𝐵, 𝐶) with strongly convex cost function, Assumption 5.1 holds. Given
M, a closed, compact, and convex set of DFC policies with the persistence of ex-
citation, i.e., policies that satisfy Assumption 5.4, for long enough warm-up period
of 𝑇𝑤, with high probability, AdaptOn achieves the optimal logarithmic regret, i.e.,
Regret(𝑇) = polylog(𝑇). For the given setting if the policies inM do not satisfy
the PE condition, then for a warm-up duration of 𝑇𝑤 = Õ(

√
𝑇), AdaptOn attains the

regret of Regret(𝑇) = Õ(
√
𝑇), with high probability.

The proof of this result is given in Appendix C.3.4, while the pieces leading up to
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this result and a precise statement of Theorem 5.9 will be presented in Section 5.6.4.
This result highlights that the learning and control procedure of AdaptOn turns
the adaptive control problem into an online convex optimization problem, which
yields the optimal regret result in learning and control of partially observable linear
dynamical systems. Here the warm-up duration 𝑇𝑤 is chosen as 𝑇𝑤 ≥ 𝑇max where

𝑇max B max{ℎ, 𝐻, 𝐻′, 𝑇𝑜, 𝑇𝐴, 𝑇𝐵, 𝑇𝑐, 𝑇𝜖𝐺 , 𝑇𝑐𝑙 , 𝑇𝑐𝑥 , 𝑇𝑟}. (5.89)

The detailed expressions for these values are presented throughout this section.
In particular, this choice of warm-up guarantees an accountable first estimate of
the system (𝑇𝑜, see Lemma 5.4), the stability of the online learning algorithm on
the underlying system (𝑇𝐴, 𝑇𝐵, see Appendix C.3.2), the stability of the inputs and
outputs (𝑇𝜖G , see Section 5.6.3), the persistence of excitation during the adaptive
control period (𝑇𝑐𝑙 , see Section 5.6.3), an accountable estimate at the first epoch
of adaptive control (𝑇𝑐, see Section 5.6.3), the conditional strong convexity of
expected counterfactual losses (𝑇𝑐𝑥 , see Appendix C.3.3), and the existence of a good
comparator DFC policy inM (𝑇𝑟 , see Appendix C.3.3). Note that ℎ is the length of
the estimated input-to-output Markov operator for Nature’s output computation, 𝐻 is
the length of history used for closed-loop system identification, and 𝐻′ is the length
of the DFC policy. Note that the warm-up duration is a fixed problem-dependent
constant. In the following, we first characterize the PE condition needed for the
given policy set and then show that if it holds, then the DFC policies constructed
by AdaptOn still provide persistence of excitation even under small enough model
estimation errors. This result will help AdaptOn refine its model estimates, in
particular, input-to-output Markov parameter estimate, during the adaptive control
period due to Theorem 5.2 and allows logarithmic regret.

5.6.3 PE Condition in the Closed-Loop Setting
In this section, we provide the persistence of excitation of AdaptOn policies that is
required for consistent estimation of system parameters as pointed out in Theorem
5.2. Note that during the warm-up phase, AdaptOn uses i.i.d. Gaussian excitations
as inputs which are shown to achieve the persistence of excitation in the covariates
for the closed-loop system identification as shown in Section 5.3.2. Therefore, we
focus on the persistence of excitation in the adaptive control phase. Throughout the
adaptive control phase, we assume that the agent has access to a convex compact set
of DFCs,M which is an 𝑟-expansion ofM𝜓 , such that ^M = ^𝜓 (1+𝑟) and all con-
trollers M ∈ M are persistently exciting the system Θ. In the following, we formally
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define the persistence of excitation condition for the given setM. Then, we show
that the persistence of excitation is achieved by the policies that AdaptOn deploys.

Persistence of Excitation Condition of M ∈ M

Assume that the underlying system Θ is known by the agent. Then, during the
adaptive control, the following expressions give the inputs of AdaptOn and the
outputs of the system:

𝑢𝑡 =
∑︁𝐻′−1

𝑗=0
𝑀
[ 𝑗]
𝑡 𝑏𝑡− 𝑗 (G)

𝑦𝑡 = [𝐺0
𝑢→𝑦 𝐺

1
𝑢→𝑦 . . . 𝐺

ℎ
𝑢→𝑦]

[
𝑢⊤𝑡 𝑢⊤𝑡−1 . . . 𝑢

⊤
𝑡−ℎ

]⊤ + 𝑏𝑡 (G) + rt,

where rt =
∑𝑡−1
𝑘=ℎ+1𝐺

𝑘
𝑢→𝑦𝑢𝑡−𝑘 . For 𝐻 defined in Section 5.3, 𝐻 ≥ max{2𝑛 +

1, log(𝑐𝐻𝑇2√𝑚/
√
_)

log(1/𝜐) }, we have the following decompositions for 𝜙𝑡 :

𝜙𝑡=



𝐺0
𝑢→𝑦 𝐺1

𝑢→𝑦 . . . . . . . . . 𝐺ℎ
𝑢→𝑦 0𝑚×𝑝 0𝑚×𝑝 . . . 0𝑚×𝑝

0𝑚×𝑝 𝐺0
𝑢→𝑦 . . . . . . . . . 𝐺ℎ−1

𝑢→𝑦 𝐺ℎ
𝑢→𝑦 0𝑚×𝑝 . . . 0𝑚×𝑝

. . .
. . .

0𝑚×𝑝 . . . 0𝑚×𝑝 𝐺0
𝑢→𝑦 𝐺1

𝑢→𝑦 . . . . . . . . . 𝐺ℎ−1
𝑢→𝑦 𝐺ℎ

𝑢→𝑦
𝐼𝑝×𝑝 0𝑝×𝑝 0𝑝×𝑝 0𝑝×𝑝 0𝑝×𝑝 0𝑝×𝑝 . . . . . . . . . 0𝑝×𝑝
0𝑝×𝑝 𝐼𝑝×𝑝 0𝑝×𝑝 0𝑝×𝑝 0𝑝×𝑝 0𝑝×𝑝 . . . . . . . . . 0𝑝×𝑝

. . .

0𝑝×𝑝 0𝑝×𝑝 . . . 𝐼𝑝×𝑝 0𝑝×𝑝 . . . . . . . . . . . . 0𝑝×𝑝

︸                                                                                               ︷︷                                                                                               ︸
TG∈R𝐻 (𝑚+𝑝)×(𝐻+𝐻 ) 𝑝



𝑢𝑡−1
...

𝑢𝑡−ℎ
...

𝑢𝑡−ℎ−𝐻

︸    ︷︷    ︸
U𝑡

+



𝑏𝑡−1
...

𝑏𝑡−𝐻

0𝑝
...

0𝑝

︸ ︷︷ ︸
𝐵𝑦 (G) (𝑡)

+



rt−1
...

rt−H

0𝑝
...

0𝑝

︸ ︷︷ ︸
R𝑡

U𝑡=


𝑀
[0]
𝑡−1 𝑀

[1]
𝑡−1 . . . . . . 𝑀

[𝐻′−1]
𝑡−1 0𝑝×𝑚 0𝑝×𝑚 . . . 0𝑝×𝑚

0𝑝×𝑚 𝑀
[0]
𝑡−2 . . . . . . 𝑀

[𝐻′−2]
𝑡−2 𝑀

[𝐻′−1]
𝑡−2 0𝑝×𝑚 . . . 0𝑝×𝑚

. . .
. . .

0𝑝×𝑚 . . . 0𝑝×𝑚 𝑀
[0]
𝑡−ℎ−𝐻 . . . . . . . . . . . . 𝑀

[𝐻′−1]
𝑡−ℎ−𝐻

︸                                                                                            ︷︷                                                                                            ︸
TM𝑡 ∈R(ℎ+𝐻 ) 𝑝×𝑚(𝐻+𝐻

′+ℎ−1)



𝑏𝑡−1(G)
𝑏𝑡−2(G)

...

𝑏𝑡−𝐻′+1(G)
...

𝑏𝑡−ℎ−𝐻−𝐻′+1(G)

︸                 ︷︷                 ︸
𝐵(G) (𝑡)
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𝐵(G) (𝑡)=


𝐼𝑚 0𝑚 . . . 0𝑚 𝐶 𝐶𝐴 . . . . . . . . . 𝐶𝐴𝑡−3

0𝑚 𝐼𝑚 0𝑚 0𝑚×𝑛 𝐶 . . . . . . . . . 𝐶𝐴𝑡−4

. . .
. . .

. . .

0𝑚 0𝑚 . . . 𝐼𝑚 0𝑚×𝑛 . . . . . . 𝐶 . . . 𝐶𝐴𝑡−ℎ−𝐻−𝐻
′−1

︸                                                                           ︷︷                                                                           ︸
O𝑡



𝑧𝑡−1

𝑧𝑡−2
...

𝑧𝑡−ℎ−𝐻−𝐻′+1

𝑤𝑡−2

𝑤𝑡−3
...

𝑤1

︸           ︷︷           ︸
𝜼𝑡

and 𝐵𝑦 (G) (𝑡)=


𝐼𝑚 0𝑚 . . . . . . 0𝑚 𝐶 . . . . . . . . . 𝐶𝐴𝑡−3

. . .
...

. . .
. . .

0𝑚 . . . 𝐼𝑚 . . . 0𝑚 0𝑚×𝑛 . . . 𝐶 . . . 𝐶𝐴𝑡−𝐻−2

0(𝑝𝐻)×((ℎ+𝐻+𝐻′−1)𝑚+(𝑡−2)𝑛)

︸                                                                    ︷︷                                                                    ︸
Ō𝑡

𝜼𝑡 .

Combining all gives
𝜙𝑡 =

(
TGTM𝑡

O𝑡 + Ō𝑡
)
𝜼𝑡 + R𝑡 .

Therefore, similar to Assumption 5.2, we require the truncated closed-loop noise
evolution parameter to be full-row rank, which is stated in the following assumption.

Assumption 5.4. For the given system Θ, for 𝑡 ≥ 𝐻 + 𝐻′ + 𝐻, TGTM𝑡
O𝑡 + Ō𝑡 is full

row rank for all M ∈ M, i.e.,

𝜎min(TGTM𝑡
O𝑡 + Ō𝑡) > 𝜎𝑐 > 0. (5.90)

Satisfying the PE Condition in the Adaptive Control Period

In this section, we show that the input-to-output Markov parameter estimates of
AdaptOn are well-refined and that, the controller of AdaptOn constructed by using
a DFC policy inM still provides persistence of excitation. In other words, we will
show that the inaccuracies in the model parameter estimates do not cause a lack of
persistence of excitation in the adaptive control period.

First, we have the following lemma which shows that inputs have persistence of
excitation during the adaptive control period. Let 𝑑 = min{𝑚, 𝑝}. Using (C.30) and
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(C.32), define

𝑇𝜖G = 4𝑐2
1^

2
M^

2
G𝛾

2
G𝛾

2
H𝑇Gyu 𝑇𝑐𝑙 =

𝑇𝜖G( 3𝜎2
𝑐 min{𝜎2

𝑤 ,𝜎
2
𝑧}

8^2
𝑢^𝑦𝐻

− 1
10𝑇

)2 , (5.91)

𝑇𝑐 =

2048Υ4
𝑐𝐻

2 log
(
𝐻 (𝑚+𝑝)

𝛿

)
+ 𝐻′𝑚𝑝 log

(
^M
√
𝑑 + 2

𝜖

)
𝜎4
𝑐 min{𝜎4

𝑤, 𝜎
4
𝑧 }

, (5.92)

for

𝜖 = min
1,

𝜎2
𝑐 min{𝜎2

𝑤
, 𝜎2

𝑧
}
√︁

min{𝑚, 𝑝}

68^3
𝑏
^G𝐻

(
2^2
M + 3^M + 3

) 
Lemma 5.16. Let ℎ chosen such that 𝜓G(ℎ+1) ≤ 1/10𝑇 . Suppose Assumptions 5.1
and 5.4 hold. For a warm-up period of 𝑇𝑤 ≥ 𝑇max, for 𝑇max in (5.89), after 𝑇𝑐 time
steps in the adaptive control period, with probability 1 − 3𝛿, we have persistence of
excitation for the remainder of the adaptive control epochs of AdaptOn, i.e.,

𝜎min

(
𝑡∑︁
𝑖=1

𝜙𝑖𝜙
⊤
𝑖

)
≥ 𝑡

𝜎2
𝑐 min{𝜎2

𝑤, 𝜎
2
𝑧 }

16
. (5.93)

Proof. During the adaptive control, at time 𝑡, the input of AdaptOn is given by

𝑢𝑡 =
∑︁𝐻′−1

𝑗=0
𝑀
[ 𝑗]
𝑡 𝑏𝑡− 𝑗 (G) + 𝑀 [ 𝑗]𝑡

(
𝑏𝑡− 𝑗 (Ĝ𝑖) − 𝑏𝑡− 𝑗 (G)

)
,

where

𝑏𝑡− 𝑗 (G) = 𝑦𝑡− 𝑗 −
𝑡− 𝑗−1∑︁
𝑘=1

𝐺𝑘
𝑢→𝑦𝑢𝑡− 𝑗−𝑘 = 𝑧𝑡− 𝑗 +

𝑡− 𝑗−1∑︁
𝑘=1

𝐶𝐴𝑡− 𝑗−𝑘−1𝑤𝑘 (5.94)

𝑏𝑡− 𝑗 (Ĝ𝑖) = 𝑦𝑡− 𝑗 −
ℎ∑︁
𝑘=1

𝐺
[𝑘]
𝑢→𝑦𝑢𝑡− 𝑗−𝑘 . (5.95)

Thus, we obtain the following for 𝑢𝑡 and 𝑦𝑡 ,

𝑢𝑡 =

𝐻′−1∑︁
𝑗=0

𝑀
[ 𝑗]
𝑡 𝑏𝑡− 𝑗 (G) +

𝐻′−1∑︁
𝑗=0

𝑀
[ 𝑗]
𝑡

(
𝑡− 𝑗−1∑︁
𝑘=1
[𝐺𝑘

𝑢→𝑦 − 𝐺𝑘
𝑢→𝑦]𝑢𝑡− 𝑗−𝑘

)
︸                                               ︷︷                                               ︸

𝑢Δ𝑏 (𝑡)

𝑦𝑡 = [𝐺0
𝑢→𝑦 𝐺

1
𝑢→𝑦 . . . 𝐺

ℎ
𝑢→𝑦]

[
𝑢⊤𝑡 𝑢⊤𝑡−1 . . . 𝑢

⊤
𝑡−ℎ

]⊤ + 𝑏𝑡 (G) + rt,

where rt =
∑𝑡−1
𝑘=ℎ+1𝐺

𝑘
𝑢→𝑦𝑢𝑡−𝑘 and

∑𝑡−1
𝑘=ℎ ∥𝐺𝑘

𝑢→𝑦∥ ≤ 𝜓G(𝐻 + 1) ≤ 1/10𝑇 which
is bounded by assumption. Notice that ∥𝑢Δ𝑏 (𝑡)∥ ≤ ^M^𝑢𝜖G(1, 𝛿) after warm-up
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period, where ^𝑢 is a bound on ∥𝑢∥, ∑𝐻′−1
𝑖≥0 ∥𝑀 [𝑖] ∥ ≤ ^M , and 𝜖G(1, 𝛿) is the

bound on the estimation error of input-to-output Markov operator after the warm-up
period, which holds for the entire adaptive control period Using the definitions from
previous section, 𝜙𝑡 can be written as,

𝜙𝑡 =
(
TGTM𝑡

O𝑡 + Ō𝑡
)
𝜼𝑡 + R𝑡 + TGUΔ𝑏 (𝑡) (5.96)

where

UΔ𝑏 (𝑡) =



𝑢Δ𝑏 (𝑡 − 1)
𝑢Δ𝑏 (𝑡 − 2)

...

𝑢Δ𝑏 (𝑡 − 𝐻)
...

𝑢Δ𝑏 (𝑡 − 𝐻 − 𝐻)


.

Consider the following,

E
[
𝜙𝑡𝜙
⊤
𝑡

]
= E

[ (
TGTM𝑡

O𝑡 + Ō𝑡
)
𝜼𝑡𝜼
⊤
𝑡

(
TGTM𝑡

O𝑡 + Ō𝑡
)⊤ + 𝜼⊤𝑡 (

TGTM𝑡
O𝑡 + Ō𝑡

)⊤ (TGUΔ𝑏 (𝑡) + R𝑡)

+ (TGUΔ𝑏 (𝑡) + R𝑡)⊤
(
TGTM𝑡

O𝑡 + Ō𝑡
)
𝜼𝑡 + (TGUΔ𝑏 (𝑡) + R𝑡)⊤ (TGUΔ𝑏 (𝑡) + R𝑡)

]

𝜎min
(
E

[
𝜙𝑡𝜙
⊤
𝑡

] )
≥ 𝜎2

𝑐 min{𝜎2
𝑤
, 𝜎2

𝑧
}

−2^𝑏 (^M+^M^G+1)
√
𝐻 ((1+^G)^M^𝑢𝜖G(1, 𝛿)

√
𝐻+
√
𝐻^𝑢/10𝑇)

≥ 𝜎2
𝑐 min{𝜎2

𝑤
, 𝜎2

𝑧
} − 2^2

𝑢^𝑦𝐻 (2^G^M𝜖G(1, 𝛿) + 1/10𝑇).

Note that for 𝑇𝑤 ≥ 𝑇𝑐𝑙 , 𝜖G(1, 𝛿) ≤ 1
2^M^G

(
3𝜎2

𝑐 min{𝜎2
𝑤 ,𝜎

2
𝑧}

8^2
𝑢^𝑦𝐻

− 1
10𝑇

)
with probability at

least 1 − 2𝛿. Thus, we get

𝜎min
(
E

[
𝜙𝑡𝜙
⊤
𝑡

] )
≥
𝜎2
𝑐

4
min{𝜎2

𝑤
, 𝜎2

𝑧
}, (5.97)

for all 𝑡 ≥ 𝑇𝑤. Using Lemma C.3.2, we have that for Υ𝑐 B (^𝑦 + ^𝑢), ∥𝜙𝑡 ∥ ≤ Υ𝑐
√
𝐻

with probability at least 1 − 2𝛿. Therefore, for a chosen M ∈ M, using Matrix
Azuma inequality [267], we have the following with probability 1 − 3𝛿:

_max

(
𝑡∑︁
𝑖=1

𝜙𝑖𝜙
⊤
𝑖 − E[𝜙𝑖𝜙⊤𝑖 ]

)
≤ 2
√

2𝑡Υ2
𝑐𝐻

√︄
log

(
𝐻 (𝑚 + 𝑝)

𝛿

)
. (5.98)

In order to show that this holds for any chosen M ∈ M, we adopt a standard covering
argument. We know that from Lemma 5.4 of Simchowitz et al. [245], the Euclidean
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diameter ofM is at most 2^M
√︁

min{𝑚, 𝑝}, i.e. ∥M𝑡 ∥𝐹 ≤ ^M
√︁

min{𝑚, 𝑝} for all
M𝑡 ∈ M. Thus, we can upper bound the covering number as follows,

N(𝐵(^M
√︁

min{𝑚, 𝑝}), ∥ · ∥𝐹 , 𝜖) ≤
(
^M

√︁
min{𝑚, 𝑝} + 2

𝜖

)𝐻′𝑚𝑝
.

The following holds for all the centers of 𝜖-balls in ∥M𝑡 ∥𝐹 , for all 𝑡 ≥ 𝑇𝑤, with
probability 1 − 3𝛿:

_max
(∑𝑡

𝑖=1 𝜙𝑖𝜙
⊤
𝑖
− E[𝜙𝑖𝜙⊤𝑖 ]

)
≤ 2
√

2𝑡Υ2
𝑐𝐻

√︂
log

(
𝐻 (𝑚+𝑝)

𝛿

)
+ 𝐻′𝑚𝑝 log

(
^M

√︁
min{𝑚, 𝑝} + 2

𝜖

)
.

(5.99)

Consider all M in the 𝜖-balls, i.e. effect of epsilon perturbation in ∥M∥𝐹 sets, using
Weyl’s inequality we have with probability at least 1 − 3𝛿,

𝜎min

(
𝑡∑︁
𝑖=1

𝜙𝑖𝜙
⊤
𝑖

)
≥ 𝑡

©«
𝜎2
𝑐

4
min{𝜎2

𝑤
, 𝜎2

𝑧
} −

8^3
𝑏
^G𝐻𝜖

(
2^2
M + 3^M + 3

)
√︁

min{𝑚, 𝑝}

(
1 + 1

10𝑇

)ª®®¬
− 2
√

2𝑡Υ2
𝑐𝐻

√︄
log

(
𝐻 (𝑚 + 𝑝)

𝛿

)
+ 𝐻′𝑚𝑝 log

(
^M

√︁
min{𝑚, 𝑝} + 2

𝜖

)
.

for 𝜖 ≤ 1. Let 𝜖 = min

{
1, 𝜎

2
𝑐 min{𝜎2

𝑤 ,𝜎
2
𝑧}
√

min{𝑚,𝑝}

68^3
𝑏
^G𝐻

(
2^2
M+3^M+3

) }
. For this choice of 𝜖 , we get

𝜎min
(∑𝑡

𝑖=1 𝜙𝑖𝜙
⊤
𝑖

)
≥ 𝑡

(
𝜎2
𝑐

8 min{𝜎2
𝑤
, 𝜎2

𝑧
}
)
− 2
√

2𝑡Υ2
𝑐𝐻

√︂
log

(
𝐻 (𝑚+𝑝)

𝛿

)
+ 𝐻′𝑚𝑝 log

(
^M

√︁
min{𝑚, 𝑝} + 2

𝜖

)
.

By picking 𝑇𝑤 ≥ 𝑇𝑐, we can guarantee that after 𝑇𝑐 time steps in the first epoch, we
have the advertised lower bound. □

Note that combining Lemma 5.16 with Theorem 5.3 gives

∥Ĝyu,i − Gyu∥ ≤
^𝑒

𝜎𝑐
√︁

2𝑖−1𝑇𝑤

√︃
min{𝜎2

𝑤 ,𝜎
2
𝑧}

16

, (5.100)

for each epoch 𝑖 of AdaptOn, with probability at least 1 − 4𝛿, for

^𝑒 =

√︄
𝑚Σ𝑒

(
log(1

𝛿
) + 𝐻 (𝑚 + 𝑝)

2
log

(
_(𝑚 + 𝑝) + 𝜏Υ2

_(𝑚 + 𝑝)

))
+ 𝑆
√
_ +
√
𝐻.

Setting 𝜎2
★ B min

{
𝜎2
𝑜𝜎

2
𝑤

2 ,
𝜎2
𝑜𝜎

2
𝑧

2 ,
𝜎2
𝑜𝜎

2
𝑦

2 ,
𝜎2
𝑐𝜎

2
𝑤

16 ,
𝜎2
𝑐𝜎

2
𝑧

16

}
, provides the guarantee in The-

orem 5.2 as in (5.23) for both warm-up and adaptive control periods.
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5.6.4 Regret Analysis
From the persistence of excitation guarantee given in Lemma 5.16, we have the
conditions for Theorem 5.2 to hold for the entire duration of AdaptOn, i.e., our
proposed adaptive control algorithm estimates the system dynamics consistently.
Thus, using the analysis provided in Appendix C.3.2, we have the same consistent
estimation guarantee for the constructed input-to-output Markov operator Ĝ𝑖 (ℎ)
using the model parameter estimates obtained from SysId. In particular, using our
novel closed-loop system identification method at the beginning of any epoch 𝑖
ensures that during the epoch, ∥Ĝ𝑖 (ℎ) −G(ℎ)∥ ≤ 𝜖G(𝑖, 𝛿) = Õ(1/

√︁
2𝑖−1𝑇𝑤).

Stable system dynamics with AdaptOn: Since 𝑤𝑡 and 𝑧𝑡 are Gaussian distur-
bances, from standard concentration results we have that Nature’s 𝑦 is bounded with
high probability for all 𝑡 (see Appendix C.3.3). Thus, let ∥𝑏𝑡 (G)∥ ≤ ^𝑏 for some ^𝑏.
The following lemma shows that during AdaptOn, Markov parameter estimates are
well-refined such that the inputs, outputs, and the Nature’s 𝑦 estimates of AdaptOn
are uniformly bounded with high probability. The proof is in Appendix C.3.3.

Lemma 5.17. For all 𝑡 during the adaptive control epochs, ∥𝑢𝑡 ∥ ≤ ^M^𝑏, ∥𝑦𝑡 ∥ ≤
^𝑏 (1 + ^G^M) and ∥𝑏𝑡 (Ĝ)∥ ≤ 2^𝑏 with high probability.

Regret upper bound of AdaptOn: Before presenting a precise version of Theo-
rem 5.9, we provide our intuition in bounding the regret of AdaptOn. The regret
decomposition of AdaptOn includes 3 main pieces: (𝑅1) : Regret due to warm-up;
(𝑅2) : Regret due to online learning controller; (𝑅3) : Regret due to lack of system
dynamics knowledge. 𝑅1 gives constant regret for a fixed short warm-up period.
𝑅2 results in O(log(𝑇)) regret. Note that this regret decomposition and these re-
sults follow and adapt Theorem 5 of Simchowitz et al. [245]. The key difference
is in 𝑅3, which scales quadratically with the Markov parameter estimation error
∥Ĝ𝑖 (ℎ)−G(ℎ)∥. Simchowitz et al. [245] deploys an open-loop estimation such as
the one presented in Section 5.2 and does not update the model parameter estimates
during adaptive control and attains 𝑅3 = Õ(

√
𝑇) which dominates the regret upper

bound. However, using our novel system identification method with the closed-loop
learning guarantees of Markov parameters and the doubling epoch lengths AdaptOn
gets 𝑅3 = O(polylog(𝑇)).

Theorem 5.10 (Precise Version of Theorem 5.9). Suppose Assumption 5.1 holds
and 𝐻′ and ℎ are chosen to satisfy 𝐻′ ≥ 3ℎ ≥ 1, 𝜓(⌊𝐻′/2⌋ − ℎ) ≤ ^M/𝑇 and
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𝜓G(ℎ+1) ≤ 1/10𝑇 . For the described strongly convex cost function in Section 5.6.1,
after a warm-up period time 𝑇𝑤 ≥ 𝑇max, if AdaptOn runs with step size [𝑡 = 12

𝛼𝑡
, then

with probability at least 1 − 5𝛿, the regret of AdaptOn is bounded as

Regret(𝑇) ≲ 𝑇𝑤𝐿^
2
𝑦 +

𝐿2𝐻′3 min{𝑚, 𝑝}^4
𝑏
^4

G^
2
M

min{𝛼, 𝐿^2
𝑏
^2

G}

(
1+ 𝛼𝑙𝑜𝑠𝑠

min{𝑚, 𝑝}𝐿^M

)
log

(
𝑇

𝛿

)
+
∑︁𝑇

𝑡=𝑇𝑤+1
𝜖2

G

(⌈
log2

( 𝑡
𝑇𝑤

)⌉
, 𝛿

)
𝐻′^2

𝑏^
2
M

(
^2

G^
2
𝑏
(𝛼𝑙𝑜𝑠𝑠 + 𝐿)2

𝛼
+ ^2

𝑦 max
{
𝐿,
𝐿2

𝛼

})
.

Here ≲ denotes that the inequality holds up to polynomial functions of problem
quantities and logarithmic factors. If Assumption 5.4 holds for the givenM, then
with the stated choice of 𝑇𝑤, then with the same probability, we have 𝜖G(𝑖, 𝛿) =
Õ(1/

√︁
2𝑖−1𝑇𝑤), which would yield Regret(𝑇) = polylog(𝑇). If the given set of

controllers does not satisfy Assumption 5.4, then 𝜖G(𝑖, 𝛿) = Õ(1/
√
𝑇𝑤), for all 𝑖,

and with the choice of 𝑇𝑤 = O(
√
𝑇), we get Regret(𝑇) = Õ(

√
𝑇).

The proof is given in Appendix C.3.4. The regret decomposition and individual up-
per bounds build on the reduction of the adaptive control problem, more specifically
the regret minimization problem, to the online convex optimization with memory
setting introduced in [17]. Notice that due to the open-loop stability of the system
dynamics, one can easily find ℎ and 𝐻′ that satisfy the conditions stated at the
beginning of the theorem. The main ingredient that allows logarithmic regret is
the combining strong convexity of the cost function, which allows the policy regret
to scale quadratically with the estimation error, and our novel closed-loop system
identification method, which allows continuously improving model estimates.

Remark 5.2. Initially, the logarithmic regret upper bound of AdaptOn may seem
surprising since LQG control systems can be seen as strict partial observability
generalizations of LQR considered in Section 3, whose regret is proven to be lower
bounded by

√
𝑇 [242]. However, this is not entirely the case. The logarithmic regret

of AdaptOn is possible since the LQG control system studied here has isotropic, or
in general non-degenerate, measurement noise, which allows the PE condition for a
closed-loop controller (Lemma 5.16) without additional perturbations to the system,
such as i.i.d. Gaussian inputs. Unfortunately, this is not the case for LQRs, since
the state is fully observable. Therefore, in order to achieve PE condition, algorithms
like StabL and TSAC in Section 3, have to inject i.i.d. Gaussian perturbations to
the system. As shown in (5.100), this persistence of excitation allows continuous
exploration, thus continuous improvement of the model estimates while simulta-
neously exploiting near-optimal policies. In other words, the measurement noise,
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which is present for both the learning agent and the best controller in hindsight,
makes the control problem harder for the optimal controller, thus, making the regret
minimization problem easier.

In minimizing the regret, AdaptOn competes against the best DFC policy in the set
M𝜓 . Recall that any stabilizing LDC policy can be well-approximated as a DFC
policy, Lemma 5.15. Therefore, for any LDC policy 𝜋 whose DFC approximation
lives in the givenM𝜓 , Theorem 5.9 can be extended to achieve the first logarithmic
regret in the LQG control setting which has been studied in Sections 5.4 and 5.5.

Corollary 5.10.1. Let 𝜋★ be the optimal linear controller for the underlying system
Θ in the LQG control setting. If the DFC approximation of 𝜋★ is in M𝜓 , such
that it satisfies Assumption 5.2, then the regret of AdaptOn with respect to 𝜋★ is∑𝑇
𝑡=1 𝑐𝑡 − ℓ𝑡 (𝑦

𝜋★
𝑡 , 𝑢

𝜋★
𝑡 ) = polylog(𝑇).

As stated in the second half of Theorem 5.10, without any consistent closed-loop
model estimate updates during the adaptive control, AdaptOn reduces to a variant
of the algorithm given in Simchowitz et al. [245], yielding Õ(

√
𝑇) regret. This is

equivalent to having no model updates in the adaptive control phase even if the con-
trol setM satisfies Assumption 5.2, i.e., explore-and-commit approach. While the
doubling epoch length update rule of AdaptOn results in

⌈
log

(
𝑇
𝑇𝑤

)⌉
updates in the

adaptive control period, one can follow different update schemes as long as AdaptOn
obtains enough samples at the beginning of the adaptive control period to obtain
persistence of excitation. The following is an immediate corollary of Theorem 5.9
which considers the case when the number of epochs or estimations are limited
during the adaptive control period.

Corollary 5.10.2. If enough samples are gathered in the adaptive control period
such that the closed-loop persistence excitation condition is satisfied for AdaptOn,
i.e., after𝑇𝑐 time steps, AdaptOn with any update scheme less than

⌈
log

(
𝑇
𝑇𝑤

)⌉
updates

has Regret(𝑇) ∈ [polylog(𝑇), �̃� (
√
𝑇)] .

If the control cost functions 𝑐𝑡 for the given system are (weakly) convex 0 ⪯ ∇2ℓ𝑡 (·, ·),
the online gradient descent procedure of AdaptOn does not enjoy the quadratic
scaling of regret with respect to the estimation error 𝜖G in input-to-output Markov
parameters, and settles down with linear scaling, i.e., the last term in the regret
expression of Theorem 5.10 scales with 𝜖G

(⌈
log2

(
𝑡
𝑇𝑤

)⌉
, 𝛿

)
. Notice that this was
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the case for LQG control and ARX systems studied in Sections 5.4 and 5.5, due to
positive semidefinite 𝑄 matrix in the state cost. For this setting AdaptOn attains the
same regret guarantees of LqgOpt and TSPO.

Corollary 5.10.3. For the system given in Theorem 5.9 with convex cost func-
tions, 0 ⪯ ∇2ℓ𝑡 (·, ·), if M satisfies Assumption 5.4, then the regret of AdaptOn is
Regret(𝑇) = Õ(

√
𝑇), with high probability. Furthermore, if the policies inM do

not satisfy the PE condition, then for a warm-up duration of 𝑇𝑤 = O(𝑇2/3), AdaptOn
attains the regret of Regret(𝑇) = Õ

(
𝑇2/3

)
, with high probability.

5.6.5 Extensions to the ARX systems
In this section, similar to Section 5.4, we extend AdaptOn for LQG control to
the ARX systems, i.e., the systems with the dynamics of the form (5.7) with sub-
Gaussian 𝑒𝑡 with the covariance matrix of Σ𝐸 ⪰ 𝜎2

𝑒 and arbitrary 𝐹 and a stable
�̄�. Moreover, we will relax the conditions on the system dynamics given in As-
sumption 5.1. In particular, we will consider the stabilizable and detectable ARX
systems, since the control design procedure of AdaptOn will not require identifica-
tion of model parameters and utilize only the input-to-output and output-to-output
Markov parameter estimates Ĝu→y(ℎ) and Ĝy→y(ℎ), respectively. Additionally, we
will consider the strongly convex cost functions introduced in Section 5.6.1 in the
adaptive control problem. For the ARX systems, we define a new Nature’s output.

Output uncertainties �̄�𝑡 (Gyu): Recall the output rollout given in (5.17) using
Gyu. The output uncertainties of the ARX system at time 𝑡 is denoted as follows:

�̄�𝑡 (Gyu) = 𝑦𝑡 −
(∑︁𝑡−1

𝑘=0
𝐺𝑘+1
𝑢→𝑦𝑢𝑡−𝑘−1 + 𝐺𝑘+1

𝑦→𝑦𝑦𝑡−𝑘−1

)
= 𝐶𝐴𝑡𝑥0 + 𝑒𝑡 . (5.101)

This definition is similar to Nature’s output 𝑏𝑡 (G) adopted for LQG control systems
in previous sections. It represents the only unknown components of the output.
Notice that, one can identify the uncertainty in the output at any time step uniquely
using the history of inputs, outputs, and the Markov parameters. This gives the
ability of counterfactual reasoning, i.e., consider what the output would have been
if the agent had taken a different sequence of inputs and observed different outputs.

Disturbance feedback control (DFC): As in the previous sections, we consider
the DFC controllers but this time using the output uncertainties �̄�𝑡 (), i.e., for the set
of parameters M(𝐻′) := {𝑀 [𝑖]}𝐻′−1

𝑖=0 , the control input is

𝑢M
𝑡 =

∑︁𝐻′−1

𝑖=0
𝑀 [𝑖] �̄�𝑡−𝑖 (Gyu). (5.102)
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We will adopt the same construction of convex compact setsM𝜓 andM introduced
in Section 5.6.1, such thatM is an 𝑟-expansion ofM𝜓 and the regret of AdaptOn
is measured against the optimal, in hindsight, DFC policy inM𝜓 , (5.85).

Adaptive Control of ARX systems via AdaptOn

In the ARX systems, we mainly follow AdaptOn given in Algorithm 13. However,
we have several changes. Note that to compute the output uncertainties, we use
Ĝyu, which is obtained via solving (5.21). To utilize this fact, we set the regu-
larized least squares roll-out horizon for the closed-loop system identification 𝐻
equal to the number of Markov parameters used to compute the output uncertain-
ties ℎ. Therefore, in the ARX systems, AdaptOn does not need to construct a
balanced realization of the model parameters via SysId. This allows AdaptOn to
learn and control a general class of partially observable linear dynamical systems,
i.e., stabilizable and detectable system dynamics with sub-Gaussian disturbances.
For the rest of the steps of AdaptOn, we follow the counterfactual input, output,
and loss construction presented in Section 5.6.2 but this time using both input-to-
output and output-to-output Markov parameter estimates Ĝu→y(ℎ) and Ĝy→y(ℎ).
Finally, we update the DFC controller using the online projected gradient descent
at each time step. Similar to the derivation given in Section 5.6.3, in particular
Lemma 5.16, one can show that after 𝑇𝑐 time steps, where we replace min{𝜎4

𝑤, 𝜎
4
𝑧 }

with 𝜎4
𝑒 in (5.92), we have closed-loop PE condition for AdaptOn in ARX systems

such that 𝜎min
(∑𝑡

𝑖=1 𝜙𝑖𝜙
⊤
𝑖

)
≥ 𝑡

𝜎2
𝑐𝜎

2
𝑒

16 . Moreover, the boundedness guarantees of
AdaptOn translate to the ARX systems due to the concentration properties of sub-
Gaussian noise. Thus, for large enough ℎ and a proper decay function 𝜓, such that
𝜓Gyu (ℎ) B max{𝜓G𝑢→𝑦 (ℎ), 𝜓G𝑦→𝑦 (ℎ)} ≤ 1/10𝑇 , we have the same results provided
for LQG control systems in Theorem 5.10 and Corollaries 5.10.1, 5.10.2, and 5.10.3
for the stabilizable and detectable open-loop stable ARX systems.

5.7 Conclusion and Future Directions
In this chapter, we covered several aspects of learning and control in partially
observable linear dynamical systems. We started our study with the problem of
learning the underlying unknown system dynamics. After explaining the drawbacks
of open-loop estimation methods, we provided the first system identification method
that allows estimating the model parameters with finite-time guarantees in both open
and closed-loop settings. We showed that this system identification method achieves
optimal learning rates for both i.i.d. Gaussian control inputs and measurement-
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feedback controllers and recovers a balanced realization of the model parameters
via a new subspace identification approach SysId. Building upon this method, we
then proposed three novel algorithmic frameworks: LqgOpt, TSPO, and AdaptOn,
for learning and control of unknown partially observable linear dynamical systems,
namely LQG control systems and ARX systems.

We developed LqgOpt using the OFU principle to design the controllers and balance
the exploration vs. exploitation trade-off. We derived the precise characterization
of the persistence of excitation condition for the underlying system with its optimal
controller and showed that LqgOpt achieves persistence of excitation even under
model estimation errors. We proved that LqgOpt achieves stable closed-loop dy-
namics using the optimistic controllers to refine the model parameter estimates and
studied the regret of LqgOpt. In our regret analysis, we derived the Bellman opti-
mality equation for LQG control systems with convex quadratic cost function and
a novel regret decomposition based on this which can be of independent interest in
deriving diverse regret guarantees in partially observable linear systems in future
studies. In fact, we used this regret decomposition in providing regret guarantees
for Thompson Sampling-based adaptive control in LQG control systems via TSPO.
Our analysis showed that LqgOpt attains regret of Õ(

√
𝑇) under if PE condition

holds for the underlying system with its optimal controller and Õ(𝑇2/3) without PE.
Finally, we extended the framework of LqgOpt to the ARX systems.

Secondly, we studied adaptive control of unknown partially observable linear dy-
namical systems using Thompson Sampling and proposed TSPO. By replacing the
cumbersome optimization procedure to find optimistic models in LqgOpt with an
efficient Markov parameter sampling method, we showed that TSPO achieves the
same regret rates as LqgOpt, using Thompson Sampling. We remarked that this
computational efficiency does not come freely. We showed that even though the
order-wise regret of TSPO matches LqgOpt, it suffers from larger problem-dependent
constants which can be arbitrarily big due to the sampling nature of the algorithm.

Finally, we studied the learning and control of partially observable linear dynami-
cal systems with general strongly convex cost functions and proposed an efficient
learning and control algorithm AdaptOn. In this challenging setting, we considered
the policy regret as the performance metric and used online convex optimization for
the adaptive controller design. Leveraging our novel closed-loop system identifica-
tion method, we deployed a convex policy reparametrization that approximates the
linear measurement-feedback controllers well and aims to reduce the cost caused by
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uncontrollable nature disturbances. We showed that by continuously updating the
model estimates in adaptive control epochs and running projected online gradient
descent to further improve the control policies during the epochs, AdaptOn achieves
optimal logarithmic regret. This surprising result makes AdaptOn the first algo-
rithm to achieve optimal regret in the challenging setting of learning and control in
partially observable linear dynamical systems, and in fact, shows that the finite-time
adaptive control problem or specifically regret minimization problem is simpler in
partially observable systems compared to the fully observable setting. We showed
that for (weakly) convex cost functions AdaptOn recovers the results of LqgOpt
and TSPO, hinting that logarithmic regret is due to strong convexity. Finally, we
extended the guarantees of AdaptOn to ARX systems with minimal assumptions
which is due to the convex policy parameterization adopted in the control design,
alleviating the need for SysId.

One of the most important future directions is to further investigate the role of
persistence of excitation (PE). In the LQR setting studied in Section 3, we showed
that StabL and TSAC attain O(

√
𝑇) regret using a self-normalized construction in

the analysis, without PE condition. It remains an open problem if these results
could be extended to the LQG control problems. We conjecture that this is the
case. Informally, using the predictor form representation of the system dynamics,
one can study the truncated online LQG control problem as an LQR problem. This
would allow transferring the self-normalized results in the LQR setting to partially
observable linear dynamical systems and by showing that this truncation does not
result in a linear scaling of regret, one can show that the requirement of PE condition
to achieve O(

√
𝑇) would be eliminated.

Another important direction is to study whether it is possible to design controllers
directly from the Markov parameter estimates without deploying subspace identifica-
tion algorithms like SysId. These methods require controllability and observability
of the underlying system, which are usually restrictive for most of the partially ob-
servable linear dynamical systems and are quite sensitive to the minimum singular
values of the constructed Hankel matrices as discussed in Theorem 5.4. Designing
controllers directly from data, i.e., using the solution of (5.21), would alleviate such
needs and provide more robust learning and control algorithms. An example of such
construction is given in ARX systems via AdaptOn in Section 5.6.5.

Another interesting research question is to investigate the role of open-loop stability
in learning and control of partially observable linear dynamical systems. In our
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study, we assumed that the state evolution matrix 𝐴 is stable. This allowed bounded
input and outputs and simplified the analysis. One can replace this assumption
with a known stabilizing controller assumption, e.g., [245]. However, this does not
fully solve the problem. For example, in the LQR setting of Section 3, we showed
that StabL and TSAC achieve optimal regret guarantee with polynomial dimension
dependency without any assumption on 𝐴, even though the state might have an
exponential dependency in dimension until finding a stabilizing neighborhood. It
is an open problem, due to its partially observable nature, if we can have the same
analysis in the LQG control setting and remove the stability assumption overall while
suffering from an exponential in-dimension state until the recovery of stabilizing
measurement-feedback controllers.

Another important direction is to see whether LqgOpt and TSPO can achieve polylog-
arithmic regret under strongly convex cost conditions, i.e.,𝑄, 𝑅 ≻ 0. Moreover, even
though it is a computationally efficient alternative to LqgOpt, the larger constants
in the regret upper bound of TSPO, make it undesirable in complicated scenar-
ios. Recently, [8] showed a computationally efficient relaxation on the optimistic
model selection problem in the LQR setting with some performance degradation,
yet order-wise the same regret as StabL. Studying such a relaxation to LqgOpt, thus
making the optimistic model selection computationally efficient, is a direction that
would yield tighter regret guarantees than TSPO. The final major future direction
is to consider the constrained learning and control setting in partially observable
linear dynamical systems, e.g., safety, which would yield adaptive algorithms that
are suitable in more challenging control scenarios.
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C h a p t e r 6

LEARNING AND CONTROL IN NONLINEAR DYNAMICAL
SYSTEMS

In this chapter, we study the learning and control in dynamical systems problem in its
most general setting: (partially observable) nonlinear systems1. As highlighted in
the previous sections, there has been a flurry of studies that consider obtaining finite-
time performance guarantees for learning and control of linear dynamical systems.
Even though these remarkable efforts provide a foundational understanding and aim
to shed light on the learning and control of more complex systems, they generally
do not extend to nonlinear systems since they heavily rely on the simplicity of linear
system modeling. This is disappointing since most of the systems encountered in
practice are nonlinear dynamical systems. To make the learning and control design
problem tractable, the recent studies in finite-time learning to control in nonlinear
dynamical systems consider identifying the system with known nonlinearities [133,
192, 235]. However, the question of providing learning and control guarantees
for unknown nonlinear systems is currently less explored due to its difficulty in
modeling the system dynamics and control design.

In this chapter, we take the first steps toward providing finite-time learning and
control guarantees in the adaptive control of unknown nonlinear dynamical systems.
We study partially observable nonlinear dynamical systems, where the learning
agent has only access to the system outputs. In particular, we consider two function
classes for the system dynamics: systems that live in Reproducing Kernel Hilbert
Spaces (RKHS) or Sobolev space of periodic functions. For these settings, we
provide novel system identification methods with finite-time learning guarantees
and adaptive control methods with state-of-the-art real-world performance, as well
as regret and stability guarantees.

For nonlinear systems in RKHS, we use Random Fourier Features (RFF) [226] to
represent and learn the underlying system up to a confidence interval with optimal
estimation error rate. In the analysis of this system identification method, we derive a
novel function approximation theoretic guarantee for RFF which proves that the best
RFF approximation of a nonlinear system has an approximation error of Õ(1/

√
𝐷),

1This chapter is based on [164, 167, 168].
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where 𝐷 is the dimension of RFF representation. Using this method, we propose
an efficient online control framework, Model Learning Predictive Control (MLPC),
that learns to control the unknown system and minimizes the overall control cost.
Once a reliable estimate of the dynamics is obtained through RFF-based system
identification, MLPC deploys a model predictive control (MPC) method with the
estimated system dynamics for planning. MLPC occasionally updates the underlying
model estimates and improves the accuracy and effectiveness of the MPC policies.
We provide stability guarantees for single trajectory online control and show that
MLPC attains Õ(𝑇2/3) regret after 𝑇 time steps in online control of stable partially
observable nonlinear systems against the controller that uses the same MPC oracle
with the true system dynamics. We empirically demonstrate the performance of
MLPC on the inverted pendulum task and show the flexibility of the proposed general
framework via deploying different planning strategies for the controller design to
achieve low-cost control policies.

For nonlinear systems in the Sobolev space of periodic functions, we use the Fourier
basis to represent and learn the underlying system. We show that using an 𝑛th order
Fourier basis, our model learning approach estimates the underlying system with the
near-optimal estimation error rate of Õ(𝑇Y−0.5), after 𝑇 samples where Y depends
on the smoothness of the Sobolev space and the order 𝑛, such that 0≤ Y<0.5. Using
this model learning approach, we propose an efficient model-based RL algorithm,
Fourier Adaptive Learning and Control (FALCON), for online control of unknown
partially observable nonlinear dynamical systems.

We study FALCON for disturbance rejection under unknown extreme turbulence. We
show that FALCON allows effective modeling and control of the aerodynamic forces
due to turbulent flow dynamics and achieves state-of-the-art disturbance rejection
performance. FALCON builds on two key observations that the chaotic dynamics
involved in turbulent flows are well-modeled in the frequency domain and that most
of the energy in turbulent flows is stored in low-frequency components. To this
end, FALCON cleverly chooses a concise Fourier basis for learning the underlying
system dynamics only using 35 seconds of flow data. To overcome the problem
of partial observability due to sensor measurements, FALCON uses a short history
of actions and measurements to model the system dynamics. With this physically
sound and accurate model learning approach, FALCON deploys a model predictive
control (MPC) method for safe and efficient control design. When evaluated under
highly turbulent wind conditions generated in Caltech closed-loop wind tunnel,



208

Table 6.1: Comparison of Works with Regret Guarantees in Nonlinear Systems

Work
Regret
Result

Learning
Basis

Computational
Efficiency

Memory
Efficiency

Kakade et al. [133]
√
𝑇 Known No No

Boffi et al. [34]
√
𝑇 Known Yes Yes

MLPC 𝑇2/3 Unknown Yes Yes
FALCON

√
𝑇 Unknown Yes Yes

FALCON learns the underlying nonlinear dynamics and adapts to the changing flow
conditions with less than 9 minutes of data and consistently outperforms the state-
of-the-art methods. In addition to strong empirical performance, FALCON comes
with learning and performance guarantees which certify the stability and robustness
of the proposed framework. In particular, we show that FALCON attains O(

√
𝑇)

regret against the agent who has access to the underlying dynamics and uses the
same control design. To the best of our knowledge, FALCON is the first efficient
RL algorithm that achieves O(

√
𝑇) regret in online control of nonlinear dynamical

systems, Table 6.1.

Finally, to end this chapter, we consider the online stabilization of unknown non-
linear dynamical systems. Note that in both MLPC and FALCON, while deriving
the performance guarantees, we assume that the deployed MPC method achieves
stabilization under small enough modeling error. Even though this is verified in
practice for the challenging settings we considered, it may not hold in general. To
this end, we propose a novel policy optimization method that adopts Krasovskii’s
family of Lyapunov functions as a stability constraint. We show that solving this
stability-constrained optimization problem using a primal-dual approach recovers
a stabilizing policy for the underlying system even under modeling error. Com-
bining this method with model learning, e.g., RFF-based system identification, we
propose a model-based RL framework with formal stability guarantees, Krasovskii-
Constrained Reinforcement Learning (KCRL). We theoretically study KCRL with
RFF representation in model learning and provide a sample complexity guarantee
to learn a stabilizing controller for the underlying system. Further, we empirically
demonstrate the effectiveness of KCRL in learning stabilizing policies in online volt-
age control of a distributed power system. We show that KCRL stabilizes the system
under various real-world solar and electricity demand profiles, whereas standard RL
methods often fail to stabilize.
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Motivation and Background
Reinforcement Learning (RL) has been recognized as a promising alternative for
traditional decision-making and control tasks in engineering systems, e.g., robotics
[178], energy systems [55], and transportation [297]. However, despite the promise,
major hurdles remain before deployment in such systems is feasible. One of the
key challenges is that many real-world systems are safety-critical and have high
standards for stability, thus requiring finite-time guarantees. Even though RL algo-
rithms outperform classical control methods in complex and uncertain dynamical
environments, they often do not provide formal stability guarantees outside of sim-
ple systems, e.g., COCO-LQ in Chapter 4 for linear time-varying systems which
are usual models for nonlinear dynamics with disturbances [225]. In particular,
the most popular RL algorithms for the control of nonlinear systems follow model-
free gradient-based policies that focus on minimizing the control cost and do not
explicitly consider stability or regret performance [185].

As displayed throughout this thesis, the model-based methods hold promise to
achieve significant empirical success while providing sample complexity guaran-
tees for learning and control. Moreover, most real-world systems are governed by
physics, which can be incorporated into model learning. This also enables them to
generalize better to out-of-distribution samples, which is crucial in safety-critical
tasks. However, despite these promises, most of the current model-based RL meth-
ods are rarely implemented in real-world systems due to their need for highly accurate
models and the challenges that partial observability brings.

In most real-world dynamical systems, the system state is hidden, and instead, the
controlling agent observes a nonlinear and noisy measurement of the state, e.g.,
through sensors. This partial observability brings uncertainties in modeling the sys-
tem dynamics and designing the policies [60]. It also violates the common design
assumption of the Markov property in the collected samples, which significantly
complicates the modeling task [22]. These challenges make model-based RL re-
markably difficult in real-world systems. To remedy these challenges, the majority of
the model-based RL methods rely on the expressive power of deep neural networks
(DNN) in modeling the dynamics. However, these approaches require a vast number
of samples and usually yield black-box models, which are notoriously challenging
to dissect and provide theoretical guarantees. Thus, these methods are most relevant
in stationary and safe environments such as robotic manipulations [205]. However,
under unsteady conditions such as complex turbulent flow fields, we require efficient
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and adaptive modeling so that we can provide performance guarantees for general-
izable learning. This lack of guarantees currently prevents the deployment of RL
algorithms in real-world problems, where the dynamics are usually nonlinear and
instabilities are costly, e.g., voltage instability in power systems [240].

Most of the model-based RL methods with guarantees are developed for linear sys-
tems due to their simplicity [56, 62, 85, 160, 166, 213, 242, 243, 270]. The central
goal of these works is to derive finite-time learning and regret guarantees. Re-
cently, there has been a growing interest to extend these results to nonlinear systems.
[192, 235] consider the model learning problem by modeling the underlying system
as a linear function of a known nonlinear basis. [133] study the regret minimiza-
tion in this setting and propose an approach which attains O(

√
𝑇) regret, but is not

computationally or memory efficient. [34] studies a slightly different setting where
the model dynamics are known but the system is subject to unmodeled disturbances
and shows that their certainty equivalent controller attain O(

√
𝑇) regret. Note that,

these works’ study of empirical performances is limited to simulations and they
do not consider the challenges of real-world applications. Our goal is to improve
upon these prior works in terms of regret guarantee and efficiency, as well as prac-
tical implementation. To the best of our knowledge, FALCON is the first efficient
RL algorithm to attain O(

√
𝑇) regret in partially observable nonlinear systems and

achieve effective performance in a challenging real-world task.

6.1 Preliminaries
Notations: The Euclidean norm of a vector 𝑥 is denoted as ∥𝑥∥2. For a given
matrix 𝐴, ∥𝐴∥2 denotes its spectral norm, ∥𝐴∥𝐹 is its Frobenius norm, 𝐴⊤ is its
transpose, Tr(𝐴) is the trace, and 𝜎min(𝐴) is the smallest singular value. 𝐼 is
the identity matrix with appropriate dimensions. N(`, Σ) denotes a multivariate
normal distribution with mean vector ` and covariance matrix Σ. 𝑥𝑎:𝑏 denotes the
sequence of vectors between indices 𝑎 and 𝑏, [𝑥𝑎, . . . , 𝑥𝑏], where the index order
can be increasing or decreasing depending on the choices of 𝑎 and 𝑏.

6.1.1 Setting
Consider an unknown discrete-time partially observable nonlinear dynamical system

𝑥𝑡+1 = 𝑓 (𝑥𝑡 , 𝑢𝑡) + 𝑤𝑡 , 𝑦𝑡 = 𝑔(𝑥𝑡) + 𝑧𝑡 , (6.1)

where 𝑥𝑡 ∈ R𝑛 is the state of the system, 𝑢𝑡 ∈ R𝑝 is the control input, 𝑦𝑡 ∈ R𝑚

is the output of the system, 𝑤𝑡 ∈ R𝑛 is the process noise, and 𝑧𝑡 ∈ R𝑚 is the
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measurement noise. The system dynamics are governed by unknown nonlinear
functions 𝑓 : R𝑛 ×R𝑝 → R𝑛 and 𝑔 : R𝑛 → R𝑚 which respectively live within some
known Reproducing Kernel Hilbert Spaces (RKHS). The additive noise processes
are independent at each time step. At the time 𝑡, the system is at state 𝑥𝑡 and the
agent observes 𝑦𝑡 . Then, the agent applies a control input 𝑢𝑡 , pays a cost 𝐶𝑡 (𝑦𝑡 , 𝑢𝑡)
and the system evolves to 𝑥𝑡+1 at time 𝑡 +1. The sequence of cost functions is known
a priori and we have the following assumption.

Assumption 6.1 (Cost Functions). For any 𝑦, 𝑦′ and 𝑢, 𝑢′ such that max{∥𝑦 −
𝑦′∥, ∥𝑢 − 𝑢′∥} ≤ Γ, for all 𝑡,

|𝐶𝑡 (𝑦, 𝑢) − 𝐶𝑡 (𝑦′, 𝑢′) | ≤ 𝑅(∥𝑦 − 𝑦′∥2 + ∥𝑢 − 𝑢′∥2).

The following proposition states that the system in (6.1) can be equivalently repre-
sented in infinite-order nonlinear autoregressive (NARX) form.

Proposition 6.1.1 (System Equivalence). There exists an infinite-order NARX system
with transition function 𝑓 and measurement function �̄�:

𝑥𝑡+1 = 𝑓 (𝑥𝑡 , 𝑢𝑡 , 𝑦𝑡), 𝑦𝑡 = �̄�(𝑥𝑡) + 𝑒𝑡 , (6.2)

for some process 𝑒𝑡 that depends on 𝑓 , 𝑔, 𝑓 , �̄�, 𝑤𝑡 , 𝑧𝑡 , such that the input-to-output
impulse response of the system in (6.1) is equivalent to input-to-output impulse
response of (6.2).

The proposition follows trivially using the “kernel trick” (which is further discussed
in Section 6.1.4) to write nonlinear functions 𝑓 and 𝑔 in terms of linear mapping of
some basis functions of feature maps and then shaping them up into new nonlinear
functions 𝑓 and �̄� to satisfy the system dynamics. This proposition can be seen as the
nonlinear counterpart of standard reparametrization from state-space representation
to predictor form representation in LQG control systems given in Section 5.1. With
this line of reasoning 𝑥𝑡 can be thought of as the observer form state estimate of 𝑥𝑡
whereas 𝑒𝑡 is the innovation process, yet, clearly not i.i.d. due to nonlinearities.

Fading memory systems are the systems where the effects of past inputs on the output
decay asymptotically [36]. In the identification of unknown nonlinear dynamical
systems, they are usually considered due to the ability to approximate them arbitrarily
close [64]. Note that finite-order nonlinear autoregressive (NARX) systems, i.e.,
nonlinear version of ARX systems studied in Sections 5.4.6 and 5.6.5, are a subset
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of fading memory systems. Therefore, for simplicity of exposition and due to
Proposition 6.1.1, we study finite order NARX systems:

𝑦𝑡 = 𝐹 (𝑢𝑡−1, . . . , 𝑢𝑡−ℎ, 𝑦𝑡−1, . . . , 𝑦𝑡−ℎ) + 𝑒𝑡 , (6.3)

where 𝐹 : Rℎ𝑝+ℎ𝑚 → R𝑚 is an unknown nonlinear function of past ℎ inputs and
outputs, i.e., model order is ℎ, and 𝑒𝑡 ∈R𝑚 are i.i.d. Gaussian, i.e., 𝑒𝑡 ∼N(0, 𝜎2

𝑒 𝐼)
for all 𝑡. Note that the systems with the model given in (6.3) are fundamental in
many industrial applications and the isotropic assumption on 𝑒𝑡 is for simplicity. In
general for a stable infinite-order NARX system in (6.2), the dynamics given in (6.3)
include an additive exponentially decaying term, which should be considered in a
more general study. Therefore, our results can be extended to exponentially fading
NARX systems without the finite order assumption.

Let 𝐹𝑖 (·) : Rℎ(𝑝+𝑚) → R denote the 𝑖th mapping of 𝐹 from input to output, i.e.,
𝑦𝑡,𝑖 = 𝐹𝑖 (𝜙𝑡)+𝑒𝑡,𝑖, for all 𝑖 ∈ 1, . . . , 𝑚, where 𝜙𝑖 = [𝑦⊤𝑖−1, . . . , 𝑦

⊤
𝑖−ℎ, 𝑢

⊤
𝑖−1, . . . , 𝑢

⊤
𝑖−ℎ]

⊤ ∈
Rℎ(𝑝+𝑚) . We have the following assumption on the function class of 𝐹 (·).

Assumption 6.2 (Stable & Lipschitz System). The system 𝐹 (·) is exponentially
input-to-output stable (e-IOS), i.e., for 𝑡 > 𝑡0

∥|E[𝑦𝑡 |𝑦𝑡0 , 𝑢𝑡 , . . . 𝑢𝑡0] ∥ ≤ _𝛼𝑡−𝑡0 ∥𝑦𝑡0 ∥ + 𝐾 sup
𝑖∈[𝑡0:𝑡]

∥𝑢𝑖∥,

for _, 𝐾 >0 and 0<𝛼<1. Moreover, 𝐹 (·) is 𝐿-Lipschitz.

The stability assumption is required to avoid output blow-up due to unmodeled
system dynamics. Moreover, without the Lipschitz assumption, the noise term
might affect the system in arbitrary ways, regardless of the input.

6.1.2 Control Problem
We will study the problem of online control of the unknown system given in (6.3).
In the stochastic optimal control setting, the goal is to minimize the control cost
starting from 𝑦0, i.e.,

min
𝑢0,𝑢1,...,𝑢𝑇

E
[∑︁𝑇

𝑡=0
𝐶𝑡 (𝑦𝑡 , 𝑢𝑡)

��� 𝑦0

]
,

subject to dynamics given in (6.3) with initial condition of 𝑦0 and where 𝑢𝑡 is cho-
sen causally. For nonlinear dynamical systems such as (6.3), finding the optimal
solution to this problem is usually challenging [142]. As a practical and efficient
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alternative, model predictive control (MPC) has been adopted for designing con-
trollers in nonlinear dynamical systems [54]. In MPC, at any time step 𝑡, given the
initial conditions, the transition dynamics (can be an estimated model 𝑓 ), running
and terminal cost functions 𝐶𝑡:𝑡+𝜏 (·, ·), the planner solves:

min𝑢𝑡 ,...,𝑢𝑡+𝜏
∑︁𝑡+𝜏

𝑠=𝑡
𝐶𝑠 (𝑦𝑠, 𝑢𝑠) (6.4)

s.t. 𝑦𝑡+1 = 𝑓 (𝑢𝑡 , . . . , 𝑢𝑡−ℎ+1, 𝑦𝑡 , . . . , 𝑦𝑡−ℎ+1),

a short 𝜏-step optimal control problem, and executes the first action 𝑢𝑡 and continues
this process as it gathers new observations. Intuitively, instead of trying to solve
the challenging global optimal control problem, MPC myopically solves a locally
optimal control problem (6.4). Note that (6.4) presents an unconstrained MPC
problem, and usually physical or safety constraints are added to the formulation.
This makes MPC a viable approach for control design in model-based RL, thus, we
will adopt it in our control design. In particular, we will utilize the sampling-based
MPC called Cross-Entropy Method.

Cross-Entropy Method (CEM):

CEM is a sampling-based (zeroth-order) MPC policy to solve the problem given
in (6.4) [35]. CEM maintains a distribution, predominantly Gaussian, to sample
action roll-outs for the planning horizon and iteratively updates this distribution to
assign a higher probability near lower-cost action sequences based on the estimated
dynamics. After a certain number of updates (once it converges), it executes the first
action on the lowest cost-achieving action sequence in the sampled roll-outs. The
CEM algorithm is given in full detail in Algorithm 14. Despite the simple structure,
one can show that CEM converges to a local optima [116]. However, similar to
other sampling-based MPC methods, CEM can be computationally inefficient in
high-dimensional control problems. To this end, one can use more efficient frame-
works such as CEM-GD [117] which combines zeroth- and first-order optimization
methods. Our studies in [117] show that incorporating the gradient information
within the CEM framework improves the performance with 100× fewer samples per
time step, resulting in around 25% less computation time and 10% less memory
usage. Moreover, the local convergence guarantees of CEM can also translate to
CEM-GD.
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Algorithm 14 Cross Entropy Method (CEM)
1: Input: 𝜏, 𝐾 , 𝑀 , 0 < 𝛾 < 1, 𝑁 , 𝜎𝑖𝑛𝑖𝑡 , �̂� (·), 𝑦𝑡:𝑡−ℎ+1, 𝑢𝑡−1:𝑡−ℎ+1, 𝐶𝑡:(𝑡+𝜏−1) ,
N(`, 𝜎2𝐼)

2: for 𝑖 = 1, 2, . . . , 𝑀 do
3: if 𝑖 = 1 then
4: Set the mean ` to the best action sequence from the previous time-step by

shifting (Warm-Start)
5: Set the variance 𝜎 = 𝜎𝑖𝑛𝑖𝑡
6: Sample 𝐾 𝛾𝑖−1 action sequences 𝑢 𝑗

𝑡:𝑡+𝜏−1 of 𝜏 length using N(`, 𝜎2𝐼), 𝑗 ∈
{1, . . . , 𝐾 𝛾𝑖−1}

7: Compute the trajectory roll-outs ∀𝑢 𝑗
𝑡:𝑡+𝜏−1 using �̂� (·) with initial 𝑦𝑡:𝑡−ℎ+1,

𝑢𝑡−1:𝑡−ℎ+1
8: Compute the cost of each trajectory roll-out using 𝐶𝑡:(𝑡+𝜏−1)
9: Sample best 𝑁 action sequences according to their acquired costs

10: Update ` and 𝜎 to fit the Gaussian distribution to the best 𝑁 action sequences
11: Execute the first action of (i) the best action sequence of the 𝑀th iteration or

(ii) a newly sampled action sequence using N(`, 𝜎2𝐼)

6.1.3 Regret
Similar to previous chapters, we evaluate the performance of our adaptive control
algorithms by their regret. However, in this setting, we consider a slightly different
regret definition and compute the regret with respect to the policy 𝜋★ which uses
the MPC oracle at each time step with the true transition dynamics 𝐹 to design its
control inputs. Thus, the goal of the online control algorithm is to minimize the
following:

Regret(𝑇) =
∑︁𝑇

𝑡=1

(
𝐶𝑡 (𝑦𝑡 , 𝑢𝑡) − 𝐶𝑡 (𝑦𝜋★𝑡 , 𝑢

𝜋★
𝑡 )

)
, (6.5)

after 𝑇 time steps of interaction with (6.3). Since the learning agent does not know
the underlying dynamics 𝑓 , it requires learning it from the data collected in the sys-
tem. Notice that in the prior chapters of this thesis, the standard basis has been used
in learning the underlying linear dynamical systems. In this chapter, learning the
dynamics of the underlying system is done on two different nonlinear bases, which
allows characterizing the prior knowledge of the system dynamics and deriving
finite-time learning guarantees as discussed shortly.

6.1.4 Random Fourier Features (RFF)
Kernel methods are powerful tools used in modeling complicated functional rela-
tionships in many problems in machine learning. They are mainly built upon the
kernel trick, i.e., for some positive definite kernel ^(·, ·), the kernel evaluation of
data points 𝑥1 and 𝑥2 are equivalent to the inner product between possibly infinite-
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dimensional feature representations 𝜓(·) of the data points in a Hilbert space H :
^(𝑥1, 𝑥2) = ⟨𝜓(𝑥1), 𝜓(𝑥2)⟩H , and the representer theorem in Kimeldorf and Wahba
[144]. Given collected data pairs D = (𝑥𝑖, 𝑦𝑖)𝑛𝑖=1 for 𝑥 ∈ R𝑑𝑥 and 𝑦 ∈ R, kernel
methods allow construction of nonlinear models as 𝑓 (·) =∑𝑛

𝑖=1 𝛼𝑖^(𝑥𝑖, ·), such that
𝛼𝑖 are chosen to explain the relationship in D for some positive definite kernel ^.
However, for a large amount of data, solving for 𝛼 is computationally expensive.
For this reason, Rahimi and Recht [226] proposed to approximate the kernel, in
particular, 𝜓(·), with finite-dimensional features 𝑧(·), named as Random Fourier
Features, which provides an unbiased estimate of kernel ^. More formally, they
defined RFF as a 𝐷-dimensional feature representation 𝑧(𝑥) of 𝑥 such that

𝑧(𝑥) B
√︂

2
𝐷


cos

(
𝜔⊤1 𝑥 + 𝑏1

)
...

cos
(
𝜔⊤
𝐷
𝑥 + 𝑏𝐷

)
 , (6.6)

where 𝜔𝑖 are drawn i.i.d. from distribution 𝑝(𝜔) which is the normalized Fourier
transform of the kernel ^, and 𝑏𝑖 are drawn i.i.d. from uniform distribution on
[0, 2𝜋]. This finite-dimensional construction motivated the use of RFF for function
approximation in practice [133]:

𝑓 (·) =
∑︁𝑛

𝑖=1
𝛼𝑖 ⟨𝜓(𝑥𝑖), 𝜓(·)⟩H ≈

∑︁𝑛

𝑖=1
𝛼𝑖𝑧(𝑥𝑖)⊤𝑧(·), (6.7)

and achieved significant empirical success in supervised learning setting [65, 119]
(see [186] for a review). [226] showed that the approximated kernel converges to the
true kernel exponentially fast in the number of features 𝐷. In this work, we provide
a theoretical guarantee to approximate functions that live in an RKHS of a known
kernel using RFF. In particular, we have the following assumption and theorem.

Assumption 6.3 (Nonlinear system in an RKHS). 𝐹𝑖 (·) lives within the RKHS of
infinitely smooth functions defined by a known positive definite continuous kernel
^(·, ·), e.g. Gaussian kernel, for all 𝑖 ∈ 1, . . . , 𝑚.

Theorem 6.1 (Function Approximation Theory of RFF). Suppose 𝐹 : Ω→ R𝑚 for
Ω ⊂ Rℎ(𝑝+𝑚) and Assumption 6.3 holds. For a given choice of 𝐷, let �̄� (·) = Θ∗𝑧(·)
be the best 𝐷-dimensional RFF approximation of 𝐹 for Θ∗ ∈ R𝑚×𝐷 . Then, for some
bounded region of state ∥𝜙∥ ≤ Γ, that depends on the function properties, with high
probability we have sup∥𝜙∥≤Γ ∥�̄� (𝜙) − 𝐹 (𝜙)∥ ≤ Õ(1/

√
𝐷). Here Õ(·) denotes the

order up to logarithmic factors of 𝐷 and hides the dependencies on 𝑛 and Γ.
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The proof can be collected from the extended version of [164] online. At a high level,
the proof combines the spectral convergence guarantee for kernel approximation in
Theorem 6.1 of Rieger and Zwicknagl [229] which shows that the approximation
error of a function that satisfies Assumption 6.3 decays exponentially with the
number of kernel evaluations and a union bound argument over Claim 1 of [226].
This result will be the key to the theoretical guarantees of our adaptive control
algorithm MLPC, in particular, to derive the finite-time learning and stabilization
guarantees in Section 6.2.

Remark 6.1. Note that Theorem 6.1 derives an approximation guarantee within a
bounded region for a vector-valued nonlinear function that lives in a known RKHS.
This setting is significantly more general than the kernelized nonlinear systems
considered in [133, 192], which restricts the systems to be characterized as a
finite sum of kernel evaluations. In our result, we do not make this restrictive
assumption, instead, we consider the function class of infinite sum and study the
explicit approximation error due to finite kernel evaluations.

6.1.5 Fourier Series
A Fourier series is an expansion of a periodic function in terms of an infinite sum
of complex exponentials, or sines and cosines. They are one of the most popular
choices of the set of basis in representing periodic functions or periodic extensions
of functions in a bounded domain due to their ability to approximate functions
arbitrarily [45]. Consider the domain Ω = (0, 2𝜋)𝑑 in R𝑑 . Let 𝑊𝑚,2

𝑝 (Ω) denote the
Sobolev space of order 𝑚 for periodic functions. For a nonlinear function (or its
periodic extension), �̄� (·) : R𝑑 → R, that lives in𝑊𝑚,2

𝑝 (Ω), one can write its Fourier
series as

�̄� (𝑥) = 𝑎0 +
∑︁

𝝎

[
𝑎𝝎 cos

(
𝝎⊤𝑥

)
+ 𝑏𝝎 sin

(
𝝎⊤𝑥

) ]
, (6.8)

where 𝝎 = [𝜔1, . . . , 𝜔𝑑], 𝜔 𝑗 ∈ {1, 2, . . .}, 1 ≤ 𝑗 ≤ 𝑑 and 𝑎𝝎, 𝑏𝝎 are Fourier
series coefficients. Note that this representation can be on infinitely many bases.
However, in approximating �̄� (·), one can choose only a finite number of basis among
𝝎 and find the best approximation on this basis. To this end, the popular choice
is to consider the 𝑛th order Fourier expansion and approximate �̄� (𝑥) in 𝝎 where
𝜔 𝑗 ∈ {1, . . . , 𝑛}. This corresponds to 𝐷 = 1 + 2𝑛𝑑 basis functions and results in a
𝐷-dimensional Fourier series feature representation:

𝜙(𝑥)= [1, cos(𝝎⊤
1 𝑥), sin(𝝎⊤

1 𝑥), ..., cos(𝝎⊤
(𝑫−1)/2𝑥), sin(𝝎⊤

(𝑫−1)/2𝑥)]
⊤. (6.9)



217

One can choose the truncated Fourier series representation to approximate �̄� (𝑥)
such that for

w= [𝑎0, 𝑎𝝎1 , 𝑏𝝎1 , ..., 𝑎𝝎(𝑫−1)/2 , 𝑏𝝎(𝑫−1)/2]⊤,

the approximation is w⊤𝜙(𝑥). However, this does not correspond to the best ap-
proximation in this basis in 𝐿𝑝-norms for 1 ≤ 𝑝 ≤ ∞ [45]. For the best 𝐿𝑝-norm
approximation using (6.9), one needs to solve for the optimal coefficients 𝑎0, 𝑎

∗
𝝎𝒊

and 𝑏∗𝝎𝒊
for 𝑖 ∈ {1, . . . , (𝐷 − 1)/2}. Under the following assumption of the system

dynamics, we have the approximation theoretic guarantee on using order-𝑛 Fourier
basis in representing the underlying system.

Assumption 6.4 (Nonlinear system in Sobolev space of periodic functions). 𝐹𝑖 (·)
(or its periodic extension) lives in𝑊 𝑘,2

𝑝 ( [0, 2𝜋]ℎ(𝑚+𝑝)), i.e., Sobolev space of order
𝑘 for periodic functions, for all 1 ≤ 𝑖 ≤ 𝑚.

Theorem 6.2 (Theorem 4.3 of [237])). Suppose 𝐹 : Ω→ R𝑚 for Ω ⊂ Rℎ(𝑝+𝑚) and
Assumption 6.4 holds. Let \ [𝑖]⊤∗ 𝜙(·) denote the best Fourier series approximation of
𝐹𝑖, using the 𝑛th order Fourier expansion for large enough 𝑛, i.e., 𝐷-dimensional
Fourier basis 𝜙(·). Then, we have

sup
∥𝑠∥≤𝑆

���𝐹𝑖 − \ [𝑖]⊤∗ 𝜙(𝑠)
��� ≤ 𝐶𝑛−𝑘 ∥𝜕𝑘𝐹𝑖 (·)∥𝐿∞ .

for problem-dependent constant 𝐶 = poly(𝑆, 𝑒𝑚, 𝑛), where ∥𝜕𝑘𝐹𝑖 (·)∥𝐿∞ determines
the smoothness of the system.

This result is the multivariate analog of Jackson’s Theorem [124]. The exact values
of required 𝑛 and 𝐶 can be collected from Sections 2 and 3 of [237]. This result
will be the key to the theoretical guarantees of our adaptive control algorithm
FALCON, in particular, to derive the finite-time learning and stabilization guarantees
in Section 6.3.

6.2 Model Learning and Control with Random Fourier Features
In this section, we study online learning and control of an unknown partially ob-
servable nonlinear dynamical system given in (6.3) and design a sample efficient
and practical RL framework with finite-time learning to control guarantees. Using
Proposition 6.1.1, we propose our framework, Model Learning Predictive Control
(MLPC), for practical, finite order, stable, and smooth NARX systems.

MLPC uses kernel-based feature representation methods, i.e., Random Fourier Fea-
tures (RFF) [226], to represent the unknown nonlinear dynamics. It deploys uniform
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exploratory inputs to excite the underlying system and gather information about the
system dynamics. Using the data collected, MLPC tackles the system identification
problem via RFF representation and solves a regularized least-squares problem to
estimate the underlying system with finite-time guarantees. The proposed estima-
tion method works under both open-loop and closed-loop controllers as long as the
inputs persistently excite the system. This allows for model estimate updates while
controlling the system. In the analysis, we use the novel function approximation
theoretic guarantee for RFF given in Theorem 6.1 which proves that the best RFF
approximation of a nonlinear system has an approximation error of Õ(1/

√
𝐷), where

𝐷 is the dimension of RFF representation. Then, we show that under the persistence
of excitation, the estimation error of the underlying nonlinear system attains the rate
of Õ(1/

√
𝐷 +

√︁
𝐷/𝑇) after 𝑇 samples.

In order to obtain a practical online control algorithm, the MLPC framework uses
an MPC oracle to design the adaptive controller. In particular, MLPC provides the
estimated system dynamics to the MPC oracle, which uses it to design the control
inputs. In our analysis, we compare the performance of MLPC to the controller, 𝜋∗,
that uses the same MPC oracle with the true system dynamics. We show that if the
true model is well-approximated by the estimated model, then the controllers de-
signed by the MPC oracle via estimated dynamics achieve comparable trajectory and
cost with respect to 𝜋∗. Thus, we show that using all data gathered and occasionally
updating the model estimates, MLPC attains regret upper bound of Õ(𝑇2/3).

Finally, we deploy the MLPC framework in online control of the inverted pendulum
task. We use two different sampling-based MPC oracles in planning: MPPI [294]
and CEM [35]. We show that in both variants MLPC quickly learns the underlying
unknown nonlinear system which yields nearly optimal MPC policies and low regret.
This demonstrates the flexibility and the modularity of the proposed framework
which allows tuning the algorithm for task-specific constraints.

6.2.1 Model Learning Predictive Control Framework
In this section, we present Model Learning Predictive Control (MLPC), an efficient
online learning and control algorithm that learns the model dynamics through in-
teraction with the system and deploys an MPC oracle-based controller using the
learned model. The pseudo-code of MLPC is provided in Algorithm 15. It has two
phases: Exploration and Adaptive Control.

Exploration: MLPC starts with an exploration period of length 𝑇𝑤 time-steps to
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Algorithm 15 MLPC
1: Input: 𝑇 , 𝑇𝑤, ℎ, 𝑡𝑢𝑝, 𝑡𝑝, 𝐷, 𝑛, 𝑚, 𝑝, 𝐶0:𝑇

—— Exploration ——————————————
2: for 𝑡 = 1, 2, . . . , 𝑇𝑤 do
3: Deploy P.E. inputs 𝑢𝑡 and store D0= {𝑦𝑡 , 𝑢𝑡}𝑇𝑤𝑡=0

—— Adaptive Control ———————————–
4: Form 𝜙𝑡 = [𝑦⊤𝑡−1:𝑡−ℎ, 𝑢

⊤
𝑡−1:𝑡−ℎ]

⊤ using D0 for ℎ≤ 𝑡 ≤𝑇𝑤
5: Compute 𝑧 (𝜙𝑡), 𝐷-dim RFF vector for all 𝜙𝑡
6: for 𝑖 = 0, . . . do
7: Solve (6.12) for Θ̂𝑖 & Form �̂�𝑖 (·) = Θ̂⊤𝑡 𝑧(·)
8: for 𝑡 = 𝑇𝑤 + 𝑖𝑡𝑢𝑝 + 1, . . . , 𝑇𝑤 + (𝑖 + 1)𝑡𝑢𝑝 do
9: 𝑢𝑡 =MPC-Oracle

(
�̂�𝑖, 𝑦𝑡:𝑡−ℎ+1, 𝑢𝑡−1:𝑡−ℎ+1, 𝐶𝑡:(𝑡+𝑡𝑝)

)
10: Observe 𝑦𝑡+1 & Form 𝜙𝑡+1 and 𝑧(𝜙𝑡+1)

collect some data about the unknown system. Due to Assumption 6.2, MLPC uses
bounded, persistently exciting inputs, without aiming to control the system. The goal
is to guarantee an accountable first estimate of the model for reliable controller de-
sign. In Section 6.2.2, we discuss the choice of 𝑇𝑤 in order to provide finite-time es-
timation and controller guarantees. Note that in practice if Assumption 6.2 does not
hold, MLPC can use a known stabilizing controller of the system to safely collect data.

Adaptive Control: After the exploration period, MLPC starts controlling the under-
lying system. It operates in epochs with user-defined parameter 𝑡𝑢𝑝, i.e., each epoch
lasts for 𝑡𝑢𝑝 time steps. Note that, unlike the standard RL setting, MLPC is a single
trajectory algorithm, i.e., there is no reset at the end of epochs. At the beginning of
each epoch, MLPC uses the history of interactions with the system to identify the
system dynamics. In this regard, in epoch 𝑘 , it constructs subsequences of length ℎ
input-output pairs using all collected data D𝑘 = {𝑦𝑡 , 𝑢𝑡−1, 𝑦𝑡−1, . . . , 𝑢0, 𝑦0}:

𝜙𝑖 = [𝑦⊤𝑖−1, . . . , 𝑦
⊤
𝑖−ℎ, 𝑢

⊤
𝑖−1, . . . , 𝑢

⊤
𝑖−ℎ]

⊤ ∈ Rℎ(𝑝+𝑚) , (6.10)

for all ℎ ≤ 𝑖 ≤ 𝑡 where 𝑡 = 𝑇𝑤 + (𝑘 − 1)𝑡𝑢𝑝. From the system model given in
(6.3), we know that 𝑦𝑖 = 𝐹 (𝜙𝑖) + 𝑒𝑖. Using the known kernel ^ and the RFF
generation procedure described in Section 6.1.4, MLPC computes 𝐷-dimensional
RFF representation of 𝜙𝑖: 𝑧(𝜙𝑖) for all 𝑖. The number of features𝐷 is a user-specified
parameter, which can be adjusted depending on the difficulty of the learning and
control task, as well as the computational budget. As Section 6.2.2 demonstrates, the
choice of 𝐷 also brings a theoretical trade-off between approximating the nonlinear
system dynamics, system identification, and the regret guarantees.



220

Equation (6.7) shows that 𝐹 (𝜙𝑖) is linear in 𝜓(𝜙𝑖), the possibly infinite-dimensional
feature representation of 𝜙𝑖, which can be approximated via 𝑧(𝜙𝑖) to obtain

𝑦𝑖 ≈ Θ⊤∗ 𝑧(𝜙𝑖) + 𝑒𝑡 , (6.11)

for some unknown Θ∗ ∈ R𝐷×𝑚. Thus, MLPC considers the model in (6.11) for
system identification. At the beginning of epoch 𝑘 , MLPC obtains an estimate of Θ∗
by solving the following regularized least squares problem:

min
Θ
_∥Θ∥2𝐹 +

∑︁𝑡

𝑖=ℎ
∥𝑦𝑖 − Θ⊤𝑧(𝜙𝑖)∥22, (6.12)

for some _ > 0. The closed-form solution of (6.12) is given as

Θ̂𝑘 = (𝑍𝑡𝑍⊤𝑡 + _𝐼)−1𝑍𝑡𝑌
⊤
𝑡 , (6.13)

where 𝑌𝑡 = [𝑦𝑡 , . . . , 𝑦ℎ] ∈R𝑚×𝑁 , 𝑍𝑡 = [𝑧(𝜙𝑡), . . . , 𝑧(𝜙ℎ)] ∈R𝐷×𝑁 for 𝑁 = 𝑡 − ℎ + 1.
Using Θ̂𝑘 , MLPC forms an estimate of the system dynamics as �̂�𝑘 (·) = Θ̂⊤

𝑘
𝑧(·).

This system identification process is repeated to obtain improved estimates of (6.3)
at the beginning of each epoch, i.e., in every 𝑡𝑢𝑝 time steps. As mentioned, the
update frequency of 𝑡𝑢𝑝 is a user-specified parameter and it can vary according to
computational complexity and task. Moreover, instead of using the closed-form
solution given (6.13), the model estimate updates can be done via batch or online
updates using the standard linear regression techniques.

Once MLPC has an estimated system dynamics at the beginning of the epoch, it
uses an MPC oracle to design the control inputs during the epoch. Let 𝑡𝑝 denote
the planning horizon of the MPC oracle. At any time step 𝑡, MLPC provides the
recent estimated system dynamics, 𝐹𝑘 (·), last ℎ input-output pairs as the initial
state, (𝑢𝑡−1:𝑡−ℎ+1, 𝑦𝑡:𝑡−ℎ+1), and the next 𝑡𝑝 cost functions, 𝐶(𝑡+𝑡𝑝):𝑡 , to the MPC
oracle. Upon receiving these, the MPC oracle solves the 𝑡𝑝 time step optimal control
problem for the given system with initial conditions and it returns the control action
𝑢𝑡 to be taken by MLPC on the underlying system 𝐹 (·). In the analysis and practical
implementations, efficient oracles are considered, e.g., constrained optimization
based [76] or sampling-based [35, 294] methods. Note that if there are any control
constraints, MLPC can include them in its query to the MPC oracle. Upon deploying
the received control input 𝑢𝑡 , the system gives output 𝑦𝑡+1. Using 𝑢𝑡 and the history of
input-output pairs, MLPC constructs 𝜙𝑡+1 and 𝑧(𝜙𝑡+1). This control input generation
process repeats until the end of the epoch.
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6.2.2 Regret Analysis
In this section, we will provide the learning and regret guarantees of MLPC. We will
first discuss the finite-time system identification guarantee of Θ∗ via the exploration
phase. This result will be used to show that after sufficient exploration, the NARX
system is well-approximated. We have the following assumption in the exploration
phase.

Assumption 6.5 (Exploratory Inputs). We have access to a set of bounded persis-
tently exciting (PE) inputs that can be used for exploration and excite the system
uniformly. In other words, the smallest eigenvalue of the design (sample covariance)
matrix 𝑍𝑡𝑍⊤𝑡 scales linearly over time.

This assumption is fairly standard and it guarantees the consistent and reliable
estimation of the underlying system.

6.2.3 Learning System Dynamics
Since RFF representation turns the NARX system into a linear system form in (6.11),
we can use the analysis of online linear least squares studied in Section 5.3.

Lemma 6.1. Let Θ̂1 be the solution to (6.12) at the end of exploration phase, i.e., at
𝑡 = 𝑇𝑤. Let 𝑉𝑡 = _𝐼 + 𝑍𝑡𝑍⊤𝑡 and ∥Θ∗∥𝐹 ≤ 𝑆. For 𝛿 ∈ (0, 1), with probability 1 − 𝛿,
we have

Tr((Θ̂1 − Θ∗)𝑉𝑡 (Θ̂1 − Θ∗)⊤) ≤ 𝛽2
𝑡 , (6.14)

where 𝛽𝑡 = 𝜎𝑒
√︂
𝑚𝐷 log

(
1+2𝑡/_𝐷

𝛿

)
+
√
_𝑆 since ∥𝑧(𝜙)∥22 ≤ 2 due to RFF construc-

tion. If Assumption 6.5 holds, then

∥Θ̂1 − Θ∗∥ = Õ(
√︁
𝐷/𝑇𝑤).

Lemma 6.1 shows that the estimation error on Θ∗ decays with the optimal 1/
√
𝑡

rate and with
√
𝐷 scaling from the number of RFF. This result shows that as the

number of features increases, the estimation of the best linear system, Θ∗ becomes
harder. However, the number of features shouldn’t be too small, since it directly
affects how well the underlying nonlinear function is approximated. This brings a
trade-off in the number of features, which is soon analyzed in the approximation of
the underlying NARX system and obtaining a reliable system model over time. The
following result trivially combines Lemma 6.1 with the approximation theoretical
guarantee on RFF approximation, i.e., Theorem 6.1.
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Corollary 6.2.1. Suppose Assumptions 6.2 and 6.3 hold. For a given choice of 𝐷,
for some bounded region of state ∥𝜙∥ ≤ Γ, that depends on the function properties
_, 𝐾, 𝛼, using the estimate of Θ̂1 to construct an estimate of the underlying system
�̂�1(·) = Θ̂⊤1 𝑧(·) at the end of the exploration phase, with high probability, we have

sup
∥𝜙∥≤Γ

∥𝐹 (𝜙) − �̂�1(𝜙)∥ = O(1/
√
𝐷 +

√︁
𝐷/𝑇𝑤), (6.15)

6.2.4 Boundedness of state
Next, we show that the MPC oracle keeps the state bounded during the adaptive
control period using the refined estimate of the system dynamics according to
Corrollary 6.2.1. To this end, we provide the following condition on the MPC oracle
which allows us to quantify stabilization behavior and the regret guarantee of MLPC.

Assumption 6.6 (MPC Oracle). The MPC oracle that uses 𝐹 (·) to design inputs
achieves e-IOS closed-loop dynamics on the underlying system such that

∥𝑦𝑡 ∥ ≤ (1 − 𝜌)𝑡−𝑡0 ∥𝑦𝑡0 ∥ + 𝐿 sup
𝑖∈[𝑡0:𝑡]

∥𝑒𝑖∥,

for 𝑡 > 𝑡0, 𝐿 > 0 and 0 < 𝜌 < 1. Moreover, for any NARX �̂� (·) such that
sup∥𝜙∥≤𝐵 ∥𝐹 (𝜙) − �̂� (𝜙)∥ ≤ 𝜖 , the MPC oracle that uses �̂� to design inputs also
achieves e-IOS on the underlying system for 𝜌′ = 𝜌/2 and 𝐿′ = 2𝐿 such that

∥𝑦𝑡 ∥ ≤ (1 − 𝜌′)𝑡−𝑡0 ∥𝑦𝑡0 ∥ + 𝐿′ sup
𝑖∈[𝑡0:𝑡]

∥𝑒𝑖∥,

and the inputs designed by the MPC oracle are 𝐿𝑜-Lipschitz in the planning model
within this neighborhood.

The first statement says the MPC oracle stabilizes the underlying system. The second
statement states that if the estimated model dynamics is within a neighborhood of the
underlying system in a bounded region of inputs 𝜙, then the MPC oracle stabilizes
that system as well but at a slower rate. Note that this assumption is mild. For
instance, as discussed in Chapters 3 and 5, one can show that this assumption holds
for linear dynamical systems. Thus, intuitively, it holds for nonlinear systems where
the validity of the linearization is defined via the bounded region of inputs. Based
on Assumption 6.6, if the MPC oracle stabilizes the system then we obtain bounded
outputs 𝑦𝑡 . Thus, we further consider that the inputs generated by the MPC oracle
are bounded in this stabilizing regime due to the choice of control costs 𝐶 (·, ·) and
the MPC oracle construction. With this, we are ready to state the required amount of
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exploration and the number of features MLPC requires to maintain stable closed-loop
dynamics in adaptive control.

Lemma 6.2. For the 𝜖 defined in Assumption 6.6, if the number of RFF𝐷 = O(1/𝜖2)
and the warm-up duration 𝑇𝑤 = O(1/𝜖4), then MLPC using the transition dynamics
�̂�1 = Θ̂⊤1 𝑧(·) in the MPC oracle achieves e-IOS with 𝜌′ and 𝐿′.

The result follows directly from optimizing 𝐷 and 𝑇𝑤 for 𝜖 error given in Assump-
tion 6.6. Note that with this new e-IOS, we can bound the outputs of the system,
thus the covariates 𝜙, during the adaptive control phase similar to the exploration
phase, i.e., ∥𝜙𝑡 ∥ ≤ Γ′ for Γ′ determined by 𝜎𝑒, 𝐿′, 𝜌′ for 𝑡 > 𝑇𝑤.

6.2.5 Regret Guarantees
Once the stabilization of MPC oracle with the estimated system dynamics is satisfied,
MLPC can safely deploy the control inputs which are bounded as described and attain
bounded outputs. Finally, we have the following assumption on the inputs designed
by the MPC oracle.

Assumption 6.7. For any nonlinear system �̂� (·) such that sup∥𝜙∥≤𝐵∥𝐹 (𝜙)−�̂� (𝜙)∥ ≤
𝜖 , the MPC oracle that uses �̂� to design inputs persistently excites the underlying
system 𝐹.

In practice, the condition above can be satisfied by the combination of unmodelled
system dynamics and system noise. Moreover, using sampling-based MPC oracles
to design inputs would also improve the randomness in the dynamics which may
contribute toward Assumption 6.7. In particular, in our experiments in Section 6.2.6,
we use sampling-based MPC oracles and we observe that the system identification
errors decrease consistently indicating the validity of Assumption 6.7. The following
states the regret upper bound of MLPC.

Theorem 6.3. Let 𝑇𝑤 be chosen such that it satisfies the condition in Theorem
6.2. If Assumption 6.7 holds, then for 𝐷 = max{O(1/𝜖2),O(𝑇1/3)} MLPC attains
Regret(𝑇) = Õ(𝑇2/3).

The proof can be collected from the extended version of [164] online. At a high
level, it combines all the results derived in Section 6.1 and the current section. We
first show the closeness of the trajectory of inputs and outputs generated by MLPC
that uses the estimated system dynamics to the trajectory of MLPC with the true
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underlying system dynamics using the stability of the designed controllers. We
then invoke Assumption 6.1 and show that regret of MLPC scales quadratically with
sup∥𝜙∥≤𝐵 ∥𝐹 (𝜙) − �̂�𝑡 (𝜙)∥ = O(1/

√
𝐷 +

√︁
𝐷/𝑡), since the adaptive control inputs

satisfy the PE condition through Assumption 6.7, we get

Regret(𝑇) = 𝑇𝑤 +
𝑇

𝐷
+ 𝐷 log(𝑇) +

√
𝑇.

From Lemma 6.2 with 𝐷=max{O( 1
𝜖2 ),O(𝑇

1
3 )} gives the advertised result.

6.2.6 Experiments
In this section, we present our empirical study of MLPC. We evaluate the MLPC
framework on the inverted pendulum task from OpenAI Gym [39] using two different
sampling based MPC oracles: MPPI [294] and CEM [35]. Note that these MPC
oracles are computationally efficient and can handle non-convexities in the system
dynamics and the cost functions. Moreover, they can be parallelized to sample
large amount of trajectories to achieve improved performance. For each variant,
Algorithm 15 is implemented and the MPC oracle is called for planning at each
time-step, i.e., generate the control input. MLPC is run for 1000 time steps and with
three randomly chosen seeds. The figures provide the cumulative cost and they are
obtained by averaging over three runs.

The inverted pendulum task is an NARX system of order ℎ = 1, where the observa-
tions are 𝑚 = 3-dimensional, cosine and sine of the angle and the angular velocity,
and the input is the torque applied at the contact point. We use RFF to represent
the mapping from 𝜙 ∈ R4 to the next observation. Note that with known dynamics,
the optimal controller rapidly achieves zero instantaneous cost, thus the cumulative
cost plots given below are equivalent to the regret behavior.

MLPC with MPPI Oracle

In the experiments, we tested the effect of number of RFF𝐷 on the regret and learning
the underlying system. To this end, we run MLPC with𝐷 = 10, 30, 100, 1000. Figure
6.1 shows the results. It can be seen that 10 Random Fourier features are not enough
to represent the underlying NARX. On the other hand, once enough RFF is provided
MLPC learns to control the underlying system dynamics very quickly. Moreover,
in parallel to the theoretical trade-off discussed in Section 6.2.2, there is a trade-off
in 𝐷 experimentally. Larger 𝐷 values result in harder learning tasks for simple
models and can obtain inferior performance. In Figure 6.1, it can be seen that the
best performance is obtained with 𝐷 = 50.
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Figure 6.1: Cumulative Cost of MLPC with MPPI and CEM respectively for Different
Number of RFF.

MLPC with CEM Oracle

Similar to the MPPI variant, 𝐷 = 10 is not enough to represent the nonlinear
dynamics and for other 𝐷 values the NARX is learned rapidly. Note that the optimal
performance is achieved with 𝐷 = 30. This shows that the number of features can
depend on the choice of MPC oracle in practice.

6.3 Fourier Adaptive Learning and Control for Disturbance Rejection Under
Extreme Turbulence

Turbulent atmospheric winds often contain transient flow disturbances and aerody-
namic forces that can affect a variety of systems and structures [32]. These forces are
particularly significant for aerodynamic technologies like unmanned aerial vehicles
(UAVs) and wind turbines, which rely on fluid interaction for regular operation and
can be damaged when operating in turbulent conditions [136, 241, 290]. Developing
active control strategies to mitigate the effects of these turbulent forces is one of the
most important challenges in the safe deployment of UAV technologies or extending
the lifetime and reliability of wind turbines [46, 109, 128]. Developing and utilizing
complex flow models for control is challenging in real-time due to sensor noise,
low-latency, and high-frequency control requirements [41, 115, 220].

Conventional control strategies for UAVs, such as proportional-integral-derivative
(PID) controllers, are designed to reactively correct inertial deviations from the
desired trajectory without taking into consideration the underlying flow dynamics
or the source of the disturbance [103, 107, 250]. These approaches are often insuf-
ficient for maintaining stability in extreme atmospheric turbulence, which prevents
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deployment of these technologies in safety-critical scenarios such as deploying un-
manned aerial vehicles (UAV) in densely populated urban areas [113, 195, 200],
such as Figure 6.2A.

In contrast, biological swimmers and flyers have the ability to directly observe and
respond to the physics responsible for changes in motion [31, 73, 251, 266]. By
drawing inspiration from these biological systems, there have been considerable
efforts to improve control strategies for UAVs by using easily measurable flow
quantities, such as pressure, to anticipate and mitigate the effects of turbulent dis-
turbances [96, 149, 194, 201, 215, 239]. The majority of these works again utilize
the flow-sensing information within PID control frameworks which limits their de-
sirable performance to low velocities [96, 149, 194, 201] or they consider uniform
wind/flow scenarios where the eddies and gusts have smaller scale than the UAVs
which result in small aerodynamic disturbances [215, 239].

To tap into the potential of flow-sensing in designing disturbance rejection policies,
reinforcement learning (RL), a machine learning area, has been recognized as a
promising framework, due to its ability to learn and adapt to the unmodeled dynamics
and design nonlinear policies with various objectives. Most of the prior works on
RL for flow control have focused on model-free RL techniques and developed in
computational fluid dynamic (CFD) simulations. Model-free RL methods do not
construct an explicit model of the system dynamics and aim to learn the control
policies directly through interactions with the system [255]. Therefore, they are
the most intuitive choices for policy design in environments difficult to model
such as turbulent flow dynamics. Among these model-free RL works, Bieker et
al. [29] introduced a novel framework with online learning to predict and control
flow in a 2D CFD simulation. Gunnarson et al. [99] introduced an algorithm to
navigate a simulated “swimmer” across an unsteady flow in a 2D simulation. In the
experimental studies, Fan et al. [80] demonstrated the first experimental applications
of model-free RL in fluid mechanics. Recently, Renn and Gharib [228] used a
model-free RL method for controlling the aerodynamic forces on an airfoil under
turbulent flow in an experimental setting (similar to the one considered in this work)
and achieved state-of-the-art disturbance rejection performance, outperforming PID
control. They also documented that the power spectrum of the turbulent flow at high
Reynolds numbers is dominated by the low-frequency components which inspired
the development of the algorithm in this work. However, despite this strong empirical
performance, their method suffers from well-known limitations of the model-free
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Figure 6.2: (A) Complex airflow structures in urban environments. (B) The wing has
9 sensors to measure the airflow (8 equally-spaced pressure taps and 1 pitot tube) and
is mounted on a one-dimensional load cell to measure the lift. Trailing-edge flaps
change orientation to manipulate the aerodynamic forces. (C) Experiment setup to
create irregular turbulent wake of a bluff body under high wind speeds. (D) Smoke
visualization of the turbulent wake of a cylinder at a smaller Reynolds number. This
image is obtained at the Caltech Real Weather Wind Tunnel system at a significantly
lower flow speed than the experiments conducted in this work for visualization
purposes. The actual flow conditions used in our studies were too turbulent to have
clear smoke visualization. (E) Under a uniform flow𝑈∞, symmetric airfoils do not
have any vertical aerodynamic forces on them when they are aligned with the airflow.
However, altering the position of a trailing edge flap on the airfoil can modify the lift
coefficient𝐶𝐿 , yielding an upward or downward aerodynamic lift force. (F) Outline
of FALCON, a model-based reinforcement learning framework that allows effective
modeling and control of the aerodynamic forces due to turbulent flow dynamics and
achieves state-of-the-art disturbance rejection performance.
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RL methods, namely, extensive and laborious data collection, and brittle policies.

Overview of Contributions

In this section, we take on the challenge of designing a model-based RL framework
for flow-informed aerodynamic control in a highly turbulent and vortical environ-
ment to overcome these limitations. We propose an efficient model-based RL
algorithm, Fourier Adaptive Learning and Control (FALCON), for online control of
unknown partially observable nonlinear dynamical systems, in particular for distur-
bance rejection under unknown extreme turbulence (Figure6.2F). FALCON leverages
the domain knowledge that the underlying turbulent flow dynamics are well-modeled
in the frequency domain and that most of the energy in the turbulent flows is present
in low-frequency components [222, 228]. Therefore, it learns the underlying par-
tially observable system in a succinct Fourier Series basis. FALCON consists of two
main parts: a warm-up phase and adaptive control in epochs phase. In the warm-up
phase, using only a small amount of flow data (35 seconds-equivalent to approxi-
mately 85 vortex-shedding interactions), FALCON recovers a succinct Fourier basis
that explains the collected data and enforces that this learned basis is mostly com-
posed of low-frequency components following the prior observations on turbulent
flow dynamics. It then uses this basis to learn the unknown linear coefficients that
best fit the acquired data on the learned Fourier basis during the adaptive control
phase.

In the control design, FALCON uses model predictive control (MPC) and efficiently
solves a short-horizon planning problem at every time step with the learned sys-
tem dynamics. This recurrent short-horizon planning approach allows FALCON to
adapt to the sudden changes in the flow while designing more sophisticated policies
that consider future flow effects in contrast to the conventional purely reactive con-
trollers. Moreover, the simple yet physically accurate dynamics learning approach of
FALCON further facilitates the effective control design, which results in a sample-
efficient and high-frequency control policy. During the adaptive control phase,
FALCON refines its model estimate, i.e., the linear coefficients, in epochs in order
to improve the learned model, which in turn improves the performance of the MPC
policy. Overall, FALCON provides a simple, efficient, and interpretable dynamics
modeling and an adaptive policy design method for the flow-predictive aerody-
namic control problem and significantly outperforms the state-of-the-art model-free
RL methods and conventional control strategies, i.e., PID, using only a total of 9 min-
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utes of training data representative of approximately 1300 vortex-shedding cycles.
FALCON easily incorporates the physical and safety constraints in the policy design
and builds on a fundamental understanding of how well nonlinear systems can be
approximated and how these approximation errors affect the control performance,
which we support with rigorous theory.

We implement FALCON on an experimental aerodynamic testbed that abstracts the
fundamental physics involved in flight through a turbulent atmospheric flow and is
specifically relevant for fixed-wing UAV applications. This testbed consists of a
3D-printed airfoil with actuated trailing edge flaps and an array of pressure sensors
to measure the surrounding flow (Figure 6.2B). The system is mounted in a closed-
loop wind tunnel on a load cell measuring the aerodynamic lifting force acting on
the airfoil. The testbed is placed in the wake of a bluff body at a Reynolds number
of 230, 000, which generates a highly turbulent and vortical environment (Figure
6.2C). The aerodynamic control goal is set to minimize the standard deviation of the
lift forces by adjusting the position of the trailing-edge flaps in response to incoming
disturbances with the help of flow sensors (Figure 6.2E). In free flight, this would
be equivalent to minimizing the inertial deviations along the lifting axis.

Through these wind tunnel experiments, we report that FALCON achieves 37%
better disturbance rejection performance than the state-of-the-art model-free RL
method [228], using only a single trajectory and 8 times less data. Moreover, we
document a performance improvement of 45% over the conventional reactive PID
controller. Overall, we find that the superior performance of FALCON is consistent
over independent runs in the highly irregular unsteady turbulent flow dynamics,
demonstrating the adaptation and generalization capability of FALCON to the unseen
conditions.

6.3.1 Results
In this section, we first explain the key insights behind the design of our model-based
reinforcement learning algorithm, FALCON. Second, we discuss the experimental
platform for data collection and highlight key aspects of the experiments. In partic-
ular, we present the flow-informed aerodynamic testbed and the characterization of
the turbulent environment used in our aerodynamic control experiments. Finally, we
discuss the training and test performance of FALCON and compare it with several
state-of-the-art baseline methods. We observe that FALCON consistently outper-
forms the prior learning-based and conventional controllers by a significant margin
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Figure 6.3: FALCON Framework. It consists of two phases: Warm-Up and
Adaptive Control in Epochs. (A) Adaptive Control in Epochs: FALCON models
the system dynamics as a linear map of the representation of a short history (ℎ-
length) of action-measurement pairs in the succinct Fourier basis learned in the
warm-up phase. FALCON learns the unknown linear coefficients that best model
the dynamics via online least squares. It updates the estimated system dynamics,
i.e., the linear coefficients, at the end of each epoch, and during the epochs, it
uses Cross-Entropy Method (CEM), a sampling-based MPC method, to control
the airfoil under extreme turbulence using the estimated system dynamics while
satisfying desired lift and safety requirements. (B) Warm-up: It is a one-time
35-second process before starting the adaptive control phase for safely collecting
some exploratory data about the unknown system to recover a relevant Fourier basis
to be used in learning and adaptive control. To achieve this, FALCON forms ℎ-
length subsequences of action-measurement pairs (a short history) from the safely
collected dataset and solves the Lasso problem on the ℓ1-constrained Fourier basis
representation of these subsequences. FALCON selects the Fourier basis vectors
that correspond to non-zero coefficients in the solution of the Lasso problem as
the succinct Fourier basis 𝜙(·) for the entire adaptive control in epochs phase for
learning and control of the system.
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while requiring order-of-magnitude fewer samples.

Novel Model-based RL Framework: FALCON

FALCON has two main phases: a warm-up and an adaptive control in epochs phase
(Figure 6.3). The warm-up phase is a short initial period, where FALCON collects
initial data about the fully unknown system. The goal is to purely explore the system
and recover a coarse model of the dynamics. To that end, FALCON executes smooth
and safe actions, i.e., time-correlated Gaussian inputs, that safely excite the system
(see Methods for other variants). Since FALCON relies on pressure sensors on the
airfoil to measure the system dynamics, it operates under partial observability. To
overcome the uncertainties that partial observability brings, FALCON uses a short
history of actions and measurements to model the system dynamics. At the end
of the warm-up phase, FALCON uses the data collected to carefully learn the most
relevant Fourier basis that explains the observed turbulent dynamics. FALCON is
data efficient and requires only 35 seconds of flow data during the warm-up phase
to recover an informative Fourier basis. This 35 seconds of flow data include fewer
than 1500 samples taken over a period spanning approximately 85 vortex-shedding
events.

FALCON incorporates several key features that achieve data and computational
efficiency in the basis learning process. In particular, FALCON uses ℓ1-constrained
(sparse) Fourier basis, as well as Least Absolute Shrinkage and Selection Operator
(Lasso) [264] to recover a succinct basis representation (see details in Methods).
This improved basis selection yields a significantly compact model representation
while allowing physically accurate modeling of the underlying system dynamics
due to the low-frequency dominant choice of Fourier basis, i.e., sparse Fourier basis
vectors [25]. Indeed, spectral methods and modal analyses for modeling turbulent
fluid dynamics are well-established concepts [121, 256], and it is known that large
eddies with low frequencies contain the most energy in turbulent flows [222]. This
inductive bias in modeling via sparse Fourier basis reduces the number of samples
required to learn the turbulent dynamics with small modeling errors and alleviates the
computational burden in the predictive control design, facilitating high-frequency
control actions. FALCON allows flexibility in the basis learning procedure such that
the number of Fourier basis used in model learning could be easily adjusted based
on the prior knowledge of the system dynamics, the difficulty of the learning task,
and the computational budget.



232

After recovering a succinct Fourier basis for model learning, FALCON starts the
adaptive control in epochs phase, Figure 6.3A. It estimates the model dynamics
as a linear model in the learned Fourier basis and aims to learn the unknown
linear coefficients that best fit the acquired data onto this basis. In particular,
FALCON solves an online least-squares problem that has a closed-form solution to
learn these linear coefficients. This interpretable and lightweight model learning
allows online and/or batch updates for computational efficiency and comes with
strong learning theoretical guarantees for the robustness of modeling (see Materials).

During this phase, FALCON designs an online control policy based on this learned
model while improving the system dynamics model in an online fashion over time.
This process goes in epochs with doubling duration, i.e., each epoch is double
the length in seconds of the previous epoch, where at the end of each epoch FAL-
CON updates its linear coefficient estimates on the model for better-refined dynamics
modeling and control. This epoch schedule reduces the number of model updates
toward the later stages of adaptive control where the dynamics are already well-
modeled and only small tuning is required to further improve. We would like to
highlight that FALCON is a single trajectory algorithm in the sense that it does
not require a reset between epochs, which makes it efficient in the data collection
process.

As the online control policy, FALCON uses model predictive control (MPC) with
the estimated model dynamics to design the control inputs during the adaptive
control phase. For controlling nonlinear dynamical systems such as aerodynamic
control in turbulent flow considered in this work, finding the optimal solution to the
control problem is usually challenging [142]. As a practical and efficient alternative,
MPC policies have been the dominant choice for designing controllers in nonlinear
dynamical systems [54]. Given the initial conditions, the transition dynamics (can
be an estimated model or a nominal model), the running costs, and the terminal
costs at any given time step, the objective in MPC is to solve a short horizon
optimal control problem and execute the first action of the solution sequence. This
process is then continued as we gather new observations. Intuitively, instead of
trying to solve the challenging global optimal control problem, MPC myopically
solves a locally optimal control problem. Usually physical or safety constraints
on actions, observations, and dynamics are added in the MPC formulation due to
its simplicity of implementation. The choice of the MPC policy depends on the
control task. In general, the MPC policies are either optimization-based [76] or
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sampling-based [35]. However, sampling-based methods are usually preferred in
model-based RL due to challenging nonlinear system dynamics and complicated
cost and constraint functions [294].

Therefore, at every time step of the adaptive control phase, FALCON deploys a
Cross-Entropy Method (CEM) policy, a sampling-based MPC policy [35], to design
control actions using the most recent system dynamics estimate as the transition dy-
namics. CEM maintains a distribution, predominantly Gaussian, to sample action
roll-outs for the short planning horizon and iteratively updates this distribution to
assign a higher probability near lower cost action sequences based on the estimated
system dynamics. After a certain number of updates, it executes the first action
on the lowest cost-achieving action sequence in the sampled roll-outs (see further
details of MPC design and CEM, Section 6.1, and in Methods 6.3.3). FALCON takes
in the most recent short history of actions and measurements as the initial condition
for short-horizon MPC objective. For the running and terminal control costs FAL-
CON can utilize any kind of cost functions as long as they can be evaluated efficiently
depending on the control task. In our experiments, we design the cost function of
FALCON based on our aerodynamic control objective such that FALCON avoids large
lift forces and prevents rapid changes in lift forces and fast/jittery action changes.
The first two design choices are clear from the control goal, i.e., minimizing the
mean and the standard deviation of the overall lift forces, whereas, the last one is
more subtle. In our experiments, we observed that non-smooth changes in actions
cause additional lift forces on the airfoil (see further discussion on cost design
choice in Materials). Furthermore, in the policy design FALCON includes action
constraints due to mechanical restraints of the aerodynamics testbed as we shortly
discuss in the next section.

FALCON can easily include further safety or physical constraints within its MPC
framework. This makes FALCON a reliable algorithm for safety-critical tasks such
as free flight through turbulence. Moreover, the recurrent short-horizon planning
approach through CEM allows FALCON to design sophisticated policies that con-
sider future flow effects through the use of estimated model dynamics. Thus, rather
than designing purely reactive policies that cancel out the instantaneous aerody-
namic forces, FALCON designs flow-predictive disturbance rejection policies which
aim to minimize the lift forces while accounting for unsteady flow dynamics. In
this way, FALCON adapts to sudden changes in the flow while avoiding overcom-
pensation of the aerodynamic disturbances by maintaining an overall understanding
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of the flow field. The simple yet physically sound and accurate dynamics learn-
ing approach of FALCON facilitates this effective control design, which results in
a sample-efficient and high-frequency (42 Hz) state-of-the-art control policy with
generalizable performance.

The construction of FALCON is modular such that different basis functions, e.g.,
wavelets [236], could be utilized in learning the underlying system dynamics de-
pending on the domain knowledge about the system, while the MPC framework
could be selected based on the specific needs, e.g., optimization-based MPC for
simpler model dynamics. This interchangeable design of FALCON makes it a viable
model-based RL method for designing diverse online/adaptive control strategies for
various tasks (see Discussion). Moreover, it also allows for the derivation of strong
theoretical guarantees for the robustness of model learning and the control perfor-
mance under modeling error (see the Methods section). In particular, we prove that
a wide range of partially observable nonlinear dynamical systems such as dynamical
systems governed by partial differential equations could be learned with arbitrary
modeling error using the Fourier basis for FALCON. We also show that this effective
model learning allows stable control design for robust MPC frameworks and the
systems controlled by FALCON follow a trajectory close to the systems regulated
with the same MPC policy that has access to perfect system dynamics information.
Finally, we formalize the performance guarantee of FALCON such that the control
performance of FALCON converges to the idealized MPC controller that knows the
perfect system dynamics. These rigorous theoretical results display the reliability
of FALCON while attaining state-of-the-art performance in predictive flow control.

Experimental aerodynamic testbed

In this work, we abstract the problem of stabilizing an aerodynamic system un-
der turbulence to basic components while maintaining the core complexity of the
physics involved. We utilize an experimental aerodynamics testbed that captures
and generalizes the fundamental physics involved in flight through a turbulent en-
vironment [228]. The aerodynamic testbed consists of a symmetric generic airfoil
with motorized trailing-edge flaps and integrated flow sensors (Figure 6.2B). The
trailing-edge flaps have an actuation range of [-40◦, 40◦], and are mapped linearly
from the action space of [−1, 1], yielding 1-dimensional control action per time
step. Similar to flap systems on conventional airplanes, actuating the trailing-edge
flaps generates a lifting force that can offset the aerodynamic forces associated with
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Figure 6.4: Particle Image Velocimetry (PIV) Visualization of the Turbulent Flow
Field

flow disturbances as shown in Figure 6.2E. The testbed is equipped with 9 sen-
sors which are placed 10cm apart along the spanwise axis. Observations of the
surrounding flow are measured through a series of eight pressure tap flow sensors
built into the body of the airfoil, with a single pitot-static tube located at the cen-
ter of the airfoil. The pressure taps, placed near the leading edge of the airfoil,
provide valuable information on incoming pressure differentials between the upper
and lower surface of the airfoil. The pitot-static tube measures the total pressure of
the incoming flow which is approximately proportional to the mean velocity of the
flow. The aerodynamic testbed is mounted on a one-dimensional load cell which is
used to observe the lift forces acting on the airfoil, which serves the same effective
role as an inertial measurement unit on conventional UAVs. Combined with 9 flow
sensors, we obtain 10-dimensional measurements per time step. Further details on
aerodynamics testbed design are provided in Methods.

Turbulent environment

We study control in the context of a canonical problem in fluid dynamics: the
turbulent wake of a bluff body. When placed incident to winds, bluff bodies produce
an oscillating vortical wake commonly known as a Kármán vortex street [230].
At sufficient wind speeds, this wake becomes highly turbulent and can result in
significant forces [25], as visualized with smoke in Figure 6.2D. This photo is
captured at Caltech Center for Autonomous Systems and Technologies (CAST) fan-
array wind tunnel with a standard cylinder at a lower wind speed than the experiments
presented in this work. Figure 6.2D depicts the turbulent wake of the cylinder where
the vortex shedding is irregular. This phenomenon is famously responsible for the
1940 collapse of the Tacoma Narrows Bridge [288].



236

All of the quantitative results in this work were obtained from the experiments
conducted in Caltech’s Lucas Adaptive Wall Wind Tunnel, a closed-loop wind
tunnel. As discussed previously, our experiments were performed in the wake of
a bluff body at a mean flow speed of 6.81 m/s, which corresponds to a Reynolds
number of 𝑅𝑒𝐷 = 230, 000 over the bluff body. The bluff body consisted of a
cylinder with a diameter of 30 cm with a normal flat plate fixed asymmetrically that
increased the effective diameter to 53 cm, as shown in Figure 6.2C. This construction
is used to encourage vortex dislocation which results in less regular vortex shedding
events [295]. Further, the bluff body was mounted to the walls of the tunnel
with elastic cords to allow for dynamic oscillations which may also encourage less
regularity in shedding events (see Methods for details).

We used particle image velocimetry (PIV) to visualize a portion of the turbulent
flow field in our experimental environment (see Methods for details). Figure 6.4
presents the PIV measurements of the vorticity field contextualized in the wind
tunnel. The complex vorticity patterns clearly demonstrate the chaotic and unsteady
turbulent flow dynamics, with strong three-dimensional effects likely present in our
experimental setting. Moreover, through hot-wire anemometer measurements in the
wind tunnel, we record a turbulence intensity of 10.8%.

Baseline Control Methods

To test the performance of FALCON, we deploy several RL baselines and the industry-
standard responsive control strategy of PID (Proportional - Integral - Derivative)
control in our aerodynamics testbed. In particular, we compare FALCON with
the twin delayed deep deterministic policy gradient algorithm TD3 [92], its variant
known as LSTM-TD3 [196], and soft actor-critic algorithm SAC [102] (see Methods
for a detailed overview). These methods are the state-of-the-art off-the-shelf model-
free RL methods deployed in many real-world control tasks [80, 95, 101, 228].
They are off-policy actor-critic algorithms that utilize neural networks for control
policies. Off-policy methods are usually preferred over on-policy methods in real-
world dynamical systems with unsteady dynamics since they can learn from a wide
range of experiences, including observations from previous policies, which makes
them more robust to changes in the environment. Another advantage of off-policy
methods is that they can learn an optimal policy even when the current policy
is significantly sub-optimal, which is usually the case for challenging real-world
control tasks due to the lack of clearly superior expert policy. These all combined
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allow off-policy methods to be more stable during the learning process, which leads
to better convergence and generalization performance [255].

The TD3 algorithm has previously demonstrated success in experimental flow con-
trol in different settings [80]. To improve performance in partially observable sys-
tems, such as the turbulent flow dynamics measured by sensors, LSTM-TD3 utilizes
recurrent long-short-term memory (LSTM) cells in the neural network structure
of TD3. The addition of LSTM cells has been previously shown to improve the
performance in prediction and control of highly unsteady stochastic environments
like turbulent flow fields [287]. In particular, recently, LSTM-TD3 has been demon-
strated to achieve state-of-the-art performance in disturbance rejection in a similar
experimental setting studied in this work [228]. Therefore, LSTM-TD3 provides the
ultimate baseline for FALCON. In their implementations, both TD3 and LSTM-TD3
have nearly identical parameters besides the additional LSTM structure of LSTM-
TD3 for an additional memory element in the policy. While TD3 and LSTM-TD3
provide deterministic policies, SAC designs stochastic policies, which are shown to
achieve significant success in various real-world tasks such as quadrupedal robots
and voltage control [102, 289]. It provides a sample efficient alternative policy
design method compared to TD3 and LSTM-TD3.

Due to the stochasticity in the process of training RL algorithms, we trained each
of the agents presented here with three independent random seeds and present the
average training results to display their performances. Unlike FALCON, the model-
free methods work in episodes with reset for retraining. We train the model-free
methods for 200 episodes of 800 samples per episode and use the best-performing
agent for each algorithm in presenting their final performance. The feedback gains
of the PID controller were tuned manually to achieve constant zero lift using the
readings of load cell measurements. In our experiments, we run an exhaustive
grid search over the feedback coefficients and report the best-performing controller.
All methods, including FALCON, are implemented with 42-Hz sensing and control
frequency.

Superior Performance and Sample Efficiency of FALCON

First, we provide the results on the training of the methods. In presenting the training
behavior, we exclude the warm-up of each method. Note that the warm-up phase
of FALCON requires only 1500 samples, which corresponds to approximately 85
vortex-shedding cycles from the upstream bluff body. Figure 6.5 shows the moving
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Figure 6.5: Evolution of the mean (Lift) and standard deviation (𝜎) of the lift
forces for the best-performing agents of each algorithm shown over the first 40, 000
samples. The full training performance for the model-free algorithms can be found
in Figure 6.6.

average of the mean and standard deviation of the lift forces on the airfoil for the
best-performing policy of each method over the first 42, 000 samples collected.
In this plot, while the data collection procedure of FALCON does not pause in
between model updates (epochs), the model-free algorithms pause (end of their
episode) and train for some time to update their policy. From these plots, we
observe that FALCON quickly finds the unknown linear coefficients to represent
the system dynamics in the learned Fourier basis and achieves significantly better
performance than model-free methods with fewer samples. We also note that
during the 40, 000 sample period shown, FALCON has only 25 learning updates
while the other algorithms shown have 50. As the model-free algorithms used for
comparison typically require more data, we trained these algorithms for a total of
200 episodes (equivalent to 160, 000 samples), the remainder of which can be seen
in Figure 6.6. The training behavior of FALCON indicates that FALCON agents
consistently improve throughout training and require significantly less training time
to outperform state-of-the-art model-free methods due to its physically accurate
model learning procedure and efficient control design.

Even though FALCON can suffer from model uncertainty and execute sub-optimal
actions at the beginning of training due to unsteady flow dynamics (see the outlier
bump in the standard deviation of lift in Figure 6.5 around 𝑡 = 6, 000), FALCON ef-
fectively explores the state-space to improve the accuracy of the model and hence
the performance of the controller to bring the standard deviation in the lift forces to
desirable values. After 10, 000 samples, i.e., 4 minutes of training of FALCON, the
average standard deviation of lift forces on the aerodynamics testbed remains stable
at a level significantly better than other tested methods. Similarly, the mean lift
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forces achieved via FALCON consistently outperform that of model-free methods.

Among the model-free methods, Figure 6.5 shows that LSTM-TD3 is the sec-
ond best-performing algorithm by outperforming TD3 slightly, while SAC fails to
achieve acceptable performance. Note that LSTM-TD3 and TD3 share the same
policy constructions except the LSTM part that adopts latent states in the policy.
Combined with the superior performance of FALCON, this highlights the importance
of a latent state representation in achieving desirable learning and control perfor-
mance in partially observable real-world settings. Similar to FALCON, LSTM-TD3
achieves consistent performance after sufficient samples, yet it requires an order of
magnitude more than FALCON. Despite our significant efforts in hyperparameter
tuning, SAC agents failed to learn desirable policies that minimize the aerodynamic
forces. Even the best-performing agent significantly underperformed compared to
other model-free policies, which indicates that stochastic policies such as SAC might
not be suitable for controlling unsteady dynamical systems.

From our experiments, we observe that FALCON is more robust to hyperparameter
tuning and has a notably more stable training process (Figure 6.5) compared to
model-free methods. In particular, in our training process, tuning FALCON requires
only a few trials on the history of modeling (number of past observation-action
pairs used), the sparsity weight in Lasso for recovering a succinct basis, and the
planning horizon for CEM. On the other hand, model-free methods require extensive
hyperparameter search to achieve some learning behavior. This extensive search
is significantly time-consuming and laborious in real-world problems, e.g., the
training process of model-free methods corresponds to an hour of training for each
hyperparameter configuration in our setting. This process becomes unfeasible in
online resource-constrained settings, which are typically the scenarios for adaptive
control systems.

Our experiments overall showed that FALCON consistently achieves better and more
stable training performance than model-free methods while converging to its opti-
mal policy with orders of magnitude fewer samples. This superior performance and
sample efficiency show that the simple yet efficient partially observable dynamics
modeling approach of FALCON reduces the complexity of the aerodynamic con-
trol under turbulence problem significantly. Combined with the efficient predictive
control design, FALCON agents learn to reject the flow disturbance effectively. The
model learned by FALCON also aligns well with established knowledge regarding
spectral energy content; in particular, the improved basis selection with ℓ1-constraint
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and Lasso enforces the model to have relatively low frequencies corresponding to
the dominant energy-containing eddies. In our experiments, we observe that FAL-
CON recovers model estimates which put significant weight on the low-frequency
basis, e.g., DC components, and some high-frequency components (see Methods).
This shows that via using the relevant basis for learning, FALCON learns a physically
meaningful model, which contributes to training stability and disturbance rejection
performance of FALCON.

To further investigate the effect of the concise Fourier basis-based model learning
approach of FALCON, we implemented a reasonably-sized deep neural network
for model learning and combined it with CEM-based policy design as FALCON.
However, despite our significant efforts in tuning, this approach failed to learn
a reliable model for control design due to unsteady and chaotic flow conditions,
which resulted in performance significantly worse than the reported algorithms in
this work. This outcome highlights that black-box dynamics modeling methods
such as deep neural networks can fail in unsteady systems such as turbulent flow
dynamics.

Consistent and Generalizable Performance of FALCON

Next, we study the generalization performance of FALCON and other methods
including the PID controller. Table 6.2 presents the average performance of the
best-performing policies by each method in 10 independent 90-second length runs,
i.e., 4000 samples, as well as the number of samples required to train the respective
"best" policies. We report the mean and standard deviation of the lift forces on the
airfoil averaged over these runs. As discussed before, the standard deviation of the lift
forces is the key metric for disturbance rejection and aerodynamic flow control. Table
6.2 shows that FALCON improves upon the prior state-of-the-art performance in flow
disturbance rejection under extreme turbulence by 37%. Further, FALCON achieves
this performance using only 8.7 minutes of data, whereas the model-free algorithms
can take hours to train in the same setting [228]. This significant improvement with 8
times fewer samples shows that FALCON adapts and generalizes across independent
runs despite remarkably different training conditions due to unsteady and chaotic
turbulent flow dynamics. Moreover, FALCON outperforms the industry standard
PID controller as well as TD3 policy by more than 45%. Similar to the training
performance, we have observed that the SAC policy failed to achieve acceptable
performance in disturbance rejection while requiring less training data to converge
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Average Over 10 Tests Std Over 10 Tests

Control
Method

Training
Samples

Absolute Mean
Lift (mN)

Std in
Lift (mN)

Absolute Mean
Lift (mN)

Std in
Lift (mN)

PID 𝑁/𝐴 6 271 1 8
TD3 [92] 1.71 × 105 183 267 4 9
SAC [102] 1.51 × 105 268 395 213 64

LSTM-TD3 [228] 1.76 × 105 139 236 16 5
FALCON 2.20 × 104 2 148 10 13

Table 6.2: Disturbance rejection performance of the methods over 10 independent
90-second test runs.

compared to other model-free methods. This result also suggests that stochastic
policies might not be effective in controlling unknown unsteady or chaotic systems.

We also document that FALCON achieves the best average absolute mean perfor-
mance. In particular, it outperforms PID control which is designed to keep the
absolute mean close to zero. Even though it is a secondary and easy-to-offset metric
in aerodynamic control, we observe that model-free methods attain significantly
higher absolute mean lift compared to FALCON and PID controllers. Among these
methods, LSTM-TD3 also achieve the lowest absolute mean.

Finally, we present the standard deviation in these performance metrics over 10
independent runs to test the consistency of the control methods’ performance in
Table 6.2. We see that the performance of FALCON is consistent over the unsteady
dynamics with minimal change over the runs and it almost matches the consistency
of the non-learning-based PID controller. Notably, besides SAC, other RL methods
also perform consistently over these independent runs, where LSTM-TD3 which
uses memory units in their policy construction, akin to FALCON, outperforms TD3.
These results overall show that FALCON is able to generalize its performance to
unseen disturbances and consistently provides state-of-the-art predictive-flow dis-
turbance rejection in extreme turbulent flow dynamics.

6.3.2 Discussion
We have designed and demonstrated FALCON, the first model-based RL method
that can effectively learn to control aerodynamic forces acting on an airfoil under
extreme turbulence with which conventional methods struggle. Our results indicate
that combining flow sensing with physically sound model learning and efficient
control design allows state-of-the-art disturbance rejection despite the chaotic non-
linear turbulent dynamics. Besides the superior performance, the physics-informed
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lightweight design for learning and control of FALCON allows an order-of-magnitude
improvement over the number of samples required to achieve desirable control per-
formance compared to prior RL methods. Further, we document that our method has
a stable training procedure and a consistent performance even under highly irregular
unsteady dynamics of turbulent flow. These results indicate the potential to use this
method to stabilize systems such as UAVs under extreme turbulence in free-flight
scenarios.

We observed that FALCON improves the aerodynamic control performance of prior
state-of-the-art LSTM-TD3 [228] by 37%. Even though LSTM-TD3 is a model-free
RL algorithm, it shares a similarity with FALCON that it uses recurrent LSTM cells to
utilize a history of observations in the policy design. With this construction, LSTM-
TD3 is able to capture the latent state dynamics in designing policies. This allows
LSTM-TD3 to handle partial observability in system dynamics due to sensor mea-
surements, and design policies based on modeled latent states. Due to the structural
similarities of LSTM-TD3 and TD3 algorithms, the superior performance of LSTM-
TD3 over TD3 should be attributed to the latent state modeling via LSTM cells.

In contrast to FALCON, the modeling of latent states in LSTM-based policy design
is mostly black box and without any physical interpretation. On the other hand, in
FALCON, the flow dynamics are captured by significant low-frequency and some
high-frequency model components with learned linear mixing coefficients using a
history of observations and actions. Our proposed modeling approach in FALCON is
motivated by the prior studies on turbulent flow dynamics that observe a well-defined
frequency spectrum with significant low-frequency energy content for highly turbu-
lent flows [222, 228]. The interpretable dynamics modeling of flow disturbances of
FALCON simplifies the disturbance rejection task to a low-dimensional learning-to-
control problem, where learning and control design are executed efficiently. More-
over, this principled approach allows theoretical guarantees on sample-efficient
model learning, robustness against imperfect learning, and control performance un-
der modeling error which are derived for FALCON in the Methods section. All these
results highlight the importance of deploying domain knowledge in model learning
for unsteady and chaotic systems such as turbulent flow fields.

Modeling

FALCON exhibits a modular structure, where the model learning and control com-
ponents could be replaced depending on the task. The Fourier basis is deployed in
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FALCON and our experiments due to prior studies which showed that turbulent flow
dynamics have a well-defined power spectrum dominated by the low-frequency com-
ponents. Due to such underlying physics, the choice of Fourier basis allows theoret-
ically guaranteed learning of the underlying system (see Methods). In particular, we
rigorously show that the modeling error of such underlying systems could be made
arbitrarily small with sufficient basis and data points from the system. This approach
is in contrast to black-box modeling of the system dynamics, e.g., via deep neural
networks, which naively uses purely data-driven basis functions, which may cause
instability and fragility in model learning and control. In fact, our experiments with
deep neural network modeling showed that in such temporally unsteady systems,
it is hard to fully characterize the system dynamics without incorporating domain
knowledge. This insufficient learning caused significantly inferior control policies.

The modeling capabilities of FALCON could be improved by adding nonlinearities
to the modeling via Fourier basis. The composition of Fourier basis learning with
nonlinear functions has shown success in learning the solution operators of partial
differential equations [184]. Adopting such a modeling approach could further
extend the model learning capabilities of FALCON and improve its aerodynamic
control performance. Different basis vectors such as Random Fourier Features
(RFF) have been deployed in prior model-based RL works[164]. Incorporating
them along the Fourier basis can also extend the class of systems that could be
learned via FALCON. Finally, different modeling approaches, such as modeling the
pressure/lift differences on the sensors via the history of observations and actions,
could be deployed to improve the sample efficiency and performance further. In our
experiments, we tried this approach but did not observe a change. Yet, this approach
could be helpful in deploying FALCON in more challenging turbulent environments.

Control design

In the control design, FALCON adopts CEM, a sampling-based MPC method, to
exploit the learned accurate model. By design, CEM provides a transparent control
design method in terms of what control cost is to be minimized and for how long
of a trajectory should be considered in planning. This transparency is significant
when incorporating domain knowledge and experimental observations directly in
the control design. In particular, during our experiments, we observed that having
rapid changes in the flap angles, i.e., too much variation in consecutive actions,
results in a slight increase in lift forces on the airfoil. With this observation, we
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added a term in the cost design of FALCON which prevents these changes to a
certain extent and improves aerodynamic control performance. This cost design is
also intuitive for general flight control since it also reduces the wear and tear on the
actuators. Moreover, due to this transparency, FALCON includes safety and physical
constraints easily in the control design problem by simply eliminating trajectories
or action sequences that violate these constraints.

This is in stark contrast with the black-box controllers provided by the model-free
RL algorithms. These methods are very sensitive to many hyperparameters which
control the neural network architecture and training procedure, yet, the effect of
each hyperparameter on the performance is unclear. This lack of transparency
leads to a reliance on intuition, experience, and trial and error when tuning these
hyperparameters, making the process time-consuming and frustrating. Even though
the data presented for each model-free method took around 6 hours in the wind tunnel
through training and testing, the actual process of hyperparameter tuning required
dozens of additional hours for each algorithm. This presents a challenge in dynamic
experimental environments, such as aerodynamic control under turbulence. On the
other hand, the whole process of tuning, training, and testing of FALCON took
around 9 wind tunnel hours in total.

In the aerodynamic control problem studied in this work, we considered one-
dimensional control actions with a 5 time-step planning horizon. This results
in a relatively small search space to find optimal actions for CEM. This was partic-
ularly important in the control design of FALCON since the sampling-based MPC
methods as CEM can be inefficient in longer planning horizons or larger action
spaces. One can increase the number of samples per iteration in higher dimensional
control problems, yet this might cause delays in control and poor performance. In
order to deploy FALCON in higher dimensional control settings, utilizing a more
efficient model predictive control method based on first-order optimization might be
useful. This can be easily achieved with the same model learning module of FAL-
CON and replacing CEM due to the modular structure of FALCON. Interior-Point
Methods (IP) and Sequential Quadratic Programming (SQP) are two well-known
algorithms for numerically solving these nonlinear optimization problems [208].
For high-dimensional problems, they can be further improved to exploit the sparsity
in the control design and achieve desirable performance without sacrificing effi-
ciency [181]. SQP methods are particularly good candidates in the control design
since they use the result of the previous iteration to warm-start the next iteration of
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the control design similar to CEM.

Computational Efficiency

In the warm-up phase, the proposed approach of solving the Lasso problem over
ℓ1-constrained Fourier basis is able to learn a concise and effective basis for repre-
senting the system dynamics in a data-efficient way. This requires only 35 seconds
of flow data at 42 Hz which is collected with time-correlated Gaussian inputs. This
is equivalent to approximately 85 vortex-shedding cycles, however, due to the irreg-
ular shape and dynamic motion of the bluff body, it is likely that the wing-vortex
interactions varied significantly during this period. Finding the solution of Lasso
takes about 7 minutes on a standard desktop computer, and this problem is solved
only once at the end of the warm-up phase. This effective succinct basis repre-
sentation for the underlying dynamics allows FALCON to design control actions in
less than 10 ms within the CEM model predictive control framework which yields
42 Hz sensing and control frequency. The fast adaptive control approach allows
FALCON react to the changes in the flow field rapidly while still reasoning about
how to mitigate upcoming turbulent disturbances on the system via the learned and
updated model dynamics. To achieve this fast control design, FALCON leverages
the parallel computing on GPU and samples a significant amount of initial action
roll-out in CEM to overcome possible local minima in designing control actions.
In this end-to-end control loop, serial communications between the controller and
sensors, and actuators are the main bottleneck.

To further improve the disturbance rejection performance of FALCON, increasing
the control frequency is one of the future developments to focus on. This could be
achieved by reducing the code execution time and communication delays. Deploying
a faster implementation of FALCON using C++ or utilizing a more computation-
ally efficient MPC framework such as CEM-GD [117] which combines zeroth and
first-order optimization methods could allow us to achieve sub-5ms control design
duration. Moreover, having a streamlined communication layer could also reduce
the latency between the controller and sensors or actuators significantly.

Generalization to New Tasks and Free-Flight

In this work, we have developed a model-based reinforcement learning method,
FALCON, on a generic aerodynamic testbed for flow-informed aerodynamic control
under extreme turbulence. FALCON was tested on a single-dimensional aerodynamic
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control system, yet it can be extended and adapted to systems with higher degrees
of freedom. In particular, we can consider other forces and moments in three
dimensions, besides the vertical lift forces acting on the testbed. Our experiments
are conducted under the Reynolds number of 𝑅𝑒𝐷 = 230, 000. In order to ensure
the generalizable performance of FALCON across a range of Reynolds numbers,
i.e., different turbulence characteristics, and different geometries of airfoils, further
investigation is required.

The findings of this work hold potential in the deployment of next-generation tech-
nologies, including but not limited to flow-sensing UAVs capable of stable flight
in windy urban areas and flow-informed wind turbines with gust protection. In
the fixed-wing UAVs, FALCON is a promising algorithm for the inner-loop attitude
control for fixed-wing vehicles. This will allow drones to maintain stable flight in
extreme conditions by reducing the impact of turbulent disturbances. We believe
that model-based RL methods, and FALCON in particular, could be used for full-
stack control and navigation using flow information and simulated environments.
The testbed in this work emulates stabilizing a UAV at a constant altitude. Future
work will consider using FALCON with a trajectory planner such that FALCON aims
to maintain the desired location coming from the planner and interacts with the
planner to achieve energy efficient and safe navigation, similar to the prior work
in computational fluid dynamics [99]. To accomplish this will require overcoming
challenges such as sim-to-real transfer and distribution shift in data, where the data
efficiency and fast adaptation capabilities of FALCON would be critical. We suggest
using indicators of changes in turbulent conditions in hierarchical planning to control
the frequency of model updates within FALCON. Another strategy would be using
meta-learning to make the model learning process adaptive in basis selection and
model updates for different turbulent conditions with different basis representations.

6.3.3 Methods
FALCON Algorithm

In this section, we present the methodology and the algorithmic details of our pro-
posed model-based RL method Fourier Adaptive Learning and Control (FALCON).
FALCON learns the model dynamics in Fourier basis through interaction with the
system and deploys MPC using the learned model for control design. The outline
of FALCON is given in Alg. 16. FALCON has two phases: Warm-up and Adaptive
Control in Epochs.
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Algorithm 16 FALCON
Input: 𝑇𝑤, ℎ, 𝑡𝑒𝑝, 𝜏, 𝐷, 𝐶0:𝑇
—— Warm-up —————————————————————————
for 𝑡 = 1, 2, . . . , 𝑇𝑤 do

Deploy exploratory 𝑢𝑡 and store D0= {𝑦𝑡 , 𝑢𝑡}𝑇𝑤𝑡=0
Form 𝑠𝑡 = [𝑦⊤𝑡−1:𝑡−ℎ, 𝑢

⊤
𝑡−1:𝑡−ℎ]

⊤ for all 𝑡 using D0
Compute 𝜙′(𝑠𝑡) via (6.9) ∀𝑠𝑡 , 𝐷′-dimensional Fourier Series representation
Solve Lasso (6.20) to learn succinct Fourier basis 𝜙(·) representation
—— Adaptive Control in Epochs —————————————————
for 𝑖 = 1, . . . do

Solve for Θ̂𝑖 via (6.17) & Form �̂�𝑖 (·) = Θ̂⊤
𝑖
𝜙(·) →Model Dynamics Updates

for 𝑡 = 𝑇𝑤 + (𝑖 − 1)𝑡𝑒𝑝 + 1, . . . , 𝑇𝑤 + 𝑖𝑡𝑒𝑝 do
𝑢𝑡 =MPC(�̂�𝑖, 𝑦𝑡:𝑡−ℎ+1, 𝑢𝑡−1:𝑡−ℎ+1, 𝐶𝑡:(𝑡+𝜏))
Observe 𝑦𝑡+1 & Form 𝑠𝑡+1 and 𝜙(𝑠𝑡+1) using the Learned Fourier Basis

Warm-Up: FALCON starts with a short warm-up period to collect some data about
the unknown system. In this phase, the goal is to purely explore the system and
recover a coarse model of the dynamics. Therefore, FALCON focuses on safely
exciting the system for 𝑇𝑤 time steps. The predominant choice for such a task is
to use isotropic Gaussian inputs, 𝑢𝑡 ∼ N(0, 𝜎𝑢 𝐼). However, for certain tasks, one
may require smoother or safer exploration. This is usually the case in safety-critical
control tasks like flight control under turbulence [228] or bipedal/quadrupedal walk-
ing [298]. In these situations, FALCON can use time-correlated inputs for smooth
actions such that it avoids jerky and sudden changes in the actions. To this end, for
some 𝛾 ∈ [0, 1], FALCON can use the following control inputs

𝑢1 = 𝜼1,

𝑢𝑡 = 𝛾𝑢𝑡−1 +
√︁

1 − 𝛾2𝜼𝑡 ,

where 𝜼𝑡 ∼ N(0, 𝜎[ 𝐼). We deploy this controller with 𝛾 = 0.8 during the warm-up
phase in our experiments. Moreover, FALCON can deploy known safe nominal
controllers, such as trajectory generators [122] or PID controller, accompanied with
isotropic excitements, i.e., 𝑢𝑡 = 𝐾 (𝑦𝑡) + 𝜼𝑡 where 𝐾 (·) is the nominal controller and
𝜼𝑡 ∼ N(0, 𝜎[ 𝐼).

Adaptive Control: After the warm-up, FALCON starts adaptive control of the
underlying system. It uses epochs of doubling length starting with an initial epoch
of 𝑡𝑒𝑝 time steps, i.e., each 𝑖th epoch is 2𝑖−1𝑡𝑒𝑝 time steps for 𝑖 = 1, 2, .... FALCON is
a single trajectory algorithm and does not require a reset between epochs. This
makes FALCON efficient in data collection in the experiments.
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Learning the Dynamics — At the end of the warm-up, FALCON estimates the model
dynamics as a linear model in Fourier basis. To this end, it generates 𝑇𝑤 − ℎ + 1
subsequences of ℎ input-output pairs,

𝑠𝑖 = [𝑦⊤𝑖−1, . . . , 𝑦
⊤
𝑖−ℎ, 𝑢

⊤
𝑖−1, . . . , 𝑢

⊤
𝑖−ℎ]

⊤ ∈ Rℎ(𝑑𝑦+𝑑𝑢)

for ℎ ≤ 𝑖 ≤ 𝑇𝑤. Using (6.3), one can write the system dynamics as 𝑦𝑡 = 𝐹 (𝑠𝑡) + 𝑒𝑡 .
To estimate the unknown nonlinear function 𝐹, FALCON considers the 𝑛th order
Fourier expansion of 𝐹 and generates 𝐷-dimensional Fourier series representations
of all 𝑠𝑡 as given in (6.16), 𝜙(𝑠𝑡). The order of the Fourier expansion, thus the
dimension 𝐷, is an important hyperparameter of FALCON. This choice depends
on many factors including prior knowledge of the system dynamics, the difficulty
of the learning task, and the computational budget. As explained in the Overview
section of Methods, a wide range of nonlinear systems can be represented as linear
models in the Fourier basis. Therefore, FALCON considers the following model for
estimating the system dynamics 𝐹,

𝑦𝑡 ≈ Θ⊤∗ 𝜙(𝑠𝑡) + 𝑒𝑡 , (6.16)

for an unknown Θ∗ ∈ R𝐷×𝑑𝑦 . To recover an estimate of Θ∗ solves a least-squares
problem,

minΘ _∥Θ∥2𝐹 + ∥𝑌𝑇𝑤 − Θ⊤Φ𝑇𝑤 ∥2𝐹 , (6.17)

for some _>0, where𝑌𝑡 = [𝑦𝑡 , ..., 𝑦ℎ] ∈R𝑑𝑦×𝑡−ℎ+1, Φ𝑡 = [𝜙(𝑠𝑡), ..., 𝜙(𝑠ℎ)] ∈R𝐷×𝑡−ℎ+1.
The solution to this problem is given as Θ̂1 = (Φ𝑇𝑤Φ

⊤
𝑇𝑤
+ _𝐼)−1Φ𝑇𝑤𝑌

⊤
𝑇𝑤
. Using Θ̂1,

FALCON estimates the system dynamics as �̂�1(𝑠) = Θ̂⊤1 𝜙(𝑠). FALCON repeats this
dynamics estimation process at the beginning of each epoch using all the data gath-
ered so far. Note that for large 𝐷, computing the closed-form solution could be
computationally demanding or cause numerical errors. Instead, the model estimates
can be updated recursively throughout the epochs using online updates, which we
utilize in our implementation for the experiments. In particular, FALCON stores only
the current model estimate, i.e., the model estimate at time step 𝑡 in epoch 𝑖: Θ̂𝑖,𝑡 , and
the inverse design matrix (sample covariance matrix), i.e., 𝑉−1

𝑡−1 = (Φ𝑡Φ
⊤
𝑡 + _𝐼)−1.

Using these the model estimates can be updated recursively throughout the epochs
using online or batch updates via

Θ̂𝑖,𝑡 = Θ̂𝑖,𝑡−1 +
𝑉−1
𝑡−1 𝜙(𝑠𝑡) (𝑦𝑡 − Θ̂

⊤
𝑖,𝑡−1 𝜙(𝑠𝑡))

⊤

1 + 𝜙(𝑠𝑡)⊤𝑉−1
𝑡−1𝜙(𝑠𝑡)

, (6.18)
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where 𝑉−1
𝑡−1 is also updated recursively [238],

𝑉−1
𝑡 = 𝑉−1

𝑡−1 −
𝑉−1
𝑡−1 𝜙(𝑠𝑡)𝜙(𝑠𝑡)

⊤𝑉−1
𝑡−1

1 + 𝜙(𝑠𝑡)⊤𝑉−1
𝑡−1𝜙(𝑠𝑡)

.

Note that FALCON uses the initial most recent model estimate at the beginning of the
epoch for the control design during the entire epoch. These online update rules are
used to efficiently update the model estimates in the background at each time step
with the new data such that at the beginning of the next epoch, there is no delay in
updating the model estimate. This feature is important in real-time control systems
where any delay in the system can cause further problems and compromise safety.

Improved Basis Selection — Note that as the order of the Fourier basis increases,
𝐷 increases exponentially in the system’s dimension. For large ℎ, i.e., higher
order NARX models, this may cause an additional computational burden. To
remedy this, we propose to use ℓ1-constrained Fourier basis and Least Absolute
Shrinkage and Selection Operator, i.e., Lasso [264], for an improved basis selection
in FALCON after the warm-up period. In particular, instead of generating the bases
𝝎𝒊s for all 𝑛, we only consider the ℓ1-constrained bases, i.e., ∥𝝎𝒊 ∥1 ≤ 𝑛. The ℓ1

constraint reduces the number of basis vectors from 1 + 2𝑛ℎ(𝑑𝑦+𝑑𝑢) to 2𝐷′ basis
vectors where

𝐷′ =

(
ℎ(𝑑𝑦 + 𝑑𝑢) + 𝑛

𝑛

)
. (6.19)

We then solve the Lasso problem for the warm-up samples that are represented in
these ℓ1-constrained Fourier basis vectors. Lasso is the ℓ1-regularized least squares
method to recover sparse models, with few non-zero coefficients. Given the data
points gathered during the warm-up periodD0, using 𝐷′ number basis vectors with
∥𝝎𝒊 ∥1 ≤ 𝑛, FALCON forms the following feature representations for 𝑠ℎ, . . . , 𝑠𝑇𝑤
generated via D0:

𝜙(𝑠𝑖)= [cos(𝝎⊤
1 𝑠𝑖), sin(𝝎⊤

1 𝑠𝑖), . . . , cos(𝝎⊤
𝑫′𝑠𝑖), sin(𝝎⊤

𝑫′𝑠𝑖)]⊤.

FALCON then solves the Lasso problem:

min𝑊
1

2𝑇𝑤
∥𝑌𝑇𝑤 −𝑊⊤Φ𝑇𝑤 ∥2𝐹 + 𝛼∥𝑊 ∥1, (6.20)

for some 𝛼 > 0. FALCON then uses the basis vectors that have nonzero feature
coefficients (entries) in the solution of (6.20),𝑊★, for learning the model dynamics
in the adaptive control phase. The choice of 𝛼 determines the sparsity of the model
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learned𝑊★ which in turn determines the number of basis vectors, 𝐷, used in model
learning, i.e., bigger 𝛼 results fewer non-zero entries in𝑊★ and fewer basis vectors
for estimating the dynamics in the adaptive control period. This improved basis
selection significantly decreases 𝐷 and reduces the computational burden and the
samples required to learn the dynamics.

Control Design — Once FALCON has an estimated model, it uses an MPC policy to
design the control inputs during the epoch. The choice of the MPC policy depends
on the control task. In general, the MPC policies are either optimization-based [76]
or sampling-based [35]. However, sampling-based methods are usually preferred
in model-based RL due to challenging nonlinear system dynamics and complicated
cost functions [294]. Thus, FALCON uses Cross-Entropy Method (CEM) as the
MPC policy. As described in Section 6.1, CEM is a sampling-based (zeroth order)
MPC policy to solve the problem given in (6.4). CEM maintains a distribution,
predominantly Gaussian, to sample action roll-outs for the planning horizon and
iteratively updates this distribution to assign a higher probability near lower-cost
action sequences based on the estimated dynamics. After a certain number of
updates (once it converges), it executes the first action on the lowest cost-achieving
action sequence in the sampled roll-outs.

At any time step 𝑡, FALCON uses the most recent dynamics estimate �̂�𝑘 (·), the last
ℎ input-output pairs as the initial condition, and the next 𝜏 cost functions 𝐶𝑡:(𝑡+𝜏)
in solving the problem in (6.4) for the planning horizon 𝜏. FALCON executes the
first action 𝑢𝑡 in the solution of (6.4), receives the output 𝑦𝑡+1, and constructs 𝑠𝑡+1
and 𝜙(𝑠𝑡+1). FALCON repeats this adaptive control process throughout the epoch.
Note that any safety or physical constraint can be easily included in the MPC policy
design problem (6.4), which makes FALCON a reliable algorithm for safety-critical
environments.

Implementation Details of FALCON

We provide the implementation details of FALCON for the experiments.

NARX Modeling: We use an order-4 NARX model for learning the underlying
system dynamics, ℎ = 4. In our experiments, we deduce that this is optimal to
overcome the uncertainties of partial observability and reasonable computational
complexity. With this choice, 𝑠𝑡 in the system modeling becomes 44-dimensional
vector. To estimate the unknown nonlinear system 𝐹, we consider the 3rd-order
Fourier expansion. However, to reduce the computational complexity for such a



251

high-dimensional learning problem, we only use ∥𝝎𝒊 ∥1 ≤ 3 constrained basis vec-
tors and use Lasso to identify the most relevant basis vectors using the warm-up
data as described in Appendix. At the end of this procedure, we obtain 𝐷 = 319
dimensional Fourier series representation for learning the model dynamics.

Design Choices: The control goal in disturbance rejection is to minimize the
mean and the standard deviation of the lift forces acting on the airfoil. Thus, we
design our cost function to penalize large lift forces, rapid changes in lift forces,
and fast/jittery action changes. FALCON has a warm-up duration of around 35
seconds, i.e., 𝑇𝑤 =1500 samples, using the time-correlated sum of Gaussian inputs
for smooth exploration to collect some data about the unknown system dynamics
and recover the most relevant Fourier basis. The epochs of the adaptive control
period are approximately 38 seconds, 𝑡𝑒𝑝 =1600 samples per epoch. FALCON uses
Cross-Entropy Method (CEM) as the MPC policy. CEM is a sampling-based MPC
policy to solve the problem given in (6.4) [35]. CEM maintains a distribution,
predominantly Gaussian, to sample action roll-outs for the planning horizon and
iteratively updates this distribution to assign a higher probability near lower-cost
action sequences based on the estimated dynamics. After a certain number of
updates, it executes the first action on the lowest cost-achieving action sequence in
the sampled roll-outs. The CEM algorithm is given in full detail in Algorithm 14.

Compared methods We compare FALCON with several model-free RL methods,
including TD3 [92], LSTM-TD3 [196], SAC [102], and the industry-standard re-
sponsive control strategy of PID (Proportional–Integral–Derivative) controller. Of
all these algorithms, LSTM-TD3 has been demonstrated to achieve state-of-the-art
performance in disturbance rejection [228]. Unlike FALCON, the model-free meth-
ods work in episodes with reset for retraining. We train the model-free methods
for 200 episodes of 800 samples per episode and test the best-performing policy in
presenting the results. All methods, including FALCON, are implemented with 42
Hz sensing and control frequency.

Adaptive control design

For the planning horizon, FALCON uses 𝜏 = 5 in CEM. Furthermore, FALCON sam-
ples 𝐾 = 1000 trajectories in the first action roll-out of CEM and decays the number
of samples in each update. In prior works, this sampling strategy has been observed
as an efficient way to avoid possible local minima in finding the optimal action
actions [117]. Table 6.3 summarizes the hyperparameters for FALCON in our exper-
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iments. In order to achieve desired control and sensing frequency number of CEM
samples (𝐾) and iterations (𝑀) create a trade-off in the implementation. Maintain-
ing this control and sensing frequency is crucial in order to avoid undersampling
the turbulent dynamics.

Table 6.3: Hyperparameters of FALCON in our experiments.

Hyperparameter Range Best
NARX-order (ℎ) 3 − 5 4

Fourier Series Coef. (𝐷) 100 − 700 319
Planning Horizon (𝜏) 3 − 8 5
CEM Samples (𝐾) 150 − 1500 1000
CEM Iteration (𝑀) 4 − 7 6

CEM Number of Elites (𝑁) 10 − 30 30

Wing system design and manufacturing

The wing system was designed with a standard NACA0012 airfoil shape, which
was previously studied for its dynamics in a bluff-body wake at a similar Reynolds
number [176, 228]. The modular wing body was 3D printed using a combination
of materials, allowing for various sensor configurations. The central module, made
of micro carbon fiber-filled nylon (Markforged Onyx) reinforced with carbon fibers
for added strength and rigidity, housed the primary electronics and secured the
system to its mounting via a sweptback fairing. Spanwise sections designed to
house individual pressure sensors were also printed using carbon fiber-filled nylon.
Clear PLA was used to print the sections between the sensors, which were aligned
and connected using carbon fiber spars to add rigidity. Trailing edge flaps were cut
from insulation foam and covered with an adhesive-backed coating for protection
and improved surface finish.

The wing had a spanwise length of 1 m and a total chord length of 25 cm with 5 cm
trailing edge flaps. Using the mean flow velocity near the leading edge, the system
had a Reynolds number of approximately 𝑅𝑒 ≈ 110, 000. There were 9 sensor
locations distributed symmetrically about the wing, with exactly 10cm between
each location. The central sensor location featured a pitot-static tube, with the rest
of the sensor locations featuring surface pressure taps. The pressure taps and the
pitot-static tube were printed using an SLA printer (Formlabs Form3) for improved
surface feature accuracy. Pressure taps were located at 0.4%, 0.7%, 1.5%, and 6%
of the chord length from the leading edge on both the pressure and suction sides of
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the wing. The fairing on which the wing was mounted was reinforced with carbon
fiber and aluminum and was set back with an angle of 60◦ to reduce aerodynamic
interactions between the fairing and the wing. The fairing was connected to a set
of vertically-aligned air bearings (New Way), which allowed for nearly frictionless
motion along a single axis while constraining all other directions. The constrained
fairing was mounted directly to a single-axis load cell (Interface SM-50) that passed
the signal through an amplifier (Interface Model SGA) with a 50Hz low-pass filter,
and the signal was read by a DAQ (NI USB-6008).

The wing had a total of 9 ultra-low range digital pressure sensors (Honeywell RSC-
DRRM2.5MDSE3) to measure pressure values, which were communicated with a
microcontroller (Teensy 4.0). The microcontroller also controlled the high-speed
brushless servo motors (MKSHBL6625) that drove the trailing edge flaps. Due to
mechanical restraints, the actuation for the servo motors had a maximum/minimum
position of +40◦/−40◦. Both the microcontroller and the DAQ communicated with
a desktop computer, which received measurements and sent actions. The full control
loop operated at approximately 42 Hz.

Generation and characterizations of turbulence

The John W. Lucas Wind Tunnel (LWT) at Caltech was used to conduct all quanti-
tative experiments discussed in this study. The wind tunnel is a closed-loop design
with a test section size of 130 cm ×180 cm. To generate turbulence, an asymmetric
bluff body was mounted to the wind tunnel using bungee cords, creating a wake of
irregular and turbulent flow. The bluff body consisted of a large diameter cylinder
(30 cm) with an asymmetrically mounted flat plate at the front, giving the entire
body an effective diameter of 53 cm (Figure 6.2C). To encourage vortex dislocation
and add irregularity to vortex shedding, the cylinder spanned the full width of the
tunnel, while the flat plate only had a width of 60 cm. The bluff body was positioned
170 cm upstream of the wing system, with a vertical offset of 48 cm, and sparse
elastic bands were placed horizontally across the test section immediately upstream
of the bluff body to further increase turbulence intensity.

We used particle image velocimetry (PIV) (Fig 6.4) to visualize a limited portion
of the bluff body wake. PIV is a quantitative flow visualization technique ca-
pable of measuring the velocity fields of fluid flows [293]. Here we performed
two-dimensional, two-component (2D2C) PIV. This involves using a laser sheet to
illuminate small, dense, neutrally buoyant seed particles. Recording the illuminated
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particles with a high-speed camera, we can estimate velocity fields by calculating
the effective inter-frame displacement of groups of particles via cross-correlation of
subsequent images. Performing these experiments in air, we used a 200 mJ/pulse
dual pulsed laser (Lumibird Evergreen) to illuminate soap bubbles ( 15-micron
mean diameter) generated with a custom-built bubbler. The flow was recorded with
a 4-MP CCD camera (IMPERX Bobcat B2401).

Characterization of the flow near the wing system was performed using a hot-wire
anemometer (TSI IFA-300). The anemometer was mounted approximately 2 cm
upstream of the leading edge of the airfoil, and measurements were taken at 1000
Hz for 120 seconds. The turbulence intensity was determined to be 10.8% using the
hot-wire anemometer. We found the dominant shedding frequency to be 2.44 Hz,
although as mentioned above our oscillating bluff body encouraged irregularities in
the shedding process.

Baseline algorithms

In our experiments, besides FALCON, we test several model-free RL methods,
including Twin Delayed DDPG (TD3) [92], LSTM-TD3 [196], Soft Actor-Critic
(SAC) [102], and the industry-standard responsive control strategy of PID controller.
Of all these algorithms LSTM-TD3 has recently demonstrated to achieve state-
of-the-art performance in predictive flow disturbance rejection [228]. Note that
both TD3 and LSTM-TD3 provide deterministic policies, whereas SAC designs
stochastic policies. Unlike FALCON, these model-free methods work in episodes
where the algorithms stop retraining the policy parameters (reset). We train the
model-free methods for 200 episodes of 800 samples per episode and test the best-
performing policy in presenting the results. The full 200 episodes of training for
the best-performing policy in each method are shown in Figure 6.6. All methods
were implemented using an NVIDIA GeForce RTX 3070 which enabled a 42 Hz
frequency for sensing and control. The brief descriptions of the algorithms are given
below with the relevant hyperparameters in Tables 6.4-6.7.

TD3: TD3 is a deterministic actor-critic type RL framework that builds on previous
value-based methods. TD3 injects noise into actions to enable policy exploration
(i.e., exploration noise), and injects noise into critic updates to regularize and
smooth the resulting policy (i.e., policy smoothing noise). TD3 also uses delayed
policy updates which decreases variance in value estimates. For this work, we
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Figure 6.6: Evolution of the mean (Lift) and standard deviation (𝜎) of the lift forces
for the best-performing agents of each algorithm shown over the full 200 episodes
for which the model-free algorithms were trained (160, 000 samples).

Table 6.4: Hyperparameters of TD3 in our experiments.

Hyperparameter Range Best
Discount factor 0.95 − 0.99 0.99

Batch size 16 − 128 50
Replay buffer size 2 − 6 × 104 4 × 104

Target update rate 0.005 0.005
Actor learning rate 10−5 − 10−2 10−4

Critic learning rate 10−5 − 10−2 10−4

Exploration noise 0.025 − 0.2 0.05
Policy smoothing noise 0.025 − 0.2 0.05

Policy update delay 2 − 3 3
Target noise clip boundary 0.5 0.5

Actor gradient clip boundary 0.1 − 1 0.5
Critic gradient clip boundary 0.1 − 1 0.5

added gradient clipping to both actor and critic networks to encourage more stable
learning in a real-world setting. TD3 has been proven effective in several simulated
[92] environments and has previously been used for experimental flow control in a
different setting [80]. For further implementation details of TD3 please refer to [92]
and the code provided in the submission.

LSTM-TD3: LSTM-TD3 uses the same fundamental algorithm as TD3 but in-
cludes LSTM cells for a recurrent actor-critic framework. It was modified from TD3
to better address problems suffering from partial observability [196]. For further
implementation details of LSTM-TD3 please refer to [196] and the code provided
in the submission.
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Table 6.5: Hyperparameters of LSTM-TD3 in our experiments.

Hyperparameter Range Best
Discount factor 0.95 − 0.99 0.99

Batch size 16 − 128 50
Replay buffer size 2 − 6 × 104 4 × 104

Target update rate 0.005 0.005
Actor learning rate 10−5 − 10−2 10−4

Critic learning rate 10−5 − 10−2 10−4

Exploration noise 0.025 − 0.2 0.05
Policy smoothing noise 0.025 − 0.2 0.05

Policy update delay 2 − 3 3
Target noise clip boundary 0.5 0.5

Actor gradient clip boundary 0.1 − 1 0.5
Critic gradient clip boundary 0.1 − 1 0.5

LSTM Depth 3 − 15 10

SAC: This method is based on maximum entropy RL framework that wants to
maximize the performance/reward concurrently maximizing the entropy of the pol-
icy, i.e., increase the randomness in the policy. Intuitively, this method results in a
stochastic policy that achieves good performance and provides the most randomness
in achieving this result. SAC uses a temperature parameter to weigh the entropy term
relative to the reward function. The ideal temperature parameter can be automati-
cally learned during training. This method is initially proposed for real-world robotic
learning to facilitate smooth exploration, tolerate unexpected perturbations/changes
during execution, and improve robustness to hyperparameters and sample efficiency.
To this end, it requires relatively less hyperparameters compared to other model-free
RL methods. For further implementation details of SAC please refer to [102] and
the code provided in the submission.

PID: PID control is the most prevalent method found in industrial and commercial
applications. PID controllers use a basic feedback control loop that attempts to
minimize the error between an observed value and a desired setpoint. PID controllers
weigh a proportional term, an integral term, and a derivative term, all of which are
tuned for each specific application. As the name suggests, the proportional term
contributes a control signal that is directly proportional to the magnitude of the error.
The integral term provides a signal that corresponds to the running accumulated error
but is slow to react. The derivative term sends a control signal that is proportional
to the error rate of change, which effectively smooths behavior. All three of these
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Table 6.6: Hyperparameters of SAC in our experiments.

Hyperparameter Range Best
Discount factor 0.95 − 0.99 0.99

Batch size 32 − 256 128
Replay buffer size 2 × 104 − 6 × 104 4 × 104

Actor learning rate 10−5 − 10−2 5 × 10−4

Critic learning rate 10−5 − 10−2 10−3

Target smoothing coefficient 10−3 − 10−2 10−2

Target entropy −2 − −0.5 −0.5
Temperature learning rate 10−5 − 10−2 5 × 10−4

terms are weighed through corresponding constant values (i.e., 𝐾𝑃, 𝐾𝐼 , 𝐾𝐷) that can
be found through various tuning methods. For further implementation details of
PID please refer to the code provided in the submission.

Table 6.7: Hyperparameters of PID in our experiments.

Hyperparameter Range Best
𝐾𝑃 0 − 15 10
𝐾𝐼 0 − 2 0.5
𝐾𝐷 0 − 5 2

6.3.4 Stability and Performance Guarantees for FALCON

In this section, we provide the learning and regret guarantees of FALCON. The techni-
cal details and the proofs are given in Appendix D.1. First, let 𝐹𝑖 (·) : Rℎ(𝑑𝑦+𝑑𝑢) → R
denote the 𝑖th mapping of 𝐹 from input to output, i.e., 𝑦𝑡,𝑖 = 𝐹𝑖 (𝑠𝑡) + 𝑒𝑡,𝑖. We
assume that Assumptions 6.1, 6.2, and 6.4 hold. Assumption 6.2 is required to
avoid blow-ups in the output due to noise and unmodeled dynamics and Assump-
tion 6.4guarantees that the underlying system can be represented on a Fourier basis.
For simplicity, we assume that 𝑒𝑡 ∼ N(0, 𝜎2

𝑒 𝐼), yet our technical results hold for sub-
Gaussian noise. The regret of FALCON is computed as discussed in Section 6.1.3.
For consistent and reliable initial estimation of the underlying system, we assume
that FALCON uses bounded persistently exciting inputs during the warm-up period.
Given these inputs, we have the following learning guarantee.

Proposition 6.1. Let 𝛼𝑚 = sup𝑖,∥𝑠∥≤𝑆∥𝜕𝑚𝐹𝑖 (𝑠)∥𝐿∞ and 𝑑 = ℎ(𝑑𝑦 +𝑑𝑢). Using 𝑛th
order Fourier basis for learning the model for sufficiently large 𝑛, after the warm-up
of 𝑇𝑤, with high probability sup∥𝑠∥≤𝑆 ∥𝐹 (𝑠) − �̂� (𝑠)∥∞ = O(𝑛𝑑𝑇−0.5

𝑤 + 𝛼𝑚𝑛−𝑚).
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Here O(·) presents the order up to logarithmic terms. The proof is given in Ap-
pendix D.1, where we use standard least-squares estimation error analysis and
Theorem 6.2. This result shows that the underlying system can be identified with
the optimal rate of 1/

√
𝑇 , yet, due to the properties of the underlying system,

there exists a constant term in the estimation error. Note that this constant term
depends on the smoothness of the system. For nonlinear systems that live in high-
order Sobolev spaces 𝑚, this constant term can be small. In the extreme case
of infinitely differentiable systems, this constant term approaches to 0. Thus, we
have sup∥𝑠∥≤𝑆∥𝐹 (𝑠)− �̂� (𝑠)∥∞ =O(𝑇Y−0.5

𝑤 ) after warm-up, where Y depends on the
smoothness of the system and the order of Fourier basis. Next, we focus on the
adaptive control task. We have the following assumption on the MPC policy that
FALCON deploys.

Assumption 6.8. The MPC policy with 𝐹 (·) achieves e-IOS, i.e., ∀𝑡 > 𝑡0, ∥𝑦𝑡 ∥ ≤
(1− 𝜌)𝑡−𝑡0 ∥𝑦𝑡0 ∥ +𝑀 sup𝑖∈[𝑡0:𝑡] ∥𝑒𝑖∥, for 𝑀 > 0 and 0 < 𝜌 < 1. The MPC policy
with planning model �̂� (·), such that sup∥𝑠∥≤𝑆 ∥𝐹 (𝑠)− �̂� (𝑠)∥∞ ≤ 𝜖 , achieves e-IOS
with 𝜌/2 and 2𝑀 and synthesizes persistently exciting inputs which are locally
𝐿𝑜-Lipschitz in planning model.

This assumption states that MPC stabilizes the underlying system by using any
model within a neighborhood around the underlying system for planning. This
assumption is mild and one can show that it holds for linear systems. Intuitively, this
assumption holds for nonlinear systems with valid linearization for bounded inputs.
Finally, the last statement allows consistent estimation during the adaptive control
with reasonable variations in the input due to model dynamics used in planning. In
practice, this condition is usually satisfied by the combination of unmodelled system
dynamics, system noise, and sampling-based MPC policies [164]. Note that for a
long enough warm-up 𝑇𝑤, the model estimation error can be made small enough to
achieve stabilization via the MPC policy. Once FALCON is guaranteed to stabilize
the dynamics, it safely regulates the system.

Theorem 6.4. Suppose Assumptions 6.1, 6.2, 6.4, and 6.8 hold. Let 𝑇𝑤 be chosen
long enough such that the MPC policy of FALCON stabilizes the underlying system
dynamics. Then, with high probability, for large enough 𝑇 , FALCON attains regret
of Regret(𝑇) = O(

√
𝑇 + 𝜖′𝑇), where 𝜖′ depends on the smoothness of the underlying

system. For sufficiently smooth systems, it achieves Regret(𝑇) = Õ(
√
𝑇).
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The proof is given in Appendix D.1. This shows that FALCON is the first efficient RL
algorithm that attains O(

√
𝑇) regret in adaptive control of partially observable non-

linear systems. Note that this result applies to various systems that are governed by
partial differential equations since FALCON only requires the periodic extension of
the model dynamics to live in the Sobolev space of periodic functions. Moreover, for
infinitely smooth systems, e.g., sinusoidal systems, one can improve Proposition 6.1,
and this in turn would give significantly improved regret upper bound for FALCON.

Corollary 6.4.1. Under the setting of Theorem 6.4, for an infinitely smooth system,
i.e., 𝐹𝑖 ∈ 𝑊∞,2𝑝 ( [0, 2𝜋]ℎ(𝑑𝑦+𝑑𝑢)) for 1 ≤ 𝑖 ≤ 𝑑𝑦, with high probability, FALCON at-
tains Regret(𝑇) = polylog(𝑇).

This shows that for a certain class of dynamical systems, using the domain knowledge
on the system dynamics FALCON can achieve almost logarithmic regret even if the
underlying system is unknown.

6.4 Stability Constrained Model-Based RL
Finally, in this section, we study the problem of stabilizing policy design for unknown
nonlinear dynamical systems. Note that this problem is avoided in Sections 6.2 and
6.3 by assuming that the underlying MPC policy stabilizes the system dynamics
even under modeling error, namely Assumptions 6.6 and 6.8, respectively. In this
section, we formally propose a policy optimization problem for a class of nonlinear
dynamical systems, whose solution is guaranteed to stabilize the underlying system
even under modeling error.

To achieve this, we integrate control theoretic tools into policy optimization in RL.
In particular, we propose a policy optimization problem that adapts Krasovskii’s
construction of quadratic Lyapunov functions [148] as a stability constraint, which
guarantees that the Lyapunov stability conditions are met by design for the solution
of the policy optimization problem (Theorem 6.5). Further, we show that this
stabilization guarantee holds for the controllers obtained using a learned model
of system dynamics in the policy optimization for small enough modeling errors
(Theorem 6.6).

To adapt this stability-constrained policy optimization problem into a reinforcement
learning pipeline, we propose a primal-dual method. We show that the primal-dual
method guarantees the satisfaction of the stability constraint and the design of a
stabilizing policy for the underlying system after convergence (Theorem 6.7). This
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allows us to design a novel model-based RL framework, Krasovskii-Constrained
RL (KCRL), via combining model learning and the proposed policy optimization
method. KCRL learns the unknown model dynamics in epochs and solves the pro-
posed stability-constrained policy optimization problem via the primal-dual method
using the learned model.

We study the KCRL framework both theoretically and empirically. On the theory
side, we consider KCRL with kernel-based feature representations for model learn-
ing, i.e. Random Fourier Features (RFF) introduced in Section 6.1 and used in
MLPC. We show that KCRL with RFF-learning formally guarantees the design of
stabilizing control policies in finite time/samples (Theorem 6.8). On the empirical
side, we study the performance of the KCRL framework in learning a stable policy
for voltage control in a distributed power system with different operating conditions
obtained via real-world operation data. We show that KCRL guarantees stability
under all operating conditions, whereas the standard RL methods fail in stabilizing.

Related Work

Our work connects to a broad set of control and RL literature.

Lyapunov theory is a systematic framework to analyze the stability of a control sys-
tem. To prove stability, Lyapunov’s direct method aims to define a positive definite
function, that decreases along the system trajectory, i.e., a Lyapunov function. There
is a large body of tools in control such as Krasovskii’s method [148], contraction
theory [190], feedback linearization [153], and passivity theory [247], which pro-
vide ways to construct Lyapunov function candidates and analyze the stability of
the systems. In our work, we consider Krasovskii’s method in designing stabilizing
policies for systems with modeling errors. In the context of these control theo-
retic tools, our contributions bridge one of the classical tools in control with policy
optimization in RL.

Control Lyapunov functions (CLFs) are popular tools in designing stabilizing con-
trollers and they are also closely related to our framework [248]. In the construction
of CLFs, it is often assumed that the system is control-affine, or more generally
input-output linearizable [16]. For such systems, the Lyapunov function design
problem simplifies due to linearized system dynamics [15]. However, to achieve
such input-output linerization, existing works either assume the knowledge of the
model dynamics or assume that the CLF constructed for the learned model is also a
CLF for the underlying system [59, 259, 277, 292]. In this work, we do not have these



261

assumptions on the system dynamics or the constructed Lyapunov function, which
are violated in many practical systems. Instead, we consider nonlinear systems
that admit Krasovskii’s family of Lyapunov functions and provide an end-to-end
RL method, KCRL, which designs stabilizing controllers for the underlying system
using model estimates. In particular, we quantify the amount of modeling error that
KCRL can tolerate for stabilization.

Model-based RL in dynamical systems has been studied in many recent works due to
its superior sample efficiency and interpretable guarantees. The main focus has been
on learning the system dynamics and providing performance guarantees in finite-
time for both linear [163] (and references within), and nonlinear systems [164].
While deriving these guarantees, the formal finite-time stability guarantees are also
derived for linear systems [82]. However, these guarantees have only been assumed
to hold with a stabilizing oracle for nonlinear systems [164]. Our work provides
formal finite-time (sample) stabilization guarantees for nonlinear systems without
these assumptions.

Stability Guarantees in Learning-based Control. What we present here is one
among many directions on incorporating stability guarantees in learning-based con-
trol, with a focus on incorporating stability guarantees for policy optimization (PO)
based RL algorithms. For the benefit of readers from both the learning and con-
trol communities, we highlight a few results from this vast and growing literature.
The stability of learning-based MPC was established in [20, 231] and followed, for
nonlinear systems, by efforts on joint learning of the controller and(or) Lyapunov
functions [49, 51, 52, 66, 69]. [33, 70] studied learning of stability certificates
and stable controllers from data, and [27] developed a provably stable data-driven
algorithm based on system measurements and prior system knowledge. Another
line of work considers incremental stability for nonlinear systems using contraction
theory and convex optimization with modeling errors [271, 272]. Different from
existing works, we construct the Lyapunov function based on Krasovskii’s method
(rather than learning the Lyapunov function from scratch or data) and train the pol-
icy network to satisfy the stability conditions derived from Krasovskii’s method. In
addition, to incorporate stability guarantees to policy optimization methods in RL,
there have been works that proved stability and convergence for actor-critic based
RL methods [179, 279] and Q-learning [278].
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6.4.1 Preliminaries
Consider a discrete-time nonlinear system given as

𝑥𝑡+1 = 𝑓 (𝑥𝑡 , 𝑢𝑡), (6.21)

where 𝑥𝑡 ∈ R𝑛 is the state of the system, 𝑢𝑡 ∈ R𝑝 is the control input at time-step 𝑡.
We study the discrete optimal control setting for the system given in (6.21). Suppose
there is a class of controllers 𝑔\ (·), parameterized by \ ∈ Θ. The goal is to design a
controller 𝑔\ (·) that minimizes a control cost,

min
\
𝐽 (\) =

∑︁∞
𝑡=0
𝛾𝑡𝑐(𝑥𝑡 , 𝑢𝑡), (6.22a)

s.t. 𝑥𝑡+1 = 𝑓 (𝑥𝑡 , 𝑢𝑡) , 𝑢𝑡 = 𝑔\ (𝑥𝑡), (6.22b)

where 𝑐(𝑥, 𝑢) is the cost and 𝛾 is the discounting factor. Note that there are many
ways to solve or approximate the policy optimization problem (6.22). Generally
speaking, the procedure is to run gradient methods on the policy parameter \ with
step size [, \←\−[∇𝐽 (\). To approximate the gradient∇𝐽 (\), one can use sampled
trajectories such as REINFORCE or value function approximation such as actor-
critic methods. As we are dealing with deterministic policies, one of the most popular
choices is the Deep Deterministic Policy Gradient (DDPG) [185], where the pol-
icy gradient is approximated by ∇𝐽 (\) ≈ 1

𝑁

∑
𝑖∈𝐵 ∇𝑢�̂�(𝑥, 𝑢) |𝑥=𝑥𝑖 ,𝑢=𝑔\ (𝑥𝑖)∇\𝑔\ (𝑥) |𝑥𝑖 .

Here �̂�(𝑥, 𝑢) is the value (critic) network that can be learned via temporal difference
learning, 𝑔\ (𝑥) is the actor network, and {𝑥𝑖}𝑖∈𝐵𝐽 are a batch of samples with batch
size |𝐵𝐽 | = 𝑁 sampled from the replay buffer which stores historical state-action
pairs. For further details on DDPG, please refer to [185].

Stability

In control systems, stability studies whether the state trajectory of the closed-loop
system 𝑥𝑡+1 = 𝑓 (𝑥𝑡 , 𝑔\ (𝑥𝑡)) asymptotically converges to the desired stationary point
or a set of stationary points. The following formally defines stability in our context,
using the notation dist(𝑥, 𝑆) := inf𝑦∈𝑆 ∥𝑦 − 𝑥∥ to denote the distance between point
𝑥 and set 𝑆.

Definition 6.1 (Asymptotically stable equilibrium). A dynamical system 𝑥𝑡+1 =

𝑓 (𝑥𝑡 , 𝑔\ (𝑥𝑡)) is asymptotically stable around 𝑥 (𝑒) if 𝑓 (𝑥 (𝑒) , 𝑔\ (𝑥 (𝑒))) = 𝑥 (𝑒) , and fur-
ther, there exists a region around 𝑥 (𝑒) , 𝐵𝛿 (𝑥 (𝑒)) = {𝑥 : ∥𝑥−𝑥 (𝑒) ∥ ≤ 𝛿} such that∀𝑥0 ∈
𝐵𝛿 (𝑥 (𝑒)), we have lim𝑡→∞ ∥𝑥𝑡 − 𝑥 (𝑒) ∥ = 0. A dynamical system is globally asymp-
totically stable around 𝑥 (𝑒) if the same holds for all possible initial states 𝑥0 ∈ R𝑛.
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More generally, the following definition considers a set of equilibrium points, where
we use the notation dist(𝑥, 𝑆) := inf𝑦∈𝑆 ∥𝑦 − 𝑥∥ to denote the distance between point
𝑥 and set 𝑆.

Definition 6.2. (Asymptotically stable set) A dynamical system 𝑥𝑡+1 = 𝑓 (𝑥𝑡 , 𝑔\ (𝑥𝑡))
is asymptotically stable around set 𝑆𝑒 if 𝑓 (𝑥 (𝑒) , 𝑔\ (𝑥 (𝑒))) = 𝑥 (𝑒) ,∀𝑥 (𝑒) ∈ 𝑆𝑒, and
further, there exists 𝐵𝛿 (𝑆𝑒) := {𝑥 : dist(𝑥, 𝑆𝑒) ≤ 𝛿} such that ∀𝑥0 ∈ 𝐵𝛿 (𝑆𝑒), we
have lim𝑡→∞ dist(𝑥𝑡 , 𝑆𝑒) = 0. The system is globally asymptotically stable around
𝑆𝑒 if the same holds for any initial state 𝑥0 ∈ R𝑛.

A common approach to prove the stability of a dynamical system with respect to
an equilibrium is via Lyapunov’s direct method and a generalization of Lyapunov’s
method, known as LaSalle’s Invariance Principle for proving stability to a set. Both
involve defining a positive definite function that decreases along the system trajec-
tory, i.e., a Lyapunov function𝑉 . Please refer to [142] for a more complete overview.

In this section, we study problem (6.22) under unknown system dynamics. Note
that for 𝜙𝑡 = [𝑥⊤𝑡 , 𝑢⊤𝑡 ]⊤, one can write the system dynamics given in (6.21) as

𝑥𝑡+1 = 𝐹 (𝜙𝑡), (6.23)

for some nonlinear function 𝐹. Further, we denote the closed-loop system dynamics
obtained via the policy 𝑢𝑡 = 𝑔\ (𝑥𝑡) as

𝑥𝑡+1 = 𝐹\ (𝑥𝑡), (6.24)

where 𝐹\ (𝑥𝑡) = 𝐹 (𝜙𝑡) for 𝜙𝑡 = [𝑥⊤𝑡 , 𝑔\ (𝑥𝑡)⊤]⊤. To ease the presentation, we use both
notations interchangeably throughout this work. Suppose that 𝐹 and 𝑔\ are both
continuously differentiable. Let 𝐺 (𝑥, \) denote the true Jacobian of the closed-loop
system with respect to state 𝑥, i.e., 𝐺 (𝑥, \) = 𝜕𝐹 (𝜙)

𝜕𝑥
+ 𝜕𝐹 (𝜙)

𝜕𝑢
𝜕𝑢
𝜕𝑥

. For discrete-time
dynamical systems as in (6.24), Krasovskii’s Lyapunov function candidate follows,

𝑉 (𝑥) = (𝑥 − 𝐹\ (𝑥))⊤𝑀 (𝑥 − 𝐹\ (𝑥)), (6.25)

such that there exists a pair (𝑀, \), where 𝑀 ≻ 0 and 𝐺 (𝑥, \)⊤𝑀𝐺 (𝑥, \) − 𝑀 ⪯ 0.
In this work, we assume that the underlying system in (6.23) satisfies the Krasovskii’s
Lyapunov function construction for an (𝑀, \) pair with a stability margin, i.e., for
some 𝜖 > 0,

𝐺 (𝑥, \)⊤𝑀𝐺 (𝑥, \) − 𝑀 ⪯ −𝜖 𝐼. (6.26)

Remark 6.2. The stability margin is required to accommodate modeling errors in
the dynamics. If one has access to the true model, 𝐹 (·), 𝜖 = 0 would suffice, i.e.,
asymptotic stability.
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6.4.2 Krasovskii-Constrained Policy Optimization
In this section, we introduce our novel stability-constrained policy optimization
problem and prove that its solution is a stabilizing policy under perfect model
dynamics and also under modeling errors. We then provide a primal-dual policy
gradient approach to solve this problem using a learned model and show that it finds
a stabilizing policy.

Stabilizing Policy Design

Using Krasovskii’s method of constructing Lyapunov functions for the underlying
system described in Section 6.4.1, we add a stability constraint into the standard
policy optimization problem in (6.22). In particular, for a given (estimated) model
�̂� (·) on the true system dynamics 𝐹 (·), we propose to solve the following constrained
optimization problem

min
\

∑︁𝑇

𝑡=0
𝛾𝑡𝑐(𝑥𝑡 , 𝑢𝑡), (6.27a)

s.t. 𝑥𝑡+1 = 𝐹 (𝜙𝑡) , 𝑢𝑡 = 𝑔\ (𝑥𝑡), (6.27b)

�̂� (𝑥, \)⊤𝑀�̂� (𝑥, \) − 𝑀 ≺ −𝜖𝑖 𝐼, ∀𝑥 ∈ X, (6.27c)

where 𝑀 ≻ 0, �̂� (𝑥, \) = �𝜕𝐹 (𝜙)
𝜕𝑥
+�𝜕𝐹 (𝜙)

𝜕𝑢
𝜕𝑢
𝜕𝑥

for the Jacobian estimates �𝜕𝐹 (𝜙)
𝜕𝑥

and �𝜕𝐹 (𝜙)
𝜕𝑢

which can be computed via finite difference method using �̂� (·), and 𝜖 ≥ 𝜖𝑖 > 0,
which is chosen based on the modeling error in �̂� (·) as discussed shortly.

Compared to (6.22), the formulation (6.27) incorporates an additional constraint
(6.27c). This constraint adapts Krasovskii’s method for Lyapunov function con-
struction and enforces the stability of the learned policy. In what follows, we
show that the solution of the novel stability-constrained policy optimization prob-
lem (6.27) using the true system 𝐹 (·), particularly the true Jacobians in (6.27c), is
a stabilizing policy by design.

Theorem 6.5 (Stability of the True Discrete-time System). Consider solving (6.27)
with the knowledge of true model 𝐹 (·), i.e., (6.27c) is evaluated using the true
Jacobian. Let \★ denote the solution of (6.27), such that (6.27c) holds for some 𝜖𝑖,
where 𝜖 ≥ 𝜖𝑖 ≥ 0. Then, we have the trajectory of 𝑥𝑡+1 = 𝐹\★(𝑥𝑡) is asymptotically
stable around the origin, 𝐹\★ (0)=0.

Proof. Following Krasovskii’s construction method gives the candidate Lyapunov
function of

𝑉 𝑓 (𝑥) = (𝑥 − 𝑓 (𝑥))⊤𝑀 (𝑥 − 𝑓 (𝑥)), (6.28)
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for the underlying system 𝑓 (𝑥). Note that we are considering the non-autonomous
systems𝐹 (𝜙), where 𝜙 = [𝑥⊤, 𝑢⊤]⊤ given the controller 𝑢 = 𝑔\ (𝑥). Let𝐹\ (𝑥) denote
the closed-loop system dynamics obtained via controller 𝑔\ (𝑥), i.e. 𝐹\ (𝑥) = 𝐹 (𝜙)
with 𝜙 = [𝑥⊤, 𝑔\ (𝑥)⊤]⊤. Therefore, we consider the following Lyapunov function:

𝑉 (𝑥) = (𝑥 − 𝐹\ (𝑥))⊤𝑀 (𝑥 − 𝐹\ (𝑥)). (6.29)

Firstly, note that 𝑉 (𝑥) ≥ 0, and 𝑉 (𝑥) = 0 if and only if 𝑥 ∈ 𝑆𝑒 as 𝑀 is positive
definite. Then, we consider

𝑉 (𝑥𝑡+1)−𝑉 (𝑥𝑡)= (𝑥𝑡+1−𝐹\ (𝑥𝑡+1))⊤𝑀 (𝑥𝑡+1−𝐹\ (𝑥𝑡+1))−(𝑥𝑡−𝐹\ (𝑥𝑡))⊤𝑀 (𝑥𝑡−𝐹\ (𝑥𝑡)).
(6.30)

First, consider the following for ℎ(𝑥) = 𝑥 − 𝐹\ (𝑥). One can write ℎ(𝑥𝑡+1) in terms
of ℎ(𝑥𝑡) as follows,

ℎ(𝑥𝑡+1) = ℎ(𝑥𝑡) +
∫ 1

0

𝜕ℎ

𝜕𝑥
(𝑥𝑡 + 𝑡 (𝑥𝑡+1 − 𝑥𝑡)) (𝑥𝑡+1 − 𝑥𝑡)𝑑𝑡.

Recall Kowalewski’s Mean Value Theorem [146].

Proposition 6.2 (Kowalewski’s Mean Value Theorem [146]). Let 𝑥1, . . . , 𝑥𝑛 be
continuous functions in a variable 𝑡 ∈ [𝑎, 𝑏]. There exists real numbers 𝑡1, . . . , 𝑡𝑛
in [𝑎, 𝑏] and non-negative _1, . . . , _𝑛, with

∑𝑛
𝑖 _𝑖 = 𝑏 − 𝑎, such that∫ 𝑏

𝑎

𝑥𝑘 (𝑡)𝑑𝑡 =
𝑛∑︁
𝑖=1

_𝑖𝑥𝑘 (𝑡𝑖),

for each 𝑘 = 1, . . . , 𝑛.

From Proposition 6.2, we have

ℎ(𝑥𝑡+1) = ℎ(𝑥𝑡) + 𝐽ℎ (𝑥𝑡+1 − 𝑥𝑡),

where 𝐽ℎ =
∑𝑛
𝑖=1 _𝑖

𝜕ℎ
𝜕𝑥
(𝑥𝑡+𝑘𝑖 (𝑥𝑡+1−𝑥𝑡)) for 𝑘𝑖 ∈ [0, 1], _𝑖 ≥ 0 for all 𝑖 and

∑𝑛
𝑖 _𝑖 = 1.

Plugging this in 𝑉 (𝑥𝑡+1), we get

𝑉 (𝑥𝑡+1)=ℎ(𝑥𝑡)⊤𝑀ℎ(𝑥𝑡)+2(𝑥𝑡+1−𝑥𝑡)⊤𝐽⊤ℎ 𝑀ℎ(𝑥𝑡)+(𝑥𝑡+1−𝑥𝑡)
⊤𝐽⊤ℎ 𝑀𝐽ℎ (𝑥𝑡+1−𝑥𝑡)

Note that 𝑥𝑡+1 − 𝑥𝑡 = 𝐹\ (𝑥𝑡) − 𝑥𝑡 = −ℎ(𝑥𝑡). Therefore, we get

𝑉 (𝑥𝑡+1) = ℎ(𝑥𝑡)⊤𝑀ℎ(𝑥𝑡) − 2ℎ(𝑥𝑡)⊤𝐽⊤ℎ 𝑀ℎ(𝑥𝑡) + ℎ(𝑥𝑡)
⊤𝐽⊤ℎ 𝑀𝐽ℎℎ(𝑥𝑡)

= ℎ(𝑥𝑡)⊤(𝐼 − 𝐽ℎ)⊤𝑀 (𝐼 − 𝐽ℎ)ℎ(𝑥𝑡).
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From the definition of 𝐽ℎ and ℎ(𝑥) = 𝑥 − 𝐹\ (𝑥), we have 𝐽ℎ = 𝐼 − 𝐽𝐹\ , where
𝐽𝐹\ =

∑𝑛
𝑖=1 _𝑖

𝜕𝐹\
𝜕𝑥
(𝑥𝑡 + 𝑘𝑖 (𝑥𝑡+1 − 𝑥𝑡)), where 𝑘𝑖 and _𝑖 follow from the definition of

𝐽ℎ. Thus we get

𝑉 (𝑥𝑡+1) = (𝑥𝑡 − 𝐹\ (𝑥𝑡))⊤𝐽⊤𝐹\𝑀𝐽𝐹\ (𝑥𝑡 − 𝐹\ (𝑥𝑡)). (6.31)

Plugging this in (6.30) gives

𝑉 (𝑥𝑡+1) −𝑉 (𝑥𝑡) = (𝑥𝑡 − 𝐹\ (𝑥𝑡))⊤(𝐽⊤𝐹\𝑀𝐽𝐹\ − 𝑀) (𝑥𝑡 − 𝐹\ (𝑥𝑡)). (6.32)

For any 𝑥 ∈ R𝑛, we have

𝑥⊤𝐽⊤𝐹\𝑀𝐽𝐹\𝑥 =
𝑀1/2𝐽𝐹\𝑥

2

=

 𝑛∑︁
𝑖=1

_𝑖𝑀
1/2 𝜕𝐹\

𝜕𝑥

(
𝑥𝑡 + 𝑘𝑖 (𝑥𝑡+1 − 𝑥𝑡)

)
𝑥

2

≤
𝑛∑︁
𝑖=1

_𝑖

𝑀1/2 𝜕𝐹\
𝜕𝑥

(
𝑥𝑡 + 𝑘𝑖 (𝑥𝑡+1 − 𝑥𝑡)

)
𝑥

2

=

𝑛∑︁
𝑖=1

_𝑖𝑥
⊤ 𝜕𝐹\
𝜕𝑥

(
𝑥𝑡 + 𝑘𝑖 (𝑥𝑡+1 − 𝑥𝑡)

)⊤
𝑀
𝜕𝐹\

𝜕𝑥

(
𝑥𝑡 + 𝑘𝑖 (𝑥𝑡+1 − 𝑥𝑡)

)
𝑥,

where the inequality is due to Jensen’s inequality. Due to the constraint (6.27c), we
have that 𝜕𝐹\

𝜕𝑥
(𝑥)⊤𝑀 𝜕𝐹\

𝜕𝑥
(𝑥) ≺ 𝑀 − 𝜖 𝐼 for all 𝑥 ∈ R𝑛. Thus, we have that

𝐽⊤𝐹\𝑀𝐽𝐹\ − 𝑀 ⪯ (6.33)∑︁
𝑖

_𝑖

[
𝜕𝐹\

𝜕𝑥

(
𝑥𝑡 + 𝑘𝑖 (𝑥𝑡+1 − 𝑥𝑡)

)⊤
𝑀
𝜕𝐹\

𝜕𝑥

(
𝑥𝑡 + 𝑘𝑖 (𝑥𝑡+1 − 𝑥𝑡)

)
− 𝑀

]
⪯ −𝜖 𝐼. (6.34)

This shows that the Lyapunov function is decreasing along the system trajectory, i.e.
𝑉 (𝑥𝑡+1) −𝑉 (𝑥𝑡) = (𝑥𝑡 − 𝐹\ (𝑥𝑡))⊤(𝐽⊤𝐹\𝑀𝐽𝐹\ − 𝑀) (𝑥𝑡 − 𝐹\ (𝑥𝑡)) < 0.

Lastly, if a trajectory 𝑥𝑡 is such that 𝑉 (𝑥𝑡+1) − 𝑉 (𝑥𝑡) = 0,∀𝑡 ≥ 0, then we must
have 𝐹\ (𝑥𝑡) = 𝑥𝑡 for all 𝑡, i.e. 𝑥𝑡 ∈ 𝑆𝑒 for all 𝑡. Therefore, by LaSalle’s Invariance
Principle, we must have 𝑆𝑒 asymptotically stable. □

Note that Theorem 6.5 uses the exact Jacobians rather than estimates obtained via
the finite difference method.
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Effect of Modeling Errors

We extend this result to tolerate modeling errors, i.e., errors in the Jacobian estimates.
First, we quantify some regularity conditions of the system and the policy class.

Assumption 6.9 (Regularity Conditions). (i) 𝐹 is 𝐿𝐹-Lipschitz, i.e., we have Jaco-
bian of 𝐹, ∥𝐽𝐹 ∥ ≤ 𝐿𝐹 . (ii) ∥∇2𝐹𝑖∥ ≤FH, ∀𝑖, where 𝐹𝑖 denotes the mapping from 𝜙𝑡

to 𝑖th element of state vector 𝑥𝑡+1, i.e., (𝑥𝑡+1)𝑖 =𝐹𝑖 (𝜙𝑡) for 𝑖=1, ..., 𝑛. (iii) Policies in
the policy class are 𝐿𝑢-Lipschitz, that is, ∥ 𝜕𝑔\ (𝑥)

𝜕𝑥
∥ ≤ 𝐿𝑢, ∀\.

Note that in practice, one can use loose upper bounds for these system-related quan-
tities and update them over time. The following shows that solving (6.27) using
a well-refined model estimate �̂� and an appropriate choice of 𝜖𝑖 guarantees the
recovery of stabilizing policy for the underlying system.

Theorem 6.6 (Stability under Modeling Error). Suppose Assumption 6.9 holds and
the Jacobian estimates obtained using a model estimate �̂� (·) satisfy

sup
𝑥

max(∥
�𝜕𝐹𝑖 (𝜙)
𝜕𝑥

− 𝜕𝐹𝑖 (𝜙)
𝜕𝑥

∥, ∥
�𝜕𝐹𝑖 (𝜙)
𝜕𝑢

− 𝜕𝐹𝑖 (𝜙)
𝜕𝑢

∥) ≤ Y𝐽 <1,

for all 𝑖 = 1, . . . , 𝑛. Let \★ be the solution of (6.27) using these Jacobian estimates
in (6.27c) for 𝜖𝑖, such that 𝜖 ≥ 𝜖𝑖 ≥ 2�̄�∥𝑀 ∥(1+𝐿𝑢)Y𝐽 +∥𝑀 ∥(1+𝐿𝑢)2Y2

𝐽
, where �̄� =

(1 + 𝐿𝑢) (𝐿𝐹 + Y𝐽). Then, we have the trajectory of 𝑥𝑡+1 = 𝐹\★(𝑥𝑡) is asymptotically
stable around the origin.

Proof. By Theorem 6.5, we only need to show the following: (here we drop \

dependence as it is fixed in the proof)

𝐺 (𝑥)⊤𝑀𝐺 (𝑥) − 𝑀 ≺ 0,∀𝑥 ∈ X. (6.35)

Let Δ𝐺𝑖 B �̂�𝑖 (𝑥)−𝐺𝑖 (𝑥). Using Assumption 6.9 and the construction of 𝐺𝑖 (𝑥), we
first bound ∥Δ𝐺𝑖∥:

∥Δ𝐺𝑖∥ ≤ (1+𝐿𝑢)Y𝐽 . (6.36)

Next, note that the stability constraint (6.27c) indicates �̂�𝑖 (𝑥)⊤𝑀�̂�𝑖 (𝑥) −𝑀 ≺ −𝜖𝑖 𝐼.
Using this, we get

𝐺𝑖 (𝑥)⊤𝑀𝐺𝑖 (𝑥) = �̂�𝑖 (𝑥)⊤𝑀�̂�𝑖 (𝑥) + Δ𝐺⊤𝑖 𝑀�̂� (𝑥)
+ �̂�𝑖 (𝑥)⊤𝑀Δ𝐺𝑖 + Δ𝐺⊤𝑖 𝑀Δ𝐺𝑖

⪯ 𝑀 − 𝜖𝑖 𝐼 + 2�̄�∥𝑀 ∥∥Δ𝐺𝑖∥𝐼 + ∥𝑀 ∥∥Δ𝐺𝑖∥2𝐼 ≺ 𝑀,
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where in the final step, we use (6.36) and the choice of 𝜖𝑖. This verifies (6.35) and
gives the advertised result. □

Theorems 6.5 and 6.6 show that the solution of (6.27) stabilizes the underlying
system even under modeling errors. To use this framework in online policy opti-
mization, one requires to solve this constrained optimization effectively. To that
end, we propose a primal-dual policy gradient technique.

Primal-Dual Approach

In the following, we describe the primal-dual technique to solve (6.27) and show
that the convergence of this method guarantees the satisfaction of stability condition
in (6.27c) with appropriate algorithmic choices. We use the following short-hand
notation, 𝐾 (𝑥, \)= �̂� (𝑥, \)⊤𝑀�̂� (𝑥, \)−𝑀+𝜖𝑖 𝐼 .With this, (6.27) can be reformulated
as

min
\
𝐽 (\) s.t. sup

𝑥

_max(𝐾 (𝑥, \)) < 0,

where _max(·) is the largest eigenvalue. The Lagrangian for the problem is given as
𝐿 (\, `) = 𝐽 (\) + ` sup𝑥 _max(𝐾 (𝑥, \)). The primal-dual algorithm then proceeds
as follows [207],

\ ← \ − [1

[
∇𝐽 (\) + `∇\ sup

𝑥

_max(𝐾 (𝑥, \))
]
,

`← max(0, ` + [2 sup
𝑥

_max(𝐾 (𝑥, \))).

Since it is not possible to evaluate sup𝑥 , we replace it with a supremum over a batch of
representative points in the state space {𝑥𝑖}𝑖∈B . For the term ∇𝐽 (\), we use standard
policy gradient estimators, e.g. DDPG [185], to evaluate the policy gradient and
denote the estimated gradient as �∇𝐽 (\). Thus, the primal-dual algorithm is given
as,

\ ← \ − [1

[�∇𝐽 (\) + `∇\ sup
𝑖∈B

_max(𝐾 (𝑥𝑖, \))
]
,

`← max(0, ` + [2 sup
𝑖∈B

_max(𝐾 (𝑥𝑖, \) + 𝜖pd𝐼)), (6.37)

where [1, [2 > 0 are the step sizes andB is a batch of representative points in the state
space, and 𝜖pd > 0 is a constant that is chosen to tolerate the possible representation
incapability of B. The following gives the characterization of 𝜖pd to verify that the
solution obtained via the primal-dual method stabilizes the underlying system.
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Theorem 6.7 (Convergence of Primal-Dual Algorithm Guarantees Stability). Sup-
pose the primal-dual procedure converges, then the stability condition will be met for
all samples in the batch of representative pointsB given in (6.37). Suppose the batch
B = {𝑥𝑖}𝑁𝑖=1 contains a finite set of points inX such that,∀𝑥 ∈ X , ∃𝑥𝑖 ∈ B , | |𝑥−𝑥𝑖 | | <
ℎ, for some ℎ > 0. Under the conditions of Theorem 6.6, for | | 𝜕�̂� (𝑥,\)

𝜕𝑥
| | ≤ 𝑀𝐺 , if 𝜖pd

in (6.37) is set to 𝜖pd = 2�̄� | |𝑀 | |𝑀𝐺ℎ, then the stability condition is met on the entire
state space X for the choice of 𝜖 − 𝜖pd ≥ 𝜖𝑖 ≥ 2�̄�∥𝑀 ∥(1 + 𝐿𝑢)Y𝐽 + ∥𝑀 ∥(1 + 𝐿𝑢)2Y2

𝐽

in (6.27c).

Remark 6.3. The batchB constitutes arbitrary points inX to estimate the supremum
of the stability constraint and does not correspond to data collected from the system.
The primal-dual algorithm only requires the evaluation of _max(𝐾 (𝑥𝑖, \)) at these
particularly chosen representative points in X using the estimated dynamics �̂� (·).
Here ℎ is the fill distance for the batch B. This condition can be met by using
𝑁 = (Γ/ℎ+1)𝑑 samples in the batch B. Note that this dependency is unavoidable to
formally verify stability for the entire X using samples [97]. In practice, one can
use falsifiers [93] to find states which violate the stability constraint and add them
in B, similar to [49]. Furthermore, in the expense of computational burden, 𝑁 can
be also picked larger which would reduce ℎ and shrink 𝜖𝑝𝑑 arbitrarily.

Proof. Due to the dual variable update in (6.37), the convergence of (`, \) to
(`∗, \∗) implies ∀𝑖 ∈ B, _max(𝐾 (𝑥𝑖, \∗))) ≤ 0, that is the Krasovskii’s stability
condition holds for all the samples in the batch. Since each batch B is drawn
from the state space X, as training time goes to infinity, the stability condition
_max(𝐾 (𝑥𝑖, \∗))) ≤ 0 also holds for all 𝑥𝑖 ∈ B. By the fill distance condition, i.e.,
∀𝑥 ∈ X , ∃𝑥𝑖 ∈ B , | |𝑥 − 𝑥𝑖 | | < ℎ, (here we drop the dependence on \∗ as it is fixed
in the proof)

min
𝑥𝑖∈B
| |𝐾 (𝑥) − 𝐾 (𝑥𝑖) | | = min

𝑥𝑖∈B
| |�̂� (𝑥)⊤𝑀�̂� (𝑥) − �̂� (𝑥𝑖)⊤𝑀�̂� (𝑥𝑖) | |

≤ min
𝑥𝑖∈B
| | (�̂� (𝑥) − �̂� (𝑥𝑖))⊤𝑀�̂� (𝑥) | | + | |�̂� (𝑥𝑖)⊤𝑀 (�̂� (𝑥) − �̂� (𝑥𝑖)) | |

≤ 2�̄� | |𝑀 | |𝑀𝐺ℎ. (6.38)

Let 𝜖𝑝𝑑 = 2�̄� | |𝑀 | |𝑀𝐺ℎ, if ∀𝑥𝑖 ∈ B , 𝐾 (𝑥𝑖, \∗) + 𝜖𝑝𝑑 𝐼 ≺ −𝜖𝑖 𝐼, then 𝐾 (𝑥, \∗) ≺ −𝜖𝑖 𝐼
holds for all 𝑥 in the entire state space X. By Theorem 6.6, stability holds for the
true system, i.e., 𝐺 (𝑥)⊤𝑀𝐺 (𝑥) − 𝑀 ≺ 0 for all 𝑥 ∈ X. □

Remark 6.4. The convergence of the primal-dual algorithm has been shown for
linear systems in risk-constrained control [302, 303] and Q-learning [175]. Similar
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Algorithm 17 KCRL
1: Input: 𝜏, 𝑔\0 , 𝐷, _, 𝜖𝑖, 𝑀 , `, [1, [2, 𝜖𝑝𝑑
2: for 𝑖 = 0, . . . do
3: for 𝑡 = 𝑖𝜏, . . . , (𝑖 + 1)𝜏 do
4: Execute 𝑢𝑡 = 𝑔\𝑖 (𝑥𝑡)
5: Store 𝜙𝑡 = [𝑥⊤𝑡 , 𝑢⊤𝑡 ]⊤ and 𝑥𝑡+1
6: Estimate the model dynamics �̂�𝑖 (·) ▷ Learning
7: Solve (6.27) for \𝑖+1 using �̂�𝑖 (·) via (6.37)
8: Construct 𝑔\𝑖+1 ▷ Stable Policy Design

convergence proofs translate to our setting for linear systems. Showing convergence
for general nonlinear dynamics requires a piece of new machinery and is beyond
the scope of this work.

Theorem 6.7 shows that solving (6.27) via primal-dual approach will recover a sta-
bilizing solution within the given parameter space Θ, provided that the estimation
error is sufficiently small. The parameter space Θ and its coupling with the under-
lying system in closed-loop form determine the level of estimation error required in
the system dynamics through 𝐿𝑢, 𝐺, and 𝑀𝐺 . For instance, in the LQR problem re-
stricted to the linear state-feedback policy class Θ, the estimation error of the model
parameters necessary for stable policy design depends on the maximum operator
norms of the feedback controllers and their corresponding closed-loop matrices in
the given parameter set Θ, while 𝑀𝐺 = 0. In other words, the feasible set of \ ∈ Θ
for a fixed estimation error of the linear model parameters is determined by 𝐿𝑢

and 𝐺, which can be upper-bounded using the continuous differentiability of 𝐹 and
𝑔\ . In the following, we design a model-based RL framework using the discussed
primal-dual approach and show that for smooth dynamical systems it can be used
for learning stabilizing controllers from scratch.

6.4.3 Krasovskii-Constrained RL Framework
In this section, we present the novel model-based RL framework: KCRL. The
algorithm is outlined in Algorithm 17. KCRL works in epochs of length 𝜏, where
the controller is during the epoch is fixed. Each epoch consists of two parts: (i)
Model Learning, where KCRL deploys the current controller in the underlying system
to generate trajectories and update the model estimates, (ii) Stable Policy Design,
where KCRL uses Krasovskii-constrained policy optimization approach to design
the new controller for the next epoch.
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Each epoch 𝑖 of KCRL starts with a data collection from the underlying system for
𝜏 time-steps with the current controller, 𝑔\𝑖 (·). In each time step, KCRL takes the
action 𝑢𝑡 = 𝑔\𝑖 (𝑥𝑡), and stores the current state-action pair 𝜙𝑡 = [𝑥⊤𝑡 , 𝑢⊤𝑡 ]⊤ and the
observed next state 𝑥𝑡+1. Note that 𝜏 is a user-defined parameter and 𝑔\0 (·) is the
initial policy.

At the end of each epoch, KCRL uses all the data gathered to estimate a model
of underlying system dynamics �̂�𝑖 (·). This estimate can be obtained in various
ways within a general supervised learning framework, e.g., through neural networks
or system-dependent feature representations. Using neural networks, one can run
a variant of gradient descent to update the model estimates. On the other hand,
for system-dependent feature representations, one can consider the best linear ap-
proximation of the system dynamics on a nonlinear basis such as Random Fourier
Features [226], wavelets, or more generally using an atomic norm minimization
framework [57]. Once KCRL has a model estimate after the data collection, it aims
to recover a stabilizing policy via solving (6.27) using (6.37) to obtain the controller
for the next epoch.

6.4.4 KCRL with Random Fourier Features (RFF)
In this section, we theoretically analyze a variant of KCRL that uses RFF to learn
the system dynamics. In particular, we give a sample complexity result to learn a
stabilizing controller for the underlying system. To obtain such a result, we assume
that the unknown nonlinear system 𝐹 satisfies Assumption 6.3.

Remark 6.5. Note that Gaussian kernels, which satisfy Assumption 6.3, are univer-
sal kernels such that they can approximate an arbitrary continuous target function
uniformly on any compact subset of the input space using possibly infinite kernel
evaluations [198]. Therefore, the class of nonlinear dynamics considered in this
work constitutes a vast variety of nonlinear systems.

For the details of RFF learning please refer to Section 6.1.4. From Theorem 6.1, we
have

sup∥𝜙∥≤Γ𝜙 ∥�̄� (𝜙) − 𝐹 (𝜙)∥ ≤ Õ(1/
√
𝐷), (6.39)

for the best 𝐷-dimensional RFF approximation of 𝐹, �̄� (·) = 𝑊⊤∗ 𝑧(·), where Γ𝜙

describes the bounded region. Here Õ(·) denotes the order up to logarithmic factors
and hides the dependencies on 𝑛, Γ𝜙, and the fill distance. 𝑊∗ is the unique min-max
optimal model and unique for the particular selection of RFF basis, i.e., a realization
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Model Learning
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𝑖
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Deploy
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𝑢𝑡 = 𝑔\𝑖 (𝑥𝑡)\𝑖

End of
Epoch

During Epoch

Figure 6.7: KCRL Framework with RFF Learning.

obtained via (6.6). This result is key to our analysis as we use it to derive the
finite-time learning and stabilization guarantees of KCRL.

Using the best 𝐷-dimensional RFF approximation of 𝐹 defined in (6.39), we can
approximate (6.23) as 𝑥𝑡+1 ≈ 𝑊⊤∗ 𝑧(𝜙𝑡), for some unknown 𝑊∗ ∈ R𝐷×𝑛. For model
learning, KCRL considers this approximate model and tries to recover the best
estimate for𝑊∗ using all the data gathered. In particular, after the data collection of
epoch 𝑖, KCRL solves the following:

min
𝑊
_∥𝑊 ∥2𝐹 +

∑︁𝑡=(𝑖+1)𝜏
𝑠=0

∥𝑥𝑠+1 −𝑊⊤𝑧(𝜙𝑠)∥22, (6.40)

for some _ > 0 to obtain an estimate of 𝑊∗. Note that �̂�𝑖 = (𝑍𝑡𝑍⊤𝑡 + _𝐼)−1𝑍𝑡𝑋
⊤
𝑡

gives the closed-form solution of (6.40) for 𝑋𝑡 = [𝑥𝑡+1, . . . , 𝑥1] ∈ R𝑛×(𝑡+1) , 𝑍𝑡 =
[𝑧(𝜙𝑡), . . . , 𝑧(𝜙0)] ∈R𝐷×(𝑡+1) . Thus, at epoch 𝑖, the learned model by KCRL is given
by �̂�𝑖 (·) = �̂�⊤𝑖 𝑧(·). Before we proceed, we have the following assumption on the
initial policy of KCRL.

Remark 6.6. We consider fully observable (state-feedback) nonlinear systems in
this section. However, the results can be extended to partially observable nonlinear
dynamical systems as in Section 6.2. More specifically, the results can be rewritten
for an order-ℎ nonlinear autoregressive exogenous system as depicted in previous
sections, i.e., considering the last ℎ input-output pairs as the state 𝑥𝑡 .

Assumption 6.10 (Exploratory and Bounded Initial Policy). The initial controller
𝑔\0 provides persistently exciting (PE) and bounded inputs that can be used for
exploration and excite the system uniformly. In other words, the smallest eigenvalue
of the design matrix 𝑍𝑡𝑍⊤𝑡 scales linearly over time, and for 𝑥𝑡+1 = 𝐹\0 (𝑥𝑡), we have
∥𝜙𝑡 ∥ ≤ Γ𝜙, for some finite Γ𝜙.

These assumptions are standard for consistent estimation of the model dynamics in
statistical learning, Assumption 6.5. To achieve such initial controllers, recent tools
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in control could be deployed [177, 217]. In practice, Dataset Aggregation methods
could be used with policy 𝑔\0 (·) for safe excitement of the systems coupled with
randomized feedback policies.

Next, we focus on the learning guarantees of KCRL. We need to guarantee that the
model estimation errors are small enough at the end of first epoch such that the
controller obtained via solving (6.27) would stabilize the system. Using the result
in (6.15), for large enough 𝐷, we get

sup∥𝜙∥≤Γ𝜙 ∥𝐹 (𝜙) − �̂�1(𝜙)∥ = Õ(1/
√
𝐷 +

√︁
𝐷/𝜏),

after 𝜏 time-steps, i.e., at the end of first epoch of KCRL. From (6.15), we derive
the following novel finite sample approximation error guarantee on the Jacobian of
the underlying function 𝐹 (·) via the finite difference method. This result could be
of independent interest in RFF learning and linearization of RFF-learned model dy-
namics for the study of different stability notions such as contraction theory or CLFs.

Proposition 6.3 (Approximation Error of Jacobian using RFF). Let 𝐽𝐹 denote the
Jacobian of the underlying system 𝐹 given in (6.23). Consider the finite difference
approximation of 𝐽𝐹 using �̂�1(·) = �̂�⊤1 𝑧(·), such that

𝐽
(𝑖, 𝑗)
𝐹
(𝜙) =

�̂�1,𝑖 (𝜙 + Y ej) − �̂�1,𝑖 (𝜙 − Y ej)
2Y

, (6.41)

where Y > 0, �̂�1,𝑖 (·) is the mapping from input to the 𝑖th index of the output of �̂�1

and ej is the 𝑗 th standard basis. Under Assumptions 6.9 & 6.10, for the choice of
Y = Õ

(
(𝐷−1/2 +

√︁
𝐷/𝜏)1/3

)
, we have that sup∥𝜙∥≤𝐵 ∥𝐽𝐹 (𝜙) − 𝐽𝐹 (𝜙)∥𝐹 = Õ(Y2).

Proof. Consider the Taylor expansions of 𝐹𝑖 (𝜙 + Y ej) and 𝐹𝑖 (𝜙 − Y ej) at 𝜙. From
Assumption 6.9, we have

𝐹𝑖 (𝜙 + Y ej) − 𝐹𝑖 (𝜙 − Y ej)
2Y

=
𝜕𝐹𝑖

𝜕𝜙 𝑗
+ FHO(Y2). (6.42)

Now consider (6.41). Let 𝛿𝜏 = Õ(1/
√
𝐷 +

√︁
𝐷/𝜏). From (6.15), we have �̂�1,𝑖 (𝜙 +

Y ej) = 𝐹𝑖 (𝜙 + Y ej) + 𝜖1 and �̂�1,𝑖 (𝜙 − Y ej) = 𝐹𝑖 (𝜙 − Y ej) + 𝜖2 for 0 ≤ 𝜖1, 𝜖2 ≤ 𝛿𝜏.
Combining this with (6.42), we obtain

𝐽
(𝑖, 𝑗)
𝐹
(𝜙) − 𝜕𝐹𝑖

𝜕𝜙 𝑗
= FHO(Y2) + 𝜖1 − 𝜖2

2Y
.

This gives us that |𝐽 (𝑖, 𝑗)
𝐹
(𝜙) − 𝜕𝐹𝑖

𝜕𝜙 𝑗
| ≤ FHO(Y2) + 𝛿𝜏/Y for all 𝑖, 𝑗 . Combining these

yields ∥𝐽𝐹 (𝜙) − 𝐽𝐹 (𝜙)∥𝐹 ≤ 𝑛

(
𝑐FHY

2 + 𝛿𝜏
Y

)
, for some constant 𝑐. Note that the

optimal choice of Y is Y = Õ
(
(1/
√
𝐷 +

√︁
𝐷/𝜏)1/3

)
, which finishes the proof. □
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This result shows that the Jacobian of a vector-valued function in a known RKHS is
well-approximated using the RFF representation of the function with finite samples.
We finally provide the finite-sample stabilization guarantee of KCRL.

Theorem 6.8 (Finite Sample Stabilization via KCRL). Suppose Assumptions 6.9-
6.10 hold and the batch B is informative enough that its fill distance ℎ satisfies
𝜖 − 𝜖𝑝𝑑 > 0, for 𝜖𝑝𝑑 = 2�̄� | |𝑀 | |𝑀𝐺ℎ. Set 𝜖𝑖 = 𝜖 − 𝜖𝑝𝑑 in the constraint (6.27c).

If KCRL uses 𝐷 = Õ
((

2�̄�∥𝑀 ∥(1+𝐿𝑢)+∥𝑀 ∥(1+𝐿𝑢)2
𝜖−𝜖𝑝𝑑

)3)
number of RFF in learning the

system, after 𝐷2 samples (time-steps), we have the trajectory of 𝑥𝑡+1 = 𝑓 (𝑥𝑡 , 𝑔\ (𝑥𝑡))
is asymptotically stable around the origin, i.e., the solution of (6.27) after 𝜏 = 𝐷2

samples from the system gives a stabilizing controller 𝑔\1 for the unknown nonlinear
dynamical system.

Proof. Recall that the stability condition holds for the underlying system with 𝜖 mar-
gin. Thus, combining Theorem 6.6 and Theorem 6.7, to guarantee the stabilization
of the underlying system for the entire state-space, we require 𝜖𝑖 ≤ 𝜖 − 𝜖𝑝𝑑 , i.e.,

𝜖 − 𝜖𝑝𝑑
2�̄�∥𝑀 ∥(1 + 𝐿𝑢) + ∥𝑀 ∥(1 + 𝐿𝑢)2

≥ Y𝐽 , (6.43)

since Y𝐽 <1. This gives an upper bound on the error of Jacobian estimates to guaran-
tee stabilization. From Proposition 6.3, we also have that Y𝐽 = Õ

(
(1/
√
𝐷+

√︁
𝐷/𝜏)2/3

)
,

since �𝜕𝐹 (𝜙)
𝜕𝑥
− 𝜕𝐹 (𝜙)

𝜕𝑥
and �𝜕𝐹 (𝜙)

𝜕𝑢
− 𝜕𝐹 (𝜙)

𝜕𝑢
are submatrices of 𝐽𝐹 (𝜙)−𝐽𝐹 (𝜙). The optimal

choice of 𝜏 and 𝐷 that minimizes this upper bound is 𝜏 = 𝐷2, which results that
Y𝐽 = Õ

(
𝐷−1/3

)
after 𝜏 samples. Thus, for the stated choice of 𝐷, after 𝜏 = 𝐷2

time-steps, KCRL is guaranteed to stabilize the underlying system. □

This result shows that by setting the epoch length 𝜏 = 𝐷2, KCRL guarantees the
recovery of a stabilizing controller at the end of first epoch, i.e. 𝑔\1 . The choice of
𝜖𝑖 also guarantees the recovery of stabilizing controllers for the subsequent epochs
with the non-increasing estimation errors.

6.4.5 Case Study
We numerically study KCRL in learning stable policies for voltage control in a
power distribution system [240]. Our case study focuses on the South California
Edison 56-bus test feeder with high penetration of photovoltaic (PV) generations.
The detailed system parameters follow the configuration in [240]. The system model
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Figure 6.8: (Left) Real-world solar and load data across 24 hours with 6 seconds
resolution; (Right) Serious voltage violations in the system without control.

Figure 6.9: (Left) Standard DDPG [185] causes voltage violations in some nodes
(e.g., node 18); (Right) KCRL can stabilize the system voltage within the nominal
operation region (between the two dashed lines) under all conditions.

for the voltage control of this system is given by,

− 𝑝 𝑗 (𝑡) = 𝑃𝑖 𝑗 (𝑡) − 𝑟𝑖 𝑗 𝑙𝑖 𝑗 (𝑡) −
∑︁

𝑘:( 𝑗 ,𝑘)∈𝐸
𝑃 𝑗 𝑘 (𝑡),∀ 𝑗 , (6.44a)

− 𝑞 𝑗 (𝑡) = 𝑄𝑖 𝑗 (𝑡) − 𝑥𝑖 𝑗 𝑙𝑖 𝑗 (𝑡) −
∑︁

𝑘:( 𝑗 ,𝑘)∈𝐸
𝑄 𝑗 𝑘 (𝑡),∀ 𝑗 , (6.44b)

𝑣 𝑗 (𝑡)=𝑣𝑖 (𝑡)−2(𝑟𝑖 𝑗𝑃𝑖 𝑗 (𝑡)+𝑥𝑖 𝑗𝑄𝑖 𝑗 (𝑡))+(𝑟2
𝑖 𝑗+𝑥2

𝑖 𝑗 )𝑙𝑖 𝑗 (𝑡),∀(𝑖, 𝑗) ∈𝐸, (6.44c)

Here (6.44a) and (6.44b) represent the power conservation at node 𝑗 , 𝑝 𝑗 denotes the
real power injection at node 𝑗 and 𝑞 𝑗 denotes the reactive power injection. (6.44c)
represents the voltage drop from node 𝑖 to node 𝑗 . 𝑙𝑖 𝑗 (𝑡) := |𝐼𝑖 𝑗 |2 = (𝑃2

𝑖 𝑗
+ 𝑄2

𝑖 𝑗
)/𝑣𝑖

is the squared current, 𝑣𝑖 := |𝑉𝑖 |2 is the squared voltage, 𝑃𝑖 𝑗 (𝑡) and 𝑄𝑖 𝑗 (𝑡) represent
active and reactive power flow on line (𝑖, 𝑗), respectively.

Consider the controller form 𝑞(𝑡+1) = 𝑞(𝑡)+𝑔\ (𝑣(𝑡)), where 𝑔\ (𝑣(𝑡)) is represented
as a neural network, that can be trained either by the proposed KCRL framework, or
standard RL framework. We adopt DDPG [185], a commonly used RL algorithm for
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Figure 6.10: Model Performance vs. Iterations.

continuous control as a baseline. [240] shows that a Krasovskii’s Lyapunov function
exists for the voltage control system (6.44), where 𝑀 = 𝑋−1 with 𝑋 representing
the network reactance matrix. The desired stable set for the system is denoted as
S𝑣 = {v ∈ R𝑛 : 𝑣

𝑖
≤ 𝑣𝑖 ≤ 𝑣𝑖}, where 𝑣

𝑖
, 𝑣𝑖 are the lower and upper bound for the

nominal voltage range. For the considered system, 𝑣𝑖 = 12.6kV 𝑣
𝑖
= 11.4kV ∀𝑖, that

are plotted as the two dashed lines in Figure 6.8.

We simulate the performance of KCRL and DDPG using a real-world voltage control
dataset and the results are presented in Figure 6.9. We also plot the training curve of
the KCRL algorithm and the model learning error for the first 100 iterations in Figure
6.10. We observe that the model error keeps reducing and the policy performance
keeps improving (measured by a lower cost

∑𝑇
𝑡=0 𝛾

𝑡𝑐(𝑥𝑡 , 𝑢𝑡)) per training iteration.

6.4.6 Conclusion and Future Work
In this chapter, we adapt the classical Krasovskii’s Lyapunov function into policy op-
timization in RL. Using this method, we design stabilizing policies under modeling
error with precise robustness guarantees. Furthermore, we propose a model-based
RL framework, KCRL, that is guaranteed to design stabilizing controllers in on-
line control of unknown nonlinear dynamical systems using finite samples. In
future work, we aim to broaden the KCRL framework to incorporate other Lyapunov
function constructions or learn and update the Lyapunov functions on the fly. For ex-
ample, in closely related contraction analysis, the matrix 𝑀 can be state-dependent.
Extending our current results to such construction would allow KCRL to be deployed
for different tasks.
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C h a p t e r 7

CONCLUDING REMARKS

In this thesis, we studied the learning and control of unknown dynamical systems
ranging from linear time-invariant systems to time-varying or partially observable
linear systems, as well as the most general setting of partially observable nonlinear
dynamical systems. Blending recent advances in statistical learning theory and
control theoretic tools, we provided an array of finite-sample guarantees for the
accuracy in learning the unknown dynamics, regret performance in adaptive learning
and control, and stabilization of the underlying dynamics. We proposed statistically
and computationally efficient learning and control algorithms and demonstrated
their strong empirical performance, robustness, and stability guarantees in various
adaptive control tasks in real-world control systems.

In Chapter 2, we studied sample complexity and regret of learning and control in
stochastic linear bandits with underlying low-rank structure and unknown safety
constraints. In Chapter 3, we studied learning and control in linear time-invariant
systems and proposed two efficient algorithms that attain optimal regret guaran-
tees while achieving fast stabilization of the underlying dynamics along the way.
Then, in Chapter 4, we studied the stability concepts of input-to-state stability and
mean-square stability in classes of linear time-varying systems and showed finite-
time learning and stabilization in these settings. In Chapter 5.1.2, we proposed
the first closed-loop system identification method with optimal finite-time learn-
ing guarantees in partially observable linear dynamical systems. Combining this
method with various adaptive control design strategies, we presented an array of effi-
cient learning and control algorithms in this setting with optimal regret guarantees.
Finally, in Chapter 6, we studied the learning and control of nonlinear dynami-
cal systems. We proposed efficient learning methods for two classes of nonlinear
systems and provided finite-sample guarantees. We designed effective learning and
control algorithms by combining these methods with efficient model-predictive con-
trol algorithms or designed new finite-time stabilization methods using Krasovskii’s
Lyapunov function construction. We demonstrated the strong empirical perfor-
mance of these methods in various real-world adaptive control and stabilization
tasks. In particular, we deployed FALCON, on a wing setup under extreme turbulent
flow dynamics in the Caltech wind tunnel and showed consistent and data-efficient
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state-of-the-art disturbance rejection performance.

In addition to the results presented in this thesis, we believe that there are many
interesting research problems for future studies on these dynamical systems.

7.1 Future Directions in Stochastic Linear Bandits
In our results, we primarily focused on worst-case guarantees in learning the under-
lying structure or unknown safety constraints. There are interesting future directions
that could potentially improve the applicability of our work. One such direction is
to consider data-dependent bounds, which may be more suitable for specific ap-
plications despite potentially resulting in worse statistical complexities. Another
area for future research is multiplayer stochastic linear bandits with unknown safety
constraints. Incorporating multiple players in our proposed unknown safety con-
straints with local feedback framework could further enhance real-world modeling
capabilities, especially in scenarios such as economics and autonomous driving
where a player’s decision impacts the reward and safety of others. Analyzing regret
and safety guarantees in this challenging setting would provide new insights into
decision-making under uncertainty.

7.2 Future Directions in Linear Time-Invariant Systems
In Chapter 3, our focus was mainly on attaining Õ(

√
𝑇) regret that scales with

polynomial dimension dependencies. However, the exact polynomial dependencies
and the effect of other control theoretic quantities are not further investigated.
Therefore, one interesting future direction is to examine these dependencies more
closely. Additionally, data-dependent bounds could be also desirable in learning
and control in LQRs, similar to the bandit setting. Furthermore, our algorithms in
Chapter 3 only consider unconstrained control, whereas many real-world systems
have safety or control constraints. A possible future direction is to extend our
algorithms to the control under safety or control constraints setting and study the
effect of these constraints on regret.

Another important algorithmic future direction is to investigate the possibility of
combining optimism and Thompson Sampling to achieve improved exploration.
The current implementation of Thompson Sampling only incorporates uncertainties
in the underlying model parameters in the sampling procedure to achieve effective
exploration. However, in learning and control of dynamical systems, the ultimate
goal is to achieve desirable control performance. Ideally, the exploration should
aim to achieve uncertainty reduction in the low-cost achieving models to quickly
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discover the optimal policy. This idea is the cornerstone of optimistic control de-
sign. Incorporating cost-based exploration to the sampling procedure of Thompson
Sampling would intuitively lead to improved performance. Exploring this direction
would be valuable in developing more effective learning and control algorithms for
dynamical systems.

7.3 Future Directions in Linear Time-Varying Systems
In Section 4.2, we proposed COCO-LQ, a novel stabilizing policy design approach
for linear time-varying systems with modeling mismatches. While our proposed
approach minimizes the cost and stabilizes the system, an important research di-
rection is to analyze its policy regret. By investigating the trade-off between the
stabilization parameter of COCO-LQ and the cost it achieves compared to the best
policy in hindsight, we can better understand the performance of the algorithm.

Another important research direction is to extend COCO-LQ to the learning and
control of nonlinear dynamical systems. One of the conventional approaches in non-
linear control is to linearize the dynamics at the current state. By efficiently learning
the underlying nonlinear dynamics via the methods proposed in Chapter 6, we can
provide error bounds on the linearization error of the learned dynamics. Given the
stability under the model mismatch guarantee of COCO-LQ, we can design stabiliz-
ing policies for nonlinear dynamical systems with finite-sample guarantees. While
analyzing the evolution of the dynamics based on this control design requires careful
analysis and developing new tools, conceptually this approach provides an efficient
approach to designing policies that potentially provide stability in nonlinear systems.

In Section 4.3, we empirically studied the effect of randomization and asynchrony on
the stability of random asynchronous LTI systems. Our investigation showed that by
using randomization, we can stabilize otherwise unstable LTI systems. One exciting
future direction is to study the problem of finite-time stabilization of LTI systems
using randomization. This would introduce a new dimension of "control input" to
learning and control of dynamical systems, which would unlock a plethora of new re-
search problems. One motivating example of using randomization and asynchrony in
stabilization is in biological neural networks in the brain. Recent studies show the ex-
istence of a delicate equilibrium between synchrony and asynchrony of neural firings
in many cognitive tasks, where any disturbance to this natural equilibrium may result
in neurological disorders [275]. Further understanding the effect of randomization
and asynchrony in the stability of random asynchronous LTI systems may provide
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new stabilization tools to deploy in complex dynamical systems such as the brain.

7.4 Future Directions in Partially Observable Linear Dynamical Systems
In Section 5.7, we provide several important future directions in detail. To summa-
rize, investigating the role of PE conditions in partially observable linear dynamical
systems is one of the research directions to consider. As shown in the LQR set-
ting, the PE condition is not required for optimal regret. It remains an open problem
whether this is possible in learning and control of LQG control systems. Another in-
teresting problem to study in these dynamical systems is to design controllers directly
from the Markov parameter estimates without relying on subspace identification al-
gorithms such as SysId. These methods would be more robust and would not require
controllability and observability of the underlying system, which is often restrictive
in partially observable linear dynamical systems. Moreover, investigating the role
of open-loop stability in the learning and control of partially observable systems is
also an important future research topic. In addition to these, investigating the exact
dimension dependencies and the effect of other control theoretic quantities in the
regret are fundamental research topics that are needed to be considered in the future.

7.5 Future Directions in Nonlinear Dynamical Systems
Due to the notorious challenges that nonlinear dynamical systems bring, our un-
derstanding of learning and control of nonlinear dynamical systems is still limited.
There are countless future directions worth exploring in this realm. In the follow-
ing, we name a few of these directions. One fundamental problem is studying the
persistence of excitation condition in nonlinear systems. In practice, deploying suffi-
ciently random control inputs are the conventional ways to achieve this. However, the
learning algorithms typically adopt various nonlinear basis functions in learning the
underlying dynamics, and understanding how to achieve persistence of excitation,
which is central in consistent learning, remains an important open problem.

Moreover, novel machine learning tools such as meta-learning and hierarchical
learning are adopted in practice for learning and control of complex nonlinear sys-
tems [215]. These methods would allow learning different closed-loop systems
obtained via different control policies on the same nonlinear dynamical system.
Understanding the statistical complexity of these methods and improving their ef-
ficiency in learning remains an important challenge. In a similar vein, analyzing
the closure models, where the agent learns the residual between the underlying
dynamics and a low-fidelity physical model, is crucial for providing a statistical
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understanding of practical modeling approaches.

Due to the difficulty of control design in nonlinear dynamical systems, the main
focus of our study was on learning the dynamics and providing subsequent stability
guarantees or assuming a stability margin to provide regret guarantees. To the
best of our knowledge, there has been no end-to-end study of learning and control
in nonlinear systems, as in linear systems. Studying the suboptimality guarantees
in model predictive control or other explicit control strategies such as feedback
linearization or backstepping control are important immediate research directions.
These methods, as showcased within FALCON, achieve strong empirical success,
yet, their statistical analysis is limited.

In the realm of finite-time stabilization, one important direction is generalizing
Krasovskii’s Lyapunov function construction to more diverse systems. Adopting
a nonlinearity around this construction and providing learning guarantees with
stability verification tools is an immediate research problem to be considered. The
goal of this study would be to consider a more general class of Lyapunov functions,
as the dynamical systems that satisfy Krasovskii’s Lyapunov function are limited.
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A p p e n d i x A

FURTHER PROOFS FOR CHAPTER 2

A.1 Proofs of Section 2.2
A.1.1 Projection Error Analysis, Proof of Lemma 2.2.4
In this section, we provide the general version of Lemma 2.2.4 with the proof
details. As stated in the main text, in order to bound the projection error, we will
use Davis-Kahan sinΘ theorem which states the following:

Theorem A.1.1 ([68]). Let 𝑆, 𝐻 ∈ R𝑑×𝑑 be symmetric matrices, such that 𝑆 = 𝑆+𝐻.
The eigenvalues of 𝑆 and 𝑆 are _1 ≥ . . . ≥ _𝑚 ≥ . . . ≥ _𝑑 and _̂1 ≥ . . . ≥ _̂𝑚 ≥
. . . ≥ _̂𝑑 respectively. Define the eigendecompositions of 𝑆 and 𝑆:

𝑆 = [𝑈 𝑈𝑜]
[
Λ 0
0 Λ𝑜

]
[𝑈 𝑈𝑜]𝑇 , 𝑆 = [�̂� �̂�𝑜]

[
Λ̂ 0
0 Λ̂𝑜

]
[�̂� �̂�𝑜]𝑇 ,

whereΛ and Λ̂ are diagonal matrices with first𝑚 eigenvalues of 𝑆 and 𝑆 respectively.
𝑈 = (𝑢1, . . . , 𝑢𝑚) ∈ R𝑑×𝑚 and �̂� = (�̂�1, . . . , �̂�𝑚) ∈ R𝑑×𝑚 denote the corresponding
eigenvectors. Define 𝛿 B inf{|_̂ − _ | : _ ∈ [_𝑚, _1], _̂ ∈ (−∞, _̂𝑚+1]}. If 𝛿 > 0,
then sinΘ𝑚, sine of the largest principal angle between the column spans of 𝑈 and
�̂�, can be upper bounded as

sinΘ𝑚 ≤
∥𝑆𝑈 −𝑈Λ∥2

𝛿
=
∥𝑆𝑈 −𝑈Λ∥2
|_𝑚 − _̂𝑚+1 |

. (A.1)

Notice that in order to use Davis-Kahan sinΘ theorem in our setting, we need to
pick 2 symmetric matrices 𝑆 and 𝑆 such that their first 𝑚 eigenvectors have the same
span with the subspaces that 𝑃 and �̂� project to. Followed by these choices, in order
to get a non-trivial bound we require a significant eigengap between _𝑚 and _̂𝑚+1,

due to denominator in (A.1). Define 𝑡min,𝛿 =

(√︃
2𝑑𝑥𝑔𝑥
𝐾

log 𝑚
𝛿
+ Γ

√︃
𝛼
𝐾

log 2𝑑
𝛿

)2
. The

following presents a more general version of Lemma 2.2.4.

Lemma A.1.2 (General version of Lemma 2.2.4). Fix any 𝛿 ∈ (0, 1/3). Suppose
that Assumption 1 holds. Then with probability at least 1 − 3𝛿,

∥�̂�𝑡 − 𝑃∥2 ≤
Γ

√︃
𝛼
𝑡𝐾

log 2𝑑
𝛿

1 −
√︃

2𝑑𝑥𝑔𝑥
𝑡𝐾

log 𝑚
𝛿
− Γ

√︃
𝛼
𝑡𝐾

log 2𝑑
𝛿

, ∀𝑡 ≥ 𝑡𝑤,𝛿 . (A.2)
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Proof. We set 𝑆 = 1
𝑛

∑𝑛
𝑖=1 𝑥𝑖𝑥

𝑇
𝑖

and 𝑆 = 1
𝑛

∑𝑛
𝑖=1 𝑥𝑖𝑥

𝑇
𝑖
+ 𝑉𝑉𝑇Σ𝜓𝑉𝑉𝑇 where 𝑛 = 𝑡𝐾 .

Let U be the top 𝑚 eigenvectors of S. Notice that span(𝑈) = span(𝑉) and �̂�𝑡 is the
matrix of top 𝑚 eigenvectors of 𝑆. Therefore, one can apply Theorem A.1.1 with
given choices of 𝑆 and 𝑆, to bound ∥�̂�𝑡 − 𝑃∥2. Since ∥𝑆𝑈 −𝑈Λ∥2 = ∥(𝑆 − 𝑆)𝑉 ∥2,

∥�̂�𝑡 − 𝑃∥2 ≤
∥(𝑆 − 𝑆)𝑉 ∥2

_𝑚 (𝑆) − _𝑚+1(𝑆)
(1)
≤ ∥(𝑆 − 𝑆)𝑉 ∥2
_𝑚 (𝑆) − ∥𝑆 − 𝑆∥2

(2)
≤ ∥E[𝑆 − 𝑆]𝑉 ∥2 + ∥𝑆 − 𝑆 − E[𝑆 − 𝑆] ∥2
_𝑚 (𝑆) − ∥E[𝑆 − 𝑆] ∥2 − ∥𝑆 − 𝑆 − E[𝑆 − 𝑆] ∥2

,

where (1) follows from Weyl’s inequality and the fact that 𝑆 is rank 𝑚, _𝑚+1(𝑆) =
. . . = _𝑑 = 0, and (2) is due to triangle inequality. With the given choices of 𝑆 and
𝑆 and Assumption 2.2.1, we have the following:

• _𝑚 (𝑆) ≥ _𝑚 ( 1𝑛
∑𝑛
𝑖=1 𝑥𝑖𝑥

𝑇
𝑖
) + _min(𝑉𝑇Σ𝜓𝑉) = _𝑚 ( 1𝑛

∑𝑛
𝑖=1 𝑥𝑖𝑥

𝑇
𝑖
) + 𝜎2

• 𝑆 − 𝑆 = 1
𝑛

∑𝑛
𝑖=1 𝜓𝑖𝜓

𝑇
𝑖
+ 1
𝑛

∑𝑛
𝑖=1 𝑥𝑖𝜓

𝑇
𝑖
+ 1
𝑛

∑𝑛
𝑖=1 𝜓𝑖𝑥

𝑇
𝑖
−𝑉𝑉𝑇Σ𝜓𝑉𝑉𝑇

• ∥E[𝑆 − 𝑆] ∥2 = ∥𝜎2𝐼𝑑 − 𝜎2𝑃∥2 = 𝜎2

• E[𝑆 − 𝑆]𝑉 = Σ𝜓𝑉 −𝑉𝑉𝑇Σ𝜓𝑉 = 𝑉⊥𝑉𝑇⊥Σ𝜓𝑉 = 0

• 𝑆 − 𝑆 − E[𝑆 − 𝑆] = 1
𝑛

∑𝑛
𝑖=1 𝜓𝑖𝜓

𝑇
𝑖
− Σ𝜓 + 1

𝑛

∑𝑛
𝑖=1 𝑥𝑖𝜓

𝑇
𝑖
+ 1
𝑛

∑𝑛
𝑖=1 𝜓𝑖𝑥

𝑇
𝑖
.

Inserting these expressions we get,

∥�̂�𝑡 − 𝑃∥2 ≤
∥ 1
𝑛

∑𝑛
𝑖=1 𝜓𝑖𝜓

𝑇
𝑖
− Σ𝜓 + 1

𝑛

∑𝑛
𝑖=1 𝑥𝑖𝜓

𝑇
𝑖
+ 1
𝑛

∑𝑛
𝑖=1 𝜓𝑖𝑥

𝑇
𝑖
∥2

_𝑚 ( 1𝑛
∑𝑛
𝑖=1 𝑥𝑖𝑥

𝑇
𝑖
) − ∥ 1

𝑛

∑𝑛
𝑖=1 𝜓𝑖𝜓

𝑇
𝑖
− Σ𝜓 + 1

𝑛

∑𝑛
𝑖=1 𝑥𝑖𝜓

𝑇
𝑖
+ 1
𝑛

∑𝑛
𝑖=1 𝜓𝑖𝑥

𝑇
𝑖
∥2
.

(A.3)
We first bound _𝑚 ( 1𝑛

∑𝑛
𝑖=1 𝑥𝑖𝑥

𝑇
𝑖
). From Assumption 1, _𝑚𝑎𝑥

(
𝑥𝑖𝑥

𝑇
𝑖

)
≤ 𝑑𝑥_+ for all

𝑖 ∈ [𝑛] and from the model properties, _𝑚
( ∑𝑛

𝑖=1 E[𝑥𝑖𝑥𝑇𝑖 ]
)
= 𝑛_−. Using Matrix

Chernoff Inequality [268], one can get that

P

[
_𝑚

(
1
𝑛

𝑛∑︁
𝑖=1

𝑥𝑖𝑥
𝑇
𝑖

)
≤ _−

(
1 −

√︂
2𝑑𝑥𝑔𝑥
𝑛

log
𝑚

𝛿

)]
≤ 𝛿. (A.4)

Now we consider ∥ 1
𝑛

∑𝑛
𝑖=1 𝜓𝑖𝜓

𝑇
𝑖
− Σ𝜓 + 1

𝑛

∑𝑛
𝑖=1 𝑥𝑖𝜓

𝑇
𝑖
+ 1
𝑛

∑𝑛
𝑖=1 𝜓𝑖𝑥

𝑇
𝑖
∥2. From triangle

inequality, we have,1
𝑛

𝑛∑︁
𝑖=1

𝜓𝑖𝜓
𝑇
𝑖 −Σ𝜓+

1
𝑛

𝑛∑︁
𝑖=1

𝑥𝑖𝜓
𝑇
𝑖 +

1
𝑛

𝑛∑︁
𝑖=1

𝜓𝑖𝑥
𝑇
𝑖


2
≤

1
𝑛

𝑛∑︁
𝑖=1

𝜓𝑖𝜓
𝑇
𝑖 −Σ𝜓


2
+2

1
𝑛

𝑛∑︁
𝑖=1

𝑥𝑖𝜓
𝑇
𝑖


2
.
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We will consider each term on the right-hand side separately. If Assumption 1 holds,
then we have:

E[𝜓𝑖𝜓𝑇𝑖 ] = Σ𝜓 , ∥𝜓𝑖𝜓𝑇𝑖 ∥2 ≤ 𝑑𝜓𝜎2, ∥E[𝜓𝑖𝜓𝑇𝑖 𝜓𝑖𝜓𝑇𝑖 ] ∥2 ≤ 𝑑𝜓𝜎4.

Applying Matrix Bernstein Inequality [268], we get

P

[1
𝑛

𝑛∑︁
𝑖=1

𝜓𝑖𝜓
𝑇
𝑖 −Σ𝜓


2
≥ 2𝜎2

√︂
𝑑𝜓

𝑛
log

2𝑑
𝛿

]
≤ 𝛿 for 2

√︂
𝑑𝜓

𝑛
log

2𝑑
𝛿
≤ 1.5. (A.5)

Under the same assumption for the second term we have:

E[𝑥𝑖𝜓𝑇𝑖 ] = 0,

∥𝑥𝑖𝜓𝑇𝑖 ∥2 =

√︃
_𝑚𝑎𝑥 (𝜓𝑖𝑥𝑇𝑖 𝑥𝑖𝜓𝑇𝑖 ) ≤

√︃
𝑑𝑥_+𝑑𝜓𝜎2,

∥E[𝑥𝑖𝜓𝑇𝑖 𝜓𝑖𝑥𝑇𝑖 ] ∥2 ≤ 𝑑𝜓𝜎2∥E[𝑥𝑖𝑥𝑇𝑖 ] ∥2 = 𝑑𝜓_+𝜎
2,

∥E[𝜓𝑖𝑥𝑇𝑖 𝑥𝑖𝜓𝑇𝑖 ] ∥2 ≤ 𝑑𝑥_+∥E[𝜓𝑖𝜓𝑇𝑖 ] ∥2 ≤ 𝑑𝑥_+𝜎2.

Once again applying Matrix Bernstein Inequality [268],

P

[1
𝑛

𝑛∑︁
𝑖=1

𝑥𝑖𝜓
𝑇
𝑖


2
≥ 2

√︁
_+𝜎2

√︂
𝛼

𝑛
log

2𝑑
𝛿

]
≤ 𝛿 for 2

√︂
𝛼

𝑛
log

2𝑑
𝛿
≤ 1.5. (A.6)

Finally, combining (A.4), (A.5), (A.6) and using union bound, for any round 𝑡 ≥
𝑡min,𝛿, we get:

∥�̂�𝑡 − 𝑃∥2 ≤ min

(
Γ

√︃
𝛼
𝑡𝐾

log 2𝑑
𝛿

1 −
√︃

2𝑑𝑥𝑔𝑥
𝑡𝐾

log 𝑚
𝛿
− Γ

√︃
𝛼
𝑡𝐾

log 2𝑑
𝛿

, 1

)
w.p. 1 − 3𝛿.

As explained in the main text, due to the equivalence between the projection error
and the sine of the largest angle between the subspaces, the projection error is always
bounded by 1. Thus, in our bound we impose that constraint. Notice that the lower
bound on 𝑡 is to satisfy that concentration inequalities provide meaningful results.
In other words, 𝐾𝑡min,𝛿 is the number of samples required to have a non-negative
denominator to use the Davis-Kahan sinΘ theorem. However, observe that we need
𝐾𝑡𝑤,𝛿 samples to obtain a high probability error bound which is non-trivial, i.e. less
than 1 and 𝑡𝑤,𝛿 = 4𝑡min,𝛿. Therefore, for any 𝑡 ≥ 𝑡𝑤,𝛿 the stated bound (A.2) in the
lemma holds with high probability, and for any 1 ≤ 𝑡 ≤ 𝑡𝑤,𝛿 we bound the projection
error by 1.

The only step remaining to show that the lemma holds ∀𝑡 ≥ 𝑡𝑤,𝛿. This requires an
argument that shows that this bound is valid uniformly over all rounds. To this end,
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we use stopping time construction, which goes back at least to [90]. Define the bad
event,

𝐸𝜏 (𝛿) =
{
∥�̂�𝜏 − 𝑃∥2 >

Γ

√︃
𝛼
𝜏𝐾

log 2𝑑
𝛿

1 −
√︃

2𝑑𝑥𝑔𝑥
𝜏𝐾

log 𝑚
𝛿
− Γ

√︃
𝛼
𝜏𝐾

log 2𝑑
𝛿

}
.

We are interested in the probability of
⋃

𝑡≥𝑡𝑤,𝛿
𝐸𝑡 (𝛿). Define 𝜏(𝜔) = min{𝑡 ≥ 𝑡𝑤,𝛿 :

𝜔 ∈ 𝐸𝑡 (𝛿)}, with the convention that min ∅ = ∞. Then, 𝜏 is a stopping time. Thus,⋃
𝑡≥𝑡𝑤,𝛿

𝐸𝑡 (𝛿) = {𝜔 : 𝜏(𝜔) < ∞}. The Lemma A.1.2 can be obtained as follows:

P

[ ⋃
𝑡≥𝑡𝑤,𝛿

𝐸𝑡 (𝛿)
]
= P[𝜏 < ∞] = P

[
∥�̂�𝜏 − 𝑃∥2 >

Γ

√︃
𝛼
𝜏𝐾

log 2𝑑
𝛿

1 −
√︃

2𝑑𝑥𝑔𝑥
𝜏𝐾

log 𝑚
𝛿
− Γ

√︃
𝛼
𝜏𝐾

log 2𝑑
𝛿

, 𝜏 < ∞
]

= P

[
∥�̂�𝜏 − 𝑃∥2 >

Γ

√︃
𝛼
𝜏𝐾

log 2𝑑
𝛿

1 −
√︃

2𝑑𝑥𝑔𝑥
𝜏𝐾

log 𝑚
𝛿
− Γ

√︃
𝛼
𝜏𝐾

log 2𝑑
𝛿

]
≤ 3𝛿.

Finally, notice that Lemma 2.2.4 presented in the main text is direct consequence of
having denominator at (A.2) greater than 1

2 for all 𝑡 ≥ 𝑡𝑤,𝛿. □

A.1.2 Proof of Theorem 2.2.5
Without loss of generality, assume that 𝑅 = 1 since by appropriately scaling 𝑆𝑡 , this
can be achieved. Let _ ∈ R𝑑 be a Gaussian random vector that is independent of all
the other random variables and has covariance matrix 𝐶−1 = 1

_
𝐼𝑑 . Consider for any

𝑡 ≥ 0,

𝑀_
𝑡 = exp

(
_𝑇𝑆𝑡 −

1
2
(
_𝑇

𝑡∑︁
𝑖=1

�̂�𝑡 �̂�𝑖−1
)2

)
.

Define
𝑀𝑡 = E_ [𝑀_

𝑡 |𝐹∞],

where 𝐹∞ is the tail 𝜎-algebra of the filtration, i.e. the 𝜎-algebra generated by the
union of all the events in the filtration. Thus,

𝑀𝑡 =

∫
R𝑑

exp
(
_𝑇𝑆𝑡 −

1
2
_𝑇 �̂�𝑡 Σ̂𝑡−1�̂�𝑡_

)
𝑓 (_)𝑑_

where 𝑓 (_) is the pdf of _. The following lemma will be crucial in proving the
theorem.

Lemma A.1.3. E[𝑀𝑡] ≤ 1 for all 𝑡 ≥ 1.
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Proof.

E[𝑀𝑡] = E
[ ∫
R𝑑

exp
(
_𝑇𝑆𝑡 −

1
2
_𝑇 �̂�𝑡 Σ̂𝑡−1�̂�𝑡_

)
𝑓 (_)𝑑_

]
E[𝑀𝑡] =

∫
R𝑑
E

[
exp

(
_𝑇𝑆𝑡 −

1
2
_𝑇 �̂�𝑡 Σ̂𝑡−1�̂�𝑡_

)]
𝑓 (_)𝑑_.

If one can show that E
[

exp
(
_𝑇𝑆𝑡 − 1

2_
𝑇 �̂�𝑡 Σ̂𝑡−1�̂�𝑡_

)]
≤ 1, then the claim follows.

In the following, we use the law of total expectation.

E

[
exp

(
_𝑇𝑆𝑡 −

1
2
_𝑇 �̂�𝑡 Σ̂𝑡−1�̂�𝑡_

)]
(A.7)

= E

[
E[𝑡−1

[
exp

(
_𝑇

𝑡∑︁
𝑖=1

�̂�𝑡 �̂�𝑖−1[𝑖−1 −
1
2
_𝑇 �̂�𝑡

( 𝑡∑︁
𝑖=1

�̂�𝑖−1 �̂�
𝑇
𝑖−1

)
�̂�𝑡_

)����𝐹𝑡−1

] ]
≤ E

[
exp

(
_𝑇

𝑡−1∑︁
𝑖=1

�̂�𝑡 �̂�𝑖−1[𝑖−1 −
1
2
_𝑇 �̂�𝑡

( 𝑡−1∑︁
𝑖=1

�̂�𝑖−1 �̂�
𝑇
𝑖−1

)
�̂�𝑡_

)]
(A.8)

= E

[
E[𝑡−2

[
exp

(
_𝑇

𝑡−1∑︁
𝑖=1

�̂�𝑡 �̂�𝑖−1[𝑖−1 −
1
2
_𝑇 �̂�𝑡

( 𝑡−1∑︁
𝑖=1

�̂�𝑖−1 �̂�
𝑇
𝑖−1

)
�̂�𝑡_

)����𝐹𝑡−2

] ]
...

≤ 1,

where (A.8) follows from the assumption that [𝑡 is conditionally 𝑅-sub-gaussian. □

We will use Lemma A.1.3 shortly but we first calculate 𝑀𝑡 . For a positive defi-
nite matrix 𝐾 , define 𝑔(𝐾) B

√︁
(2𝜋)𝑚/det(𝐾) =

∫
R𝑚

exp(−1
2𝑥
𝑇𝐾𝑥)𝑑𝑥. One can
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calculate 𝑀𝑡 as follows,

𝑀𝑡 =

∫
R𝑑

exp
(
_𝑇𝑆𝑡 −

1
2
_𝑇 �̄�𝑡_

)
𝑓 (_)𝑑_

=

∫
R𝑚

exp
(
_̄𝑇�̂�𝑇𝑡 X𝑡[[[𝑡 −

1
2
_̄𝑇�̂�𝑇𝑡 X𝑡X𝑇

𝑡 �̂�𝑡_̄

)
𝑓 (_̄)𝑑_̄ (A.9)

=

∫
R𝑚

exp
(
− 1

2
∥_̄ − �̄�−1

𝑡 �̂�
𝑇
𝑡 X𝑡[[[𝑡 ∥2�̄�𝑡 +

1
2
∥�̂�𝑇𝑡 X𝑡[[[𝑡 ∥2�̄�−1

𝑡

)
𝑓 (_̄)𝑑_̄

=

exp
( 1

2 ∥�̂�
𝑇
𝑡 X𝑡[[[𝑡 ∥2

�̄�−1
𝑡

)
𝑔(�̄�)

∫
R𝑚

exp
(
− 1

2
(
∥_̄ − �̄�−1

𝑡 �̂�
𝑇
𝑡 X𝑡[[[𝑡 ∥2�̄�𝑡 + ∥_̄∥

2
�̄�

) )
𝑑_̄

(A.10)

=

exp
( 1

2 ∥�̂�
𝑇
𝑡 X𝑡[[[𝑡 ∥2

�̄�−1
𝑡

)
𝑔(�̄�)

∫
R𝑚

exp
(
− 1

2
(
∥_̄ − (�̄� + �̄�𝑡)−1�̂�𝑇𝑡 X𝑡[[[𝑡 ∥2�̄�+�̄�𝑡 + ∥�̂�

𝑇
𝑡 X𝑡[[[𝑡 ∥2�̄�−1

𝑡

− ∥�̂�𝑇𝑡 X𝑡[[[𝑡 ∥2(�̄�+�̄�𝑡 )−1

) )
𝑑_̄

(A.11)

=
exp

( 1
2 ∥�̂�

𝑇
𝑡 X𝑡[[[𝑡 ∥2(�̄�+�̄�𝑡 )−1

)
𝑔(�̄�)

∫
R𝑚

exp
(
− 1

2
(
∥_̄ − (�̄� + �̄�𝑡)−1�̂�𝑇𝑡 X𝑡[[[𝑡 ∥2�̄�+�̄�𝑡

) )
𝑑_̄

=
exp

( 1
2 ∥�̂�

𝑇
𝑡 X𝑡[[[𝑡 ∥2(�̄�+�̄�𝑡 )−1

)
𝑔(�̄�)

𝑔(�̄� + �̄�𝑡) =
(

det(�̄�)
det(�̄� + �̄�𝑡)

)1/2
exp

(1
2
∥𝑆𝑡 ∥2(𝐶+𝐴𝑡 )†

)
,

where in (A.9) there is a change of integration with _̄ = �̂�𝑇𝑡 _, (A.10) follows from the
fact that 𝑓 (_̄) = exp(− 1

2 _̄
𝑇 �̄�_̄)√

(2𝜋)𝑚 det(�̄�−1)
and defining �̄� = �̂�𝑇𝑡 𝐶�̂�𝑡 and finally (A.11) follows

since

∥_̄ − �̄�−1
𝑡 �̂�

𝑇
𝑡 X𝑡[[[𝑡 ∥2�̄�𝑡 + ∥_̄∥

2
�̄�

= ∥_̄ − (�̄� + �̄�𝑡)−1�̂�𝑇𝑡 X𝑡[[[𝑡 ∥2�̄�+�̄�𝑡 + ∥�̄�
−1
𝑡 �̂�

𝑇
𝑡 X𝑡[[[𝑡 ∥2�̄�𝑡 − ∥�̂�

𝑇
𝑡 X𝑡[[[𝑡 ∥2(�̄�+�̄�𝑡 )−1

= ∥_̄ − (�̄� + �̄�𝑡)−1�̂�𝑇𝑡 X𝑡[[[𝑡 ∥2�̄�+�̄�𝑡 + ∥�̂�
𝑇
𝑡 X𝑡[[[𝑡 ∥2�̄�−1

𝑡

− ∥�̂�𝑇𝑡 X𝑡[[[𝑡 ∥2(�̄�+�̄�𝑡 )−1 .

Consider the following equivalence:

P

[
∥𝑆𝑡 ∥2(𝐶+𝐴𝑡 )† > 2 log

(
det(�̄� + �̄�𝑡)1/2

𝛿 det(�̄�)1/2

)]
= P

[exp
( 1

2 ∥𝑆𝑡 ∥
2
(𝐶+𝐴𝑡 )†

)
𝛿( det(�̄�+�̄�𝑡 )

det(�̄�)
)1/2 > 1

]

≤ E
[exp

( 1
2 ∥𝑆𝑡 ∥

2
(𝐶+𝐴𝑡 )†

)
𝛿( det(�̄�+�̄�𝑡 )

det(�̄�)
)1/2

]
(A.12)

= E𝐹𝑡 [𝑀𝑡]𝛿 ≤ 𝛿, (A.13)



312

where (A.12) follows from Markov’s inequality and (A.13) is due to Lemma A.1.3.
Notice that, 𝐴𝑡 = �̄�𝑡 + 𝐶 and 𝐵𝑡 = �̄�𝑡 + �̄�. We will once again use a stopping-time
construction. Define the bad event,

𝐸𝑡 (𝛿) =
{
∥𝑆𝑡 ∥2

𝐴
†
𝑡

> 2𝑅2 log
(

det(𝐵𝑡)1/2

𝛿 det(�̄�)1/2

)}
.

We are interested in the probability of
⋃
𝑡≥0
𝐸𝑡 (𝛿). Define 𝜏(𝜔) = min{𝑡 ≥ 0 : 𝜔 ∈

𝐸𝑡 (𝛿)}, with the convention that min ∅ = ∞. Then, 𝜏 is a stopping time. Thus,⋃
𝑡≥0
𝐸𝑡 (𝛿) = {𝜔 : 𝜏(𝜔) < ∞}. The Theorem 2.2.5 can be obtained as follows:

P

[⋃
𝑡≥0

𝐸𝑡 (𝛿)
]
= P[𝜏 < ∞] = P

[
∥𝑆𝜏∥2

𝐴
†
𝜏

> 2𝑅2 log
(
det(𝐵𝜏)1/2 det(�̄�)−1/2

𝛿

)
, 𝜏 < ∞

]
≤ P

[
∥𝑆𝜏∥2

𝐴
†
𝜏

> 2𝑅2 log
(
det(𝐵𝜏)1/2 det(�̄�)−1/2

𝛿

)
,

]
≤ 𝛿.

Since 𝐶 = _𝐼𝑑 , inserting �̄� = _𝐼𝑚 proves the theorem.

A.1.3 Proofs of Lemma 2.2.6 and Lemma 2.2.7
In this section, we provide the proofs or Lemma 2.2.6 and Lemma 2.2.7. First, recall
that 𝐴𝑡 = �̂�𝑡 (Σ̂𝑡−1 + _𝐼𝑑)�̂�𝑡 . Let 𝐵𝑡 be a symmetric matrix such that 𝐴𝑡 = �̂�𝑡𝐵𝑡�̂�𝑇𝑡 .
Notice that 𝐵𝑡 is a full rank 𝑚 ×𝑚 matrix. Also define �̄�𝑡 = 𝐴𝑡 − _�̂�𝑡 = �̂�𝑡 Σ̂𝑡−1�̂�𝑡 =

�̂�𝑡�̂�
𝑇
𝑡 Σ̂𝑡−1�̂�𝑡�̂�

𝑇
𝑡 = �̂�𝑡 �̄�𝑡�̂�

𝑇
𝑡 where �̄�𝑡 = �̂�𝑇𝑡 Σ̂𝑡−1�̂�𝑡 = 𝐵𝑡 − _𝐼𝑚.

Proof of Lemma 2.2.6: det(𝐵𝑡) = det(�̂�𝑇𝑡 Σ̂𝑡−1�̂�𝑡 + _𝐼𝑚) = 𝛼1𝛼2 · · · 𝛼𝑚 where 𝛼𝑖s
are the eigenvalues of 𝐵𝑡 . Notice that

𝑚∑︁
𝑖=1

𝛼𝑖 = 𝑚_ + tr
(
�̂�𝑇𝑡

( 𝑡∑︁
𝑖=1

�̂�𝑖−1 �̂�
𝑇
𝑖−1

)
�̂�𝑡

)
= 𝑚_ +

𝑡∑︁
𝑖=1

tr
(
�̂�𝑇𝑡 �̂�𝑖−1 �̂�

𝑇
𝑖−1�̂�𝑡

)
≤ 𝑚_ +

𝑡∑︁
𝑖=1
∥ �̂�𝑖−1∥22 ≤ 𝑚_ + 𝑡𝐿

2

from Assumptions 1 and 2. Using AM-GM inequality, i.e, 𝑚
√
𝛼1𝛼2 · · · 𝛼𝑚 ≤ 1

𝑚

∑𝑚
𝑖=1 𝛼𝑖,

we get 𝛼1𝛼2 · · · 𝛼𝑚 ≤
(
_ + 𝑡𝐿2

𝑚

)𝑚
. □

Lemma A.1.4. Suppose Assumptions 2.2.1 and 2.2.2 hold. Then

𝑡∑︁
𝑖=1

�̂�𝑇𝑡 �̂�𝑖−1
2
𝐵−1
𝑡 ,𝑖−1
≤ 𝛾𝑚 log

(
1 + 𝑡𝐿

2

𝑚_

)
.
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Proof. Analyzing det(𝐵𝑡) at round t, we get the following:

det
(
𝐵𝑡,𝑡

)
= det

(
𝐵𝑡,𝑡−1 + �̂�𝑇𝑡 �̂�𝑡−1 �̂�

𝑇
𝑡−1�̂�𝑡

)
= det

(
𝐵

1/2
𝑡,𝑡−1

(
𝐼𝑚 + 𝐵−1/2

𝑡,𝑡−1�̂�
𝑇
𝑡 �̂�𝑡−1 �̂�

𝑇
𝑡−1�̂�𝑡𝐵

−1/2
𝑡,𝑡−1

)
𝐵

1/2
𝑡,𝑡−1

)
= det

(
𝐵𝑡,𝑡−1

) (
1 + ∥�̂�𝑇𝑡 �̂�𝑡−1∥2𝐵−1

𝑡 ,𝑡−1

)
= _𝑚

𝑡∏
𝑖=1

(
1 + ∥�̂�𝑇𝑡 �̂�𝑖−1∥2𝐵−1

𝑡 ,𝑖−1

)
.

Thus,
∑𝑡
𝑖=1 log(1 + ∥�̂�𝑇𝑡 �̂�𝑖−1∥2

𝐵−1
𝑡 ,𝑖−1
) = log det(𝐵𝑡 )

_𝑚
≤ 𝑚 log

(
1 + 𝑡𝐿2

𝑚_

)
where inequality

follows from Lemma 2.2.6. Recall the definition of 𝛾 = 𝐿2

_ log
(
1+ 𝐿2

_

) . Since As-

sumption 1 and 2 hold, ∥�̂�𝑇𝑡 �̂�𝑖−1∥2
𝐵−1
𝑡 ,𝑖−1
≤ 𝐿2

_
. Using ∥�̂�𝑇𝑡 �̂�𝑖−1∥2

𝐵−1
𝑡 ,𝑖−1
≤ 𝛾 log(1 +

∥�̂�𝑇𝑡 �̂�𝑖−1∥2
𝐵−1
𝑡 ,𝑖−1
), which is true for ∥�̂�𝑇𝑡 �̂�𝑖−1∥2

𝐵−1
𝑡 ,𝑖−1
≤ 𝐿2

_
, we get

𝑡∑︁
𝑖=1

�̂�𝑇𝑡 �̂�𝑖−1
2
𝐵−1
𝑡 ,𝑖−1
≤ 𝛾

𝑡∑︁
𝑖=1

log(1 + ∥�̂�𝑇𝑡 �̂�𝑖−1∥2𝐵−1
𝑡 ,𝑖−1
)

The lemma follows immediately. □

Finally, we provide the bound on ∥(𝐴†𝑡 )1/2�̂�𝑡 Σ̂𝑡−1∥2, i.e. Lemma 2.2.7 as follows.

Proof of Lemma 2.2.7: Recall that Σ̂𝑡−1 =
∑𝑡−1
𝑖=1 �̂�𝑖 �̂�

𝑇
𝑖

. With this, we get:

∥(𝐴†𝑡 )1/2�̂�𝑡 Σ̂𝑡−1∥2

≤
𝑡∑︁
𝑖=1

(𝐴†𝑡 )1/2�̂�𝑡 �̂�𝑖−1 �̂�
𝑇
𝑖−1


2 Using Weyl’s inequality for singular values

≤
𝑡∑︁
𝑖=1

(𝐴†𝑡 )1/2�̂�𝑡 �̂�𝑖−1


2∥ �̂�𝑖−1∥2 From Cauchy Schwarz

≤ 𝐿
𝑡∑︁
𝑖=1

�̂�𝑡 �̂�𝑖−1

𝐴
†
𝑡

From Assumption 1

= 𝐿

𝑡∑︁
𝑖=1

�̂�𝑇𝑡 �̂�𝑖−1

𝐵−1
𝑡

From the equality that �̂�𝑇𝑖−1�̂�𝑡𝐵
−1
𝑡 �̂�

𝑇
𝑡 �̂�𝑖−1 = �̂�𝑇𝑖−1�̂�𝑡𝐴

†
𝑡 �̂�𝑡 �̂�𝑖−1

≤ 𝐿
𝑡∑︁
𝑖=1

�̂�𝑇𝑡 �̂�𝑖−1

𝐵−1
𝑡 ,𝑖−1

Since at round t, 𝐵𝑡,𝑖 = 𝐵𝑡,𝑖−1 + �̂�𝑇𝑡 �̂�𝑖 �̂�𝑇𝑖 �̂�𝑡

≤ 𝐿
√
𝑡

√√√ 𝑡∑︁
𝑖=1

�̂�𝑇𝑡 �̂�𝑖−1
2
𝐵−1
𝑡 ,𝑖−1
≤ 𝐿
√
𝛾𝑚𝑡

√︄
log

(
1 + 𝑡𝐿

2

𝑚_

)
From Lemma A.1.4.

□
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A.1.4 Proofs of Lemma 2.2.9 and Lemma 2.2.10
Proof of Lemma 2.2.9:

| (�̂�𝑘𝑥)𝑇 (a − \𝑘 ) | = | (�̂�𝑘𝑥)𝑇 (𝐴†𝑘 )
1/2𝐴1/2

𝑘
(a − \𝑘 ) | since (𝐴†

𝑘
)1/2𝐴1/2

𝑘
= �̂�𝑘

= | (𝐴†
𝑘
)1/2�̂�𝑘𝑥)𝑇 𝐴1/2

𝑘
(a − \𝑘 ) |

≤ ∥(𝐴†
𝑘
)1/2�̂�𝑘𝑥∥2∥𝐴1/2

𝑘
(a − \𝑘 )∥2 by C.S.

≤ 𝛽𝑘,𝛿∥�̂�𝑘𝑥∥𝐴†
𝑘

since a ∈ 𝐶𝑘 .

= 𝛽𝑘,𝛿∥�̂�𝑇𝑘 𝑥∥𝐵−1
𝑘

= 𝛽𝑘,𝛿∥𝑥∥𝐴†
𝑘

□

Proof of Lemma 2.2.10:

_𝑚 (�̂�𝑡 Σ̂𝑡−1�̂�𝑡) = _𝑚
(
(�̂�𝑡 − 𝑃)Σ̂𝑡−1�̂�𝑡 + 𝑃Σ̂𝑡−1(�̂�𝑡 − 𝑃) + 𝑃Σ̂𝑡−1𝑃

)
≥ _𝑚 (𝑃Σ̂𝑡−1𝑃) − 2(𝑡 − 1)𝐿2∥�̂�𝑡 − 𝑃∥2

≥ _min(𝑉𝑇 Σ̂𝑡−1𝑉) − 4𝐿2Γ

√︂
𝛼(𝑡 − 1)
𝐾

log
2𝑑
𝛿

from Lemma 2.2.4.

We also have that _max(𝑉𝑇 �̂� 𝑗 �̂�𝑇𝑗 𝑉) ≤ 𝐿,∀ 𝑗 , _min

(
E
[ ∑𝑡−1

𝑗=1𝑉
𝑇 �̂� 𝑗 �̂�

𝑇
𝑗
𝑉
] )

= (𝑡 −

1) (_− + 𝜎2). Applying Matrix Chernoff Inequality,

P

[
_min(𝑉𝑇 Σ̂𝑡𝑉) ≤ (𝑡 − 1) (_− + 𝜎2) −

√︂
2𝐿 (𝑡 − 1) (_− + 𝜎2) log

𝑚

𝛿

]
≤ 𝛿.

Combining these with similar stopping time construction as described in previ-
ous sections we derive the first statement of lemma. Now for second statement
with a constant 𝐶, observe that, (𝑡 − 1) (_− + 𝜎2) −

√
𝑡 − 1

(
4𝐿2Γ

√︃
𝛼
𝐾

log 2𝑑
𝛿
+√︃

2𝐿 (_− + 𝜎2) log 𝑚
𝛿

)
≥ 𝐶 (𝑡 − 1) holds if and only if

𝑡 ≥ 1 +
(4𝐿2Γ

√︃
𝛼
𝐾

log 2𝑑
𝛿
+

√︃
2𝐿 (_− + 𝜎2) log 𝑚

𝛿

_− + 𝜎2 − 𝐶

)2
.

Choosing 𝐶 =
_−+𝜎2

2𝑚 proves the bound. □

Finally, we state the lemma which is used in (2.23) of Theorem 2.2.11.

Lemma A.1.5.

2
√
𝑡 + 1 − 2 ≤

𝑡∑︁
𝑖=1

1
√
𝑖
≤ 2
√
𝑡 − 1 log(𝑡 + 1) ≤

𝑡∑︁
𝑖=1

1
𝑖
≤ 1 + log(𝑡)

Proof. First, one can be obtained using integral estimates and the second one is due
to harmonic sums. □
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A.2 Proofs of Section 2.3
A.2.1 Proofs for Safe-OFUL - Section 2.3.2-2.3.3
Proof of Lemma 2.3.4

If 𝑥 ∈ 𝐷safe
𝑡 , we have following two cases:

Case 1 : 𝑥 ∈ 𝐷𝑤 → Trivially 𝑥 ∈ 𝐷safe
0

Case 2 : 𝑥 ∈ Γ𝑖, then by definition

𝜏𝑖 − 𝜏𝑠𝑖 ≥ �̂�⊤𝑖,𝑡 (𝑥 − 𝑥𝑠𝑖 ) + 𝛽𝑖𝑡 | |𝑥 − 𝑥𝑠𝑖 | |𝐴−1
𝑖,𝑡

= 𝛾⊤𝑖 (𝑥 − 𝑥𝑠𝑖 ) + (�̂�𝑖,𝑡 − 𝛾𝑖)⊤(𝑥 − 𝑥𝑠𝑖 ) + 𝛽𝑖𝑡 | |𝑥 − 𝑥𝑠𝑖 | |𝐴−1
𝑖,𝑡

≥ 𝛾⊤𝑖 (𝑥 − 𝑥𝑠𝑖 ) (Conditioned on E` and Cauchy Schwarz Inequality(CSI)).

Therefore 𝑥 ∈ 𝐷safe
0 . □

Proof of Theorem 2.3.6

Recall ucb(𝑥, 𝑖, 𝑡) = ˆ̀⊤𝑡 𝑥+𝛽𝑡 | |𝑥 | |𝑉−1
𝑡
+𝑘𝑖𝛽𝑖𝑡 | |𝑥−𝑥𝑠𝑖 | |𝐴−1

𝑖,𝑡
. We consider following cases:

Case 1 : 𝑥∗ ∈ 𝐷safe
𝑡

max
𝑖∈𝑀,𝑥∈Γ̂𝑖,𝑡

ucb(𝑥, 𝑖, 𝑡) ≥ ucb(𝑥∗, 𝑖∗, 𝑡)

≥ ˆ̀⊤𝑥∗ + 𝛽𝑡 | |𝑥∗ | |𝑉−1
𝑡

(Since 𝑘𝑖𝛽𝑖𝑡 | |𝑥 − 𝑥𝑠𝑖 | |𝐴−1
𝑖,𝑡
≥ 0)

=< `, 𝑥∗ > + < ˆ̀𝑡 − `, 𝑥∗ > +𝛽𝑡 | |𝑥∗ | |𝑉−1
𝑡

≥< `, 𝑥∗ > +(1 − 1)𝛽𝑡 | |𝑥∗ | |𝑉−1
𝑡

(Conditioned on E` & CSI)

≥ `⊤𝑥∗.

Case 2 : 𝑥∗ ∉ 𝐷safe
𝑡

We consider the constraint set Γ𝑖∗ in which 𝑥∗ belongs to and define

𝛼𝑡 = max{𝛼 ∈ [0, 1] : 𝛼�̂�⊤𝑖∗𝑡 (𝑥∗ − 𝑥𝑠𝑖∗) + 𝛼𝛽𝑖
∗
𝑡 | |𝑥∗ − 𝑥𝑠𝑖∗ | |𝐴−1

𝑖∗ ,𝑡
= 𝜏 − 𝜏𝑠𝑖∗}

This definition ensures 𝑧𝑡 = 𝛼𝑡𝑥∗ + (1 − 𝛼𝑡)𝑥𝑠𝑖∗ ∈ 𝐷safe
𝑡 . Now we have

max
𝑖∈𝑀,𝑥∈Γ̂𝑖,𝑡

ucb(𝑥, 𝑖, 𝑡) ≥ `⊤𝑧𝑡 + ( ˆ̀𝑡 − `)⊤𝑧𝑡 + 𝛽𝑡 | |𝑧𝑡 | |𝑉−1
𝑡
+ 𝑘𝑖∗𝛽𝑖

∗
𝑡 | |𝑧𝑡 − 𝑥𝑠𝑖∗ | |𝐴−1

𝑖∗ ,𝑡

≥ `⊤𝑧𝑡 + 𝑘𝑖∗𝛽𝑖
∗
𝑡 | |𝑧𝑡 − 𝑥𝑠𝑖∗ | |𝐴−1

𝑖∗ ,𝑡
(Conditioned on E` & CSI)

≥ 𝛼𝑡`⊤(𝑥∗ − 𝑥𝑠𝑖∗) + `⊤𝑥𝑠𝑖∗ + 𝛼𝑡𝑘𝑖∗𝛽𝑖
∗
𝑡 | |𝑥∗ − 𝑥𝑠𝑖∗ | |𝐴−1

𝑖∗ ,𝑡

≥ 𝛼𝑡 [`⊤(𝑥∗ − 𝑥𝑠𝑖∗) + 𝑘𝑖∗𝛽𝑖
∗
𝑡 | |𝑥∗ − 𝑥𝑠𝑖∗ | |𝐴−1

𝑖∗ ,𝑡
] + `⊤𝑥𝑠𝑖∗ .
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Define 𝐵 = �̂�⊤
𝑖∗𝑡 (𝑥∗ − 𝑥𝑠𝑖∗) + 𝛽𝑖

∗
𝑡 | |𝑥∗ − 𝑥𝑠𝑖∗ | |𝐴−1

𝑖∗ ,𝑡
, by assumption 𝑥∗ ∉ 𝐷safe

𝑡 we have
𝐵 ≥ 𝜏 − 𝜏𝑠

𝑖∗

By definition, we have 𝛼𝑡𝐵 = 𝜏 − 𝜏𝑠
𝑖∗ . To lower bound 𝛼𝑡 we first upper bound 𝐵

𝐵 = �̂�⊤𝑖∗𝑡 (𝑥∗ − 𝑥𝑠𝑖∗) + 𝛽𝑖
∗
𝑡 | |𝑥∗ − 𝑥𝑠𝑖∗ | |𝐴−1

𝑖∗ ,𝑡

= 𝛾⊤𝑖∗ (𝑥∗ − 𝑥𝑠𝑖∗) + (�̂�𝑖∗𝑡 − 𝛾𝑖∗)⊤(𝑥∗ − 𝑥𝑠𝑖∗) + 𝛽𝑖
∗
𝑡 | |𝑥∗ − 𝑥𝑠𝑖∗ | |𝐴−1

𝑖∗ ,𝑡

≤ 𝛾⊤𝑖∗ (𝑥∗ − 𝑥𝑠𝑖∗) + 2𝛽𝑖
∗
𝑡 | |𝑥∗ − 𝑥𝑠𝑖∗ | |𝐴−1

𝑖∗ ,𝑡
(Conditioned on E` and CSI)

≤ 𝜏 − 𝜏𝑠𝑖∗ + 2𝛽𝑖
∗
𝑡 | |𝑥∗ − 𝑥𝑠𝑖∗ | |𝐴−1

𝑖∗ ,𝑡
.

Therefore, we have

𝛼𝑡 ≥
𝜏 − 𝜏𝑠

𝑖∗

𝜏 − 𝜏𝑠
𝑖∗ + 2𝛽𝑖∗𝑡 | |𝑥∗ − 𝑥𝑠𝑖∗ | |𝐴−1

𝑖∗ ,𝑡

If we choose 𝑘𝑖 such that optimism is ensured for this lower bound, overall optimism
is guaranteed. In particular, we need to satisfy the following

max
𝑖∈𝑀,𝑥∈Γ̂𝑖,𝑡

ucb(𝑥, 𝑖, 𝑡) ≥ 𝛼𝑡 [`⊤(𝑥∗ − 𝑥𝑠𝑖∗) + 𝑘𝑖∗𝛽𝑖
∗
𝑡 | |𝑥∗ − 𝑥𝑠𝑖∗ | |𝐴−1

𝑖∗ ,𝑡
] + `⊤𝑥𝑠𝑖∗

≥
𝜏 − 𝜏𝑠

𝑖∗

𝜏 − 𝜏𝑠
𝑖∗ + 2𝛽𝑖∗𝑡 | |𝑥∗ − 𝑥𝑠𝑖∗ | |𝐴−1

𝑖∗ ,𝑡

[`⊤(𝑥∗ − 𝑥𝑠𝑖∗) + 𝑘𝑖∗𝛽𝑖
∗
𝑡 | |𝑥∗ − 𝑥𝑠𝑖∗ | |𝐴−1

𝑖∗ ,𝑡
] + `⊤𝑥𝑠𝑖∗ ≥ `⊤𝑥∗.

Solving this gives the condition of 𝑘𝑖∗ ≥ 2𝐿𝑆
𝜏−𝜏𝑠

𝑖∗
, which proves the theorem. □

Proof of Theorem 2.3.7

𝑅𝑇 =

𝑇∑︁
𝑡=1

𝛿𝑡 =

⊤∑︁
𝑡=1
(`⊤𝑥∗ − `⊤𝑥𝑡)

≤
𝑇∑︁
𝑡=1
(ucb(𝑥𝑡 , 𝑖𝑡 , 𝑡) − `⊤𝑥𝑡) ∧ 2 (A.14)

=

𝑇∑︁
𝑡=1
(< ˆ̀𝑡 − `, 𝑥𝑡 > +𝛽𝑡 | |𝑥𝑡 | |𝑉−1

𝑡
+ 𝑘𝑖𝑡 𝛽

𝑖𝑡
𝑡 | |𝑥 − 𝑥𝑠𝑖𝑡 | |𝐴−1

𝑖𝑡 ,𝑡
) ∧ 2

≤
𝑇∑︁
𝑡=1
(2𝛽𝑡 | |𝑥𝑡 | |𝑉−1

𝑡
+ 𝑘𝑖𝑚𝑎𝑥 𝛽

𝑖𝑡
𝑡 | |𝑥 − 𝑥𝑠𝑖𝑡 | |𝐴−1

𝑖𝑡 ,𝑡
) ∧ 2 (A.15)

≤
𝑇∑︁
𝑡=1
(2𝛽𝑡 | |𝑥𝑡 | |𝑉−1

𝑡
) ∧ 2 +

𝑇∑︁
𝑡=1
(𝑘𝑖𝑚𝑎𝑥 𝛽

𝑖𝑡
𝑡 | |𝑥 − 𝑥𝑠𝑖𝑡 | |𝐴−1

𝑖𝑡 ,𝑡
) ∧ 2.
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Here (A.14) follows from optimism and (A.15) follows from Cauchy Schwarz In-
equality conditioned on E`. Next, we analyze these self-normalized summations
using the standard technique in [3]:

⊤∑︁
𝑡=1
| |𝑥𝑡 | |𝑉−1

𝑡
≤

√√√
𝑇

⊤∑︁
𝑡=1
| |𝑥𝑡 | |2

𝑉−1
𝑡

(CSI)

≤

√︄
2𝑇 log(det(𝐴𝑇 )

det(𝐴1)
) (A.16)

≤
√︂

2𝑇𝑑 log( 𝑑_ + 𝑇𝐿
2

𝑑_
). (A.17)

In Inequality (A.16), we used the standard argument in regret analysis of linear
bandits [3] (Lemma 11) as follows:

𝑛∑︁
𝑡=1

min
(
∥y𝑡 ∥2V−1

𝑡

, 1
)
≤ 2 log

det V𝑛+1
det V1

where V𝑛 = V1 +
𝑛−1∑︁
𝑡=1

y𝑡y⊤𝑡 .

In inequality (A.17), we used Assumption 2.3.2 and the fact that det(A) = ∏𝑑
𝑖=1 _𝑖 (A) ≤

(trace(A)/𝑑)𝑑 . Combining all these, we have with probability at least 1 − 2𝛿

𝑅𝑇 ≤ 2𝛽𝑇

√︂
2𝑇𝑑 log( 𝑑_ + 𝑇𝐿

2

𝑑_
) + (𝑘𝑖𝑚𝑎𝑥 𝛽

𝑖𝑚𝑎𝑥
𝑇
+ 2)Σ𝑖∈𝑀

√︂
2𝑁𝑖 (𝑇)𝑑 log( 𝑑_ + 𝑁𝑖 (𝑇)𝐿

2

𝑑_
)

≤ 2𝛽𝑇

√︂
2𝑇𝑑 log( 𝑑_ + 𝑇𝐿

2

𝑑_
) + (𝑘𝑖𝑚𝑎𝑥 𝛽

𝑖𝑚𝑎𝑥
𝑇
+ 2)

√︂
2|𝑀 |𝑇𝑑 log( 𝑑_ + 𝑇𝐿

2

𝑑_
).

The last step follows from AM-QM inequality. □

A.2.2 Proofs of Section 2.3.4: Regret guarantee Safe-LinTS (Theorem 2.3.8)
The proof consists of two pieces. We will first show that Safe-LinTS selects opti-
mistic actions with non-zero probability and then we use the regret decomposition
in [5] to give the regret upper bound.

Optimism

Recall the following expressions:

˜̀𝑡 = ˆ̀𝑡 + 𝛽𝑡 (𝑉𝑡)−
1
2[𝑡 , �̃�𝑖𝑡 = 𝛽

𝑖
𝑡 (𝐴𝑖,𝑡)−

1
2[𝑐𝑡 .

Moreover, we have the following concentration and anti-concentration properties:

P(𝑢⊤[𝑡 ≥ 1) = 𝑝1, P(𝑢⊤[𝑐𝑡 ≥
2

𝜏 − 𝜏𝑠∗
𝐿𝑆𝛾) = 𝑝2,
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P(∥[𝑡 ∥2 ≤
√︂
𝑐𝑑 log( 𝑐

′𝑑

𝛿
)) ≥ 1− 𝛿

2
, P(∥[𝑐𝑡 ∥2 ≤

2𝐿𝑆𝛾

𝜏 − 𝜏𝑠∗

√︂
𝑐𝑑 log( 𝑐

′𝑑

𝛿
)) ≥ 1− 𝛿

2
.

For 𝛿 ∈ (0, 1), 𝛿′ = 𝛿
6𝑇 , we define the following high-probability events:

• E`,𝑡 is the event that ˆ̀𝑡 concentrates around ` for all 𝑠 ≤ 𝑡: E`,𝑡 = {∀𝑠 ≤ 𝑡 :
∥ ˆ̀𝑠 − `∥𝑉𝑠 ≤ 𝛽𝑠 (𝛿′)}, then P(E`,𝑇 ) ≥ 1 − 𝛿

6 .

• E𝛾,𝑡 is the event that �̂�𝑖,𝑡 concentrates around 𝛾𝑖 for all 𝑠 ≤ 𝑡 and for all 𝑖 ∈ M:
E𝛾,𝑡 = {∀𝑠 ≤ 𝑡,∀𝑖 ∈ 𝑀 : ∥�̂�𝑖,𝑠 − 𝛾𝑖∥𝐴𝑖,𝑠 ≤ 𝛽𝑖𝑠 ( 𝛿

′

|𝑀 | )}, then P(E𝛾,𝑇 ) ≥ 1 − 𝛿
6 .

• Ẽ be the event that such the sampled [𝑡 and [𝑐𝑡 are bounded for all 𝑡 ≤ 𝑇 : Ẽ =

{∀𝑡 ≤ 𝑇, ∥[𝑡 ∥2 ≤
√︃
𝑐𝑑 log( 12𝑇𝑐′𝑑

𝛿
)} ∩ {∀𝑡 ≤ 𝑇, ∥[𝑐𝑡 ∥2 ≤

√︃
𝑐𝑑 log( 12𝑇𝑐′𝑑

𝛿
)},

then P(Ẽ) ≥ 1 − 𝛿
6 .

• Let 𝑍𝑡 = E𝛾,𝑡 ∩ E`,𝑡 , then P(𝑍𝑇 ) ≥ 1 − 𝛿
3 .

• Let 𝐸𝑡 = Ẽ ∩ E𝛾,𝑡 ∩ E`,𝑡 , then P(𝐸𝑇 ) ≥ 1 − 𝛿
2 .

Recall that Γ̂𝑖,𝑡 = {𝑥 ∈ Γ𝑖 : �̂�⊤
𝑖,𝑡
(𝑥 − 𝑥𝑠

𝑖
) + 𝛽𝑖𝑡 | |𝑥 − 𝑥𝑠𝑖 | |𝐴−1

𝑖,𝑡
≤ 𝜏 − 𝜏𝑠

𝑖
}. Let

𝛼∗𝑡 := max{𝛼 ∈ [0, 1] : 𝑧𝑡 = 𝛼𝑥∗ + (1 − 𝛼)𝑥𝑠𝑖∗ ∈ Γ̂𝑖∗,𝑡},

then we can show that there exists 𝛼𝑡 ≤ 𝛼∗𝑡 such that

𝛼𝑡𝛾
⊤
𝑖∗ (𝑥∗ − 𝑥𝑠𝑖 ) + 2𝛼𝑡𝛽𝑖𝑡 | |𝑥 − 𝑥𝑠𝑖 | |𝐴𝑖−1

𝑡
= 𝜏 − 𝜏𝑠𝑖 .

Rearranging, we get 1
𝛼𝑡

= 1+ 2
𝜏−𝜏𝑠

𝑖∗
𝛽𝑖
∗
𝑡 ∥𝑥∗−𝑥𝑠𝑖∗ ∥𝐴𝑖∗−1

𝑡
. The goal is to show that playing

the safe action 𝑧𝑡 = 𝛼𝑡𝑥∗ + (1−𝛼𝑡)𝑥𝑠𝑖∗ is optimistic with constant probability. Define

𝐽𝑡 ([, [𝑐, 𝑖, 𝑥)= ˜̀⊤𝑡 𝑥+�̃�⊤𝑖,𝑡 (𝑥−𝑥𝑠𝑖 ), 𝐽𝑡 ([, [𝑐, 𝑖)=max
𝑥∈Γ̂𝑖,𝑡

𝐽𝑡 ([, [𝑐, 𝑖, 𝑥), 𝐽𝑡 ([, [𝑐)=max
𝑖∈𝑀

𝐽𝑡 ([, [𝑐, 𝑖),

and we analyze the probability with which the sampled parameters are optimistic,
i.e., 𝐽𝑡 ([𝑡 , [𝑐𝑡 ) ≥ `⊤𝑥∗. Let 𝑝𝑡 = P(𝐽𝑡 ([𝑡 , [𝑐𝑡 ) ≥ `⊤𝑥∗ |F𝑡 , 𝑍𝑡). Then,

𝑝𝑡 = P(𝐽𝑡 ([𝑡 , [𝑐𝑡 ) ≥ `⊤𝑥∗ |F𝑡 , 𝑍𝑡)
≥ P(𝐽𝑡 ([𝑡 , [𝑐𝑡 , 𝑖∗, 𝛼𝑡𝑥∗ + (1 − 𝛼𝑡)𝑥𝑠𝑖∗) ≥ `⊤𝑥∗ |F𝑡 , 𝑍𝑡)
= P( ˜̀⊤𝑡 𝑧𝑡 + 𝛼𝑡�̃�⊤𝑖∗,𝑡 (𝑥∗ − 𝑥𝑠𝑖∗) ≥ `⊤𝑥𝑠𝑖∗ + `⊤(𝑥∗ − 𝑥𝑠𝑖∗) |F𝑡 , 𝑍𝑡),

where 𝑧𝑡 = 𝛼𝑥∗ + (1 − 𝛼)𝑥𝑠𝑖∗ . Consider:

˜̀⊤𝑡 𝑧𝑡 = ˆ̀⊤𝑡 𝑧𝑡 + 𝑧⊤𝑡 𝛽𝑡 (𝑉𝑡)−
1
2[𝑡 ≥ `⊤𝑧𝑡 − 𝛽𝑡 ∥𝑧𝑡 ∥𝑉−1

𝑡
+ 𝑧⊤𝑡 𝛽𝑡 (𝑉𝑡)−

1
2[𝑡 .
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By construction of [𝑡 we have:

P(𝑧⊤𝑡 𝛽𝑡 (𝑉𝑡)−
1
2[𝑡 ≥ 𝛽𝑡 ∥𝑧𝑡 ∥𝑉−1

𝑡
|F𝑡 , 𝑍𝑡) = P(𝑢⊤[𝑡 ≥ 1) = 𝑝1.

Using the fact that [𝑡 , [𝑐𝑡 are independent and then substituting in 𝛼𝑡 we get

𝑝𝑡 ≥ 𝑝1P(`⊤𝑧𝑡 + 𝛼𝑡�̃�⊤𝑖∗,𝑡 (𝑥∗ − 𝑥𝑠𝑖∗) ≥ `⊤𝑥𝑠𝑖∗ + `⊤(𝑥∗ − 𝑥𝑠𝑖∗) |F𝑡 , 𝑍𝑡)
≥ 𝑝1P(`⊤𝑥𝑠𝑖∗ + 𝛼𝑡`⊤(𝑥∗ − 𝑥𝑠𝑖∗) + 𝛼𝑡�̃�⊤𝑖∗,𝑡 (𝑥∗ − 𝑥𝑠𝑖∗) ≥ `⊤𝑥𝑠𝑖∗ + `⊤(𝑥∗ − 𝑥𝑠𝑖∗) |F𝑡 , 𝑍𝑡)

= 𝑝1P(�̃�⊤𝑖∗,𝑡 (𝑥∗ − 𝑥𝑠𝑖∗) ≥
1 − 𝛼𝑡
𝛼𝑡

`⊤(𝑥∗ − 𝑥𝑠𝑖∗) |F𝑡 , 𝑍𝑡)

≥ 𝑝1P(�̃�⊤𝑖∗,𝑡 (𝑥∗ − 𝑥𝑠𝑖∗) ≥
2𝐿𝑆
𝜏 − 𝜏𝑖∗

𝛽𝑖
∗
𝑡 ∥𝑥∗ − 𝑥𝑠𝑖∗ ∥𝐴−1

𝑖∗ ,𝑡
|F𝑡 , 𝑍𝑡)

= 𝑝1P(𝛽𝑖
∗
𝑡 (𝐴𝑖

∗
𝑡 )−

1
2[𝑐⊤𝑡 (𝑥∗ − 𝑥𝑠𝑖∗) ≥

2𝐿𝑆
𝜏 − 𝜏𝑖∗

𝛽𝑖
∗
𝑡 ∥𝑥∗ − 𝑥𝑠𝑖∗ ∥𝐴−1

𝑖∗ ,𝑡
|F𝑡 , 𝑍𝑡)

= 𝑝1P(𝑢⊤[𝑐𝑡 ≥
2

𝜏 − 𝜏𝑖
𝐿𝑆) ≥ 𝑝1𝑝2.

Next, we need to show that conditioned on 𝐸𝑇 , the algorithm is still optimistic. This
is because the chosen confidence bound 𝛿′ = 𝛿

6𝑇 is small enough compared to the
anti-concentration property. Moreover, we assume that 𝑇 ≥ 1

3𝑝1𝑝2
which implies

that 𝛿′ ≤ 𝑝1𝑝2
2 . We know that for any events 𝐴 and 𝐵, we have P(𝐴 ∩ 𝐵) = 1 −

P (𝐴𝑐 ∪ 𝐵𝑐) ≥ P(𝐴) − P (𝐵𝑐). Choosing 𝐴 = 𝐽𝑡 ([𝑡 , [𝑐𝑡 ) ≥ `⊤𝑥∗ and 𝐵 = 𝐸𝑇 we get

P(𝐽𝑡 ([𝑡 , [𝑐𝑡 ) ≥ `⊤𝑥∗ |F𝑡 , 𝑍𝑡) ≥ 𝑝1𝑝2 − 𝛿′ ≥
𝑝1𝑝2

2
.

Regret

We can decompose the cumulative regret as follows:

𝑅(𝑇) =
∑︁𝑇

𝑡=1

(
𝑥∗⊤` − 𝐽𝑡 ([𝑡 , [𝑐𝑡 )︸               ︷︷               ︸

𝑅𝑇𝑆𝑡

)
+

∑︁𝑇

𝑡=1

(
𝐽𝑡 ([𝑡 , [𝑐𝑡 ) − 𝑥⊤𝑡 `︸              ︷︷              ︸

𝑅𝑅𝐿𝑆𝑡

)
.

First, we consider

𝑅𝑇𝑆𝑡 = 𝑥∗𝑇` − 𝐽𝑡 ([𝑡 , [𝑐𝑡 )
≤ E[𝐽𝑡 ([, [𝑐) − 𝐽𝑡 ([𝑡 , [𝑐𝑡 ) | ([, [𝑐) ∈ Θ]
≤ E[𝐽𝑡 ([, [𝑐, 𝑖, 𝑥) − 𝐽𝑡 ([𝑡 , [𝑐𝑡 , 𝑖, 𝑥) | ([, [𝑐, 𝑖, 𝑥) ∈ Θ]
≤ E[( ˜̀ − ˜̀𝑡)⊤𝑥 + (�̃�𝑖 − �̃�𝑖𝑡)⊤(𝑥 − 𝑥𝑠𝑖 ) | ([, [𝑐, 𝑖, 𝑥) ∈ Θ]
≤ E[∥ ˜̀ − ˜̀𝑡 ∥𝐴𝑡 ∥𝑥∥𝑉−1

𝑡
+ ∥�̃�𝑖 − �̃�𝑖𝑡 ∥𝐴𝑖𝑡 ∥𝑥 − 𝑥

𝑠
𝑖 ∥𝐴−1

𝑖,𝑡
| ([, [𝑐, 𝑖, 𝑥) ∈ Θ]

≤ 2𝜎𝑡 (𝛿)E[∥𝑥∥𝑉−1
𝑡
| ([, [𝑐, 𝑖, 𝑥) ∈ Θ] + 2𝜎𝑖𝑡 (𝛿)E[∥𝑥 − 𝑥𝑠𝑖 ∥𝐴−1

𝑖,𝑡
| ([, [𝑐, 𝑖, 𝑥) ∈ Θ]

≤ 4
𝑝1𝑝2

{𝜎𝑡 (𝛿)E[∥𝑥∥𝑉−1
𝑡
] + 𝜎𝑖𝑡 (𝛿)E[∥𝑥 − 𝑥𝑠𝑖 ∥𝐴−1

𝑖,𝑡
]},
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where 𝜎𝑡 (𝛿) = 𝛽𝑡 (𝛿)
√︃
𝑐𝑑 log( 𝑐′𝑑

𝛿
) and 𝜎𝑖𝑡 (𝛿) = 𝛽𝑖𝑡 (𝛿) 2𝐿

𝑐𝑆𝑐

𝜏−𝜏𝑖

√︃
𝑐𝑑 log( 𝑐′𝑑

𝛿
). Here

([, [𝑐, 𝑖, 𝑥) ∈ Θ denotes optimistic parameters. Next, consider the sum

Σ𝑇𝑡=1E[∥𝑥∥𝑉−1
𝑡
] =

𝑇∑︁
𝑡=1
∥𝑥∥𝑉−1

𝑡
+

𝑇∑︁
𝑡=1
(E[∥𝑥∥𝑉−1

𝑡
] − ∥𝑥∥𝑉−1

𝑡
).

The second summation is a martingale sum, so we use Azuma’s Inequality to get

𝑇∑︁
𝑡=1
(E[∥𝑥∥𝑉−1

𝑡
] − ∥𝑥∥𝑉−1

𝑡
) ≤

√︂
8𝑇𝐿2

_
log

4
𝛿
,

with probability 1 − 𝛿
2 , since we have ∥𝑥𝑡 ∥2 ≤ 𝐿 and 𝑉−1

𝑡 ≤ 1
_
𝐼, which gives

E[∥𝑥∥𝐴−1
𝑠
] − ∥𝑥∥𝐴−1

𝑠
≤ 2𝐿√

_
.

Now using standard analysis from previous sections and previous inequality we get

𝑅𝑇𝑆 (𝑇) ≤ 4𝜎𝑡 (𝛿)
𝑝1𝑝2

(√︂
2𝑑𝑇 log(1 + 𝑇𝐿

2

_
) +

√︂
8𝑇𝐿2

_
log

8
𝛿

)
+

4𝜎𝑖𝑚𝑎𝑥𝑡 (𝛿) + 2
𝑝1𝑝2

(√︂
2𝑑 |𝑀 |𝑇 log(1 + 𝑇𝐿

2

_
) +

√︂
8𝑇𝐿2

_
log

8
𝛿

)
.

Next, we consider

𝑅𝑅𝐿𝑆𝑡 = 𝐽𝑡 ([𝑡 , [𝑐𝑡 , 𝑖𝑡 , 𝑥𝑡) − `⊤𝑥𝑡
= ˜̀⊤𝑡 𝑥 + �̃�𝑖𝑇𝑡 (𝑥 − 𝑥𝑠𝑖 ) − `⊤𝑥𝑡

≤ ( ˆ̀𝑡 − `)⊤𝑥𝑡 + 𝛽𝑡𝐴
− 1

2
𝑡 [⊤𝑡 𝑥𝑡 + 𝛽

𝑖𝑡
𝑡 𝐴

𝑖𝑡− 1
2

𝑡 [𝑐𝑇𝑡 (𝑥𝑡 − 𝑥𝑠𝑖𝑡 )
≤ 𝛽𝑡 ∥𝑥𝑡 ∥𝑉−1

𝑡
+ 𝜎𝑡 ∥𝑥𝑡 ∥𝑉−1

𝑡
+ 𝜎𝑖𝑡𝑡 ∥𝑥𝑡 − 𝑥𝑠𝑖𝑡 ∥𝐴𝑖𝑡 −1

𝑡
.

So 𝑅𝑅𝐿𝑆 (𝑇) ≤ (𝛽𝑇 + 𝜎𝑇 )
√︃

2𝑑𝑇 log(1 + 𝑇𝐿2

_
) + 𝜎𝑖𝑚𝑎𝑥

𝑇

√︃
2𝑑 |𝑀 |𝑇 log(1 + 𝑇𝐿2

_
). Com-

bining these gives the advertised result in the theorem

𝑅(𝑇) ≤ Õ(𝑑3/2√︁|𝑀 |𝑇). (A.18)

□

A.2.3 Proofs of Section 2.3.5: Regret Guarantee of Safe-OFUL/LinTS with
Pure Exploration (Theorem 2.3.11)

First, we prove the following helper lemma.
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Lemma A.2.1. If we consider a 𝛿 𝑓 -ball around a point, the approximation error
for the first order Taylor expansion for a Z-smooth function is bounded as

| 𝑓 (𝑥) − 𝑓 (𝑎) − ∇ 𝑓 (𝑎)⊤(𝑥 − 𝑎) | ≤ Z𝛿
2

2
.

Then, the least squares parameter of this approximation error is bounded as

∥𝜖𝑖,𝑇 ∥2 ≤ 2Z𝛿𝑟
√︁

2𝑑 log𝑇 = 𝑂 (Z𝛿𝑟
√︁
𝑑 log𝑇).

Proof. Recall 𝜖𝑖𝑡 = 𝐴−1
𝑖,𝑡

∑𝑁𝑖 (𝑡)
𝜏=1 (𝑥𝜏−𝑥

𝑠
𝑖
)𝜖𝑖 (𝑥𝜏), where where 𝜖𝑖 (𝑥𝑡) = 𝑓 (𝑥𝑡)− ( 𝑓 (𝑥𝑠𝑖 )+

∇ 𝑓 (𝑥𝑠
𝑖
)⊤(𝑥𝑡 − 𝑥𝑠𝑖 ). Define 𝑌𝜖,𝑡 as the column vector enumerating the approximation

errors 𝑦𝜖,𝜏 = 𝜖𝑖 (𝑥𝜏) for 0 < 𝜏 ≤ 𝑡, and 𝑋𝑡 corresponds to the matrix enumerating the
shifted actions 𝑥𝜏 − 𝑥𝑠𝑖 for 0 < 𝜏 ≤ 𝑡. By definition we have

𝜖𝑖,𝑡 = argmin
\

∥𝑌𝜖,𝑡 − 𝑋⊤𝑡 \∥22.

Next, define

𝑇1(\) := ∥𝑌𝜖,𝑡 − 𝑋⊤𝑡 \∥22 = (𝑌⊤𝜖,𝑡𝑌𝜖,𝑡 − 2𝑌⊤𝜖,𝑡𝑋⊤𝑡 \ + \⊤𝑋𝑡𝑋⊤𝑡 \),

and
𝑇2(\) := ∥𝑦𝜖,𝑡+1 − 𝑥⊤𝑡+1\∥

2
2 = (𝑦2

𝜖,𝑡+1 − 2𝑦𝜖,𝑡+1𝑥⊤𝑡+1\ + \
⊤𝑥𝑡+1𝑥

⊤
𝑡+1\).

Now, consider 𝜖𝑖,𝑡+1

𝜖𝑖,𝑡+1 = 𝑎𝑟𝑔min
\
𝑇1(\) + 𝑇2(\)

= 𝑎𝑟𝑔min
\
(𝑌⊤𝜖,𝑡𝑌𝜖,𝑡 − 2𝑌⊤𝜖,𝑡𝑋⊤𝑡 \ + \⊤𝑋𝑡𝑋⊤𝑡 \) + (𝑦2

𝜖,𝑡+1 − 2𝑦𝜖,𝑡+1𝑥⊤𝑡+1\ + \
⊤𝑥𝑡+1𝑥

⊤
𝑡+1\).

For the minimizer, we have ∇𝑇1 + ∇𝑇2 = 0, ∇𝑇1 = 2𝑋𝑡𝑋⊤𝑡 \ − 2𝑋𝑡𝑌𝜖,𝑡 and ∇𝑇2 =

2𝑥𝑡+1𝑥⊤𝑡+1\ − 2𝑥𝑡+1𝑦𝜖,𝑡+1. If we re-parameterise \ = 𝜖𝑖,𝑡 + 𝑤, then at minima we get

𝑤 = (𝑋𝑡𝑋⊤𝑡 + 𝑥𝑡+1𝑥⊤𝑡+1)
−1𝑥𝑡+1(𝑦𝜖,𝑡+1 − 𝑥⊤𝑡+1𝜖𝑖,𝑡).

Recall that in pure exploration we pick action such that 𝑥𝑡 = max𝑥∈�̃�𝑤
𝑖
∥𝑥 − 𝑥𝑠

𝑖
∥𝐴−1

𝑖,𝑡
.

As consequence, we pick orthogonal vectors in subsequent turns, which ensures that
𝑥𝑡 is always an eigenvector, which implies

𝑤 =
𝑥𝑡+1
_𝑡+1
(𝑦𝜖,𝑡+1 − 𝑥⊤𝑡+1𝜖𝑖,𝑡).

Note that there is no rotation as the exploration strategy ensures that 𝑥𝑡+1 are eigen-
vectors of 𝑋𝑡𝑋⊤𝑡 + 𝑥𝑡+1𝑥⊤𝑡+1 with the eigenvalues of _𝑡+1 ≥ 𝛿2

𝑟 . Next, we upper bound
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the magnitude difference at each step. By definition, we have ∥𝜖𝑖,𝑡+1∥2 = ∥𝜖𝑖,𝑡 +𝑤∥2.
Substituting 𝑤 and rearranging we get

∥𝜖𝑖,𝑡+1∥22 − ∥𝜖𝑖,𝑡 ∥
2
2 =
∥𝑥𝑡+1∥2

_2
𝑡+1
(𝑦𝜖,𝑡+1 − 𝑥⊤𝑡+1𝜖𝑖,𝑡)

2 +
2𝑥⊤
𝑡+1𝜖𝑖,𝑡

_𝑡+1
(𝑦𝜖,𝑡+1 − 𝑥⊤𝑡+1\𝑡+1). (A.19)

Now re-parameterizing: ∥𝜖𝑖,𝑡 ∥ = 𝐵, ∥𝑥𝑡+1∥ = 𝛿𝑟 , cos𝛼 =
<𝑥𝑡+1,𝜖𝑖,𝑡>

𝐵𝛿
and 𝐿 =

∥𝜖𝑖,𝑡+1∥22 − ∥𝜖𝑖,𝑡 ∥
2
2, we obtain

𝐿 = (𝐵
2𝛿4

_2
𝑡+1
− 2𝐵2𝛿2

𝑟

_𝑡+1
) cos2(𝛼) + (2𝑦𝜖,𝑡+1𝐵𝛿𝑟

_𝑡+1
− 2𝑦𝜖,𝑡+1𝐵𝛿3

𝑟

_2
𝑡+1

) cos(𝛼) +
𝛿2
𝑟 𝑦

2
𝜖,𝑡+1

_2
𝑡+1

.

To upper-bound 𝐿, we maximize 𝐿 over 𝛼, which gives us the following condition

𝐵𝛿𝑟

_𝑡+1
sin(𝛼) [2_𝑡+1 − 𝛿

2
𝑟

_𝑡+1
𝐵𝛿𝑟 cos(𝛼) − _𝑡+1 − 𝛿

2
𝑟

_𝑡+1
𝑦𝜖,𝑡+1] = 0.

Case 1 : (sin𝛼 = 0)

So cos(𝛼) = ±1, which implies the increment 𝑤 is along the direction of 𝜖𝑖,𝑡 . Recall
that𝑤 =

𝑥𝑡+1
_𝑡+1
(𝑦𝜖,𝑡+1−𝐵𝛿𝑟 cos(𝛼)). Since cos(𝛼) = ±1, we get the following equality:

|𝜖𝑖,𝑡+1 | = |𝜖𝑖,𝑡 | +
𝛿𝑟 cos(𝛼)
_𝑡+1

(𝑦𝜖,𝑡+1 − 𝐵𝛿𝑟 cos(𝛼)).

If 𝐵 ≥ Z𝛿𝑟
2 , then from the smoothness assumption, we have 𝑦𝜖,𝑡+1 ≤ Z𝛿2

𝑟

2 , which gives
|𝜖𝑖,𝑡+1 | − |𝜖𝑖,𝑡 | ≤ 0. If 𝐵 < Z𝛿𝑟

2 , we obtain the following bound |𝜖𝑖,𝑡+1 | ≤ Z𝛿𝑟
2 +

Z𝛿3
𝑟

_𝑡+1
.

Recall that _𝑡+1 > 𝛿2
𝑟 by construction. So

|𝜖𝑖,𝑡+1 | ≤
3Z𝛿𝑟

2
≤ 2Z𝛿𝑟 .

Case 2 : (𝐵𝛿𝑟 cos(𝛼) = 𝑦𝜖,𝑡+1 _𝑡+1−𝛿2
𝑟

2_𝑡+1−𝛿2
𝑟
)

Substituting, we get

𝐿∗ =
𝛿2
𝑟 𝑦

2
𝜖,𝑡+1

_2
𝑡

(1 − _𝑡+1 − 𝛿2
𝑟

2_𝑡+1 − 𝛿2
𝑟

)2 +
2𝑦2

𝜖,𝑡+1
_𝑡+1

(1 − _𝑡+1 − 𝛿2
𝑟

2_𝑡+1 − 𝛿2
𝑟

) ( _𝑡+1 − 𝛿
2
𝑟

2_𝑡+1 − 𝛿2
𝑟

)

which simplifies to

𝐿∗ =
𝑦2
𝜖,𝑡+1

2_𝑡+1 − 𝛿2
𝑟

≤
𝑦2
𝜖,𝑡+1
_𝑡+1

since _𝑡+1 ≥ 𝛿2
𝑟 .



323

Taking both cases into consideration and adding the telescopic series (A.19), we get

∥𝜖𝑖,𝑇 ∥22 ≤ 4Z2𝛿2
𝑟 + Σ𝑇𝑠=1(∥\𝑠∥

2
2 − ∥\𝑠−1∥22) ≤ 4Z2𝛿2

𝑟 + Σ𝑇𝑠=1
𝑦2
𝜖,𝑠

_𝑠

≤ 4Z2𝛿2
𝑟 + Σ

𝑇
𝑑

𝑠=1
𝑦2
𝜖,𝑠

𝛿2
𝑟

𝑑

𝑠
, (A.20)

≤ 4Z2𝛿2
𝑟 +

𝑑

4
Z2𝛿2

𝑟 log𝑇, (A.21)

where (A.20), comes because we need to pick 𝑑 orthogonal vectors before all the
eigenvalues become equal again, and (A.21) is a standard bound on harmonic sum
and because 𝑦𝑖,𝑡 is bounded by Z𝛿2

𝑟

2 by smoothness assumption. Therefore, we obtain
the advertised bound: ∥𝜖𝑖,𝑇 ∥2 ≤ 2Z𝛿𝑟

√︁
2𝑑 log𝑇 = 𝑂 (Z𝛿𝑟

√︁
𝑑 log𝑇) □

Proof of Theorem 2.3.11

Recall Γ𝑖𝑡 = {𝑥 ∈ Γ𝑖 : ∇ 𝑓 ⊤
𝑖𝑡
(𝑥 − 𝑥𝑠

𝑖
) + Δ

2 ≤ 𝜏 − 𝜏
𝑠
𝑖
}. There exists 𝑇 ′(Δ) such that

Δ ≥ 2Z𝛿2
𝑓

√︁
2𝑑 log𝑇 ′(Δ) + 𝑆𝛽𝑇

√︄
𝑑

𝑇 ′(Δ) ,

where 𝑇 ′(Δ) is defined as 𝑇 ′(𝑥) = min{𝑡 > 0 : Δ ≥ 2Z𝛿2
𝑓

√︁
2𝑑 log 𝑡 + 𝑆𝛽𝑇

√︃
𝑑
𝑡
}.

Using Lemma A.2.1, we can upper bound ∇ 𝑓 ⊤
𝑖∗𝑡 (𝑥∗ − 𝑥𝑠𝑖∗) as follows

∇ 𝑓 ⊤𝑖∗𝑡 (𝑥∗ − 𝑥𝑠𝑖∗) = ∇ 𝑓 𝐿𝑆⊤𝑖∗ (𝑥∗ − 𝑥𝑠𝑖∗) + 𝜖⊤𝑖𝑡 (𝑥∗ − 𝑥𝑠𝑖∗)
≤ ∇ 𝑓 ⊤𝑖∗ (𝑥∗ − 𝑥𝑠𝑖∗) + 𝛽𝑖

∗
𝑡 | |𝑥 − 𝑥𝑠𝑖∗ | |𝐴−1

𝑖∗ ,𝑡
+ 𝜖⊤𝑖𝑡 (𝑥∗ − 𝑥𝑠𝑖∗)

≤ ∇ 𝑓 ⊤𝑖∗ (𝑥∗ − 𝑥𝑠𝑖∗) + 𝛽𝑖
∗
𝑡 | |𝑥 − 𝑥𝑠𝑖∗ | |𝐴−1

𝑖∗ ,𝑡
+ 2Z𝛿𝑟𝛿 𝑓

√︁
2𝑑 log𝑇

≤ 𝑓𝑖∗ (𝑥∗) − 𝑓𝑖∗ (𝑥𝑠𝑖∗) +
Z𝛿2

𝑓

2
+ 𝛽𝑖∗𝑡 | |𝑥 − 𝑥𝑠𝑖∗ | |𝐴−1

𝑖∗ ,𝑡
+ 2Z𝛿𝑟𝛿 𝑓

√︁
2𝑑 log𝑇,

Since we pick actions as 𝑥𝑡 = max𝑥∈�̃�𝑤
𝑖
∥𝑥 − 𝑥𝑠

𝑖
∥𝐴−1

𝑖,𝑡
, any 𝑑 consecutive actions are

orthogonal and uniformly expand the eigenspectrum, i.e.,
∑𝑡=𝑠+𝑑
𝑡=𝑠 𝑥𝑡𝑥

⊤
𝑡 = 𝛿2

𝑟 I. Thus,

𝛽𝑖
∗

𝑇 ′ | |𝑥 − 𝑥
𝑠
𝑖∗ | |𝐴𝑖∗−1

𝑇′
≤ 𝛽𝑖∗𝑇 ′

√
𝑑

𝛿𝑟
√
𝑇 ′
∥𝑥 − 𝑥𝑠𝑖∗ ∥ ≤ 𝛽𝑖

∗

𝑇 ′

√
𝑑

𝛿𝑟
√
𝑇 ′
𝛿 𝑓 ,

which gives us the following upper bound:

∇ 𝑓 ⊤𝑖∗𝑇 ′ (𝑥∗ − 𝑥𝑠𝑖∗) ≤ 𝑓𝑖∗ (𝑥∗) − 𝑓𝑖∗ (𝑥𝑠𝑖∗) +
Z𝛿2

𝑓

2
+ 𝛽𝑖∗𝑇 ′

√
𝑑

𝛿𝑟
√
𝑇 ′
𝛿 𝑓 + 2Z𝛿𝑟𝛿 𝑓

√︁
2𝑑 log𝑇

= 𝑓𝑖∗ (𝑥∗) − 𝑓𝑖∗ (𝑥𝑠𝑖∗) +
Δ

2
.
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The last inequality follows when 𝑇 ′ is large enough such that

Δ

2
≥
Z𝛿2

𝑓

2
+ 2Z𝛿𝑟𝛿 𝑓

√︁
2𝑑 log𝑇 ′ + 𝛽𝑇

√︂
𝑑

𝑇 ′
𝛿 𝑓

𝛿𝑟
.

Moreover, we can scale 𝛿𝑟 ∼ ( 1
𝑇 ′ )

0.25 to get

Δ

2
≥
Z𝛿2

𝑓

2
+ 2Z𝛿 𝑓

√︄
2𝑑 log𝑇 ′
√
𝑇 ′

+ 𝛽𝑇𝛿 𝑓

√︄
𝑑
√
𝑇 ′
∼ 𝑂 (1).

To find 𝑇 ′, we show that the upper bound of RHS is less than LHS. In particular, we
show the following

Z𝛿2
𝑓

2
+ 2Z𝛿 𝑓

√︄
2𝑑 log𝑇 ′
√
𝑇 ′

+ 𝛽𝑇𝛿 𝑓

√︄
𝑑
√
𝑇 ′
≤
Z𝛿2

𝑓

2
+ 𝛿 𝑓

√︄
2𝑑 log𝑇 ′
√
𝑇 ′

(2Z + 𝛽𝑇 ) ≤
Δ

2
.

Rearranging the above, we get

𝑇 ′

log2 𝑇 ′
≥

(
2𝑑

4𝛿2
𝑓

(Δ − Z𝛿2
𝑓
)2

)2

.

Therefore for any Δ > Z𝛿2
𝑓
, we can arbitrarily find large enough exploration time 𝑇 ′

to satisfy the safety gap. Now plugging into the definition of Γ̂𝑖,𝑡 , we get

𝑓𝑖∗ (𝑥∗) − 𝑓𝑖∗ (𝑥𝑠𝑖∗) +
Δ

2
+ Δ

2
≤ 𝜏 − 𝜏𝑠𝑖

which gives 𝑓𝑖∗ (𝑥∗) ≤ 𝜏 − Δ as desired.

Next, we use a similar argument to show that if 𝑥 ∈ Γ̂𝑖,𝑡 , then 𝑓𝑖 (𝑥) ≤ 𝜏. To this we
consider the following lower bound:

∇ 𝑓 ⊤𝑖,𝑇 ′ (𝑥 − 𝑥𝑠𝑖∗) ≥ 𝑓𝑖 (𝑥) − 𝑓𝑖 (𝑥𝑠𝑖 ) −
Z𝛿2

𝑓

2
− 𝛽𝑖𝑇 ′

√
𝑑

𝛿𝑟
√
𝑇 ′
𝛿 𝑓 + 2Z𝛿𝑟𝛿 𝑓

√︁
2𝑑 log𝑇

= 𝑓𝑖 (𝑥) − 𝑓𝑖 (𝑥𝑠𝑖 ) −
Δ

2
.

Plugging into definition of Γ̂𝑖,𝑡 , the Δ
2 terms cancel out to give 𝑓𝑖 (𝑥) ≤ 𝜏 as desired.

□



325

A p p e n d i x B

FURTHER PROOFS FOR CHAPTER 3

B.1 Proofs of Section 3.2
In Appendix B.1.1, we show that due to improved exploration strategy, the reg-
ularized design matrix 𝑉𝑡 has its minimum eigenvalue scaling linearly over time,
which guarantees the persistently exciting inputs for finding the stabilizing neighbor-
hood and stabilizing controllers after the adaptive control with improved exploration
phase. The exact definition of 𝜎★ from Lemma 3.1 is also given in Lemma B.1 in
Appendix B.1.1. We provide the system identification and confidence set construc-
tions with their guarantees (both in terms of the self-normalized and the spectral
norm) in Appendix B.1.2. In Appendix B.1.3, we provide the boundedness guaran-
tees for the system’s state throughout the execution of StabL and provide the proof
of Lemma 3.5. The precise definition of 𝑇𝑤, which was omitted in the main text,
is also given in (B.24) in Appendix B.1.3. We provide the regret decomposition in
Appendix B.1.4 and we analyze each term in this decomposition and give the proof
of the main result of the paper in Appendix B.1.5.

B.1.1 Smallest Singular Value of 𝑉𝑡 , Proof of Theorem 3.1
In this section, we show that improved exploration of StabL provides persistently
exciting inputs, which will be used to enable reaching a stabilizing neighborhood
around the system parameters. In other words, we will lower bound the smallest
eigenvalue of the regularized design matrix, 𝑉𝑡 . The analysis generalizes the lower
bound on the smallest eigenvalue of the sample covariance matrix in Theorem 20 of
[62] for the general case of subgaussian noise. For the state 𝑥𝑡 , and input 𝑢𝑡 , we have:

𝑥𝑡 = 𝐴∗𝑥𝑡−1 + 𝐵∗𝑢𝑡−1 + 𝑤𝑡−1, and 𝑢𝑡 = 𝐾 (Θ̃𝑡−1)𝑥𝑡 + a𝑡 . (B.1)

Let b𝑡 = 𝑧𝑡 − E [𝑧𝑡 |F𝑡−1]. Using the equalities in (B.1), and the fact that 𝑤𝑡 and a𝑡
are F𝑡 measurable, we write E

[
b𝑡b
⊤
𝑡 |F𝑡−1

]
as follows.
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E
[
b𝑡b
⊤
𝑡 |F𝑡−1

]
=

(
𝐼

𝐾 (Θ̃𝑡−1)

)
E

[
𝑤𝑡𝑤

⊤
𝑡 |F𝑡−1

] (
𝐼

𝐾 (Θ̃𝑡−1)

)⊤
+

(
0 0
0 E

[
a𝑡a
⊤
𝑡 |F𝑡−1

] )
=

(
𝐼

𝐾 (Θ̃𝑡−1)

)
(�̄�2

𝑤 𝐼)
(

𝐼

𝐾 (Θ̃𝑡−1)

)⊤
+

(
0 0
0 𝜎2

a 𝐼

)
(B.2)

=

(
�̄�2
𝑤 𝐼 �̄�2

𝑤𝐾 (Θ̃𝑡−1)⊤

�̄�2
𝑤𝐾 (Θ̃𝑡−1) �̄�2

𝑤𝐾 (Θ̃𝑡−1)𝐾 (Θ̃𝑡−1)⊤ + 2^2�̄�2
𝑤 𝐼

)
(B.3)

⪰ �̄�2
𝑤

(
𝐼 𝐾 (Θ̃𝑡−1)⊤

𝐾 (Θ̃𝑡−1) 2𝐾 (Θ̃𝑡−1)𝐾 (Θ̃𝑡−1)⊤ + 𝐼/2

)
(B.4)

=
�̄�2
𝑤

2
𝐼 + �̄�2

𝑤

(
1√
2
𝐼

√
2𝐾 (Θ̃𝑡−1)

) (
1√
2
𝐼

√
2𝐾 (Θ̃𝑡−1)

)⊤
(B.5)

⪰
�̄�2
𝑤

2
𝐼, (B.6)

where (B.3) follows from 𝜎2
a = 2^2�̄�2

𝑤 and (B.4) follows from the fact that ^ ≥ 1
and ∥𝐾 (Θ̃𝑡−1)∥ ≤ ^ for all 𝑡. Let 𝑠𝑡 = 𝑣⊤b𝑡 for any unit vector 𝑣 ∈ R𝑛+𝑑 . (B.6)
shows that that Var [𝑠𝑡 |F𝑡−1] ≥ �̄�2

𝑤

2 .

Lemma B.1. Suppose the system is stabilizable and we are in adaptive control with
improved exploration phase of StabL. Denote 𝑠𝑡 = 𝑣⊤b𝑡 where 𝑣 ∈ R𝑛+𝑑 is any unit
vector. Let �̄�a := ((1 + ^)2 + 2^2)𝜎2

𝑤. For a given positive 𝜎2
1 , let 𝐸𝑡 be an indicator

random variable that equals 1 if 𝑠2
𝑡 > 𝜎2

1 and 0 otherwise. Then for any positive
𝜎2

1 , and 𝜎2
2 , such that 𝜎2

1 ≤ 𝜎
2
2 , we have

E [𝐸𝑡 |F𝑡−1] ≥
�̄�2
𝑤

2 − 𝜎
2
1 − 4�̄�2

a (1 +
𝜎2

2
2�̄�2

a
) exp( −𝜎

2
2

2�̄�2
a
)

𝜎2
2

. (B.7)

Note that, for any �̄�a ≥ �̄�𝑤, there is a pair (𝜎2
1 , 𝜎

2
2 ) such that the right-hand side of

(B.7) is positive.

Proof. Using the lower bound on the variance of 𝑠𝑡 , we have,

�̄�2
𝑤

2
≤ E

[
𝑠2
𝑡 1(𝑠2

𝑡 < 𝜎
2
1 ) |F𝑡−1

]
+ E

[
𝑠2
𝑡 1(𝑠2

𝑡 ≥ 𝜎2
1 ) |F𝑡−1

]
≤ 𝜎2

1 + E
[
𝑠2
𝑡 1(𝑠2

𝑡 ≥ 𝜎2
1 ) |F𝑡−1

]
.

Now, deploying the fact that both a𝑡 and 𝑤𝑡 , for any t, are sub-Gaussian given F𝑡−1,
have that b𝑡 is also sub-Gaussian vector. Therefore, 𝑠𝑡 is a sub-Gaussian random
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variable with parameter �̄�a, where �̄�a := ((1 + ^)2 + 2^2)𝜎2
𝑤:

�̄�2
𝑤

2
− 𝜎2

1 ≤ E
[
𝑠2
𝑡 1(𝑠2

𝑡 ≥ 𝜎2
1 ) |F𝑡−1

]
= E

[
𝑠2
𝑡 1(𝜎2

2 ≥ 𝑠
2
𝑡 ≥ 𝜎2

1 ) |F𝑡−1
]
+ E

[
𝑠2
𝑡 1(𝑠2

𝑡 ≥ 𝜎2
2 ) |F𝑡−1

]
. (B.8)

For the second term in the right-hand side of the (B.8), under the considerations of
Fubini’s and Radon–Nikodym theorems, we derive the following equality,∫
𝑠2≥𝜎2

2

P(𝑠2
𝑡 ≥ 𝑠2 |F𝑡−1)𝑑𝑠2 =

∫
𝑠2≥𝜎2

2

∫
𝑠′2≥𝑠2

−
𝑑P(𝑠2

𝑡 ≥ 𝑠′2 |F𝑡−1)
𝑑𝑠′2

𝑑𝑠′2𝑑𝑠2

=

∫
𝑠′2≥𝜎2

2

∫
𝑠′2≥𝑠2≥𝜎2

2

−
𝑑P(𝑠2

𝑡 ≥ 𝑠′2 |F𝑡−1)
𝑑𝑠′2

𝑑𝑠′2𝑑𝑠2

=

∫
𝑠′2≥𝜎2

2

∫
𝑠′2≥𝑠2≥𝜎2

2

−
𝑑P(𝑠2

𝑡 ≥ 𝑠′2 |F𝑡−1)
𝑑𝑠′2

𝑑𝑠2𝑑𝑠′2

=

∫
𝑠′2≥𝜎2

2

−
𝑑P(𝑠2

𝑡 ≥ 𝑠′2 |F𝑡−1)
𝑑𝑠′2

(𝑠′2 − 𝜎2
2 )𝑑𝑠

′2

= E
[
𝑠2
𝑡 1(𝑠2

𝑡 ≥ 𝜎2
2 ) |F𝑡−1

]
− 𝜎2

2

∫
𝑠′2≥𝜎2

2

−
𝑑P(𝑠2

𝑡 ≥ 𝑠′2 |F𝑡−1)
𝑑𝑠′2

𝑑𝑠′2

= E
[
𝑠2
𝑡 1(𝑠2

𝑡 ≥ 𝜎2
2 ) |F𝑡−1

]
− 𝜎2

2 P(𝑠
2
𝑡 ≥ 𝜎2

2 |F𝑡−1),

resulting in the following equality,

E
[
𝑠2
𝑡 1(𝑠2

𝑡 ≥ 𝜎2
2 ) |F𝑡−1

]
=

∫
𝑠2≥𝜎2

2

P(𝑠2
𝑡 ≥ 𝑠2 |F𝑡−1)𝑑𝑠2 + 𝜎2

2 P(𝑠
2
𝑡 ≥ 𝜎2

2 |F𝑡−1).

(B.9)

Using this equality, we extend the (B.8) as follows,

�̄�2
𝑤

2
− 𝜎2

1 ≤ E
[
𝑠2
𝑡 1(𝜎2

2 ≥ 𝑠
2
𝑡 ≥ 𝜎2

1 ) |F𝑡−1
]
+

∫
𝑠2≥𝜎2

2

P(𝑠2
𝑡 ≥ 𝑠2 |F𝑡−1)𝑑𝑠2 + 𝜎2

2 P(𝑠
2
𝑡 ≥ 𝜎2

2 |F𝑡−1)

≤ 𝜎2
2 E

[
1(𝜎2

2 ≥ 𝑠
2
𝑡 ≥ 𝜎2

1 ) |F𝑡−1
]
+

∫
𝑠2≥𝜎2

2

P(𝑠2
𝑡 ≥ 𝑠2 |F𝑡−1)𝑑𝑠2 + 𝜎2

2 P(𝑠
2
𝑡 ≥ 𝜎2

2 |F𝑡−1)

≤ 𝜎2
2 E [𝐸𝑡 |F𝑡−1] +

∫
𝑠2≥𝜎2

2

P(𝑠2
𝑡 ≥ 𝑠2 |F𝑡−1)𝑑𝑠2 + 𝜎2

2 P(𝑠
2
𝑡 ≥ 𝜎2

2 |F𝑡−1).

(B.10)
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Rearranging this inequality, we have,

E [𝐸𝑡 |F𝑡−1] ≥
�̄�2
𝑤

2 − 𝜎
2
1 −

∫
𝑠2≥𝜎2

2
P(𝑠2

𝑡 ≥ 𝑠2 |F𝑡−1)𝑑𝑠2 − 𝜎2
2 P(𝑠

2
𝑡 ≥ 𝜎2

2 |F𝑡−1)

𝜎2
2

≥
�̄�2
𝑤

2 − 𝜎
2
1 − 2

∫
𝑠2≥𝜎2

2
exp( −𝑠2

2�̄�2
a
)𝑑𝑠2 − 2𝜎2

2 exp( −𝜎
2
2

2�̄�2
a
)

𝜎2
2

≥
�̄�2
𝑤

2 − 𝜎
2
1 − 4�̄�2

a exp( −𝜎
2
2

2�̄�2
a
) − 2𝜎2

2 exp( −𝜎
2
2

2�̄�2
a
)

𝜎2
2

=

�̄�2
𝑤

2 − 𝜎
2
1 − 4�̄�2

a (1 +
𝜎2

2
2�̄�2

a
) exp( −𝜎

2
2

2�̄�2
a
)

𝜎2
2

. (B.11)

The inequality in (B.11) holds for any 𝜎2
1 ≤ 𝜎

2
2 , therefore, the stated lower-bound

on E [𝐸𝑡 |F𝑡−1] in the main statement holds. □

For the choices of 𝜎2
1 and 𝜎2

2 that makes right hand side of (B.7) positive, let 𝑐𝑝

denote the right hand side of (B.7), 𝑐𝑝 =
�̄�2
𝑤
2 −𝜎

2
1−4�̄�2

a (1+
𝜎2

2
2�̄�2
a

) exp(
−𝜎2

2
2�̄�2
a

)

𝜎2
2

.

Lemma B.2. Consider 𝑠𝑡 = 𝑣⊤𝑧𝑡 where 𝑣 ∈ R𝑛+𝑑 is any unit vector. Let �̄�𝑡
be an indicator random variable that equals 1 if 𝑠2

𝑡 > 𝜎2
1 /4 and 0 otherwise.

Then, there exist a positive pair 𝜎2
1 , and 𝜎2

2 , and a constant 𝑐𝑝 > 0, such that
E

[
�̄�𝑡 |F𝑡−1

]
≥ 𝑐′𝑝 > 0.

Proof. Using the Lemma B.1, we know that for 𝑠𝑡 = 𝑣⊤b𝑡 , we have |𝑠𝑡 | ≥ 𝜎1 with a
non-zero probability 𝑐𝑝. On the other hand, we have that,

𝑠𝑡 = 𝑣
⊤𝑧𝑡 = 𝑣

⊤b𝑡 + 𝑣⊤E [𝑧𝑡 |F𝑡−1] = 𝑠𝑡 + 𝑣⊤E [𝑧𝑡 |F𝑡−1] .

Therefore, we have, |𝑠𝑡 | = |𝑠𝑡 + 𝑣⊤E [𝑧𝑡 |F𝑡−1] |. Using this equality, if |𝑣⊤E [𝑧𝑡 |F𝑡−1] | ≤
𝜎1/2, since |𝑠𝑡 | ≥ 𝜎1 with probability 𝑐𝑝, we have |𝑠𝑡 | ≥ 𝜎1/2 with probability 𝑐𝑝.

In the following, we consider the case where |𝑣⊤E [𝑧𝑡 |F𝑡−1] | ≥ 𝜎1/2. For a constant
𝜎3, using a similar derivation as in (B.9) and (B.10), we have

E
[
𝑠2
𝑡 |F𝑡−1

]
=E

[
𝑠2
𝑡 1(𝜎3< 𝑠𝑡 <0) |F𝑡−1

]
+E

[
𝑠2
𝑡 1(𝜎3> 𝑠𝑡 >0) |F𝑡−1

]
+E

[
𝑠2
𝑡 1(𝑠2

𝑡 ≥𝜎2
3 ) |F𝑡−1

]
=E

[
𝑠2
𝑡 1(𝜎3< 𝑠𝑡 <0) |F𝑡−1

]
+E

[
𝑠2
𝑡 1(𝜎3> 𝑠𝑡 >0) |F𝑡−1

]
+4�̄�2

a (1+
𝜎2

2

2�̄�2
a

) exp(
−𝜎2

2

2�̄�2
a

).
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Using the lower bound in the variance results in,

�̄�2
𝑤

2
≤E

[
𝑠2
𝑡 1(𝜎3< 𝑠𝑡 <0) |F𝑡−1

]
+E

[
𝑠2
𝑡 1(𝜎3 > 𝑠𝑡 >0) |F𝑡−1

]
+4�̄�2

a (1+
𝜎2

3

2�̄�2
a

) exp(
−𝜎2

3

2�̄�2
a

).

Therefore,

�̄�2
𝑤

2
−4�̄�2

a (1 +
𝜎2

3

2�̄�2
a

) exp(
−𝜎2

3

2�̄�2
a

) ≤E
[
𝑠2
𝑡 1(𝜎3< 𝑠𝑡 <0) |F𝑡−1

]
+E

[
𝑠2
𝑡 1(𝜎3> 𝑠𝑡 >0) |F𝑡−1

]
=𝜎2

3

(
E

[
𝑠2
𝑡

𝜎2
3
1(−𝜎3< 𝑠𝑡 <0) |F𝑡−1

]
+E

[
𝑠2
𝑡

𝜎2
3
1(𝜎3> 𝑠𝑡 >0) |F𝑡−1

])
≤𝜎2

3

(
E

[
|𝑠𝑡 |
𝜎3

1(−𝜎3< 𝑠𝑡 <0) |F𝑡−1

]
+E

[
𝑠𝑡

𝜎3
1(𝜎3> 𝑠𝑡 >0) |F𝑡−1

] )
.

(B.12)

Note that for a large enough𝜎3, the second term on the left-hand side vanishes. Since
we have E [𝑠𝑡 |F𝑡−1] = 0, we write the following, to further analyze the right-hand
side of (B.12),

E [𝑠𝑡 |F𝑡−1] = E [𝑠𝑡1(𝑠𝑡 < 0) |F𝑡−1] + E [𝑠𝑡1(𝑠𝑡 > 0) |F𝑡−1] = 0

→ E [|𝑠𝑡 |1(𝑠𝑡 < 0) |F𝑡−1] = E [𝑠𝑡1(𝑠𝑡 > 0) |F𝑡−1] .

Note that, since 𝑠𝑡 is sub-Gaussian variable, and has bounded away from zero
variance, we have E [1(𝑠𝑡 < 0) |F𝑡−1] + E [1(𝑠𝑡 > 0) |F𝑡−1] is bounded away from
zero. We write this equality as follows:

E [|𝑠𝑡 |1(−𝜎3 < 𝑠𝑡 < 0) |F𝑡−1] + E [|𝑠𝑡 |1(𝑠𝑡 ≤ −𝜎3) |F𝑡−1]
= E [𝑠𝑡1(𝜎3 > 𝑠𝑡 > 0) |F𝑡−1] + E [𝑠𝑡1(𝑠𝑡 ≥ 𝜎3) |F𝑡−1] .

By rearranging this equality, and upper bounding the first term on the left-hand side,
we have

E [|𝑠𝑡 |1(−𝜎3 < 𝑠𝑡 < 0) |F𝑡−1] ≤ E [𝑠𝑡1(𝜎3 > 𝑠𝑡 > 0) |F𝑡−1] + E [𝑠𝑡1(𝑠𝑡 ≥ 𝜎3) |F𝑡−1]

≤ E [𝑠𝑡1(𝜎3> 𝑠𝑡 >0) |F𝑡−1]+�̄�2
a exp(

−𝜎2
3

2�̄�2
a

). (B.13)

Similarly, we have

E [𝑠𝑡1(𝜎3 > 𝑠𝑡 > 0) |F𝑡−1] ≤ E [|𝑠𝑡 |1(−𝜎3 < 𝑠𝑡 < 0) |F𝑡−1] + �̄�2
a exp(

−𝜎2
3

2�̄�2
a

)

(B.14)
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Using the inequality (B.13) on the right-hand side of (B.12), we have

�̄�2
𝑤

2 −4�̄�2
a (1+

𝜎2
3

2�̄�2
a
) exp( −𝜎

2
3

2�̄�2
a
)

𝜎2
3

≤E
[
|𝑠𝑡 |
𝜎3

1(−𝜎3< 𝑠𝑡 <0) |F𝑡−1

]
+E

[
𝑠𝑡

𝜎3
1(𝜎3> 𝑠𝑡 >0) |F𝑡−1

]
≤ 2E

[
𝑠𝑡

𝜎3
1(𝜎3 > 𝑠𝑡 > 0) |F𝑡−1

]
+ �̄�2

a exp(
−𝜎2

3

2�̄�2
a

)

≤ 2E [1(𝜎3 > 𝑠𝑡 > 0) |F𝑡−1] + �̄�2
a exp(

−𝜎2
3

2�̄�2
a

)

≤ 2E [1(𝑠𝑡 > 0) |F𝑡−1] + �̄�2
a exp(

−𝜎2
3

2�̄�2
a

).

Similarly, using (B.14) on the right-hand side of (B.12) we have

�̄�2
𝑤

2 −4�̄�2
a (1+

𝜎2
3

2�̄�2
a
) exp( −𝜎

2
3

2�̄�2
a
)

𝜎2
3

≤E
[
|𝑠𝑡 |
𝜎3

1(−𝜎3< 𝑠𝑡 <0) |F𝑡−1

]
+E

[
𝑠𝑡

𝜎3
1(𝜎3> 𝑠𝑡 >0) |F𝑡−1

]
≤ 2E [1(𝑠𝑡 < 0) |F𝑡−1] + �̄�2

a exp(
−𝜎2

3

2�̄�2
a

).

Therefore, it results in the two following lower bounds,

E [1(𝑠𝑡 < 0) |F𝑡−1] ≥
�̄�2
𝑤

2 − 4�̄�2
a (1 +

𝜎2
3

2�̄�2
a
) exp( −𝜎

2
3

2�̄�2
a
)

2𝜎2
3

− 0.5�̄�2
a exp(

−𝜎2
3

2�̄�2
a

)

E [1(𝑠𝑡 > 0) |F𝑡−1] ≥
�̄�2
𝑤

2 − 4�̄�2
a (1 +

𝜎2
3

2�̄�2
a
) exp( −𝜎

2
3

2�̄�2
a
)

2𝜎2
3

− 0.5�̄�2
a exp(

−𝜎2
3

2�̄�2
a

). (B.15)

Choosing 𝜎3 sufficiently large results in the right-hand sides in inequalities (B.15)
to be positive and bounded away from zero. Let 𝑐′′𝑝 > 0 denote the right-hand sides
in the (B.15). We use this fact to analyze 𝑠𝑡 when |𝑣⊤E [𝑧𝑡 |F𝑡−1] | ≥ 𝜎1/2.

When 𝑣⊤E [𝑧𝑡 |F𝑡−1] ≥ 𝜎1/2, since probability 𝑐′′𝑝, 𝑠𝑡 is positive, therefore, |𝑠𝑡 | ≥
𝜎1/2 with probability 𝑐′′𝑝. When 𝑣⊤E [𝑧𝑡 |F𝑡−1] ≤ −𝜎1/2, since probability 𝑐′′𝑝, 𝑠𝑡
is negative, therefore, |𝑠𝑡 | ≥ 𝜎1/2 with probability 𝑐′′𝑝. Therefore, overall, with
probability 𝑐′𝑝 := min{𝑐𝑝, 𝑐′′𝑝}, we have that |𝑠𝑡 | ≥ 𝜎1/2, resulting in the statement
of the lemma. □

Theorem B.1 (Precise version of Theorem 3.1, Persistence of Excitation During the
Extra Exploration). If the duration of the adaptive control with improved exploration
𝑇𝑤 ≥ 6𝑛

𝑐′𝑝
log(12/𝛿), then with probability at least 1 − 𝛿, for 𝜎2

★ =
𝑐′𝑝𝜎

2
1

16 , StabL has

_min(𝑉𝑇𝑤 ) ≥ 𝜎2
★𝑇𝑤 .
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Proof. Let𝑈𝑡 = �̄�𝑡−E𝑡
[
�̄�𝑡 |F𝑡−1

]
. Then𝑈𝑡 is a martingale difference sequence with

|𝑈𝑡 | ≤ 1. Applying Azuma’s inequality, we have that with probability at least 1 − 𝛿∑︁𝑇𝑤

𝑡=1
𝑈𝑡 ≥ −

√︂
2𝑇𝑤 log

1
𝛿
.

Using the Lemma B.2, we have
𝑇𝑤∑︁
𝑡

�̄�𝑡 ≥
𝑇𝑤∑︁
𝑡

E𝑡
[
�̄�𝑡 |F𝑡−𝑛

]
−

√︂
2𝑇𝑤 log

1
𝛿

≥ 𝑐′𝑝𝑇𝑤 −
√︂

2𝑇𝑤 log
1
𝛿
,

where for 𝑇𝑤 ≥ 8 log(1/𝛿)/𝑐′2𝑝 , we have
∑𝑇𝑤
𝑡 �̄�𝑡 ≥

𝑐′𝑝
2 𝑇𝑤. Now, for any unit vector

𝑣, define 𝑠𝑡 = 𝑣⊤𝑧𝑡 , therefore from the definition of �̄�𝑡 we have,

𝑣⊤𝑉𝑇𝑤𝑣 =
𝑇𝑤∑︁
𝑡

𝑠2
𝑡 ≥ �̄�𝑡𝜎2

1 /4 ≥
𝑐′𝑝𝜎

2
1

8
𝑇𝑤

This inequality hold for a given 𝑣. In the following we show a similar inequality
for all 𝑣 together. Similar to the Theorem 20 in [62], consider a 1/4-net of S𝑛+𝑑−1,
N(1/4) and set 𝑀𝑇𝑤 := {𝑉−1/2

𝑇𝑤
𝑣/∥𝑉−1/2

𝑇𝑤
𝑣∥ : 𝑣 ∈ N(1/4)}. These two sets have

at most 12𝑛+𝑑−1 members. Using union bound over members of this set, when
𝑇𝑤 ≥ 20

𝑐′2𝑝
((𝑛 + 𝑑) + log(1/𝛿)), we have that 𝑣⊤𝑉𝑇𝑤𝑣 ≥

𝑐′𝑝𝜎
2
1

8 𝑇𝑤 for all 𝑣 ∈ 𝑀𝑇𝑤

with a probability at least 1 − 𝛿. Using the definition of members in 𝑀𝑇𝑤 , for each
𝑣 ∈ N(1/4), we have 𝑣⊤𝑉−1

𝑇𝑤
𝑣 ≤ 8

𝑇𝑤𝑐
′
𝑝𝜎

2
1
. Let 𝑣𝑛 denote the eigenvector of the largest

eigenvalue of𝑉−1
𝑇𝑤

, and a vector 𝑣′ ∈ N(1/4) such that ∥𝑣𝑛−𝑣′∥ ≤ 1/4. Then we have

∥𝑉−1
𝑇𝑤
∥ = 𝑣⊤𝑛𝑉−1

𝑇𝑤
𝑣𝑛 = 𝑣

′⊤𝑉−1
𝑇𝑤
𝑣′ + (𝑣𝑛 − 𝑣′)⊤𝑉−1

𝑇𝑤
(𝑧𝑛 + 𝑣′)

≤ 8
𝑇𝑤𝑐

′
𝑝𝜎

2
1
+ ∥𝑣𝑛 − 𝑣′∥∥𝑉−1

𝑇𝑤
∥∥𝑧𝑛 + 𝑣′∥ ≤

8
𝑇𝑤𝑐

′
𝑝𝜎

2
1
+ ∥𝑉−1

𝑇𝑤
∥/2.

Rearranging, we get that ∥𝑉−1
𝑇𝑤
∥ ≤ 16

𝑇𝑤𝑐
′
𝑝𝜎

2
1
. Therefore, the advertised bound holds

for 𝑇𝑤 ≥ 20
𝑐′2𝑝
((𝑛 + 𝑑) + log(1/𝛿)) with probability at least 1 − 𝛿. □

B.1.2 System Identification & Confidence Set Construction, Proof of Lemma 3.2
To have completeness, for the proof of Lemma 3.2, we first provide the proof for
confidence set construction borrowed from Abbasi-Yadkori and Szepesvári [2], since
Lemma 3.2 builds upon this confidence set construction. First, let

^𝑒 =
©«𝜎𝑤𝜎★

√︄
𝑛(𝑛 + 𝑑) log

(
1 + 𝑐𝑇 (1 + ^

2) (𝑛 + 𝑑)2(𝑛+𝑑)
`(𝑛 + 𝑑)

)
+ 2𝑛 log

1
𝛿
+ √`𝑆ª®¬ .

(B.16)
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Proof. Define Θ⊤∗ = [𝐴, 𝐵] and 𝑧𝑡 =
[
𝑥⊤𝑡 𝑢

⊤
𝑡

]⊤. The system in (3.1) can be charac-
terized equivalently as

𝑥𝑡+1 = Θ⊤∗ 𝑧𝑡 + 𝑤𝑡 ,

Given a single input-output trajectory {𝑥𝑡 , 𝑢𝑡}𝑇𝑡=1, one can rewrite the input-output
relationship as,

𝑋𝑇 = 𝑍𝑇Θ∗ +𝑊𝑇 , (B.17)

for 𝑋⊤
𝑇
= [𝑥1, . . . , 𝑥𝑇 ] ∈ R𝑛×𝑇 , 𝑍⊤

𝑇
= [𝑧1, . . . , 𝑧𝑇 ] ∈ R(𝑛+𝑑)×𝑇 , and𝑊⊤

𝑇
= [𝑤1, . . . , 𝑤𝑇 ] ∈

R𝑛×𝑇 . Then, we estimate Θ∗ by solving the following least square problem,

Θ̂𝑇 = arg min
𝑋
| |𝑋𝑇 − 𝑍𝑇𝑋 | |2𝐹 + ` | |𝑋 | |2𝐹

= (𝑍⊤𝑇 𝑍𝑇 + `𝐼)−1𝑍⊤𝑇 𝑋𝑇

= (𝑍⊤𝑇 𝑍𝑇 + `𝐼)−1𝑍⊤𝑇𝑊𝑇 + Θ∗ − `(𝑍⊤𝑇 𝑍𝑇 + `𝐼)−1Θ∗.

The confidence set is obtained using the expression for Θ̂𝑇 and sub-Gaussianity of
the 𝑤𝑡 ,

| Tr((Θ̂𝑇 − Θ∗)⊤𝑋) | = | Tr(𝑊⊤𝑇 𝑍𝑇 (𝑍⊤𝑇 𝑍𝑇 + `𝐼)−1𝑋) − ` Tr(Θ⊤∗ (𝑍⊤𝑇 𝑍𝑇 + `𝐼)−1𝑋) |
≤ | Tr(𝑊⊤𝑇 𝑍𝑇 (𝑍⊤𝑇 𝑍𝑇 + `𝐼)−1𝑋) | + ` | Tr(Θ⊤∗ (𝑍⊤𝑇 𝑍𝑇 + `𝐼)−1𝑋) |

≤
√︃

Tr(𝑋⊤(𝑍⊤
𝑇
𝑍𝑇 + `𝐼)−1𝑋) Tr(𝑊⊤

𝑇
𝑍𝑇 (𝑍⊤𝑇 𝑍𝑇 + `𝐼)−1𝑍⊤

𝑇
𝑊𝑇 )

+ `
√︃

Tr(𝑋⊤(𝑍⊤
𝑇
𝑍𝑇+`𝐼)−1𝑋) Tr(Θ⊤∗ (𝑍⊤𝑇 𝑍𝑇+`𝐼)−1Θ∗), (B.18)

=

√︃
Tr(𝑋⊤(𝑍⊤

𝑇
𝑍𝑇+`𝐼)−1𝑋)

[√︃
Tr(𝑊⊤

𝑇
𝑍𝑇 (𝑍⊤𝑇 𝑍𝑇+`𝐼)−1𝑍⊤

𝑇
𝑊𝑇 )+`

√︃
Tr(Θ⊤∗ (𝑍⊤𝑇 𝑍𝑇+`𝐼)−1Θ∗)

]
where the result follows from | Tr(𝐴⊤𝐵𝐶) | ≤

√︁
Tr(𝐴⊤𝐵𝐴) Tr(𝐶⊤𝐵𝐶) for square

positive definite B due to Cauchy Schwarz (weighted inner-product). For 𝑋 =

(𝑍⊤
𝑇
𝑍𝑇 + `𝐼) (Θ̂𝑇 − Θ∗), we get√︃

Tr((Θ̂𝑇−Θ∗)⊤(𝑍⊤𝑇 𝑍𝑇+`𝐼) (Θ̂𝑇−Θ∗)) ≤
√︃

Tr(𝑊⊤
𝑇
𝑍𝑇 (𝑍⊤𝑇 𝑍𝑇+`𝐼)−1𝑍⊤

𝑇
𝑊𝑇 )+

√
`
√︁

Tr(Θ⊤∗ Θ∗).

Let S𝑇 = 𝑍⊤
𝑇
𝑊𝑇 ∈ R(𝑛+𝑑)×𝑛 and 𝑠𝑖 denote the columns of it. Also, let 𝑉𝑇 =

(𝑍⊤
𝑇
𝑍𝑇 + `𝐼). Thus,

Tr(𝑊⊤𝑇 𝑍𝑇 (𝑍⊤𝑇 𝑍𝑇 + `𝐼)−1𝑍⊤𝑇𝑊𝑇 ) = Tr(S⊤𝑇 𝑉−1
𝑇 S𝑇 ) =

𝑛∑︁
𝑖=1

𝑠⊤𝑖 𝑉
−1
𝑇 𝑠𝑖 =

𝑛∑︁
𝑖=1
∥𝑠𝑖∥2𝑉−1

𝑇

.

(B.19)
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Notice that 𝑠𝑖 =
∑𝑇
𝑗=1 𝑤 𝑗 ,𝑖𝑧 𝑗 where 𝑤 𝑗 ,𝑖 is the 𝑖’th element of 𝑤 𝑗 . From Assumption

3.1, we have that 𝑤 𝑗 ,𝑖 is 𝜎𝑤-sub-Gaussian, thus we can use Theorem 1 of [3], which
gives a self-normalized bound for vector-valued martingales and show that,

Tr(𝑊⊤𝑇 𝑍𝑇 (𝑍⊤𝑇 𝑍𝑇 + `𝐼)−1𝑍⊤𝑇𝑊𝑇 ) ≤ 2𝑛𝜎2
𝑤 log

(
det (𝑉𝑇 )1/2 det(`𝐼)−1/2

𝛿

)
. (B.20)

with probability 1 − 𝛿. From Assumption 3.2, we also have that
√︁

Tr(Θ⊤∗ Θ∗) ≤ 𝑆.
Combining these gives the self-normalized confidence set or the model estimate:

Tr((Θ̂𝑇 − Θ∗)⊤𝑉𝑇 (Θ̂𝑇 − Θ∗)) ≤ ©«𝜎𝑤
√√√

2𝑛 log

(
det (𝑉𝑇 )1/2 det(`𝐼)−1/2

𝛿

)
+ √`𝑆ª®¬

2

.

(B.21)
Notice that we have Tr((Θ̂𝑇−Θ∗)⊤𝑉𝑇 (Θ̂𝑇−Θ∗)) ≥ _min(𝑉𝑇 )∥Θ̂𝑇−Θ∗∥2𝐹 . Therefore,

∥Θ̂𝑇 − Θ∗∥2 ≤
1√︁

_min(𝑉𝑇 )
©«𝜎𝑤

√√√
2𝑛 log

(
det (𝑉𝑇 )1/2 det(`𝐼)−1/2

𝛿

)
+ √`𝑆ª®¬ .

(B.22)
To complete the proof, we need a lower bound on _min(𝑉𝑇𝑤 ). Using Lemma 3.1, we
obtain the following with probability at least 1 − 2𝛿:

∥Θ̂𝑇𝑤 − Θ∗∥2 ≤
𝛽𝑡 (𝛿)
𝜎★
√
𝑇𝑤
.

From Lemma 3.5, for 𝑡 ≤ 𝑇𝑤, we have that ∥𝑧𝑡 ∥ ≤ 𝑐(𝑛 + 𝑑)𝑛+𝑑 with probability at
least 1 − 2𝛿, for some constant 𝑐. Combining this with Lemma 11 of [3], we get

∥Θ̂𝑇𝑤 − Θ∗∥2 ≤
^𝑒√
𝑇𝑤
. (B.23)

□

B.1.3 Boundedness of State, Proof of Lemma 3.5
In this section, we will provide the proof of Lemma 3.5, i.e. bounds on states for the
adaptive control with improved exploration and stabilizing adaptive control phases.
First, define the following. Let

𝑇𝑤 =
^2
𝑒

min{�̄�2
𝑤𝑛𝐷/𝐶0, 𝜖2}

(B.24)

such that for 𝑇 > 𝑇𝑤, we have ∥Θ̂𝑇 − Θ∗∥2 ≤ min{
√︁
�̄�2
𝑤𝑛𝐷/𝐶0, 𝜖} with probability

at least 1 − 2𝛿. Notice that due to Lemma 3.3 and as shown in the following, these
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guarantee the stability of the closed-loop dynamics for deploying an optimistic
controller for the remaining part of StabL. Choose an error probability, 𝛿 > 0.
Consider the following events, in the probability space Ω:

• The event that the confidence sets hold for 𝑠 = 0, . . . , 𝑇,

E𝑡 = {𝜔 ∈ Ω : ∀𝑠 ≤ 𝑇, Θ∗ ∈ C𝑠 (𝛿)}

• The event that the state vector stays “small” for 𝑠 = 0, . . . , 𝑇𝑤,

F𝑡 = {𝜔 ∈ Ω : ∀𝑠 ≤ 𝑇𝑤, ∥𝑥𝑠∥ ≤ �̄�𝑡}

where

�̄�𝑡 =
18^3

𝛾(8^ − 1) [̄
𝑛+𝑑

[
𝐺𝑍

𝑛+𝑑
𝑛+𝑑+1
𝑡 𝛽𝑡 (𝛿)

1
2(𝑛+𝑑+1) + (∥𝐵∗∥𝜎a + 𝜎𝑤)

√︂
2𝑛 log

𝑛𝑡

𝛿

]
,

for

[̄ ≥ sup
Θ∈S
∥𝐴∗ + 𝐵∗𝐾 (Θ)∥ , 𝑍𝑇 = max

1≤𝑡≤𝑇
∥𝑧𝑡 ∥

𝐺 = 2
(
2𝑆(𝑛 + 𝑑)𝑛+𝑑+1/2

√
𝑈

)1/(𝑛+𝑑+1)
, 𝑈 =

𝑈0
𝐻
, 𝑈0 =

1
16𝑛+𝑑−2 max

(
1, 𝑆2(𝑛+𝑑−2) ) ,

and 𝐻 is any number satisfying

𝐻 > max
(
16,

4𝑆2𝑀2

(𝑛 + 𝑑)𝑈0

)
, where 𝑀 = sup

𝑌≥1

(
𝜎𝑤

√︂
𝑛(𝑛 + 𝑑) log

(
1+𝑇𝑌/`

𝛿

)
+ `1/2𝑆

)
𝑌

.

Notice that E1 ⊇ E2 ⊇ . . . ⊇ E𝑇 and F1 ⊇ F2 ⊇ . . . ⊇ F𝑇𝑠 . This means considering
the probability of the last event is sufficient in lower bounding all events happening
simultaneously. In Abbasi-Yadkori and Szepesvári [2], an argument regarding
projection onto subspaces is constructed to show that the norm of the state is well-
controlled except 𝑛 + 𝑑 times at most in any horizon 𝑇 . The set of time steps that is
not well-controlled is denoted as T𝑡 . The given lemma shows how well controlled
∥(Θ∗ − Θ̂𝑡)⊤𝑧𝑡 ∥ is besides T𝑡 .

Lemma B.3 (Lemma 18 of Abbasi-Yadkori and Szepesvári [2]). We have that for
any 0 ≤ 𝑡 ≤ 𝑇 ,

max
𝑠≤𝑡,𝑠∉𝑇𝑡

(Θ∗ − Θ̂𝑠)⊤𝑧𝑠
 ≤ 𝐺𝑍 𝑛+𝑑

𝑛+𝑑+1
𝑡 𝛽𝑡 (𝛿/4)

1
2(𝑛+𝑑+1) .
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Notice that Lemma B.3 does not depend on controllability or the stabilizability of
the system. Thus, we will use Lemma B.3 for 𝑡 ≤ 𝑇𝑤 for the adaptive control with
improved exploration phase of StabL. Then we consider the effect of stabilizing
controllers for the remaining time steps.

State Bound for the Adaptive Control with Improved Exploration Phase

One can write the state update as 𝑥𝑡+1 = Γ𝑡𝑥𝑡 + 𝑟𝑡 , where

Γ𝑡 =

{
�̃�𝑡−1 + �̃�𝑡−1𝐾 (Θ̃𝑡−1) 𝑡 ∉ T𝑇
𝐴∗ + 𝐵∗𝐾 (Θ̃𝑡−1) 𝑡 ∈ T𝑇

and 𝑟𝑡 =

{
(Θ∗ − Θ̃𝑡−1)⊤𝑧𝑡 + 𝐵∗a𝑡 + 𝑤𝑡 𝑡 ∉ T𝑇
𝐵∗a𝑡 + 𝑤𝑡 𝑡 ∈ T𝑇

.

(B.25)
Thus, using the fact that 𝑥0 = 0, we can obtain the following roll out for 𝑥𝑡 ,

𝑥𝑡 = Γ𝑡−1𝑥𝑡−1 + 𝑟𝑡−1 = Γ𝑡−1 (Γ𝑡−2𝑥𝑡−2 + 𝑟𝑡−2) + 𝑟𝑡
= Γ𝑡−1Γ𝑡−2Γ𝑡−3𝑥𝑡−3 + Γ𝑡−1Γ𝑡−2𝑟𝑡−2 + Γ𝑡−1𝑟𝑡−1 + 𝑟𝑡
= Γ𝑡−1Γ𝑡−2 . . . Γ𝑡−(𝑡−1)𝑟1 + · · · + Γ𝑡−1Γ𝑡−2𝑟𝑡−2 + Γ𝑡−1𝑟𝑡−1 + 𝑟𝑡

=

𝑡∑︁
𝑘=1

(
𝑡−1∏
𝑠=𝑘

Γ𝑠

)
𝑟𝑘 . (B.26)

Recall that the controller is optimistically designed from the set of parameters are
(^, 𝛾)-strongly stabilizable by their optimal controllers. Therefore, we have

1 − 𝛾 ≥ max
𝑡≤𝑇

𝜌
(
�̃�𝑡 + �̃�𝑡𝐾 (Θ̃𝑡)

)
. (B.27)

Therefore, multiplication of closed-loop system matrices, �̃�𝑡 + �̃�𝑡𝐾 (Θ̃𝑡), is not
guaranteed to be contractive. In Abbasi-Yadkori and Szepesvári [2], the authors
assume these matrices are contractive under controllability assumption. In order to
bound the state similarly, we need to satisfy that the epochs that we use a particular
optimistic controller is long enough that the state doesn’t scale too badly during the
exploration and produces bounded state. Thus, by choosing 𝐻0 = 2𝛾−1 log(2^

√
2)

and adopting Lemma 39 of Cassel et al. [48], we have that

∥𝑥𝑡 ∥ ≤
18^3[̄𝑛+𝑑

𝛾(8^ − 1)

(
max
1≤𝑘≤𝑡

∥𝑟𝑘 ∥
)
. (B.28)

Furthermore, we have that ∥𝑟𝑘 ∥ ≤
(Θ∗ − Θ̃𝑘−1)⊤𝑧𝑘

 + ∥𝐵∗a𝑘 + 𝑤𝑘 ∥ when 𝑘 ∉ T𝑇 ,
and ∥𝑟𝑘 ∥ = ∥𝐵∗a𝑘 + 𝑤𝑘 ∥ , otherwise. Hence,
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max
𝑘≤𝑡
∥𝑟𝑘 ∥ ≤ max

𝑘≤𝑡,𝑘∉T𝑡

(Θ∗ − Θ̃𝑘−1)⊤𝑧𝑘
 +max

𝑘≤𝑡
∥𝐵∗a𝑘 + 𝑤𝑘 ∥ .

The first term is bounded by the Lemma B.3. The second term involves summation
of independent ∥𝐵∗∥𝜎a and 𝜎𝑤 subgaussian vectors. Using standard sub-Gaussian
vector norm upper bound with a union bound argument, for all 𝑘 ≤ 𝑡, we have
∥𝐵∗a𝑘 + 𝑤𝑘 ∥ ≤ (∥𝐵∗∥𝜎a +𝜎𝑤)

√︃
2𝑛 log 𝑛𝑡

𝛿
with probability at least 1− 𝛿. Therefore,

on the event of E,

∥𝑥𝑡 ∥ ≤
18^3[̄𝑛+𝑑

𝛾(8^ − 1)

[
𝐺𝑍

𝑛+𝑑
𝑛+𝑑+1
𝑡 𝛽𝑡 (𝛿)

1
2(𝑛+𝑑+1) + (∥𝐵∗∥𝜎a + 𝜎𝑤)

√︂
2𝑛 log

𝑛𝑡

𝛿

]
(B.29)

for 𝑡 ≤ 𝑇𝑤. Using union bound, we can deduce that E𝑇 ∩ F𝑇𝑠 holds with probability
at least 1−2𝛿. Notice that this bound depends on 𝑍𝑡 and 𝛽𝑡 (𝛿) which in turn depends
on 𝑥𝑡 . Using Lemma 5 of [2], one can obtain the following bound

∥𝑥𝑡 ∥ ≤ 𝑐′(𝑛 + 𝑑)𝑛+𝑑 , (B.30)

for some large enough constant 𝑐′. The adaptive control with improved exploration
phase of StabL has this exponential dimension dependent state bound for all 𝑡 ≤ 𝑇𝑤.
In the following section, we show that during the stabilizing adaptive control phase,
the bound on the state has a polynomial dependency on the dimensions.

State Bound in Stabilizing Adaptive Control phase

In the stabilizing adaptive control phase, StabL stops using the additive isotropic
exploration component a𝑡 , the state follows the dynamics of

𝑥𝑡+1 = (𝐴∗ + 𝐵∗𝐾 (Θ̃𝑡−1))𝑥𝑡 + 𝑤𝑡 . (B.31)

Denote Mt = 𝐴∗ + 𝐵∗𝐾 (Θ̃𝑡−1) as the closed loop dynamics of the system. From the
choice of 𝑇𝑤 for the stabilizable systems, we have that Mt is (^

√
2, 𝛾/2)-strongly

stable. Thus, we have 𝜌(Mt) ≤ 1 − 𝛾/2 for all 𝑡 > 𝑇𝑠 and ∥𝐻𝑡 ∥∥𝐻−1
𝑡 ∥ ≤ ^

√
2 for

𝐻𝑡 ≻ 0, such that ∥𝐿𝑡 ∥ ≤ 1 − 𝛾/2 for Mt = 𝐻𝑡𝐿𝑡𝐻
−1
𝑡 . Then for 𝑇 > 𝑡 > 𝑇𝑤, if the

same policy, M is applied starting from state 𝑥𝑇𝑤 , we have

∥𝑥𝑡 ∥ =
 𝑡∏
𝑖=𝑇𝑤+1

M𝑥𝑇𝑤 +
𝑡∑︁

𝑖=𝑇𝑤+1

(
𝑡−1∏
𝑠=𝑖

M
)
𝑤𝑖

 (B.32)

≤ ^
√

2(1 − 𝛾/2)𝑡−𝑇𝑤 ∥𝑥𝑇𝑤 ∥ + max
𝑇𝑤<𝑖≤𝑇

∥𝑤𝑖∥
(

𝑡∑︁
𝑖=𝑇𝑤+1

^
√

2(1 − 𝛾/2)𝑡−𝑖+1
)

(B.33)

≤ ^
√

2(1 − 𝛾/2)𝑡−𝑇𝑤 ∥𝑥𝑇𝑤 ∥ +
2^𝜎𝑤

√
2

𝛾

√︁
2𝑛 log(𝑛(𝑡 − 𝑇𝑤)/𝛿). (B.34)



337

Note that 𝐻0 = 2𝛾−1 log(2^
√

2). This gives that ^
√

2(1− 𝛾/2)𝐻0 ≤ 1/2. Therefore,
at the end of each controller period, the effect of the previous state is halved. Using
this fact, at the 𝑖th policy change after 𝑇𝑤, we get

∥𝑥𝑡𝑖 ∥ ≤ 2−𝑖∥𝑥𝑇𝑤 ∥ +
𝑖−1∑︁
𝑗=0

2− 𝑗
2^𝜎𝑤

√
2

𝛾

√︁
2𝑛 log(𝑛(𝑡 − 𝑇𝑤)/𝛿)

≤ 2−𝑖∥𝑥𝑇𝑤 ∥ +
4^𝜎𝑤

√
2

𝛾

√︁
2𝑛 log(𝑛(𝑡 − 𝑇𝑤)/𝛿).

For all 𝑖 > (𝑛 + 𝑑) log(𝑛 + 𝑑) − log( 2^𝜎𝑤
√

2
𝛾

√︁
2𝑛 log(𝑛(𝑡 − 𝑇𝑤)/𝛿)), at policy change

𝑖, we get

∥𝑥𝑡𝑖 ∥ ≤
6^𝜎𝑤

√
2

𝛾

√︁
2𝑛 log(𝑛(𝑡 − 𝑇𝑤)/𝛿).

Moreover, due to the stability of the synthesized controller, the worst possible con-
troller update scheme is to update the controller every 𝐻0 time-steps, i.e., invoking
the condition of 𝑡 − 𝜏 > 𝐻0 in the update rule. Notice that this update rule considers
the worst effect of similarity transformation on the growth of the state, since other-
wise applying the same controller for longer periods would have a further reduction
on the state due to the contraction that the stabilizing controller brings. Thus, from
(B.34) we have that

∥𝑥𝑡 ∥ ≤
(12^2 + 2^

√
2)𝜎𝑤

𝛾

√︁
2𝑛 log(𝑛(𝑡 − 𝑇𝑤)/𝛿), (B.35)

for all 𝑡 > 𝑇𝑟 B 𝑇𝑤 + 𝑇𝑏𝑎𝑠𝑒 where 𝑇𝑏𝑎𝑠𝑒 = ((𝑛 + 𝑑) log(𝑛 + 𝑑)) 𝐻0.

B.1.4 Regret Decomposition
The regret decomposition leverages the OFU principle. Since during the adap-
tive control with improved exploration period StabL applies independent isotropic
perturbations through the controller but still designs the optimistic controller, one
can consider the external perturbation as a component of the underlying system.
With this way, we consider the regret obtained by using the improved exploration
separately. First noted that based on the definition ofOFUprinciple, StabL solves
𝐽 (Θ̃𝑡) ≤ infΘ∈C𝑡 (𝛿)∩S 𝐽 (Θ) + 1/

√
𝑡 to find the optimistic parameter. This search is

done over only C𝑡 (𝛿) in the stabilizing adaptive control phase. Denote the system
evolution noise at time 𝑡 as Z𝑡 . For 𝑡 ≤ 𝑇𝑤, system evolution noise can be considered
as Z𝑡 = 𝐵∗a𝑡 +𝑤𝑡 and for 𝑡 > 𝑇𝑤, Z𝑡 = 𝑤𝑡 . Denote the optimal average cost of system
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Θ̃ under Z𝑡 as 𝐽∗(Θ̃, Z𝑡). The regret of the StabL can be decomposed as

𝑇∑︁
𝑡=0
𝑥⊤𝑡 𝑄𝑥𝑡+𝑢⊤𝑡 𝑅𝑢𝑡+2a⊤𝑡 𝑅𝑢𝑡+a⊤𝑡 𝑅a𝑡−𝐽∗(Θ∗, 𝑤𝑡), (B.36)

where 𝑢𝑡 is the optimal controller input for the optimistic system Θ̃𝑡−1, a𝑡 is the noise
injected and 𝑥𝑡 is the state of the system Θ̃𝑡−1 with the system evolution noise of Z𝑡 .
From Bellman optimality equation for LQR, [28], we can write the following for the
optimistic system, Θ̃𝑡−1,

𝐽∗(Θ̃𝑡−1, Z𝑡) + 𝑥⊤𝑡 �̃�𝑡−1𝑥𝑡 = 𝑥
⊤
𝑡 𝑄𝑥𝑡 + 𝑢⊤𝑡 𝑅𝑢𝑡

+ E
[
( �̃�𝑡−1𝑥𝑡 + �̃�𝑡−1𝑢𝑡 + Z𝑡)⊤�̃�𝑡−1( �̃�𝑡−1𝑥𝑡 + �̃�𝑡−1𝑢𝑡 + Z𝑡)

��F𝑡−1
]
,

where �̃�𝑡−1 is the solution of DARE for Θ̃𝑡−1. Following the decomposition used in
without additional exploration [2], we get,

𝐽∗(Θ̃𝑡−1, Z𝑡) + 𝑥⊤𝑡 �̃�𝑡−1𝑥𝑡 − (𝑥⊤𝑡 𝑄𝑥𝑡 + 𝑢⊤𝑡 𝑅𝑢𝑡)
= ( �̃�𝑡−1𝑥𝑡+ �̃�𝑡−1𝑢𝑡)⊤�̃�𝑡−1( �̃�𝑡−1𝑥𝑡+ �̃�𝑡−1𝑢𝑡)
+ E

[
𝑥⊤𝑡+1�̃�𝑡−1𝑥𝑡+1

��F𝑡−1
]
−(𝐴∗𝑥𝑡+𝐵∗𝑢𝑡)⊤�̃�𝑡−1(𝐴∗𝑥𝑡+𝐵∗𝑢𝑡)

where we use the fact that 𝑥𝑡+1 = 𝐴∗𝑥𝑡 + 𝐵∗𝑢𝑡 + Z𝑡 , the martingale property of the
noise and the conditioning on the filtration F𝑡−1. Hence, summing up over time, we
get ∑︁𝑇

𝑡=0

(
𝑥⊤𝑡 𝑄𝑥𝑡+𝑢⊤𝑡 𝑅𝑢𝑡

)
=
∑︁𝑇

𝑡=0
𝐽∗(Θ̃𝑡−1, Z𝑡)+𝑅Z1−𝑅

Z

2−𝑅
Z

3

for

𝑅
Z

1 =
∑︁𝑇

𝑡=0

{
𝑥⊤𝑡 �̃�𝑡−1𝑥𝑡 − E

[
𝑥⊤𝑡+1�̃�𝑡𝑥𝑡+1

��F𝑡−1
]}

(B.37)

𝑅
Z

2 =
∑︁𝑇

𝑡=0
E

[
𝑥⊤𝑡+1

(
�̃�𝑡−1 − �̃�𝑡

)
𝑥𝑡+1

��F𝑡−1
]

(B.38)

𝑅
Z

3 =

𝑇∑︁
𝑡=0

𝑥⊤
𝑡+1,Θ̃𝑡−1

�̃�𝑡−1𝑥𝑡+1,Θ̃𝑡−1
− 𝑥⊤𝑡+1,Θ∗ �̃�𝑡−1𝑥𝑡+1,Θ∗ (B.39)

where 𝑥𝑡+1,Θ̃𝑡−1
= �̃�𝑡−1𝑥𝑡+ �̃�𝑡−1𝑢𝑡 and 𝑥𝑡+1,Θ∗ = 𝐴∗𝑥𝑡+𝐵∗𝑢𝑡 .

Therefore, when we jointly have that Θ∗ ∈ C𝑡 (𝛿) for all time steps 𝑡 and the state is
bounded as shown in Lemma 3.5,

𝑇∑︁
𝑡=0
(𝑥⊤𝑡 𝑄𝑥𝑡+𝑢⊤𝑡 𝑅𝑢𝑡)=

𝑇𝑤∑︁
𝑡=0
𝜎2
a Tr(�̃�𝑡−1𝐵∗𝐵

⊤
∗ )+

𝑇∑︁
𝑡=0
�̄�2
𝑤 Tr(�̃�𝑡−1)+𝑅Z1−𝑅

Z

2−𝑅
Z

3
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where the equality follows from the fact that, 𝐽∗(Θ̃𝑡−1, Z𝑡) = Tr(�̃�𝑡−1𝑊) where
𝑊 = E[Z𝑡Z⊤𝑡 |F𝑡−1] for a corresponding filtration F𝑡 . The optimistic choice of Θ̃𝑡
provides that

�̄�2
𝑤 Tr(�̃�𝑡−1) = 𝐽∗(Θ̃𝑡−1, 𝑤𝑡) ≤ 𝐽∗(Θ∗, 𝑤𝑡) + 1/

√
𝑡 = �̄�2

𝑤 Tr(𝑃∗) + 1/
√
𝑡.

Combining this with (B.36) and Assumption 3.2, we obtain the following expression
for the regret of StabL :

R(𝑇) ≤ 𝜎2
a𝑇𝑤𝐷∥𝐵∗∥2𝐹 + 𝑅

Z

1 − 𝑅
Z

2 − 𝑅
Z

3 +
𝑇𝑤∑︁
𝑡=0

2a⊤𝑡 𝑅𝑢𝑡 + a⊤𝑡 𝑅a𝑡 . (B.40)

B.1.5 Regret Analysis, Proof of Theorem 3.2
In this section, we provide the bounds on each term in the regret decomposition
separately. We show that the regret suffered from the improved exploration is
tolerable in the upcoming stages via the guaranteed stabilizing controller, yielding
polynomial dimension dependency in regret.

Direct Effect of Improved Exploration

The following gives an upper bound on the regret attained due to isotropic pertur-
bations in the adaptive control with improved exploration phase of StabL.

Lemma B.4 (Direct Effect of Improved Exploration on Regret). If E𝑇 ∩ F𝑇𝑤 holds
then with probability at least 1 − 𝛿,

𝑇𝑤∑︁
𝑡=0

(
2a⊤𝑡 𝑅𝑢𝑡 + a⊤𝑡 𝑅a𝑡

)
≤ 𝑑𝜎a

√︁
𝐵𝛿 + 𝑑∥𝑅∥𝜎2

a

(
𝑇𝑤 +

√︁
𝑇𝑤 log

4𝑑𝑇𝑤
𝛿

√︂
log

4
𝛿

)
,

(B.41)
where

𝐵𝛿 = 8
(
1 + 𝑇𝑤^2∥𝑅∥2(𝑛 + 𝑑)2(𝑛+𝑑)

)
log

(
4𝑑
𝛿

(
1 + 𝑇𝑤^2∥𝑅∥2(𝑛 + 𝑑)2(𝑛+𝑑)

)1/2
)
.

Proof. Let 𝑞⊤𝑡 = 𝑢⊤𝑡 𝑅. The first term can be written as

2
𝑇𝑤∑︁
𝑡=0

𝑑∑︁
𝑖=1

𝑞𝑡,𝑖a𝑡,𝑖 = 2
𝑑∑︁
𝑖=1

𝑇𝑤∑︁
𝑡=0

𝑞𝑡,𝑖a𝑡,𝑖 .

Let 𝑀𝑡,𝑖 =
∑𝑡
𝑘=0 𝑞𝑘,𝑖a𝑘,𝑖 . From Theorem 1 of [3] on some event 𝐺𝛿,𝑖 that holds with

probability at least 1 − 𝛿/(2𝑑), for any 𝑡 ≥ 0,

𝑀2
𝑡,𝑖 ≤ 2𝜎2

a

(
1 +

𝑡∑︁
𝑘=0

𝑞2
𝑘,𝑖

)
log ©«2𝑑

𝛿

(
1 +

𝑡∑︁
𝑘=0

𝑞2
𝑘,𝑖

)1/2ª®¬ .
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On E𝑇 ∩ F𝑇𝑤 , ∥𝑞𝑘 ∥ ≤ ^∥𝑅∥(𝑛 + 𝑑)𝑛+𝑑 , thus 𝑞𝑘,𝑖 ≤ ^∥𝑅∥(𝑛 + 𝑑)𝑛+𝑑 . Using union
bound we get, for probability at least 1 − 𝛿

2 ,

𝑇𝑤∑︁
𝑡=0

2a⊤𝑡 𝑅𝑢𝑡 ≤

𝑑

√︄
8𝜎2

a

(
1 + 𝑇𝑤^2∥𝑅∥2(𝑛 + 𝑑)2(𝑛+𝑑)

)
log

(
4𝑑
𝛿

(
1 + 𝑇𝑤^2∥𝑅∥2(𝑛 + 𝑑)2(𝑛+𝑑)

)1/2
)
.

(B.42)

Let 𝑊 = 𝜎a

√︃
2𝑑 log 4𝑑𝑇𝑤

𝛿
. Define Ψ𝑡 = a

⊤
𝑡 𝑅a𝑡 − E

[
a⊤𝑡 𝑅a𝑡 |F𝑡−1

]
and its truncated

version Ψ̃𝑡 = Ψ𝑡I{Ψ𝑡≤2𝐷𝑊2}.

P

( 𝑇𝑤∑︁
𝑡=1

Ψ𝑡 > 2∥𝑅∥𝑊2
√︂

2𝑇𝑤 log
4
𝛿

)
≤

P

(
max

1≤𝑡≤𝑇𝑤
Ψ𝑡 > 2∥𝑅∥𝑊2

)
+ P

(
𝑇𝑤∑︁
𝑡=1

Ψ̃𝑡 > 2∥𝑅∥𝑊2
√︂

2𝑇𝑤 log
4
𝛿

)
.

Using standard sub-Gaussian vector norm bound with union bound and Azuma’s
inequality, the summation of terms on the right-hand side is bounded by 𝛿/2. Thus,
with probability at least 1 − 𝛿/2,

𝑇𝑤∑︁
𝑡=0

a⊤𝑡 𝑅a𝑡 ≤ 𝑑𝑇𝑤𝜎2
a ∥𝑅∥ + 2∥𝑅∥𝑊2

√︂
2𝑇𝑤 log

4
𝛿
. (B.43)

Combining (B.42) and (B.43) gives the statement of lemma for the regret of external
exploration noise. □

Bounding 𝑅Z1

In this section, we state an upper bound on 𝑅Z1 given in (B.37). We first provide a
high probability bound on the system noise.

Lemma B.5 (Bounding sub-Gaussian vector). With probability 1 − 𝛿
8 , ∥Z𝑘 ∥ ≤

(𝜎𝑤 + ∥𝐵∗∥𝜎a)
√︃

2𝑛 log 8𝑛𝑇
𝛿

for 𝑘 ≤ 𝑇𝑤 and ∥Z𝑘 ∥ ≤ 𝜎𝑤
√︃

2𝑛 log 8𝑛𝑇
𝛿

for 𝑇𝑤 < 𝑘 ≤ 𝑇 .

Proof. From the sub-Gaussianity assumption, we have that for any index 1 ≤ 𝑖 ≤
𝑛 and any time 𝑘 , |𝑤𝑘,𝑖 | ≤ 𝜎𝑤

√︃
2 log 8

𝛿
and | (𝐵∗a𝑘 )𝑖 | < ∥𝐵∗∥𝜎a

√︃
2 log 8

𝛿
with

probability 1 − 𝛿
8 . Using the union bound, we get the statement of lemma. □
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Using this we state the bound on 𝑅Z1 for stabilizable systems.

Lemma B.6 (Bounding 𝑅Z1 for StabL). Let 𝑅Z1 be as defined by (B.37). Under the
event of E𝑇 ∩ F𝑇𝑤 , with probability at least 1− 𝛿/2, using StabL for 𝑡 > 𝑇𝑟 , we have

𝑅1 ≤ 𝑘𝑠,1(𝑛 + 𝑑)𝑛+𝑑 (𝜎𝑤 + ∥𝐵∗∥𝜎a)𝑛
√︁
𝑇𝑟 log((𝑛 + 𝑑)𝑇𝑟/𝛿)

+ 𝑘𝑠,2(12^2 + 2^
√

2)
𝛾

𝜎2
𝑤𝑛
√
𝑛
√︁
𝑇 − 𝑇𝑤 log(𝑛(𝑡 − 𝑇𝑤)/𝛿)

+ 𝑘𝑠,3𝑛𝜎2
𝑤

√︁
𝑇 − 𝑇𝑤 log(𝑛𝑇/𝛿) + 𝑘𝑠,4𝑛(𝜎𝑤 + ∥𝐵∗∥𝜎a)2

√︁
𝑇𝑤 log(𝑛𝑇/𝛿),

for some problem dependent coefficients 𝑘𝑠,1, 𝑘𝑠,2, 𝑘𝑠,3, 𝑘𝑠,4.

Proof. Assume that the event E𝑇 ∩ F𝑇𝑤 holds. Let 𝑓𝑡 = 𝐴∗𝑥𝑡 + 𝐵∗𝑢𝑡 . One can
decompose 𝑅1 as

𝑅1 = 𝑥⊤0 𝑃(Θ̃0)𝑥0 − 𝑥⊤𝑇+1𝑃(Θ̃𝑇+1)𝑥𝑇+1 +
𝑇∑︁
𝑡=1

𝑥⊤𝑡 𝑃(Θ̃𝑡)𝑥𝑡 − E
[
𝑥⊤𝑡 𝑃(Θ̃𝑡)𝑥𝑡

��F𝑡−2
]
.

Since 𝑃(Θ̃0) is positive semidefinite and 𝑥0 = 0, the first two terms are bounded
above by zero. The second term is decomposed as follows

𝑇∑︁
𝑡=1

𝑥⊤𝑡 𝑃(Θ̃𝑡)𝑥𝑡 − E
[
𝑥⊤𝑡 𝑃(Θ̃𝑡)𝑥𝑡

��F𝑡−2
]

=

𝑇∑︁
𝑡=1

𝑓 ⊤𝑡−1𝑃(Θ̃𝑡)Z𝑡−1 +
𝑇∑︁
𝑡=1

(
Z⊤𝑡−1𝑃(Θ̃𝑡)Z𝑡−1 − E

[
Z⊤𝑡−1𝑃(Θ̃𝑡)Z𝑡−1

��F𝑡−2
] )
.

Let 𝑅1,1 =
∑𝑇
𝑡=1 𝑓

⊤
𝑡−1𝑃(Θ̃𝑡)Z𝑡−1 and 𝑅1,2 =

∑𝑇
𝑡=1

(
Z⊤
𝑡−1𝑃(Θ̃𝑡)Z𝑡−1 − E

[
Z⊤
𝑡−1�̃�𝑡Z𝑡−1

��F𝑡−2
] )

.
Let 𝑣⊤

𝑡−1 = 𝑓 ⊤
𝑡−1𝑃(Θ̃𝑡). 𝑅1,1 can be written as

𝑅1,1 =

𝑇∑︁
𝑡=1

𝑛∑︁
𝑖=1

𝑣𝑡−1,𝑖Z𝑡−1,𝑖 =

𝑛∑︁
𝑖=1

𝑇∑︁
𝑡=1

𝑣𝑡−1,𝑖Z𝑡−1,𝑖 .

Let 𝑀𝑡,𝑖 =
∑𝑡
𝑘=1 𝑣𝑘−1,𝑖Z𝑘−1,𝑖 . By Theorem 1 of [3] on some event𝐺𝛿,𝑖 that holds with

probability at least 1 − 𝛿/(4𝑛), for any 𝑡 ≥ 0,

𝑀2
𝑡,𝑖 ≤ 2(𝜎2

𝑤 + ∥𝐵∗∥2𝜎2
a )

(
1 +

𝑇𝑟∑︁
𝑘=1

𝑣2
𝑘−1,𝑖

)
log ©«4𝑛

𝛿

(
1 +

𝑇𝑟∑︁
𝑘=1

𝑣2
𝑘−1,𝑖

)1/2ª®¬
+ 2𝜎2

𝑤

(
1 +

𝑡∑︁
𝑘=𝑇𝑟+1

𝑣2
𝑘−1,𝑖

)
log ©«4𝑛

𝛿

(
1 +

𝑡∑︁
𝑘=𝑇𝑟+1

𝑣2
𝑘−1,𝑖

)1/2ª®¬ for 𝑡 > 𝑇𝑟 .
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Notice that StabL stops additional isotropic perturbation after 𝑡 = 𝑇𝑤, and the state
starts decaying until 𝑡 = 𝑇𝑟 . For simplicity of presentation we treat the time between
𝑇𝑤 and 𝑇𝑟 as exploration sacrificing the tightness of the result. On E𝑇 ∩F𝑇𝑤 , ∥𝑣𝑘 ∥ ≤
𝐷𝑆(𝑛+𝑑)𝑛+𝑑

√
1 + ^2 for 𝑘 ≤ 𝑇𝑟 and ∥𝑣𝑘 ∥ ≤ (12^2+2^

√
2)𝐷𝑆𝜎𝑤

√
1+^2

𝛾

√︁
2𝑛 log(𝑛(𝑡 − 𝑇𝑤)/𝛿)

for 𝑘 > 𝑇𝑟 . Thus, we have the same bounds for the individual components of 𝑣𝑘 ,
i.e., 𝑣𝑘,𝑖. Using union bound we get, for probability at least 1 − 𝛿

4 , for 𝑡 > 𝑇𝑟 ,

𝑅1,1 ≤ 𝑛
√︃

2(𝜎2
𝑤 + ∥𝐵∗∥2𝜎2

a )
(
1 + 𝑇𝑟𝐷2𝑆2(𝑛 + 𝑑)2(𝑛+𝑑) (1 + ^2)

)
×√︄

log
(
4𝑛
𝛿

(
1 + 𝑇𝑟𝐷2𝑆2(𝑛 + 𝑑)2(𝑛+𝑑) (1 + ^2)

)1/2
)

+ 𝑛

√√√
2𝜎2

𝑤

(
1 + 2(𝑡 − 𝑇𝑟) (12^2 + 2^

√
2)2𝐷2𝑆2𝑛𝜎2

𝑤 (1 + ^2)
𝛾2 log(𝑛(𝑇 − 𝑇𝑤)/𝛿)

)
×√√√

log

(
4𝑛
𝛿

(
1 + 2(𝑡 − 𝑇𝑟) (12^2 + 2^

√
2)2𝐷2𝑆2𝑛𝜎2

𝑤 (1 + ^2)
𝛾2 log(𝑛(𝑇 − 𝑇𝑤)/𝛿)

))
.

Let W𝑒𝑥𝑝 = (𝜎𝑤 + ∥𝐵∗∥𝜎a)
√︃

2𝑛 log 8𝑛𝑇
𝛿

and W𝑛𝑜𝑒𝑥𝑝 = 𝜎𝑤

√︃
2𝑛 log 8𝑛𝑇

𝛿
. De-

fine Ψ𝑡 = Z⊤
𝑡−1𝑃(Θ̃𝑡)Z𝑡−1 − E

[
Z⊤
𝑡−1𝑃(Θ̃𝑡)Z𝑡−1 |F𝑡−2

]
and its truncated version Ψ̃𝑡 =

Ψ𝑡I{Ψ𝑡≤2𝐷𝑊2
𝑒𝑥𝑝} for 𝑡 ≤ 𝑇𝑤 and Ψ̃𝑡 = Ψ𝑡I{Ψ𝑡≤2𝐷𝑊2

𝑛𝑜𝑒𝑥𝑝} for 𝑡 > 𝑇𝑤 . Notice that
𝑅1,2 =

∑𝑇
𝑡=1 Ψ𝑡 .

P

(
𝑇𝑤∑︁
𝑡=1

Ψ𝑡 > 2𝐷𝑊2
𝑒𝑥𝑝

√︂
2𝑇𝑤 log

8
𝛿

)
+ P

(
𝑇∑︁

𝑡=𝑇𝑤+1
Ψ𝑡 > 2𝐷𝑊2

𝑛𝑜𝑒𝑥𝑝

√︂
2(𝑇 − 𝑇𝑤) log

8
𝛿

)
≤ P

(
max

1≤𝑡≤𝑇𝑤
Ψ𝑡 > 2𝐷𝑊2

𝑒𝑥𝑝

)
+ P

(
max

𝑇𝑤+1≤𝑡≤𝑇
Ψ𝑡 > 2𝐷𝑊2

𝑛𝑜𝑒𝑥𝑝

)
+ P

(
𝑇𝑤∑︁
𝑡=1

Ψ̃𝑡 > 2𝐷𝑊2
𝑒𝑥𝑝

√︂
2𝑇𝑤 log

8
𝛿

)
+ P

(
𝑇∑︁

𝑡=𝑇𝑤+1
Ψ̃𝑡 > 2𝐷𝑊2

𝑛𝑜𝑒𝑥𝑝

√︂
2(𝑇 − 𝑇𝑤) log

8
𝛿

)
.

Using sub-Gaussian vector norm bound with union bound and Azuma’s inequality,
the summation of terms on the right-hand side is bounded by 𝛿/4. Thus, with
probability at least 1 − 𝛿/4, for 𝑡 > 𝑇𝑤,

𝑅1,2 ≤ 4𝑛𝐷𝜎2
𝑤

√︂
2(𝑡 − 𝑇𝑤) log

8
𝛿

log
8𝑛𝑇
𝛿
+4𝑛𝐷 (𝜎𝑤+∥𝐵∗∥𝜎a)2

√︂
2𝑇𝑤 log

8
𝛿

log
8𝑛𝑇
𝛿
.

Combining 𝑅1,1 and 𝑅1,2 gives the statement. □

Bounding 𝑅Z2

In this section, we will bound |𝑅Z2 | given in (B.38). We first provide a bound on the
maximum number of policy changes.
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Lemma B.7 (Number of Policy Changes for StabL). On the event of E𝑇 ∩ F𝑇𝑤 ,
StabL changes the policy at most

min
{
𝑇/𝐻0, (𝑛 + 𝑑) log2

(
1 +

` + 𝑇𝑟 (𝑛 + 𝑑)2(𝑛+𝑑) (1 + ^2) + (𝑇 − 𝑇𝑟) (1 + ^2)𝑋2
𝑠

`

)}
,

(B.44)
where 𝑋𝑠 = (12^2+2^

√
2)𝜎𝑤

𝛾

√︁
2𝑛 log(𝑛(𝑇 − 𝑇𝑤)/𝛿).

Proof. Changing policy 𝐾 times up to time 𝑇𝑤 requires det(𝑉𝑇 ) ≥ `𝑛+𝑑2𝐾 . We also
have that

_max(𝑉𝑇 ) ≤ ` +
𝑇∑︁
𝑡=0
∥𝑧𝑡 ∥2 ≤ ` + 𝑇𝑟 (𝑛 + 𝑑)2(𝑛+𝑑) (1 + ^2) + (𝑇 − 𝑇𝑟) (1 + ^2)𝑋2

𝑠 .

Thus, `𝑛+𝑑2𝐾 ≤
(
` + 𝑇𝑟 (𝑛 + 𝑑)2(𝑛+𝑑) (1 + ^2) + (𝑇 − 𝑇𝑟) (1 + ^2)𝑋2

𝑠

)𝑛+𝑑
. Solving

for K gives

𝐾 ≤ (𝑛 + 𝑑) log2

(
1 +

𝑇𝑟 (𝑛 + 𝑑)2(𝑛+𝑑) (1 + ^2) + (𝑇 − 𝑇𝑟) (1 + ^2)𝑋2
𝑠

`

)
.

Moreover, the number of policy changes is also controlled by the lower bound 𝐻0 on
the duration of each controller. This policy update method would give at most 𝑇/𝐻0

policy changes. Since for the policy update of StabL requires both conditions to be
met, the upper bound on the number of policy changes is minimum of these. □

Notice that besides the policy change instances, all the terms in 𝑅Z2 are 0. Therefore,
we have the following results for stabilizable systems.

Lemma B.8 (Bounding 𝑅Z2 for StabL). Let 𝑅Z2 be as defined by (B.38). Under the
event of E𝑇 ∩ F𝑇𝑤 , using StabL, we have

|𝑅Z2 | ≤ 2𝐷 (𝑛 + 𝑑)2(𝑛+𝑑)+1 log2

(
1 + 𝑇𝑟 (𝑛 + 𝑑)

2(𝑛+𝑑) (1 + ^2)
`

)
+ 2𝐷𝑋2

𝑠 (𝑛 + 𝑑) log2

(
1 +

𝑇𝑟 (𝑛 + 𝑑)2(𝑛+𝑑) (1 + ^2) + (𝑇 − 𝑇𝑟) (1 + ^2)𝑋2
𝑠

`

)
where 𝑋𝑠 = (12^2+2^

√
2)𝜎𝑤

𝛾

√︁
2𝑛 log(𝑛(𝑇 − 𝑇𝑤)/𝛿).

Proof. On the event E𝑇 ∩ F𝑇𝑤 , we know the maximum number of policy changes
up to 𝑇𝑟 and 𝑇 using Lemma B.7. Using the fact that ∥𝑥𝑡 ∥ ≤ (𝑛 + 𝑑)𝑛+𝑑 for
𝑡 ≤ 𝑇𝑟 and ∥𝑥𝑡 ∥ ≤ (12^2+2^

√
2)𝜎𝑤

𝛾

√︁
2𝑛 log(𝑛(𝑡 − 𝑇𝑤)/𝛿), we obtain the statement of

the lemma. □
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Bounding 𝑅Z3

Before bounding 𝑅Z3 , first, consider the following for stabilizable LQRs.

Lemma B.9. On the event of E𝑇 ∩ F𝑇𝑤 , using StabL in a stabilizable LQR, the
following holds,

𝑇∑︁
𝑡=0
∥(Θ∗ − Θ̃𝑡)⊤𝑧𝑡 ∥2≤

8(1 + ^2)𝛽2
𝑇
(𝛿)

`
×(

(𝑛 + 𝑑)2(𝑛+𝑑) max

{
2,

(
1 + (1 + ^

2) (𝑛 + 𝑑)2(𝑛+𝑑)
`

)𝐻0
}

log
det(𝑉𝑇𝑟 )
det(`𝐼)

+ 𝑋2
𝑠 max

{
2,

(
1 +
(1 + ^2)𝑋2

𝑠

`

)𝐻0
}

log
det(𝑉𝑇 )
det(𝑉𝑇𝑟 )

)
where 𝑋𝑠 = (12^2+2^

√
2)𝜎𝑤

𝛾

√︁
2𝑛 log(𝑛(𝑡 − 𝑇𝑤)/𝛿).

Proof. Let 𝑠𝑡 = (Θ∗ − Θ̃𝑡)⊤𝑧𝑡 and 𝜏 ≤ 𝑡 be the time step that the last policy change
happened. We have the following using triangle inequality,

∥𝑠𝑡 ∥ ≤ ∥(Θ∗ − Θ̂𝑡)⊤𝑧𝑡 ∥ + ∥(Θ̂𝑡 − Θ̃𝑡)⊤𝑧𝑡 ∥.

For all Θ ∈ C𝜏 (𝛿), for 𝜏 ≤ 𝑇𝑟 , we have

∥(Θ − Θ̂𝑡)⊤𝑧𝑡 ∥ ≤ ∥𝑉1/2
𝑡 (Θ − Θ̂𝑡)∥∥𝑧𝑡 ∥𝑉−1

𝑡
(B.45)

≤ ∥𝑉1/2
𝜏 (Θ − Θ̂𝑡)∥

√︄
det(𝑉𝑡)
det(𝑉𝜏)

∥𝑧𝑡 ∥𝑉−1
𝑡

(B.46)

≤ max

√

2,

√︄(
1 + (1 + ^

2) (𝑛 + 𝑑)2(𝑛+𝑑)
`

)𝐻0
 ∥𝑉1/2

𝜏 (Θ − Θ̂𝑡)∥∥𝑧𝑡 ∥𝑉−1
𝑡

(B.47)

≤ max

√

2,

√︄(
1 + (1 + ^

2) (𝑛 + 𝑑)2(𝑛+𝑑)
`

)𝐻0
 𝛽𝜏 (𝛿)∥𝑧𝑡 ∥𝑉−1

𝑡
.

(B.48)

Similarly, for for all Θ ∈ C𝜏 (𝛿), for 𝜏 > 𝑇𝑟 , we have

∥(Θ − Θ̂𝑡)⊤𝑧𝑡 ∥ ≤ max

√

2,

√︄(
1 + (1 + ^

2)𝑋2
𝑠

`

)𝐻0 𝛽𝜏 (𝛿)∥𝑧𝑡 ∥𝑉−1
𝑡
.
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Using these results, we obtain,

𝑇∑︁
𝑡=0
∥(Θ∗ − Θ̃𝑡)⊤𝑧𝑡 ∥2

≤ 8 max

{
2,

(
1 + (1 + ^

2) (𝑛 + 𝑑)2(𝑛+𝑑)
`

)𝐻0
}
𝛽2
𝑇
(𝛿) (1 + ^2) (𝑛 + 𝑑)2(𝑛+𝑑)

`
log

(
det(𝑉𝑇𝑟 )
det(`𝐼)

)
+ 8 max

{
2,

(
1 +
(1 + ^2)𝑋2

𝑠

`

)𝐻0
}
𝛽2
𝑇
(𝛿) (1 + ^2)𝑋2

𝑠

`
log

(
det(𝑉𝑇 )
det(𝑉𝑇𝑟 )

)
,

where we use Lemma 11 of [3]. □

Using Lemma B.9, we bound 𝑅Z3 as follows.

Lemma B.10 (Bounding 𝑅Z3 for StabL). Let 𝑅Z3 be as defined by (B.39). Under the
event of E𝑇 ∩ F𝑇𝑤 , using StabL with the choice of ` = (1 + ^2)𝑋2

𝑠 , we have

|𝑅Z3 | = O
(
(𝑛 + 𝑑) (𝐻0+2) (𝑛+𝑑)+2√𝑛

√︁
𝑇𝑟 + (𝑛 + 𝑑)𝑛

√︁
𝑇 − 𝑇𝑟

)
.

Proof. Let𝑌1 =
8(1+^2)𝛽2

𝑇
(𝛿)

`
(𝑛+𝑑)2(𝑛+𝑑) max

{
2,

(
1 + (1+^

2) (𝑛+𝑑)2(𝑛+𝑑)
`

)𝐻0
}

log det(𝑉𝑇𝑟 )
det(`𝐼)

and 𝑌2 =
8(1+^2)𝛽2

𝑇
(𝛿)

`
𝑋2
𝑠 max

{
2,

(
1 + (1+^

2)𝑋2
𝑠

`

)𝐻0
}

log det(𝑉𝑇 )
det(𝑉𝑇𝑟 )

, where we define 𝑋𝑠

as 𝑋𝑠 = (12^2+2^
√

2)𝜎𝑤
𝛾

√︁
2𝑛 log(𝑛(𝑡 − 𝑇𝑤)/𝛿). The following uses triangle inequality
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and Cauchy Schwarz inequality and again triangle inequality to give:���𝑅Z3 ��� ≤ 𝑇∑︁
𝑡=0

����𝑃(Θ̃𝑡)1/2Θ̃⊤𝑡 𝑧𝑡2
−

𝑃(Θ̃𝑡)1/2Θ⊤∗ 𝑧𝑡2
����

=

𝑇𝑟∑︁
𝑡=0

����𝑃(Θ̃𝑡)1/2Θ̃⊤𝑡 𝑧𝑡2
−

𝑃(Θ̃𝑡)1/2Θ⊤∗ 𝑧𝑡2
���� + 𝑇∑︁

𝑡=𝑇𝑟

����𝑃(Θ̃𝑡)1/2Θ̃⊤𝑡 𝑧𝑡2
−

𝑃(Θ̃𝑡)1/2Θ⊤∗ 𝑧𝑡2
����

≤
(
𝑇𝑟∑︁
𝑡=0

(𝑃(Θ̃𝑡)1/2Θ̃⊤𝑡 𝑧𝑡−𝑃(Θ̃𝑡)1/2Θ⊤∗ 𝑧𝑡)2
)1/2( 𝑇𝑟∑︁

𝑡=0

(𝑃(Θ̃𝑡)1/2Θ̃⊤𝑡 𝑧𝑡+𝑃(Θ̃𝑡)1/2Θ⊤∗ 𝑧𝑡)2
)1/2

+
(
𝑇∑︁
𝑡=𝑇𝑟

(𝑃(Θ̃𝑡)1/2Θ̃⊤𝑡 𝑧𝑡−𝑃(Θ̃𝑡)1/2Θ⊤∗ 𝑧𝑡)2
)1/2( 𝑇∑︁

𝑡=𝑇𝑟

(𝑃(Θ̃𝑡)1/2Θ̃⊤𝑡 𝑧𝑡+𝑃(Θ̃𝑡)1/2Θ⊤∗ 𝑧𝑡)2
)1/2

≤
(
𝑇𝑟∑︁
𝑡=0

𝑃(Θ̃𝑡)1/2 (
Θ̃𝑡 − Θ∗

)⊤
𝑧𝑡

2
)1/2( 𝑇𝑟∑︁

𝑡=0

(𝑃(Θ̃𝑡)1/2Θ̃⊤𝑡 𝑧𝑡 + 𝑃(Θ̃𝑡)1/2Θ⊤∗ 𝑧𝑡)2
)1/2

+
(
𝑇∑︁
𝑡=𝑇𝑟

𝑃(Θ̃𝑡)1/2 (
Θ̃𝑡 − Θ∗

)⊤
𝑧𝑡

2
)1/2( 𝑇∑︁

𝑡=𝑇𝑟

(𝑃(Θ̃𝑡)1/2Θ̃⊤𝑡 𝑧𝑡 + 𝑃(Θ̃𝑡)1/2Θ⊤∗ 𝑧𝑡)2
)1/2

≤
√︁
𝑌1

√︃
4𝑇𝑟𝐷 (1 + ^2)𝑆2(𝑛 + 𝑑)2(𝑛+𝑑) +

√︁
𝑌2

√︃
4(𝑇 − 𝑇𝑟)𝐷 (1 + ^2)𝑆2𝑋2

𝑠

≤
max

{
8, 4
√

2
(
1 + (1+^

2) (𝑛+𝑑)2(𝑛+𝑑)
`

)𝐻0/2
}
𝐷𝑆(1 + ^2)𝛽𝑇 (𝛿) (𝑛 + 𝑑)2(𝑛+𝑑)

√
`

×√︄
𝑇𝑟 (𝑛 + 𝑑) log

(
1 + 𝑇𝑟 (1 + ^

2) (𝑛 + 𝑑)2(𝑛+𝑑)
`(𝑛 + 𝑑)

)

+
max

{
8, 4
√

2
(
1 + (1+^

2)𝑋2
𝑠

`

)𝐻0/2
}
𝐷𝑆(1 + ^2)𝛽𝑇 (𝛿)

√
`

𝑋2
𝑠×√︄

(𝑇 − 𝑇𝑟) (𝑛 + 𝑑) log
(
1 + 𝑇𝑟 (1 + ^

2) (𝑛 + 𝑑)2(𝑛+𝑑) + (𝑇 − 𝑇𝑟)𝑋2
𝑠

`(𝑛 + 𝑑)

)
.

Examining the first term, it has the dimension dependency of (𝑛 + 𝑑) (𝑛+𝑑)𝐻0 ×√︁
𝑛(𝑛 + 𝑑) × (𝑛 + 𝑑)2(𝑛+𝑑) ×

√
𝑛 + 𝑑 where

√︁
𝑛(𝑛 + 𝑑) is due to 𝛽𝑇 (𝛿). For the

second term, with the choice of ` = (1 + ^2)𝑋2
𝑠 , the exponential dependency on the

dimension with 𝐻0 can be converted to a scalar multiplier, i.e.,
(
1 + (1+^

2)𝑋2
𝑠

`

)𝐻0/2
=

√
2
𝐻0 and (1 + ^2)𝑋2

𝑠 /
√
` =

√︁
(1 + ^2)𝑋𝑠. Therefore, for the second term, we have

the dimension dependency of
√︁
𝑛(𝑛 + 𝑑) ×

√
𝑛 ×
√
𝑛 + 𝑑 which gives the advertised

bound. □
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Combining Terms for Final Regret Upper Bound

Proof of Theorem 3.2: Recall that

REGRET(𝑇) ≤ 𝜎2
a𝑇𝑤𝐷∥𝐵∗∥2𝐹 +

𝑇𝑤∑︁
𝑡=0

(
2a⊤𝑡 𝑅𝑢𝑡 + a⊤𝑡 𝑅a𝑡

)
+ 𝑅Z1 − 𝑅

Z

2 − 𝑅
Z

3 .

Combining Lemma B.4 for
∑𝑇𝑤
𝑡=0

(
2a⊤𝑡 𝑅𝑢𝑡 + a⊤𝑡 𝑅a𝑡

)
, Lemma B.6 for 𝑅Z1 , Lemma

B.8 for |𝑅Z2 | and Lemma B.10 for |𝑅Z3 |, we get the advertised regret bound. □

B.2 Proofs of Section 3.3
In Appendix B.2.1, we provide the system identification and stabilization guarantees
of TSAC. In particular, we give the proof of Lemma 3.6 and give the precise duration
of the TS with improved exploration phase 𝑇𝑤. In Appendix B.2.2, we provide the
complete proof of Theorem 3.4, as well as the intermediate results discussed in the
main text. In Appendix B.2.3, we provide the precise regret decomposition and
discuss the individual terms in the regret upper bound. Appendix B.2.4 comprises
the analysis of individual terms in the regret decomposition. Before proceeding the
next section, we define the following high probability events which are standard in
TS-based algorithms. First recall the RLS confidence ellipsoid given in (3.8):

ERLS
𝑡 (𝛿) = {Θ : ∥Θ − Θ̂𝑡 ∥𝑉𝑡 ≤ 𝛽𝑡 (𝛿)},

for 𝛽𝑡 (𝛿) = 𝜎𝑤
√︁

2𝑛 log((𝑇 det(𝑉𝑡)1/2)/(𝛿 det(`𝐼)1/2)) + √`𝑆. Further define

ETS
𝑡 (𝛿) = {Θ : ∥Θ − Θ̂𝑡 ∥𝑉𝑡 ≤ 𝜐𝑡 (𝛿)},

for 𝜐𝑡 (𝛿) = 𝛽𝑡 (𝛿)𝑛
√︁
(𝑛 + 𝑑) log(𝑛(𝑛 + 𝑑)/𝛿). Define the events

�̂�𝑡 = {∀𝑠 ≤ 𝑡,Θ∗ ∈ ERLS
𝑡 (𝛿)} (B.49)

�̃�𝑡 = {∀𝑠 ≤ 𝑡, Θ̃𝑠 ∈ ETS
𝑡 (𝛿)}. (B.50)

As described in Section 3.3.2, �̂�𝑡 defines the event that RLS estimates Θ̂𝑡 concentrate
around Θ∗ and �̃�𝑡 defines the event that the sampled model parameter concentrates
around Θ̂𝑡 . From standard Gaussian tail bound and the self-normalized estimation
error, we have that �̂� ∩ �̃� for all 𝑡 ≤ 𝑇 , with probability at least 1−2𝛿. Here the time
dependency dropped since �̂� B �̂�𝑇 ⊂ . . . ⊂ �̂�1 and �̃� B �̃�𝑇 ⊂ . . . ⊂ �̃�1. These
events will be key in providing all the technical results starting from stabilization
guarantees to final regret upper bound.
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B.2.1 System Identification and Stabilization Guarantees, Proof of Lemma 3.6
In this section, we show that improved exploration of TSAC provides persistently
exciting inputs, which will be used to enable reaching a stabilizing neighborhood
around Θ∗. Note that in Appendix B.1.1, we studied the same problem for a
more general sub-Gaussian process noise setting. Here we provide the special
case for Gaussian process noise. From the Gaussian process noise assumption,
we have that E[𝑥𝑡+1𝑥⊤𝑡+1 | F𝑡] ≽ 𝜎

2
𝑤 𝐼. Thus, with the input 𝑢𝑡 = 𝐾 (Θ̃𝑡)𝑥𝑡 + a𝑡 for

a𝑡 ∼ N(0, 2^2𝜎2
𝑤 𝐼), we have that E[𝑧𝑡+1𝑧⊤𝑡+1 | F𝑡] ≽

𝜎2
𝑤

2 𝐼. Using Theorem 20 of
Cohen et al. [62], we have that 𝑉𝑡 ≽ 𝑡

𝜎2
𝑤

40 𝐼 for 𝑡 ≥ 200(𝑛 + 𝑑) log 12
𝛿

with probability
at least 1 − 𝛿. Using the RLS estimate error bound given in (3.8), i.e., under the
event of �̂�𝑡 we have

∥Θ̂𝑡 − Θ∗∥2 ≤
𝛽𝑡√︁

_min(𝑉𝑡)
, (B.51)

with probability at least 1 − 𝛿. Plugging in the _min(𝑉𝑡) in its place yields the
first result of Lemma 3.6. For the second result, we use Lemma 3.3. Recall that
𝐷 = 𝛼𝛾−1^2(1 + ^2). Lemma 3.3 states that for any (^, 𝛾)-stabilizable system
Θ∗ and for any Y ≤ min{

√︁
(𝜎2

𝑤𝑛)/(142𝐷7), 1/(54𝐷5}, such that ∥Θ′ − Θ∗∥ ≤ Y,
𝐾 (Θ′) produces (^

√
2, 𝛾/2)-stable closed-loop dynamics on Θ∗ such that there

exists 𝐿 and 𝐻 ≻ 0 such that 𝐴∗ + 𝐵∗𝐾 (Θ′) = 𝐻′𝐿𝐻′−1, with ∥𝐿∥ ≤ 1 − 𝛾/2 and
∥𝐻′∥∥𝐻′−1∥ ≤ ^

√
2. Under the event of �̂� ∩ �̃� , we have ∥Θ̃𝑡 − Θ∗∥2 ≤ 𝛽𝑡 (𝛿)+𝜐𝑡 (𝛿)√

_min (𝑉𝑇 )
.

Under the event of �̂�∩�̃� , this yields ∥Θ̃𝑡−Θ∗∥2 ≤ 7(𝛽𝑡 (𝛿)+𝜐𝑡 (𝛿))
𝜎𝑤
√
𝑡

with probability 1−𝛿.
Combining this result with the required Y for finding the stabilizing neighborhood,
for TS with the exploration duration of

𝑇𝑤 ≥ 𝑇0 B
49(𝛽𝑇 (𝛿) + 𝜐𝑇 (𝛿))2

𝜎𝑤 min{(𝜎2
𝑤𝑛)/(142𝐷7), 1/(542𝐷10}

, (B.52)

TSAC achieves (^
√

2, 𝛾/2)-stable closed-loop dynamics on Θ∗, with probability at
least 1 − 3𝛿.

B.2.2 Probability of Sampling Optimistic Models, Proof of Theorem 3.4
In this section, we give proof of the main technical contribution for TSAC, showing
that TS samples optimistic model parameters with constant probability (Theorem
3.4). The proof follows the outline provided in Section 3.3.3. We first provide the
proofs of each lemma in Section 3.3.3. Finally, we combine these results to prove
Theorem 3.4.
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Proof of Lemma 3.8

Given a stabilizable systemΘ = (𝐴, 𝐵)⊤, and a stabilizing linear feedback controller
𝐾 , we can find the LQR cost as follows

𝐽 (Θ, 𝐾) = lim
𝑇→∞

1
𝑇
E

[∑︁𝑇

𝑡=1
𝑥⊤𝑡 𝑄𝑥𝑡 + 𝑢⊤𝑡 𝑅𝑢𝑡

]
, (B.53)

= lim
𝑇→∞

1
𝑇
E

[∑︁𝑇

𝑡=1
tr

(
(𝑄 + 𝐾⊤𝑅𝐾)𝑥𝑡𝑥⊤𝑡

) ]
, (B.54)

= lim
𝑇→∞

tr
(
(𝑄 + 𝐾⊤𝑅𝐾) 1

𝑇

∑︁𝑇

𝑡=1
E

[
𝑥𝑡𝑥
⊤
𝑡

] )
, (B.55)

= tr
(
(𝑄 + 𝐾⊤𝑅𝐾)Σ(Θ, 𝐾)

)
, (B.56)

where Σ(Θ, 𝐾) B lim𝑇→∞
1
𝑇

∑𝑇
𝑡=1 E

[
𝑥𝑡𝑥
⊤
𝑡

]
is the stationary state covariance of

the closed-loop system. In (B.54), we used the feedback control policy relation
𝑢𝑡 = 𝐾𝑥𝑡 and trace trick for inner products of vectors. Note that the closed-loop
system evolves as

𝑥𝑡+1 = (𝐴 + 𝐵𝐾)𝑥𝑡 + 𝑤𝑡 . (B.57)

The covariance of the state at time 𝑡 can be written as a recursive relation

E
[
𝑥𝑡+1𝑥

⊤
𝑡+1

]
= E

[
((𝐴 + 𝐵𝐾)𝑥𝑡 + 𝑤𝑡) ((𝐴 + 𝐵𝐾)𝑥𝑡 + 𝑤𝑡)⊤

]
(B.58)

= (𝐴 + 𝐵𝐾) E
[
𝑥𝑡𝑥
⊤
𝑡

]
(𝐴 + 𝐵𝐾)⊤ + E

[
𝑤𝑡𝑤

⊤
𝑡

]
(B.59)

= (𝐴 + 𝐵𝐾) E
[
𝑥𝑡𝑥
⊤
𝑡

]
(𝐴 + 𝐵𝐾)⊤ + 𝜎2

𝑤 𝐼, (B.60)

where (B.59) is because E [𝑤𝑡] = 0 and 𝑤𝑡 and 𝑥𝑡 are independent. Since 𝜌(𝐴 +
𝐵𝐾) < 1, the above iteration converges to a finite fixed point. Furthermore, we have
the following relation

1
𝑇

∑︁𝑇

𝑡=1
E

[
𝑥𝑡+1𝑥

⊤
𝑡+1

]
= (𝐴 + 𝐵𝐾) 1

𝑇

∑︁𝑇

𝑡=1
E

[
𝑥𝑡𝑥
⊤
𝑡

]
(𝐴 + 𝐵𝐾)⊤ + 𝜎2

𝑤 𝐼 . (B.61)

Denoting by Σ𝑇 (Θ, 𝐾) B 1
𝑇

∑𝑇
𝑡=1 E

[
𝑥𝑡𝑥
⊤
𝑡

]
the finite averaged state covariance, we

have the following

Σ𝑇 (Θ, 𝐾) +
E

[
𝑥𝑇+1𝑥⊤𝑇+1

]
− E

[
𝑥1𝑥
⊤
1
]

𝑇
= (𝐴 + 𝐵𝐾)Σ𝑇 (Θ, 𝐾) (𝐴 + 𝐵𝐾)⊤ + 𝜎2

𝑤 𝐼 .

Taking the limit of both sides as 𝑇 → ∞ and noting that E
[
𝑥𝑇+1𝑥⊤𝑇+1

]
has a finite

value at the limit, we obtain the following Lyapunov equation

Σ(Θ, 𝐾) = (𝐴 + 𝐵𝐾)Σ(Θ, 𝐾) (𝐴 + 𝐵𝐾)⊤ + 𝜎2
𝑤 𝐼,
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whose solution is given by the following convergent infinite sum

Σ(Θ, 𝐾) =
∞∑︁
𝑡=0
(𝐴 + 𝐵𝐾)𝑡𝜎2

𝑤 𝐼
(
(𝐴 + 𝐵𝐾)⊤

) 𝑡
.

It is well known that the optimal control policy of infinite-horizon LQR systems can
be achieved by stationary linear feedback controllers [28]. Therefore, we can find
the optimal LQR cost of a stabilizable system by minimizing its closed-loop cost
among all stabilizing stationary linear feedback controllers.

Suppose Θ ∈ Ssurr, i.e., 𝐽 (Θ, 𝐾 (Θ∗)) ≤ 𝐽 (Θ∗, 𝐾 (Θ∗)). Then, the optimal LQR cost
of Θ is given as

𝐽 (Θ) = 𝐽 (Θ, 𝐾 (Θ)) = min
𝐾∈R𝑑×𝑛

𝐽 (Θ, 𝐾) (B.62)

≤ 𝐽 (Θ, 𝐾 (Θ∗))
(𝑎)
≤ 𝐽 (Θ∗, 𝐾 (Θ∗)) = 𝐽 (Θ∗), (B.63)

where (𝑎) is due to Θ ∈ Ssurr. Thus, Θ ∈ Sopt. □

Proof of Lemma 3.9

The following lemma will be used as the backbone for Lemma 3.9.

Lemma B.11. Let 𝑉1, 𝑉2 ∈ R𝑛×𝑛 be symmetric positive semi-definite matrices.
Define two ellipsoids as

E1 B
{
Θ ∈ R𝑛×𝑚

�� tr
(
Θ⊤𝑉1Θ

)
≤ 1

}
and E2 B

{
Θ ∈ R𝑛×𝑚

�� tr
(
Θ⊤𝑉2Θ

)
≤ 1

}
.

(B.64)

Then, E1 ⊆ E2 if and only if 𝑉1 ≽ 𝑉2.

Proof. For the forward direction, assume 𝑉1 − 𝑉2 has a negative eigenvalue, i.e.,
there exist _ < 0 and a unit vector \ ∈ R𝑛/{0} such that (𝑉1 −𝑉2)\ = _\. Construct
Θ = [\, \, . . . , \] ∈ R𝑛×𝑚. Observe that tr (Θ⊤𝑉1Θ) = 𝑚\⊤𝑉1\ and tr (Θ⊤𝑉2Θ) =
𝑚\⊤𝑉2\. Therefore, we have the relationship tr (Θ⊤𝑉2Θ) = tr (Θ⊤𝑉1Θ) − 𝑚_.

If 𝑉1\ = 0, then tr(Θ⊤𝑉1Θ) = 0 ≤ 1 and therefore for any scalar 𝛼 > 0, 𝛼Θ ∈ E1.
On the other hand, tr (Θ⊤𝑉2Θ) = −𝑚_ > 0 and therefore, one can find a scalar
𝛼 > 0 such that tr ((𝛼Θ)⊤𝑉2(𝛼Θ)) = −𝑚_𝛼2 > 1, i.e., 𝛼Θ ∉ E2. If 𝑉1\ ≠ 0, then
define Θ′ = 1√

𝑚\⊤𝑉1\
Θ and observe that tr

(
Θ′⊤𝑉1Θ

′) = 1, i.e., Θ′ ∈ E1. On the
other hand, tr

(
Θ′⊤𝑉2Θ

′) = 1 − _
\⊤𝑉1\

> 1, i.e., Θ′ ∉ E2. Therefore, we have that if
E1 ⊆ E2 then 𝑉1 ≽ 𝑉2.

For the reverse direction, assume that𝑉1 ≽ 𝑉2 andΘ ∈ E1. Then, tr (Θ⊤(𝑉1 −𝑉2)Θ) ≥
0 and tr (Θ⊤𝑉2Θ) ≤ tr (Θ⊤𝑉1Θ) ≤ 1. Therefore, Θ ∈ E2. □
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Proof of Lemma 3.9. Let us rewrite the ellipsoids. For the time being, we will
drop 𝛿 dependence for simplicity.

ERLS
𝑡 =

{
Θ̂ ∈ R(𝑛+𝑑)×𝑛

�� tr
(
(Θ̂ − Θ∗)⊤𝛽−1

𝑡 𝑉𝑡 (Θ̂ − Θ∗)
)
≤ 1

}
, (B.65)

Ecl
𝑡 =

{
Θ̂ ∈ R(𝑛+𝑑)×𝑛

�� tr
(
(Θ̂ − Θ∗)⊤𝐻∗𝐹−1

𝑡 𝐻⊤∗ (Θ̂ − Θ∗)
)
≤ 1

}
. (B.66)

To prove the lemma, it is necessary and sufficient to show 𝛽−1
𝑡 𝑉𝑡 ≽ 𝐻∗𝐹

−1
𝑡 𝐻⊤∗ by

Lemma B.11. Eliminating 𝑏𝑡 terms from both sides and multiplying by 𝑉−
1
2

𝑡 from
left and right, we obtain the equivalent condition,

𝐼 ≽ 𝑉
− 1

2
𝑡 𝐻∗(𝐻⊤∗ 𝑉−1

𝑡 𝐻∗)−1𝐻⊤∗ 𝑉
− 1

2
𝑡 = 𝑉

− 1
2

𝑡 𝐻∗(𝐻⊤∗ 𝑉−1
𝑡 𝐻∗)−

1
2 (𝐻⊤∗ 𝑉−1

𝑡 𝐻∗)−
1
2𝐻⊤∗ 𝑉

− 1
2

𝑡 .

In other words, we have thatERLS
𝑡 ⊆ Ecl

𝑡 if and only if ∥(𝐻⊤∗ 𝑉−1
𝑡 𝐻∗)−

1
2𝐻⊤∗ 𝑉

− 1
2

𝑡 ∥2 ≤ 1.
Notice that

∥(𝐻⊤∗ 𝑉−1
𝑡 𝐻∗)−

1
2𝐻⊤∗ 𝑉

− 1
2

𝑡 ∥22 = 𝜎1

(
(𝐻⊤∗ 𝑉−1

𝑡 𝐻∗)−
1
2𝐻⊤∗ 𝑉

− 1
2

𝑡

)2
, (B.67)

= _max

(
𝑉
− 1

2
𝑡 𝐻∗(𝐻⊤∗ 𝑉−1

𝑡 𝐻∗)−1𝐻⊤∗ 𝑉
− 1

2
𝑡

)
, (B.68)

= _max

(
(𝐻⊤∗ 𝑉−1

𝑡 𝐻∗)−
1
2𝐻⊤∗ 𝑉

−1
𝑡 𝐻∗(𝐻⊤∗ 𝑉−1

𝑡 𝐻∗)−
1
2

)
,

(B.69)

= _max (𝐼) = 1, (B.70)

where we used the fact that 𝜎1(𝐴) =
√︁
_max(𝐴⊤𝐴) =

√︁
_max(𝐴𝐴⊤). This is true for

any time 𝑡 and 𝛿 and therefore completes the proof. □

Proof of Lemma 3.10

The following lemma guarantees the existence of a stable neighborhood around any
stable matrix.

Lemma B.12. Let 𝐴𝑐 ∈ MSchur, i.e., 𝜌(𝐴𝑐) < 1. Then, there exists 𝜖 > 0 such that
for anyΔ ∈ M𝑛 with ∥Δ∥𝐹 ≤ 1, we have that 𝐴𝑐+𝜖Δ ∈ MSchur, i.e., 𝜌(𝐴𝑐+𝜖Δ) < 1.

Proof. Per Gelfand’s formula, we have that for any 𝛿 > 0, there exists 𝑁𝛿 ∈ N such
that

𝜌(𝐴𝑐) ≤ ∥𝐴𝑘𝑐 ∥
1/𝑘
𝐹

< 𝜌(𝐴𝑐) + 𝛿, (B.71)
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for any 𝑘 ≥ 𝑁𝛿. Since the mapping 𝐴𝑐 ↦→ ∥𝐴𝑘𝑐 ∥
1/𝑘
𝐹

is smooth for any 𝑘 ∈ N, we can
write the following expansion by Taylor’s theorem for any 𝑡 ∈ R,

∥(𝐴𝑐 + 𝑡Δ)𝑘 ∥1/𝑘𝐹 = ∥𝐴𝑘𝑐 ∥
1/𝑘
𝐹
+ 𝑡 d

d𝑡
∥(𝐴𝑐 + 𝑡Δ)𝑘 ∥1/𝑘𝐹

���
_𝑡
, (B.72)

where _ ∈ [0, 1]. For a given 𝑡 ∈ R, there exists a constant 𝑀𝑘,𝑡 > 0 such that for
any ∥Δ∥𝐹 ≤ 1, we have that

��� d
d𝑡 ∥(𝐴𝑐 + 𝑡Δ)

𝑘 ∥1/𝑘
𝐹

��� ≤ 𝑀𝑘,𝑡 by Taylor’s theorem. Then,
we can write the following upper bound

∥(𝐴𝑐 + 𝑡Δ)𝑘 ∥1/𝑘𝐹 ≤ ∥𝐴𝑘𝑐 ∥
1/𝑘
𝐹
+ |𝑡 | 𝑀𝑡,𝑘 . (B.73)

Using the relation (B.71) and the upper bound (B.73), we have that for any 𝛿 > 0,
𝑡 > 0, and ∥Δ∥𝐹 ≤ 1, there exists 𝑁𝛿 ∈ N and 𝑀𝑡,𝑁𝛿 > 0 such that

𝜌(𝐴𝑐 + 𝑡Δ) ≤ ∥(𝐴𝑐 + 𝑡Δ)𝑁𝛿 ∥1/𝑁𝛿𝐹
≤ ∥𝐴𝑁𝛿𝑐 ∥1/𝑁𝛿𝐹

+ 𝑡𝑀𝑡,𝑁𝛿 (B.74)

< 𝜌(𝐴𝑐) + 𝛿 + 𝑡𝑀𝑡,𝑁𝛿 (B.75)

Fix a 𝛿 > 0 such that 𝜌(𝐴𝑐) + 𝛿 < 1 and fix a 𝑡 > 0. Then, we can find 0 < 𝜖 ≤ 𝑡
such that 𝜌(𝐴𝑐) + 𝛿 + 𝜖𝑀𝑡,𝑁𝛿 < 1 and thus

𝜌(𝐴𝑐 + 𝜖Δ) < 𝜌(𝐴𝑐) + 𝛿 + 𝜖𝑀𝑡,𝑁𝛿 < 1 (B.76)

for any ∥Δ∥𝐹 ≤ 1 by (B.75). □

Proof of Lemma 3.10. For any 𝐴𝑐 ∈ MSchur, there exists a constant 𝜖 > 0, such
that for any ∥Δ∥𝐹 ≤ 1, we have that 𝐴𝑐 + 𝜖Δ ∈ MSchur by Lemma B.12. To see
smoothness of 𝐿, we write 𝐴𝑡 B 𝐴𝑐 + 𝑡Δ and 𝐿 (𝐴𝑡) = tr(𝑄∗Σ𝑡) for any |𝑡 | ≤ 𝜖 and
∥Δ∥𝐹 ≤ 1 where Σ𝑡 solves the following Lyapunov equation:

Σ𝑡 − 𝐴𝑡Σ𝑡𝐴⊤𝑡 = 𝜎2
𝑤 𝐼 and Σ0 − 𝐴𝑐Σ0𝐴

⊤
𝑐 = 𝜎2

𝑤 𝐼 . (B.77)

Note that, 𝜌(𝐴𝑡) < 1 for any |𝑡 | ≤ 𝜖 and therefore both equations in (B.77) have
unique solutions for any |𝑡 | ≤ 𝜖 . The Jacobian ∇𝐿 (𝐴𝑐) ∈ M𝑛 satisfies ∇𝐿 (𝐴𝑐) •Δ =

d
d𝑡 𝐿 (𝐴𝑡)

��
𝑡=0 = tr(𝑄∗ ¤Σ0) for any ∥Δ∥𝐹 ≤ 1 where ¤Σ𝑡 is the derivative of Σ𝑡 and

satisfies the following Lyapunov equation:

¤Σ𝑡 − 𝐴𝑡 ¤Σ𝑡𝐴⊤𝑡 = ΔΣ𝑡𝐴
⊤
𝑡 + 𝐴𝑡Σ𝑡Δ⊤ and ¤Σ0 − 𝐴𝑐 ¤Σ0𝐴

⊤
𝑐 = ΔΣ0𝐴

⊤
𝑐 + 𝐴𝑐Σ0Δ

⊤. (B.78)

Similarly, both equations in (B.78) have unique solutions for any |𝑡 | ≤ 𝜖 and
therefore ∇𝐿 (𝐴𝑐) exists for any 𝐴𝑐. To find the Jacobian, we have that ¤Σ0 =
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𝑘=0 𝐴

𝑘
𝑐

(
ΔΣ0𝐴

⊤
𝑐 + 𝐴𝑐Σ0Δ

⊤) (𝐴⊤𝑐 )𝑘 and

tr(𝑄∗ ¤Σ0) = tr

(
𝑄∗

∞∑︁
𝑘=0

𝐴𝑘𝑐
(
ΔΣ0𝐴

⊤
𝑐 + 𝐴𝑐Σ0Δ

⊤) (𝐴⊤𝑐 )𝑘 ) (B.79)

= 2 tr

( ∞∑︁
𝑘=0
(𝐴⊤𝑐 )𝑘𝑄∗𝐴𝑘𝑐 𝐴𝑐Σ0Δ

⊤
)
= 2

∞∑︁
𝑘=0
(𝐴⊤𝑐 )𝑘𝑄∗𝐴𝑘𝑐 𝐴𝑐Σ0 • Δ. (B.80)

Therefore, ∇𝐿 (𝐴𝑐) = 2
∑∞
𝑘=0(𝐴⊤𝑐 )𝑘𝑄∗𝐴𝑘𝑐 𝐴𝑐Σ0. In particular, in the case of 𝐴𝑐,∗,

we have that
∑∞
𝑘=0(𝐴⊤𝑐,∗)𝑘𝑄∗𝐴𝑘𝑐,∗ = 𝑃∗, the solution to the Riccati equation, and

thus ∇𝐿 (𝐴𝑐,∗) = 2𝑃∗𝐴𝑐,∗Σ∗. Repeating the same process, one can see that 𝐿 (𝐴𝑡) is
infinitely differentiable and thus we conclude 𝐿 is a smooth function.

Denote by B𝜖 B {𝐴 ∈ M𝑛 | ∥𝐴 − 𝐴𝑐∥𝐹 ≤ 𝜖} ⊂ MSchur the ball of radius 𝜖 > 0
around 𝐴𝑐 ∈ MSchur. Consider the function 𝐿 restricted to the domain B𝜖 . Since
B𝜖 is a convex set, we can apply Taylor’s theorem to 𝐿 around 𝐴𝑐 in this domain to
obtain

𝐿 (𝐴𝑐 + 𝜖Δ) = 𝐿 (𝐴𝑐) + ∇𝐿 (𝐴𝑐) • 𝜖Δ +
1
2
𝜖Δ • H𝐴𝑐+𝑠Δ(𝜖Δ), (B.81)

for ∥Δ∥𝐹 ≤ 1 and for some 𝑠 ∈ [0, 𝜖]. Here, H𝐴𝑐 : M𝑛 → M𝑛 is the Hessian
operator evaluated at a point 𝐴𝑐 ∈ MSchur and satisfies the following relationship

Δ • H𝐴𝑐 (Δ) =
d2

d𝑡2
𝐿 (𝐴𝑐 + 𝑡Δ)

���
𝑡=0
, (B.82)

for any ∥Δ∥𝐹 ≤ 1. Finally, there exists a constant 𝑟 > 0, such that for any 𝐺 ∈ M𝑛,
we have that

��𝐺 • H𝐴𝑐+𝑠Δ(𝐺)
�� ≤ 𝑟 ∥𝐺∥2

𝐹
for any 𝑠 ∈ [0, 𝜖] and ∥Δ∥𝐹 ≤ 1 by Taylor’s

theorem. □

Proof of Lemma 3.11

First, we need to show the boundedness of 𝑧𝑡 .

Lemma B.13. Define the terms

𝑍′𝑇𝑤 B (1 + ^)𝑐
′(𝑛 + 𝑑)𝑛+𝑑 + ^𝜎𝑤

√︁
4𝑑 log(𝑑𝑇𝑤/𝛿), (B.83)

𝑍′′𝑇 B (1 + ^) (12^2+2^
√

2)𝛾−1𝜎𝑤
√︁

2𝑛 log(𝑛(𝑇−𝑇𝑤)/𝛿). (B.84)

Then, the following holds w.p. at least 1 − 4𝛿,

∥𝑧𝑡 ∥ ≤

𝑍′
𝑇𝑤
, for 𝑡 ≤ 𝑇𝑟

𝑍′′
𝑇
, for 𝑇𝑟 < 𝑡 ≤ 𝑇

. (B.85)
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Proof. From Lemma 3.7, we know that ∥𝑥𝑡 ∥ ≤ 𝑐′(𝑛 + 𝑑)𝑛+𝑑 with 𝑐′ > 0 a constant
for 𝑡 ≤ 𝑇𝑟 and ∥𝑥𝑡 ∥ ≤ (12^2+2^

√
2)𝛾−1𝜎𝑤

√︁
2𝑛 log(𝑛(𝑡−𝑇𝑤)/𝛿) for all 𝑇𝑟 < 𝑠 ≤ 𝑇

w.p. at least 1 − 4𝛿. Furthermore, under the event of 𝐸𝑡 , we have that ∥𝑢𝑡 ∥ ≤
^∥𝑥𝑡 ∥ + ∥𝑣𝑡 ∥ ≤ ^∥𝑥𝑡 ∥ + ^𝜎𝑤

√︁
4𝑑 log(𝑑𝑇𝑤/𝛿) for all 0 ≤ 𝑡 ≤ 𝑇𝑤. Observing that

∥𝑧𝑡 ∥ =
√︁
∥𝑥𝑡 ∥2 + ∥𝑢𝑡 ∥2 ≤ ∥𝑥𝑡 ∥+∥𝑢𝑡 ∥ , one can reach the desired result by substituting

the appropriate bounds on ∥𝑥𝑡 ∥ and ∥𝑢𝑡 ∥ and considering the maximal case achieved
when 𝑡 = 𝑇 . □

The following lemma will be used to bound 𝑉𝑡 .

Lemma B.14. Let 𝑉𝑡 = `𝐼 +
∑𝑡−1
𝑠=0 𝑧𝑠𝑧

⊤
𝑠 . On the event of 𝐸𝑇 = �̂� ∩ �̃� ∩ �̄� , we have

_max(𝑉𝑡) ≤

` + 𝑡𝑍′2𝑇𝑤 , for 𝑡 ≤ 𝑇𝑟
` + 𝑇𝑟𝑍′2𝑇𝑤 + (𝑡 − 𝑇𝑟)𝑍

′′
𝑇

2, for 𝑇𝑟 < 𝑡 ≤ 𝑇
(B.86)

and _min(𝑉𝑡) ≥

` + 𝑡 𝜎

2
𝑤

40 , for 200(𝑛 + 𝑑) log 12
𝛿
≤ 𝑡 ≤ 𝑇𝑤

` + 𝑇𝑤 𝜎
2
𝑤

40 , for 𝑇𝑤 < 𝑡 ≤ 𝑇
. (B.87)

Proof. Recall that on the event 𝐸𝑇 , the RLS estimates, TS sampled systems are
concentrated and the state is bounded, i.e., Lemma 3.7. Conditioned on this event,
we will start with bounding _max(𝑉𝑡). For any time 0 ≤ 𝑡 ≤ 𝑇 , triangle inequality
gives _max(𝑉𝑡) = ∥`𝐼 +∑𝑡−1

𝑠=0 𝑧𝑠𝑧
⊤
𝑠 ∥2 ≤ ` + ∑𝑡−1

𝑠=0 ∥𝑧𝑠∥2. Using the bounds on
∥𝑧𝑡 ∥ given in Lemma B.13, we can write _max(𝑉𝑡) ≤ ` + 𝑡𝑍′2𝑇𝑤 for 𝑡 ≤ 𝑇𝑟 and
_max(𝑉𝑡) ≤ ` + 𝑇𝑟𝑍′2𝑇𝑤 + (𝑡 − 𝑇𝑟)𝑍

′′
𝑇

2 for 𝑇𝑟 < 𝑡 ≤ 𝑇 . For the lower bound, note that
we have that E[𝑧𝑡+1𝑧⊤𝑡+1 | F𝑡] ≽

𝜎2
𝑤

2 𝐼. Using Lemma 3.6, on the event 𝐸𝑇 , we have
that 𝑉𝑡 ≽ `𝐼 + 𝑡 𝜎

2
𝑤

40 𝐼 for 200(𝑛 + 𝑑) log 12
𝛿
≤ 𝑡 ≤ 𝑇𝑤. Since 𝑉𝑡+1 = 𝑉𝑡 + 𝑧𝑡𝑧⊤𝑡 , we have

that 𝑉𝑡 ≽ 𝑉𝑇𝑤 ≽ `𝐼 + 𝑇𝑤
𝜎2
𝑤

40 𝐼 for 𝑇𝑤 < 𝑡 ≤ 𝑇 . □

Finally, we will use the following lemma to bound 𝛽𝑡 (𝛿) = 𝜎𝑤
√︂

2𝑛 log
(

det(𝑉𝑡 )1/2
𝛿 det(`𝐼)1/2

)
+

√
`𝑆.

Lemma B.15. On the event of 𝐸𝑇 , we have the following upper bound on 𝛽𝑇 (𝛿):

𝛽𝑇 (𝛿) ≤ 4𝜎2
𝑤𝑛 log

(
1
𝛿

)
+ 2𝜎2

𝑤𝑛(𝑛 + 𝑑) log

(
1 +

𝑇𝑟𝑍
′2
𝑇𝑤
+ (𝑇 − 𝑇𝑟)𝑍′′𝑇

2

(𝑛 + 𝑑)`

)
+ 2`𝑆2.

(B.88)
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Proof. Following a similar approach pursued in Lemma 10 of [2], we can bound
the log-determinant of 𝑉𝑡 as

log
det(𝑉𝑇 )
det(`𝐼) ≤ (𝑛 + 𝑑) log

(
1 +

𝑇𝑟𝑍
′2
𝑇𝑤
+ (𝑇 − 𝑇𝑟)𝑍′′𝑇

2

(𝑛 + 𝑑)`

)
,

by Lemma B.14. This leads to the following upper bound on 𝛽𝑡 (𝛿)

𝛽𝑇 (𝛿)2 ≤
©«𝜎𝑤

√√√
2𝑛 log

(
1
𝛿

)
+ 𝑛(𝑛 + 𝑑) log

(
1 +

𝑇𝑟𝑍
′2
𝑇𝑤
+ (𝑇 − 𝑇𝑟)𝑍′′𝑇

2

(𝑛 + 𝑑)`

)
+ √`𝑆

ª®®¬
2

≤ 4𝜎2
𝑤𝑛 log

(
1
𝛿

)
+ 2𝜎2

𝑤𝑛(𝑛 + 𝑑) log

(
1 +

𝑇𝑟𝑍
′2
𝑇𝑤
+ (𝑇 − 𝑇𝑟)𝑍′′𝑇

2

(𝑛 + 𝑑)`

)
+ 2`𝑆2.

□

Proof of Lemma 3.11. We will first show the desired bounds on _min(𝐹𝑡) and
_max(𝐹𝑡). Recall that the event 𝐸𝑇 holds with probability at least 1−4𝛿. Noting that
𝐻⊤∗ 𝐻∗ = 𝐼 + 𝐾⊤∗ 𝐾∗, it is clear that 𝐹𝑡 ≽ 𝛽2

𝑡 _min(𝑉−1
𝑡 )𝐻⊤∗ 𝐻∗ ≽

𝛽2
𝑡

_max (𝑉𝑡 ) 𝐼. Thus, from

Lemma B.14, for 𝑇𝑟 < 𝑡 ≤ 𝑇 , we have that _min,𝑡 ≥ 𝛽2
𝑡

_max (𝑉𝑡 ) ≥
𝛽2
𝑡

`+𝑇𝑟 𝑍 ′2𝑇𝑤+(𝑡−𝑇𝑟 )𝑍
′′
𝑇

2 .

On the other hand, 𝐹𝑡 ≼ 𝛽2
𝑡 _max(𝑉−1

𝑡 )𝐻⊤∗ 𝐻∗ ≼
𝛽2
𝑡 (1+^2)
_min (𝑉𝑡 ) 𝐼. Again using Lemma

B.14, for 𝑇𝑟 < 𝑡 ≤ 𝑇 , we have that _max,𝑡 ≤ (1+^
2)𝛽2

𝑡

_min (𝑉𝑡 ) ≤
(1+^2)𝛽2

𝑡

`+𝑇𝑤
𝜎2
𝑤

40

. Since 𝑡 ↦→ 𝛽𝑡 is

increasing, 𝑡 ↦→ _max,𝑡 is increasing as well. The condition number ^𝑡 B
_max,𝑡
_min,𝑡

≤
`+𝑇𝑟 𝑍 ′2𝑇𝑤+(𝑡−𝑇𝑟 )𝑍

′′
𝑇

2

(1+^2)−1 (`+𝑇𝑤
𝜎2
𝑤

40 )
is increasing for 𝑇𝑟 < 𝑡 ≤ 𝑇 .

If 𝑇𝑤 = 𝑂 (
√
𝑇

1+𝑜(1)), then we have that _max(𝑉𝑇 ) ≤ 𝑂 (poly(𝑛, 𝑑, log(1/𝛿))𝑇 log𝑇)
and 𝛽𝑇 (𝛿) ≤ 𝑂 (poly(𝑛, 𝑑, log(1/𝛿)) log𝑇). Thus, there are positive constants
𝐶 = poly(𝑛, 𝑑, log(1/𝛿)) and 𝑐 = poly(𝑛, 𝑑, log(1/𝛿)) such that _max,𝑇 ≤ 𝐶 log𝑇

𝑇𝑤

and ^𝑡 =
_max,𝑇
_min,𝑡

≤ 𝑐𝑇 log𝑇
𝑇𝑤

for 𝑇𝑟 < 𝑡 ≤ 𝑇 for large enough 𝑇 . Choosing the larger
between 𝐶 and 𝑐 yields the desired result. □
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Proof of Theorem 3.4

Defining by 𝑝
opt
𝑡 B P

{
Θ̃𝑡 ∈ Sopt

��F cnt
𝑡 , �̂�𝑡

}
the optimistic probability, and by

P𝑡{·} B P{· | F cnt
𝑡 } conditional probability measure, we can write

𝑝
opt
𝑡 ≥ P

{
Θ̃𝑡 ∈ Ssurr ��F cnt

𝑡 , �̂�𝑡
}
, (B.89)

= P
{
𝐿 (Θ̃⊤𝑡 𝐻∗) ≤ 𝐿 (Θ⊤∗ 𝐻∗)

��F cnt
𝑡 , �̂�𝑡

}
, (B.90)

≥ min
Θ̂∈ERLS

𝑡

P𝑡{𝐿 (Θ̂⊤𝐻∗ + [⊤𝛽𝑡𝑉
− 1

2
𝑡 𝐻∗) ≤ 𝐿 (Θ⊤∗ 𝐻∗)}, (B.91)

= min
Θ̂∈ERLS

𝑡

P𝑡{𝐿 (Θ̂⊤𝐻∗ + Ξ
√︁
𝐹𝑡) ≤ 𝐿 (Θ⊤∗ 𝐻∗)}, (B.92)

where (B.89) is by Lemma 3.8, (B.91) is a worst-case estimation bound within
high-probability confidence region, and (B.92) is because [⊤𝛽𝑡𝑉

− 1
2

𝑡 𝐻∗ and Ξ
√
𝐹𝑡

have the same distributions with [ ∈ R(𝑛+𝑑)×𝑛 and Ξ ∈ R𝑛×𝑛 being i.i.d. standard
normal random matrices.

The bound in (B.92) can be further lower bounded by minimizing over a larger
confidence set as

𝑝
opt
𝑡 ≥ min

Θ̂∈Ecl
𝑡

P𝑡{𝐿 (Θ̂⊤𝐻∗ + Ξ
√︁
𝐹𝑡) ≤ 𝐿 (𝐴𝑐,∗)}, (B.93)

= min
Υ̂ : ∥Υ̂∥𝐹≤1

P𝑡{𝐿 (𝐴𝑐,∗ + (Ξ + Υ̂)
√︁
𝐹𝑡) ≤ 𝐿 (𝐴𝑐,∗)}, (B.94)

where (B.93) is by Lemma (3.9) and (B.94) is because 𝐻∗ is full column rank and
therefore we can minimize over closed-loop matrices instead of open-loop system
parameters.

Denoting by 𝐺 𝑡 = (Ξ + Υ̂)
√
𝐹𝑡 the perturbation due to estimation and sampling,

Lemma 3.10 suggests that there exists constants 𝜖∗ > 0 and 𝑟∗ > 0 such that

𝐿 (𝐴𝑐,∗ + 𝐺 𝑡) = 𝐿 (𝐴𝑐,∗) + ∇𝐿∗ • 𝐺 𝑡 +
1
2
𝐺 𝑡 • H𝐴𝑐,∗+𝑠𝐺𝑡 (𝐺 𝑡), (B.95)

≤ 𝐿 (𝐴𝑐,∗) + ∇𝐿∗ • 𝐺 𝑡 +
𝑟∗
2
∥𝐺 𝑡 ∥2𝐹 , (B.96)

whenever ∥𝐺 𝑡 ∥𝐹 ≤ 𝜖∗. Substituting (B.96) into (B.94) leads to the following lower
bound

𝑝
opt
𝑡 ≥ min

Υ̂ : ∥Υ̂∥𝐹≤1
P𝑡{𝐿 (𝐴𝑐,∗ + 𝐺 𝑡) ≤ 𝐿 (𝐴𝑐,∗)} (B.97)

≥ min
Υ̂ : ∥Υ̂∥𝐹≤1

P𝑡

{
𝐿 (𝐴𝑐,∗) + ∇𝐿∗ • 𝐺 𝑡 + 𝑟∗

2 ∥𝐺 𝑡 ∥2𝐹 ≤ 𝐿 (𝐴𝑐,∗),
and ∥𝐺 𝑡 ∥𝐹 ≤ 𝜖∗

}
(B.98)

= min
Υ̂ : ∥Υ̂∥𝐹≤1

P𝑡

{
𝑟∗
2 ∥(Ξ + Υ̂)

√
𝐹𝑡 ∥2𝐹 + ∇𝐿∗ • (Ξ + Υ̂)

√
𝐹𝑡 ≤ 0,

and ∥(Ξ + Υ̂)
√
𝐹𝑡 ∥𝐹 ≤ 𝜖∗

}
. (B.99)
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Noting that ∥(Ξ + Υ̂)
√
𝐹𝑡 ∥𝐹 ≤

√︁
_max,𝑡 ∥Ξ + Υ̂∥𝐹 where _max,𝑡 B _max(𝐹𝑡), we can

further relax the lower bound (B.99) as

𝑝
opt
𝑡 ≥ min

Υ̂ : ∥Υ̂∥𝐹≤1
P𝑡

{
_max,𝑡𝑟∗

2 ∥Ξ + Υ̂∥2
𝐹
+ (∇𝐿∗

√
𝐹𝑡) • (Ξ + Υ̂) ≤ 0,

and
√︁
_max,𝑡 ∥Ξ + Υ̂∥𝐹 ≤ 𝜖∗

}
, (B.100)

= min
Υ̂ : ∥Υ̂∥𝐹≤1

P𝑡


Ξ + Υ̂ + ∇𝐿∗√𝐹𝑡_max,𝑡𝑟∗

2

𝐹
≤

∇𝐿∗√𝐹𝑡_max,𝑡𝑟∗

2

𝐹
,

and ∥Ξ + Υ̂∥2
𝐹
≤ 𝜖2

∗
_max,𝑡

 , (B.101)

where (B.101) is obtained by the completion of squares. LetU :M𝑛 →M𝑛 be an
orthogonal transformation such that U

(
Υ̂ + ∇𝐿∗

√
𝐹𝑡

_max,𝑡𝑟∗

)
=

Υ̂ + ∇𝐿∗√𝐹𝑡_max,𝑡𝑟∗


𝐹
𝐸11 where

𝐸11 ∈ M𝑛 has 1 in its (1, 1) entry and zeros elsewhere. Since Frobenius norm and
the probability density of Ξ are invariant under orthogonal transformations, (B.101)
can be rewritten as

𝑝
opt
𝑡 ≥ min

Υ̂ : ∥Υ̂∥𝐹≤1
P𝑡


U (

Ξ + Υ̂ + ∇𝐿∗
√
𝐹𝑡

_max,𝑡𝑟∗

)2

𝐹
≤

∇𝐿∗√𝐹𝑡_max,𝑡𝑟∗

2

𝐹
,

and ∥U(Ξ + Υ̂)∥2
𝐹
≤ 𝜖2

∗
_max,𝑡

 (B.102)

= min
Υ̂ : ∥Υ̂∥𝐹≤1

P𝑡


Ξ + Υ̂ + ∇𝐿∗√𝐹𝑡_max,𝑡𝑟∗


𝐹
𝐸11

2

𝐹
≤

∇𝐿∗√𝐹𝑡_max,𝑡𝑟∗

2

𝐹
,

and ∥Ξ + U(Υ̂)∥2
𝐹
≤ 𝜖2

∗
_max,𝑡

 (B.103)

= min
Υ̂ : ∥Υ̂∥𝐹≤1

P𝑡


(
Ξ11 +

Υ̂ + ∇𝐿∗√𝐹𝑡_max,𝑡𝑟∗


𝐹

)2
+∑

𝑖, 𝑗≠1,1 Ξ
2
𝑖 𝑗
≤

∇𝐿∗√𝐹𝑡_max,𝑡𝑟∗

2

𝐹
,

and ∥Ξ + U(Υ̂)∥2
𝐹
≤ 𝜖2

∗
_max,𝑡

 ,
(B.104)

Notice that the probability in (B.104) is described by the intersection of two balls
whose centers are far apart by ∥∇𝐿∗

√
𝐹𝑡 ∥𝐹

_max,𝑡𝑟∗
and hence the intersection has a fixed

shape. Choosing Υ̂ along the direction of ∥∇𝐿∗
√
𝐹𝑡 ∥𝐹 moves the center of the first

ball furthest possible from the origin which leads to the intersection of the balls to
move furthest away from the origin as well. Therefore, the probability in (B.104)
attains its minimum at Υ̂# B

∇𝐿∗
√
𝐹𝑡

∥∇𝐿∗
√
𝐹𝑡 ∥𝐹

and (B.104) can be equivalently expressed
by

𝑝
opt
𝑡 ≥ P𝑡


(
Ξ11 + 1 + ∥∇𝐿∗

√
𝐹𝑡 ∥𝐹

_max,𝑡𝑟∗

)2
+∑

𝑖, 𝑗≠1,1 Ξ
2
𝑖 𝑗
≤ ∥∇𝐿∗

√
𝐹𝑡 ∥2𝐹

_2
max,𝑡𝑟

2
∗
,

and ∥Ξ + 𝐸11∥2𝐹 ≤
𝜖2
∗

_max,𝑡

 (B.105)

= P𝑡


(
b + 1 + ∥∇𝐿∗

√
𝐹𝑡 ∥𝐹

_max,𝑡𝑟∗

)2
+ 𝑋 ≤ ∥∇𝐿∗

√
𝐹𝑡 ∥2𝐹

_2
max,𝑡𝑟

2
∗
,

and (b + 1)2 + 𝑋 ≤ 𝜖2
∗

_max,𝑡

 , (B.106)
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where b ∼ N(0, 1) and 𝑋 ∼ 𝜒2
𝑛2−1 are independent normal and chi-squared random

variables, respectively. Denoting by 𝑎𝑡 B ∥∇𝐿∗
√
𝐹𝑡 ∥𝐹

_max,𝑡𝑟∗
and 𝑏𝑡 = 𝜖∗√

_max,𝑡
the radii of

the balls, we can rewrite (B.106) as

𝑝
opt
𝑡 ≥ P𝑡

{
(b + 1 + 𝑎𝑡)2 + 𝑋 ≤ 𝑎2

𝑡 , and (b + 1)2 + 𝑋 ≤ 𝑏2
𝑡

}
(B.107)

= P𝑡

 |b + 1 + 𝑎𝑡 | ≤
√︃
𝑎2
𝑡 − 𝑋, and |b + 1| ≤

√︃
𝑏2
𝑡 − 𝑋,

and 𝑋 ≤ min(𝑎2
𝑡 , 𝑏

2
𝑡 )

 (B.108)

=

∫ min(𝑎2
𝑡 ,𝑏

2
𝑡 )

0
P𝑡

{
|b + 1 + 𝑎𝑡 | ≤

√︃
𝑎2
𝑡 − 𝑥, and |b + 1| ≤

√︃
𝑏2
𝑡 − 𝑥

}
𝑓𝑛2−1(𝑥)d𝑥

(B.109)

=

∫ min(𝑎2
𝑡 ,𝑏

2
𝑡 )

0
P𝑡


1 + 𝑎𝑡 −

√︃
𝑎2
𝑡 − 𝑥 ≤ b ≤ 1 + 𝑎𝑡 +

√︃
𝑎2
𝑡 − 𝑥,

and 1 −
√︃
𝑏2
𝑡 − 𝑥 ≤ b ≤ 1 +

√︃
𝑏2
𝑡 − 𝑥,

 𝑓𝑛2−1(𝑥)d𝑥,

(B.110)

where 𝑓𝑘 (𝑥) B
(
2 𝑘

2 Γ( 𝑘2 )
)−1

𝑥
𝑘
2−1𝑒−

𝑥
2 is the probability density function of the chi-

squared distribution with 𝑘 ∈ N degrees of freedom. (B.109) is derived from the
law of total probability. Notice that the probability inside the integral in (B.110)
is determined by the intersection of two intervals. This probability will have a
non-zero value only for a fixed interval of 𝑥 depending on the relation between 𝑎𝑡
and 𝑏𝑡 . We will investigate three cases:

i. 0 ≤ bt ≤
√

2at : There is a non-empty intersection if and only if 0 ≤ 𝑥 ≤
𝑏2
𝑡

(
1 − 𝑏2

𝑡

4𝑎2
𝑡

)
and the integral (B.110) becomes

𝑝
opt
𝑡 ≥

∫ 𝑏2
𝑡

(
1− 𝑏2

𝑡

4𝑎2
𝑡

)
0

P𝑡

{
1 + 𝑎𝑡 −

√︃
𝑎2
𝑡 − 𝑥 ≤ b ≤ 1 +

√︃
𝑏2
𝑡 − 𝑥

}
𝑓𝑛2−1(𝑥)d𝑥 (B.111)

=

∫ 𝑏2
𝑡

(
1− 𝑏2

𝑡

4𝑎2
𝑡

)
0

[
𝑄

(
1 + 𝑎𝑡 −

√︃
𝑎2
𝑡 − 𝑥

)
−𝑄

(
1 +

√︃
𝑏2
𝑡 − 𝑥

)]
𝑓𝑛2−1(𝑥)d𝑥,

(B.112)

where 𝑄 is the Gaussian 𝑄-function. Notice that for fixed values of 𝑏𝑡 , (B.112) is
monotonically increasing with respect to 𝑎𝑡 and vice versa.
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ii.
√

2at ≤ bt ≤ 2at : There is a non-empty intersection if and only if 0 ≤ 𝑥 ≤ 𝑎2
𝑡

and the integral (B.110) becomes

𝑝
opt
𝑡 ≥

∫ 𝑎2
𝑡

0
P𝑡

{
1 + 𝑎𝑡 −

√︃
𝑎2
𝑡 − 𝑥 ≤ b ≤ 1 +

√︃
𝑏2
𝑡 − 𝑥

}
𝑓𝑛2−1(𝑥)d𝑥 (B.113)

=

∫ 𝑎2
𝑡

0

[
𝑄

(
1 + 𝑎𝑡 −

√︃
𝑎2
𝑡 − 𝑥

)
−𝑄

(
1 +

√︃
𝑏2
𝑡 − 𝑥

)]
𝑓𝑛2−1(𝑥)d.𝑥 (B.114)

Notice that for fixed values of 𝑏𝑡 , (B.114) is monotonically increasing with respect
to 𝑎𝑡 and vice versa.

iii. 2at ≤ bt : There is a non-empty intersection if and only if 0 ≤ 𝑥 ≤ 𝑎2
𝑡 and the

integral (B.110) becomes

𝑝
opt
𝑡 ≥

∫ 𝑎2
𝑡

0
P𝑡

{
1 + 𝑎𝑡 −

√︃
𝑎2
𝑡 − 𝑥 ≤ b ≤ 1 + 𝑎𝑡 +

√︃
𝑎2
𝑡 − 𝑥

}
𝑓𝑛2−1(𝑥)d𝑥 (B.115)

=

∫ 𝑎2
𝑡

0

[
𝑄

(
1 + 𝑎𝑡 −

√︃
𝑎2
𝑡 − 𝑥

)
−𝑄

(
1 + 𝑎𝑡 +

√︃
𝑎2
𝑡 − 𝑥

)]
𝑓𝑛2−1(𝑥)d𝑥 (B.116)

Notice that for fixed values of 𝑏𝑡 , (B.116) is monotonically increasing with respect
to 𝑎𝑡 and vice versa.

As seen from all three case, the integral in (B.110) is monotonically increasing with
respect to both 𝑎𝑡 , and 𝑏𝑡 regardless of their relative relation. Therefore, we will
consider tight lower bounds of 𝑎𝑡 = ∥∇𝐿∗

√
𝐹𝑡 ∥𝐹

_max,𝑡𝑟∗
so that the relation 𝑏𝑡 ≥ 2𝑎𝑡 holds

for large enough 𝑡 ≥ 0. Noting that ∇𝐿∗ = 2𝑃∗𝐴𝑐,∗Σ∗ by Lemma 3.10 and 𝑃∗ ≻ 0,
Σ∗ ≻ 0, we will consider two cases.

1. Singular Ac,∗ : In this case, the Jacobian matrix ∇𝐿∗ becomes singular as
well. Then, we can bound 𝑎𝑡 from below as 𝑎𝑡 = ∥∇𝐿∗

√
𝐹𝑡 ∥𝐹

_max,𝑡𝑟∗
≥

√︁
_min,𝑡

∥∇𝐿∗∥𝐹
_max,𝑡𝑟∗

=√︃
_min,𝑡
_max,𝑡

∥𝑟−1
∗ ∇𝐿∗∥𝐹√
_max,𝑡

. Furthermore, choosing 𝑇𝑤 = 𝑂 ((
√
𝑇)1+𝑜(1)), we can use upper

bounds for _max,𝑡
_min,𝑡

and _max,𝑡 from Lemma 3.11 to write down, 𝑎𝑡 ≥ 𝑇𝑤√
𝑇 log𝑇

∥∇𝐿∗∥𝐹
𝐶𝑟∗

C

𝑎1,𝑇 and 𝑏𝑡 ≥
√︃

𝑇𝑤
log𝑇

𝜖∗√
𝐶
C 𝑏1,𝑇 for all 𝑇𝑟 < 𝑡 ≤ 𝑇 under the event 𝐸𝑇 for large

enough 𝑇 . Therefore, replacing 𝑎𝑡 and 𝑏𝑡 with 𝑎1,𝑇 and 𝑏1,𝑇 in (B.110) gives a lower
bound to (B.110). Noting that the ratio 𝑏1,𝑇

𝑎1,𝑇
=

√︃
𝑇 log𝑇
𝑇𝑤

𝜖∗𝑟∗
√
𝐶

∥∇𝐿∗∥𝐹 can be made to be
greater than or equal to 2 by an appropriate choice of 𝑇𝑤 leading to the case (𝑖𝑖𝑖)
bound

𝑝
opt
𝑡 ≥

∫ 𝑎2
1,𝑇

0

[
𝑄

(
1 + 𝑎1,𝑇 −

√︃
𝑎2

1,𝑇 − 𝑥
)
−𝑄

(
1 + 𝑎1,𝑇 +

√︃
𝑎2

1,𝑇 − 𝑥
)]
𝑓𝑛2−1(𝑥)d𝑥

(B.117)
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for all 𝑇𝑟 < 𝑡 ≤ 𝑇 for large enough 𝑇 .

2. Nonsingular Ac,∗ : In this case, the Jacobian matrix ∇𝐿∗ becomes nonsingular
as well. Then, we can bound 𝑎𝑡 from below as 𝑎𝑡 = ∥∇𝐿∗

√
𝐹𝑡 ∥𝐹

_max,𝑡𝑟∗
≥ 𝜎min,∗

∥
√
𝐹𝑡 ∥𝐹

_max,𝑡𝑟∗
≥

𝜎min,∗

𝑟∗
√
_max,𝑡

. Choosing 𝑇𝑤 = 𝑂 ((
√
𝑇)1+𝑜(1)), we can use the upper bound for _max,𝑡

from Lemma 3.11 to write the lower bound, 𝑎𝑡 ≥
√︃

𝑇𝑤
log𝑇

min(𝜎min,∗, 𝜖∗𝑟∗/2)√
𝐶𝑟∗

C 𝑎2,𝑇 and

𝑏𝑡 ≥
√︃

𝑇𝑤
log𝑇

𝜖∗√
𝐶
C 𝑏2,𝑇 for all 𝑇𝑟 < 𝑡 ≤ 𝑇 under the event 𝐸𝑇 for large enough

𝑇 . Therefore, replacing 𝑎𝑡 and 𝑏𝑡 with 𝑎2,𝑇 and 𝑏2,𝑇 in (B.110) gives a lower
bound to (B.110) for 𝑇𝑟 < 𝑡 ≤ 𝑇 . Noting that the ratio 𝛽2,𝑇

𝑎2,𝑇
=

𝜖∗𝑟∗
min(𝜎min,∗, 𝜖∗𝑟∗/2) =

max
(
𝜖∗𝑟∗
𝜎min,∗

, 2
)
≥ 2, we can use the case (𝑖𝑖𝑖) bound

𝑝
opt
𝑡 ≥

∫ 𝑎2
2,𝑇

0

[
𝑄

(
1 + 𝑎2,𝑇 −

√︃
𝑎2

2,𝑇 − 𝑥
)
−𝑄

(
1 + 𝑎2,𝑇 +

√︃
𝑎2

2,𝑇 − 𝑥
)]
𝑓𝑛2−1(𝑥)d𝑥

(B.118)

for all 𝑇𝑟 < 𝑡 ≤ 𝑇 for large enough 𝑇 .

In both cases, our focus will be on the following probability with a parameters 𝑎 > 0,
and 𝑘 ∈ N

𝑝𝑘 (𝑎) B
∫ 𝑎2

0

[
𝑄(1 + 𝑎 −

√︁
𝑎2 − 𝑥) −𝑄(1 + 𝑎 +

√︁
𝑎2 − 𝑥)

]
𝑓𝑘 (𝑥)d𝑥 (B.119)

The following lemma summarizes some of the important properties of the function
𝑎 ↦→ 𝑝𝑘 (𝑎).

Lemma B.16. The non-negative real valued function 𝑎 ↦→ 𝑝𝑘 (𝑎) is monotonically
increasing with respect to 𝑎 ≥ 0. Furthermore, we have that 1

𝑝𝑘 (𝑎) ≤
1

𝑄(1)

(
1 + 𝐶𝑘

𝑎1/2

)
for 𝑎 ≥ 𝑐𝑘 for problem independent constants 𝑐, 𝐶 > 0.

Proof. Notice that for a fixed value of 0 ≤ 𝑥 ≤ 𝑎2, the functions 𝑎 ↦→ 1 + 𝑎 −√
𝑎2 − 𝑥 and 𝑎 ↦→ 1 + 𝑎 +

√
𝑎2 − 𝑥 are monotonically decreasing and monotonically

increasing, respectively. As 𝑄-function is monotonically decreasing, the function
𝑎 ↦→ 𝑄(1+ 𝑎 −

√
𝑎2 − 𝑥) −𝑄(1+ 𝑎 +

√
𝑎2 − 𝑥) is monotonically increasing for fixed

0 ≤ 𝑥 ≤ 𝑎2. Therefore, the function 𝑎 ↦→ 𝑝𝑘 (𝑎) is also monotonically increasing.
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In order to obtain the desired asymptotic bound, let 𝜖 ∈ (0, 1) and we can write

𝑝𝑘 (𝑎) =
∫ 𝑎2

0

[
𝑄(1 + 𝑎 −

√︁
𝑎2 − 𝑥) −𝑄(1 + 𝑎 +

√︁
𝑎2 − 𝑥)

]
𝑓𝑘 (𝑥)d𝑥

≥
∫ 𝜖𝑎2

0

[
𝑄(1 + 𝑎 −

√︁
𝑎2 − 𝑥) −𝑄(1 + 𝑎 +

√︁
𝑎2 − 𝑥)

]
𝑓𝑘 (𝑥)d𝑥

≥
∫ 𝜖𝑎2

0
min

0≤𝑥′≤𝜖𝑎2

[
𝑄(1 + 𝑎 −

√︁
𝑎2 − 𝑥′) −𝑄(1 + 𝑎 +

√︁
𝑎2 − 𝑥′)

]
𝑓𝑘 (𝑥)d𝑥

=

[
𝑄(1 + 𝑎(1 −

√
1 − 𝜖)) −𝑄(1 + 𝑎(1 +

√
1 − 𝜖))

]
𝐹𝑘 (𝜖𝑎2)

where 𝐹𝑘 (𝑥) B 1 − Γ(𝑘/2, 𝑥/2)
Γ(𝑘/2) is the cumulative distribution function of chi-square

distribution and (𝑠, 𝑥) ↦→ Γ(𝑠, 𝑥) B
∫ ∞
𝑥
𝑡𝑠−1𝑒−𝑡d𝑡 and 𝑠 ↦→ Γ(𝑠) B

∫ ∞
𝑜
𝑡𝑠−1𝑒−𝑡d𝑡

are upper incomplete Gamma and ordinary Gamma functions respectively. Notice
that the functions (𝑠, 𝑥) ↦→ Γ(𝑠, 𝑥) and 𝑥 ↦→ 𝑄(𝑥) are monotonically decreasing
with increasing 𝑥 > 0. Therefore, for large enough 𝜖𝑎2 ≫ 1 and large enough
𝑎 ≫ 1, we can claim that Γ(𝑘/2, 𝜖𝑎2/2) ≪ 1 and 𝑄(1 + 𝑎) ≪ 1 are small enough.
Furthermore, for small enough 𝜖 ≪ 1, we can use Taylor expansion to see that
1−
√

1 − 𝜖 = 𝜖
2
∑∞
𝑘=0

𝜖 𝑘

2𝑘 (2𝑘 − 1)! ≤ 𝑐1𝜖 for a problem-independent constant 𝑐1 > 0.
Then, for small enough 𝜖 ≪ 1, we have that

𝑝𝑘 (𝑎) ≥
[
𝑄(1 + 𝑎(1 −

√
1 − 𝜖)) −𝑄(1 + 𝑎(1 +

√
1 − 𝜖))

] (
1 − Γ(𝑘/2, 𝜖𝑎2/2)

Γ(𝑘/2)

)
≥ [𝑄(1 + 𝑐1𝜖𝑎) −𝑄(1 + 𝑎)]

(
1 − Γ(𝑘/2, 𝜖𝑎2/2)

Γ(𝑘/2)

)
Furthermore, for small enough 𝜖𝑎 ≪ 1, we have that𝑄(1+ 𝑐1𝜖𝑎) ≥ 𝑄(1) − 𝑐2𝜖𝑎 by
Taylor’s theorem where 𝑐2 is a problem-independent constant. Using these bounds,
we can bound the inverse of 𝑝𝑘 (𝑎) from above for small enough 𝜖 ≪ 1, small
enough 𝜖𝑎 ≪ 1, large enough 𝑎 ≫ 1 and large enough 𝜖𝑎2 ≫ 1 as

1
𝑝𝑘 (𝑎)

≤ 1
𝑄(1) − 𝑐2𝜖𝑎 −𝑄(1 + 𝑎)

1

1 − Γ(𝑘/2, 𝜖𝑎2/2)
Γ(𝑘/2)

=
1

𝑄(1)
1

(1 − 𝑐2𝜖𝑎 −𝑄(1 + 𝑎))
(
1 − Γ(𝑘/2, 𝜖𝑎2/2)

Γ(𝑘/2)

)
≤ 1
𝑄(1)

[
1 + 2𝐶

(
𝑐2𝜖𝑎 +𝑄(1 + 𝑎) +

Γ(𝑘/2, 𝜖𝑎2/2)
Γ(𝑘/2)

)]
(B.120)

where we used the Taylor expansion 1
1−𝑥 =

∑∞
𝑘=0 𝑥

𝑘 ≤ 1 + 𝐶𝑥 for small enough
𝑥 ≪ 1 with 𝐶 > 0 being a problem-independent constant.
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The assumption 𝜖𝑎2 ≫ 1 can be used to write the asymptotic expansion of incom-
plete Gamma function Γ(𝑘/2, 𝜖𝑎2/2) = (𝜖𝑎2/2)𝑘/2−1𝑒−𝜖𝑎

2/2 [
1 +𝑂

(
(𝜖𝑎2/2)−1) ] .

Noting that the Q function is always bounded as 𝑄(1 + 𝑎) ≤ 𝑒
− (1+𝑎)

2
2√

2𝜋(1+𝑎)
, we claim

that choosing 𝜖 = 𝑘

2𝑒𝑎1+1/2 , for 𝛼 ≥ 𝑐′′𝑘 with a constant 𝑐′′ > 0 guarantees that
𝜖𝑎 = 𝑘

2𝑒𝑎
−1/2 ≪ 1 and 𝜖𝑎2 = 𝑘

2𝑒𝑎
1−1/2 ≫ 1. Therefore, the upper bound (B.120) is

valid for 𝛼 ≥ 𝑐′′𝑘 . Furthermore, the term 𝜖𝑎 decays slower than both 𝑄(1 + 𝑎) and
Γ(𝑘/2, 𝜖𝑎2/2)

Γ(𝑘/2) and thus 𝜖𝑎 dominates as

1
𝑝𝑘 (𝑎)

≤ 1
𝑄(1)

(
1 + 𝐶𝑘

2𝑒
𝑎−1/2

)
,

for a problem-independent constant 𝐶 > 0. □

Based on Lemma B.16, the integrals in (B.117) and (B.118) are asymptotically
constant if both 𝑎1,𝑇 and 𝑎2,𝑇 are asymptotically large enough. This can be achieved
if 𝑎1,𝑇 =

𝑇𝑤√
𝑇 log𝑇

∥∇𝐿∗∥𝐹
𝐶𝑟∗

= 𝜔(1) for singular 𝐴𝑐,∗ and 𝑎2,𝑇 =

√︃
𝑇𝑤

log𝑇
min(𝜎min,∗, 𝜖∗𝑟∗/2)√

𝐶𝑟∗
=

𝜔(1) for non-singular 𝐴𝑐,∗. In other words, choosing 𝑇𝑤 = 𝑛2𝜔(
√
𝑇 log𝑇) for

singular 𝐴𝑐,∗ and 𝑇𝑤 = 𝑛2𝜔(log𝑇) for non-singular 𝐴𝑐,∗ yields the desired bound

𝑝
opt
𝑡 ≥

𝑄(1)
1 + 𝑜(1) ,

for 𝑇𝑟 < 𝑡 ≤ 𝑇 for large enough 𝑇 . Combined with the upper 𝑇𝑤 = 𝑂 ((
√
𝑇)1+𝑜(1)),

the proposed choices of 𝑇𝑤 satisfy the asymptotic conditions. □

B.2.3 Regret Decomposition
Denote the optimal expected average cost of an LQR system Θ with process noise
covariance 𝑊 by 𝐽∗(Θ,𝑊) = tr(𝑃(Θ)𝑊). Note that during the initial exploration
period, we have that 𝑢𝑡 = �̄�𝑡 + a𝑡 for 𝑡 ≤ 𝑇𝑤 and after the initial exploration, we
have that 𝑢𝑡 = �̄�𝑡 for 𝑡 > 𝑇𝑤 where we denote by �̄�𝑡 B 𝐾 (Θ̃𝑡)𝑥𝑡 the optimal control
action assuming the system Θ̃𝑡 . Since initial exploration period injects independent
random perturbations through the optimal control input, �̄�𝑡 , for sampled system, Θ̃𝑡 ,
the state dynamics can be reformulated in order to take the external perturbations
into account by adding it to the process noise:

𝑥𝑡+1 = 𝐴∗𝑥𝑡 + 𝐵∗�̄�𝑡 + Z𝑡 , (B.121)

where �̄�𝑡 = 𝐾 (Θ̃𝑡)𝑥𝑡 , Z𝑡 = 𝐵∗a𝑡 + 𝑤𝑡 for 𝑡 ≤ 𝑇𝑤, and Z𝑡 = 𝑤𝑡 for 𝑡 > 𝑇𝑤. We can
write the regret explicitly as

𝑅𝑇 =
∑︁𝑇

𝑡=0

{
𝑥⊤𝑡 𝑄𝑥𝑡 + 𝑢⊤𝑡 𝑅𝑢𝑡 − 𝐽∗(Θ∗, 𝜎2

𝑤 𝐼)
}
= 𝑅

exp
𝑇𝑤
+ 𝑅noexp

𝑇
, (B.122)
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where

𝑅
exp
𝑇𝑤
B

∑︁𝑇𝑤

𝑡=0

(
2�̄�⊤𝑡 𝑅a𝑡 + a⊤𝑡 𝑅a𝑡

)
, 𝑅

noexp
𝑇

B
∑︁𝑇

𝑡=0

{
𝑥⊤𝑡 𝑄𝑥𝑡 + �̄�⊤𝑡 𝑅�̄�𝑡 − 𝐽∗(Θ∗, 𝜎2

𝑤 𝐼)
}

Since 𝐸𝑠 ⊂ 𝐸𝑡 for any 0 ≤ 𝑠 ≤ 𝑡, we have that

𝑅
noexp
𝑇

1𝐸𝑇 =

𝑇∑︁
𝑡=0

{
𝑥⊤𝑡 𝑄𝑥𝑡+�̄�⊤𝑡 𝑅�̄�𝑡 − 𝐽∗(Θ∗, 𝜎2

𝑤 𝐼)
}
1𝐸𝑇

≤
𝑇∑︁
𝑡=0

{
𝑥⊤𝑡 𝑄𝑥𝑡 + �̄�⊤𝑡 𝑅�̄�𝑡 − 𝐽∗(Θ∗, 𝜎2

𝑤 𝐼)
}
1𝐸𝑡 , (B.123)

𝑅
exp
𝑇𝑤
1𝐸𝑇 =

∑︁𝑇𝑤

𝑡=0

(
2�̄�⊤𝑡 𝑅a𝑡 + a⊤𝑡 𝑅a𝑡

)
1𝐸𝑇 ≤

∑︁𝑇𝑤

𝑡=0

(
2�̄�⊤𝑡 𝑅a𝑡 + a⊤𝑡 𝑅a𝑡

)
1𝐸𝑡 .

(B.124)

From Bellman optimality equations [28], we obtain

𝐽∗(Θ̃𝑡 ,Cov[Z𝑡]) + 𝑥⊤𝑡 𝑃(Θ̃𝑡)𝑥𝑡
= 𝑥⊤𝑡 𝑄𝑥𝑡 + �̄�⊤𝑡 𝑅�̄�𝑡 + E

[
𝑥⊤𝑡+1𝑃(Θ̃𝑡)𝑥𝑡+1

��F𝑡 ] + 𝑧⊤𝑡 Θ̃𝑡𝑃(Θ̃𝑡)Θ̃⊤𝑡 𝑧𝑡 − 𝑧⊤𝑡 Θ∗𝑃(Θ̃𝑡)Θ⊤∗ 𝑧𝑡 ,
where 𝑧⊤𝑡 = [𝑥⊤𝑡 , �̄�⊤𝑡 ]. Rearranging the terms and subtracting the optimal expected
average cost of the true system, we obtain the following for each term in (B.123),{
𝑥⊤𝑡 𝑄𝑥𝑡 + �̄�⊤𝑡 𝑅�̄�𝑡 − 𝐽∗(Θ∗, 𝜎2

𝑤 𝐼)
}
1𝐸𝑡

=
{
𝐽∗(Θ̃𝑡 ,Cov[Z𝑡]) − 𝐽∗(Θ∗, 𝜎2

𝑤 𝐼)
}
1𝐸𝑡 +

{
𝑧⊤𝑡 Θ∗𝑃(Θ̃𝑡)Θ⊤∗ 𝑧𝑡 − 𝑧⊤𝑡 Θ̃𝑡𝑃(Θ̃𝑡)Θ̃⊤𝑡 𝑧𝑡

}
1𝐸𝑡 ,

+ 𝑥⊤𝑡 𝑃(Θ̃𝑡)𝑥𝑡1𝐸𝑡 − E
[
𝑥⊤𝑡+1𝑃(Θ̃𝑡)𝑥𝑡+11𝐸𝑡

��F𝑡 ] .
Note that, 1𝐸𝑡1𝐸𝑡+1 = 1𝐸𝑡+1 since 𝐸𝑡+1 ⊂ 𝐸𝑡 . Since 𝑃(Θ̃𝑡) ≻ 0, we obtain

E
[
𝑥⊤𝑡+1𝑃(Θ̃𝑡)𝑥𝑡+11𝐸𝑡

��F𝑡 ]
= E

[
𝑥⊤𝑡+1𝑃(Θ̃𝑡)𝑥𝑡+11𝐸𝑡

(
1𝐸𝑡+1 + 1𝐸𝑐𝑡+1

) ��F𝑡 ] ,
= E

[
𝑥⊤𝑡+1𝑃(Θ̃𝑡)𝑥𝑡+11𝐸𝑡+1

��F𝑡 ]+E [
𝑥⊤𝑡+1𝑃(Θ̃𝑡)𝑥𝑡+11𝐸𝑡1𝐸𝑐𝑡+1

��F𝑡 ] ,
≥ E

[
𝑥⊤𝑡+1𝑃(Θ̃𝑡)𝑥𝑡+11𝐸𝑡+1

��F𝑡 ] ,
= E

[
𝑥⊤𝑡+1

(
𝑃(Θ̃𝑡) − 𝑃(Θ̃𝑡+1)

)
𝑥𝑡+11𝐸𝑡+1

��F𝑡 ] + E [
𝑥⊤𝑡+1𝑃(Θ̃𝑡+1)𝑥𝑡+11𝐸𝑡+1

��F𝑡 ] .
Therefore,{
𝑥⊤𝑡 𝑄𝑥𝑡 + �̄�⊤𝑡 𝑅�̄�𝑡 − 𝐽∗(Θ∗, 𝜎2

𝑤 𝐼)
}
1𝐸𝑡 ≤

{
𝐽∗(Θ̃𝑡 ,Cov[Z𝑡]) − 𝐽∗(Θ∗, 𝜎2

𝑤 𝐼)
}
1𝐸𝑡 ,

+
{
𝑧⊤𝑡 Θ∗𝑃(Θ̃𝑡)Θ⊤∗ 𝑧𝑡 − 𝑧⊤𝑡 Θ̃𝑡𝑃(Θ̃𝑡)Θ̃⊤𝑡 𝑧𝑡

}
1𝐸𝑡 ,

+
{
𝑥⊤𝑡 𝑃(Θ̃𝑡)𝑥𝑡1𝐸𝑡 − E

[
𝑥⊤𝑡+1𝑃(Θ̃𝑡+1)𝑥𝑡+11𝐸𝑡+1

��F𝑡 ]} ,
+ E

[
𝑥⊤𝑡+1

(
𝑃(Θ̃𝑡+1) − 𝑃(Θ̃𝑡)

)
𝑥𝑡+11𝐸𝑡+1

��F𝑡 ] .
(B.125)
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Notice that Cov[Z𝑡] = 𝜎2
a 𝐵∗𝐵

⊤
∗ + 𝜎2

𝑤 𝐼 for 𝑡 ≤ 𝑇𝑤 and Cov[Z𝑡] = 𝜎2
𝑤 𝐼 for 𝑡 > 𝑇𝑤 and

therefore

𝐽∗(Θ̃𝑡 ,Cov[Z𝑡]) = Tr(𝑃(Θ̃𝑡) Cov[Z𝑡]) =

𝜎2
a Tr(𝑃(Θ̃𝑡)𝐵∗𝐵⊤∗ ) + 𝜎2

𝑤 Tr(𝑃(Θ̃𝑡)) 𝑡 ≤ 𝑇𝑤
𝜎2
𝑤 Tr(𝑃(Θ̃𝑡)) 𝑡 > 𝑇𝑤

.

(B.126)

Summing the terms in (B.125) upto time T and adding the 𝑅exp
𝑇𝑤

term, we obtain

𝑅𝑇1𝐸𝑇 = 𝑅
exp
𝑇𝑤
1𝐸𝑇 + 𝑅

noexp
𝑇

1𝐸𝑇 ≤ 𝑅
exp,1
𝑇𝑤
+ 𝑅exp,2

𝑇𝑤
+ 𝑅TS

𝑇 + 𝑅
RLS
𝑇 + 𝑅mart

𝑇 + 𝑅gap
𝑇

(B.127)

where

𝑅
exp,1
𝑇𝑤

=
∑︁𝑇𝑤

𝑡=0

(
2�̄�⊤𝑡 𝑅a𝑡 + a⊤𝑡 𝑅a𝑡

)
1𝐸𝑡 , (B.128)

𝑅
exp,2
𝑇𝑤

=
∑︁𝑇𝑤

𝑡=0
𝜎2
a Tr(𝑃(Θ̃𝑡)𝐵∗𝐵⊤∗ )1𝐸𝑡 , (B.129)

𝑅TS
𝑇 =

∑︁𝑇

𝑡=0

{
𝐽∗(Θ̃𝑡 , 𝜎2

𝑤 𝐼) − 𝐽∗(Θ∗, 𝜎2
𝑤 𝐼)

}
1𝐸𝑡 , (B.130)

𝑅RLS
𝑇 =

∑︁𝑇

𝑡=0

{
𝑧⊤𝑡 Θ∗𝑃(Θ̃𝑡)Θ⊤∗ 𝑧𝑡 − 𝑧⊤𝑡 Θ̃𝑡𝑃(Θ̃𝑡)Θ̃⊤𝑡 𝑧𝑡

}
1𝐸𝑡 , (B.131)

𝑅mart
𝑇 =

∑︁𝑇

𝑡=0

{
𝑥⊤𝑡 𝑃(Θ̃𝑡)𝑥𝑡1𝐸𝑡 − E

[
𝑥⊤𝑡+1𝑃(Θ̃𝑡+1)𝑥𝑡+11𝐸𝑡+1

��F𝑡 ]} , (B.132)

𝑅
gap
𝑇

=
∑︁𝑇

𝑡=0
E

[
𝑥⊤𝑡+1

(
𝑃(Θ̃𝑡+1) − 𝑃(Θ̃𝑡)

)
𝑥𝑡+11𝐸𝑡+1

��F𝑡 ] . (B.133)

B.2.4 Regret Analysis
Bounding 𝑅exp,1

𝑇𝑤
and 𝑅exp,2

𝑇𝑤

The following gives an upper bound on the regret attained due to isotropic pertur-
bations in the TS with improved exploration phase of TSAC.

Lemma B.17 (Direct Effect of Improved Exploration on Regret). The following
holds with probability at least 1 − 𝛿,

𝑅
exp,1
𝑇𝑤

=

𝑇𝑤∑︁
𝑡=0

{
2�̄�⊤𝑡 𝑅a𝑡 + a⊤𝑡 𝑅a𝑡

}
1𝐸𝑡 ≤ 𝑑𝜎a

√︁
𝐵𝛿+𝑑∥𝑅∥𝜎2

a

(
𝑇𝑤 +

√︁
𝑇𝑤 log

4𝑑𝑇𝑤
𝛿

√︂
log

4
𝛿

)
where

𝐵𝛿 = 8
(
1 + 𝑇𝑤^2∥𝑅∥2(𝑛 + 𝑑)2(𝑛+𝑑)

)
log

(
4𝑑
𝛿

(
1 + 𝑇𝑤^2∥𝑅∥2(𝑛 + 𝑑)2(𝑛+𝑑)

)1/2
)
.

Furthermore, we have 𝑅exp,2
𝑇𝑤
≤ 𝜎2

a𝐷 ∥𝐵∗∥2𝐹𝑇𝑤.

Proof. The proof follows directly from Lemma B.17 and Assumption 3.2. □
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Bounding 𝑅RLS
𝑇

Bounding this term is achieved by manipulating the similar bounds in Abbasi-
Yadkori and Szepesvári [2], Abeille and Lazaric [6] to our setting and TS algorithm.
In particular, this regret term corresponds to 𝑅Z3 of StabL studied in Lemma B.10.
We first have the following result from regularized least squares estimate.

Lemma B.18. On the event of 𝐸𝑇 , for 𝑋𝑠 = (12^2+2^
√

2)𝜎𝑤
𝛾

√︁
2𝑛 log(𝑛(𝑇 − 𝑇𝑤)/𝛿), we

have,

𝑇∑︁
𝑡=0
∥(Θ∗ − Θ̃𝑡)⊤𝑧𝑡 ∥2 ≤2(𝛽𝑇 (𝛿) + 𝜐𝑇 (𝛿))2

( (
1 + (1 + ^

2) (𝑛 + 𝑑)2(𝑛+𝑑)
`

)𝜏0+1
log

det(𝑉𝑇𝑟 )
det(`𝐼)

+
(
1 +
(1 + ^2)𝑋2

𝑠

`

)𝜏0+1
log

det(𝑉𝑇 )
det(𝑉𝑇𝑟 )

)
.

Proof. Let 𝜏 ≤ 𝑡 be the last time step before 𝑡, when the policy was updated. Using
Cauchy-Schwarz inequality, we have:

𝑇∑︁
𝑡=0
∥(Θ∗−Θ̃𝑡)⊤𝑧𝑡 ∥2 ≤

𝑇∑︁
𝑡=0
∥𝑉

1
2
𝑡 (Θ̃𝑡−Θ∗)∥2∥𝑧𝑡 ∥2𝑉−1

𝑡

≤
𝑇∑︁
𝑡=0

det(𝑉𝑡)
det(𝑉𝜏)

∥𝑉
1
2
𝜏 (Θ̃𝜏−Θ∗)∥2∥𝑧𝑡 ∥2𝑉−1

𝑡

.

(B.134)
Note that 𝑡 − 𝜏 ≤ 𝜏0 due to policy update rule. Moreover, we have

det(𝑉𝑡) = det(𝑉𝜏)
𝑡−𝜏∏
𝑖=0
(1 + ∥𝑧𝑡 ∥2𝑉−1

𝑡−𝑖
) ≤ det(𝑉𝜏)

(
1 + ∥𝑧𝑡 ∥

2

`

)𝜏0

.

Combining this with (B.134), on the event of 𝐸𝑇 , for 𝑡 ≤ 𝑇𝑟 , we have:

𝑇𝑟∑︁
𝑡=0
∥(Θ∗ − Θ̃𝑡)⊤𝑧𝑡 ∥2 ≤

𝑇𝑟∑︁
𝑡=0

(
1 + (1 + ^

2) (𝑛 + 𝑑)2(𝑛+𝑑)
`

)𝜏0

∥𝑉1/2
𝜏 (Θ̃𝜏 − Θ∗)∥2∥𝑧𝑡 ∥2𝑉−1

𝑡

(B.135)

≤
𝑇𝑟∑︁
𝑡=0

(
1 + (1 + ^

2) (𝑛 + 𝑑)2(𝑛+𝑑)
`

)𝜏0

(𝛽𝑇 (𝛿) + 𝜐𝑇 (𝛿))2∥𝑧𝑡 ∥2𝑉−1
𝑡

,

(B.136)

≤ 2(1 + ^2) (𝑛 + 𝑑)2(𝑛+𝑑)
`

(
1 + (1 + ^

2) (𝑛 + 𝑑)2(𝑛+𝑑)
`

)𝜏0

(𝛽𝑇 (𝛿) + 𝜐𝑇 (𝛿))2 log
(
det(𝑉𝑇𝑟 )
det(`𝐼)

)
,

(B.137)

where in (B.136) we used the fact that on the event of 𝐸𝑇 , using triangle inequality,
we have ∥Θ̃𝜏−Θ∗∥𝑉𝜏 ≤ ∥Θ̃𝜏−Θ̂𝜏∥𝑉𝜏 +∥Θ̂𝜏−Θ∗∥𝑉𝜏 ≤ 𝜐𝜏 (𝛿)+𝛽𝜏 (𝛿) ≤ 𝜐𝑇 (𝛿)+𝛽𝑇 (𝛿)
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and in (B.137) we used used the upper bound of ∥𝑧𝑡 ∥𝑉−1
𝑡

to utilize Lemma 10 of
Abbasi-Yadkori and Szepesvári [2]. Similarly, on the even of 𝐸𝑡 , for 𝑡 > 𝑇𝑟 , we get:
𝑇∑︁

𝑡=𝑇𝑟+1
∥(Θ∗ − Θ̃𝑡)⊤𝑧𝑡 ∥2 ≤

2(1 + ^2)𝑋2
𝑠

`

(
1 +
(1 + ^2)𝑋2

𝑠

`

)𝜏0

(𝛽𝑇 (𝛿) + 𝜐𝑇 (𝛿))2 log
(

det(𝑉𝑇 )
det(𝑉𝑇𝑟 )

)
.

□

Lemma B.19 (Bounding 𝑅RLS
𝑇

for TSAC). Let 𝑅RLS
𝑇

be as defined by (B.131). Under
the event of 𝐸𝑇 , setting ` = (1 + ^2)𝑋2

𝑠 , we have��𝑅RLS
𝑇

�� = �̃� (
(𝑛 + 𝑑) (𝜏0+2) (𝑛+𝑑)+1.5√𝑛

√︁
𝑇𝑟 + (𝑛 + 𝑑)𝑛

√︁
𝑇 − 𝑇𝑟

)
.

Proof.��𝑅RLS
𝑇

�� ≤ 𝑇∑︁
𝑡=0

����𝑃(Θ̃𝑡) 1
2 Θ̃⊤𝑡 𝑧𝑡

2
−

𝑃(Θ̃𝑡) 1
2Θ⊤∗ 𝑧𝑡

2
���� (B.138)

=

𝑇𝑟∑︁
𝑡=0

����𝑃(Θ̃𝑡) 1
2 Θ̃⊤𝑡 𝑧𝑡

2
−

𝑃(Θ̃𝑡) 1
2Θ⊤∗ 𝑧𝑡

2
���� + 𝑇∑︁

𝑡=𝑇𝑟

����𝑃(Θ̃𝑡) 1
2 Θ̃⊤𝑡 𝑧𝑡

2
−

𝑃(Θ̃𝑡) 1
2Θ⊤∗ 𝑧𝑡

2
����

≤
(
𝑇𝑟∑︁
𝑡=0

𝑃(Θ̃𝑡) 1
2
(
Θ̃𝑡 − Θ∗

)⊤
𝑧𝑡

2
) 1

2
(
𝑇𝑟∑︁
𝑡=0

(𝑃(Θ̃𝑡) 1
2 Θ̃⊤𝑡 𝑧𝑡

 + 𝑃(Θ̃𝑡) 1
2Θ⊤∗ 𝑧𝑡

)2
) 1

2

+
(
𝑇∑︁
𝑡=𝑇𝑟

𝑃(Θ̃𝑡) 1
2
(
Θ̃𝑡 − Θ∗

)⊤
𝑧𝑡

2
) 1

2
(
𝑇∑︁
𝑡=𝑇𝑟

(𝑃(Θ̃𝑡) 1
2 Θ̃⊤𝑡 𝑧𝑡

 + 𝑃(Θ̃𝑡) 1
2Θ⊤∗ 𝑧𝑡

)2
) 1

2

(B.139)

where (B.138) and (B.139) follow from triangle inequality. Note that for 𝑡 ≤ 𝑇𝑟 ,
we have ∥𝑧𝑡 ∥2 ≤ (1 + ^2) (𝑛 + 𝑑)2(𝑛+𝑑) and for 𝑡 > 𝑇𝑟 we have ∥𝑧𝑡 ∥2 ≤ (1 + ^2)𝑋2

𝑠 .
Moreover, since Θ̃ belongs to S by construction of the rejection sampling, we get

��𝑅RLS
𝑇

�� ≤ (
𝐷

𝑇𝑟∑︁
𝑡=0

(Θ̃𝑡 − Θ∗)⊤ 𝑧𝑡2
) 1

2 √︃
4𝑇𝑟𝐷 (1 + ^2)𝑆2(𝑛 + 𝑑)2(𝑛+𝑑)

+
(
𝐷

𝑇∑︁
𝑡=𝑇𝑟

(Θ̃𝑡 − Θ∗)⊤ 𝑧𝑡2
) 1

2 √︃
4(𝑇 − 𝑇𝑟)𝐷 (1 + ^2)𝑆2𝑋2

𝑠

≤
√

8𝑇𝑟𝐷𝑆(1+^2) (𝑛+𝑑)2(𝑛+𝑑) (𝛽𝑇 (𝛿)+𝜐𝑇 (𝛿))√
`

(
1+ (1+^

2) (𝑛+𝑑)2(𝑛+𝑑)
`

) 𝜏0
2
√︄

log
(det(𝑉𝑇𝑟 )

det(`𝐼)
)

+
√︁

8(𝑇−𝑇𝑟)𝐷𝑆(1+ ^2)𝑋2
𝑠 (𝛽𝑇 (𝛿) + 𝜐𝑇 (𝛿))√

`

(
1+
(1+^2)𝑋2

𝑠

`

)𝜏0
2
√︄

log
(

det(𝑉𝑇 )
det(𝑉𝑇𝑟 )

)
(B.140)
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From Lemma 10 of Abbasi-Yadkori and Szepesvári [2], we have that log( det(𝑉𝑇𝑟 )
det(`𝐼) ) ≤

(𝑛+𝑑) log(1+𝑇𝑟 (1+^
2) (𝑛+𝑑)2(𝑛+𝑑)
`(𝑛+𝑑) ) and log( det(𝑉𝑇 )

det(𝑉𝑇𝑟 )
) ≤ (𝑛+𝑑) log(1+𝑇𝑟 (1+^

2) (𝑛+𝑑)2(𝑛+𝑑)+(𝑇−𝑇𝑟 )𝑋2
𝑠

`(𝑛+𝑑) ).

After inserting these quantities into (B.140), we have the dimension dependency of
(𝑛+ 𝑑)2(𝑛+𝑑) ×

√︁
𝑛(𝑛 + 𝑑) × (𝑛+ 𝑑) (𝑛+𝑑)𝜏0 × (𝑛+ 𝑑) on the first term where

√︁
𝑛(𝑛 + 𝑑)

is due to 𝛽𝑇 (𝛿) + 𝜐𝑇 (𝛿). For the second term, for large enough 𝑇 , we have the
dimension dependency of 𝑛 ×

√︁
𝑛(𝑛 + 𝑑) × 𝑛(𝜏0/2) ×

√
𝑛 + 𝑑, where 𝑛 comes from

𝑋2
𝑠 . Thus, we achieve the following bound for

��𝑅RLS
𝑇

��:��𝑅RLS
𝑇

�� = �̃� (
(𝑛 + 𝑑) (𝜏0+2) (𝑛+𝑑)+1.5√𝑛

√︁
𝑇𝑟 + (𝑛 + 𝑑)𝑛1.5+𝜏0/2

√︁
𝑇 − 𝑇𝑟

)
.

With the choice of ` = (1 + ^2)𝑋2
𝑠 , the dependency of 𝑛(𝜏0/2) on the second term

can be converted to a scalar multiplier of
√

2
𝜏0 and reduces the dependency of 𝑋2

𝑠 to
𝑋𝑠, which gives the advertised bound. □

Bounding 𝑅mart
𝑇

Notice that this term is the same as 𝑅Z1 of StabL studied in Lemma B.6. Therefore,
the same bound translates to 𝑅mart

𝑇
.

Bounding 𝑅TS
𝑇

Lemma B.20 (Bounding 𝑅TS
𝑇

for TSAC). Let 𝑅TS
𝑇

be as defined by (B.130). Under
the event of 𝐸𝑇 , we have that��𝑅TS

𝑇

�� ≤ �̃� (√
𝑛𝑇𝑤 + poly(𝑛, 𝑑, log(1/𝛿))

√︁
𝑇 − 𝑇𝑤

)
,

with probability at least 1 − 2𝛿 if 𝑇𝑤 = 𝜔(
√
𝑇 log𝑇) for singular 𝐴𝑐,∗ and 𝑇𝑤 =

𝜔(log𝑇) for non-singular 𝐴𝑐,∗.

Proof. We decompose 𝑅TS
𝑇

into two pieces as

𝑅TS
𝑇 =

𝑇𝑤∑︁
𝑡=0

{
𝐽∗(Θ̃𝑡 , 𝜎2

𝑤 𝐼) − 𝐽∗(Θ∗, 𝜎2
𝑤 𝐼)

}
1𝐸𝑡︸                                           ︷︷                                           ︸

𝑅
TS,exp
𝑇𝑤

+
𝑇∑︁

𝑡=𝑇𝑤+1

{
𝐽∗(Θ̃𝑡 , 𝜎2

𝑤 𝐼) − 𝐽∗(Θ∗, 𝜎2
𝑤 𝐼)

}
1𝐸𝑡︸                                              ︷︷                                              ︸

𝑅
TS,noexp
𝑇
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Since every sampled system is in set S, we have that ∥𝑃(Θ̃𝑡)∥𝐹 ≤ 𝐷 and therefore

𝑅
TS,exp
𝑇𝑤

≤
𝑇𝑤∑︁
𝑡=0

��𝐽∗(Θ̃𝑡 , 𝜎2
𝑤 𝐼) − 𝐽∗(Θ∗, 𝜎2

𝑤 𝐼)
��1𝐸𝑡

≤
𝑇𝑤∑︁
𝑡=0

(��𝐽∗(Θ̃𝑡 , 𝜎2
𝑤 𝐼)

�� + ��𝐽∗(Θ∗, 𝜎2
𝑤 𝐼)

��) (B.141)

≤
√
𝑛𝜎2

𝑤

𝑇𝑤∑︁
𝑡=0

(
∥𝑃(Θ̃𝑡)∥𝐹 + ∥𝑃(Θ∗)∥𝐹

)
≤ 2
√
𝑛𝜎2

𝑤𝐷𝑇𝑤, (B.142)

where we used the relation tr(𝑃) ≤
√
𝑛∥𝑃∥𝐹 in (B.141). Considering the number

of times a new TS sample is drawn, the second term in 𝑅TS
𝑇

can be written as

𝑅
TS,noexp
𝐾

=

𝐾∑︁
𝑘=0

𝜏0
{
𝐽∗(Θ̃𝑡𝑘 , 𝜎2

𝑤 𝐼) − 𝐽∗(Θ∗, 𝜎2
𝑤 𝐼)

}
1𝐸𝑡𝑘

,

where 𝑡𝑘 = 𝑇𝑤 + 1 + 𝑘𝜏0 and 𝐾 =

⌈
𝑇−𝑇𝑤
𝜏0

⌉
. Denoting the information available to

the controller up to time 𝑡 ≥ 0 via F cnt
𝑡 B 𝜎 (F𝑡−1, 𝑥𝑡), 𝑅TS,noexp

𝐾
can be further

decomposed into two pieces as

𝑅
TS,noexp
𝐾

=

𝐾∑︁
𝑘=0

𝜏0
{
𝐽∗(Θ̃𝑡𝑘 , 𝜎2

𝑤 𝐼) − E
[
𝐽∗(Θ̃𝑡𝑘 , 𝜎2

𝑤 𝐼)
��F cnt

𝑡𝑘
, 𝐸𝑡𝑘

]}
1𝐸𝑡︸                                                                    ︷︷                                                                    ︸

𝑅
TS,1
𝐾

,

+
𝐾∑︁
𝑘=0

𝜏0
{
E

[
𝐽∗(Θ̃𝑡𝑘 , 𝜎2

𝑤 𝐼)
��F cnt

𝑡 , 𝐸𝑡𝑘
]
− 𝐽∗(Θ∗, 𝜎2

𝑤 𝐼)
}
1𝐸𝑡𝑘︸                                                                    ︷︷                                                                    ︸

𝑅
TS,2
𝐾

.

We will investigate each term in order under the event of 𝐸𝑇 .
Bounding RTS,1

K . Notice that {𝑅TS,1
𝐾
}𝐾≥0 is a martingale sequence with

���𝑅TS,1
𝐾
− 𝑅TS,1

𝐾−1

��� ≤
2𝜏0𝜎

2
𝑤

√
𝑛𝐷. Therefore it can be bounded by Azuma’s inequality w.p. at least 1 − 𝛿

as

𝑅
TS,1
𝐾
≤ 𝜎2

𝑤𝐷

√︃
8𝑛𝜏2

0𝐾 log(2/𝛿) ≤ 𝜎2
𝑤𝐷

√︁
8𝑛𝜏0(𝑇 − 𝑇𝑤) log(2/𝛿). (B.143)

Bounding RTS,2
K . Denoting bySopt B

{
Θ ∈ R(𝑛+𝑑)×𝑛

�� 𝐽∗(Θ, 𝜎2
𝑤 𝐼) ≤ 𝐽∗(Θ∗, 𝜎2

𝑤 𝐼)
}

the set of optimistic parameters and defining

𝑅
𝑇𝑆,2
𝑘
B

{
E

[
𝐽∗(Θ̃𝑡𝑘 , 𝜎2

𝑤 𝐼)
��F cnt

𝑡𝑘
, 𝐸𝑡𝑘

]
− 𝐽∗(Θ∗, 𝜎2

𝑤 𝐼)
}
1𝐸𝑡𝑘

.
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Notice that, for any Θ ∈ Sopt, we can write

𝑅
𝑇𝑆,2
𝑘
≤

{
E

[
𝐽∗(Θ̃𝑡𝑘 , 𝜎2

𝑤 𝐼)
��F cnt

𝑡𝑘
, 𝐸𝑡𝑘

]
− 𝐽∗(Θ, 𝜎2

𝑤 𝐼)
}
1𝐸𝑡𝑘

≤
��𝐽∗(Θ, 𝜎2

𝑤 𝐼) − E
[
𝐽∗(Θ̃𝑡𝑘 , 𝜎2

𝑤 𝐼)
��F cnt

𝑡𝑘
, 𝐸𝑡𝑘

] ��1𝐸𝑡𝑘 .
As the above bound holds for any Θ ∈ Sopt, we can replace the right-hand side with
an expectation over the optimistic set Sopt. Specifically, we choose an i.i.d. copy of
Θ̃𝑡𝑘 , that is, we choose a random variable Θ̃′𝑡𝑘 which has the same distribution as Θ̃𝑡𝑘
and independent from it. Then, we have that

𝑅
𝑇𝑆,2
𝑘
≤ E

[��𝐽∗(Θ̃′𝑡𝑘 , 𝜎2
𝑤 𝐼) − E

[
𝐽∗(Θ̃𝑡𝑘 , 𝜎2

𝑤 𝐼)
��F cnt

𝑡𝑘
, 𝐸𝑡𝑘

] ��1𝐸𝑡𝑘 ��F cnt
𝑡𝑘
, 𝐸𝑡𝑘 , Θ̃

′
𝑡𝑘
∈ Sopt

]
=

E
[��𝐽∗(Θ̃′𝑡𝑘 , 𝜎2

𝑤 𝐼) − E
[
𝐽∗(Θ̃𝑡𝑘 , 𝜎2

𝑤 𝐼)
��F cnt

𝑡𝑘
, 𝐸𝑡𝑘

] ��1𝐸𝑡𝑘1Θ̃′𝑡𝑘 ∈Sopt

��F cnt
𝑡𝑘
, 𝐸𝑡𝑘

]
P

(
Θ̃′𝑡𝑘 ∈ Sopt

��F cnt
𝑡𝑘
, �̂�𝑡𝑘

)
Denoting by 𝑝opt

𝑡 = P
(
Θ̃′𝑡 ∈ Sopt

��F cnt
𝑡 , �̂�𝑡

)
the probability of drawing cost optimistic

TS samples, we can write further bounds on 𝑅𝑇𝑆,2
𝑘

as

𝑅
𝑇𝑆,2
𝑘
≤ 1
𝑝

opt
𝑡𝑘

E
[��𝐽∗(Θ̃′𝑡𝑘 , 𝜎2

𝑤 𝐼) − E
[
𝐽∗(Θ̃𝑡𝑘 , 𝜎2

𝑤 𝐼)
��F cnt

𝑡𝑘
, 𝐸𝑡𝑘

] �� ��F cnt
𝑡𝑘
, 𝐸𝑡𝑘

]
=
𝜎2
𝑤

𝑝
opt
𝑡𝑘

E
[��Tr

(
𝑃(Θ̃′𝑡𝑘 ) − E

[
𝑃(Θ̃𝑡𝑘 )

��F cnt
𝑡𝑘
, 𝐸𝑡𝑘

] )�� ��F cnt
𝑡𝑘
, 𝐸𝑡𝑘

]
≤
𝑛𝜎2

𝑤

𝑝
opt
𝑡𝑘

E
[𝑃(Θ̃′𝑡𝑘 ) − E [

𝑃(Θ̃𝑡𝑘 )
��F cnt

𝑡𝑘
, 𝐸𝑡𝑘

]
2

��F cnt
𝑡𝑘
, 𝐸𝑡𝑘

]
(B.144)

where we used the relation |tr(𝐴) | ≤ 𝑛∥𝐴∥2. Denoting 𝑃𝑘 B E
[
𝑃(Θ̃𝑡𝑘 )

��F cnt
𝑡𝑘
, 𝐸𝑡𝑘

]
,

the following definition will be used in the rest of the section to understand the
behavior of 𝑅𝑇𝑆,2

𝑘

Δ𝑘 B E
[
∥𝑃(Θ̃𝑡𝑘 ) − 𝑃𝑘 ∥2

��F cnt
𝑡𝑘
, 𝐸𝑡𝑘

]
(B.145)

The following lemma will be used to bound Δ𝑘 from above.

Lemma B.21. For any Θ ∈ S, any positive definite matrix 𝑉 ∈ R(𝑛+𝑑)×(𝑛+𝑑) , and
for any 𝑖, 𝑗 ∈ [𝑛],

∥∇𝑃𝑖 𝑗 (Θ)∥𝑉 ≤ Γ∥𝐻 (Θ)∥𝑉 ,

where Γ ≥ 0 is a problem dependent constant.
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Proof. Let 𝛿𝑃(Θ, 𝛿Θ) be the differential of 𝑃(Θ) in the direction 𝛿Θ. Then, we
have that

𝛿𝑃(Θ, 𝛿Θ) = 𝐴𝑐 (Θ)⊤𝛿𝑃(Θ, 𝛿Θ)𝐴𝑐 (Θ) (B.146)

+ 𝐴𝑐 (Θ)⊤𝑃(Θ)𝛿Θ⊤𝐻 (Θ) + 𝐻 (Θ)⊤𝛿Θ𝑃(Θ)𝐴𝑐 (Θ)

where 𝐴𝑐 (Θ) = Θ⊤𝐻 (Θ) is the closed-loop matrix. We know that 𝑃(Θ) satisfies
the Riccati equation as

𝑃 − 𝐴⊤𝑐 𝑃𝐴𝑐 = 𝑄 + 𝐾⊤𝑅𝐾 ≻ 0 =⇒
(
𝑃

1
2 𝐴𝑐𝑃

− 1
2

)⊤
𝑃

1
2 𝐴𝑐𝑃

− 1
2 ≺ 𝐼

where we droppedΘ dependence for simplicity. Therefore, similarity transformation
of the closed-loop matrix �̄�𝑐 B 𝑃

1
2 𝐴𝑐𝑃

− 1
2 is a contraction, i.e., ∥𝑃 1

2 𝐴𝑐𝑃
− 1

2 ∥2 C
𝜎Θ < 1. Multiplying both sides of (B.146) by 𝑃− 1

2 we obtain

𝛿�̄�(𝛿Θ) = �̄�⊤𝑐 𝛿�̄�(𝛿Θ) �̄�𝑐 + �̄�⊤𝑐 𝑃
1
2 𝛿Θ⊤𝐻𝑃−

1
2 + 𝑃− 1

2𝐻⊤𝛿Θ𝑃
1
2 �̄�𝑐

where 𝛿�̄�(𝛿Θ) = 𝑃− 1
2 𝛿𝑃(𝛿Θ)𝑃− 1

2 . Taking the spectral norm of both sides and using
sub-multiplicativity of spectral norm as well as equivalence of matrix norms, we
have that

∥𝛿�̄�(𝛿Θ)∥2 ≤ ∥𝐴𝑐∥22∥𝛿�̄�(𝛿Θ)∥2 + 2∥ �̄�𝑐∥2∥𝑃
1
2 𝛿Θ⊤𝐻𝑃−

1
2 ∥2

≤ ∥𝐴𝑐∥22∥𝛿�̄�(𝛿Θ)∥2 + 2∥ �̄�𝑐∥2∥𝑃
1
2 𝛿Θ⊤𝐻𝑃−

1
2 ∥𝐹

= 𝜎2
Θ∥𝛿�̄�(𝛿Θ)∥2 + 2𝜎Θ∥𝛿Θ⊤𝐻∥𝐹

By rearranging the inequality and using the property ∥𝛿Θ⊤𝐻∥𝐹 ≤ ∥𝛿Θ∥𝑉−1 ∥𝐻∥𝑉 ,
we obtain

∥𝛿�̄�(𝛿Θ)∥2 ≤
2𝜎Θ

1 − 𝜎2
Θ

∥𝛿Θ∥𝑉−1 ∥𝐻∥𝑉

Observing that ∥𝛿𝑃(𝛿Θ)∥2 = ∥𝑃 1
2 𝛿�̄�(𝛿Θ)𝑃 1

2 ∥2 ≤ ∥𝑃∥2∥𝛿�̄�(𝛿Θ)∥2 ≤ 𝐷∥𝛿�̄�(𝛿Θ)∥2
and noting that ∥∇𝑃𝑖 𝑗 (Θ)∥𝑉 = sup∥𝛿Θ∥

𝑉−1=1
��𝛿𝑃𝑖 𝑗 (𝛿Θ)�� ≤ sup∥𝛿Θ∥

𝑉−1=1 ∥𝛿𝑃(𝛿Θ)∥2,
one can get

∥∇𝑃𝑖 𝑗 (Θ)∥𝑉 ≤
2𝐷𝜎Θ
1 − 𝜎2

Θ

∥𝐻 (Θ)∥𝑉

Observing that the function𝜎Θ : S → R+ is continuous onS and𝜎∗ B maxΘ∈S 𝜎Θ <
1 as S is compact, we can further bound the scalar from above by Θ independent
constant Γ =

2𝐷𝜎∗
1−𝜎2

∗
> 0. □
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The following lemma gives a useful upper bound on Δ𝑘 .

Lemma B.22. Let Δ𝑘 be defined as in (B.145). Then, for all 𝑘 ≥ 0, we have that

Δ𝑘 ≤ 2𝑛2𝜐𝑡𝑘Γ E
[
∥𝐻 (Θ̃𝑡𝑘 )∥𝑉−1

𝑡𝑘

��F cnt
𝑡𝑘
, 𝐸𝑡𝑘

]
.

Proof. The proof follows directly from applying the bound in Lemma B.21 to
Equation 11 in [7]. □

Finally, we are ready to give a bound on the summation of Δ𝑘 terms

Lemma B.23. Let Δ𝑘 be defined as in (B.145) for any 𝑘 ≥ 0. Then, the following
bound holds with probability at least 1 − 𝛿

𝐾∑︁
𝑘=0

Δ𝑘 ≤
16𝑛2𝛼𝜐𝑇Γ

1 + 1
𝛽𝑇

©«
𝑇∑︁

𝑡=𝑇𝑤+1
∥𝑧𝑡 ∥𝑉−1

𝑡
+ 2𝛼

√︄
2
𝑇 − 𝑇𝑤
𝜏0

1 + ^2

`
log

(
2
𝛿

)ª®¬
≤ �̃� (poly(𝑛, 𝑑, log(1/𝛿))

√︁
𝑇 − 𝑇𝑤)

where 𝛼 = (1 + 1/𝛽2
0) (

√︁
2𝑛 log(3𝑛) + 𝜐𝑇 + (1 + ^)𝑆𝑋𝑠).

Proof. Define Θ̄𝑡𝑘 = Θ̂𝑡𝑘 + 𝛽𝑡𝑘𝑉
− 1

2
𝑡𝑘
[𝑡𝑘 . Using Proposition 9 in [7], we have that

∥𝐻 (Θ̄𝑡𝑘 )∥𝑉−1
𝑡𝑘

≤ 8
1 + 1

𝛽𝑡𝑘

𝐻 (Θ̄𝑡𝑘 ) E [
𝑥𝑡𝑘𝑥

⊤
𝑡𝑘
1∥𝑥𝑡𝑘 ∥≤𝛼

��F𝑡𝑘−1, 𝐸𝑡𝑘−1, Θ̄𝑡𝑘

]
𝑉−1
𝑡𝑘

≤ 8
1 + 1

𝛽𝑡𝑘

E [
𝐻 (Θ̄𝑡𝑘 )𝑥𝑡𝑘𝑥⊤𝑡𝑘1∥𝑥𝑡𝑘 ∥≤𝛼

��F𝑡𝑘−1, 𝐸𝑡𝑘−1, Θ̄𝑡𝑘

]
𝑉−1
𝑡𝑘

≤ 8𝛼
1 + 1

𝛽𝑡𝑘

E

[𝐻 (Θ̄𝑡𝑘 )𝑥𝑡𝑘𝑉−1
𝑡𝑘

1∥𝑥𝑡𝑘 ∥≤𝛼
��F𝑡𝑘−1, 𝐸𝑡𝑘−1, Θ̄𝑡𝑘

]
By Lemma B.22 and the preceding bound, we can write

Δ𝑘 ≤ 2𝑛2𝜐𝑡𝑘Γ E
[
∥𝐻 (Θ̃𝑡𝑘 )∥𝑉−1

𝑡𝑘

��F cnt
𝑡𝑘
, 𝐸𝑡𝑘

]
= 2𝑛2𝜐𝑡𝑘Γ

E
[
∥𝐻 (Θ̄𝑡𝑘 )∥𝑉−1

𝑡𝑘

1Θ̄𝑡𝑘 ∈S
��F cnt

𝑡𝑘
, 𝐸𝑡𝑘

]
P

{
Θ̄𝑡𝑘 ∈ S

��F cnt
𝑡𝑘
, 𝐸𝑡𝑘

}
≤

16𝑛2𝛼𝜐𝑡𝑘Γ

1 + 1
𝛽𝑡𝑘

E
[
E

[
∥𝐻 (Θ̄𝑡𝑘 )𝑥𝑡𝑘 ∥𝑉−1

𝑡𝑘

1∥𝑥𝑡𝑘 ∥≤𝛼
��F𝑡𝑘−1, 𝐸𝑡𝑘−1, Θ̄𝑡𝑘

]
1Θ̄𝑡𝑘 ∈S

��F cnt
𝑡𝑘
, 𝐸𝑡𝑘

]
P

{
Θ̄𝑡𝑘 ∈ S

��F cnt
𝑡𝑘
, 𝐸𝑡𝑘

}
=

16𝑛2𝛼𝜐𝑡𝑘Γ

1 + 1
𝛽𝑡𝑘

E[E[∥𝐻 (Θ̃𝑡𝑘 )𝑥𝑡𝑘︸      ︷︷      ︸
𝑧𝑡𝑘

∥𝑉−1
𝑡𝑘

1∥𝑥𝑡𝑘 ∥≤𝛼
��F𝑡𝑘−1, 𝐸𝑡𝑘−1, Θ̃𝑡𝑘 ]

��F cnt
𝑡𝑘
, 𝐸𝑡𝑘 ]

︸                                                                         ︷︷                                                                         ︸
C𝑌𝑘

.
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Notice thatE
[
𝑌𝑘

��F𝑡𝑘−1

]
= E

[
∥𝑧𝑡𝑘 ∥𝑉−1

𝑡𝑘

1∥𝑥𝑡𝑘 ∥≤𝛼
��F𝑡𝑘−1

]
by law of iterated expectations

and ∥𝑧𝑡𝑘 ∥𝑉−1
𝑡𝑘

1∥𝑥𝑡𝑘 ∥≤𝛼 ≤
1√
`
∥𝐻 (Θ̃𝑡𝑘 )𝑥𝑡𝑘 ∥1∥𝑥𝑡𝑘 ∥≤𝛼 ≤

√︃
1+^2

`
𝛼.

Therefore, the sequence
{
𝑌𝑘 − ∥𝑧𝑡𝑘 ∥𝑉−1

𝑡𝑘

1∥𝑥𝑡𝑘 ∥≤𝛼
}
𝑘≥0

is a bounded martingale dif-
ference sequence. By Azuma’s inequality, we have that with probability at least
1 − 𝛿,

𝐾∑︁
𝑘=0

(
𝑌𝑘 − ∥𝑧𝑡𝑘 ∥𝑉−1

𝑡𝑘

1∥𝑥𝑡𝑘 ∥≤𝛼
)
≤ 2𝛼

√︄
2
𝑇 − 𝑇𝑤
𝜏0

1 + ^2

`
log

(
2
𝛿

)
.

We can bound the sum of ∥𝑧𝑡𝑘 ∥𝑉−1
𝑡𝑘

terms using Lemma 10 of [3] and Hölder’s
inequality as

𝐾∑︁
𝑘=0
∥𝑧𝑡𝑘 ∥𝑉−1

𝑡𝑘

≤
𝐾∑︁
𝑘=0
∥𝑧𝑡𝑘 ∥𝑉−1

𝑡𝑘

+
𝐾∑︁
𝑘=0

𝑡𝑘+1−1∑︁
𝑡=𝑡𝑘+1

∥𝑧𝑡 ∥𝑉−1
𝑡

=

𝑇∑︁
𝑡=𝑇𝑤+1

∥𝑧𝑡 ∥𝑉−1
𝑡
≤

√︁
𝑇 − 𝑇𝑤 log

det(𝑉𝑇 )
det(𝑉𝑇𝑤 )

Combining these results, we obtain the desired bound

𝐾∑︁
𝑘=0

Δ𝑘 ≤
16𝑛2𝛼𝜐𝑇Γ

1 + 1
𝛽𝑇

©«
𝑇∑︁

𝑡=𝑇𝑤+1
∥𝑧𝑡 ∥𝑉−1

𝑡
+ 2𝛼

√︄
2
𝑇 − 𝑇𝑤
𝜏0

1 + ^2

`
log

(
2
𝛿

)ª®¬ .
□

Now, we are ready to bound 𝑅
𝑇𝑆,2
𝐾

. Under the event 𝐸𝑇 Theorem 3.4 suggests
that 1/𝑝𝑡opt ≤ 𝑂 (1) if 𝑇𝑤 = 𝜔(

√
𝑇 log𝑇) for singular 𝐴𝑐,∗ and 𝑇𝑤 = 𝜔(log𝑇) for

non-singular 𝐴𝑐,∗. Using this result together with Lemma B.23, we have that

𝑅
𝑇𝑆,2
𝐾

=

𝐾∑︁
𝑘=0

𝜏0𝑅
𝑇𝑆,2
𝑘
≤ 𝑛𝜎2

𝑤𝜏0

𝐾∑︁
𝑘=0

Δ𝑘

𝑝
𝑡
opt
𝑘

≤ �̃� (poly(𝑛, 𝑑)
√︁
(𝑇 − 𝑇𝑤) log(1/𝛿))

(B.147)
with probability at least 1 − 𝛿. Combining the above with (B.142) and (B.143), we
obtain the desired bound. □

Bounding 𝑅gap
𝑇

Lemma B.24 (Bounding 𝑅gap
𝑇

for TSAC). Let 𝑅gap
𝑇

be as defined by (B.133). Under
the event of 𝐸𝑇 , we have that��𝑅gap

𝑇

�� = �̃� (
poly(𝑛, 𝑑)

√︁
𝑇 log(1/𝛿)

)
,
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with probability at least 1 − 2𝛿 for large enough 𝑇 .

Proof.

𝑅
gap
𝑇

=

𝑇∑︁
𝑡=0
E

[
𝑥⊤𝑡+1

(
𝑃(Θ̃𝑡+1) − 𝑃(Θ̃𝑡)

)
𝑥𝑡+11𝐸𝑡+1

��F𝑡 ] (B.148)

=

𝐾∑︁
𝑡=0
E

[
𝑥⊤𝑡𝑘+1

(
𝑃(Θ̃𝑡𝑘+1) − 𝑃(Θ̃𝑡𝑘 )

)
𝑥𝑡𝑘+11𝐸𝑡𝑘+1

��F𝑡𝑘 ] (B.149)

Separating the duration of TSAC into two parts at 𝑡 = 𝑇𝑟 , we obtain two same
term achieved in [7]. Note that in Abeille and Lazaric [7], the authors follow
frequent update rule and TSAC updates every 𝜏0 time-steps. The proof of these
terms similarly follow Section 5.2 in [7] and using Lemma B.23 we obtain

O((𝑛+𝑑)𝑛+𝑑
√︁
𝑇𝑟+poly(𝑛, 𝑑)

√︁
𝑇−𝑇𝑟).

Note that there is an additional 𝜏0 factor in these bounds, due to the “relatively
slower” update of TSAC. For large enough 𝑇 such that the second term dominates
the overall upper bound, we obtain the advertised guarantee. □

B.2.5 Proof of Theorem 3.3
Collecting the regret terms derived in subsections of Appendix B.2.4, for large
enough 𝑇 , under the event 𝐸𝑇 , we have that

𝑅
exp
𝑇𝑤

= �̃�

(
(𝑛 + 𝑑)𝑛+𝑑𝑇𝑤

)
, w.p. 1 − 𝛿

𝑅RLS
𝑇 = �̃�

(
(𝑛 + 𝑑)𝑛+𝑑

√︁
𝑇𝑟 + poly(𝑛, 𝑑, log(1/𝛿))

√︁
𝑇 − 𝑇𝑟

)
,

𝑅mart
𝑇 = �̃�

(
(𝑛 + 𝑑)𝑛+𝑑

√︁
𝑇𝑟 + poly(𝑛, 𝑑, log(1/𝛿))

√︁
𝑇 − 𝑇𝑤

)
, w.p. 1 − 𝛿

𝑅
gap
𝑇

= �̃�

(
(𝑛 + 𝑑)𝑛+𝑑

√︁
𝑇𝑟 + poly(𝑛, 𝑑, log(1/𝛿))

√︁
𝑇 − 𝑇𝑟

)
, w.p. 1 − 2𝛿

and choosing𝑇𝑤 = 𝜔(
√
𝑇 log𝑇) for singular 𝐴𝑐,∗ and𝑇𝑤 = 𝜔(log𝑇) for non-singular

𝐴𝑐,∗ gives

𝑅TS
𝑇 = �̃�

(
poly(𝑛, 𝑑)𝑇𝑤 + poly(𝑛, 𝑑, log(1/𝛿))

√︁
𝑇 − 𝑇𝑟

)
, w.p. 1 − 2𝛿.

Recall that the event 𝐸𝑇 is true with probability at least 1− 4𝛿. Combining all these
bounds, we have the overall regret bound as

𝑅𝑇 = �̃�

(
(𝑛 + 𝑑)𝑛+𝑑𝑇𝑤 + poly(𝑛, 𝑑, log(1/𝛿))

√︁
𝑇 − 𝑇𝑤

)
, w.p. 1 − 10𝛿. (B.150)
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Notice that 𝑅𝑇 is linear in the initial exploration time 𝑇𝑤 with an exponential dimen-
sion dependency. Also note that 𝑇𝑤 ≥ 𝑇0 B poly(log(1/𝛿), 𝜎−1

𝑤 , 𝑛, 𝑑, �̄�, 𝛾−1, ^)
guarantees a stabilizing controller by Lemma 3.6. In order to control the growth
of 𝑅𝑇 by �̃� (

√
𝑇), the initial exploration time can maximally be in the order

of (
√
𝑇)1+𝑜(1) where 𝑇𝑜(1) hides all multiplicative sub-polynomial growths, i.e.,

𝑇𝑤 = 𝑂

(
(
√
𝑇)1+𝑜(1)

)
= �̃� (

√
𝑇).

On the other hand, Theorem 3.4 puts strict lower bounds on the growth of𝑇𝑤 in order
to maintain asymptotically constant optimistic probability. In particular, for singular
𝐴𝑐,∗, this condition is stated as 𝑇𝑤 = 𝜔(

√
𝑇 log𝑇). Combined with the required

upper bound 𝑂
(
(
√
𝑇)1+𝑜(1)

)
, it must be that 𝑇𝑤 = max

(
𝑇0, 𝑐(

√
𝑇 log𝑇)1+𝑜(1)

)
for

a constant 𝑐 > 0 for large enough 𝑇 . Inserting this result in (B.150) gives us

𝑅𝑇 = �̃�

(
(𝑛 + 𝑑)𝑛+𝑑

√
𝑇

)
, w.p. 1 − 10𝛿

for large enough 𝑇 . Observe that exponential dimension dependence is unavoidable
in this case as the system is excited with isotropic noise in every direction long
enough to dominate with exponential dimension.

For non-singular 𝐴𝑐,∗, the lower bound is stated as 𝑇𝑤 = 𝜔(log𝑇). For large enough
𝑇 , choosing𝑇𝑤 = max

(
𝑇0, 𝑐(log𝑇)1+𝑜(1)

)
for a constant 𝑐 > 0 is sufficient to satisfy

both the upper and lower bounds on 𝑇𝑤. Inserting this result in (B.150) gives us

𝑅𝑇 = �̃�

(
poly(𝑛, 𝑑, log(1/𝛿))

√
𝑇

)
, w.p. 1 − 10𝛿

for large enough𝑇 . Observe that the exponential dimension dependence is not domi-
nant anymore since logarithmically large𝑇𝑤 is sufficient to guarantee asymptotically
constant optimistic probability.
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A p p e n d i x C

FURTHER PROOFS FOR CHAPTER 5

C.1 Proofs of Section 5.3
C.1.1 Proof of Theorem 5.3

Proof. For a single input-output trajectory {𝑦𝑡 , 𝑢𝑡}𝜏𝑡=1, where 𝜏 ≤ 𝑇 , using the
representation in (5.18), we can write the following for the given system,

𝑌𝜏 = Φ𝜏Gyu
⊤ + 𝐸𝜏 + 𝑁𝜏︸   ︷︷   ︸

Noise

where (C.1)

Gyu =
[
𝐶𝐹, 𝐶 �̄�𝐹, . . . , 𝐶 �̄�𝐻−1𝐹, 𝐶𝐵, 𝐶 �̄�𝐵, . . . , 𝐶 �̄�𝐻−1𝐵

]
∈ R𝑚×(𝑚+𝑝)𝐻

𝑌𝜏 = [𝑦𝐻 , 𝑦𝐻+1, . . . , 𝑦𝜏]⊤ ∈ R(𝜏−𝐻)×𝑚

Φ𝜏 = [𝜙𝐻 , 𝜙𝐻+1, . . . , 𝜙𝜏]⊤ ∈ R(𝜏−𝐻)×(𝑚+𝑝)𝐻

𝐸𝜏 = [𝑒𝐻 , 𝑒𝐻+1, . . . , 𝑒𝜏]⊤ ∈ R(𝜏−𝐻)×𝑚

𝑁𝜏 =
[
𝐶�̄�𝐻𝑥0, 𝐶 �̄�

𝐻𝑥1, . . . , 𝐶 �̄�
𝐻𝑥𝜏−𝐻

]⊤∈R(𝜏−𝐻)×𝑚 .
Ĝy is the solution to (5.21), i.e., min𝑋 ∥𝑌𝜏 − Φ𝜏𝑋

⊤∥2
𝐹
+ _∥𝑋 ∥2

𝐹
. Hence, we get

Ĝ⊤y = (Φ⊤𝜏Φ𝜏 + _𝐼)−1Φ⊤𝜏𝑌𝜏.

Ĝy =
[
(Φ⊤𝜏Φ𝜏 + _𝐼)−1Φ⊤𝜏 (Φ𝜏Gyu

⊤ + 𝐸𝜏 + 𝑁𝜏)
]⊤

=
[
(Φ⊤𝜏Φ𝜏 + _𝐼)−1Φ⊤𝜏 (𝐸𝜏 + 𝑁𝜏) + (Φ⊤𝜏Φ𝜏 + _𝐼)−1Φ⊤𝜏Φ𝜏Gyu

⊤

+ _(Φ⊤𝜏Φ𝜏 + _𝐼)−1Gyu
⊤ − _(Φ⊤𝜏Φ𝜏 + _𝐼)−1Gyu

⊤]⊤
=

[
(Φ⊤𝜏Φ𝜏 + _𝐼)−1Φ⊤𝜏 𝐸𝜏 + (Φ⊤𝜏Φ𝜏 + _𝐼)−1Φ⊤𝜏 𝑁𝜏 + Gyu

⊤ − _(Φ⊤𝜏Φ𝜏 + _𝐼)−1Gyu
⊤]⊤
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Using Ĝy, we get

| Tr(𝑋 (Ĝy − Gyu)⊤) | (C.2)

= | Tr(𝑋 (Φ⊤𝜏Φ𝜏 + _𝐼)−1Φ⊤𝜏 𝐸𝜏) + Tr(𝑋 (Φ⊤𝜏Φ𝜏 + _𝐼)−1Φ⊤𝜏 𝑁𝜏) − _ Tr(𝑋 (Φ⊤𝜏Φ𝜏 + _𝐼)−1Gyu
⊤) |

≤ | Tr(𝑋 (Φ⊤𝜏Φ𝜏 + _𝐼)−1Φ⊤𝜏 𝐸𝜏) | + | Tr(𝑋 (Φ⊤𝜏Φ𝜏 + _𝐼)−1Φ⊤𝜏 𝑁𝜏) | + _ | Tr(𝑋 (Φ⊤𝜏Φ𝜏 + _𝐼)−1Gyu
⊤) |

≤
√︁

Tr(𝑋 (Φ⊤𝜏Φ𝜏 + _𝐼)−1𝑋⊤) Tr(𝐸⊤𝜏 Φ𝜏 (Φ⊤𝜏Φ𝜏 + _𝐼)−1Φ⊤𝜏 𝐸𝜏) (C.3)

+
√︁

Tr(𝑋 (Φ⊤𝜏Φ𝜏 + _𝐼)−1𝑋⊤) Tr(𝑁⊤𝜏 Φ𝜏 (Φ⊤𝜏Φ𝜏 + _𝐼)−1Φ⊤𝜏 𝑁𝜏)

+ _
√︃

Tr(𝑋 (Φ⊤𝜏Φ𝜏 + _𝐼)−1𝑋⊤) Tr(Gyu(Φ⊤𝜏Φ𝜏 + _𝐼)−1Gyu
⊤)

=
√︁

Tr(𝑋 (Φ⊤𝜏Φ𝜏 + _𝐼)−1𝑋⊤) ×[√︁
Tr(𝐸⊤𝜏 Φ𝜏 (Φ⊤𝜏Φ𝜏+_𝐼)−1Φ⊤𝜏 𝐸𝜏)+

√︁
Tr(𝑁⊤𝜏 Φ𝜏 (Φ⊤𝜏Φ𝜏+_𝐼)−1Φ⊤𝜏 𝑁𝜏)+_

√︃
Tr(Gyu(Φ⊤𝜏Φ𝜏+_𝐼)−1Gyu

⊤)
]

where (C.3) follows from | Tr(𝐴𝐵𝐶⊤) | ≤
√︁

Tr(𝐴𝐵𝐴⊤) Tr(𝐶𝐵𝐶⊤) for positive defi-
nite B due to Cauchy Schwarz (weighted inner-product). For 𝑋 = (Ĝy−Gyu) (Φ⊤𝜏Φ𝜏+
_𝐼), we get√︃

Tr((Ĝy − Gyu)𝑉𝜏 (Ĝy − Gyu)⊤) ≤
√︃

Tr(𝐸⊤𝜏 Φ𝜏𝑉
−1
𝜏 Φ⊤𝜏 𝐸𝜏) +

√︃
Tr(𝑁⊤𝜏 Φ𝜏𝑉

−1
𝜏 Φ⊤𝜏 𝑁𝜏) +

√
_∥Gyu∥𝐹

(C.4)

where 𝑉𝜏 is the regularized design matrix at time 𝜏. Let max𝑖≤𝜏 ∥𝜙𝑖∥ ≤ Υ
√
𝐻 and

max𝐻≤𝑖≤𝜏 ∥𝑥𝑖∥ ≤ X, i.e., in data collection bounded inputs are used. The first term
on the right hand side of (C.4) can be bounded using Theorem 1 of [2] since 𝑒𝑡 is
∥𝐶Σ𝐶⊤ + 𝜎2

𝑧 𝐼 ∥-sub-Gaussian vector. Therefore, for 𝛿 ∈ (0, 1), with probability at
least 1 − 𝛿,√︃

Tr(𝐸⊤𝜏 Φ𝑡𝑉
−1
𝜏 Φ⊤𝜏 𝐸𝜏) ≤

√√√
𝑚∥𝐶Σ𝐶⊤+𝜎2

𝑧 𝐼 ∥ log

(
det (𝑉𝜏)1/2

𝛿 det(_𝐼)1/2

)
(C.5)

For the second term,√︃
Tr(𝑁⊤𝜏 Φ𝜏𝑉

−1
𝜏 Φ⊤𝜏 𝑁𝜏) ≤

1
√
_
∥𝑁⊤𝜏 Φ𝜏∥𝐹 ≤

√︂
𝑚

_

 𝜏∑︁
𝑖=𝐻

𝜙𝑖 (𝐶�̄�𝐻𝑥𝑖−𝐻)⊤


≤ 𝜏
√︂
𝑚

_
max
𝑖≤𝜏

𝜙𝑖 (𝐶�̄�𝐻𝑥𝑖−𝐻)⊤
≤ 𝜏

√︂
𝑚

_
∥𝐶∥𝜐𝐻 max

𝑖≤𝜏
∥𝜙𝑖∥∥𝑥𝑖−𝐻 ∥

≤ 𝜏
√︂
𝑚

_
∥𝐶∥𝜐𝐻Υ

√
𝐻X.
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Picking 𝐻 =
2 log(𝑇)+log(ΥX)+0.5 log(𝑚/_)+log(∥𝐶∥)

log(1/𝜐) gives√︃
Tr(𝑁⊤𝜏 Φ𝜏𝑉

−1
𝜏 Φ⊤𝜏 𝑁𝜏) ≤

𝜏

𝑇2

√
𝐻. (C.6)

Combining (C.5) and (C.6) gives the self-normalized estimation error bound state
in the theorem. □

C.2 Proofs of Section 5.4
C.2.1 Proof of Lemma 5.6:
The proof of Lemma 5.6 follows similar arguments with the proof of Lemma 4.2
of [161]. The main difference is that in LqgOpt, the system estimations are refined
during the adaptive control period, thus the control policy is refined. Also, since
the behavior of a system and its similarity transformation is the same, without loss
of generality we assume that similarity transformation T = 𝐼. In the following,
we show the boundedness for the contractible systems which can be extended to
stabilizable systems applying the same policy for a long enough duration to cancel
out the effects of similarity transformations that makes the closed-loop system
contractible i.e., Lemma 3.5. Let 𝜌 = max{1 − 𝛾1, 1 − 𝛾2, 1 − 𝛾3} Assume that
Θ ∈ (C𝐴 (𝑡) × C𝐵 (𝑡) × C𝐶 (𝑡) × C𝐿 (𝑡)) for all 𝑡 ≥ 𝑇𝑤, which is holds with probability
1 − 𝛿. We can write the decomposition for 𝑥𝑡 |𝑡,Θ̃ as follows,

𝑥𝑡 |𝑡,Θ̃ = 𝑥𝑡 |𝑡−1,Θ̃ + �̃�𝑡 (𝑦𝑡 − �̃�𝑡𝑥𝑡 |𝑡−1,Θ̃)
= �̃�𝑡−1𝑥𝑡−1|𝑡−1,Θ̃ − �̃�𝑡−1�̃�𝑡−1𝑥𝑡−1|𝑡−1,Θ̃ + �̃�𝑡 (𝑦𝑡 − �̃�𝑡 ( �̃�𝑡−1𝑥𝑡−1|𝑡−1,Θ̃ − �̃�𝑡−1�̃�𝑡−1𝑥𝑡−1|𝑡−1,Θ̃))
= (𝐼 − �̃�𝑡�̃�𝑡) ( �̃�𝑡−1 − �̃�𝑡−1�̃�𝑡−1)𝑥𝑡−1|𝑡−1,Θ̃ + �̃�𝑡𝑦𝑡
= (𝐼 − �̃�𝑡�̃�𝑡) ( �̃�𝑡−1 − �̃�𝑡−1�̃�𝑡−1)𝑥𝑡−1|𝑡−1,Θ̃

+ �̃�𝑡
(
𝐶𝑥𝑡 − 𝐶𝑥𝑡 |𝑡−1,Θ̃ + 𝐶𝑥𝑡 |𝑡−1,Θ̃ + 𝑧𝑡

)
= (𝐼 − �̃�𝑡�̃�𝑡) ( �̃�𝑡−1 − �̃�𝑡−1�̃�𝑡−1)𝑥𝑡−1|𝑡−1,Θ̃

+ �̃�𝑡
(
𝐶𝑥𝑡 − 𝐶𝑥𝑡 |𝑡−1,Θ̃ + 𝐶 ( �̃�𝑡−1 − �̃�𝑡−1�̃�𝑡−1)𝑥𝑡−1|𝑡−1,Θ̃ + 𝑧𝑡

)
=

(
�̃�𝑡−1 − �̃�𝑡−1�̃�𝑡−1 − �̃�𝑡

(
�̃�𝑡 �̃�𝑡−1 − �̃�𝑡 �̃�𝑡−1�̃�𝑡−1 − 𝐶�̃�𝑡−1 + 𝐶�̃�𝑡−1�̃�𝑡−1

) )
𝑥𝑡−1|𝑡−1,Θ̃

+ �̃�𝑡𝐶 (𝑥𝑡 − 𝑥𝑡 |𝑡−1,Θ + 𝑥𝑡 |𝑡−1,Θ − 𝑥𝑡 |𝑡−1,Θ̃) + �̃�𝑡𝑧𝑡
=

(
�̃�𝑡−1 − �̃�𝑡−1�̃�𝑡−1 − �̃�𝑡

(
�̃�𝑡 �̃�𝑡−1 − �̃�𝑡 �̃�𝑡−1�̃�𝑡−1 − 𝐶�̃�𝑡−1 + 𝐶�̃�𝑡−1�̃�𝑡−1

) )
𝑥𝑡−1|𝑡−1,Θ̃

+ �̃�𝑡𝐶 (𝑥𝑡 − 𝑥𝑡 |𝑡−1,Θ) + �̃�𝑡𝐶 (𝑥𝑡 |𝑡−1,Θ − 𝑥𝑡 |𝑡−1,Θ̃) + �̃�𝑡𝑧𝑡 . (C.7)

Thus, the dynamics of 𝑥𝑡 |𝑡,Θ̃ is governed by

N𝑡 = �̃�𝑡−1 − �̃�𝑡−1�̃�𝑡−1 − �̃�𝑡
(
�̃�𝑡 �̃�𝑡−1 − �̃�𝑡 �̃�𝑡−1�̃�𝑡−1 − 𝐶�̃�𝑡−1 + 𝐶�̃�𝑡−1�̃�𝑡−1

)
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and it is driven by the process of �̃�𝑡𝐶 (𝑥𝑡 − 𝑥𝑡 |𝑡−1,Θ) + �̃�𝑡𝐶 (𝑥𝑡 |𝑡−1,Θ − 𝑥𝑡 |𝑡−1,Θ̃) + �̃�𝑡𝑧𝑡 .

Let 𝑇𝑢 = 𝑇𝐵

(
2𝜓𝜌
1−𝜌

)2
. With the Assumption 5.1, and for 𝑇𝑤 ≥ 𝑇𝑢, we have that

∥�̃�𝑡 −𝐶∥ ≤ 1−𝜌
2𝜓𝜌 which gives ∥N𝑡 ∥ ≤ 1+𝜌

2 < 1 for all 𝑡 ≥ 𝑇𝑤. Similar to the proof of
Lemma 4.2 in [161], we have that �̃�𝑡𝐶 (𝑥𝑡 − 𝑥𝑡 |𝑡−1,Θ) + �̃�𝑡𝑧𝑡 is 𝜓(∥𝐶∥∥Σ∥1/2 + 𝜎𝑧)-
sub-Gaussian, thus it’s ℓ2-norm can be bounded using Lemma C.3.12:

∥ �̃�𝑡𝐶 (𝑥𝑡 − 𝑥𝑡 |𝑡−1,Θ) + �̃�𝑡𝑧𝑡 ∥ ≤ 𝜓(∥𝐶∥∥Σ∥1/2 + 𝜎𝑧)
√︁

2𝑛 log(2𝑛𝑇/𝛿)

for all 𝑡 ≥ 𝑇𝑤 with probability at least 1 − 𝛿. A special care is needed for 𝑥𝑡 |𝑡−1,Θ −
𝑥𝑡 |𝑡−1,Θ̃. Denote Δ𝑡 = 𝑥𝑡 |𝑡−1,Θ − 𝑥𝑡 |𝑡−1,Θ̃. Consider the decomposition given in
equation (51) in Lale et al. [161]. In this setting, since at each time step after
the warm-up, the estimation errors are monotonically decreasing, therefore we can
upper bound the norm of each term in the decomposition by the norm of the term at
the time of end of warm-up. Let

𝑇𝛼=𝑇𝐵

(
^2 (1 + 𝜓(1 + ∥𝐶∥))

𝜌/2

)2
, 𝑇𝛾 = 𝑇𝐴

𝜎2
𝑛 ( �̄�)
4

(
1 + ^2(1 + 𝜓∥𝐵∥)

𝜌/2

)2
,

𝑇𝛽=𝑇𝐴
𝜎2
𝑛 ( �̄�)
4

(
^2∥𝐵∥(1+𝜓+𝜓∥𝐶∥)(^1𝜓+(1+^2) (1+𝜓))

(1 − 𝜌)2

)2
. (C.8)

Thus, using the arguments in [161], we can show that after a warm-up period of
𝑇𝑤 ≥ max{𝑇𝛼, 𝑇𝛾}, we have that for all 𝑡 ≥ 𝑇𝑤, max{∥(𝐴+( �̃�𝑡 − 𝐴− �̃�𝑡�̃�𝑡 +𝐵�̃�𝑡)) (𝐼−
�̃�𝑡�̃�𝑡)∥, ∥𝐴−𝐵�̃�𝑡+𝐵�̃�𝑡 �̃�𝑡 (�̃�𝑡−𝐶)∥} ≤ 𝜎 < 1. Using the inductive argument given
in [161], we can show that for all 𝑡 ≥ 𝑇𝑤 ≥ 𝑇𝛽, ∥Δ𝑡 ∥ ≤ Δ̄ with probability 1 − 𝛿.
Notice that the definition of Δ̄ still includes the same terms given in equation (54)
of Lale et al. [161] but 𝛽𝐴, 𝛽𝐵, 𝛽𝐶 is replaced with 𝛽𝐴 (𝑇𝑤), 𝛽𝐵 (𝑇𝑤), 𝛽𝐶 (𝑇𝑤) and Δ𝐿

is replaced by 2𝛽𝐿 (𝑇𝑤) due to new estimation method, i.e.,

Δ̄ = 10
(

¯̂
1 − 𝜌 +

𝛽b̄

(1 − 𝜌)2

) (
∥𝐶∥∥Σ∥1/2 + 𝜎𝑧

) √︁
2𝑚 log(2𝑚𝑇/𝛿)

for ¯̂ = 2^1𝛽𝐿 (𝑇𝑤) + 2𝜓(𝛽𝐴 (𝑇𝑤) + ^2𝛽𝐵 (𝑇𝑤)), 𝛽 = 2𝜓𝛽𝐶 (𝑇𝑤) (^1 + 2(𝛽𝐴 (𝑇𝑤) +
^2𝛽𝐵 (𝑇𝑤))) + 2(𝛽𝐴 (𝑇𝑤) + ^2𝛽𝐵 (𝑇𝑤)) and b̄ = 𝜓(𝜌 + 2(𝛽𝐴 (𝑇𝑤) + ^2𝛽𝐵 (𝑇𝑤))) +
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2∥𝐵∥^2𝛽𝐿 (𝑇𝑤). Thus, we get

∥𝑥𝑡 |𝑡,Θ̃∥ =
 𝑡∑︁
𝑖=1

N𝑡−𝑖
(
�̃�𝑖𝐶 (𝑥𝑖−1 − 𝑥𝑖 |𝑖−1,Θ) + �̃�𝑖𝐶 (𝑥𝑖 |𝑖−1,Θ − 𝑥𝑖 |𝑖−1,Θ̃) + �̃�𝑖𝑧𝑖

) (C.9)

≤ max
1≤𝑖≤𝑡

�̃�𝑖𝐶 (𝑥𝑖−1 − 𝑥𝑖 |𝑖−1,Θ) + �̃�𝑖𝐶 (𝑥𝑖 |𝑖−1,Θ − 𝑥𝑖 |𝑖−1,Θ̃) + �̃�𝑖𝑧𝑖
 (

𝑡∑︁
𝑖=1
∥M∥𝑡−𝑖

)
(C.10)

≤ 2
1 − 𝜌 max

1≤𝑖≤𝑡

�̃�𝑖𝐶 (𝑥𝑖−1 − 𝑥𝑖 |𝑖−1,Θ) + �̃�𝑖𝐶 (𝑥𝑖 |𝑖−1,Θ − 𝑥𝑖 |𝑖−1,Θ̃) + �̃�𝑖𝑧𝑖

(C.11)

≤ X̃ B
2𝜓

(
∥𝐶∥Δ̄ +

(
∥𝐶∥∥Σ∥1/2 + 𝜎𝑧

) √︁
2𝑛 log(2𝑛𝑇/𝛿)

)
1 − 𝜌 . (C.12)

with probability 1 − 2𝛿. For 𝑦𝑡 , we have the following decomposition,

𝑦𝑡 = 𝐶𝑥𝑡 |𝑡−1,Θ̃ + 𝐶 (𝑥𝑡 − 𝑥𝑡 |𝑡−1,Θ̃) + 𝑧𝑡
= 𝐶𝑥𝑡 |𝑡−1,Θ̃ + 𝐶 (𝑥𝑡 − 𝑥𝑡 |𝑡−1,Θ) + 𝐶 (𝑥𝑡 |𝑡−1,Θ − 𝑥𝑡 |𝑡−1,Θ̃) + 𝑧𝑡
= 𝐶 ( �̃�𝑡−1 − �̃�𝑡−1�̃�𝑡−1)𝑥𝑡−1|𝑡−1,Θ̃ + 𝐶 (𝑥𝑡 − 𝑥𝑡 |𝑡−1,Θ) + 𝐶 (𝑥𝑡 |𝑡−1,Θ − 𝑥𝑡 |𝑡−1,Θ̃) + 𝑧𝑡

Using similar analysis with 𝑥𝑡 |𝑡,Θ̃, we get the following bound for 𝑦𝑡 for all 𝑡 ≥ 𝑇𝑤:

∥𝑦𝑡 ∥ ≤ 𝜌∥𝐶∥X̃ + (∥𝐶∥∥Σ∥1/2 + 𝜎𝑧)
√︁

2𝑚 log(2𝑚𝑇/𝛿) + ∥𝐶∥Δ̄

with probability 1− 2𝛿. Thus, all statements of Lemma 5.6 hold with probability at
least 1 − 3𝛿.

C.2.2 Upper bound on ∥Σ̃ − S−1ΣS∥, Proof of Lemma 5.10
In this section, we provide the concentration results on ∥Σ̃ − S−1ΣS∥. S ∈ R𝑛×𝑛 is
a similarity transformation that is composed of two similarity transformations. The
first one takes the system Θ and transforms it to Θ̄, the output of SysId algorithm.
The second similarity transformation is the unitary matrix that is proven to exist in
Theorem 5.4. We deploy the fixed point argument from [191] to bound ∥Σ̃−S−1ΣS∥.

Proof. For the simplicity of the presentation of the proof, without loss of generality,
let 𝐴 = S−1𝐴S,𝐶 = 𝐶S, i.e. assume that S = 𝐼. Given parameters (𝐴,𝐶, 𝜎2

𝑤 𝐼, 𝜎
2
𝑧 𝐼),

define 𝐹 (𝑋, 𝐴, 𝐶) such that

𝐹 (𝑋, 𝐴, 𝐶) = 𝑋 − 𝐴𝑋𝐴⊤ + 𝐴𝑋𝐶⊤
(
𝐶𝑋𝐶⊤ + 𝜎2

𝑧 𝐼

)−1
𝐶𝑋𝐴⊤ − 𝜎2

𝑤 𝐼

= 𝑋 − 𝐴(𝐼 + 𝜎−2
𝑧 𝑋𝐶⊤𝐶)−1𝑋𝐴⊤ − 𝜎2

𝑤 𝐼
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where last equality follows from matrix inversion lemma. Moreover, notice that
solving algebraic Riccati equation for steady state error covariance matrix of state
estimation for (𝐴,𝐶, 𝜎2

𝑤 𝐼, 𝜎
2
𝑧 𝐼) is equivalent to finding the unique positive definite

solution to 𝑋 such that 𝐹 (𝑋, 𝐴, 𝐶) = 0. The solution for the underlying system
Θ, 𝐹 (𝑋, 𝐴, 𝐶) = 0, is denoted as Σ and the solution for the optimistic system Θ̂

chosen from the set (C𝐴 × C𝐵 × C𝐶) ∩ S, 𝐹 (𝑋, �̃�, �̃�) = 0, is denoted as Σ̃. Denote
𝐷Σ = Σ̃ − Σ and 𝑀 = 𝐴(𝐼 − 𝐿𝐶). Recall that 𝐿 = Σ𝐶⊤

(
𝐶Σ𝐶⊤ + 𝜎2

𝑧 𝐼
)−1. For any

matrix 𝑋 such that 𝐼 + (Σ + 𝑋) (𝜎−2
𝑧 𝐶

⊤𝐶) is invertible we have

𝐹 (Σ + 𝑋, 𝐴, 𝐶) = 𝑋 − 𝑀𝑋𝑀⊤ + 𝑀𝑋 (𝜎−2
𝑧 𝐶

⊤𝐶) [𝐼 + (Σ + 𝑋) (𝜎−2
𝑧 𝐶

⊤𝐶)]−1𝑋𝑀⊤.

(C.13)

One can verify the identity by adding 𝐹 (Σ, 𝐴, 𝐶) = 0 to the right hand side of (C.13)
and use the identity that𝑀 = 𝐴(𝐼−𝐿𝐶) = 𝐴(𝐼+𝜎−2

𝑧 Σ𝐶⊤𝐶)−1 = 𝐴(𝐼−Σ𝐶⊤(𝐶Σ𝐶⊤+
𝜎2
𝑧 𝐼)−1𝐶). Define two operators T (𝑋), H(𝑋) such that T (𝑋) = 𝑋 − 𝑀𝑋𝑀⊤ and
H(𝑋) = 𝑀𝑋 (𝜎−2

𝑧 𝐶
⊤𝐶) [𝐼 + (Σ + 𝑋) (𝜎−2

𝑧 𝐶
⊤𝐶)]−1𝑋𝑀⊤. Thus,

𝐹 (Σ + 𝑋, 𝐴, 𝐶) = T (𝑋) + H (𝑋).

Notice that since (C.13) is satisfied for any 𝑋 such that 𝐼 + (Σ + 𝑋) (𝜎−2
𝑧 𝐶

⊤𝐶) is
invertible,

𝐹 (Σ + 𝑋, 𝐴, 𝐶) − 𝐹 (Σ + 𝑋, �̃�, �̃�) = T (𝑋) + H (𝑋) (C.14)

has a unique solution 𝑋 = 𝐷Σ where Σ + 𝐷Σ ⪰ 0.

Recall that 𝑀 is stable. Therefore, the linear map T : 𝑋 ↦→ 𝑋 − 𝑀𝑋𝑀⊤ has
non-zero eigenvalues, i.e T is invertible. Using this, define the following operator,

Ψ(𝑋) = T −1 (
𝐹 (Σ + 𝑋, 𝐴, 𝐶) − 𝐹 (Σ + 𝑋, �̃�, �̃�) − H (𝑋)

)
.

Notice that solving for 𝑋 in (C.14) is equivalent to solving for 𝑋 that satisfies
Σ + 𝑋 ⪰ 0 and Ψ(𝑋) = 𝑋 . This shows that Ψ(𝑋) has a unique fixed point X that is
𝐷Σ. Consider the set

SΣ,𝛽 = {𝑋 : ∥𝑋 ∥ ≤ 𝛽, 𝑋 = 𝑋⊤, Σ + 𝑋 ⪰ 0}. (C.15)

Let 𝑋 ∈ SΣ,𝛽 for 𝛽 < 𝜎𝑛 (Σ)/2. First of all, recalling Assumption 5.1, notice that
operator norm of T −1 is upper bounded as ∥T −1∥ ≤ 1

1−𝜐2 . We also have ∥H (𝑋)∥ ≤
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𝜎−2
𝑧 𝜐2∥𝑋 ∥2∥𝐶∥2 ≤ 𝜎−2

𝑧 𝜐2𝛽2∥𝐶∥2. Now consider 𝐹 (Σ+𝑋, 𝐴, 𝐶) −𝐹 (Σ+𝑋, �̃�, �̃�):

𝐹 (Σ + 𝑋, �̃�, �̃�) − 𝐹 (Σ + 𝑋, 𝐴, 𝐶) (C.16)

= 𝐴(𝐼 + 𝜎−2
𝑧 (Σ + 𝑋)𝐶⊤𝐶)−1(Σ + 𝑋)𝐴⊤− �̃�(𝐼 + 𝜎−2

𝑧 (Σ + 𝑋)�̃�⊤�̃�)−1(Σ + 𝑋) �̃�⊤

= 𝐴(𝐼 + 𝜎−2
𝑧 (Σ + 𝑋)�̃�⊤�̃�)−1(Σ + 𝑋)𝜎−2

𝑧 (𝐶⊤𝐶−�̃�⊤�̃�) (𝐼+𝜎−2
𝑧 (Σ+𝑋)𝐶⊤𝐶)−1(Σ+𝑋)𝐴⊤

− ( �̃�−𝐴) (𝐼+𝜎−2
𝑧 (Σ+𝑋)�̃�⊤�̃�)−1(Σ+𝑋)𝐴⊤−𝐴(𝐼 + 𝜎−2

𝑧 (Σ+𝑋)�̃�⊤�̃�)−1(Σ+𝑋) ( �̃�−𝐴)⊤

− ( �̃� − 𝐴) (𝐼 + 𝜎−2
𝑧 (Σ + 𝑋)�̃�⊤�̃�)−1(Σ + 𝑋) ( �̃� − 𝐴)⊤ (C.17)

Note that for two PSD matrices of the same dimension 𝑀 and 𝑁 , we have ∥𝑁 (𝐼 +
𝑀𝑁)−1∥ ≤ ∥𝑁 ∥. Using this result and the fact that 𝑋 ∈ SΣ,𝛽,

∥𝐹 (Σ+𝑋, �̃�, �̃�)−𝐹 (Σ+𝑋, 𝐴, 𝐶)∥ (C.18)

≤𝜎−2
𝑧 ^2

1∥Σ + 𝑋 ∥
2∥𝐶⊤𝐶 − �̃�⊤�̃�∥+2^1∥Σ+𝑋 ∥∥ �̃� − 𝐴∥+∥Σ + 𝑋 ∥∥ �̃� − 𝐴∥2

≤𝜎−2
𝑧 ^2

1 (𝛽+∥Σ∥)
2(2∥𝐶∥∥�̃�−𝐶∥ + ∥�̃�−𝐶∥2)+(𝛽+∥Σ∥)(2^1∥ �̃�−𝐴∥ + ∥ �̃�−𝐴∥2)

(C.19)

This gives us the following,

∥Ψ(𝑋)∥ ≤
𝜎−2
𝑧 ^2

1 (𝛽 + ∥Σ∥)
2 (

2∥𝐶∥∥�̃� − 𝐶∥ + ∥�̃�−𝐶∥2
)

1 − 𝜐2

+
(𝛽 + ∥Σ∥)

(
2^1∥ �̃� − 𝐴∥ + ∥ �̃�−𝐴∥2

)
+ 𝜎−2

𝑧 𝜐2𝛽2∥𝐶∥2

1 − 𝜐2

Again using the fact that ∥𝑁 (𝐼 + 𝑀𝑁)−1∥ ≤ ∥𝑁 ∥ for two PSD matrices and the
definition ofH(𝑋), for 𝑋1, 𝑋2 ∈ SΣ,𝛽

∥H (𝑋1) − H (𝑋2)∥ ≤ 𝜐2
(
(𝜎−2

𝑧 ∥𝐶∥2𝛽)2 + 2(𝜎−2
𝑧 ∥𝐶∥2𝛽)

)
∥𝑋1 − 𝑋2∥

Next, we bound

∥D(𝑋1, 𝑋2)∥ = ∥𝐹 (Σ+𝑋1, �̃�, �̃�)−𝐹 (Σ+𝑋1, 𝐴, 𝐶)−𝐹 (Σ+𝑋2, �̃�, �̃�)+𝐹 (Σ+𝑋2, 𝐴, 𝐶)∥.

Notice that we have ∥(𝐼 + 𝜎−2
𝑧 (Σ + 𝑋)�̃�⊤�̃�)−1∥, ∥(𝐼 + 𝜎−2

𝑧 (Σ + 𝑋)𝐶⊤𝐶)−1∥ ≤
2(∥Σ∥+𝛽)
𝜎𝑛 (Σ) from the choice of 𝛽. Let 𝑉1 = (𝐼 + 𝜎−2

𝑧 (Σ + 𝑋1)𝐶⊤𝐶)−1(Σ + 𝑋1) and
�̃�1 = (𝐼 + 𝜎−2

𝑧 (Σ + 𝑋1)�̃�⊤�̃�)−1(Σ + 𝑋1). Define similarly 𝑉2 and �̃�2. Note that
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∥𝑉1∥, ∥𝑉2∥, ∥�̃�1∥, ∥�̃�2∥ ≤ ∥Σ∥ + 𝛽. Using these, we bound ∥D(𝑋1, 𝑋2)∥ as followsD(𝑋1, 𝑋2)


=

𝐴�̃�1𝜎
−2
𝑧 (𝐶⊤𝐶−�̃�⊤�̃�)𝑉1𝐴

⊤−𝐴�̃�2𝜎
−2
𝑧 (𝐶⊤𝐶 − �̃�⊤�̃�)𝑉2𝐴

⊤−( �̃�−𝐴)�̃�1𝐴
⊤+( �̃�−𝐴)�̃�2𝐴

⊤

− 𝐴�̃�1( �̃� − 𝐴)⊤ + 𝐴�̃�2( �̃� − 𝐴)⊤ − ( �̃� − 𝐴)�̃�1( �̃� − 𝐴)⊤ + ( �̃� − 𝐴)�̃�2( �̃� − 𝐴)⊤


≤ ^2
1∥(�̃�1 − �̃�2)𝜎−2

𝑧 (𝐶⊤𝐶 − �̃�⊤�̃�)𝑉1∥ + ^2
1∥�̃�2𝜎

−2
𝑧 (𝐶⊤𝐶 − �̃�⊤�̃�) (𝑉1 −𝑉2)∥

+ ∥�̃�1 − �̃�2∥
(
2^1∥ �̃� − 𝐴∥ + ∥ �̃� − 𝐴∥2

)
≤ 𝜎−2

𝑧 ^2
1 (2∥𝐶∥∥�̃�−𝐶∥ + ∥�̃�−𝐶∥

2)
(
∥�̃�1 − �̃�2∥∥𝑉1∥ + ∥�̃�2∥∥𝑉1 −𝑉2∥

)
+ ∥�̃�1 − �̃�2∥

(
2^1∥ �̃� − 𝐴∥ + ∥ �̃� − 𝐴∥2

)
(C.20)

We need to consider ∥�̃�1 − �̃�2∥ and ∥𝑉1 −𝑉2∥:

∥�̃�1 − �̃�2∥ ≤ ∥(𝐼 + 𝜎−2
𝑧 (Σ + 𝑋1)�̃�⊤�̃�)−1(𝑋1 − 𝑋2)∥

+
((𝐼 + 𝜎−2

𝑧 (Σ + 𝑋1)�̃�⊤�̃�)−1 − (𝐼 + 𝜎−2
𝑧 (Σ + 𝑋2)�̃�⊤�̃�)−1

)
(Σ + 𝑋2)


≤ ∥𝑋1 − 𝑋2∥

2(∥Σ∥ + 𝛽)
𝜎𝑛 (Σ)

+ 𝜎−2
𝑧

4(∥Σ∥ + 𝛽)3

𝜎2
𝑛 (Σ)

(∥𝐶∥ + ∥�̃� − 𝐶∥)2∥𝑋1 − 𝑋2∥

∥𝑉1 −𝑉2∥ ≤ ∥𝑋1 − 𝑋2∥
2(∥Σ∥ + 𝛽)
𝜎𝑛 (Σ)

+ 𝜎−2
𝑧

4(∥Σ∥ + 𝛽)3

𝜎2
𝑛 (Σ)

∥𝐶∥2∥𝑋1 − 𝑋2∥

Combining these with (C.20), we getD(𝑋1, 𝑋2)


≤
[
(2∥𝐶∥∥�̃�−𝐶∥+∥�̃�−𝐶∥2)^2

1

(
4𝜎−2

𝑧 (∥Σ∥+𝛽)2

𝜎𝑛 (Σ)
+

8𝜎−4
𝑧 (∥Σ∥+𝛽)4

𝜎2
𝑛 (Σ)

((∥𝐶∥+∥�̃� − 𝐶∥)2+∥𝐶∥2)
)

+
(
2^1∥ �̃� − 𝐴∥ + ∥ �̃� − 𝐴∥2

) (
2(∥Σ∥ + 𝛽)
𝜎𝑛 (Σ)

+
4𝜎−2

𝑧 (∥Σ∥ + 𝛽)3

𝜎2
𝑛 (Σ)

(∥𝐶∥ + ∥�̃� − 𝐶∥)2
) ]
∥𝑋1 − 𝑋2∥

Therefore we have the following inequality for Ψ(𝑋1) − Ψ(𝑋2):

∥Ψ(𝑋1)−Ψ(𝑋2)∥

≤
[
(2∥𝐶∥∥�̃�−𝐶∥+∥�̃�−𝐶∥2)^2

1

(
4𝜎−2

𝑧 (∥Σ∥+𝛽)2

𝜎𝑛 (Σ)
+

8𝜎−4
𝑧 (∥Σ∥+𝛽)4

𝜎2
𝑛 (Σ)

((∥𝐶∥+∥�̃� − 𝐶∥)2+∥𝐶∥2)
)

+
(
2^1∥ �̃� − 𝐴∥ + ∥ �̃� − 𝐴∥2

) (
2(∥Σ∥ + 𝛽)
𝜎𝑛 (Σ)

+ 𝜎−2
𝑧

4(∥Σ∥ + 𝛽)3

𝜎2
𝑛 (Σ)

(∥𝐶∥ + ∥�̃� − 𝐶∥)2
)

+ 𝜐2
(
(𝜎−2
𝑧 ∥𝐶∥2𝛽)2 + 2(𝜎−2

𝑧 ∥𝐶∥2𝛽)
) ]
∥𝑋1 − 𝑋2∥

1 − 𝜐2 (C.21)

Denote 𝜖 such that 𝜖 B max{∥𝐶 − �̃�∥, ∥𝐴 − �̃�∥}. The choice of 𝑇𝑤 (due to 𝑇𝐴, 𝑇𝐵)
guarantees that 𝜖 < 1. In order to show that 𝐷Σ is the unique fixed point of Ψ in
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SΣ,𝛽, one needs to show that Ψ maps SΣ,𝛽 to itself and it’s contraction. To this end,
we need to have 𝜖 and 𝛽 that gives ∥Ψ(𝑋)∥ ≤ 𝛽 and ∥Ψ(𝑋1)−Ψ(𝑋2)∥ < ∥𝑋1− 𝑋2∥.
Let 𝛽 = 2𝑘∗𝜖 < 𝜎𝑛 (Σ)

2 where

𝑘∗ =
𝜎−2
𝑧 ^2

1 (2∥𝐶∥ + 1)∥Σ∥2 + (2^1 + 1)∥Σ∥
1 − 𝜐2

One can verify that this gives ∥Ψ(𝑋)∥ ≤ 𝛽. In order to get contraction, the coefficient
of ∥𝑋1 − 𝑋2∥ in (C.21) must be less than 1. This requires

𝜖 <
1 − 𝜐2

(2∥𝐶∥ + 1)^2
1𝑐1 + (2^1 + 1)𝑐2 + 6𝑘∗𝑐3

,

for

𝑐1 =

(
4𝜎−2

𝑧 (∥Σ∥+𝜎𝑛 (Σ)/2)2

𝜎𝑛 (Σ)
+

8𝜎−4
𝑧 (∥Σ∥+𝜎𝑛 (Σ)/2)4

𝜎2
𝑛 (Σ)

(2∥𝐶∥2 + 2∥𝐶∥ + 1)
)

𝑐2 =

(
2(∥Σ∥ + 𝜎𝑛 (Σ)/2)

𝜎𝑛 (Σ)
+

4𝜎−2
𝑧 (∥Σ∥ + 𝜎𝑛 (Σ)/2)3

𝜎2
𝑛 (Σ)

(∥𝐶∥2 + 2∥𝐶∥ + 1)
)

𝑐3 = 𝜐2𝜎−2
𝑧 ∥𝐶∥2.

From the choice of 𝑇𝑤 (Due to 𝑇𝐿), 𝜖 satisfies the stated bound. Thus, Ψ has a
unique fixed point in SΣ,2𝑘𝜖 , i.e. ∥Σ̃−Σ∥ ≤ 2𝑘∗max{∥𝐶 − �̃�∥, ∥𝐴− �̃�∥}. Bringing
back the similarity transformations, this gives us the following bound

∥Σ̃ − S−1ΣS∥ ≤ 2𝑘∗max{∥�̃� − 𝐶S∥, ∥ �̃� − S−1𝐴S∥}
≤ 4𝑘∗max {𝛽𝐴, 𝛽𝐶} B ΔΣ

since ∥ �̃� − S−1𝐴S∥ ≤ 2𝛽𝐴 and ∥�̃� − 𝐶S∥ ≤ 2𝛽𝐶 . □

C.2.3 Proof of Lemma 5.9
From Lemma 5.3, we have the following with probability 1−𝛿/2, for all 1 ≤ 𝑡 ≤ 𝑇𝑤,

∥𝑥𝑡 ∥ ≤ 𝑋𝑒𝑥𝑝 B
(𝜎𝑤 + 𝜎𝑢∥𝐵∥)^1(1 − 𝛾1)√︁

1 − (1 − 𝛾1)2
√︁

2𝑛 log(12𝑛𝑇𝑤/𝛿), (C.22)

∥𝑧𝑡 ∥ ≤ 𝑍 B 𝜎𝑧
√︁

2𝑚 log(12𝑚𝑇𝑤/𝛿), (C.23)

∥𝑢𝑡 ∥ ≤ 𝑈𝑒𝑥𝑝 B 𝜎𝑢
√︁

2𝑝 log(12𝑝𝑇𝑤/𝛿). (C.24)

Let Ω = 2(∥𝐶⊤𝑄𝐶∥𝑋2
𝑒𝑥𝑝 + ∥𝑄∥𝑍2 + ∥𝑅∥𝑈2

𝑒𝑥𝑝). Define X𝑡 = 𝑥⊤𝑡 𝐶⊤𝑄𝐶𝑥𝑡 + 𝑧⊤𝑡 𝑄𝑧𝑡 +
𝑢⊤𝑡 𝑅𝑢𝑡 − E[𝑥⊤𝑡 𝐶⊤𝑄𝐶𝑥𝑡 + 𝑧⊤𝑡 𝑄𝑧𝑡 + 𝑢⊤𝑡 𝑅𝑢𝑡] and its truncated version X̃𝑡 = 1X𝑡≤ΩX𝑡 .
Define 𝑆 =

∑𝑇𝑤
𝑡=1X𝑡 and 𝑆 =

∑𝑇𝑤
𝑡=1 X̃𝑡 . By Lemma I.4 of [161],

P

(
𝑆 > Ω

√︂
2𝑇𝑤 log

2
𝛿

)
≤ P

(
max

1≤𝑡≤𝑇𝑤
X𝑡 ≥ Ω

)
+ P

(
𝑆 > Ω

√︂
2𝑇𝑤 log

2
𝛿

)
. (C.25)
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From (C.22)-(C.24) and Azuma Inequality, each term on the right-hand side is
bounded by 𝛿/2. Thus, with probability 1 − 𝛿,

𝑇𝑤∑︁
𝑡=1

𝑦⊤𝑡 𝑄𝑦𝑡+𝑢⊤𝑡 𝑅𝑢𝑡−E[𝑦⊤𝑡 𝑄𝑦𝑡+𝑢⊤𝑡 𝑅𝑢𝑡] ≤Ω
√︂

2𝑇𝑤 log
2
𝛿

(C.26)

𝑇𝑤∑︁
𝑡=1

𝑦⊤𝑡 𝑄𝑦𝑡+𝑢⊤𝑡 𝑅𝑢𝑡 ≤𝑇𝑤

(
(𝜎2

𝑤+𝜎2
𝑢 ∥𝐵∥2)

^2
1 (1 − 𝛾1)2

1 − (1 − 𝛾1)2
Tr(𝐶⊤𝑄𝐶)+𝜎2

𝑢 Tr(𝑅)+𝜎2
𝑧 Tr(𝑄)

)
(C.27)

+ 2
(
∥𝐶⊤𝑄𝐶∥𝑋2

𝑒𝑥𝑝 + ∥𝑄∥𝑍2 + ∥𝑅∥𝑈2
𝑒𝑥𝑝

) √︂
2𝑇𝑤 log

2
𝛿

(C.28)

Recall that cost obtained in 𝑇𝑤 by the optimal controller of Θ is

𝑇𝑤

(
Tr(𝐶⊤𝑄𝐶Σ̄) + Tr(𝑃(Σ − Σ̄)) + 𝜎2

𝑧 Tr(𝑄)
)
.

Thus the regret obtained from 𝑇𝑤 length exploration is upper bounded as described
in the statement of lemma.

C.3 Proofs of Section 5.6
C.3.1 Proof of Lemma 5.15

Proof. Let 𝐵′𝜋,𝑤 B [𝐼⊤𝑛×𝑛 0⊤𝑠×𝑛]⊤, and 𝐵′𝜋,𝑧 B [𝐷⊤𝜋 𝐵⊤ 𝐵⊤𝜋 ]⊤, the columns of 𝐵′𝜋
applied on process noise, and measurement noise respectively. Similarly 𝐶′𝜋,𝑦 B[
𝐶 0𝑠×𝑑

]
and 𝐶′𝜋,𝑢 B

[
𝐷𝜋𝐶 𝐶𝜋

]
are rows of 𝐶′𝜋 generating the observation and

action.

Rolling out the dynamical system defining a policy 𝜋 in (5.82), we can restate the
action 𝑢𝜋𝑡 as follows,

𝑢𝜋𝑡 = 𝐷𝜋𝑧𝑡 +
𝑡−1∑︁
𝑖=1

𝐶′𝜋,𝑢𝐴
′
𝜋
𝑖−1
𝐵′𝜋,𝑧𝑧𝑡−𝑖 +

𝑡−1∑︁
𝑖=1

𝐶′𝜋,𝑢𝐴
′
𝜋
𝑖−1
𝐵′𝜋,𝑤𝑤𝑡−𝑖

= 𝐷𝜋𝑧𝑡 +
𝑡−1∑︁
𝑖=1

𝐶′𝜋,𝑢𝐴
′
𝜋
𝑖−1
𝐵′𝜋,𝑧𝑧𝑡−𝑖 + 𝐶′𝜋,𝑢𝐵′𝜋,𝑤𝑤𝑡−1 +

𝑡−1∑︁
𝑖=2

𝐶′𝜋,𝑢𝐴
′
𝜋
𝑖−1
𝐵′𝜋,𝑤𝑤𝑡−𝑖

= 𝐷𝜋𝑧𝑡 +
𝑡−1∑︁
𝑖=1

𝐶′𝜋,𝑢𝐴
′
𝜋
𝑖−1
𝐵′𝜋,𝑧𝑧𝑡−𝑖 + 𝐷𝜋𝐶𝑤𝑡−1 +

𝑡−1∑︁
𝑖=2

𝐶′𝜋,𝑢𝐴
′
𝜋
𝑖−1
𝐵′𝜋,𝑤𝑤𝑡−𝑖
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Note that 𝐴′𝜋𝐵′𝜋,𝑤 is equal to

[
𝐴 + 𝐵𝐷𝜋𝐶

𝐵𝜋𝐶

]
. Based on the definition of 𝐴′𝜋 in (5.82),

we restate 𝐴′𝜋 as follows,

𝐴′𝜋 =

[
𝐴 + 𝐵𝐷𝜋𝐶 𝐵𝐶𝜋

𝐵𝜋𝐶 𝐴𝜋

]
=

[
𝐵𝐷𝜋𝐶 𝐵𝐶𝜋

𝐵𝜋𝐶 𝐴𝜋

]
+

[
𝐴 0𝑛×𝑠

0𝑠×𝑛 0𝑠×𝑠

]
For any given bounded matrices 𝐴′𝜋 and 𝐴, and any integer 𝑖 > 0, we have

𝐴′𝜋
𝑖
=

[
𝐴 + 𝐵𝐷𝜋𝐶 𝐵𝐶𝜋

𝐵𝜋𝐶 𝐴𝜋

] 𝑖
=

[
𝐴 + 𝐵𝐷𝜋𝐶 𝐵𝐶𝜋

𝐵𝜋𝐶 𝐴𝜋

] 𝑖−1 [
𝐵𝐷𝜋𝐶 𝐵𝐶𝜋

𝐵𝜋𝐶 𝐴𝜋

]
+
[
𝐴 + 𝐵𝐷𝜋𝐶 𝐵𝐶𝜋

𝐵𝜋𝐶 𝐴𝜋

] 𝑖−1 [
𝐴 0𝑛×𝑠

0𝑠×𝑛 0𝑠×𝑠

]
=

[
𝐴 + 𝐵𝐷𝜋𝐶 𝐵𝐶𝜋

𝐵𝜋𝐶 𝐴𝜋

] 𝑖−1 [
𝐵𝐷𝜋𝐶 𝐵𝐶𝜋

𝐵𝜋𝐶 𝐴𝜋

]
+

[
𝐴 + 𝐵𝐷𝜋𝐶 𝐵𝐶𝜋

𝐵𝜋𝐶 𝐴𝜋

] 𝑖−2 [
𝐵𝐷𝜋𝐶 𝐵𝐶𝜋

𝐵𝜋𝐶 𝐴𝜋

] [
𝐴 0𝑛×𝑠

0𝑠×𝑛 0𝑠×𝑠

]
+

[
𝐴 + 𝐵𝐷𝜋𝐶 𝐵𝐶𝜋

𝐵𝜋𝐶 𝐴𝜋

] 𝑖−2 [
𝐴2 0𝑛×𝑠

0𝑠×𝑛 0𝑠×𝑠

]
...

=

[
𝐴𝑖 0𝑛×𝑠

0𝑠×𝑛 0𝑠×𝑠

]
+

𝑖∑︁
𝑗=1

𝐴′𝜋
𝑗−1

[
𝐵𝐷𝜋𝐶 𝐵𝐶𝜋

𝐵𝜋𝐶 𝐴𝜋

] [
𝐴 0𝑛×𝑠

0𝑠×𝑛 0𝑠×𝑠

] 𝑖− 𝑗
We use this decomposition to relate 𝑢𝜋𝑡 and 𝑢M

𝑡 . Now considering 𝐴′𝜋𝑖−1𝐵′𝜋,𝑤, for
𝑖 − 1 > 0 we have

𝐴′𝜋
𝑖−1
𝐵′𝜋,𝑤 =

[
𝐴𝑖−1

0𝑠×𝑛

]
+
𝑖−1∑︁
𝑗=1

𝐴′𝜋
𝑗−1

[
𝐵𝐷𝜋𝐶 𝐵𝐶𝜋

𝐵𝜋𝐶 𝐴𝜋

][
𝐴𝑖−1− 𝑗

0𝑠×𝑛

]
=

[
𝐴𝑖−1

0𝑠×𝑛

]
+
𝑖−1∑︁
𝑗=1
𝐴′𝜋

𝑗−1
𝐵′𝜋,𝑧𝐶𝐴

𝑖−1− 𝑗

Using this equality in the derivation of 𝑢𝜋𝑡 we derive,
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𝑢𝜋𝑡 = 𝐷𝜋𝑧𝑡 +
𝑡−1∑︁
𝑖=1

𝐶′𝜋,𝑢𝐴
′
𝜋
𝑖−1
𝐵′𝜋,𝑧𝑧𝑡−𝑖 + 𝐷𝜋𝐶𝑤𝑡−1

+
𝑡−1∑︁
𝑖=2

[
𝐷𝜋𝐶 𝐶𝜋

] [
𝐴𝑖−1

0𝑠×𝑛

]
𝑤𝑡−𝑖 +

𝑡−1∑︁
𝑖=2

𝐶′𝜋,𝑢
©«
𝑖−1∑︁
𝑗=1

𝐴′𝜋
𝑗−1
𝐵′𝜋,𝑧𝐶𝐴

𝑖−1− 𝑗ª®¬𝑤𝑡−𝑖
= 𝐷𝜋𝑧𝑡+

𝑡−1∑︁
𝑖=1

𝐶′𝜋,𝑢𝐴
′
𝜋
𝑖−1
𝐵′𝜋,𝑧𝑧𝑡−𝑖+

𝑡−1∑︁
𝑖=1

𝐷𝜋𝐶𝐴
𝑖−1𝑤𝑡−𝑖+

𝑡−1∑︁
𝑖=2

𝑖−1∑︁
𝑗=1
𝐶′𝜋,𝑢𝐴

′
𝜋
𝑗−1
𝐵′𝜋,𝑧𝐶𝐴

𝑖−1−𝑗𝑤𝑡−𝑖

Note that 𝑏𝑡 (G) = 𝑧𝑡 +
∑𝑡−1
𝑖=1 𝐶𝐴

𝑡−𝑖−1𝑤𝑖 = 𝑧𝑡 +
∑𝑡−1
𝑖=1 𝐶𝐴

𝑖−1𝑤𝑡−𝑖. Inspired by this
expression, we rearrange the previous sum as follows:

𝑢𝜋𝑡 =𝐷𝜋

(
𝑧𝑡+

𝑡−1∑︁
𝑖=1

𝐶𝐴𝑖−1𝑤𝑡−𝑖

)
+
𝑡−1∑︁
𝑖=1

𝐶′𝜋,𝑢𝐴
′
𝜋
𝑖−1
𝐵′𝜋,𝑧𝑧𝑡−𝑖+

𝑡−1∑︁
𝑖=2

𝑖−1∑︁
𝑗=1
𝐶′𝜋,𝑢𝐴

′
𝜋
𝑗−1
𝐵′𝜋,𝑧𝐶𝐴

𝑖−1−𝑗𝑤𝑡−𝑖

=𝐷𝜋

(
𝑧𝑡+

𝑡−1∑︁
𝑖=1

𝐶𝐴𝑖−1𝑤𝑡−𝑖

)
+
𝑡−1∑︁
𝑖=1

𝐶′𝜋,𝑢𝐴
′
𝜋
𝑖−1
𝐵′𝜋,𝑧𝑧𝑡−𝑖+

𝑡−2∑︁
𝑗=1

𝑡−1∑︁
𝑖= 𝑗+1

𝐶′𝜋,𝑢𝐴
′
𝜋
𝑗−1
𝐵′𝜋,𝑧𝐶𝐴

𝑖−1−𝑗𝑤𝑡−𝑖

=𝐷𝜋

(
𝑧𝑡+

𝑡−1∑︁
𝑖=1

𝐶𝐴𝑖−1𝑤𝑡−𝑖

)
+
𝑡−1∑︁
𝑖=1

𝐶′𝜋,𝑢𝐴
′
𝜋
𝑖−1
𝐵′𝜋,𝑧𝑧𝑡−𝑖+

𝑡−2∑︁
𝑗=1
𝐶′𝜋,𝑢𝐴

′
𝜋
𝑗−1
𝐵′𝜋,𝑧

𝑡− 𝑗−1∑︁
𝑖=1

𝐶𝐴𝑡− 𝑗−𝑖−1𝑤𝑖

= 𝐷𝜋𝑏𝑡 +
𝑡−1∑︁
𝑖=1

𝐶′𝜋,𝑢𝐴
′
𝜋
𝑖−1
𝐵′𝜋,𝑧𝑏𝑡−𝑖

Now setting 𝑀 [0] = 𝐷𝜋, and 𝑀 [𝑖] = 𝐶′𝜋,𝑢𝐴′𝜋𝑖−1𝐵′𝜋,𝑧 for all 0 < 𝑖 < 𝐻′, we conclude
that for any LDC policy 𝜋 ∈ Π, there exists at least one length 𝐻′ DFC policy M(𝐻′)
such that

𝑢𝜋𝑡 − 𝑢M
𝑡 =

𝑡∑︁
𝑖=𝐻′

𝐶′𝜋,𝑢𝐴
′
𝜋
𝑖−1
𝐵′𝜋,𝑧𝑏𝑡−𝑖

Using Cauchy Schwarz inequality we have

∥𝑢𝜋𝑡 − 𝑢M
𝑡 ∥ ≤

 𝑡∑︁
𝑖=𝐻′

𝐶′𝜋,𝑢𝐴
′
𝜋
𝑖−1
𝐵′𝜋,𝑧𝑏𝑡−𝑖

 ≤ 𝜓(𝐻′)^𝑏
which states the first half of the Lemma.

Using the definition of 𝑦𝜋𝑡 in (5.82), we have

𝑦𝜋𝑡 = 𝑧𝑡 +
𝑡−1∑︁
𝑖=1

𝐶𝐴𝑡−𝑖−1𝑤𝑖 +
𝑡−1∑︁
𝑖

𝐺 [𝑖]𝑢𝜋𝑡−𝑖 .
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Similarly for 𝑦M
𝑡 we have,

𝑦M
𝑡 = 𝑧𝑡 +

𝑡−1∑︁
𝑖=1

𝐶𝐴𝑡−𝑖−1𝑤𝑖 +
𝑡−1∑︁
𝑖

𝐺 [𝑖]𝑢M
𝑡−𝑖 .

Subtracting these two equations, we derive,

𝑦𝜋𝑡 − 𝑦M
𝑡 =

𝑡−1∑︁
𝑖

𝐺 [𝑖]𝑢𝜋𝑡−𝑖 −
𝑡−1∑︁
𝑖

𝐺 [𝑖]𝑢M
𝑡−𝑖 =

𝑡−1∑︁
𝑖

𝐺 [𝑖] (𝑢𝜋𝑡−𝑖 − 𝑢M
𝑡−𝑖)

resulting in

∥𝑦𝜋𝑡 − 𝑦M
𝑡 ∥ ≤ 𝜓(𝐻′)^G^𝑏

which states the second half of the Lemma. □

C.3.2 Bound on the Markov Parameters Estimation Errors
Finally, we will consider the Markov parameter estimates that is constructed by
using the parameter estimates. From Theorem 5.4, for some unitary matrix T,
we denote Δ𝐴 B ∥𝐴𝑡 − T⊤𝐴T∥, Δ𝐵 B ∥𝐵𝑡 − T⊤𝐵∥ = ∥𝐶𝑡 − 𝐶T∥. Let 𝑇𝐴 =

𝑇Gyu

4𝑐2
1

(√
𝑛𝐻 ( ∥H∥+𝜎𝑛 (H) )

𝜎2
𝑛 (H)

)2

(1−(1−𝛾1))2
. For 𝑡 > max{𝑇𝐴, 𝑇𝐵}, Δ𝐴 ≤ 1−(1−𝛾1)

2 and Δ𝐵 ≤ 1. Using
this fact, we have

𝐻∑︁
𝑗≥1
∥𝐶𝑡𝐴 𝑗−1

𝑡 𝐵𝑡 − 𝐶𝐴 𝑗−1𝐵∥

≤ Δ𝐵(∥𝐵∥+∥𝐶∥+1)+
𝐻−1∑︁
𝑖=1
^1𝜌

𝑖 (𝐴)Δ𝐵(∥𝐵∥+∥𝐶∥+1) + ∥𝐴𝑖𝑡−T⊤𝐴𝑖T∥(∥𝐶∥∥𝐵∥+∥𝐵∥+∥𝐶∥+1)

≤
(
1 + ^1

1 − (1 − 𝛾1)

)
Δ𝐵(∥𝐵∥+∥𝐶∥+1) + Δ𝐴(∥𝐶∥∥𝐵∥+∥𝐵∥+∥𝐶∥+1)

𝐻−1∑︁
𝑖=1

𝑖−1∑︁
𝑗=0

(
𝑖

𝑗

)
∥𝐴 𝑗 ∥(Δ𝐴)𝑖−1− 𝑗

≤
(
1 + ^1

1 − (1 − 𝛾1)

)
Δ𝐵(∥𝐵∥+∥𝐶∥+1)

+ Δ𝐴^1(∥𝐶∥∥𝐵∥+∥𝐵∥+∥𝐶∥+1)
𝐻−1∑︁
𝑖=1

𝑖−1∑︁
𝑗=0

(
𝑖

𝑗

)
𝜌 𝑗 (𝐴)

(
1 − (1 − 𝛾1)

2

) 𝑖−1− 𝑗

≤
(
1 + ^1

1 − (1 − 𝛾1)

)
Δ𝐵(∥𝐵∥+∥𝐶∥+1) + 2Δ𝐴^1

1 − (1 − 𝛾1)
(∥𝐶∥∥𝐵∥+∥𝐵∥+∥𝐶∥+1)

𝐻−1∑︁
𝑖=1

[(
1 + 𝜌

2

) 𝑖
− 𝜌𝑖

]
≤ Δ𝐵

(
1 + ^1

1 − (1 − 𝛾1)

)
(∥𝐵∥+∥𝐶∥+1) + 2Δ𝐴^1

(1 − (1 − 𝛾1))2
(∥𝐶∥∥𝐵∥+∥𝐵∥+∥𝐶∥+1)
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𝛾G = (∥𝐵∥+∥𝐶∥+1)
(
1 + ^1

1 − (1 − 𝛾1)
+ 2^1

(1 − (1 − 𝛾1))2

)
+ 2^1

(1 − (1 − 𝛾1))2
∥𝐶∥∥𝐵∥

Assuming that ∥𝐹∥ + ∥𝐶∥ > 1 for simplicity, from the exact expressions of Theorem
5.4, we have Δ𝐴 > Δ𝐵. For the given 𝛾G and 𝛾H , we can upper bound the last
expression above as follow,

𝐻∑︁
𝑗≥1
∥𝐶𝑡𝐴 𝑗−1

𝑡 𝐵𝑡 − 𝐶𝐴 𝑗−1𝐵∥ ≤ 𝛾GΔ𝐴 ≤
𝑐1𝛾G𝛾H ^𝑒

𝜎★
√
𝑡

, (C.29)

for

𝛾G B (∥𝐵∥ + ∥𝐶∥ + 1)
(
1 + ^1

1 − (1 − 𝛾1)
+ 2^1

(1 − (1 − 𝛾1))2

)
+ 2^1

(1 − (1 − 𝛾1))2
∥𝐶∥∥𝐵∥,

(C.30)

^𝑒 B

√︄
𝑚∥𝐶Σ𝐶⊤ + 𝜎2

𝑧 𝐼 ∥
(
log(1/𝛿) + 𝐻 (𝑚 + 𝑝)

2
log

(
_(𝑚 + 𝑝) + 𝑇Υ2

_(𝑚 + 𝑝)

))
+ 𝑆
√
_ +
√
𝐻

𝑇
,

(C.31)

𝛾H B

√
𝑛𝐻 (∥H ∥ + 𝜎𝑛 (H))

𝜎2
𝑛 (H)

. (C.32)

The proof of Theorem 5.2 is completed by noticing that ∥Ĝ(𝐻) − G(𝐻)∥ =

∥ [𝐺 [1] 𝐺 [2] . . . 𝐺 [𝐻]] − [𝐺 [1] 𝐺 [2] . . . 𝐺 [𝐻]] ≤
√︃∑𝐻

𝑖=1 ∥𝐺 [𝑖] − 𝐺 [𝑖] ∥2.

C.3.3 Boundedness Lemmas
Lemma C.3.1 (Bounded Nature’s 𝑦). . For all 𝑡 ∈ [𝑇], the following holds with
probability at least 1 − 𝛿,

∥𝑏𝑡 (G)∥ ≤ ^𝑏 := 𝜎𝑧

√︂
2𝑚 log

6𝑚𝑇
𝛿
+∥𝐶∥^1

√
2𝑛

©«(1 − 𝛾1)𝑡
√︂
∥Σ∥ log

6𝑛
𝛿
+
𝜎𝑤

√︃
log 4𝑛𝑇

𝛿

𝛾1

ª®®¬ .
Proof. Using standard sub-Gaussian tail bound, the following hold for all 𝑡 ∈ [𝑇],
with probability at least 1 − 𝛿,

∥𝑤𝑡 ∥ ≤ 𝜎𝑤
√︂

2𝑛 log
6𝑛𝑇
𝛿
, ∥𝑧𝑡 ∥ ≤ 𝜎𝑧

√︂
2𝑚 log

6𝑚𝑇
𝛿
, ∥𝑥0∥ ≤

√︂
2𝑛∥Σ∥ log

6𝑛
𝛿
.

(C.33)
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Thus we have,

∥𝑏𝑡 (G)∥= ∥𝑧𝑡 + 𝐶𝐴𝑡𝑥0 +
𝑡−1∑︁
𝑖=0

𝐶𝐴𝑡−𝑖−1𝑤𝑖∥ ≤ ∥𝑧𝑡 ∥+∥𝐶∥
(
∥𝐴𝑡 ∥∥𝑥0∥+

(
max
1≤𝑡≤𝑇

∥𝑤𝑡 ∥
) ∞∑︁
𝑖=0
∥𝐴𝑖∥

)

≤ 𝜎𝑧
√︂

2𝑚 log
6𝑚𝑇
𝛿
+ ∥𝐶∥^1

√
2𝑛

©«(1 − 𝛾1)𝑡
√︂
∥Σ∥ log

6𝑛
𝛿
+
𝜎𝑤

√︃
log 4𝑛𝑇

𝛿

𝛾1

ª®®¬ .
(C.34)

□

Lemma C.3.2 (Boundedness Lemma). Let 𝛿 ∈ (0, 1), 𝑇 > 𝑇𝑤 ≥ 𝑇max and 𝜓G(𝐻 +
1) ≤ 1/10𝑇 . For AdaptOn, we have the boundedness of the following with probability
at least 1 − 2𝛿:
Nature’s y : ∥𝑏𝑡 (G)∥ ≤ ^𝑏, ∀𝑡,
Inputs: ∥𝑢𝑡 ∥ ≤ ^𝑢 B 2 max{^𝑢𝑏 , ^M^𝑏},∀𝑡, Outputs: ∥𝑦𝑡 ∥ ≤ ^𝑦 B ^𝑏 + ^G^𝑢,
∀𝑡, and
Nature’s y estimates: ∥𝑏𝑡 (Ĝ)∥ ≤ 2^𝑏 , for all 𝑡 > 𝑇𝑤.

Proof of this lemma follows similarly from the proof of Lemma 6.1 in Simchowitz
et al. [245].

Additional Bound on the Markov Parameter Estimates

Define 𝛼, such that 𝛼≤𝛼
𝑙𝑜𝑠𝑠

(
𝜎2
𝑧 +𝜎2

𝑤

(
𝜎min (𝐶)
1+∥𝐴∥2

)2 )
, where right-hand side is the effec-

tive strong convexity parameter. Define 𝑇𝑐𝑥 B 𝑇Gyu
16𝑐2

1^
2
𝑏
^2
M^

2
G𝐻
′𝛾2

G𝛾
2
H𝛼𝑙𝑜𝑠𝑠

𝛼
, 𝑇𝜖G B

4𝑐2
1^

2
M^

2
G𝛾

2
G𝛾

2
H𝑇Gyu and 𝑇𝑟 = 𝑐2

1𝛾
2
G𝛾

2
H ^

2
𝜓
𝑇Gyu/𝑟2.

Lemma C.3.3 (Additional Boundedness of Markov Parameter Estimation Error).
Let 𝑇𝑤 > 𝑇max, i.e. 𝑇𝑤 > max{𝑇𝑐𝑥 , 𝑇𝜖G , 𝑇𝑟} and 𝜓G(𝐻 + 1) ≤ 1/10𝑇 . Then

∥
∑︁
𝑗≥1

𝐺
[ 𝑗]
𝑖
− 𝐺 [ 𝑗] ∥ ≤ 𝜖G(𝑖, 𝛿) ≤ min

{
1

4^𝑏^M^G

√︂
𝛼

𝐻′𝛼
𝑙𝑜𝑠𝑠

,
1

2^M^G
,
𝑟

^𝜓

}
with probability at least 1 − 4𝛿, where 𝜖G(𝑖, 𝛿) = 2𝑐1𝛾G𝛾H^𝑒

𝜎★

√
2𝑖−1𝑇𝑤

.

Proof. At the beginning of epoch 𝑖, using persistence of excitation with high prob-
ability in (C.29), we get

𝐻∑︁
𝑗≥1
∥𝐶𝑖𝐴 𝑗−1

𝑖
𝐵𝑖 − 𝐶𝐴 𝑗−1𝐵∥ ≤ 𝜖G(𝑖, 𝛿)/2 =

𝑐1𝛾G𝛾H ^𝑒

𝜎★
√︁

2𝑖−1𝑇𝑤
. (C.35)
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From the assumption that𝜓G(𝐻+1) ≤ 1/10𝑇 , we have that
∑
𝑗≥𝐻+1 ∥𝐺

[ 𝑗]
1 −𝐺

[ 𝑗] ∥ ≤
𝜖G(1, 𝛿)/2. The second inequality follows from the choice of 𝑇𝜖G ,𝑇𝑐𝑥 and 𝑇𝑟 . □

C.3.4 Proofs for Regret Bound
In order to prove Theorem 5.10, we follow the proof steps of Theorem 5 of Sim-
chowitz et al. [245]. The main difference is that AdaptOn updates the Markov
parameter estimates in epochs throughout the adaptive control period which pro-
vides a decrease in the gradient error in each epoch. These updates allow AdaptOn
to remove O(

√
𝑇) term in the regret expression of Theorem 5.

Proof. Consider the hypothetical “true prediction” y’s, 𝑦𝑝𝑟𝑒𝑑𝑡 and losses, 𝑓 𝑝𝑟𝑒𝑑𝑡 (𝑀)
defined in Definition 8.1 of Simchowitz et al. [245]. Up to truncation by 𝐻, they
describe the true counterfactual output of the system for AdaptOn inputs during
the adaptive control period and the corresponding counterfactual loss functions.
Lemma C.3.7, shows that at all epoch 𝑖, at any time step 𝑡 ∈ [𝑡𝑖, . . . , 𝑡𝑖+1 − 1], the
gradient 𝑓 𝑝𝑟𝑒𝑑𝑡 (𝑀) is close to the gradient of the loss function of AdaptOn:

∇ 𝑓𝑡 (M, Ĝ𝑖, 𝑏1(Ĝ𝑖), . . . , 𝑏𝑡 (Ĝ𝑖)
)
− ∇ 𝑓 pred

𝑡 (M)


F
≤ 𝐶approx𝜖G(𝑖, 𝛿), (C.36)

where𝐶approx B
√
𝐻′^G^M^

2
𝑏
(16𝛼𝑙𝑜𝑠𝑠 + 24𝐿). For a comparing controller M𝑐𝑜𝑚𝑝 ∈

M(𝐻′, ^M) and the competing set M𝜓 (𝐻′0, ^𝜓), where ^M = (1 + 𝑟)^𝜓 and
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𝐻′0 = ⌊𝐻′2 ⌋ − 𝐻, we have the following regret decomposition:

Regret(𝑇) ≤
(
𝑇𝑤∑︁
𝑡=1

ℓ𝑡 (𝑦𝑡 , 𝑢𝑡)
)

︸             ︷︷             ︸
warm-up regret

+
(

𝑇∑︁
𝑡=𝑇𝑤+1

ℓ𝑡 (𝑦𝑡 , 𝑢𝑡) −
𝑇∑︁

𝑡=𝑇𝑤+1
𝐹

pred
𝑡 [M𝑡:𝑡−𝐻]

)
︸                                                 ︷︷                                                 ︸

algorithm truncation error

+
(

𝑇∑︁
𝑡=𝑇𝑤+1

𝐹
pred
𝑡 [M𝑡:𝑡−𝐻] −

𝑇∑︁
𝑡=𝑇𝑤+1

𝑓
pred
𝑡

(
M𝑐𝑜𝑚𝑝

))
︸                                                       ︷︷                                                       ︸

𝑓 pred policy regret

+
(

𝑇∑︁
𝑡=𝑇𝑤+1

𝑓
pred
𝑡

(
M𝑐𝑜𝑚𝑝

)
− inf

M∈M𝜓

𝑇∑︁
𝑡=𝑇𝑤+1

𝑓𝑡 (M,G, 𝑏1(G), . . . , 𝑏𝑡 (G))
)

︸                                                                                    ︷︷                                                                                    ︸
comparator approximation error

+
(

inf
M∈M𝜓

𝑇∑︁
𝑡=𝑇𝑤+1

𝑓𝑡 (M,G, 𝑏1(G), . . . , 𝑏𝑡 (G)) − inf
M∈M𝜓

𝑇∑︁
𝑡=𝑇𝑤+1

ℓ𝑡

(
𝑦M
𝑡 , 𝑢

M
𝑡

))
︸                                                                                          ︷︷                                                                                          ︸

comparator truncation error

+
(

inf
M∈M𝜓

𝑇∑︁
𝑡=1

ℓ𝑡

(
𝑦M
𝑡 , 𝑢

M
𝑡

)
−

𝑇∑︁
𝑡=0

ℓ(𝑦𝜋★, 𝑢𝜋★)
)

︸                                                  ︷︷                                                  ︸
policy approximation error

(C.37)

Notice that the last term is only required to extend the Theorem 5.10 to Corollary
5.10.1. The result of Theorem 5.10 does not require the last term. We will consider
each term separately.

Warm-up Regret: From (5.81) and Lemma C.3.2, we get
∑𝑇𝑤
𝑡=1 ℓ𝑡 (𝑦𝑡 , 𝑢𝑡) ≤ 𝑇𝑤𝐿^

2
𝑦.

Algorithm Truncation Error: From (5.81), we get

𝑇∑︁
𝑡=𝑇𝑤+1
ℓ𝑡 (𝑦𝑡 , 𝑢𝑡) −

𝑇∑︁
𝑡=𝑇𝑤+1
𝐹

pred
𝑡 [M𝑡:𝑡−𝐻] ≤

𝑇∑︁
𝑡=𝑇𝑤+1

�����ℓ𝑡 (𝑦𝑡 , 𝑢𝑡) − ℓ𝑡
(
𝑏𝑡 (G) +

𝐻∑︁
𝑖=1

𝐺 [𝑖]𝑢𝑡−𝑖, 𝑢𝑡

)�����
≤

𝑇∑︁
𝑡=𝑇𝑤+1

𝐿^𝑦

𝑦𝑡 − 𝑏𝑡 (G) + 𝐻∑︁
𝑖=1

𝐺 [𝑖]𝑢𝑡−𝑖


≤

𝑇∑︁
𝑡=𝑇𝑤+1

𝐿^𝑦

 ∑︁
𝑖=𝐻+1

𝐺 [𝑖]𝑢𝑡−𝑖


≤ 𝑇𝐿^𝑦^𝑢𝜓G(𝐻 + 1)
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Since 𝜓G(𝐻 + 1) ≤ 1/10𝑇 , we get
∑𝑇
𝑡=𝑇𝑤+1 ℓ𝑡 (𝑦𝑡 , 𝑢𝑡) −

∑𝑇
𝑡=𝑇𝑤+1 𝐹

pred
𝑡 [M𝑡:𝑡−𝐻] ≤

𝐿^𝑦^𝑢/10.

Comparator Truncation Error: Similar to algorithm truncation error above,

inf
M∈M𝜓

𝑇∑︁
𝑡=𝑇𝑤+1

𝑓𝑡 (M,G, 𝑏1(G), . . . , 𝑏𝑡 (G)) − inf
M∈M𝜓

𝑇∑︁
𝑡=𝑇𝑤+1
ℓ𝑡

(
𝑦M
𝑡 , 𝑢

M
𝑡

)
≤ 𝑇𝐿^G^

2
M^

2
𝑏𝜓G(𝐻 + 1)

≤ 𝐿^G^
2
M^

2
𝑏/10

Policy Approximation Error: By the assumption that 𝑀★ lives in the given convex
setM𝜓 and (5.81), using Lemma 5.15, we get

inf
M∈M𝜓

𝑇∑︁
𝑡=1

ℓ𝑡

(
𝑦M
𝑡 , 𝑢

M
𝑡

)
−

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑦𝜋★𝑡 , 𝑢
𝜋★
𝑡 ) ≤

𝑇∑︁
𝑡=1

ℓ𝑡

(
𝑦

M★

𝑡 , 𝑢
M★

𝑡

)
− ℓ𝑡 (𝑦𝜋★𝑡 , 𝑢

𝜋★
𝑡 )

≤ 𝑇𝐿^𝑦
(
𝜓(𝐻′0)^𝑏 + 𝜓(𝐻

′
0)^G^𝑏

)
≤ 2𝑇𝐿^𝑦^G^𝑏𝜓(𝐻′0)

Since 𝜓(𝐻′0) ≤ ^M/𝑇 , we get infM∈M0

∑𝑇
𝑡=1 ℓ𝑡

(
𝑦M
𝑡 , 𝑢

M
𝑡

)
− ∑𝑇

𝑡=1 ℓ𝑡 (𝑦
𝜋★
𝑡 , 𝑢

𝜋★
𝑡 ) ≤

2𝐿^M^𝑦^G^𝑏.

fpred Policy Regret : In order to utilize Theorem C.3.6, we need the strong con-
vexity, Lipschitzness and smoothness properties stated in the theorem. Due to
Lemma C.3.3, Lemmas C.3.8-C.3.10 provide those conditions. Combining these
with (C.36), we obtain the following adaptation of Theorem C.3.6:

Lemma C.3.4. For step size [ = 12
𝛼𝑡

, the following bound holds with probability
1 − 𝛿:

fpred policy regret + 𝛼
48

𝑇∑︁
𝑡=𝑇𝑤+1
∥M𝑡 −M𝑐𝑜𝑚𝑝 ∥2𝐹

≲
𝐿2𝐻′3 min{𝑚, 𝑝}^4

𝑏
^4

G^
2
M

min{𝛼, 𝐿^2
𝑏
^2

G}

(
1+ 𝛼𝑙𝑜𝑠𝑠

min{𝑚, 𝑝}𝐿^M

)
log

(
𝑇

𝛿

)
+ 1
𝛼

𝑇∑︁
𝑡=𝑇𝑤+1
𝐶2

approx𝜖
2
G

(⌈
log2

(
𝑡

𝑇𝑤

)⌉
, 𝛿

)
.

Proof. Let 𝑑 = min{𝑚, 𝑝}. We can upper bound the right-hand side of Theorem
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C.3.6 via following proof steps of Theorem 4 of Simchowitz et al. [245]:

fpredp.r.−
(

6
𝛼

𝑇∑︁
𝑡=𝑘+1
∥𝝐 𝑡 ∥22 −

𝛼

48

𝑇∑︁
𝑡=1

M𝑡 −M𝑐𝑜𝑚𝑝

2
𝐹

)
≲
𝐿2𝐻′3𝑑^4

𝑏
^4

G^
2
M

min{𝛼, 𝐿^2
𝑏
^2

G}

(
1+ 𝛼𝑙𝑜𝑠𝑠
𝑑𝐿^M

)
log

(
𝑇

𝛿

)
fpredp.r. + 𝛼

48

𝑇∑︁
𝑡=1

M𝑡 −M𝑐𝑜𝑚𝑝

2
𝐹
≲
𝐿2𝐻′3𝑑^4

𝑏
^4

G^
2
M

min{𝛼, 𝐿^2
𝑏
^2

G}

(
1+ 𝛼𝑙𝑜𝑠𝑠
𝑑𝐿^M

)
log

(
𝑇

𝛿

)
+ 1
𝛼

𝑇∑︁
𝑡=𝑇𝑤+1

𝐶2
approx𝜖

2
G

(⌈
log2

(
𝑡

𝑇𝑤

)⌉
, 𝛿

)
,

(C.38)

where (C.38) follows from (C.36). □

Comparator Approximation Error:

Lemma C.3.5. Suppose that 𝐻′ ≥ 2𝐻′0 − 1 + 𝐻, 𝜓G(𝐻+1) ≤ 1/10𝑇 . Then for all
𝜏 > 0,

Comp. app. err. ≤ 4𝐿^𝑦^𝑢^M

+
𝑇∑︁

𝑡=𝑇𝑤+1

[
𝜏
M𝑡−Mcomp

2
𝐹
+ 8^2

𝑦^
2
𝑏^

2
M (𝐻 + 𝐻

′)max
{
𝐿,
𝐿2

𝜏

}
𝜖2

G

(⌈
log2

(
𝑡

𝑇𝑤

)⌉
, 𝛿

)]
Proof. The lemma can be proven using the proof of Proposition 8.2 of Simchowitz
et al. [245]. Using Lemma E.3 and adapting Lemma E.4 in Simchowitz et al. [245]
such that M[𝑖]𝑐𝑜𝑚𝑝 = 𝑀

[𝑖]
∗ 𝐼𝑖≤𝐻′0−1+

∑𝐻′0−1
𝑎=0

∑𝐻
𝑏=0

∑𝐻′0−1
𝑐=0 𝑀

[𝑎]
∗ (𝐺 [𝑏]1 −𝐺

[𝑏])𝑀 [𝑐]∗ I𝑎+𝑏+𝑐=𝑖
for M∗ = argminM∈M𝜓

∑𝑇
𝑡=𝑇𝑤+1 ℓ𝑡 (𝑦

M
𝑡 , 𝑢

M
𝑡 ) and due to Lemma C.3.3 we have

M𝑐𝑜𝑚𝑝 ∈ M:

𝑇∑︁
𝑡=𝑇𝑤+1

𝑓
pred
𝑡

(
M𝑐𝑜𝑚𝑝

)
− inf

M∈M0

𝑇∑︁
𝑡=𝑇𝑤+1

𝑓𝑡 (M,G, 𝑏1(G), . . . , 𝑏𝑡 (G))

≤ 4𝐿^𝑦
𝑇∑︁

𝑡=𝑇𝑤+1
𝜖2

G

(⌈
log2

(
𝑡

𝑇𝑤

)⌉
, 𝛿

)
^2
M^𝑏

(
^M+

^𝑏

4𝜏

)
+^𝑢^M𝜓G(𝐻+1)+(𝐻+𝐻′)𝜏

M𝑡−Mcomp
2
𝐹

≤
𝑇∑︁

𝑡=𝑇𝑤+1

[
𝜏
M𝑡−Mcomp

2
𝐹
+ 8^2

𝑦^
2
𝑏^

2
M (𝐻 + 𝐻

′)max
{
𝐿,
𝐿2

𝜏

}
𝜖2

G

(⌈
log2

(
𝑡

𝑇𝑤

)⌉
, 𝛿

)]
+ 4𝑇𝐿^𝑦^𝑢^M𝜓G(𝐻+1)

≤4𝐿^𝑦^𝑢^M+
𝑇∑︁

𝑡=𝑇𝑤+1

[
𝜏
M𝑡−Mcomp

2
𝐹
+ 8^2

𝑦^
2
𝑏^

2
M (𝐻 + 𝐻

′)max
{
𝐿,
𝐿2

𝜏

}
𝜖2

G

(⌈
log2

(
𝑡

𝑇𝑤

)⌉
, 𝛿

)]
□
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Combining all the terms bounded above, with 𝜏 = 𝛼
48 gives

Regret(𝑇)
≲ 𝑇𝑤𝐿^

2
𝑦 + 𝐿^𝑦^𝑢/10 + 𝐿^G^

2
M^

2
𝑏/10 + 2𝐿^M^𝑦^G^𝑏 + 4𝐿^𝑦^𝑢^M

+
𝐿2𝐻′3 min{𝑚, 𝑝}^4

𝑏
^4

G^
2
M

min{𝛼, 𝐿^2
𝑏
^2

G}

(
1+ 𝛼𝑙𝑜𝑠𝑠

min{𝑚, 𝑝}𝐿^M

)
log

(
𝑇

𝛿

)
+ 1
𝛼

𝑇∑︁
𝑡=𝑇𝑤+1
𝐶2

approx𝜖
2
G

(⌈
log2

(
𝑡

𝑇𝑤

)⌉
, 𝛿

)
+

𝑇∑︁
𝑡=𝑇𝑤+1

8^2
𝑦^

2
𝑏^

2
M (𝐻 + 𝐻

′)max
{
𝐿,

48𝐿2

𝛼

}
𝜖2

G

(⌈
log2

(
𝑡

𝑇𝑤

)⌉
, 𝛿

)
≲ 𝑇𝑤𝐿^

2
𝑦

+
𝐿2𝐻′3 min{𝑚, 𝑝}^4

𝑏
^4

G^
2
M

min{𝛼, 𝐿^2
𝑏
^2

G}

(
1+ 𝛼𝑙𝑜𝑠𝑠

min{𝑚, 𝑝}𝐿^M

)
log

(
𝑇

𝛿

)
+

𝑇∑︁
𝑡=𝑇𝑤+1

𝜖2
G

(⌈
log2

(
𝑡

𝑇𝑤

)⌉
, 𝛿

) {
𝐻′^2

G^
2
M^

4
𝑏
(𝛼𝑙𝑜𝑠𝑠 + 𝐿)2

𝛼
+ ^2

𝑦^
2
𝑏^

2
M (𝐻 + 𝐻

′)max
{
𝐿,

48𝐿2

𝛼

}}
□

Following the doubling update rule of AdaptOn for the epoch lengths, after 𝑇 time
steps of agent-environment interaction, the number of epochs is O (log𝑇). From
Lemma C.3.3, at any time step 𝑡 during the 𝑖𝑡ℎ epoch, i.e., 𝑡 ∈ [𝑡𝑖, . . . , 𝑡𝑖 − 1],
𝜖2

G(𝑖, 𝛿) = O(𝑝𝑜𝑙𝑦𝑙𝑜𝑔(𝑇)/2
𝑖−1𝑇𝑤). Therefore, update rule of AdaptOn yields,∑︁𝑇

𝑡=𝑇𝑤+1
𝜖2

G

(⌈
log2

( 𝑡
𝑇𝑤

)⌉
, 𝛿

)
=

∑︁O(log𝑇)
𝑖=1

2𝑖−1𝑇𝑤𝜖
2
G (𝑖, 𝛿) ≤ O (𝑝𝑜𝑙𝑦𝑙𝑜𝑔(𝑇))

(C.39)

Using the result of (C.39), we can bound the third term of the regret upper bound
in Theorem 5.10 with a 𝑝𝑜𝑙𝑦𝑙𝑜𝑔(𝑇) bound which gives the advertised result and
using the policy approximation error term we obtain Corollary 5.10.1.

□

C.3.5 Technical Lemmas and Theorems
Theorem C.3.6 (Theorem 8 of Simchowitz et al. [245]). Suppose thatK ⊂ R𝑑 and
ℎ ≥ 1. Let 𝐹𝑡 := Kℎ+1 → R be a sequence of 𝐿𝑐 coordinatewise-Lipschitz functions
with the induced unary functions 𝑓𝑡 (𝑥) := 𝐹𝑡 (𝑥, . . . , 𝑥) which are 𝐿f-Lipschitz and
𝛽-smooth. Let 𝑓𝑡;𝑘 (𝑥) := E [ 𝑓𝑡 (𝑥) |F𝑡−𝑘 ] be 𝛼-strongly convex on K for a filtration
(F𝑡)𝑡≥1. Suppose that 𝑧𝑡+1 = ΠK

(
𝑧𝑡 − [𝒈𝑡

)
, where 𝒈𝑡 = ∇ 𝑓𝑡 (𝑧𝑡) + 𝜖𝑡 for

𝒈𝑡2 ≤ 𝐿g,
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and Diam(K) ≤ 𝐷. Let the gradient descent iterates be applied for 𝑡 ≥ 𝑡0 for
some 𝑡0 ≤ 𝑘, with 𝑧0 = 𝑧1 = · · · = 𝑧𝑡0 ∈ K for 𝑘 ≥ 1. Then with step size
[𝑡 =

3
𝛼𝑡
, the following bound holds with probability 1−𝛿 for all comparators 𝑧★ ∈ K

simultaneously:

𝑇∑︁
𝑡=𝑘+1

𝑓𝑡 (𝑧𝑡) − 𝑓𝑡 (𝑧★) −
(

6
𝛼

𝑇∑︁
𝑡=𝑘+1

∥𝝐 𝑡 ∥22 −
𝛼

12

𝑇∑︁
𝑡=1
∥𝑧𝑡 − 𝑧★∥22

)
≲ 𝛼𝑘𝐷2 +

(
𝑘𝐿f + ℎ2𝐿c

)
𝐿g + 𝑘𝑑𝐿2

f + 𝑘𝛽𝐿g

𝛼
log(𝑇) +

𝑘𝐿2
f

𝛼
log

(
1 + log

(
𝑒 + 𝛼𝐷2)
𝛿

)
Lemma C.3.7 (Lemma 8.1 of Simchowitz et al. [245]). For any M ∈ M, let
𝑓

pred
𝑡 (M) denote the unary counterfactual loss function induced by true truncated

counterfactuals (Definition 8.1 of Simchowitz et al. [245]). During the 𝑖’th epoch of
adaptive control period, at any time step 𝑡 ∈ [𝑡𝑖, . . . , 𝑡𝑖+1 − 1], for all 𝑖, we have
that ∇ 𝑓𝑡 (M, Ĝ𝑖, 𝑏1(Ĝ𝑖), . . . , 𝑏𝑡 (Ĝ𝑖)

)
− ∇ 𝑓 pred

𝑡 (M)


F
≤ 𝐶approx 𝜖G(𝑖, 𝛿),

where 𝐶approx B
√
𝐻′^G^M^

2
𝑏
(16𝛼𝑙𝑜𝑠𝑠 + 24𝐿).

Lemma C.3.8 (Lemma 8.2 of Simchowitz et al. [245]). For any M ∈ M, 𝑓 pred
𝑡 (M)

is 𝛽-smooth, where 𝛽 = 16𝐻′^2
𝑏
^2

G𝛼𝑙𝑜𝑠𝑠.

Lemma C.3.9 (Lemma 8.3 of Simchowitz et al. [245]). For any M ∈ M, given
𝜖G(𝑖, 𝛿) ≤ 1

4^𝑏^M^G

√︃
𝛼

𝐻′𝛼𝑙𝑜𝑠𝑠
, conditional unary counterfactual loss function induced

by true counterfactuals are 𝛼/4 strongly convex.

Lemma C.3.10 (Lemma 8.4 of Simchowitz et al. [245]). Let 𝐿 𝑓 = 4𝐿
√
𝐻′^2

𝑏
^2

G^M .
For any M ∈ M and for𝑇𝑤 ≥ 𝑇max, 𝑓 pred

𝑡 (M) is 4𝐿 𝑓 -Lipschitz, 𝑓 pred
𝑡 [M𝑡:𝑡−𝐻] is 4𝐿 𝑓

coordinate Lipschitz. Moreover, maxM∈M

∇ 𝑓𝑡 (M, Ĝ𝑖, 𝑏1(Ĝ𝑖), . . . , 𝑏𝑡 (Ĝ𝑖)
)

2
≤

4𝐿 𝑓 .

Lemma C.3.11 (Doubling Trick [125]). For any sequence of numbers 𝑧1, . . . , 𝑧𝑛

with 0 ≤ 𝑧𝑘 ≤ 𝑍𝑘−1 := max
{
1,

∑𝑘−1
𝑖=1 𝑧𝑖

}
𝑛∑︁
𝑘=1

𝑧𝑘√
𝑍𝑘−1

≤ (
√

2 + 1)
√︁
𝑍𝑛

Lemma C.3.12 (Norm of a Sub-Gaussian Vector). Let v ∈ R𝑑 be a entry-wise 𝑅-
subgaussian random variable. Then with probability 1−𝛿, ∥𝑣∥ ≤ 𝑅

√︁
2𝑑 log(2𝑑/𝛿).
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A p p e n d i x D

FURTHER PROOFS FOR CHAPTER 6

D.1 Proofs of Section 6.3
In this section, we present the technical results and the proofs. First, we discuss
the related assumptions in the main text. Then we provide proof of the results
and discuss them. In particular, in Appendix D.1.1, we provide the proof for
Proposition 6.1, i.e., model learning guarantees, in Appendix D.1.2, we provide the
stability and boundedness results for the warm-up and adaptive control periods, and
in Appendix D.1.3 we give the proofs for main regret guarantees, namely Theorem
6.4 and Corollary 6.4.1.

Assumptions

Notice that Assumption 6.2 provides that for bounded inputs, the dynamics of
the system stay bounded. In particular, the Lipschitz assumption avoids arbitrary
changes in the output due to the noise term and the exponential stability assumption
avoids output blow-ups due to unmodeled dynamics. Moreover, the exponential
open-loop stability assumption can be replaced by the existence of a controller
that keeps the state bounded. Note that in many nonlinear control systems, these
conditions are already satisfied due to physical laws, e.g., the state of the system
cannot be unbounded. This behavior in particular demonstrated in dissipative
dynamical systems [120, 253]. As explained in the main text, the assumption that
the periodic extension of the 𝑖th mapping of 𝐹 from 𝑠𝑡 to 𝑦𝑡 , 𝐹𝑖 (·), lives in Sobolev
space of periodic functions,𝑊𝑚,2

𝑝 ( [0, 2𝜋]ℎ(𝑑𝑦+𝑑𝑢)), allows one to use Fourier Series
as a learning basis. Note that the theoretical guarantees of FALCON hold for all
systems that have up-to 𝑚th order (mixed) derivative in all indices in the weak sense
such that they are all in 𝐿2 space, and there exists linear transformation (scaling
and/or shifting) and periodic extension that brings them in 𝑊𝑚,2

𝑝 ( [0, 2𝜋]ℎ(𝑑𝑦+𝑑𝑢)).
This class of systems constitutes a wide range of dynamical systems.

Assumption 6.1 says that the difference in cost of two observation and input pairs
that are close to each other are quadratic in the differences of outputs and inputs.
This assumption makes the regret minimization problem meaningful since learn-
ing the model dynamics would result in a smaller instantaneous cost difference.
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This assumption is satisfied for bounded input-output systems with quadratic cost
functions.

Assumption 6.8 is on the MPC policy and it relates to both the underlying system and
the cost functions. It guarantees that the cost functions are designed in a meaningful
way (running or terminal costs) such that minimizing these objectives in return
stabilizes the system dynamics and this property is valid under small modeling
errors. This assumption is valid in practice, since while deploying MPC in real-
world control systems, engineers design the policies based on possible modeling
errors, and Assumption 6.8 merely quantifies this. As described in the main text,
this assumption holds for linearized systems. The persistence of excitation condition
means that the inputs excite the system uniformly, i.e., the smallest eigenvalue of the
design matrixΦ𝑡Φ

⊤
𝑡 scales linearly over time. This assumption is fairly standard in a

system identification setting and it guarantees the consistent and reliable estimation
of the underlying system. The combination of the unmodelled dynamics and the
system noise, as well as the sampling-based MPC policy design, can provide the
required randomness to satisfy this assumption, yielding a mild assumption. Notice
that if this assumption does not hold, one can show that FALCON can still attain
sublinear regret rate, i.e. O(𝑇2/3), by setting a horizon-dependent warm-up period.
Finally, the local Lipschitz condition for the neighborhood of models is valid for
many dynamical systems and follows intuitively by the Lipschitz assumption of
the underlying system. This is particularly important that the outputs of the MPC
policy, i.e., the designed control actions 𝑢𝑡 , do not vary arbitrarily. This is again a
mild assumption since the control actions that stabilize the system dynamics are not
expected to vary significantly in most of the dynamical systems.

D.1.1 Model Learning Guarantees
We first provide the following system identification guarantee for learning the un-
known optimal Fourier Series coefficients Θ∗ using a finite number of data points.
It follows standard least-squares estimation error analysis under sub-Gaussian per-
turbations [2, 164, 166].
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Proof of Proposition 6.1

Proof. Recall that the dynamics can be written as
𝑦𝑡,1
...

𝑦𝑡,𝑚

 =


𝐹1(𝑠𝑡)
...

𝐹𝑑𝑦 (𝑠𝑡)

 + 𝑒𝑡 . (D.1)

From Assumption 6.4, we know that 𝐹𝑖 (·) : Rℎ(𝑑𝑦+𝑑𝑢) → R, that lives in 𝑊 𝑘,2
𝑝 (Ω)

for Ω = [0, 2𝜋]ℎ(𝑑𝑦+𝑑𝑢) and for 1 ≤ 𝑖 ≤ 𝑑𝑦. The Fourier basis that FALCON learns
the underlying system 𝐹 (·) is given as

𝜙(𝑠)= [cos(𝝎⊤
1 𝑠), sin(𝝎⊤

1 𝑠), ..., cos(𝝎⊤
𝑫
2
𝑠), sin(𝝎⊤

𝑫
2
𝑠)]⊤,

where 𝝎 = [𝜔1, . . . , 𝜔𝑑], 𝜔 𝑗 ∈ {0, 1, . . . , 𝑛}, 1 ≤ 𝑗 ≤ 𝑑, and 𝑠 ∈ Rℎ(𝑑𝑦+𝑑𝑢) . More-
over, due to Assumption 6.2, we have bounded inputs and outputs such that ∥𝑠𝑡 ∥ ≤ 𝑆
for all 𝑡 ≤ 𝑇𝑤, see Lemma D.1. After the warm-up period FALCON approximates
the underlying dynamics as Θ̂⊤1 𝜙(𝑠) where Θ̂1 = [\̂ [1]1 , \̂

[2]
1 , . . . , \̂

[𝑑𝑦]
1 ] ∈ R𝐷×𝑑𝑦

with 𝑖th column denoted as \̂ [𝑖]1 . The absolute approximation error of any function
𝐹𝑖 can be decomposed as follows:

sup
∥𝑠∥≤𝑆

|𝐹𝑖 (𝑠)−�̂�𝑖 (𝑠) | = sup
∥𝑠∥≤𝑆

�����∑︁
𝝎

[
𝑎𝝎 cos

(
𝝎⊤𝑠

)
+ 𝑏𝝎 sin

(
𝝎⊤𝑠

) ]
− \̂ [𝑖]⊤𝜙(𝑠)

�����
≤ sup
∥𝑠∥≤𝑆

�����∑︁
𝝎

[
𝑎𝝎 cos

(
𝝎⊤𝑠

)
+ 𝑏𝝎 sin

(
𝝎⊤𝑠

) ]
− \ [𝑖]⊤∗ 𝜙(𝑠)

�����︸                                                                  ︷︷                                                                  ︸
Finite number of Fourier basis approximation

+
���\ [𝑖]⊤∗ 𝜙(𝑠) − \̂ [𝑖]⊤𝜙(𝑠)

���︸                       ︷︷                       ︸
Finite sample approximation

for \ [𝑖]∗ ∈ R𝐷 , where \ [𝑖]⊤∗ 𝜙(𝑠) denotes the best Fourier series approximation of 𝐹𝑖,
using the 𝑛th order Fourier expansion, i.e. 𝐷-dimensional Fourier basis. The first
term can be bounded by a multivariate analog of Jackson’s theorem for trigonometric
polynomial approximation [124]. In particular, Theorem 4.3 of [237] states that for
large enough 𝑛,

sup
∥𝑠∥≤𝑆

���𝐹𝑖 − \ [𝑖]⊤∗ 𝜙(𝑠)
��� ≤ 𝐶𝑛−𝑚 ∥𝜕𝑚𝐹𝑖 (·)∥𝐿∞ .

The exact values of required 𝑛 and 𝐶 can be collected from Sections 2 and 3 of
[237]. In particular, they depend on 𝑆, exponentially on 𝑑𝑦, and combinatorically
on 𝑛. Using Theorem 6.1 to bound the second term with the fact that ∥𝜙(𝑠)∥ ≤

√
𝐷



399

and 𝐷 = 𝑛𝑑 , we get sup∥𝑠∥≤𝑆 |𝐹𝑖 (𝑠) − �̂�𝑖 (𝑠) | ≤ O( 𝑛
𝑑
√
𝑇
+ ∥𝜕

𝑚𝐹𝑖 (·)∥𝐿∞
𝑛𝑚

) with probability
1 − 2𝛿. Since the dynamics are written as (D.1), via union bound over all columns,
we have

sup
∥𝑠∥≤𝑆

∥𝐹 (𝑠) − �̂� (𝑠)∥∞ = O
(
𝑛𝑑
√
𝑇
+

sup𝑖 ∥𝜕𝑚𝐹𝑖 (·)∥𝐿∞
𝑛𝑚

)
(D.2)

with probability at least 1 − 2𝛿. Note that union bound provides additional loga-
rithmic factor depending on 𝛿/𝑑𝑦 which is hidden under O(·) notation. For 𝑇𝑤 >(

𝑛𝑑

1−𝛼𝑚/𝑛𝑚
)2

, we have that sup∥𝑠∥≤𝑆 ∥𝐹 (𝑠) − �̂�1(𝑠)∥∞ = O(𝑇Y−0.5
𝑤 ) for 0.5 > Y ≥ 0.

Note that we achieve Y = 0 as 𝑚, i.e. smoothness of the underlying system, goes to
infinity.

□

D.1.2 Stability / Bounded Output Guarantees
In this subsection, we provide the stability and boundedness guarantees for FAL-
CON. In particular, Lemma D.1 shows that the bounded exploratory inputs of
warm-up yield bounded outputs, and Lemma D.1.1 shows that for long enough
warm-up duration 𝑇𝑤 and a sufficiently large order of Fourier basis 𝑛, FALCON sta-
bilizes the underlying system. First, let ∥𝑢𝑡 ∥ < 𝐵𝑢𝑒𝑥𝑝 for 𝑡 ≤ 𝑇𝑤, i.e., the persistently
exciting warm-up control inputs are bounded. Moreover, using Lemma C.3.12, we
have that ∥𝑒𝑡 ∥ ≤ 𝐵𝑒 B 𝜎𝑒

√︁
2𝑑𝑦 log(2𝑑𝑦𝑇/𝛿) with probability 1 − 𝛿 for all 𝑡 ≤ 𝑇 .

Without loss of generality, we assume that 𝑦0 = 0. Using these definitions we have
the following result.

Lemma D.1 (Bounded Output During Warm-Up). Suppose Assumption 6.2 holds
and FALCON uses exploratory inputs such that ∥𝑢𝑡 ∥ ≤ 𝐵𝑢𝑒𝑥𝑝 . Starting from zero
initial condition 𝑦0 = 0, after the warm-up period we have ∥𝑠𝑡 ∥ ≤ 𝑆 such that
𝑆 =
√
ℎ

(
(𝐾 + 1)𝐵𝑢𝑒𝑥𝑝 + 𝐵𝑒

)
, with probability 1 − 𝛿.

Proof. Using the exponential input-to-output stability assumption of the underlying
open-loop system, we have ∥𝑦𝑡 ∥ ≤ 𝐾𝐵𝑢𝑒𝑥𝑝 + 𝐵𝑒, with probability 1 − 𝛿. Using
this result for the order-ℎ NARX state 𝑠𝑖 = [𝑦⊤𝑖−1, . . . , 𝑦

⊤
𝑖−ℎ, 𝑢

⊤
𝑖−1, . . . , 𝑢

⊤
𝑖−ℎ]

⊤, we get
∥𝑠𝑡 ∥ ≤ 𝑆 as given in the lemma. □

Lemma D.1.1 (Stability and Bounded Output During Adaptive Control). Suppose
Assumption 6.8 holds. Given the order of the Sobolev space 𝑚 and

𝛼𝑚 B sup
𝑖,∥𝑠∥≤𝑆

∥𝜕𝑚𝐹𝑖 (𝑠)∥𝐿∞ ,
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with probability 1 − 2𝛿, FALCON with 𝑛 ≥
(

2𝛼𝑚
𝜖

)1/𝑚
as the order of Fourier basis

designs stabilizing controllers for the underlying system after

𝑇𝑤 ≥ max

{(
𝑛𝑑

1 − 𝛼𝑚/𝑛𝑚

)2

, 4(4𝛼𝑚)
𝑑
𝑚 𝜖−2( 𝑑

𝑚
+1)

}
time-steps of warm-up period and keeps 𝑠𝑡 bounded, i.e., ∥𝑠𝑡 ∥ ≤ 𝑆 for all 𝑡.

Proof. Using Assumption 6.8, FALCON needs to make sure that the estimation
error of the model dynamics is well-controlled. To achieve this, FALCON is
required to use high enough order of Fourier Series basis and maintain a long
enough warm-up duration. In particular, given the order of the Sobolev space 𝑚

and 𝛼𝑚 = sup𝑖,∥𝑠∥≤𝑆∥𝜕𝑚𝐹𝑖 (𝑠)∥𝐿∞ , FALCON requires 𝑛 =

(
2𝛼𝑚
𝜖

)1/𝑚
as the order of

Fourier basis. This corresponds to 𝐷 =

(
2𝛼𝑚
𝜖

)𝑑/𝑚
number of Fourier Series basis

vectors. Thus, for 𝑇𝑤 = O
(
(4𝛼𝑚)

𝑑
𝑚 𝜖−2( 𝑑

𝑚
+1)

)
, with probability 1 − 2𝛿, we have

that sup∥𝑠∥≤𝑆∥𝐹 (𝑠) − �̂� (𝑠)∥∞ ≤ 𝜖 . Thus, after 𝑇𝑤 time-steps of warm-up period
FALCON stabilizes the underlying system, and the outputs decay over time due to
exponential input to output stability. □

D.1.3 Regret Analysis
In this section, we provide the proof of Theorem 6.4, the regret upper bound of FAL-
CON. We first present the precise theorem statement for Theorem 6.4 and provide the
proof. The proof follows similarly to [164] in terms of regret decomposition but the
improved system identification result via Fourier series basis given in Proposition
6.1 yields an improved regret.

Theorem D.1.2. Let Assumptions 6.2, 6.1, 6.4, and 6.8 hold. Given the order of
the Sobolev space 𝑚, 𝛼𝑚 = sup𝑖,∥𝑠∥≤𝑆∥𝜕𝑚𝐹𝑖 (𝑠)∥𝐿∞ , and 𝑑 = ℎ(𝑑𝑦 + 𝑑𝑢), suppose

FALCON uses 𝑛 ≥
(

2𝛼𝑚
𝜖

)1/𝑚
as the order of Fourier basis. Then, with probability

at least 1 − 2𝛿, after a warm-up period of

𝑇𝑤 ≥ max
{(

𝑛𝑑

1−𝛼𝑚/𝑛𝑚
)2
, 𝐶𝑚,𝑑𝜖

−2( 𝑑
𝑚
+1) , 𝐶𝑚,𝑑 (Γ/𝐿𝑜)−2( 𝑑

𝑚
+1) , 𝐶𝑚,𝑑 (Γ/(𝐿𝐿𝑜))−2( 𝑑

𝑚
+1)

}
for 𝐶𝑚,𝑑 = 4(4𝛼𝑚)

𝑑
𝑚 , FALCON with doubling epochs, 𝑡𝑒𝑝 = 𝑇𝑤2𝑖−1, attains regret

of Regret(𝑇) = O(
√
𝑇 + 𝜖′𝑇), where 𝜖′ = 𝛼2

𝑚

𝑛2𝑚 . For sufficiently smooth systems, i.e.
𝑚 = O(log(𝑇)), FALCON achieves Regret(𝑇) = Õ(

√
𝑇).
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Proof of Theorem 6.4 and Corollary 6.4.1
Recall that from Lemma D.1.1, for the given warm-up duration, we have

sup
∥𝑠∥≤𝑆

∥𝐹 (𝑠)−�̂� (𝑠)∥∞ ≤ 𝜖1 < 𝜖,

which means that the closed-loop dynamics are stabilized. In the beginning of
the adaptive control period, for simplicity, assume that both FALCON and policy
𝜋★ have the same initial condition 𝑠′ = {𝑦𝑡:𝑡−ℎ+1, 𝑢𝑡−1:𝑡−ℎ+1}. Note that this is for
simplicity and due to exponential stability it only results in small deviation which
could be made arbitrarily small, see Lemma D.1.1. Let 𝑢�̂�𝑡 denote the control
input designed by the MPC policy using the estimated model dynamics �̂� (·) in the
planning, and similarly 𝑢𝐹𝑡 for using 𝐹 (·) in the planning. Furthermore, denote
the next observation of the system once 𝑢�̂�𝑡 and 𝑢𝐹𝑡 are deployed as 𝑦�̂�

𝑡+1 and 𝑦𝐹
𝑡+1

respectively. Using the Lipschitz assumption of the underlying system dynamics
and the MPC policy in planning models, for the same initial condition 𝑠′, we have

∥𝑢𝐹𝑡 − 𝑢�̂�𝑡 ∥ ≤ 𝐿𝑜𝜖, ∥𝑦𝐹𝑡+1 − 𝑦
�̂�
𝑡+1∥ ≤ 𝐿𝐿𝑜𝜖 . (D.3)

Since the MPC policy provides exponential stability for both 𝐹 and �̂�, we have
that the output of the system is decaying. Therefore, for each time-step in the
epoch one can show that differences given in (D.3) decays over time. Therefore, for
𝜖 ≤ min{Γ/𝐿𝑜, Γ/(𝐿𝐿𝑜)}, we have that Assumption 6.1 holds. Due to the choice
of 𝑇𝑤, FALCON satisfies this condition. By choosing 𝑡𝑒𝑝 = 𝑇𝑤 × 2𝑖−1 for 𝑖th epoch,
we get the following regret decomposition for FALCON:

Regret(𝑇) =
𝑇𝑤∑︁
𝑡=1
(𝐶𝑡 (𝑦𝑡 , 𝑢𝑡) − 𝐶𝑡 (𝑦𝜋★𝑡 , 𝑢

𝜋★
𝑡 )) +

𝑇∑︁
𝑡=𝑇𝑤+1

(𝐶𝑡 (𝑦𝑡 , 𝑢𝑡) − 𝐶𝑡 (𝑦𝜋★𝑡 , 𝑢
𝜋★
𝑡 ))

(D.4)

≤ 𝑇𝑤 (𝐾𝐵𝑢𝑒𝑥𝑝 + 𝐵𝑒)2 +
log2 (𝑇−𝑇𝑤)∑︁

𝑖=1
2𝑖−1𝑇𝑤𝑅(1 + 𝐿)2𝐿2

𝑜𝜖
2
𝑖 , (D.5)

where (D.5) follows from Assumption 6.1 and (D.3) for the upper bound on the
difference in the inputs and outputs of FALCON and 𝜋★. Since the inputs are
persistently exciting during the adaptive control phase, from Proposition 6.1, we

have that 𝜖𝑖 = O
(

𝑛𝑑√
2𝑖−1𝑇𝑤

+ 𝛼𝑚
𝑛𝑚

)
. Let ≲ denote the upper bound up to system-



402

dependent constants. Inserting 𝜖𝑖 to (D.5), we get

Regret(𝑇) ≲ 𝑇𝑤 +
log2 (𝑇−𝑇𝑤)∑︁

𝑖=1
2𝑖−1𝑇𝑤

(
𝑛2𝑑

2𝑖−1𝑇𝑤
+ 2𝑛𝑑−𝑚𝛼𝑚√︁

2𝑖−1𝑇𝑤
+
𝛼2
𝑚

𝑛2𝑚

)
(D.6)

≲ 𝑇𝑤 + 𝑛2𝑑 log2(𝑇 − 𝑇𝑤) + 𝑛𝑑−𝑚𝛼𝑚
√
𝑇 + 𝑇

𝛼2
𝑚

𝑛2𝑚 (D.7)

= O
(
𝑛𝑑−𝑚𝛼𝑚

√
𝑇 + 𝑇

𝛼2
𝑚

𝑛2𝑚

)
. (D.8)

Here (D.6) hides the constants in each term coming from (D.5), namely (𝐾𝐵𝑢𝑒𝑥𝑝 +
𝐵𝑦𝑒𝑥𝑝+𝐵𝑒)2 for the first term and 𝑅(1+𝐿)2𝐿2

𝑜 for the second term. (D.7) uses Lemma
C.3.11 and (D.8) hides the logarithmic factors and constants that do not depend on
the Fourier series and smoothness of the underlying function 𝐹 (·). Note that (D.8)
recovers the first statement of Theorem 6.4 for 𝜖′ = 𝛼2

𝑚

𝑛2𝑚 , where 𝜖′ directly depends on
the smoothness of the underlying system. For sufficiently smooth systems, i.e. for
a given horizon 𝑇 if 𝑚 = O(log(𝑇)), then FALCON attains O(

√
𝑇) regret, proving

the second statement in Theorem 6.4. Finally, for infinitely smooth systems, i.e.,
𝑚 = ∞, we see that last two terms of (D.7) vanish for 𝑛 > 1, yielding regret that
scales polylogarithmically in time, as stated in Corollary 6.4.1.
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