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Polar areas are among the regions where climate change occurs faster than onmost
of the other areas on Earth. To study the effects of climate change on vegetation,
there is a need for knowledge on its current status and properties. Both classic field
observation methods and remote sensing methods based on manned aircraft or
satellite image analysis have limitations. These include high logistic operation costs,
limited research areas, high safety risks, direct human impact, and insufficient
resolution of satellite images. Fixed-wing unmanned aerial vehicle beyond the
visual line of sight (UAV BVLOS) missions can bridge the scale gap between field-
based observations and full-scale airborne or satellite surveys. In this study the two
operations of the UAV BVLOS, at an altitude of 350m ASL, have been successfully
performed in Antarctic conditions. Maps of the vegetation of the western shore of
Admiralty Bay (King George Island, South Shetlands, Western Antarctic) that included
the Antarctic Specially Protected Area No. 128 (ASPA 128) were designed. The
vegetation in the 7.5 km2 area was mapped in ultra-high resolution (<5 cm and
DEM of 0.25m GSD), and from the Normalized Difference Vegetation Index
(NDVI), four broad vegetation units were extracted: “dense moss carpets”
(covering 0.14 km2, 0.8% of ASPA 128), “Sanionia uncinata moss bed” (0.31 km2,
1.7% of ASPA 128), “Deschampsia antarctica grass meadow” (0.24 km2, 1.3% of
ASPA 128), and “Deschampsia antarctica–Usnea antarctica heath” (1.66 km2, 9.4%
of ASPA 128). Our results demonstrate that the presented UAV BVLOS–based surveys
are time-effective (single flight lasting 2.5 h on a distance of 300 km) and cost-
effective when compared to classical field-based observations and are less invasive
for the ecosystem. Moreover, unmanned airborne vehicles significantly improve
security, which is of particular interest in polar region research. Therefore, their
development is highly recommended for monitoring areas in remote and fragile
environments.
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1 Introduction

Maritime Antarctic is a region where recent dynamic climate
changes are taking place (Siegert et al., 2019), and projections
forecast a strong impact of future climate change on Antarctic
biodiversity (Koerich et al., 2022). The development of vegetation
in maritime Antarctica is limited to scatter ice-free areas located
mainly in the coastal zone, which account for only a few percent
(2%–5%) of the total area. The productivity and growth of the
terrestrial tundra communities in the harsh Antarctic
environment are controlled by a set of extreme environmental
factors, like sub-zero temperatures, limited liquid water
availability, a specific light regime, elevated ultraviolet-B
radiation levels, desiccating and destructively strong winds,
poorly developed soils with low organic matter and nutrient
content, irregular nutrient distribution (from nutrient-deficient
habitats to the ones extremely enriched in nutrients by, e.g.,
breeding colonies of seabirds), high salinity in many locations,
and cryogenic processes (e.g., Convey, 1996; Znój et al., 2017;
Łachacz et al., 2018). The presence of so many stress factors
makes the Antarctic terrestrial ecosystems a mosaic of
microhabitats colonized by highly heterogeneous and
discontinuous communities (Smith, 1984; Block et al., 2009),
currently threatened by biological invasions of alien species
(Galera et al., 2018). Although so urgent, the detection and
mapping of vegetation remain limited in the Antarctic
environment. The mapping of the tundra communities in
Antarctica has a short history, and usually small vegetation
areas around research stations have been investigated (e.g.,
Lindsay, 1971; Smith, 1972). The classical field observation
methods are laborious, generate a high cost of expeditions,
high levels of human impact on the environment, and require
specialized botanical knowledge. Also, vegetation mapping by
image classification using remote sensing techniques remains
limited in the Antarctic environment (Casanovas et al., 2015).
Mainly due to the patchiness of terrestrial communities, its
surface coverage can be sparse, with isolated individuals
interspersed with bare ground and rocks, in small
communities forming biocrusts on soil or rocks, or sometimes
communities forming more extensive dense patches (Sotille et al.,
2020). Obtaining satellite imagery material at the appropriate
time of a vegetation stage and in sufficient qualities is still
problematic, especially in the Antarctic Peninsula region, due
to frequent occurrences of dense cloud cover and mist (Mustafa
et al., 2012). Therefore, cost-effective and reliable wide-scale
survey methods are required to accelerate assessments of
Antarctic biodiversity (Wall et al., 2011; Casanovas et al., 2015).

A high spatial resolution is required to map most of the plant
communities, and spectral bands in the short-wave infrared parts
are crucial when distinguishing between bryophyte communities.
This limits the use of the available satellite-based sensors. For
example, Casanovas et al. (2015) used the Normalized Difference
Vegetation Index (NDVI) and the matched filtering (MF)
approach from Landsat data to study the vegetation
distribution, however, they were unable to identify a pattern
between the NDVI values and vegetation types. The NDVI is a
standard tool in remote sensing monitoring of green biomass
(Pettorelli et al., 2005). It takes values ranging from −1 to 1. The

higher the value of this indicator, the higher the biomass content
and better the condition of the vegetation (Rouse et al., 1974).
The NDVI has gained popularity due to its ease of calculation
based on two spectral ranges—a standardized range and high
correlation with plant properties. The NDVI has found
widespread use for assessing chlorophyll content, assessing
plant stress, or identifying vegetation types (Geerken et al.,
2005; Ozyavuz et al., 2015), and classifying land cover (Defries
and Townshend, 1994) and detecting change for vegetation cover
(Gandhi et al., 2015; Ju and Bohrer, 2022). It can be also used to
estimate the density of green on an area of land (Weier and
Herring, 2000).

Fretwell et al. (2011) used data covering Graham Land in the
northern part of the Antarctic Peninsula and ground truthing in a
test that found that 0.086% of the study area (74,468 km2) showed
a probability of vegetation presence of over 50%. In this study, the
authors could not determine whether low NDVI values referred
to partial coverage of mosses or a continuous coverage of lichens
or algae, or if the pixel contained a significant area of vegetation-
free soil. They found out that olivine-rich sub-aerial palagonite
tuffs (Middle to Upper Miocene, James Ross Island Volcanic
Group) return NDVI ratios that are within the range of values
given by sparse vegetation. Detailed information from these
studies is not available due to the images’ limited spatial and
spectral resolution and ground-truthing efforts. In such an
environment, where terrestrial communities are dominated by
species of low biomass and are characterized by irregular
distribution, mid- or low-resolution images have limited use
in the analysis of vegetation spatial coverage. Better results
were obtained by Murray et al. (2010) and Andrade et al.
(2018) who used, respectively, high-resolution IKONOS and
QuickBird (four bands) imagery to map Antarctic vegetation,
but they could not discriminate between lichens and bare ground
and rocks. Whereas, Shin et al. (2014) successfully used linear
unmixing of three endmember spectra (snow, rock/soil, and
vegetation) extracted from QuickBird and KOMPSAT-2
imagery to map vegetation in Barton Peninsula. Furthermore,
multispectral WorldView-2 satellite data having eight bands
could capture most of the spectral characteristics of the
cryptogam-dominating vegetation. These data have been
applied by Power et al. (2020) to estimate microbial mat
biomass based on the NDVI in Dry Valleys, Eastern Antarctic,
and by Jawak et al. (2019) to map the vegetation of the Larsemann
Hills and Schirmacher Oasis, by ensemble merging of the five
top-performing methods (mixture-tuned matched filtering,
matched filtering, matched filtering/Spectral Angle Mapper
ratio, NDVI-2, and NDVI-4).

Sun et al. (2021) usingWorldView-2 images and seven SMAmodels
(FCLS, NM, FM, GBM, and threeMNM-AVs) extracted vegetation data
in the Fildes Peninsula, a part of the Nelson Peninsula (the King George
Island) and Ardley Island. The newly proposed models achieved the best
performance in abundance estimation of both mosses and lichens when
compare to the previous study.

But, all space-borne methodological approaches share a
common feature: the classifiers of vegetation communities
perform well only when the spectral mixing in each image pixel
is low (Calviño-Cancela and Martín-Herrero, 2016; Miranda et al.,
2020). Therefore, these techniques do not work well with plant

Frontiers in Environmental Science frontiersin.org02

Zmarz et al. 10.3389/fenvs.2023.1154115

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1154115


communities in polar regions where tundra patches are scattered
and discontinuous and may provide imagery with undesired degrees
of spectral mixing with other classes.

More reliable specific vegetation maps may be provided through
the incorporation of the classification procedure of intermediate
scales of observation between ground and satellite levels. Obtaining
data by the traditional aerial surveys with airplanes or helicopters
(Furmańczyk and Ochyra, 1982) and currently unmanned aerial
vehicles (UAVs) (e.g., Lucieer et al., 2014; Miranda et al., 2020; Váczi
et al., 2020) is the solution. Although, UAV data can cover a much
smaller area than do satellite images, their high resolution permits
distinguishing many details related to the vegetation that are not
evident in satellite images. Moreover, using the far-range UAVs and
beyond the visual line of sight method allows exploring sites located
away from the operation center. Therefore, the use of small UAVs in
the terrestrial regions of Antarctica is increasing steadily. The
successful application of the UAV methodology was already
implemented in a multitude of objectives (Zmarz et al., 2018),
like wildlife inventorying and monitoring (e.g.,: Goebel et al.,
2015; Mustafa et al., 2018; Korczak-Abshire et al., 2019),
periglacial landform mapping (Dąbski et al., 2017; Pina et al.,
2019), glacier forelands (Dąbski et al., 2020; Kreczmer et al.,
2021), and monitoring sea ice surface features (Li et al., 2019),
among others (Pina and Vieira, 2022). The UAVs based vegetation
studies in Antarctica are extremely helpful in providing additional
details for mapping procedures (Turner et al., 2014), obtaining the
micro-topography of moss beds (Lucieer et al., 2014), assessing the
stress (Malenovský et al., 2017) and health status (Turner et al.,
2019) of plants, or monitoring the changes taking place in vegetation
over time (Jawak et al., 2019; Bollard et al., 2022).

The entire of Antarctica is governed internationally by the
decisions of the Antarctic Treaty countries and has the status of
a natural reserve (www.ats.aq/e/ep.htm). To protect this unique
ecosystem, the Antarctic Specially Protected Area system was
established (http://www.ats.aq/documents/recatt/Att004_e.pdf).
Unfortunately, there has been no proper long-term monitoring
system for these areas (Convey and Peck, 2019). Any
conservation actions in Antarctica would depend on robust and
reliable baseline information, which is still sparse for most regions.
Therefore, the development of an effective and efficient vegetation
monitoring system is currently a challenge.

The main aim of this study is to develop a UAV BVLOS–based
NDVI map of the Antarctic Specially Protected Area No. 128,
located on the west coast of Admiralty Bay on King George
Island. A second aim is to relate the NDVI values to broad
vegetation units. These maps will become important baseline
maps for future studies on changes in vegetation cover.

2 Materials and methods

2.1 Study area

The study area is located on King George Island (62°10′S,
58°28′W), the largest volcanic island in the South Shetlands
archipelago, with a surface area of around 1,310 km2, of which
more than 92% is covered by glaciers (Lim et al., 2014). The area
covering the west coast of Admiralty Bay: the main body of Point

Thomas Oasis with Henryk Arctowski Polish Antarctic Station
(Arctowski) and the Antarctic Specially Protected Area No. 128
(ASPA 128) (Figure 1). The Point Thomas Oasis is one of the largest
seasonally ice-free areas (approx. 25 km2) in the maritime Antarctic
region with relatively high temperatures during the austral summer
(Kejna et al., 2013; Galera et al., 2015) and a constant flow of
freshwater (Nędzarek et al., 2014) throughout most of the summer
season (Kejna et al., 2013; Sancho et al., 2017). The area is supplied
with nutrients by large animal colonies, especially penguins and
pinnipeds (Sierakowski et al., 2017), and is under the constant
influence of sea aerosols (Łachacz et al., 2018). Apart from
temperature (mean annual air temperature is −1.8°C with a
minimum of −32.3°C and a maximum of 16.7°C; Kejna, 1999;
Kejna et al., 2013) and humidity (average relative humidity is
86.2%, with a monthly average precipitation of 33.0 mm; Kejna,
1999), the driving force that shapes tundra communities is the
constantly blowing strong wind (average annual wind speed equals
6.6°ms−1; Marsz and Styszyńska, 2000, with a maximum exceeding
65.0°ms−1; Zwoliński, 2007). Winds cause desiccation stress and act
as an abrasion factor. All these conditions favor the development of
one of the most diverse tundra communities in maritime Antarctic
(Furmańczyk and Ochyra, 1982; Ferrari et al., 2021). The tundra in
this region is mainly made up of cryptogams: lichens—ca.
380 species (Øvstedal and Smith, 2001; Olech, 2004), fungi—over
100 species (Malosso et al., 2006), bryophytes—ca. 140 species
(Ochyra et al., 2008), and 22 species of liverworts (Bednarek-
Ochyra et al., 2000) and algae (Broady, 1996). These terrestrial
ecosystems are extremely deficient in Magnoliophyta, of which only
two native flowering plant species are found, and these are limited to
the coastal parts of the west Antarctic Peninsula and its associating
islands and archipelagoes: the Antarctic hairgrass Deschampsia
antarctica Desv. (Poaceae) and pearlwort Colobanthus quitensis
(Kunth) Bartl. (Caryophyllaceae) (Chwedorzewska et al., 2004;
Androsiuk et al., 2015; Koc et al., 2018). In the study area, some
of the plant communities had been described by Zarzycki (1993),
Victoria et al. (2006, 2009), and Pereira et al. (2010), showing the
spatial distribution of selected vegetation communities at Demay
Point, in the southern parts of ASPA 128.

2.2 Data acquisition

BVLOS flights at an altitude of 350 m ASL were implemented by
the PW-ZOOM fixed-wing UAV (Goetzendorf-Grabowski and
Rodzewicz, 2016; Rodzewicz et al., 2017; Zmarz et al., 2018),
which was equipped with an MP autopilot: MicroPilot (Stony
Mountain, Canada). The operation was performed by a three-
member team: remote control operator (RC), ground control
station operator (GCS), and maintenance operator (all had
BVLOS licenses issued by national authorities). Two separate
flights were implemented to obtain the data that were required to
calculate the NDVI: one with the R-G-B camera (Canon EOS 700D
+ 35 mm lens) and another with the B-G-NIR camera (blue channel,
visible blue light—green channel, visible green light—NIR from
680 nm to 800 nm; Canon EOS REBEL T5i + 35 mm lens). The
B-G-NIR camera uses blue as the absorption channel and NIR as the
reflection channel. The two flights were undertaken on
10–11 November 2016 at an altitude of 350 m ASL and obtained
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data at a spatial resolution of <5 cm GSD and DEM of 0.25 m. The
area for which the data was obtained amounted to 7.5 km2

(Figure 1). The time that each flight took was 2 h and 2.5 h,
respectively. All images that were obtained had georeferences (X,
Y, and Z) registered by the autopilot logger that was mounted on the
UAV. The GPS Receiver GP-E2 was used for the geolocation of
images allowing for horizontal accuracy of measurement <5 m. The
data in the form of single images were processed into an orthophoto
map in the Universal Transverse Mercator system, zone 21 S (EPSG:
32721). The two sensors were matched into a single four-bands file
(R-G-B-NIR) using the layer stacking method in the ENVI software.
Then, the normalized difference vegetation index (NDVI), which
reflects the vegetation coverage and biomass, was calculated.

2.3 Dividing NDVI values to vegetation units

After processing the NDVI map, we aimed to divide the NDVI
values into broad vegetation units. The vegetation was studied in
January and February 2016, the austral summer before the
acquisition of the NDVI image. The percent cover of each
species and for impediment was estimated in altogether 99 1 ×
1 m2 phytosociological relevés. The relevés were placed
systematically every 10 m in the north–south direction along
three transects (Figure 4). Then, to reveal the main vegetation
units in the area, the relevés were clustered by Euclidean

distances based on the species cover of each relevé and a
dendrogram was produced (Figure 2). For the groups separated
by the clustering, the number of relevés (n) was taken, and the
percentage cover (c) and frequency (f) of the main species were
described for each group. We also calculated the mean NDVI value
for each relevé and thereby found the NDVI range for each
group. This range was used in the main division of the NDVI
values into vegetation units.

However, the transects with relevés did not cover a penguin
colony and protected wetland, these areas have some differences in
vegetation composition when compared with the areas that the
transects cover, and validation data for these areas were obtained
separately.

In the Point Thomas penguin colony area, east of the Arctowski
Station (Rakusa Point), the cliffs and rocks close to the sea are
enriched by guano and are dominated by epilithic lichen with orange
thallus (mainly, Caloplaca regalis, C. sublobulata, and Xanthoria
elegans). A total of 50 polygons of these lichens were identified on
the RGB image and the NDVI values were calculated. In this
penguin colony, the green algae Prasiola crispa locally dominates
the ground. Also for these algae, 50 polygons were identified on the
RGB image and the NDVI values were calculated.

Furthermore, just east of the Arctowski Station, there is a small
(<0.08 km2) very vulnerable protected wetland (Jasnorzewski
Gardens), with a dense vegetation cover in mainly standing
waters (Figure 4). To avoid walking in this area, we instead

FIGURE 1
The study area located on King George Island, South Shetlands Archipelago, the Western Antarctic; UAV flights area (7.5 km2) marked in the hatch;
and Antarctic Specially Protected Area No. 128 marked in purple [The coastline of the island on the basis of the SCAR King George Island geographic
information system project (http://www.kgis.scar.org/)].
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georeferenced a previous vegetation map interpreted from an
ordinary paper of a photo captured from a helicopter back in
1979 (Furmańczyk and Ochyra, 1982). Then, the NDVI values
from our flight were extracted for the vegetation types and
species composition of the communities in the old map.

3 Results

3.1 NDVI map

Altogether ASPA 128 covers 17.5 km2, and 9.2 km2 (53%) is
covered by glaciers (Pudełko et al., 2018). The ice-free area of ASPA
128 is 8.2 km2 (47%) and most of this was mapped with the NDVI
(Figure 3). Altogether 7.5 km2 was mapped with 4 × 4 cm2 pixel
resolution that covered the entire coastline and most of the ice-free
areas of the ASPA 128. The map shows that 2.35 km2 have NDVI
values above 0.12, which we use as a threshold for vegetation cover
(for details, please refer Section 3.2). Continuous areas with NDVI
above 0.12 were mainly found in the southern parts at Demay Point
and northern parts closer to the Arctowski.

3.2 Vegetation units

The clustering of the 99 relevés separated three main groups on
Euclidian distance of 100 (Figure 4). In the left group (Deschampsia
antarctica—Usnea antarctica heath) 48 of the 51 relevés had NDVI
values in the range of 0.05–0.154. The remaining three relevés had
NDVI values of 0.030, 0.234, and 0.286. However, relevés with <5%
vegetation cover mainly had NDVI values below 0.120. For the
‘Sanionia uncinatamoss bed’ group, the 18 relevés had NDVI values

in the range of 0.235–0.384, but 14 of these were in the NDVI range
of 0.252–0.370. For the ‘Deschampsia antarctica grass meadow’
group, 26 of the 30 relevés had NDVI values in the range of
0.163–0.298. The relevés did not cover the penguin colony. A
total of 50 polygons from RGB images of the epilithic lichen with
orange thallus show NDVI values mainly in the range of 0.25–0.30.
In addition, 50 polygons of the green algae (Prasiola crispa) had
NDVI values in the range of 0.17–0.30.

We also analyzed the NDVI values of the plant communities
described in the old vegetation map of the protected wetland
(Furmańczyk and Ochyra, 1982), and most of these dense moss
carpets that were found had high NDVI values of mainly
above 0.37.

Based on the data set mentioned above, we divided the NDVI
map into four broad vegetation units, where the exact threshold in
NDVI values between the units was subjectively chosen due to some
overlaps in relevés NDVI values. The ‘dense moss carpet’ unit had
NDVI values >0.37. However, the NDVI threshold of 0.37 was
subjectively chosen, and the group had some overlap with the related
unit below. The ‘Sanionia uncinata moss bed’ unit occurs in the
NDVI range of 0.27–0.37. This unit also has a gradual transition in
NDVI values to the group below. The ‘Deschampsia antarctica grass
meadow’ has NDVI values in the range of 0.22–0.26. The
‘Deschampsia antarctica–Usnea antarctica heath’ has NDVI
values in the range of 0.12–0.22. The lower values were classified
as those without vegetation.

3.2.1 Dense moss carpets
This unit displays different bryophyte plant communities, which

make thick, dense moss carpets in moist to wet areas, partly
protected from the wind. In more permanently wet (standing
water) parts, hydrophilous bryophytes such as Warnstorfia

FIGURE 2
Dendrogram. Euclidean distance of 99 relevés.
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sarmentosa and W. fontinaliopsis locally dominate. Bryum
pseudotriquetrum is widespread in the study area, particularly
along creeks and in concave parts. Some of the thickest carpets

of Sanionia uncinate are also included in this class. This unit covered
0.14 km2 (0.8 % ASPA 128) and is mainly found at lower altitudes
(<30 m. ASL), and 89% of the unit occurs in flat areas.

FIGURE 3
NDVI map (left) of the western shore of Admiralty Bay, King George Island, South Shetlands Archipelago, and ultra-high resolution vegetation map
(right) covering an area of 7.5 km2 (Source data: DEM and orthophoto based on the original UAV-derived data).
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3.2.2 Sanionia uncinata moss bed
This unit is dominated by the widespread bryophyte Sanionia

uncinata. From the Euclidean clustering, 18 relevés (n = 18) show
that Sanionia uncinata occurs in every relevé (frequency, f = 100)
used to describe this unit and has an average percentage cover (c) of
64%. This bryophyte often forms dense homogeneous carpets, but
with a gradual transition to dominants of Deschampsia antarctica
(f = 80, c = 7%). Also frequently found are the bryophytes
Polytrichastrum alpinum (f = 50) and Polytrichum juniperinum
(f = 28), but these cover less than 2% each. The relevés show
that some of the moss were classified as dead (c = 14%). The
unit is widespread in ASPA 128 and covers 0.31 km2 (1.7% of
ASPA 128, and is often dominated in less wind-exposed areas.

3.2.3 Deschampsia antarctica grass meadow
Together with S. uncinata, D. antarctica is the most widespread

species in the study area, and these are often associated with each
other. The 30 relevés (n = 30) show a mean cover (c) of 30% of D.
antarctica in this unit, in addition to dead moss and grass cover
altogether covering 15%. The unit is rather homogeneous, but some
other species are also found, such as the lichens Ochrolechia frigida
(f = 63, c = 6%) and Usnea antarctica (f = 43, c = 6%), Antarctic
pearlwort (Colobanthus quitensis) (f = 37, c = 2%), Sanionia
uncinata (f = 47, c = 6%), the brownish bryophytes
Polytrichastrum alpinum (f = 20), Polytrichum juniperinum (f =
23), and P. piliferum (f = 23), but the latter three cover less than 2%
each. The unit dominates often in slightly convex, north-facing

FIGURE 4
Jasnorzewski Gardens and Point Thomas penguin colony vegetation map based on UAV-derived images. The map also shows the location of the
99 relevés (white dots) which were placed systematically every 10 m along three transects.

Frontiers in Environmental Science frontiersin.org07

Zmarz et al. 10.3389/fenvs.2023.1154115

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://doi.org/10.3389/fenvs.2023.1154115


slopes. In addition, since D. antarctica tolerates high salinity, the
unit occurs in the littoral zone, that is, areas directly influenced by
marine aerosols and/or over-manured by birds’ feces. In the penguin
colony area, some of the algae Prasiola crispa and epilithic lichen
with orange thallus are also included in this unit. The unit covers
0.24 km2 (1.3% of ASPA 128).

3.2.4 Deschampsia antarctica–Usnea antarctica
heath

This unit is characterized by high species diversity, sparse
vegetation cover, and the visually dominated lichen Usnea
antarctica. The unit has a discontinued vegetation cover, and
gravel and open soil cover altogether of 85%. The unit has a high
species diversity of lichens, but only U. antarctica (f = 35, c = 5%)
and Ochrolechia frigida (f = 20, c = 1%) occur frequently. D.
antarctica is the most frequent species (f = 58, c = 1%), but it
covers far less than U. antarctica does. C. quitensis occurs frequently
(f = 24) but has an insignificant cover (c = 0.2%). The unit also has a
high diversity of bryophytes, which occurs in all of the 51 (n = 51)
relevés, and as in the previous units, the Sanionia uncinata,
Polytrichastrum alpinum, P. juniperinum, and P. piliferum are
among the most frequent bryophytes. This unit is widespread at
altitudes above the previously described units (mean height 58 m H
ellipse), and mainly occurs in areas characterized by less snow cover
which is often slightly convex, dry, and exposed. These areas are
rarely influenced by pinnipeds and penguin disturbances. In
addition, the unit includes a variety of plant communities at
lower altitudes, all with only scattered vegetation cover, and some
of the epilithic lichens with orange thallus in the penguin colony.
This is the most commonly mapped unit and covers 1.66 km2 (9.4%
of ASPA 128).

4 Discussion

In our work, we laid the foundations for BVLOS UAV–based
monitoring vegetation on the western shore of Admiralty Bay of King
George Island (South Shetlands). The vegetation in the 7.5 km2 area
was mapped with ultra-high resolution and is to our knowledge
among the largest UAV-based vegetationmaps inmaritimeAntarctic.

The 99 relevés used in this study were originally meant for
accuracy assessment for a vegetation map based on a UAV-
mounted multispectral camera. However, during the 1 month from
23 January to 24 February 2016, not a single day had usable flight
conditions (too strong wind), or there was toomuch fresh snow on the
ground. This illustrates the challenges in vegetation mapping in
maritime Antarctic. Instead, the relevés were used to interpret the
later obtained NDVImap to identify some broad vegetation units, but
then without the possibilities for accuracy assessment. However, three
of the four mapped units were based on the clustering of relevés, and
with the separation of the units at an Euclidean distance of 100, some
very distinct units appear. Based on this division, the cover and
frequency of the species in these three units were taken. Hence, it is
reasonable to believe that in most cases, the four mapped units
described in this study are reasonably accurate. However, with
some exceptions, within the penguin colony, rocks are covered
with ornithocoprophilous, epilithic lichen with orange thallus, and
on the ground, the green algae Prasiola crispa often dominates. These

unusual cases mainly occur within the mapped units ‘Deschampsia
antarctica grass meadow’ and ‘Deschampsia antarctica–Usnea
antarctica heath,’ respectively. This is due to the spectral
similarities between P. crispa and D. antarctica in both the red and
NIR bands (Calviño-Cancela and Martín-Herrero, 2016) and thereby
similarities in the NDVI values, and the relatively high reflectance in
the red band to the epilithic lichen with orange thallus Caloplaca
sp. and Xanthoria sp. (Calviño-Cancela and Martín-Herrero, 2016).
Furthermore, scattered occurrences of the lichen Usnea antarctica
have been noted at higher altitudes that did not give any significant
signal in the NDVI value and were not mapped, as the NDVI values
were below 0.12. This suggests that the NDVI is not useful inmapping
spots of brightly colored lichens likeUsnea antarctica, probably due to
the high reflectance in both the visible and NIR bands of such lichens
(Calviño-Cancela and Martín-Herrero, 2016; da Rosa et al., 2022).

Moreover, since we used an ordinary GPS for determining the
location of the relevés, there is an accuracy issue, and by adding the
accuracy error in the NDVI map, the NDVI values extracted from the
1 × 1 m2 relevés would not fit perfectly with the NDVI map. However,
due to the gradual changes in vegetation/NDVI in the rather flat
landscape, this inaccuracy does not influence the main results when
dividing the NDVI values into vegetation units. The extracted NDVI
values from the 6 × 6 m2 plots correlate significantly with the NDVI
values from the 1 × 1 m2 relevés (r2 = 0.95, n = 99, and p = 5.34–65),
indicating that the inaccuracy in location/NDVI map does not
influence the results. Since no other maps of the vegetation in
ASPA 128 exist, except for the very small and old vegetation map
of the protectedwetland (Furmańczyk andOchyra, 1982) and a coarse
vegetation map of Demay Point (Pereira et al., 2010), this is a huge
step forward. The presented NDVImap and vegetationmap show the
current status of the vegetation andwill be highly useful in the study of
the ongoing environmental change, particularly the changes in
vegetation cover, and for the conservation of the ASPA 128. The
presented map could also be used as validation, giving a potential
baseline for satellite-based vegetation mapping (Miranda et al., 2020),
monitoring, and assessment of even larger areas. Future UAV-based
vegetation mapping of the area has to use cameras with more spectral
bands in order to better separate plant communities at a more detailed
level when compared with this level of mapping. Alternatively, a
recent geographic object-based image analysis of UAV data in a
comparable area in maritime Antarctic has shown promising results
(Sotille et al., 2022), although they have not separated the different
bryophyte species, which dominate in our study area.

Under the strongest forcing scenario, projections predict not only a
tripling (300% increase) of ice-free areas over parts of the Antarctic
Peninsula as a result of more than 50 additional-degree days above
freezing by the end of the 21st century (Lee et al., 2017) but also the
increases in precipitation (Turner et al., 2019), permafrost warming, and
active layer thickening (Guglielmin et al., 2014; Hrbăcek et al., 2021).
This means that groundwater will remain available in the upper parts of
the soil throughout the season. In maritime Antarctic, the development
of terrestrial communities is controlled by extreme environmental
conditions, with the crucial role of liquid water availability, rather
than biotic interactions (Convey & Peck, 2019). Such communities are
expected to be very sensitive to changes in climate and consequential
processes (Bargagli, 2005; Frenot et al., 2005). Since more cumulative
energy is available to terrestrial biota (both in terms of the absolute
positive temperature achieved and cumulative degree days) the
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consequences are thought to include increased diversity (also by
migrating some species from temperate zones to maritime
Antarctic), biomass, trophic complexity, and rapid colonization of
newly deglaciated terrains, all of which enable the development of a
more complex ecosystem (Siegert et al., 2019; Weisleitner et al., 2020).
Thus, most likely, further complications will arise from the complexity
of those species interactions (Molina-Montenegro et al., 2019). While
the contemporary Antarctic biota shows the ability to survive abiotic
environmental extremes, its competitive abilities are very poorly
developed, and even whole communities are vulnerable to increased
competition from opportunistic invaders (Galera et al., 2019; Colesie
et al., 2022). These observed changes are an area of concern for the
Antarctic Treaty System, whose decisions to protect the Antarctic
ecosystem are based on the best available reliable scientific data. As
described here, the UAVBVLOS operations proved to be very robust in
gathering valuable qualitative and quantitative data that are necessary
for monitoring distant and isolated polar environments. It is important
to notice the differences between the multi-rotor and fixed-wing
platforms, and between the visual line of sight and beyond visual
line of sight operations. Multi-rotor and fixed-wing platforms are
completely different solutions with extremely different performances,
but also with different functional and operational requirements. That is
why, it is so important to precisely define tasks in order to choose the
optimal system. The factors which significantly affect the efficiency of
UAV operations are flight time, flight speed, type of drive (combustion
or electric engine), possible distance to be covered by one flight,
telemetric range, and payload. Unmanned multi-rotor platforms are
mainly used for small, even very small areas located close to the take-off/
landing point and in favorable calm weather conditions. For tasks
requiring longer flight time and range, fixed-wing platforms turn out to
be much more effective especially in the BVLOS operation, as was
proved here, as in previous studies (see Zmarz et al., 2018; Korczak-
Abshire et al., 2019; Dąbski et al., 2020). Data described here can be
applied in the conservation of the protected areas and further studies of
environmental changes.

5 Conclusion

The BVLOS operation of the fixed-wing PW-ZOOM UAV,
equipped with an R-G-B camera and a B-G-NIR camera allowed
obtaining data for the development of a vegetation map in the
Antarctic Specially Protected Area No. 128. The flights were made
for an area of 7.5 km2 in a relatively short time (one flight lasted for
2 h and the second flight for 2.5 h). Using BVLOS operations in
Antarctic conditions proved to be an effective method of obtaining
data in hard-to-reach areas. Advantages include short data
acquisition time, long range of BVLOS flights, and few crew
members involved in servicing the BVLOS flights. Furthermore,

the proposed method of acquiring high-resolution data fills the gap
between satellite data and data obtained by traditional field-based
methods.
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