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ABSTRACT 

The interest on alkaline-stable lipases by the scientific community is 

increasing due to its great potential use. As most industrial processes are performed 

under highly basic conditions, alkaline-stable lipases become hugely valued 

biocatalysts. In this study, three aspartic acid residues at positions 51, 122 and 247 in 

the outer loop of LipKV1 from Acinetobacter haemolyticus was computationally 

mutated into lysine using the SWISS-MODEL program, followed by energy 

minimization of the protein models. PROCHECK, ERRAT and Verify3D refined 

models of LipKV1 and Mut-LipKV1 indicated that the Mut-LipKV1 protein 

conformation is in a good condition. The study found that the overall electrostatic 

surface potentials and charge distributions of the Mut-LipKV1 model was more 

stable and better adapted to conditions of elevated pHs (pH 8.0 −10.0). Molecular 

dynamics (MD) simulation of Lip-KV1 and Mut-LipKV1 protein models under 

different alkaline pHs using GROMACS version 2018.6 revealed that Mut-LipKV1 

was more stable at the high pH 9.0 (RMSD ~0.3 nm, RMSF ~0.05 – 0.2 nm), 

compared the optimal pH 8.0 of LipKV1 (RMSD 0.3 nm, RMSF 0.05 – 0.20 nm). 

Molecular docking using AutoDock Vina with tributyrin as the substrate identified 

detailed changes that occurred post mutation. The highest binding affinity (−4.1 

kcal/mol) with Mut-LipKV1 which occurred at pH 9.0 was from a single hydrogen 

bond with His289. MD simulations showed that configurations which formed 

between Mut-LipKV1-tributyrin (RMSD 0.3 nm; RMSF 0.05 − 0.3 nm) and the 

LipKV1-tributyrin complexes (RMSD 0.35 nm; RMSF 0.05 − 0.4 nm) were 

comparably stable at pH 8.0. Furthermore, MM-PBSA calculation validated that the 

Mut-LipKV1-tributyrin complex at pH 8.0 (-44.01 kcal/mol) showed comparable 

binding free energy to LipKV1-tributyrin complex (−43.83 kcal/mol). Whereas the 

lowest binding free energy for Mut-LipKV1-tributyrin complex was simulated at pH 

12.0 (−44.04 kcal/mol). Thus, adaptive strategy of replacing the outer loop surface 

aspartic acid to lysine in LipKV1 successfully broadened pH stability of Mut-

LipKV1 towards higher pH, raising it from pH 8.0 − 11.0 to pH 8.0 − 12.0 in the 

mutant lipase. In a nutshell, this research offered a considerable insight for further 

improving the alkaline tolerance of lipases. 
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ABSTRAK 

Enzim lipase yang bersifat tahan alkali semakin mendapat perhatian ahli sains 

kerana potensi aplikasinya yang sangat besar. Oleh kerana kebanyakan proses 

industri berlaku di bawah keadaan beralkali tinggi, lipase stabil-alkali menjadi 

pemangkin yang amat bernilai. Dalam kajian ini, tiga residu asid aspartik pada 

kedudukan 51, 122 dan 247 di gelung luar LipKV1 dari Acinetobacter haemolyticus 

telah dimutasi secara komputer menjadi lisin menggunakan program SWISS-

MODEL, diikuti dengan peminimuman tenaga model protein. Model LipKV1 dan 

Mut-LipKV1 yang diperhalusi oleh PROCHECK, ERRAT dan Verify3D 

menunjukkan bahawa konformasi protein Mut-LipKV1 berada pada tahap yang baik. 

Kajian ini menunjukkan bahawa keseluruhan keupayaan elektrostatik dan taburan cas 

pada Mut- LipKV1 adalah lebih stabil dan lebih beradaptasi pada keadaan  pH tinggi 

(pH  8.0 − 10.0). Simulasi dinamik molekul (MD) ke atas model protein LipKV1 dan 

Mut- LipKV1 pada pH alkali yang berbeza menggunakan GROMACS versi 2018.6 

menunjukkan Mut-LipKV1 lebih stabil pada pH 9.0 (RMSD ~0.3 nm,  RMSF ~0.05 

− 0.2 nm), berbanding LipKV1 yang optimum pada pH 8.0 (RMSD 0.3 nm, RMSF 

0.05 − 0.20 nm). Pengedokan molekul menggunakan Autodock Vina dengan 

tributirin sebagai substrat menunjukkan perubahan terperinci yang berlaku pasca 

mutasi. Keafinan pengikatan tertinggi (−4.1 kcal/mol) dengan Mut-LipKV1 yang 

berlaku pada pH 9.0 telah membentuk satu ikatan hidrogen tunggal dengan His289. 

Simulasi MD menunjukkan bahawa konfigurasi komplek Mut-LipKV1-tributirin 

(RMSD = 0.3 nm; RMSF = 0.05 − 0.3 nm) dan kompleks LipKV1-tributyrin (RMSD 

0.35 nm; RMSF 0.05 − 0.4 nm) adalah setara kestabilannya pada pH 8.0. Tambahan 

lagi, pengiraan MM-PBSA membuktikan bahawa kompleks Mut-LipKV1-tributirin 

pada pH 8.0 (-44.01 kcal/mol) mempunyai tenaga bebas pengikatan yang setara 

dengan kompleks LipKV1-tributirin (-43.83 kcal/mol). Manakala, tenaga bebas 

terendah adalah daripada kompleks Mut-LipKV1-tributirin yang disimulasi pada pH 

12.0 (-44.04 kcal/mol). Oleh itu, strategi penyesuaian dengan menggantikan asid 

aspartik di gelung permukaan LipKV1 kepada lisin berjaya meluaskan kestabilan pH 

Mut- LipKV1 kepada pH yang lebih tinggi, meningkatkannya daripada pH 8.0 − 11.0 

ke pH 8.0 − 12.0 dalam lipase mutan. Secara keseluruhannya, kajian ini menawarkan 

lebih kefahaman dalam meningkatkan daya tahan kealkalian lipase. 
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CHAPTER 1  

 

 

 

INTRODUCTION 

1.1 Background of the Study 

Microbial lipases are versatile and for the most part, preferred due to their 

wide-ranging catalytic activity and currently commercially mass-produced with 

moderate cost (Liu et al., 2017b). Lipases (EC 3.1.1.3) fall under the α/β-hydrolase-

fold superfamily which mediate reactions, for instance, hydrolysis of water insoluble 

or poorly-water soluble substrates i.e. fatty acid esters, as well as synthetic reactions 

involving esterification and transesterification to yield alkyl esters (Gurung et al., 

2013; Kumar et al., 2016a; Mohammadi et al., 2016). Lipases are highly regarded as 

industrial biocatalysts with no cofactors needed, have broad substrate specificity and 

stability over a wide pH and temperature range (Kumari et al., 2019), also showing 

reasonable stability in the presence of chemicals (Rabbani et al., 2013). The ability 

of lipases to competently catalyze enantioselective reactions with high enantiomeric 

purity, have made them invaluable in the fine chemicals industry (Kumar et al., 

2016a; Kumar et al., 2016b).  

Most industrial biotechnological processes are performed under highly basic 

conditions, thereby warrant the use of alkaline-stable lipases for carrying out 

reactions (Batumalaie et al., 2018d; Shamim et al., 2018). However, demands for 

bio-based reagents remains low due to low acceptance of manufacturers on lipases, 

believing the enzymes are not sufficiently robust, along with their traditional reliance 

on using familial and well-proven active ingredients, i.e. phosphate-based chemicals 

(Boran, 2018). This issue may be solved by improving the robustness of lipases for 

industrial settings through protein engineering and recombinant technology. Such 

approaches have allowed tailoring next-level lipases for improved stability and 

catalytic properties, inter alia thermotolerance, wide pH tolerance, stable enzyme 
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activity over a wide range of temperature and in harsh reaction conditions (Nigam, 

2013; Khan et al., 2017; Soleymani et al., 2017).  

The use of bioinformatics has gradually taken centre stage with regard to 

modulating properties of a variety of proteins, in hopes of reducing empirical works 

(Wahab et al., 2012; Kamarudin et al., 2014; Hamid et al., 2015; Wahab et al., 

2016). While there are a number of popularly used protein engineering software 

which include FoldX (Schymkowitz et al., 2005), AMBER (Aronica et al., 2016), 

YASARA (Wijma et al., 2014), GROMACS which developed in Herman 

Berendsen‘s group of University of Groningen in the version of 2018 series (Lemkul, 

2018), is the choice of this study. GROMACS has widely reported with good success 

for dynamical simulations to assess the conformational stability of a protein in 

various settings i.e. pH, temperature and presence of salts. (Abraham et al., 2015). 

Molecular dynamic simulation identifies the most stable state of the protein in 

relation to its functions and can adequately demonstrate the impact of mutation of 

proteins and the structural changes brought about by the mutation(s) (Ishak et al., 

2019). Moreover, the software has successfully performed in silico mutagenesis and 

predicted the newly introduced or improved catalytic features of the mutated enzyme 

(Elengoe et al., 2014; Peng et al., 2017; Imani et al., 2018).   

This study explored a recently isolated bacterium, Acinetobacter 

haemolyticus which produced an alkaline-stable lipase, lipase KV1, and was 

consequently cloned and overexpressed in Escherichia coli. The recombinant lipase 

KV1 (LipKV1) exhibits an optimal temperature and pH of 40°C and pH 8.0, and 

shows reasonable alkaline stability up to 24 hours over a wide-ranging pH values 

from pH 7.0 − 11.0 while retaining relative hydrolytic activities at >80% (Batumalaie 

et al., 2018a; Batumalaie et al., 2018b; Batumalaie et al., 2018f). The insufficient 

optimal pH of LipKV1, nonetheless renders the enzyme unsuitable as a bioactive 

ingredient in cleaning reagents. For this application, the enzyme must have an 

optimal pH that lies between pH 9.0 – 11.0 (Boran, 2018). The redesigning of the 

LipKV1 protein to increase its optimal pH and improve alkaline-stability is therefore 

required. Thus, a firm understanding of the structural architecture as well as 

structure-function relationship of LipKV1 is valuable to study protein features of the 
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lipase that may be exploited and mutated to improve its alkaline-stability. The study 

noted that it is amongst the few crucial considerations to be taken into thought, if the 

alkaline-stability of LipKV1 was to be further tailored to match the extreme 

conditions of industrial processes.  

Homology modelling of LipKV1 revealed the protein structure is made up of 

a single compact domain consisting of seven parallel and one anti-parallel β-strands 

surrounded by nine α-helices with the conserved active-site residues being Ser165, 

Asp259 and His289. Surface potentials of LipKV1 yielded a predominant population 

of acidic surface or negative charge residues (70%) at optimal pH 8.0. (Batumalaie et 

al., 2018a). The protein architecture of LipKV1 showed the characteristic of an 

alkaline-stable enzyme due to a higher number of negatively charged exposed amino 

acids on the protein surface. This feature is pertinent for a better stabilization of the 

protein under basic extreme environment. This is consistent with bacteria-producing 

enzymes adapting to surrounding alkaline conditions, by producing enzymes 

specially that cater to changes in their subcellular environments (Talley and Alexov, 

2010). Alkaline-stable enzymes with improved pH stability have been documented 

for α-amylase from Bacillus sp. (pH 6.0 – 10.0) (Dahiya and Rathi, 2015), lipase 

from Bacillus sp. (pH 8.0 – 10.0) (Bora and Bora, 2012) and lipase from Geobacillus 

sp. (pH 5.0 – 11.0) (Ishak et al., 2019). A previous mutagenesis study by Zheng et al. 

(2014) reported on the profound improvement in pH-activity profile of a mutant 

enzyme from Paenibacillus bacteria. The researchers successfully elevated the 

alkaline-stability of a xylanase whereby the pH optimal was elevated from pH 7.0 to 

9.0 using site-directed mutagenesis approach. Another study successfully improved 

the alkaline stability of a Bacillus sp. from the optimal pH 7.5 to 8.5 by site-directed 

mutagenesis of aspartic acid or glutamic acid on the outer loop of protein surface of 

xylanase with lysine, arginine or histidine (Bai et al., 2015; Bai et al., 2016). The 

computational approach to redesign a protein appears to be the way forward in 

expediting creation of proteins with specific catalytic repertoire, as well as for 

enhancing catalytic properties of enzymes.  
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1.2 Problem Statement 

Considering the ever-increasing demand for better and more robust enzymes 

with the ability to withstand extreme industrial conditions i.e. highly alkaline 

environment in the manufacturing processes, it is apparent that the moderately 

alkaline-stable LipKV1 falls short of this industrial requirement and limits its further 

application. A plausible way to profoundly improve the applicability of LipKV1 is to 

tailor the protein folds of the enzyme, which can be expediently, done by an in silico 

approach using bioinformatics.  

In light of this, the study proposed the in silico mutation on LipKV1 using 

PyMOL, to replace the outer most three Asp residues with Lys, in order to improve 

the alkaline-stability of the lipase and bring it closer to industrial requirements as 

bioactive ingredient in cleaning products. It is hypothesized that replacing the three 

Asp residues with Lys on the outer loop regions of LipKV1 protein surface can have 

a profound impact on improving the pH-activity profile of the mutant LipKV1 (Mut-

LipKV1). This approach suggested in this study was possible as information on the 

structure of LipKV1, previously obtained by homology modelling, is available 

(Batumalaie et al., 2018a).  Moreover, this is the first reported mutational work on 

LipKV1 that replaces outer Asp residues of lipase KV1 with Lys, to modulate its 

alkaline stability. The in silico study can offer in-depth insights for future empirical 

mutagenesis work with better understanding and improve stable conformation of 

lipase KV1 at increasing basic pH conditions.  

1.3 Objectives of the Study 

The objectives of the research are as follows: 

(a) To perform in silico site-directed mutagenesis on the outer loop regions of the 

A. haemolyticus LipKV1 model protein and compare stability of proteins of 

Mut-LipKV1 to LipKV1 by molecular dynamics (MD) simulations under 

varying alkaline pH. 
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(b) To conduct molecular docking and molecular dynamics (MD) simulations of 

the enzyme-substrate complex and compare the stability Mut-LipKV1- and 

LipKV1-substrate complexes under varying alkaline pH. 

(c) To validate the results of MD simulations using molecular-mechanics 

Poisson-Boltzmann analysis (MM-PBSA). 

1.4 Scopes of the Study 

The study was divided into three parts, each of which to meet the 

aforementioned three objectives. The in silico site-directed mutagenesis of LipKV1 

protein was done on the previous homology modelled lipase at its pH optimal (pH 

8.0). Homology modelling of LipKV1 and Mut-LipKV1 was performed using 

SWISS-MODEL server to construct a three-dimensional protein by using 

carboxylesterase from Archaeglobus fulgidus as a template. Mutagenesis was done 

using PyMOL and the quality of each protein model was assessed using ProtParam 

tool on the ExPASy server and Self-Optimized Prediction method with Alignment 

(SOPMA). Mut-LipKV1 models were subjected to an automated H++ server to 

deprotonate the mutant protein under different alkaline pH (pH 8.0 – 12.0) for 

subsequent simulations. Adding hydrogen atoms using PDB2PQR server allowed the 

LipKV1 and Mut-LipKV1 models for electrostatic calculations using Adaptive 

Poisson-Boltzmann Solver (APBS) plugin embedded in PyMOL software. The 

generated protein models were further ascertained through molecular dynamics (MD) 

simulations at 100 ns to assess changes in the alkaline-stability of LipKV1 and Mut-

LipKV1 protein under varying basic conditions. Structural validation was undertaken 

to predict the proposed 3-D protein models through several evaluation tools such as 

PROCHECK, ERRAT and Verify-3D.  

Next step of the study involved the molecular docking to predict the binding 

affinity (kcal/mol) and intermolecular interactions when substrate is docked into the 

active sites of LipKV1 and Mut-LipKV1. The substrate used for the docking was 

tributyrin which was previously empirically proven to be the preferential substrate of 
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LipKV1 (Batumalaie et al., 2018a). This docking method implemented AutoDock 

Vina to generate the docking, and PyMOL to visualize the binding poses. Molecular 

dynamics (MD) simulations of the enzyme-substrate complex was run again in 

triplicates at 100 ns to analyze the molecular motion of LipKV1 and Mut-LipKV1 in 

the presence of substrate tributyrin. The MD simulations was carried out using 

Gromos53a7 force-field under GROMACS 2018.6 to assess the dynamical behaviors 

of the lipase-tributyrin complexes and compare the conformational stabilities of the 

LipKV1- and Mut-LipKV1-substrate at different simulated pH values. The trajectory 

analyses included root-mean square deviation (RMSD), root-mean square fluctuation 

(RMSF), radius of gyration (Rg) and hydrogen bond, generated after MD 

simulations.  

Finally, the enzyme-substrate complex was subjected to MM-PBSA 

calculations to predict the free binding energy by taking into account the MD 

trajectories. The MM-PBSA calculated the van der Waals, electrostatic, polar 

solvation, and nonpolar solvation energies of each lipase-tributyrin complex and the 

resulting energies were converted into kcal/mol. The findings of MM-PBSA are 

valuable for validating the results obtained from earlier MD simulations on the 

LipKV1- and Mut-LipKV1-substrate complexes under the tested elevated alkaline 

conditions (pH 8.0 – 12.0). 

1.5 Significance of the Study 

The findings from the in silico mutation on LipKV1 will be useful to identify 

crucial residues that governs the alkaline-stability of the lipase. The same 

information may also be useful for further improvement on the alkaline-stability of 

the lipase or any other type of lipases, for that matter. The findings would greatly add 

to the body of knowledge in better predicting mutation sites that profoundly broaden 

the pH-activity profile of a lipase.  
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CHAPTER 2  

 

 

 

LITERATURE REVIEW 

2.1 Lipases from Acinetobacter species 

Acinetobacter are known as Gram-negative, oxidase-negative and strictly 

aerobic bacteria which belongs to Pseudomonadales order. Acinetobacter has 

pathogenic and non-pathogenic species with various bacterial strains which grow 

optimally at 33 – 45°C and survives at a pH range of 5.0 – 9.0 (Jung and Park, 2015). 

It was reported in the literature that Acinetobacter sp. producing lipase also included 

Acinetobacter calcoaceticus and Acinetobacter johnsonii (Wang et al., 2012a). So 

far, alkaline-stable lipases remained unreported except for the Acinetobacter 

haemolyticus (Batumalaie et al., 2018a; Batumalaie et al., 2018b; Batumalaie et al., 

2018c; Batumalaie et al., 2018d; Batumalaie et al., 2018e). 

Batumalaie et al. (2018d) discovered lipase-producing bacterium, 

Acinetobacter haemolyticus strain KV1 isolated from oil palm mill effluent. Lipase 

produced by this bacterium exhibited quite remarkable stability of pH values (pH 8.0 

– 11.0) and optimum activity at 40°C, while retaining hydrolytic activities >80% for 

up to 24 hours. These unique properties discovered by the earlier study suggested 

LipKV1 as an alkaline-stable lipase. Sarac and Ugur (2016) described A. 

haemolyticus isolated from soil and olive pomace samples persisted over a wide 

range of temperature and pHs, as well as retained stability at 4°C and activity of 90% 

for the treatment of lipid-rich wastewater. Lipases from Acinetobacter sp. are useful 

for the bioremediation of oil-contaminated wastewater by converting lipids into 

carbon dioxide, water and biomass (Iqbal and Rehman, 2015; Gururaj et al., 2016). 
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