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ABSTRACT 

Carbon doping is a promising way to modify the properties of TiO2 for 
enhancing its photocatalytic performance. Although there are many publications about 
the enhancement of photocatalytic activity of TiO2, the relationship between the 
structural and physical properties with the photocatalytic activity of TiO2 is still not 
clearly understood. A new approach has been proposed to evaluate the structure-
photocatalytic activity relationship with the aim to better understand the dominant 
properties that determine the photocatalytic activities of C-doped TiO2. Fuzzy logic 
graph has been used as a new approach in determining the dominant factor for the 
structure-photocatalytic activity relationship of C-doped TiO2. Characterization results 
from experimental study were used in the fuzzy logic graph. For the experimental 
study, two types of C-doped TiO2 were successfully synthesized by the sol-gel method 
with addition of cetyltrimethylammonium bromide (CTAB) surfactant  and without 
the addition of CTAB, at different calcination temperatures, to compare with 
commercial TiO2. The synthesized photocatalysts were characterized using several 
characterization techniques. Photooxidation of styrene with aqueous hydrogen 
peroxide has been used as the model reaction for organic pollutants to study the 
structure-photocatalytic activity relationship under UV and visible light irradiation.  X-
ray photoelectron spectroscopy (XPS) spectra show that C was doped into TiO2’s 
lattice with the amount of C of about 2.5 at% for CTAB-C/TiO2-500 samples and about 
10.5 at% for C/TiO2-500 samples at interstitial and substitutional positions of anatase 
TiO2. Energy dispersive X-ray spectroscopy (EDX) and XPS results for CTAB-C/TiO2 
samples show a lower amount of C incorporated into TiO2 as compared to C/TiO2 
without the addition of CTAB, which may be caused by the removal of C impurity by 
the CTAB surfactant. Furthermore, the effects of calcination temperature from 300 to 
700°C on the physicochemical properties of the C-doped TiO2 were also studied. 
Calcination temperature affected the phase, morphology, surface area, porosity, 
crystallite size and amount of C. The surface area of CTAB-C/TiO2 and C/TiO2 
samples is shown to decrease as the calcination temperature increased. Additionally, 
the confirmation on the effect of C on the band gap energy of the anatase TiO2 was 
investigated using density functional theory (DFT). Total density of states (TDOS) 
shows that the C affects the band gap energy of TiO2 by introducing the mid gap states 
between the band gap. Based on DFT analysis and photocatalytic experiment, six 
physical properties have been chosen to be used for fuzzy logic graph, i.e. surface area, 
phase, amount of electron-hole recombine, band gap energy, existence of sub-band 
gap and amount of C. Fuzzy logic graph analysis shows that surface area is a dominant 
factor for the photooxidation of styrene under UV and visible light irradiations, 
followed by phase , amount of C and amount of electron-hole recombine.  This study 
demonstrated that the combination of photocatalytic experiment, DFT and fuzzy logic 
graph analysis can be used to clarify the structure-photocatalytic activity relationship 
in TiO2 photocatalytic systems.    
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ABSTRAK 

Pendopan karbon adalah cara yang menjanjikan dalam pengubahsuaian sifat 
TiO2 bagi meningkatkan prestasi fotopemangkinannya. Walaupun terdapat banyak 
penerbitan tentang peningkatan aktiviti fotopemangkinan TiO2, hubungan antara sifat-
sifat struktur dan fizik dengan aktiviti fotopemangkinan TiO2 masih belum difahami 
dengan jelas. Satu pendekatan baharu telah dicadangkan untuk menilai hubungan 
struktur-aktiviti fotopemangkinan dengan matlamat untuk memahami dengan lebih 
baik sifat-sifat dominan yang menentukan aktiviti fotopemangkinan TiO2 didopkan-C. 
Graf logik kabur telah digunakan sebagai pendekatan baharu dalam menentukan faktor 
dominan bagi hubungan  struktur-aktiviti fotopemangkinan TiO2 didopkan-C. 
Keputusan pencirian daripada kajian eksperimen telah digunakan dalam graf logik 
kabur. Bagi kajian eksperimen, dua jenis TiO2 didopkan-C telah berjaya disintesis 
dengan menggunakan kaedah sol-gel dengan penambahan surfaktan 
setiltrimetilammonium bromida (CTAB) dan tanpa penambahan CTAB, pada suhu 
pengkalsinan yang berbeza untuk dibandingkan dengan TiO2 komersial. Fotomangkin 
yang disintesis telah dicirikan menggunakan beberapa teknik pencirian. Pengoksidaan 
stirena dengan hidrogen peroksida telah digunakan sebagai model tindak balas bagi 
bahan pencemar organik untuk mengkaji hubungan struktur-aktiviti fotopemangkinan 
di bawah sinaran UV dan cahaya nampak. Spektrum spektroskopi fotoelektron sinar-
X (XPS) menunjukkan bahawa C telah terdopkan ke dalam kekisi TiO2 dengan jumlah 
C kira-kira 2.5 at% bagi sampel CTAB-C/TiO2-500 dan kira 10.5 at% bagi sampel 
C/TiO2-500 pada posisi di antara ruang dan posisi penggantian TiO2 anatas. Hasil 
spektroskopi serakan tenaga sinar-X (EDX) dan XPS bagi sampel CTAB-C/TiO2 
menunjukkan jumlah C yang lebih rendah telah digabungkan ke dalam TiO2 
berbanding C/TiO2 tanpa penambahan CTAB, yang mungkin disebabkan oleh 
penyingkiran bendasing C oleh surfaktan CTAB. Tambahan pula, kesan suhu 
pengkalsinan dari 300 hingga 700°C terhadap sifat fizikokimia TiO2 didopkan-C telah 
juga dikaji. Suhu pengkalsinan telah memberi kesan kepada fasa, morfologi, luas 
permukaan, keliangan, saiz hablur dan jumlah C. Luas permukaan sampel CTAB-
C/TiO2 dan C/TiO2 menunjukkan ia telah berkurang apabila suhu pengkalsinan 
meningkat. Tambahan lagi, pengesahan kesan C terhadap tenaga luang jalur TiO2 
anatas telah disiasat menggunakan teori ketumpatan berfungsi (DFT). Ketumpatan 
keadaan keseluruhan (TDOS) menunjukkan bahawa C mempengaruhi tenaga luang 
jalur TiO2 dengan memperkenalkan keadaan luang pertengahan di antara luang jalur. 
Berdasarkan analisis DFT dan eksperimen fotopemangkinan, enam sifat fizik telah 
dipilih untuk digunakan bagi graf logik kabur, iaitu luas permukaan, fasa, jumlah 
gabungan semula elektron-lubang, tenaga luang jalur, kewujudan luang sub-jalur dan 
jumlah C. Analisis graf logik kabur menunjukkan bahawa luas permukaan adalah 
faktor dominan bagi fotopengoksidaan stirena di bawah sinaran UV dan cahaya 
nampak, diikuti dengan fasa, jumlah C dan jumlah gabungan semula elektron-lubang. 
Kajian ini membuktikan bahawa gabungan eksperimen fotopemangkinan, DFT dan 
analisis graf logik kabur boleh digunakan untuk menjelaskan hubungan struktur-
aktiviti fotopemangkinan dalam sistem fotopemangkinan TiO2.  
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CHAPTER 1  
 

 

INTRODUCTION 

1.1 Background of Study 

Major concerns on the rising number of environmental problems have resulted 

in compulsive development of environmental purification methods. This fundamental 

advanced environmental solution has drawn attention and gained importance due to its 

full potential in bringing a significant change in human life. Therefore, a great deal of 

research efforts have been done on photocatalysis in various areas such as degradation 

of organic and inorganic pollutants, hydrogen production and organic synthesis [1].  

Titanium dioxide, TiO2 or titania is the most widely studied material due to its 

superior performance since 1972 when Fujishima and Honda reported water 

decomposition using TiO2 electrode as a potential semiconductor photocatalytic 

material [2,3]. TiO2 is known as an outstanding and promising material in paints 

pigments, degradation of water pollutants, electrochromic displays, electrochemical 

electrodes, capacitors, lithium-ion batteries, sensors and catalysts’ support [4–6].  

TiO2 is a commonly used photocatalytic material due to its rather low material 

cost, high chemical stability, high specific surface area and nontoxicity [7–9]. It is 

generally believed that a relationship exists between TiO2 photocatalyst’s 

physicochemical properties and photocatalytic activity. However, the discussion on 

the relationship between the physicochemical properties of TiO2 and its photocatalytic 

activity is limited, and there seems to be no comprehensive approach or tool to discuss 

this relationship. The discussion has been restricted to several samples synthesized in 

a similar manner or a small number of commercial samples [10]. Ohtani [11,12] who 

has made a significant contribution to heterogeneous photocatalysis for more than 30 

years and has published over 200 original and review papers on photocatalysis, also 
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remains frustrated with the fact that the structure-photocatalytic activity relationship 

of photocatalyst has not yet been clarified [11].  

Furthermore, the main dominant factor has not been clearly investigated by a 

comprehensive method. Previous study done by Muniandy [13] reported that the 

surface area was the main factor which enhanced the photocatalytic activity of TiO2 

photocatalyst. However, previous works [14,15] also found the surface area may be a 

requirement but cannot be the decisive factor for the enhanced photocatalytic activity. 

It was found that surface properties (i.e. acidity of the surface and hydroxyl groups 

content) and synergistic effect of C-doping at interstitial position and surface 

carbonaceous species,  were the main factors that can improve the performance of TiO2 

as a photocatalyst. 

Prieto-Mahaney and coworkers [10] are among the sole researchers that 

studied the comprehensive relationship between the structural and physical properties 

with the photocatalytic activity of TiO2 powders using mathematical methods. 

Statistical multivariable analyses were used with the aim of obtaining the relationship 

of six properties of 35 commercially available TiO2 samples in Japan, with five 

photocatalytic reactions. From the statistical multivariable analyses, it was found that 

the photocatalytic activities strongly depended on the properties of the TiO2 powders. 

However, this method required higher number of samples, which are a major limitation 

on determining the structure-photocatalytic activity of TiO2.  

Besides that, some of the properties are imprecise or incomplete data have been 

given in the series of samples [16]. The data also cannot be generalized and analysed 

using binary logic (1 or 0 / true or false) that are precise and in discrete terms. 

Therefore, the computational intelligence technique is desperately required that accounts 

for all complexities and variations of data in investigating the structure-photocatalytic 

activity relationship of TiO2 photocatalyst. Recently, the use of computational techniques 

for various applications, including modeling and problem solving, has attracted 

considerable interest between researchers, primarily in the science and engineering area. 

Fuzzy logic is the nearest solution to complex problems which has the potential of 

combining human thought and experience into computer-assisted decision making. 
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Zadeh introduced fuzzy logic, which takes into account the complexity of the real 

world and the uncertainty that everything cannot have absolute values and follow a 

linear function [17]. Fuzzy logic deal with vague, indecisive ideas and subjective 

information which depending on “degrees of truth” (0 to 1) instead of the usual “true 

or false” (1 or  0). It is also possible to calculate exactly the qualitative and quantitative 

variables with different amounts and meanings[18]. To the best of our knowledge, no 

study has been reported in the literature on the relationship between TiO2 

photocatalyst’s physicochemical properties and its photocatalytic activity using fuzzy 

logic. 

Fuzzy graph is another focus on the implementation of fuzzy theory in its 

relation to the theory of graphs. Fuzzy graph in the form of a graph describes the 

relationship between variables, which accurately shows the relationship degree 

between variables. Therefore, in this study, fuzzy graph in the form of graph is applied 

to clarify the structure-photocatalytic activity relationship of TiO2 photocatalyst. 

Imagine combining the physicochemical properties and photocatalytic activity of all 

data in current literature to clarify the structure-photocatalytic activity relationship of 

TiO2 photocatalyst between them using fuzzy logic. 

Carbon doped TiO2 (C-doped TiO2) was chosen as the photocatalyst model in 

explaining the structure-photocatalytic relationship of TiO2. The addition of carbon, C to 

TiO2 semiconductor’s lattice are believed to one of the suitable methods to modify 

TiO2 to enhance its photocatalytic performance. Furthermore, the preparation of TiO2 

usually contains C impurity, which is difficult to remove, and this C impurity 

significantly affects the TiO2 photocatalytic activity. The modification of TiO2 with 

carbon can generally change the structure, physicochemical and electronic properties 

of TiO2 which enhance its photocatalytic performance by facilitating faster transport 

to the active sites on TiO2’s surface, narrowing the band gap energy, extending the 

light absorption to visible range and suppressing the rate of electron-hole 

recombination [19].  

However, in order to clarify the structure-photocatalytic activity relationship 

of TiO2 photocatalyst, the experimental approach is not enough. A theoretical 
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approach by DFT calculation is also necessary to be carried out to determine the 

electronic structure of C-doped TiO2 photocatalyst. DFT is a computational method 

that is used to calculate the properties and electronic band structures of molecules 

using the results of the theoretical quantum chemistry. In this study, the combination 

of experimental work, DFT calculation and fuzzy graph may well explain the 

relationship between the C-doped TiO2 physicochemical properties with its  

photocatalytic activity. The schematic presentation of the research plan is represented 

in Figure 1.1. 

 

Figure 1.1 Schematic presentation of the research plan  

 

1.2 Problem Statement  

TiO2 photocatalyst has gained significant attention as one of the most 

promising materials in the removal of various organic pollutants, such as organic dyes 

and phenolic compounds. It is known that photocatalytic activity is correlated with the 

structural and physicochemical properties of TiO2. However, there has been no clear 

explanation on the relationship between physicochemical properties and 
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photocatalytic reactions. In this research, to solve this problem, a new approach has been 

proposed to evaluate the structure-photocatalytic activity relationship with the aim to 

better understand the dominant properties in determining the photocatalytic activities 

of C-doped TiO2. The dominant properties found in the fuzzy graph can be used as a 

future guideline to synthesize the photocatalyst with high photocatalytic activity. 

Photooxidation of styrene has been used as the model of organic pollutant reaction due 

to the oxidation of styrene are importance for academics and industry, particularly in 

the production of fine chemicals including benzaldehyde. Fuzzy logic graph with the 

combination of fuzzy inference system modelling has been used as a new approach in 

determining the dominant factor for the structure-photocatalytic activity relationship 

of C-doped TiO2. Characterization results from experimental study were used in the 

fuzzy logic graph and the electronic structure were discussed with the theoretical 

calculations of C-doped TiO2 using DFT. The C-doping, structure distortions and 

oxygen vacancy may affect electronic structure of anatase; that is why in this study 

further investigation of different C doping positions, and location of C, was necessary. 

1.3 Objectives of Study 

Several objectives were set to study the structure-photocatalytic activity 

relationship of C-doped TiO2 as follows:  

(a) To investigate the physicochemical properties of the prepared C-doped TiO2 

photocatalysts at different calcination temperature and their photocatalytic 

activity of styrene under UV and visible light irradiation.  

(b) To investigate the effect of C doping, structure distortion and oxygen vacancy 

on the band gap energy of anatase TiO2 by DFT calculation 

(c) To clarify the structure-photocatalytic activity relationship of C-doped TiO2 

and the dominant properties that determine the photocatalytic activities of C-

doped TiO2 samples using fuzzy logic graph from experimental work and DFT 

calculation. 
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1.4 Scope of Study 

This study demonstrated the combination of photocatalytic experiment, DFT 

and fuzzy logic graph analysis, can be used to clarify the structure-photocatalytic 

activity relationship in TiO2 photocatalytic systems.  In order to accomplish the 

research’s objectives, the scope of the study is designated into three parts, which are 

the preparation of C-doped TiO2 and its photocatalytic activity, theoretical study by 

DFT and fuzzy logic graph .  

This study focussed on the preparation of anatase TiO2 and C-doped anatase 

TiO2 using the sol-gel process, calcined at different temperature  of 300 to 700 °C. The 

synthesized materials were characterized by X-ray diffraction (XRD), Fourier 

transform infrared spectroscopy (FTIR), energy dispersive X-ray spectroscopy (EDX),   

field emission electron microscopy (FE-SEM), N2 adsorption-desorption, UV-Visible 

diffuse reflectance (UV-Vis DR) spectroscopy, photoluminescence (PL)  spectroscopy 

and X-Ray photoelectron spectroscopy (XPS). The photocatalytic activity of C-doped 

TiO2 was evaluated in the photocatalytic oxidation of styrene, as the model reaction 

for organic pollutants under irradiations of UV and visible light.  

DFT theoretical calculation was performed using Gaussian 09 to study the 

electronic properties of anatase TiO2 and C-doped anatase TiO2. The scope of the DFT 

study were limited to only the anatase structure of TiO2. The performance of HF and 

five popular exchange-correlation functionals of DFT including hybrid (B3LYP, 

B3PW91, PBE1PBE or known as PBE0 and PBEh1PBE), double-hybrid functional 

(B2PLYP) and MP2 that is available in Gaussian 09 package was investigated in 

predicting band gap energy. In addition, the structure distortion and effect of C at 

different amount of C and location of C on the band gap energy of TiO2 were studied 

using DFT calculation. The total density of states (TDOS) and partial density of states 

(PDOS) for C-doped anatase TiO2 are plotted to further investigates the effect of C on 

the band gap energy and sub-band gap energy of anatase.  

The combination of fuzzy logic graph and fuzzy inference system was used to 

study the structure-photocatalytic activity relationship of C-doped TiO2. Fuzzy 
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inference system model was developed by MATLAB software. A sensitivity analysis 

was carried out from developed fuzzy inference system model to obtain the 

membership value that represents the dominant properties that determine the 

photocatalytic activities of C-doped TiO2 under irradiations of UV and visible light.   

1.5 Significance of Study 

This research provides an understanding on the structure-photocatalytic 

activity relationship and the dominant properties that determine the photocatalytic 

activities of C-doped TiO2 photocatalytic system. Fuzzy logic graph with the 

combination of fuzzy inference system modelling has been proposed as a new 

approach to clarify the structure-photocatalytic activity relationship with the aim to 

better understand the dominant properties in determining the photocatalytic activities 

of C-doped TiO2 supported with DFT calculation. The combination of photocatalytic 

experiment, DFT, and fuzzy logic graph analysis can be used to clarify the structure-

photocatalytic activity relationship in TiO2 photocatalytic systems. DFT explained the 

effect of structural distortion, oxygen vacancy, C-doped at different location and 

amount of C on the electronic structure of anatase TiO2. From the DFT study, double 

hybrid functional B2PLYP employing 6-311G(d) has been proposed as the accurate 

exchange-functional methods in predicting the TiO2 band gap energy compared to the 

previous studies such as B3LYP, B3PW91, PBE1PBE, and PBEh1PBE. Furthermore, 

the dominant properties found in the fuzzy graph can be used as a future guideline to 

synthesize the photocatalyst with high photocatalytic activity.  

1.6 Research Outline 

This research was conducted in three parts. The first part, discussed in Chapter 

2, is the preparation of C-doped TiO2 using a simple sol-gel method. Various 

instruments were used to study the physicochemical properties of prepared C-doped 

TiO2 photocatalyst. Five physicochemical properties of C-doped TiO2 samples were 

analyzed in detail, including the crystal structure and crystallinity, functional groups, 
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chemical composition, morphology structure, surface area, porosity, and band gaps. 

Besides, to study the photocatalytic activity of C-doped TiO2 samples, the 

photooxidation of styrene with aqueous hydrogen peroxide was tested as the model of 

organic pollutant reaction under UV and visible light irradiations. 

The second part in Chapter 3 discusses the electronic structure of C-doped 

TiO2 by DFT calculation. For this section, the performance of the theoretical DFT 

methods in determining the anatase cluster’s band gap energy was investigated to find 

the accurate methods for predicting TiO2’s band gap energy using Gaussian 09. 

Furthermore, the effect of structural distortion, oxygen vacancy, C-doped TiO2 on the 

anatase TiO2 band gap energy will be clarified. 

The last part of the research in Chapter 4, involves the structure-photocatalytic 

activity relationship of C-doped TiO2 samples and the dominant properties that 

determine the photocatalytic activities of the C-doped TiO2 photocatalytic system 

using the fuzzy logic graph. 
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