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ABSTRACT 

A Brushless Double-Fed Induction Generator (BDFIG) has shown tremendous 

success in wind turbines due to its robust brushless design, less maintenance, smooth 

operation, and variable speed characteristics. These generators are composed of two 

back-to-back voltage source converters, a Grid Side Converter (GSC) and a Rotor Side 

Converter (RSC). Existing control techniques use a “trial and error” method that 

results in a poor dynamic response in machine parameters during the absence of load. 

The RSC control is used for reactive current control during the inductive load insertion. 

However, it is more suitable for stabilizing steady-state behaviour, but it suffers from 

slow response and introduces a double fundamental frequency component to the Point 

of Common Coupling (PCC) voltage.  In addition, generally, a Low Voltage Ride 

Through (LVRT) fault is detected using a hysteresis comparison of the power winding 

voltage. The LVRT capability is provided by using fixed reference values to control 

the winding current. This approach results in an erroneous response, sub-optimal 

control of voltage drops at PCC, and false alarms during transient conditions. This 

thesis aims to solve the mentioned issues by using an improved vector control method. 

Internal Model Control (IMC) based Proportional-Integral (PI) gains calculation is 

used for GSC and RSC. These are controlled to enhance the transient response and 

power quality during no-load, inductive load, and fault conditions. Firstly, a GSC-

based vector control method is proposed to suppress the PCC voltage fluctuations 

when a large inductive load is suddenly connected. The proposed technique is based 

on an analytical model of the transient behaviour of the voltage drop at the PCC. To 

block a double fundamental frequency component as a result of reactive current 

compensation, a notch filter is designed. Secondly, an RSC-based vector control 

method is proposed using an analytical model of the voltage drop caused by a short 

circuit. Moreover, using a fuzzy logic controller, the proposed technique employs the 

voltage frequency in addition to the power winding voltage magnitude to detect LVRT 

conditions. The analytical model helps in reducing the power winding voltage drop 

while the fuzzy logic controller leads to better response and faster detection of faults. 

However, the reference value for reactive current compensation is analysed using an 

analytical model of the voltage drop at the PCC in the event of a short-circuit fault. 

The results obtained from MATLAB/Simulink show that the GSC-based vector 

control method technique can effectively reduce about 10% voltage drop at PCCs. 

Total Harmonics Distortion (THD) is improved to 22.3% by notch filter in comparison 

with an existing technique such as instantaneous reactive power theory. The RSC-

based vector control method can achieve up to 11% voltage drop reduction and 

improve the THD by 12% compared to recent synchronous control and flux tracking 

methods. 
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ABSTRAK 

 

Penjana aruhan suapan-berganda tanpa berus (BDFIG) telah menunjukkan 

kejayaan yang luar biasa dalam turbin angin kerana reka bentuk tanpa berus yang 

teguh, kurang penyelenggaraan, operasi lancar dan ciri kelajuan berubah-ubah. 

Penjana ini terdiri daripada dua penukar sumber voltan belakang ke belakang, penukar 

sisi grid (GSC) dan penukar sisi rotor (RSC). Teknik kawalan sedia ada menggunakan 

kaedah "cuba dan ralat" yang menghasilkan gerak balas dinamik parameter mesin yang 

lemah semasa ketiadaan beban. Kawalan RSC digunakan untuk mengawal arus reaktif 

semasa kemasukan beban induktif. Walau bagaimana pun ia adalah lebih sesuai untuk 

penstabilan gerak balas keadaan mantap tetapi mempunyai gerak balas yang perlahan 

dan memperkenalkan komponen frekuensi asas berganda kepada voltan titik 

gandingan sepunya (PCC). Di samping itu, secara amnya, kerosakan pacu terus voltan 

rendah (LVRT) dikesan menggunakan perbandingan histerisis voltan belitan kuasa. 

Keupayaan LVRT disediakan dengan menggunakan nilai rujukan tetap untuk 

mengawal arus belitan. Pendekatan ini menghasilkan ralat gerak balas, kawalan 

suboptimal bagi susut voltan di PCC, dan penggeraan palsu semasa keadaan fana. 

Tesis ini bertujuan untuk menyelesaikan isu yang dinyatakan dengan menggunakan 

kaedah kawalan vektor diperbaiki. Pengiraan kawalan model dalaman (IMC) 

berasaskan kadar-kamir (PI) digunakan untuk GSC dan RSC. Pengawalan ini adalah 

bagi meningkatkan gerak balas fana dan kualiti kuasa semasa tanpa beban, berbeban 

induktif, dan keadaan kerosakan. Pertama, kaedah kawalan vektor berasaskan GSC 

dicadangkan untuk menyekat turun-naik voltan PCC apabila beban induktif yang besar 

tiba-tiba disambungkan. Teknik yang dicadangkan adalah berdasarkan model 

keanalisaan kelakuan fana susut voltan di PCC. Untuk menyekat komponen frekuensi 

dasar berganda hasil daripada pampasan arus reaktif, penapis takuk telah direka 

bentuk. Kedua, kaedah kawalan vektor berasaskan RSC dicadangkan menggunakan 

model keanalisaan turunan voltan yang disebabkan oleh litar pintas. Tambahan pula, 

dengan menggunakan pengawal logik kabur, teknik yang dicadangkan mengguna 

frekuensi voltan sebagai tambahan kepada magnitud voltan belitan kuasa bagi 

mengesan keadaan LVRT. Model keanalisaan membantu dalam mengurangkan susut 

voltan belitan kuasa manakala pengawal logik kabur membawa kepada gerak balas 

yang lebih baik dan pengesanan kerosakan yang lebih cepat. Walau bagaimanapun, 

nilai rujukan untuk arus pampasan reaktif dianalisis menggunakan model keanalisaan 

susut voltan di PCC ketika berlaku kerosakan litar pintas. Keputusan Simulasi 

MATLAB/Simulink menunjukkan bahawa teknik kaedah kawalan vektor berasaskan 

GSC dapat mengurangkan susut voltan dengan ketara menghampiri 10% di PCC. 

Herotan harmonik total (THD) dapat diperbaiki sebanyak 22.3% dengan 

menggunakan penapis takuk dibandingkan dengan teknik sedia ada seperti teori kuasa 

reaktif seketika. Kaedah kawalan vektor berasaskan RSC boleh mencapai sehingga 

11% pengurangan susut voltan dan meningkatkan THD sebanyak 12% berbanding 

dengan kaedah terkini kawalan segerak dan pengesanan fluks. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction 

The increasing environmental pollution due to the emission of greenhouse 

gases from traditional power houses poses a massive threat to life on earth by causing 

global warming and other serious health issues. Furthermore, usage of electrical 

energy has exponentially increased during the last few decades due to the rapidly 

growing population. Due to this, a vast part of the population of the world lives without 

access to electricity. The report of the International Energy Agency (IEA) highlights 

the fact that 1.3 billion people still do not have access to electricity. This lack of energy 

access is largely due to the fact that many inhabitants of developing countries live in 

rural areas far from the primary utility grids [1]. Also, there seems to be a trend of fuel 

assets becoming rare in recent days, and therefore, the price of these assets is rapidly 

increasing due to their limited supply. Another significant issue is the increasing 

burden on the existing power system due to the continuously growing load, which 

causes the overloading of electric power generators, transmission lines, and 

distribution transformers [2]. 

To minimize the effects of the issues mentioned, deploying renewable energy 

sources into the existing power system has become essential to relieve the system from 

overloading and produce cheaper electricity with reduced carbon footprints and 

enhanced power quality. Amongst various renewable energy resources, wind energy 

is a viable source and becoming popular because of its environmentally friendly 

features and lowered costs. For these reasons, wind energy is the leading renewable 

energy source employed for power generation in  Europe, with a share of 15.6% of 

total power capacity [3]. Denmark relies on renewable energy and has shifted its 43.4% 

load to wind energy which is expected to increase up to 50% by 2030 and has planned 

for zero fossil fuel energy by 2050 [4]. China is contributing towards renewable energy 
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with the onshore market of 21200 MW in 2018 and the offshore market of 1800 MW 

in 2018. Interestingly, the worldwide wind power installations reached a total outlay 

of 51.3 GW  in 2018 [5]. Hence, the world is witnessing faster development in the 

Wind Power Generation System (WPGS). A wind turbine control objectives are shown 

in Figure 1.1. 

 

Figure 1.1 Wind turbine control 

However, to utilize wind energy, one needs to install induction generators on 

the wind turbines, which makes interfacing wind turbines to the power grid more 

challenging, i.e., regulating and conditioning the power, voltage, and frequency with 

high efficiency and flexibility [6]. The power rating of generators utilized in wind 

turbine units has increased, ranging from a few kilowatts to 6-8 MW. However, there 

are power losses of several MWs in this generation process [7]. The high penetration 

of wind energy has introduced both opportunities and challenges for the smooth supply 

of energy which has eventually lead to the preparation of grid codes, advanced 

generator design, sophisticated power electronic topologies, and control strategies for 

smooth integration with the power grid [8]. It is, therefore, the concern of wind power 
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generators to ensure the compliance of grid codes provided by the power utility. 

According to the grid codes, machines utilized in wind turbines should provide smooth 

power to the grid with enhanced dynamic response during its operation, such as no-

load, inductive load, and fault conditions [2]. Low Voltage Ride Through (LVRT) is 

one of the most challenging requirements for wind generator units. LVRT keeps the 

wind turbine connected with the power grid without interruption for a specified period 

and supply reactive power during faults at the Point of Common Coupling (PCC).  

Amongst wind generators, the Double Fed Induction Generator (DFIG is one 

of the popular machines installed across the globe. Its favorable characteristics include; 

variable speed operation, partial scale conversion and filtration, low maintenance, and 

high-power output. However, DFIG is very sensitive to grid faults and cannot meet the 

grid code requirements during fault conditions [9]. Furthermore, DFIG has poor LVRT 

and requires brushes and slip rings, making DFIG non-suitable for offshore WPGS. 

Various studies have explored and worked on the improved designs of DFIG both for 

the onshore and offshore wind farms. Different hardware and software-based control 

methods of DFIG under transient conditions have been reviewed. These studies 

concluded that DFIG could be controlled using tuned controllers; however, the 

addition of hardware for higher voltage dips is unavoidable [10]. These studies suggest 

an active crowbar for DFIG during voltage dips and have developed various control 

algorithms [11]. As DFIG has the addition of brushes and slip rings and suffers from 

high sensitivity to grid disturbances, brushless DFIG is an excellent alternative to the 

traditional DFIG because of its superb handling characteristics of LVRT. It has no 

carbon brushes and slips rings [12]. However Synchronous Generator uses the full 

rated power electronics converters that increases overall cost. 

The Brushless Double Fed Induction Machine (BDFIM) development has its 

origins in the early twentieth century. During the 1980s, power electronics became a 

very common tool for controlling electric machines, and it became standard to use two 

cascaded slip ring induction motors for speed control of the machines. A unique rotor 

design was proposed by Hunt et al. [13] in 1907 with two machine windings in the 

stator. The machine achieved speed control through resistors connected to one of the 

stator windings, which avoided the need for slip rings, making it a more compact 
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machine. Further development of the BDFIM design was made by Creedy et al. [14] 

in the early 1920s. In 1970, Broadway et al. [15] proposed a caged rotor design that 

would further enhance the performance of the BDFIM. The BDFIMs are still using the 

same design of rotor available previously in the 1920s. In addition, they advanced an 

equivalent circuit for the machine, its steady-state performance is analyzed, and 

observed its operation in a synchronized manner. The operation of a brushless 

induction motor is investigated as to control the speed of a slip-power pump that 

operates on a single frame [16]. All stator designs, including those developed by Hunt 

et al. and Creedy et al., used a single stator winding that produced two different fields 

of pole numbers. According to Rochelle et al., an analysis of the alternative winding 

designs for a stator in 1990 concluded that electrically isolated windings were more 

beneficial than other alternatives [17]. Subsequently, a study industrialized a dynamic 

model of the machine by Wallace et al. [18]. Simulation models were employed to 

investigate the phenomenon of machine control during the mid of 1980s [19]. 

Developing a two-axis model suitable for the study of dynamic systems is a 

contribution by Li et al. [20], and simulations of dynamic processes were presented 

[21]. 

The Brushless Doubly Fed Machine was modeled further at Cambridge 

University in the decades following its invention. In the later stage of the study, 

Williamson et al. developed a mathematical model that incorporated features of a 

machine operating in the synchronous mode [22]. A field-oriented control algorithm 

for the machine has been presented by Zhao et al. [23], which followed with a 

simplified version [24] of the field-oriented algorithm. In spite of this, these algorithms 

were heavily dependent on parameters related to the machine. Vector Control (VC) 

algorithms based on the Power Winding (PW) flux were introduced by Poza et al. in 

2002 [25]. 

After extensive research on the design and control of Brushless Doubly Fed 

Induction Generator (BDFIG), the machine became an excellent choice to replace 

other machines in wind turbines. Like DFIG, BDFIG LVRT situations can be divided 

into hardware solutions and software solutions. The BDFIG does not need hardware-

based control schemes/methods because of having inherent large leakage inductance, 
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which helps fault current to minimize at the event of a fault. Hence, control strategies 

for BDFIG have been developed and proved experimentally that LVRT is possible 

even without a crowbar [26]. Researchers are focusing on improving the BDFIG 

LVRT characteristics without adding additional hardware like crowbar solutions and 

have applied software solutions in their research work.  

1.2 Problem Statement 

Several control strategies such as scalar control method, super-twisting sliding 

mode DPC, indirect torque control method, indirect stator-quantities control have been 

utilized in literature to accomplish the control objectives. The mentioned control 

strategies could not suppress the heavy transients and long oscillations in active power, 

reactive power, and speed during the starting and abrupt load changes. Besides, these 

control methods lack the independent control of machine parameters due to the 

unavailability of quadrature and the DC component within their structures.  Another 

critical control strategy that has been extensively explored in literature for WECS is 

the Vector control (VC) method [11]. VC models are practical tools for independently 

regulating the speed and reactive power of a Brushless doubly-fed induction generator 

(BDFIG). VC methods can provide satisfactory outcomes if their Proportional Integral 

(PI) regulators are optimally selected. However, they utilize the conventional PI tuning 

approaches such as “trial and error” results in time constraints and complexity. Finally, 

it leads to the poor dynamic response of the machine during the parameter’s variations. 

The standard BDFIG control approach has been demonstrated that the voltage 

level is at the verge of common coupling is prone to fluctuate when the inductive load 

variation is significant. Such variations affect other loads such as motors, transformers, 

and chokes connected to the PCC and introduce torque pulsations. Existing techniques 

use the RSC for reactive current control, with a prolonged response and lower 

bandwidth control due to sudden inductive load introduction. The existing methods on 

reactive current control through GSC are based on voltage-oriented control in the 

synchronous reference frame that compute constant d-axis and q-axis reference values. 

However, such traditional control approaches are designed with steady-state 
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performance as the focus [12]. Thus, when an inductive load is instantaneously 

connected to the PCC, the conventional control method does not remain satisfactory 

as the transient load current may fluctuate instead of being constant. A harmonic 

component at the double of fundamental frequency has been observed during reactive 

current compensation with GSC, which is harmful to smooth electric supply. Recent 

literature has proposed the instantaneous reactive power theory, which increases the 

complexity and results in sub-optimal performance. 

 Existing techniques on improving the LVRT capability of BDFIGs can 

be categorized as hardware-based or control-based. Hardware-based techniques such 

as crowbar have been shown to successfully protect the generator from surge currents 

during faults. The hardware-based approaches lead to losses, electromagnetic torque 

oscillations, and an increase in operation and maintenance costs in addition to the 

initial hardware cost. It leads the authors to concentrate on control methods, especially 

during fault conditions. LVRT fault is improved in previous literature by using fixed 

control winding current reference values for reactive current control. It causes high 

voltage drop and Total Harmonics Distortion (THD) at PCC. Furthermore, a fault is 

usually detected using a hysteresis comparison of the power winding voltage [26]. 

However, this approach leads to two problems, firstly, the use of only voltage to detect 

faults results in an erroneous or slow response, and secondly, it results in false alarms 

during transient conditions. 

The present techniques utilized during the control of BDFIG have produced 

satisfactory results to make the machine an attractive choice for wind turbines. The 

machine shows an excellent characteristic while being operated under different 

operating conditions such as inductive load and short circuit conditions. However, 

there is need to improve machine behaviour under these operating conditions more as 

compared to present techniques being utilized in recent literature. 

1.3 Research Objectives 

The objectives of the research work are as follows; 
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i. To develop an improved Vector Control method for Brushless Double Fed 

Induction Generator bases wind turbine to enhance the dynamic response of 

machine during no-load operation with Internal Model Control method-based 

Proportional-Integral gains. 

ii. To develop a Grid Side Converter-based Vector Control method with a notch 

filter by analytically calculating the reference value for reactive current to 

reduce the voltage drop and harmonics at Point of Common Coupling, 

respectively, during inductive load insertion. 

iii. To develop Rotor Side Converter-based Vector Control method with fuzzy 

logic controller using the analytical model to improve machine behaviour 

during short circuit conditions and to reduce the latency of detecting the onset 

of a fault 

iv. To evaluate and compare the performance of the proposed Grid Side Converter 

and Rotor Side Converter-based Vector Control method with that of the 

conventional compensation control strategies in order to validate its 

effectiveness and significance. 

 

1.4 Scope 

The major scopes and limitations of this research are as follows: 

i. The study focuses on improving the vector control of BDFIG parameters, 

which can be enhanced with the addition of a sensorless control method 

because no encoders are involved. 

ii. All the simulations are carried out in MATLAB/Simulink for BDFIG under no 

load, abrupt inductive load change, and fault conditions. 

iii. The type of fault considered in the thesis is symmetrical faults only and can be 

extended. 
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iv. Although using a fuzzy logic controller improves the rotor side converter’s 

response to a fault, the proposed technique is sensitive to the rules in the 

knowledge base. Therefore, the knowledge base needs to be designed carefully 

to avoid sub-optimal results. 

v. Utilizing the optimization techniques in the VC methods for BDFIG operations 

beyond the scope of this research work. 

 

1.5 Research Significance 

The potential practical applications of this research are; 

i. The dynamic response of the BDFIG parameters is improved with IMC based 

PI gains calculations in VC method. 

ii. The developed GSC and RSC-based VC method with notch filter and fuzzy 

logic respectively enhance the power quality of BDFIG and easily makes the 

machine fulfil the grid code requirements.    

iii. The other loads connected to the grid do not suffer any adverse effects, and the 

torque pulsations on BDFIG are minimized.  

iv. As a result of the proposed VC method for GSC and RSC, the BDFIG could 

be considered an attractive option for onshore wind farms and remote offshore 

wind farms. 

v. The control method in the thesis does not use any hardware approach for the 

BDFIG that leads to a low-cost and straightforward design. Therefore, it can 

benefit developing countries since they may not have the necessary 

infrastructure to implement more advanced technologies. 
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1.6 Thesis Organization 

In CHAPTER 2, the related research work in the literature has been extensively 

studied, and a critical review has been done. This chapter portraits the different types 

of electrical machines used for wind turbines with their power electronics converters. 

In particular, this literature review focuses on control methods for improving the 

BDFIG behaviour on no-load, inductive load, and, most importantly, the LVRT 

improvement. It also focuses on reactive current compensation techniques for BDFIG 

based VC method. Finally, the recent development in the behaviour of BDFIG 

generator in wind turbine during its operation has been highlighted.  

CHAPTER 3 presents the methodology of the proposed VC method -based 

BDFIG operation with the IMC method for PI gains. Both of the power electronics 

converters, i.e., RSC and GSC, are discussed, including the system's overall structure 

and architecture modelling with its mathematical foundation and the system 

configuration. Moreover, the methodology for the usage of Notch Filter (NF) and 

Fuzzy Logic (FL) design in BDFIG is also represented.  

CHAPTER 4 is dedicated to the results and discussion of the proposed VC 

method -based BDFIG using simulations in MATLAB/Simulink. The machine is 

tested for improved dynamic behaviour under no load by using a PI calculation based 

on IMC at the initialization stage. The various performance aspects for the 

voltage/current waveforms, active/reactive power waveforms, stability, and the 

voltage drop at PCC and THD are discussed during the inductive load insertion and 

LVRT. Moreover, a comprehensive comparison with existing techniques in recent 

literature is also presented. 

Finally, in CHAPTER 5, the conclusions for this thesis and highlights for the 

future recommendations are presented. 
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