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ABSTRACT 

 The accuracy of the estimated modal damping ratios in operational modal 
analysis (OMA) remains an open issue and is often characterized by a large error. The 
modal damping ratio is considered to be a good practical parameter for structural 
damage detection due to its sensitivity and sufficient responsiveness to damage 
compared to natural frequency and mode shape. Therefore, an accurate estimate of the 
modal damping ratio will assist in developing an effective modal-based structural 
damage detection approach. The objective of this research focuses on improvements 
of frequency domain decomposition (FDD) and stochastic subspace identification 
(SSI) algorithms, particularly in estimating modal damping ratio. These methods have 
gained a lot of attention and interest compared to other OMA methods due to their 
ability in estimating modal parameters. However, FDD has a problem dealing with 
high damping levels, while SSI has difficulty in handling harmonic components. This 
will cause a large error in estimating the modal damping ratio. Difficulties also arise 
for automation of SSI as several predefined set parameters are compulsory at start-up 
for each analysis. This study introduces an iterative loop of advanced optimization to 
enhance the capabilities of classical FDD algorithm by optimizing the value of the 
modal assurance criterion (MAC) index and the selection of the correct time window 
on the auto-correlation function that represents the most challenging part of the 
algorithms. This study also presents the development of the SSI framework in 
automated OMA and harmonic removal method using image-based feature extraction 
along with the application of empirical mode decomposition. The implementation of 
image-based feature extraction can be used for clustering and classification of 
harmonic components from structural poles as well as to identify modal parameters by 
neglecting any calibration or user-defined parameter at start-up. The proposed 
approach is assessed through experimental and numerical simulation analysis. Based 
on the numerical simulation results, the proposed optimized FDD can estimate modal 
damping ratio with high accuracy and consistency by showing average percentage 
deviation (error) below 5.50% compared to classical FDD and benchmark approach, 
which is a refined FDD. Errors in classical FDD can reach an average of up to 15%, 
whereas for refined FDD the average is around 10%. Meanwhile, the results of the 
proposed approach in experimental verification show a reasonable average percentage 
deviation of about 5.75%, while the classical FDD algorithm is overestimated which 
averages about 29% in all cases. For the proposed automation of SSI, the estimated 
results of modal damping ratio in the numerical simulation are below 2.5% of the 
average error compared to other SSI methods which on average exceed 3.2%. For 
experimental verification, the results of the proposed approach indicate very 
satisfactory agreement by showing average deviation percentage below 4.20% 
compared to other SSI methods which on average exceeds 14%. Furthermore, the 
results of the proposed automated harmonic removal in SSI framework for estimating 
modal damping ratio using existing online experimental data sets demonstrate very 
high accuracy and consistent results after removing harmonic components, showing 
an average deviation percentage of below 7.22% compared to orthogonal projection 
and smoothing technique based on linear interpolation approaches where the average 
deviation percentage exceeds 9%. 
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ABSTRAK 

Ketepatan anggaran nisbah redaman ragaman dalam analisis ragaman 
kendalian (OMA) masih tetap menjadi isu terbuka dan sering dicirikan oleh ralat besar. 
Nisbah redaman ragaman dianggap sebagai parameter yang sesuai untuk pengesanan 
kerosakan struktur kerana sensitif dan responsif terhadap kerosakan berbanding 
dengan frekuensi tabii dan bentuk ragam. Penganggaran nisbah redaman ragaman 
yang tepat dapat membantu pembangunan pendekatan pengesanan kerosakan struktur 
berasaskan ragaman yang berkesan. Objektif penyelidikan ini memfokuskan kepada 
pembaikan algoritma penguraian domain frekuensi (FDD) dan pengenalan subruang 
stokastik (SSI), terutama dalam anggaran nisbah redaman ragaman. Kaedah-kaedah 
ini telah mendapat perhatian berbanding dengan kaedah OMA yang lain kerana 
kemampuan menganggarkan parameter ragaman. Namun begitu, FDD mempunyai 
masalah dalam menangani tahap redaman yang tinggi, sementara SSI pula menghadapi 
kesukaran untuk mengendalikan komponen harmonik. Ini akan menyebabkan ralat 
yang besar untuk anggaran nisbah redaman ragaman. Kesukaran juga timbul untuk 
automasi SSI kerana beberapa parameter set wajib ditetapkan pada permulaan untuk 
setiap analisis. Kajian ini memperkenalkan gelung berlelar pengoptimuman lanjutan 
bagi meningkatkan keupayaan algoritma FDD asal dengan mengoptimumkan nilai 
indeks kriteria kepastian regaman (MAC) dan pemilihan tetingkap masa yang betul 
pada rangkap autosekaitan yang mewakili bahagian algoritma yang paling mencabar. 
Kajian ini juga mengutarakan pembangunan kerangka SSI dalam OMA automatik dan 
kaedah penyingkiran komponen harmonik dengan menggunakan penyarian ciri 
berasaskan gambar bersama dengan penerapan penguraian ragaman empirik. 
Pelaksanaan penyarian ciri berasaskan gambar dapat digunakan untuk gugusan dan 
pengelasan komponen harmonik dari kutub struktur serta digunakan untuk mengenal 
pasti parameter ragaman dengan mengabaikan sebarang penentukuran atau parameter 
yang ditentukan pengguna pada saat permulaan. Pendekatan yang dicadangkan dinilai 
menerusi ujikaji dan analisis penyelakuan berangka. Berdasarkan hasil penyelakuan 
berangka, FDD yang dioptimumkan dapat menganggarkan nisbah redaman ragaman 
dengan ketepatan dan konsistensi yang tinggi dengan menunjukkan sisihan peratusan 
(ralat) rata-rata di bawah 5.50% berbanding FDD asal dan kaedah tanda asas, iaitu 
FDD yang diperhalusi. Ralat dalam FDD asal boleh mencapai rata-rata sehingga 15%, 
sedangkan untuk FDD yang disempurnakan rata-rata adalah sekitar 10%. Sementara 
itu, hasil pendekatan yang dicadangkan dalam pengesahan ujikaji menunjukkan 
sisihan peratusan purata yang munasabah sekitar 5.75%, sementara untuk algoritma 
FDD asal terlalu tinggi yang rata-rata sekitar 29% dalam semua kes. Untuk automasi 
SSI yang dicadangkan, hasil anggaran nisbah redaman ragamam dalam penyelakuan 
berangka di bawah 2.5% dari ralat purata berbanding dengan kaedah SSI lain yang 
rata-rata melebihi 3.2%. Untuk pengesahan ujikaji pula, hasil pendekatan yang 
dicadangkan menunjukkan hasil yang sangat memuaskan dengan menunjukkan 
peratusan sisihan yang berada di bawah purata 4.20% berbanding kaedah SSI lain yang 
rata-rata melebihi 14%. Selanjutnya, hasil cadangan penyingkiran harmonik automatik 
dalam kerangka SSI untuk anggaran redaman ragamam menggunakan set data 
eksperimen yang sedia ada dalam talian menunjukkan ketepatan yang sangat tinggi 
dan hasil yang konsisten setelah menyingkirkan komponen harmonik, menunjukkan 
sisihan peratusan rata-rata di bawah 7.22% berbanding pendekatan yang lain, iaitu 
berdasarkan unjuran ortogonal dan teknik pelicin berdasarkan penentudalaman lelurus 
yang mana sisihan peratusan purata melebihi 9%.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Problem background 

The current issues involving the ageing and structural degradation of a 

numerous civil infrastructures as well as the construction of new complex structure 

with the high possibility of excessive vibration levels have brought about significant 

interest to engineering community on dynamic tests, vibration-based health 

monitoring and modal-based damage detection. Dynamic tests allow the identification 

of modal structural properties (natural frequencies, mode shapes and modal damping 

ratios) of relevant modes of vibration. These parameters are essential particularly for 

finite element model updating, tuning vibration control devices, safety inspection 

programs and for tracking the evolution of the corresponding structural dynamic 

characteristics. 

As civil engineering structures are often continuously excited by undetermined 

ambient excitations (operating loads, wind, turbulence, traffic), new techniques have 

been developed for the past decade in identification of modal parameters that rely 

solely on structural response signals induced by ambient excitations [1,2]. This type 

of dynamic test, defined as Operational Modal Analysis (OMA) is widely and 

commonly used in within various engineering field such as mechanical, aerospace, 

electrical and civil due to its capability to implement economical and fast tests without 

affecting its operating conditions [3]. This leads to the major advantages of OMA 

techniques compared to classical Experimental Modal Analysis (EMA) that requires 

input excitations for structural modal identification [1,2].  

By taking the advantage of ambient excitation, which is always present, the 

techniques can be used for continuous structural health monitoring. This permits to 

track the evolution of modal parameters over time that can be used to detect structural 
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integrity or problems due to structural deterioration, or the occurrence of damages on 

structure. For example, when the structure gets old, the value of modal parameter such 

as natural frequency will reduce over time due to loss of stiffness, while modal 

damping ratio will increase over time due to rusted steel. In general, the variation of 

natural frequencies over time is more apparent to be adopted as a parameter for damage 

detection due to consistent trend but, it has low sensitivity unless severe damage 

happened [4]. It is reported that less than 5% change in frequency associated with 

critical damage [5]. On the other hand, the use of modal damping ratio as a parameter 

to detect structural problems is more suitable as it is more sensitive to damage 

compared to natural frequency and mode shape. However, it is less popular among 

engineering community because of inconsistent trend [3][6]. Thus, an accurate 

identification of modal damping ratio will assist in developing effective and reliable 

modal-based damage detection approach for structures. 

However, the accurate estimation of modal damping ratio using OMA is still 

an open problem because errors are greatly influenced by the magnitude of structural 

responses and the absence of input load in OMA. The difficulties encountered when 

trying to estimate modal damping from ambient vibrations has been discussed in [7]. 

The effective identification of modal damping relies on how good the fundamental 

mathematical model of the estimation method is. Other factors that potentially affect 

the estimation modal damping include test procedure and quality of measurements. 

Besides, significant dispersion of random and bias error in modal damping estimates 

for various mechanisms have been reported using available OMA techniques [8]. 

OMA methods can be categorized into time domain and frequency domain 

approaches. OMA methods that rely solely on the response time histories or correlation 

functions are denoted to as time domain methods, while the frequency domain 

techniques are based on the output power spectrum density (PSD). Frequency domain 

decomposition (FDD) that belongs to frequency domain techniques for OMA is 

capable of detecting modal frequencies and mode shapes of closely spaced modes or 

even repeated modes effectively. This method is less sensitive to ambient noise, since 

the adoption of singular value decomposition (SVD) is able to isolate the signal from 

noise. Structure with symmetrical form and even real structure often have closely 
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spaced modes having closely located natural frequencies. However, FDD techniques 

seem to have the problem of providing a correct estimate of modal damping ratio, since 

the exact practical computation of modal damping is still an open issue and often leads 

to biased estimates. Nevertheless, natural frequencies and mode shapes can be 

computed confidently [3][9]. Moreover, the issue is getting worse when the current 

FDD method handles the response signals of the high-damped structure [10].  

Typical characteristic assumptions for the validity of the FDD method are 

white noise input, very low structural damping ratios (below 1% of critical damping) 

and geometrically orthogonal mode shapes of closed modes. If these assumptions are 

not satisfied, the SVD decomposition may result approximated, leading to noisy plots 

and inaccurate results. Previous assumptions and procedures belong to classical FDD 

implementations, as stated from main literature works as [11–17]. Typically, the 

concrete civil structure is categorised as a low damped structure with modal damping 

ratio is lower than 1% of critical damping. On the contrary, for steel structures, the 

modal damping ratio is always larger than 1% of critical damping and considers as 

high damped structure [18]. The response will decay at a higher rate when the level of 

damping is higher, example as shown in Figure 1.1. 

 

(a) 
 

(b) 

Figure 1.1 Representation of the correlation function for (a) low damped and (b) 
high damped structure. 

In contrast, time domain methods are quite sensitive to noisy conditions, 

influenced by close modes and difficult to accurately estimate number of vibrations 
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mode [15]. Meanwhile, developments of OMA in time domain have increased 

substantially since the past decade. Despite the observed progress, some improvements 

still need to be done, especially in term of automated procedures, since traditional 

methods of modal analysis require the setting of several step or predefined set 

parameters and a large amount of intervention by an expert user [19]. Besides that, the 

elimination of environmental and operational effects such as harmonic components on 

modal parameters also need to be considered. A random response obtained from 

ambient excitations on civil engineering structures is often characterized by specific 

variability, commonly known as the “noise” due to environmental effects, which can 

lead to a big issue in obtaining a reliable result in modal parameter identification. There 

is also a significant issue regarding “noise” (or spurious) modes and automatically 

distinguishing them from physical modes still remains to be solved [20]. 

1.2 Problem statement 

The response signals of high damped structure pose difficulty for the current 

FDD method, particularly for modal damping estimation, since FDD seems to be 

lacking on that because it contrary with the original specific assumption of FDD 

methods which can efficiently work only for low damped structures (modal damping 

ratios less than 1% of critical damping) [11,17,21]. When the response signals decay 

at a higher rate, the amount of correlated points in the correlation function will decrease 

and the fit becomes worse, as the nonphysical information from the noise becomes 

more dominant, thus the correlation will represent the signal noise rather than the 

physical system and and it tends to overestimate modal damping due to leakage in the 

estimated spectral density function [22][23]. The modal parameters identification of 

high damped structure becomes more difficult if the signals are polluted with noise 

[24]. However, FDD is capable of detecting modal frequencies and mode shapes in 

terms of closely spaced modes or even repeated modes, since SVD can isolate the 

signal from noise where other methods face difficulties in overcoming it [15]. 

Most of the researchers have tried to improve modal damping estimation by 

introducing a variety of techniques for modal damping estimation in FDD-type 
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procedures such as logarithmic decrement (LogDec) method [14,25], Hilbert 

transform (HT) [15] and natural excitation techniques (NExt) i.e. cross-covariance 

function, Ibrahim time domain, and Polyreference [26] as well as the optimal wavelet 

[27]. Also, some researchers have tried tackling the signal processing issue by making 

improvements using their proposed method since the signal processing is denoted as 

the contributing factor for estimation errors comprising estimates of correlation 

function (CF) and the spectral density (SD) [23]. However, this issue is still considered 

as an open problem and unsolved because after throughout critical reviews and pilot 

tests, there is another factor that contributes to this error which is due to parameter 

extraction as shown in Figure 1.2, particularly in term of proper selection of the correct 

time window for extrema picking of single degree of freedom (SDOF) auto-correlation 

function and modal assurance criterion (MAC) index selection which turn out to be 

the most challenging part of the algorithm. Time window for extrema picking of SDOF 

auto-correlation function and MAC index selection need to be carefully chosen, 

otherwise it will lead to random and bias errors. Therefore, particular attention is 

needed for proper selection of the correct time window for extrema picking of a single 

degree of freedom (SDOF) auto-correlation function and MAC index selection. 

Currently, some researchers have tried to address this problem by introducing iterative 

loop optimization in selection of the correct time window, extrema picking of single 

degree of freedom (SDOF) auto-correlation function and MAC index selection. 

However, the results obtained from numerical simulation analysis are still not 

satisfactory enough and require for improvement. It is reported that the percentage 

deviation of estimated modal damping ratios was up to 15% and 10% on average. 

Meanwhile, the percentage deviation of estimated natural frequencies was less than 

5% [10,12,28–32].  

General step of frequency domain decomposition (FDD) method is illustrated 

in Figure 1.2. 
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Figure 1.2 Schematic illustration of frequency domain decomposition (FDD) 
procedure. 

In recent years, the development of automated procedures for identifying 

modal parameters in operating conditions has become increasingly popular and 

stochastic subspace-based identification algorithms (SSI) methods have been selected 

as the most practical tool for this procedure due to the consistency in modal parameters 

estimation especially under non-stationary noise excitations [33–43]. However, the use 

of subspace-based algorithms for OMA and SHM will be problematic when applied to 

structures with rotating machines, due to the harmonic excitations. Harmonic 

components are sometimes considered as virtual modes in the identification and 

potentially mistaken for being structural modes [44], thus might lead to potentially bias 

the estimation of the actual modes where the standard automated OMA approaches 

cannot be applied in a straight- forward way [45,46]. There are some common 

deficiencies have compromised the existing harmonic removal techniques regarding 

to discard the harmonic influence over the output signal without interaction with any 

expert user or additional knowledge of such, e.g. tachometer measurements still remain 

to be solved.  

Difficulties arise for SSI method when automating this procedure without the 

need of any human interaction and the problem is still unresolved because, in the case 

of application of the advanced clustering algorithm, several predefined set parameters 
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is compulsory at start-up for each analysis of the data set in order to estimate the 

maximum within-cluster distance between representations of the same physical mode 

from different system orders and the supplementary adaptive approaches have to be 

employed to optimize the selection of cluster validation criteria [9,36,39,47]. In 

addition, the values for thresholds for each modal parameter to separate physical from 

noise modes are inconsistent due to natural variations in modal properties of structures 

that come from damage or environmental influences that bring more difficulties to 

existing approaches [48].  

Abovementioned literatures proved that calibration of parameters at start-up of 

structural vibration analysis should be avoided. These harmonic components will 

cause uncertainty in extraction of modal parameters by disturbing the identification of 

actual structural modes as it appears in the form of natural frequency and mode shape 

[49] and it need to be detected and removed before modal identification. Recently, this 

has been recognized and most of the researchers agree more attention should be paid 

to that [47]. Thus, an alternative approach was required to automate this procedure 

without the need of any human interaction or additional knowledge regarding to a 

known rpm-time profile. It is possible to remove unwanted signal (harmonic 

components) from its raw signal, but more attention should be paid to ensure all the 

necessary information from this signal are not affected because it should be noticed 

that harmonic components cannot, in general, be removed by simple filtering as this 

would in most practical cases significantly change the poles of the structural modes 

and thereby their natural frequency and modal damping. 

1.3 Research objectives 

The main purpose of the present research is to improve the accuracy and 

provide unbiased results of the estimated modal parameter, particularly for modal 

damping ratio by introducing a new approach for frequency domain decomposition 

(FDD)- based method for both type of structure (low and high damped structure) and 

a desirable solution for harmonic removal within the stochastic subspace-based 

identification algorithms (SSI) framework. Furthermore, these introduced algorithms 
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can work for both numerical and experimental data. To achieve this target, several 

objectives have been highlighted for this research which includes: 

 To develop improved algorithm that can enhance the classical FDD algorithms 

by optimizing the correct time window selection for extrema picking of a single 

degree of freedom (SDOF) auto-correlation function and MAC index selection 

 To develop clustering algorithm for automation of SSI that can avoid any 

calibration of parameters at start-up of structural vibration analysis and can 

ensure an effective identification of physical modes. 

 To develop automated harmonic removal technique in the SSI method for 

effectively identifying and discarding the influence of harmonic components 

over the output signal and then automatically reconstructing it without leaving 

any necessary information regarding to structural mode. 

1.4 Scope of work 

The scope of this research: 

 The considered structural system is linear and time-invariant as commonly 

applied in OMA method  [9,50,51].  

 Low and high damped structures are used to evaluate the proposed optimized 

FDD. In numerical simulation, modal damping ratio of low damped structure 

is set to be lower than 1% of the critical damping, while modal damping ratio 

of high damped structure is set to be more than 1% which is from the range of 

2% to 5% of the critical damping [10,18]. For experimental verification, fluid 

damper is used at the base of steel frame mimic the high damped structure 

while the low damped structure make do without.  
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 Structure that having a rotating machine which produces the harmonic 

excitations is used to validate the proposed automated harmonic removal 

technique. In the numerical simulation, this condition is represented by a 

structure subjected to random excitation combined with additional steady-state 

signal.  

 Numerical simulations (simulated signal analysis) are performed in MATLAB 

on simple multi storey shear-type models which consists of two, three and six 

degrees of freedom (DOF). The multi storey shear-type models present well-

separated modes. The damping employed in the structure is viscous (damping 

forces proportional to velocity) and proportional Rayleigh damping.  

 Experimental verification is performed using 900cm x 420cm three storey steel 

frame for proposed optimized FDD and the structural sample of a square 

aluminium plate with dimensions of 100cm x 100cm x 0.4cm for automated 

harmonic removal technique. In addition, the experimental tests on plate using 

online database is also used to validate the proposed automated harmonic 

removal technique with existing harmonic removal approaches that conducted 

by Niels-Jørgen Jacobsen from B&K Nærum, Denmark. 

 The random input excitation response of the system in the numerical simulation 

was simulated using Newmark’s method with constant average acceleration, 

while for experimental verification, a shaking slip table and hand taping with 

fingertips are used to induce the random input excitation for the three-storey 

steel frame and aluminium plate respectively. 

 The acceleration signals are measured with accelerometers (Wicoson) and 

amplified with ICP sensor signal conditioner. The signals were sampled by 

OROS data acquisition equipment which is connected to a computer. The 

selected accelerometer frequency range is suitable to the measured structure 

which is 0 to 250 Hz.  
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1.5 Significance of the study 

Careful treatments of spectral bell width, singular value, time window selection 

and extrema picking had become important issues in achieving reliable estimate of 

natural frequencies and mode shapes in FDD by using the proposed advanced 

optimization method. This research aimed to provide a reliable and consistent result at 

variable proportional damping level. Besides that, this aims to provide an effective 

solution to identify and discard the harmonic influence from the output signal by 

neglecting any calibration or user-defined parameter at start-up and then automatically 

reconstruct back the output signal. The proposed algorithm will optimize the time 

window selection for extrema picking and MAC index selection of FDD algorithm for 

modal dynamic identification of structures. The developed automated harmonic 

removal method in the SSI framework is expected to serve as basis for future studies 

in enhancing the automation of OMA method. The accurate and precise values of 

modal parameters can provide a better and reliable data for health assessment as well 

as more comprehensive and accurate fault coverage. These techniques will improve 

the prognostic or prediction of remaining useful life (RUL) of the structure which can 

extend the structure’s design life. 

1.6 Thesis outline 

This thesis consists of five chapters. The second chapter in this thesis presents 

a literature review on the state-of-the-art approaches of OMA as the structural health 

monitoring technique. The review discusses on the OMA methods, development of the 

automated procedure, advantages and limitation as well as the current solutions to the 

limitations. This chapter highlights the research gaps. Chapter 3 covers the steps of the 

theoretical formulation of the proposed approaches for optimized FDD and automated 

harmonic removal technique. Chapter 4 presents and discusses the preliminary 

analysis using the proposed approaches on the simulated white noise input on a multi-

storey frame. The performance of optimized FDD is evaluated for the low and high 

damped structures, while the validation of automated harmonic removal technique is 

done with the addition of harmonic excitation. The results of the proposed approach in 
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numerical simulations are validated using eigenvalue problem analysis and compared 

with classical approach. Chapter 5 presents the details of the experimental setup. The 

results of the experimental study on the three-storey steel frame and aluminium plate 

are presented with cross validation techniques. Chapter 6 covers the comparative 

analysis of proposed automated harmonic removal with existing approach using online 

database. Chapter 7 summarises the findings, as well as the contributions of this study. 

The recommendations for future research are presented in this chapter. 
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