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ABSTRACT

Rare earth ions doped glasses with tailored lasing and light emitting potency are active area of
materials science research. In this view, a series of Eu®** and of Dy** co-doped (at various
concentrations) boro-telluro-dolomite (BTD) glasses included with silver nanoparticles (Ag NPs) were
prepared by melt-quenching method and characterized for the first time. The role of co-dopants and
Ag NPs contents on the optical and structural performance of the studied glasses was evaluated. X-
Ray diffraction (XRD) patterns of the as-quenched samples affirmed their amorphous nature, and the
energy dispersive X-ray (EDX) spectra showed the presence of actual chemical compositions of the
glasses. The existence of Ag NPs with an average diameter of 25.50 nm in the glass matrix was
verified using the high-resolution transmission electron microscopy (HRTEM) analyses. Ultrasonic
and Vicker’s micro-hardness analyses displayed high mechanical stability of these glasses. Fourier
transformed infrared (FTIR) and Raman spectra of the glasses revealed various chemical functional
units in their network structure. Ultraviolet-visible-near-infrared (UV-Vis-NIR) spectral data was used
to estimate the optical band gap energies and refractive indices of the glasses using three different
models. BTD1.0AgClI sample exhibited a distinct broad surface plasmon resonance (SPR) band at 479
nm. The photoluminescence spectra of the Eu**-doped glasses (under 464 nm excitation) displayed
five significant emission bands at 577, 591, 611, 652 and 702 nm matching with °D, —'F; transitions
(with J=0, 1, 2, 3, and 4) wherein the band intensities were quenched beyond 1 mol% of
Eu®* doping. The symmetry of the ligands in the vicinity of Eu** and Dy** in addition to their bonding
nature of the glasses were evaluated from the Judd-Ofelt intensity parameters Q,, Q,, and Q. The
observed emission spectral overlap and change in the fluorescence lifetime indicated a substantial bi-
directional energy transfer between Eu®" and Dy** in the glass matrix, confirming the Forster-Dexter
energy transfer process via the electric dipole—dipole interactions. Besides, the inclusion of Dy*"
altered the emission color of Eu®* from red region with CIE coordinates of (0.638, 0.361, for
BTD1.0Eu glass) to white light zone with CIE coordinates of (0.395, 0.317). The achieved hue was
very close to the ideal red color phosphor value of (0.67, 0.33) and pure white light value of (0.33,
0.33). The calculated lasing parameters such as the transition probability, stimulated emission cross-
section, luminescence branching ratio, optical gain, gain bandwidth, and radiative lifetime showed
enhancement due to the incorporation of Dy** and Ag NPs. The produced glasses exhibited high color
purity (ranged from 24 — 97.04%) and better quantum efficiency (ranged from 54.88 — 97.81%),
wherein such improvements were mainly attributed to the efficient energy transfer between Eu** and
Dy** as well as the Ag NPs SPR-induced local field effects. Overall, a correlation between the
structural and optical features of the BTD glasses was determined. Based on the obtained results it can
be concluded that the proposed glasses have great potential for the solid-state red laser and white light

emitting devices applications.
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ABSTRAK

Kaca yang didopkan dengan nadir bumi dengan penyesuaian laser dan potensi pengeluaran cahaya
adalah bidang aktif dalam kajian sains bahan. Dalam pandangan ini, satu siri kaca boro-telluro-
dolomit (BTD) didopkan dengan Eu®" dan Dy** dengan perangkuman zarah nanoperak (Ag NPs)
disediakan menggunakan kaedah peleburan kaca pelindapkejutan dan dicirikan buat pertama Kkali.
Peranan dopan bersama dan kandungan Ag NPs pada prestasi optik dan struktur kaca yang dikaji telah
dinilai. Pola pembelauan sinar-X (XRD) sampel sepuhan lindap yang telah disediakan mengesahkan
sifat amorfus kaca dan pola sinar-X sebaran tenaga (EDX) menunjukkan kewujudan komposisi kimia
sebenar kaca. Kewujudan Ag NPs dengan diameter purata 25.50 nm di dalam matrik kaca telah
disahkan menggunakan analisis mikroskop elektron penghantaran resolusi tinggi (HRTEM). Analisis
ultrasonik dan Kekerasan-mikro Vicker’s menunjukkan kestabilan mekanikal kaca yang tinggi
Spektroskopi inframerah fourier transformasi (FTIR) dan spektrum Raman mendedahkan pelbagai
units imia fungsian di dalam struktur jaringan. Data spektrum ultra ungu-cahaya nampak-inframerah
hampir (UV-Vis-NIR) telah digunakan untuk menganggar jurang tenaga optik dan indeks refraktif
kaca menggunakan tiga model berbeza. Sampel BTD1.0AgCl mempamerkan satu bonggol lebar
resonan plasmon permukaan (SPR) terbeza pada 479 nm. Spektrum kefotopendarcahayaan kaca yang
didopkan dengan Eu®* (diterujakan pada 464 nm) menunjukkan lima jalur pancaran penting pada 577,
591, 611, 652 dan 702 nm berpadanan dengan peralihan °Dy —’F; (dengan J =0, 1, 2, 3, and 4) yang
mana keamatan jalur melindap di luar 1 mol% pendopan Eu®*. Simetri ligan kawasan sekitar Eu** dan
Dy** ion dan sifat ikatan mereka telah dinilai daripada penilaian parameter keamatan Judd-Ofelt ©,,
Q4 and Qg Pemerhatian terhadap pertindihan spektrum dan perubahan pada tempoh hayat
pendarfluor menunjukkan terdapat pemindahan tenaga dua arah yang besar di antara Eu®" dan Dy**
dalam matrik kaca, yang mengesahkan pemindahan tenaga Forster-Dexter melalui interaksi elektrik
dwikutub-dwikutub. Tambahan pula, perangkuman Dy*" merubah warna pancaran Eu®* daripada
kawasan cahaya merah dalam koordinat CIE (0.638, 0.361 untuk BTD1.0Eu) kepada kawasan cahaya
putih dalam koordinat CIE (0.395, 0.317). Rona yang dicapai menghampiri dengan nilai fosfor warna
merah ideal (0.67, 0.33) dan nilai cahaya putih unggul (0.33, 0.33). Nilai parameter yang telah dikira
seperti  kebarangkalian peralihan, keratan rentas pancaran terangsang, hisbah pencabang
pendarcahaya, gandaan optik, gandaan lebar jalur dan tempoh hayat sinaran menunjukkan
peningkatan kesan daripada perangkuman Dy** dan Ag NPs. Kaca yang dihasilkan mengeluarkan
ketulenan cahaya yang tinggi (dalam julat antara 24 — 97.04 %) dan efikasi kuantum yang lebih baik
(54.88 — 97.81 %) yang mana pembaikan ini dikaitkan dengan pemindahan tenaga efisien di antara
Eu®* dan Dy*" dan kesan medan setempat yang dicetuskan oleh Ag NPs SPR. Secara keseluruhan,
perkaitan antara sifat struktur dan optik kaca BTD telah ditentukan. Berdasarkan dapatan kajian, dapat
disimpulkan bahawa kaca yang dicadangkan mempunyai potensi besar sebagai laser merah keadaan

pepejal dan aplikasi peranti pemancar cahaya putih.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

This chapter recap the pertinent introduction covering the basic background
knowledge of the study along with the most relevant literature survey from previous
researched. Besides, it includes the problem statement which led to this research,
objectives of the research, scope of the research, significance of the research and the
thesis outline.

1.2 Background of the Research

The increasing demand for cost effective eye safe lasers and energy-saving
light emitting devices has grab research attention in the hunt for novel optical
materials that can be customize to meet the aforementioned need [1-4]. Of all
materials, glassy ones by virtue of their easy preparation, good chemical stability and
possibility to produce bulky size (discs/slabs/rods) to complex miniatures (graded

index optical fibers) are widely preferred compared to crystalline [5, 6].

Interestingly, borate oxide (B,O3) among various glass hosts has been spotted
as one of the principal glass formers with a very high glass forming ability, large
concentration of rare earth ion solubility, high thermal stability and widespread range
of transparency [7]. Indisputably, these unique characteristics of borate glasses make
them promising for optical device construction [8]. In contrast, the imperfections of
borate glass hosts such as hydroscopic nature and high phonon energy (~1300-1500
cm™) seriously hinder its practical applications. Aiming to circumvent these
downsides, Aziz et al. [9] affirmed that inclusion of tellurium oxide (TeO,) into B,O3

network forming boro-tellurite network (BTN) can powerfully conquer the



weaknesses of borate thereby improving it optical performance. Indeed, this new
glass system represents a perfect cooperation between the requirements of high
chemical durability, higher refractive index, low phonon energy, ease fabrication,
higher mechanical strength, higher thermal stability and low transmission loss in the
IR region [10].

Divina et al. [11] further attest that the existence of an alkaline earth metals in
BTN could significantly improve its optical qualities through BO3;—BO, and
TeO3—TeO4 unit’s transformations. The pioneered studied on the synthesis and
characterization of synthetic calcium borotellurite (CBTe) glasses by Paz and his co-
researchers [12] testified a very good thermal stability greater than 100°C and wide
optical transparency (350-2600 nm) when compared to phosphate and fused silica.
Besides, Karthikeyan and his team mates [13] also affirmed that the inclusion of
calcium oxides in B,03-TeO3; network is expected to overcome the hydroscopic
nature and hence mechanically reinforce its network; forming a potential luminescent
host in which Ca®* cation can be replaced by rare earth ions. Furthermore,
incorporating CaO into a glass network can cause a decline in the high phonon
energy of the unadulterated oxide glasses and subsequently intensifies their optical
values [14].

In spite of the renowned prospect of BT glasses containing calcium oxide,
researchers have seldom used calcium rich natural mineral as modifier in BT glasses
for potential applications. It is believed that the synergism between synthetic BT and
dolomite mineral can form boro-telluro-dolomite (BTD) glasses of better quality
[15]. Additionally, the inclusion of naturally stable and plentiful dolomite mineral in
the BT network can overshoot the main shortcomings associated with artificial
chemicals-based glasses such as hydroscopic nature and high production cost [15].
Stimulated by this rationale, first-ever synthesis and characterization of BTD glasses
by using standard melt quenching method and various spectroscopic techniques,

respectively is examined to ascertain their lasing and light emitting potency.

According to the literature survey, it has been well established that the
effectiveness of optical glass host for a precise application strictly depend on the



good correlations between physical, mechanical, structural and optical properties as a
function of dopants; either singly, doubly doped with rare earth ions and or metallic
nanoparticles co-embedment [16-19]. Among different dopants, Eu®" ion has
attracted special attention owning to its peculiar features like distinctive energy
level’s structure, valence fluctuation property and the optimized red emission
allocated to °Dy —'F, (611 nm) transition is identified as the most proper materials
for making diverse optical devices [20, 21]. However, due to the parity forbidden
character of 4f-4f transition, the absorption cross-section of Eu** ion is very low,
leading to low emission efficiency under the ultraviolet (UV) excitation. To pay off
this disadvantage, co-doping with Dy** can boost the excitation efficiencies and the

luminescence of Eu®* ions via co-excitation/energy transfer [19].

Undeniably, Eu** and Dy** co-activators present a good complementary which
simultaneous emission of blue and greenish-yellow (°Fg;, —°His;, 13/2, transition of
D¥*") and orange-reddish ("Dy —'F, Eu** transition) light is achieved by UV laser
excitation. This implies that by co-doping a glass host with suitable concentration of
Eu®* and Dy*" ions, generation of white light become possible since the needed
primary lights (blue, yellow and red) are emitted [22]. In spite the remarkable
features of Eu®* and Dy** co-embedment, only limited amount of pumping excitation
is absorbed by these ions resulting to a very low converting efficiency, thanks to
metallic nanoparticles (MNPs) for creating other excitation mechanism through
energy transfer by sensitization from absorbing species in a wide spectral range.
Incorporation of MNPs (as embedding agent) in a glass host along with REs (as
dopants) induced sizeable enhancement in the absorption and cross-section of REs
inside various disorder; thus, providing a lifeline to optical devices [23]. The
renowned enrichment is attributed to the intense local electromagnetic field

generated from the NPs assisted Surface Plasmon Resonance (SPR) effect.

Recently, silver nanoparticles (Ag NPs) were used by many researchers to
improve the luminescence properties of REI’s in glass matrices [18, 24-26]. The
synergic combination between Ag NPs and REs could provide benefits like energy
transfer from Ag NPs to REs and induce strong electric field in the vicinity of the
REs due to SPR which in turn increase the absorption cross-section. Saad and his co-

researchers [27] reported the excellent optical performance of Eu®*‘/Dy**/Ag



nanoparticle co-doped phosphate glasses. Their major finding explored that a dual
mode energy transfer from Ag NPs and Dy*'ions to Eu®" ions lead to the
augmentation of the emission bands of Eu®* ions. Also, the effect of silver co-doping
on the Sm®" luminescence upgrade in lithium tetraborate glasses was investigated by
kindrat et al [28]. Truthfully, the luminescence of Sm**ions was greatly enhanced
with about 1.43 times due to Ag embedment. The observed enhancement was
principally credited to the excitation energy transfer from Ag" and ion molecule-like
nanoclusters to the Sm**ions. Despite the noted potential of Ag NPs in rare earth
doped glasses, the mechanism of tailoring the localized surface Plasmon resonance
(LSPR) band of Ag NPs co-embedded inside a glass host that are responsible for

luminescence enhancement need further clarifications.

1.3 Problem Statement

The search for an optimized rare earth ions (REIs)-doped glasses as essential
futuristic lasing and lighting emitting host is an endless mission. The glasses derived
from synergetic combination of synthetic and natural minerals have been proven to
be excellent host for REIs [15, 29]. However, selection of abundant minerals that can
suitably be incorporated into existing synthetic based glass formers to form a new
class of glass matrix remains the key issue. Besides, doping the aforesaid glass
system with high concentration of single REI’s result to weak absorption cross
section and luminescence quenching which greatly hinder their practical
applications. In this sense, fabrication of boro-telluro-dolomite (BTD) glasses with
low contents and co-doping of REIs is a necessity. Moreover, report on the energy
transfer mechanism in Eu**/Dy** co-doped glasses is deficient. Thus, further research
is required to comprehend the role of Eu®**/Dy** co-doping on the physical,
mechanical and structural features; and the possibility of enhancing optical
performance in BTD glasses via energy transfer process. In addition, to explore the
lasing and light emitting potency from these glasses, Judd-Ofelt, radiative and

Commission International de I’Eclairage (CIE) 1931 analyses need to be performed.



Furthermore, nano-technological uprising demands the synthesis and

characterization of new nanostructured materials, preferably by a simple technique

but with outstanding properties and beneficial applications [30]. From literature

review, coupling REIs with metallic nanoparticles became a precious strategy to

improve the absorption cross section and the luminescence yield of REIs [18, 31].

Nevertheless, incorporation of AgCl NPs into Eu**/Dy** co-doped BTD glasses has

not been studied yet. Hence, determining the mechanism of optical enhancement; and

improved physical, mechanical and structural qualities in Eu**/Dy** co-doped BTD

glasses containing AgCl NPs is the motivation and novelty behind this study.

14

Research Objectives

The design and fabrication of optimized glass host with lasing and light

emitting potentials is the core objective of this study. In this regard, the specific

research objectives are:

To optimize the composition of Eu**/Dy*" co-doped boro-telluro-dolomite

(BTD) glasses without and with varying contents of AgCI NPs

i. To determine the role of both Eu**/Dy** co-doped and AgCl NPs embedment

on the physical, mechanical, structural and optical features in BTD glasses

To analyse the effect of surface plasmon resonance (SPR) and energy transfer
mechanism on luminescence enhancement in BTD glasses due to Eu®**/Dy**

co-doped and AgCl NPs inclusion

To evaluate the lasing and light emitting performance of the glasses through
Judd-Ofelt, radiative and Commission International de I’Eclairage (CIE)

1931 analysis

To establish a structure-optical correlation responsible for the improvement in

the optical properties of BTD glasses



1.5 Scope of the Research

Herein, three series of boro-telluro-dolomite (BTD) glasses with varying
content of dopants (Eu®* and Dy**) and AgCl NPs were prepared by melt quenching
method. The densities of the prepared glass samples were determined using the
Archimedes principle with distilled water as the standard liquid. The phases of the
fabricated glasses were verified through XRD measurements. Meanwhile, the
structural morphology of the studied glasses was analyzed by using Energy
Dispersive X-ray (EDX) mapping, Scanning Electron Microscopy (SEM) and High-
Resolution Transmission Electron Microscope (HRTEM). The mechanical properties
were evaluated to ascertain the glass stability. Besides, Fourier Transform Infra-red
(FTIR) alongside Raman analysis was employed in probing the structural changes in
the prepared glass network. Ultraviolet-Visible-Near Infrared (UV-Vis-NIR),
Photoluminescence (PL), and Fluorescence spectrophotometers was performed to
describes the optical features. Using PL emission data, Commission International de
I’Eclairage (CIE) 1931 was utilized to assess the color emission and purity of the
glasses. Additionally, the energy transfer processes were discussed using both
photoluminescence and decay profile. Finally, the lasing parameters such as
stimulated emission cross-section, branching ratio and optical gain were determined

based on the context of JuddOfelt analysis.

1.6  Significance of the Research

Studies on the optical glass material become significant due to their great
potential in Nano-glass technology. In this research, the role of AgCL NPs embedded
in Eu®*/Dy** co-doped BTD glasses is explained by suitable control and optimizing
the content of REs and NPs. However, understanding the physical, mechanical,
structural and optical properties of the glass matrix is important to determine the
optimum composition of the glass. Besides, the energy transfer mechanism and the
SPR effect by NPs responsible for luminescence enhancement is significant in

applications point of view. Furthermore, optical parameters analysis such as energy



band gap, quantum efficiency, stimulated emission cross-section, branching ratio,
optical band gain, emission color and purity are highly beneficial for the

development of the active solid-state lasers and light emitting devices.

1.7  Thesis Outline

The content of this thesis is divided into five chapters describing the
comprehensive work carried out to achieve the aims set out and meeting the
objectives given: chapter one begins with a brief introduction, background of the
research, problem statement, research objectives, significance of the study and the
thesis outline. Chapter two contains important theories and the review of pertinent
literature. The detail methodologies are described in chapter three where glass
sample preparation procedures and characterization techniques are presented. Major
results, analyses, discussion and comparison with existing data are summarized in
chapter four. Finally, chapter five renders summary and conclusion based on the
results and also offer recommendations for the future study. The calculation of glass
composition, some optical properties and list of publications are appended in the

Appendix A and B, respectively.
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