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ABSTRACT 

This study focuses on statistical modelling on cardiovascular disease (CVD) 

patients in Malaysia. A secondary dataset from the National Cardiovascular Disease 

Database-Acute Coronary Syndrome (NCVD-ACS) registry for the years 2006 to 

2013 is utilised. Studies have shown that CVD affects males and females differently. 

Thus, a gender-specific analysis with regard to the risk factors and mortality among 

ST-Elevation Myocardial Infarction (STEMI) patients is needed. Initially, this study 

performed the standard multivariate logistic analysis where the aims are to identify 

risk factors associated with mortality for each gender and to compare differences, if 

any, among STEMI patients. The results showed that gender differences existed 

among STEMI patients. Even though females share the same risk factors as males, 

there are risk factors that relate only to females which may have increased their 

tendency to develop and increase the risk of mortality of CVD patients. An important 

contribution of this analysis is that it gives an understanding of possible gender-based 

differences in baseline characteristics, risk factors, treatments and outcomes which will 

help cardiac care specialists in improving current management of patients with CVD. 

Next, Bayesian analysis is proposed to develop a prognostic model of the STEMI 

patients. Bayesian Markov Chain Monte Carlo (MCMC) simulation approach is 

applied. Beside that, comparisons of the parameter estimates from the proposed 

Bayesian and frequentist models are made. The results showed that the proposed 

Bayesian modelling can deal correctly with the probabilities and provides parameter 

estimates of the posterior distribution which have natural clinical interpretations. In 

doing so, several programming codes for the Bayesian model development and 

convergence diagnostics in the Just Another Gibbs Sampler (JAGS) software in R 

interface are developed. In the final part of this study, a graphical probabilistic model 

framework defined using a Bayesian Network (BN) is proposed to identify and 

interpret the dependence structure between the predictors and health outcomes of 

STEMI patients. In doing so, the two learning processes are involved in obtaining the 

BN model from the data namely the structural learning and parameter learning. From 

the structural learning, 25 and 20 arcs were considered significant for males’ and 

females’ BN respectively. A few variables namely, Killip class, renal disease and age 

group were classified as key predictors as they were the most influential variables 

directly associated with the outcome of patients’ status. Moreover, conditional 

probabilities for each feature were obtained. The novelty of this study is that it provides 

an indication on the strength of each arc in the network by exploiting the bootstrap 

resampling method in the structural learning. A graphical model is developed where 

the relationships in a diagrammatical form is capable to be displayed and the cause-

effect relationships can be illustrated. An important implication of this model is that it 

identifies dependencies based on the different features of variables. It can also include 

expert knowledge to improve predictability for data driven research when information 

or resources regarding the variables are limited. 
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ABSTRAK 

Kajian ini memberi tumpuan kepada pemodelan statistik pesakit 

kardiovaskular (CVD) di Malaysia. Satu set data sekunder daripada Pangkalan Data 

Kebangsaan Penyakit Kardiovaskular-Sindrom Koronari Akut (NCVD-ACS) bagi 

tahun 2006 hingga 2013 telah digunakan. Kajian menunjukkan bahawa CVD memberi 

kesan kepada lelaki dan wanita secara berbeza. Dengan itu, analisis khusus-jantina 

berkaitan dengan faktor risiko dan kematian di kalangan pesakit Infarksi Miokardium 

ST-aras tinggi (STEMI) diperlukan. Pada mulanya, kajian ini menjalankan analisis 

logistik multivariat yang bertujuan untuk mengenal pasti faktor risiko yang berkaitan 

dengan kematian bagi setiap jantina dan membandingkan perbezaan jantina, jika ada, 

di kalangan pesakit STEMI. Hasilnya menunjukkan perbezaan jantina wujud di 

kalangan pesakit STEMI. Walaupun wanita mempunyai  faktor risiko yang sama 

dengan lelaki, terdapat faktor risiko yang berkaitan hanya dengan wanita yang 

mungkin meningkatkan kecenderungan mereka untuk mendapat dan meningkatkan 

risiko kematian pesakit CVD. Sumbangan penting dalam analisis ini adalah ia 

memberikan kefahaman tentang kemungkinan perbezaan jantina dalam ciri asas, 

faktor risiko, rawatan dan hasil yang akan membantu pakar penjagaan jantung dalam 

meningkatkan pengurusan pesakit CVD masa kini. Seterusnya, analisis Bayesian 

dicadangkan untuk membangunkan model prognostik pesakit STEMI. Pendekatan 

simulasi Rantai Markov Monte Carlo (MCMC) Bayesian digunakan. Di samping itu, 

perbandingan anggaran parameter daripada model Bayesian yang dicadangkan dan 

model frekuentis telah dibuat. Hasil kajian menunjukkan bahawa pemodelan Bayesian 

yang dicadangkan boleh mengganggarkan kebarangkalian dengan betul dan 

menyediakan anggaran parameter bagi taburan posterior yang mempunyai tafsiran 

klinikal semulajadi. Oleh yang demikian, beberapa kod pengaturcaraan untuk 

pembangunan model Bayesian dan diagnostik penumpuan dalam perisian Just Another 

Gibbs Sampler (JAGS) dengan  antaramuka R telah dibangunkan. Di bahagian akhir 

kajian ini, satu rangka kerja model kebarangkalian grafik yang ditakrifkan 

menggunakan Rangkaian Bayesian (BN) telah dicadangkan untuk mengenal pasti dan 

mentafsir struktur kebersandaran antara pesakit dan hasil kesihatan pesakit STEMI. 

Dengan berbuat demikian, dua proses pembelajaran telah terlibat dalam mendapatkan 

model BN dari data iaitu pembelajaran berstruktur dan pembelajaran parameter. Dari 

pembelajaran berstruktur, masing-masing 25 dan 20 lengkok dianggap penting bagi 

BN lelaki dan wanita. Beberapa pembolehubah iaitu kelas Killip, penyakit buah 

pinggang dan kumpulan umur diklasifikasikan sebagai peramal utama kerana 

pembolehubah-pembolehubah ini adalah yang paling berpengaruh secara langsung 

dengan hasil status pesakit. Selain itu, kebarangkalian bersyarat untuk setiap ciri telah 

diperolehi. Penemuan baru kajian ini adalah ia memberi petunjuk kepada kekuatan 

setiap lengkok dalam rangkaian dengan mengeksploitasi kaedah persampelan cangkuk 

but dalam pembelajaran berstruktur. Model grafik telah dibangunkan di mana 

hubungan dalam bentuk rajah mampu dipaparkan dan hubungan sebab-akibat boleh 

digambarkan. Implikasi penting dalam model ini ialah ia mengenalpasti kebersandaran 

berdasarkan ciri-ciri pembolehubah yang berbeza. Ia juga boleh memasukkan 

pengetahuan pakar untuk meningkatkan kebolehramalan untuk penyelidikan yang 

berasaskan data apabila maklumat atau sumber berkaitan pemboleubah adalah terhad.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of the Study  

Cardiovascular disease (CVD) is the number one cause of death in Malaysia 

(Mohammad et al., 2018) and globally (WHO, 2017; Gutierrez et al., 2018). CVD is 

defined as a group of disorders of the heart and blood vessels which include coronary 

heart disease, cerebrovascular disease, peripheral arterial disease, rheumatic heart 

disease and congenital heart disease (WHO, 2017). More people die annually from this 

non-communicable disease than from any other cause. Of these deaths, an estimated 

7.4 million were due to coronary heart disease and 6.7 million were due to stroke 

(WHO, 2017). It was estimated that 23.6 million people will die by the year 2030 due 

to CVD (Benjamin et al., 2017). Amongst the more developed countries, the highest 

death rates from CVD are in Ukraine and Russian Federation with 718 and 654 deaths 

per 100,000 population respectively, while the lowest are in South Korea and Japan 

with 36.5 and 47.0 deaths per 100,000 respectively (Mozaffarian  et al., 2015).  

Although various research has been done on CVD worldwide, it is important 

to better understand the disease pattern in Malaysia specifically and analyse the 

impacts of the study on clinical practice locally. It is worthwhile to note that, CVD 

accounted for 98.9 deaths per 100,000 population in Malaysia in 2012, or 29,400 

deaths which is 20.1% of all deaths (WHO, 2017). Even worse, CVD remain as a 

principal cause of death in Malaysia for the last ten years, from 2005 to 2014 

(Department of Statistics Malaysia Official Portal, 2016). Ample information on the 

burden of disease has also been obtained from death certifications and hospital 

admission records from the Malaysia Ministry of Health (MOH) hospitals where 

circulatory disease accounted for 6.99% of the total hospital admissions and 23.34% 

of all hospital deaths in 2014 (Ang and Chan, 2016; Ministry of Health Malaysia, 

2016). 
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In Malaysia, the National Cardiovascular Disease Database (NCVD), a service 

supported by the MOH, plays an important role to collect information about CVD 

across Malaysia. NCVD enables us to obtain the incidence of CVD, and to evaluate its 

risk factors and treatment in the country. This information is useful in supporting the 

MOH, non-governmental organizations, private healthcare providers and industry in 

programme planning and evaluation, leading to CVD prevention and control. The 

NCVD is established to integrate various existing databases for individual hospitals 

either in MOH hospitals or private and other data sources to achieve a nationwide 

cardiovascular database.  

The Acute Coronary Syndrome (ACS) registry was officially launched on 31st 

March 2006. The Malaysian National Cardiovascular Disease-Acute Coronary 

Syndrome (NCVD-ACS) registry was the first stage in realising the rationale of a 

nationwide cardiovascular database. Previously, the risk prediction of ACS is unclear 

and might be different from cardiovascular disease patients with chronic stable angina. 

These are the reasons why NCVD-ACS registry is needed, as it provides the real-life 

data that would represent the population of Malaysia (Wan Ahmad and Sim, 2006).  

Prevention of CVD requires timely identification of patients at increased risk 

to target effective dietary, lifestyle, drug interventions or treatments (WHO, 2016). 

These can be done by studying the risk factors, analysing and interpreting them using 

various statistical methods. Therefore, the existence of high-quality data as well as 

suitable statistical methods to analyse data is of significant importance.  

Understanding a disease often requires research that examines multiple 

variables and their relationships. These include clinical and laboratory data and other 

attributes such as risk factors, socioeconomic factors among others. In order to 

integrate these multiple variables, statistical model is often used where it can be 

expressed in mathematical expression that portrays the relationships among the 

variables. The model is able to provide prediction and explanation on the nature of the 

illness. One commonly used model is the regression model where we understand how 

the typical value of the dependent variable changes when any one of the independent 
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variables is varied, while the other independent variables are held fixed (Suárez et al., 

2017).  

Over the past few years, numerous regression models have been developed for 

predicting risk factors such as models based on logistic regression model (Awad and 

Al-Nafisi, 2014; Umamahesh et al., 2014; Jousilahti et al., 2016; Keto et al., 2016; 

Yuan et al., 2017) and Cox regression model (McClelland et al., 2015; Wulsin et al., 

2015). This study commences by considering the logistic regression model with 

independent variables that include the risk factors associated with mortality among 

Malaysian CVD patients. For initial analysis, univariate analysis is performed to 

identify significant variables. This is followed by the multivariate analysis using the 

purposeful selection method to obtain the best model.  

Using various statistical methods, this study attempts to model the data by 

validating, making head-to-head comparisons, and thus providing a parsimonious 

model that describes the data.  Bayesian model is also considered to describe the data 

where Bayesian Markov Chain Monte Carlo (MCMC) simulation approach is applied 

in the analysis. The dataset used for this study is the NCVD-ACS dataset from the year 

of its establishment, 2006 until 2013. 

Model performance is assessed through convergence diagnostics, overall 

model fit, model calibration and discrimination. Additionally, comparisons of the 

parameter estimates are made between Bayesian model and frequentist model. To our 

knowledge, Bayesian model using the MCMC method has not been used extensively 

in the analysis of CVD data in Malaysia. 

Also, another aim of the study is to identify the dependence structures between 

variables and the outcome of CVD patients, graphical model based on the Bayesian 

network (BN) approach has been considered. The BN approach incorporated a few 

learning techniques namely structural learning and parameter learning. In addition, this 

study applied a bootstrap resampling approach to the structure learning, in the interest 

of estimate the strength of each identified dependence. Validation and the performance 
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of the BN model are assessed using the area under receiver operating characteristic 

curve (AUC) and the accuracy test.  

1.2 Problem Statement 

A few studies have been carried out for the CVD datasets worldwide such as 

the treatment attitude and clinical outcome of elderly patients with ACS (Zuhdi et al., 

2016), prediction on CVD mortality among working men and women (Jousilahti et al., 

2016), determination of the population trends of CVD risk factors in the national 

capital region (Prabhakaran et al., 2017) and among others. However, successful 

implementation of statistical methods remains a challenge among researchers as they 

are many common mistakes applied especially in biomedical research such as 

improper research design, inadequate sample size, unsuitable statistical test and 

overfitting regression model (Nuzzo, 2014; Moyé, 2016). A review of the literature 

reveals general awareness of this issue (George, 1985; Ioannidis, 2005; Nuzzo, 2014a; 

Moyé, 2016). In medical research, the purpose of statistical model is often used to 

describe relationships between variables and identify risk factors associated with the 

outcome of some illness; for example, Shah et al. (2015), examined if the likelihood 

of having coronary artery disease is influenced by factors involving age and smoking. 

Measures of association provide an initial impression of the extent of statistical 

dependence between variables. Besides, it is important to eliminate and evaluate the 

best set of variables to be used for building predictive models and identify the risk 

factors that influence the outcome.  

In Malaysia, there is a lack of comprehensive studies on the risk factors of 

CVD. Previous studies of CVD only focused on treatment attitude (Zuhdi et al., 2016; 

Venkatason et al., 2016) and the samples are based only on Kuala Lumpur’s 

population (Amiri et al., 2014) and limited to certain states such as Kelantan (Mohd 

Noor et al., 2013) and Pahang (Mohammad et al., 2018). Moreover, there were also 

studies which focused only on certain age group such as adolescents (Thangiah et al., 

2017) and elderly (Azahar et al., 2016). Most of these studies used descriptive and 

regression analyses. Besides, the prevalence of CVD in males is higher than in females 
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and mortality rates are also different between the two genders (Department of Statistics 

Malaysia Official Portal, 2016). This suggest that risk factors associated with mortality 

between males and females are different. Hence, this study will demonstrate the 

development of logistic regressions using the NCVD-ACS dataset particularly on the 

ST-Elevation Myocardial Infarction (STEMI) patients in Malaysia. Based on the 

regression model, we would like to find out what are the risk factors and what is the 

prognosis of the patients. Is there any difference between male and female patients’ 

prognosis? 

An alternative to traditional frequentist statistical analysis is the Bayesian 

approach. The flexibility of the Bayesian approach is that we are able to update prior 

information on the underlying parameters with information from cumulative or past 

experience (Ntzoufras, 2009; Torman & Camey, 2015) and this has become the 

motivation in this study. A search through the literature revealed that implementation 

of Bayesian approach in CVD dataset are somewhat limited in Malaysia. Difficulties 

in performing Bayesian analyses for multivariate data and the availability of other 

easier methods are some of the reasons why the Bayesian approach is less popular 

compared to other traditional methods. Bayesian approach rests on the assumption that 

all model parameters are random quantities and hence can incorporate prior 

knowledge. Its use in predicting risk of mortality in CVD has been rather underutilized 

(Hannan et al., 2005) even though this method is widely used for predictive analysis 

in other medical applications such as modelling risk of death in an intensive care unit 

(Wong and Ismail, 2016), identifying risk genes for schizophrenia and 

neurodevelopmental disorders (Nguyen et al., 2017) and multiple treatment 

comparisons in female urinary incontinence (Carlin et al., 2013). In this study, we will 

incorporate prior knowledge and investigate how does this affect the risk factors, the 

prognosis of the patients and how does this improve the prediction of the model. To 

our knowledge, there is no published study that discussed the performance of Bayesian 

approach using Malaysian medical data, particularly CVD patients in the NCVD-ACS 

registry. Therefore, this study considers MCMC approach where development of 

Bayesian model using Malaysian STEMI patients from the NCVD-ACS dataset is 

shown. 
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Modelling the risk factors associated with mortality of CVD taking all the 

related variables into account is rather challenging from a theoretical point of view, as 

the risk factors-mortality nexus is expected to be characterised by a rather complex 

dependence structure. Obvious computational challenges can be seen, especially when 

it involves quite a large dataset in which it requires long processing times and can only 

be performed with an adequate computer infrastructure in place (Torman and Camey, 

2015; Liu, 2018). When research is driven mostly by available data and resources or 

information regarding the variables are limited, a model that can essentially identify 

dependencies based on the different features of variables and can include expert 

knowledge to improve predictability is needed. In this setting, graphical model such 

as Bayesian network seem to be a perfect fit. This model was increasingly being used 

in computer science (Lacave et al., 2018; Scutari et al., 2018), business analytics 

problems (van Wagenberg et al., 2018) as well as medicine (Foroushani et al., 2016; 

Zador et al., 2017), and genetics (Scutari et al., 2014). Both categorical and numerical 

data were involved in these previous studies. However, all of these studies have been 

based on international samples such as Spain, United State of America, United 

Kingdom and Iran and this model is relatively less explored in Malaysian CVD dataset. 

Also, most of these Bayesian network studies do not contain indication on the degree 

of confidence or strength of each arc in the network. In order to address this limitation, 

a graphical model based on Bayesian network will be applied to discover the 

dependence structure between variables in Malaysian CVD dataset and the conditional 

independence of a variable or groups of variables from a given variable or variables. 

Bootstrap resampling method will be considered in this study in which the degree of 

confidence of each arc can be obtained. In short, we would like to know what are the 

relationship defined by the Bayesian network where the prognosis is different. 

In machine learning, fitting a model to our training dataset is one thing (Witten 

et al., 2016), but how do we know that it generalizes well to unobserved data? How to 

make sure that it doesn’t simply memorize the data we feed it and able to make good 

predictions on future samples? In order to address this constraint, this study will assess 

the performance of both proposed Bayesian regression and Bayesian network models 

and carry out the validation studies to identify whether the predictions are sufficiently 

accurate across different settings and populations. 
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1.3 Research Questions  

In this study, we aim to address the following research questions: 

(a) What are the CVD risk factors associated with mortality among the STEMI 

patients in Malaysia? Is there any difference for each gender? 

(b) What is the alternative technique in identifying prognostic factor of STEMI 

patients?  

(c) How well can the proposed statistical model fit the Malaysian STEMI data?  

(d) What is the suitable model to describe the dependence structure between the 

predictors and health outcomes of STEMI patients?  

(e) How accurate the proposed model in identifying the dependencies between 

variables? 

 

1.4 Objective of the Study 

The objectives of the study are as follow: 

(a) To identify the CVD risk factors associated with mortality for each gender and 

compare differences, if any, among STEMI patients in Malaysia using 

frequentist approach. 

(b) To propose prognostic model using Bayesian MCMC method for STEMI 

patients. 

(c) To assess Markov chains convergence, model performance and result 

validation of the proposed Bayesian model. 

(d) To establish a framework of dependence structure for STEMI patients based 

on graphical probabilistic model defined using a Bayesian network.  

(e) To assess the accuracy of the proposed Bayesian network model. 
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1.5 Significance of the Study  

In general terms, the analyses will give an accurate information of the illness 

nature for patients with CVD in Malaysia. The findings from this study will be 

beneficial in the following ways:  

(a) This study gives an understanding of CVD-STEMI cases in Malaysia and 

provides accurate information to clinicians.  

(b) This study provides predictive models using frequentist approach and Bayesian 

MCMC where risk factors, outcome of illness and prognosis of the disease can 

be identified. 

(c) A graphical model is developed where it is capable of displaying relationships 

in a diagrammatical form and the cause-effect relationships can be illustrated 

to the clinicians.  

(d) It is hoped that the results of the statistical analyses will be of use to clinicians 

treating CVD-STEMI patients by providing robust decision support system. 

 

1.6 Scope of Study  

The scope of the study is on patients with acute coronary syndromes (ACS) 

who are registered with the National Cardiovascular Disease Database (NCVD) with 

the main focus on ST-Elevation Myocardial Infarction (STEMI). The analyses were 

done on the information obtained from 2006 to 2013. 
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1.7 Organization of the Thesis 

This thesis is divided into seven chapters: 

(a) Chapter 1 provides the background of the study, problem statement, 

objectives, significance of the study, scope and outline of chapters in the thesis. 

(b) Chapter 2 presents the literature reviews related to the study.  

(c) Chapter 3 elaborates the background of the source of data and the 

methodology for the construction of the proposed models in this study. 

(d) Chapter 4 presents the results and findings of modelling the mortality of 

STEMI male and female patients using multivariate logistic regression. 

(e) Chapter 5 discusses the performance of the proposed Bayesian modelling of 

STEMI patients using MCMC approach. This is followed by convergence 

diagnostics for the Markov chains and comparison between Bayesian and 

frequentist estimates in the final model.  

(f) Chapter 6 focuses on the development of BN models and parameter estimation 

for the local distributions. The performances of the BN models are also 

discussed.  

(g) Chapter 7 summarises and concludes the overall findings of this research. This 

chapter also includes the research contribution to knowledge and 

recommendations for future work. 
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