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ABSTRACT

Transmitarray (TA) antennas have attracted much attention in recent years due 
to their number of applications. These include the 5G/6G mobile networks and satellite 
communication systems for the microwave frequency range. The various satellite 
applications require high-gain antennas with polarization agility. Also, the state-of- 
the-art smart communication systems require reconfigurable antennas allowing the 
frequency and beam switching according to the application requirements. In this 
research, three different TA antennas have been studied and designed for X-band 
applications which are high gain and wideband TA antenna, circularly polarized TA 
antenna, frequency and beam reconfigurable TA antenna. For the first design, two 
Frequency-Selective Surface (FSS) unit cells which include Double Square Ring with 
Center Patch (DSR-CP) and Split Ring Resonator (SRR), have been applied to increase 
the antenna gain and bandwidth. The optimized unit cell structure shows that a four- 
layer configuration could provide maximum phase range with low insertion losses. 
The complete DSR-CP TA consisting of 121 elements has produced an impedance 
bandwidth of 33.3% with a peak gain value of 20.4 dBi and 1-dB gain for bandwidth 
of 10%. SRR-based TA achieved the impedance bandwidth of 35% with a peak gain 
value of 21.9 dBi and 11.6% 1-dB gain bandwidth. A circularly polarized TA using a 
Meander Line Polarizer (MLP) superstrate has been studied and presented. The MLP 
unit cell was simulated and optimized at 12 GHz, having 900 phase difference between 
the two orthogonal E-field components, Ex and Ey. The final prototype measurement 
results show that a low axial ratio of 1.89 and 20.17 dBi gain at 11.2 GHz has been 
obtained. Finally, the last part of the research focused on the frequency and beam 
reconfigurable TA antenna. A U-shape superstrate layer has been added to introduce 
frequency selectivity in front of the horn antenna that acts as a bandpass filter. Then, 
by varying the strip length of the U-shape unit cell, the antenna frequency can be 
reconfigured from 8.5 GHz to 11.2 GHz. On the other hand, a new active TA unit cell 
equipped with four switchable strips using Positive Intrinsic Negative (PIN) diodes 
has been employed to achieve beam reconfigurable TA antenna. Thus, the antenna 
beam can be tilted by controlling the PIN diodes ON and OFF switching states. Results 
show that a full-beam switching range of 43.20 has been obtained. In conclusion, this 
research has successfully presented three new TA antenna designs, which are highly 
potential for the X-band applications.
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ABSTRAK

Antena Transmitarray (TA) telah menarik banyak minat sejak beberapa tahun 
kebelakangan ini kerana pelbagai kegunaanya. Ini termasuklah rangkaian mudah alih 
5G/6G dan sistem komunikasi satelit dalam julat frekuensi mikrogelombang. Aplikasi 
satelit memerlukan antena gandaan tinggi disamping kebolehan untuk menukar jenis 
polarisasi. Selain itu, sistem komunikasi pintar yang terkini juga memerlukan antena 
yang boleh dikonfigurasikan semula bagi membolehkan penukaran frekuensi dan 
pensuisan alur mengikut keperluan aplikasi. Di dalam penyelidikan ini, terdapat tiga 
jenis TA antenna yang berlainan telah dikaji dan direkabentuk untuk aplikasi jalur-X 
iaitu antena TA dengan jalur lebar dan gandaan tinggi, antenna TA dengan jenis 
polarisasi bulat dan antena TA yang boleh dikonfigurasi secara frekuensi atau alur. Di 
awal kajian, dua unit sel permukaan memilih frekuensi (FSS), iaitu gelang persegi 
berganda dengan tampalan tengah (DSR-CP) dan penyalun gelang terbelah (SRR) 
telah digunakan bagi meningkatkan gandaan dan lebar jalur antena. Kajian 
menunjukkan reka bentuk unit sel adalah optimum dengan menggunakan empat 
lapisan tatarajah yang dapat menghasilkan julat fasa yang maksimum berserta 
kehilangan sisipan yang rendah. Konfigurasi antena TA berasaskan DSR-CP yang 
lengkap pula mengandungi 121 elemen, telah berjaya menghasilkan galangan lebar 
jalur sebanyak 33.3% dengan nilai gandaan puncak 20.4 dBi dan 10% gandaan lebar 
jalur 1-dB. Manakala, antenna TA berasaskan SRR menunjukkan lebar jalur galangan 
sebanyak 35% dengan nilai gandaan puncak 21.9 dBi, dan 11.6% gandaan lebar jalur 
1-dB telah diperolehi. Seterusnya, antena TA terkutub membulat menggunakan super
strata pengutub garis liku (MLP) telah dikaji dan dibentangkan. MLP unit sel 
disimulasi secara optimum pada 12 GHz supaya mempunyai perbezaan fasa sebanyak 
900 di antara dua komponen ortogen medan elektrik, E x dan Ey. Hasil pengukuran 
prototaip akhir menunjukkan antena dengan nisbah paksian yang rendah sebanyak 
1.89 dan gandaan 20.17 dBi pada 11.2 GHz telah didapati. Kajian terakhir pula 
memfokuskan kepada rekabentuk antena TA lapisan superstrate yang boleh 
dikonfigurasi semula melalui frekuensi dan alur. Unit sel dengan bentuk U telah 
ditambah dihadapan antena hon supaya bertindak sebagai penapis lulus jalur bagi 
membolehkan pemilihan frekuensi. Seterusnya, dengan menggubah panjang jalur 
bentuk U unit sel tersebut, frekuensi antena boleh dikonfigurasi daripada 8.5 GHz 
sehingga 12 GHz. Disamping itu, unit sel antena TA baru yang mengandungi empat 
jalur suis boleh ubah menggunakan positif intrinsik negatif (PIN) diod telah 
digunapakai bagi mengubah alur antena. Dengan itu, alur antena dapat dikonfigurasi 
dengan mengawal keadaan pensuisan buka dan tutup PIN diod tersebut. Keputusan 
kajian menunjukkan julat pensuisan alur penuh sebanyak 43.20 telah berjaya dikawal. 
Sebagai kesimpulan, keseluruhan kajian ini telah berjaya merekabentuk tiga jenis TA 
antena yang baru dan berpontensi untuk digunakan dalam aplikasi jalur-X.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Antennas are essential electronic devices that work on the principle of 

electromagnetics. They have many applications, including wireless communication 

systems, radars, space exploration, broadcasting, and remote sensing. Although 

antennas have more than 100 years of history, new concepts have emerged in antenna 

design techniques. This is due to exploring new frequency bands like Terahertz bands, 

advanced computational capabilities, new materials and advanced fabrication 

facilities.

High gain, wideband, and compact TA antennas can be used in many wireless 

communication systems at microwave frequencies (Luo et al., 2018; Mei et al., 2020). 

This family of antennas requires high gain values greater than 20dB. Low-cost and 

lightweight TA antennas can be used in Ka and Ku-bands for satellite communication 

systems (Li et al., 2020; Naseri, Matos, et al., 2017). TA antennas in 5G mobile 

networks can be used in front haul and backhaul applications at Ka, V and S-band, 

respectively (Diaby et al., 2018).

The research on TA antennas has increased due to lightweight, low profile and 

simple planar fabrication methods (Xu et al., 2017; Yang et al., 2020). The TA 

antennas do not suffer from feed blockage due to highly transmissive layers. Moreover, 

feed losses and complex beamforming networks can be avoided due to spatial feeding 

techniques. TA antennas thus effectively combine the attractive features of microstrip 

arrays and the lens-type antennas (Hsu et al., 2018).

There are three different design configurations used in TA antennas. The most 

commonly used design approach is the “receiver-transmitter” configuration. Due to
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high insertion losses by radiating elements, overall TA bandwidth (Luo et al., 2018) 

and aperture efficiency are reduced (Cai et al., 2018). The inclusion of active devices 

and vias for layer interconnection increase the complexity of TA antennas. The other 

two design types include the FSS and the metamaterial configurations for the TA 

antennas. FSS has been attractive due to its bandpass filtering capability. Including 

FSS in TA designs can produce wider bandwidths (Hsu et al., 2018). Moreover, high 

transmission coefficient magnitudes and a complete 3600 phase range can be achieved 

using multilayer designs. The FSS-based TA antennas can increase antenna efficiency 

due to lower insertion losses (Cai et al., 2018).

1.2 Research Background

High gain, low profile and wideband antennas have been used widely in long- 

range communication systems. The conventional parabolic type antennas are an 

example of an optical approach with large size reflectors and heavyweight (Kalra et 

al., 2018). The second approach for designing high gain antennas uses the antenna 

array theory. Microstrip patch antenna arrays and waveguide slot arrays are examples 

of the second approach. The phased array antennas also use this design approach 

providing high gain and beam reconfigurability(Guan et al., 2018). However, the 

feeding and power division circuit makes these antennas complex. The RA antennas 

are highly directive with planar configuration. However, due to the placement of the 

feed source in the main beam direction, the RA antenna suffers from blockage of the 

main beam due to the feed source (Mohammadi et al., 2018). In recent years, TA 

antennas have gained much attraction. By combining lens and array antenna features, 

TA antennas (X. Zhang et al., 2020) can be designed with high gain and pencil beam 

radiation patterns (Cai et al., 2018). The feed blockage problem can be avoided in TA 

antennas by the source placement behind TA layers (An et al., 2018; Pham et al.,

2020). The spatial feeding technique can reduce insertion losses in feeding and power 

division circuits (Clemente et al., 2013; Feng, Qu, & Yang, 2020).

Circularly polarized TA antennas are required in many applications to increase 

the probability of reception (Veljovic & Skrivervik, 2020). This results in avoiding the 

problem of aligning the transmitting and receiving antennas. Moreover, the frequency
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bands have been congested with the development of several wireless communication 

applications. Depending on the system requirements, the antenna must reconfigure or 

tune the frequency for reliable communication systems (Guo et al., 2018). Meanwhile, 

the necessity of beam reconfigurable antennas has been widespread in applications like 

RADARs, satellite communications and vehicles on the move (Aziz et al., 2020; 

Farzami et al., 2017).

1.3 Problem Statement

The TA unit cell designs suffer from the problem of narrow bandwidth 

(Clemente et al., 2020) and low aperture efficiency (Cai et al., 2018). In addition, the 

FSS TA antennas have the problem of complex unit cell designs (Wu et al., 2019) and 

use many active devices in big-sized arrays (Tuloti et al., 2018). The FSS unit cell 

needs a wider phase range and high transmission coefficient magnitude. The 

techniques can be applied for a wider phase range, such as multilayer configurations 

and multi-resonant structures. However, increasing the number of layers will also 

increase the transmission losses and reduce the antenna gain. Meanwhile, multi

resonant structures can make the unit cell more complex and difficult to fabricate. 

Thus, in this thesis, we proposed a new unit cell design with wider phase range and 

high transmission coefficient to increase the bandwidth and improve the gain while 

having a compact array size.

A few techniques have been presented to convert the polarization from linear 

to circular. These include the reconfigurable polarization source (Tewari et al., 2017b) 

or sequential rotation of elements in complex configurations due to layer 

interconnections (Pham et al., 2020); (Diaby et al., 2018; F. Zhang et al., 2020). 

However, these techniques are complex or require many active devices. Therefore, we 

try to implement an MLP superstrate to convert the linear polarization to circular. This 

technique will provide less complexity, wider bandwidth and more straightforward 

implementation (Nakajima et al., 2018).

The frequency of the TA antenna can be reconfigured by using different 

techniques. The reconfigurable feeding sources use active switching devices like PIN
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diodes, varactors and MEMS (Janisha et al., 2020). However, these techniques show 

narrow bandwidth and complex configuration with many active devices for a complete 

TA antenna. Therefore, we applied the superstrate layer that can be included as a 

spatial bandpass filter in the TA designs to reconfigure the frequency (Wu et al., 2019). 

Such designs have the advantage of low profile, wide bandwidth and can be 

incorporated into existing TA designs (Chatterjee et al., 2018).

Beam switching can be implemented for TA antenna design using the few 

techniques presented. For reconfigurable feeding source-based designs, various 

devices like MEMS switches, ferrites, liquid crystals and pin diodes (Frank et al., 

2019; Vilenskiy et al., 2020) have been used. The phase shifters-based TA designs 

have used the receiver-transmitter configuration (Clemente et al., 2020; Di Palma et 

al., 2017). However, these techniques have drawbacks of large size, complex 

configuration and layer interconnection issues. Therefore, we propose an active FSS- 

based TA design using PIN diodes with compact size, wider bandwidth and wide beam 

tilting range.

1.4 Research Objectives

The research on FSS TA is required for applications requiring compact, 

wideband and high gain antennas. Many applications, including satellite 

communication systems, require circularly polarized high-gain antennas. The 

reconfigurable antenna is essential to suit the long-range communication systems like 

satellites and radar with added features. This research work will focus on the following 

objectives:

(a) To design, fabricate and measure an FSS TA unit cell at X-band with a high

transmission coefficient magnitude and wide phase range.

(b) To design, fabricate and measure linearly polarized, wideband and high gain

FSS TA antennas at X-band using the proposed FSS unit cell designs.

(c) To design, fabricate and measure circularly polarized TA antenna using an

MLP superstrate.
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(d) To design, fabricate and measure frequency and beam reconfigurable TA

antenna by using the FSS superstrate and active unit cell design.

1.5 Scope of the work

This research will focus on designing a wideband and high gain TA antenna at 

12GHz. Different FSS-based unit cells will be analyzed in the CST studio. The 

parametric analysis will optimize the transmission coefficient magnitude and phase. 

The effect of incrementing the number of FSS unit cell layers will also be studied. 

Fabricating unit cell array patches will validate the unit cell simulation results. The 

unit cell prototype will be tested using rectangular to square waveguide transitions. 

Also, the FSS-based TA designs will be analyzed using different unit cell designs. The 

phase distribution table for TA design will be calculated for the three different TA 

designs. Complete TA design will be performed in CST studio. The parametric 

analysis will optimize the focal distance to diameter ratio for maximum gain and 

bandwidth. The fabrications of TA layers will be performed using a low-cost FR4 

substrate. Measurements of the TA antenna will include the return loss measurements 

using a vector network analyzer (VNA), radiation pattern and peak gain measurement 

in the anechoic chamber.

Different types of metasurface used for linear to circular polarization will be 

reviewed and analyzed using simulations. The Meander line unit cell will be simulated 

in the CST studio for the perpendicular incidence of E-field components. The 

circularly polarized TA will be designed using the MLP layer with FSS layers. In 

addition, the parametric analysis by variations in the position of the polarizer 

superstrate will be carried out to obtain a low return loss, wide bandwidth, high gain, 

and low axial ratio. Finally, the polarizer superstrate will be fabricated and tested for 

return loss, radiation pattern, peak gain and axial ratio measurements.

The frequency reconfigurable TA design will be implemented using a dual

band FSS superstrate layer. FSS unit cell will be designed in CST using sequential 

rotations of U-structure. Unit cell simulations will achieve the dual-passband 

properties that can be tuned by changing specific parameter lengths. The superstrate 

array layer will be designed and placed in front of the horn antenna along with FSS
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TA layers. The analysis will validate the frequency shifting results with the complete 

TA design. Different tuning states will be considered to tune the frequency of TA over 

the range of 9GHz to 12GHz. Results will be validated by fabricating dual-band FSS 

superstrate layers for different parameter lengths. The shift in design frequency will 

be confirmed by measurements, including return loss, peak gain and radiation patterns.

Finally, different unit cell designs for the beam reconfigurable TA design will 

be reviewed and analyzed using CST studio to find suitable structures with wide phase- 

shifting capability. Active unit cell design with multiple layers will be designed using 

CST studio. Switching the active devices on transmission coefficient magnitude and 

phase will be observed. Complete TA design using active unit cell array will be 

implemented in CST studio. Simulations will be performed to find the properties of 

active beam reconfigurable TA, including the return loss, peak gain and radiation 

pattern. A passive TA model will be designed for validation by replacing the PIN 

diodes with open and short circuits. The fabrication of passive TA layers for five 

switching states will be carried out. Measurements will be performed to verify the 

simulation results and determine the maximum beam tilting range.

1.6 Significance of research

Modern long-range communication systems require the antenna to have high 

gain and wide bandwidth. FSS TA antennas can achieve high gain and wide 

bandwidth, keeping the profile low. The reception probability increases with circularly 

polarized antennas on both the transmitter and receiver ends. The meander line 

superstrate-based CP TA has a compact design with polarization reconfigurability as 

the original FSS TA layers remain intact in this design. The frequency tuning feature 

introduced in the FSS TA using a superstrate layer can shift the design frequency 

depending on the unit cell strip length. An antenna beam must be switched in some 

applications like satellite on-the-move communication systems. This research will 

result in a new active FSS-based unit cell design with the PIN diodes required for phase 

shifting. The complete active TA design can scan the beam over a wide angular range.
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1.7 Thesis Outline

Chapter 1 briefly introduces long-range communication systems and the 

significance of the TA antennas. The different configurations of TA antennas are 

discussed briefly. The problems faced in high gain antennas for long-range 

applications will be addressed. The objectives are focused on the solution to identified 

research gaps.

Chapter 2 includes the literature review on the TA unit cell, its primary 

structure, the design configurations, linear to circular polarizers, frequency and beam 

reconfigurable TA antennas. TA designs are compared in all sections to find the best 

suitable techniques.

Chapter 3 shows the flow chart of the research project and the different stages 

involved in implementing the research. The TA unit cell design will be presented using 

FSS and a complete TA design. A brief overview of designing the linear to circular 

polarizer unit cell and complete layer is shown. Finally, the frequency and beam tuning 

methods used to reconfigure the TA will be discussed.

Chapter 4 covers the FSS unit cell and complete TA design, transmission 

coefficient magnitude & phase results, complete TA reflection coefficient, radiation 

pattern, and peak gain plot. Wideband and high gain linearly polarized TA antennas 

are designed to investigate the results.

Chapter 5 illustrates the linear to circular polarizer design and results. The 

meander line unit cell and superstrate layer design are described. Finally, the circularly 

polarized TA is designed, and the results are presented.

Chapter 6 shows the frequency and beam reconfigurable TA design. The results 

are shown in the two sections to illustrate the performance and characteristics of the 

proposed designs.
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Chapter 7 concludes the thesis report and presents the research outputs and 

future recommendations.
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