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ABSTRACT 

Levan-type fructooligosaccharide (L-FOS) are oligosaccharides that is in high 

demand in food-based and pharmaceutical industries and it can be produced from the 

levan hydrolysis. Recombinant levanase from Bacillus lehensis G1 (rlevblg1) is an 

enzyme that specifically converts levan to L-FOS. However, the use of free rlevblg1 

presents a lack of stability and reusability, thus hinder the synthesis of L-FOS for 

continuous reactions. A carrier-free immobilization of cross-linked enzyme aggregates 

(CLEAs) were developed to overcome these drawbacks. However, low number of 

lysine residues of rlevblg1 may reduce cross-linking efficiency to form a stable and 

active biocatalyst. This issue can be solved by enzyme co-aggregation using additives. 

Moreover, the formation of CLEAs is also influenced by mass diffusion limitation as 

the degree of molecular cross-linking attained, significantly affects substrate 

accessibility especially at higher substrate concentrations. To address this problem, 

macromolecular cross-linker was used in the formation of CLEAs. In this study, 

formation of cross-linked levanase aggregates (CLLAs) was performed to improve 

stability and reusability of free rlevblg1. An active CLLAs using glutaraldehyde 

(CLLAs-GA), and with bovine serum albumin (CLLAs-GA-BSA) were obtained, and 

the factors affecting the formation of CLLAs were investigated. The highest activity 

recovery of CLLAs-GA (92.8 %; 169.5 U/mg) and CLLAs-GA-BSA (121.2 %; 221.3 

U/mg) was achieved at optimized conditions. The optimum temperature of CLLAs-

GA and CLLAs-GA-BSA increased to 35 °C and 40 °C, respectively, from 30 °C in 

its free rlevblg1. At high temperature (50 °C), the half-life of CLLAs-GA-BSA was 

higher than that of free rlevblg1 and CLLAs-GA. The reusability of CLLAs for 8 

cycles was retained more than 50 % activity. The Vmax value of CLLAs-GA-BSA 

(21.97 U/mg) was increased by 14.3 % from the free rlevblg1 (19.23 U/mg). 

Dialdehyde starch-tapioca (DAST) was successfully developed and used to cross-link 

levanase to form CLLAs-DAST and CLLAs-DAST-BSA which showed activity 

recovery of 65.6 % (119.8 U/mg) and 81.6 % (149.0 U/mg), respectively. After DAST 

cross-linking, the pH and thermal stability increased, and the tolerance in organic 

solvents improved which resulted in an activation of CLLAs. A kinetic study revealed 

that CLLAs-DAST (16.72 mg/mL) and CLLAs-DAST-BSA (16.58 mg/mL) had 

higher affinity (Km) toward levan than that of CLLAs-GA (20.52 mg/mL) and CLLAs-

GA-BSA (18.20 mg/mL). Thus, improving substrate accessibility with higher 

effectiveness factors especially at higher levan concentrations (10-12 mg/mL). The 

highest total L-FOS was achieved by CLLAs-DAST-BSA (78.9 % (w/v)), followed 

by CLLAs-DAST (62.4 %(w/v)), free rlevblg1 (51.2 % (w/v)), CLLAs-GA-BSA (50.1 

% (w/v)) and CLLAs-GA (35.6 % (w/v)), after 3 h reaction. Although CLLAs 

formation using glutaraldehyde has produced an active and stable CLLAs, diffusion 

limitation at higher substrate concentrations reduced the L-FOS synthesis. In 

conclusion, DAST as a cross-linker may have application prospects as a promising and 

green biocatalyst for product formation such as L-FOS. 
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ABSTRAK 

Fruktooligosakarida jenis levan (L-FOS) adalah oligosakarida yang mendapat 

permintaan tinggi dalam industri berasaskan makanan dan farmaseutikal, dan ia boleh 

dihasilkan melalui hidrolisis levan. Levanase rekombinan daripada Bacillus lehensis 

G1 (rlevblg1) adalah enzim yang menukar levan secara khusus kepada L-FOS. Walau 

bagaimanapun, terdapat kekurangan dari segi kestabilan dan kebolehgunaan rlevblg1 

bebas yang menganggu sintesis L-FOS melalui tindak balas yang berterusan. 

Imobilisasi pembawa bebas jenis agregat enzim terpaut silang (CLEAs) telah 

dihasilkan untuk mengatasi kekurangan ini. Walau bagaimanapun, bilangan residu 

lisin rlevblg1 yang rendah boleh mengurangkan kecekapan paut silang untuk 

membentuk biomangkin yang stabil dan aktif. Isu ini boleh diselesaikan dengan 

pengagregatan enzim menggunakan bahan tambah. Selain itu, pembentukan CLEAs 

juga dipengaruhi oleh kekangan pemindahan jisim kerana tahap pautan silang molekul 

yang dicapai akan mempengaruhi akses substrat terutamanya pada kepekatan substrat 

yang tinggi. Bagi menangani masalah ini, pemaut silang makromolekul digunakan 

dalam pembentukan CLEAs. Dalam kajian ini, pembentukan agregat levanase terpaut 

silang (CLLAs) telah dilakukan untuk meningkatkan kestabilan dan kebolehgunaan 

rlevblg1 bebas. CLLAs aktif menggunakan glutaraldehida (CLLAs-GA) dan dengan 

albumin serum bovina (CLLAs-GA-BSA) telah dihasilkan, dan faktor-faktor yang 

mempengaruhi pembentukan CLLAs telah diuji. Perolehan aktiviti tertinggi oleh 

CLLAs-GA (92.8 %; 169.5 U/mg) dan CLLAs-GA-BSA (121.2 %; 221.3 U/mg) telah 

dicapai pada keadaan optimum. Suhu optimum CLLAs-GA dan CLLAs-GA-BSA 

masing-masing meningkat kepada 35 °C dan 40 °C, berbanding 30 °C pada rlevblg1 

bebas. Pada suhu tinggi (50 °C), separuh hayat CLLAs-GA-BSA lebih tinggi 

berbanding separuh hayat rlevblg1 bebas dan CLLAs-GA. Kebolehgunaan semula 

CLLAs untuk 8 kitaran dapat mengekalkan aktiviti lebih daripada 50 %. Nilai Vmax 

CLLAs-GA-BSA (21.97 U/mg) telah meningkat sebanyak 14.3 % daripada rlevblg1 

bebas (19.23 U/mg). Kanji dialdehida ubi kayu (DAST) telah berjaya dihasilkan dan 

digunakan untuk pautan silang levanase bagi membentuk CLLAs-DAST dan CLLAs-

DAST-BSA yang menunjukkan perolehan aktiviti masing-masing sebanyak 65.6 % 

(119.8 U/mg) dan 81.6 % (149.0 U/mg). Selepas pautan silang DAST, kestabilan pH 

dan haba meningkat, dan toleransi dalam larutan organik bertambahbaik yang 

menyebabkan pengaktifan CLLAs. Kajian kinetik mendedahkan bahawa CLLAs-

DAST (16.72 mg/mL) dan CLLAs-DAST-BSA (16.58 mg/mL) mempunyai afiniti 

(Km) yang lebih tinggi terhadap levan berbanding CLLAs-GA (20.52 mg/mL) dan 

CLLAs-GA-BSA (18.20 mg/mL). Oleh itu, meningkatkan kebolehcapaian substrat 

dengan faktor keberkesanan yang tinggi terutamanya pada kepekatan levan yang lebih 

tinggi (10-12 mg/mL). Jumlah L-FOS tertinggi telah dicapai menggunakan CLLAs-

DAST-BSA (78.9 % (w/v)), diikuti oleh CLLAs-DAST (62.4 % (w/v)), rlevblg1 bebas 

(51.2 % (w/v)), CLLAs-GA-BSA (50.1 % (w/v)) dan CLLAs-GA (35.6 % (w/v)), 

selepas 3 jam tindak balas. Walaupun pembentukan CLLAs menggunakan 

glutaraldehida telah menghasilkan CLLAs yang aktif dan stabil, keterbatasan resapan 

pada kepekatan substrat yang lebih tinggi mengurangkan sintesis L-FOS. 

Kesimpulannya, DAST sebagai pemaut silang mungkin mempunyai prospek sebagai 

biomangkin hijau dan menjanjikan pembentukan produk seperti L-FOS. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction  

In recent years, consumers pay considerable attention to their lifestyle. It 

generates increased demand for functional food promoting and improving wellness 

and health. In traditional food practice, a combination with herbal medicines is widely 

used in dietary supplements and as functional foods for health improvement purposes. 

The principal concept is related to the improvement of the circulation system, control 

of ageing and disease prevention (Shi et al., 2010). Prebiotics are short-chain 

carbohydrates that are non-digestible oligosaccharides by the digestive enzyme in 

humans (Quigley et al., 1999). The International Scientific Association for Probiotic 

and Prebiotics (ISAPP) suggested the new prebiotics definition as, ‘a substrate that 

selectively consumed by host microorganisms conferring a health benefit’ (Tomasik 

and Tomasik, 2020). 

Presently, only di-, oligo-, polysaccharides of non-digestible carbohydrates, 

resistant starches, and sugar polyols have prebiotic properties. They found in many 

different sources such as chicory, asparagus, artichoke, bananas, tomatoes, milk, 

starch, lactose and many more (Al-Sheraji et al., 2013). Prebiotics used in the human 

diet, including lactulose, galactooligosaccharides (GOSs), maltooligosaccharides 

(MOSs), xylooligosaccharides (XOSs) and fructooligosaccharide (FOSs). FOSs are 

usually used in food industries due to their nutrition and health-relevant properties. 

FOSs plays a crucial role in the improvement of gut microbiota balance and individual 

health. FOSs have been produced by the hydrolysis of inulin, sucrose, and levan using 

inulinases, sucrase, and levansucrase or levanase, respectively (Roberfroid, 2007; 

Porras-domínguez et al., 2014). Generally, all types of FOSs production can mainly 

be performed by two methods: chemical hydrolysis or enzymatic synthesis. Chemical 

hydrolysis of inulin exhibited high toxicity and lacks specificity, which produced 
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synthetic sugars that may be rejected by the consumer. Thus, in industrial production, 

the β-2,1-linked FOSs has been produced commercially from the enzymatic hydrolysis 

of inulin and transfructosylation of sucrose. Besides that, although β-2,6-linked levan-

type FOSs (L-FOS) are not commercially manufactured, L-FOS have potential 

applications in the food and feed additive, agriculture and pharmaceutical industries 

(Kumar and Dubey, 2019; Martins et al., 2019; Sánchez-Martínez et al., 2020). Levan 

does not exist in plants abundantly. However, it can be produced by enzymatic 

synthesis and microbial fermentation. Microbial levan can biologically produce using 

enzymatic reaction from sucrose by levansucrase (Srikanth et al., 2015). Moreover, 

microbial levan has been produced from microorganisms such as Bacillus atrophaeus, 

Acinetobacter nectaris (González-Garcinuño et al., 2017), Halomonas sp. (Poli et al., 

2009), Zymomonas mobilis (Silbir et al., 2014) and Pseudomonas fluorescens (Jathore 

et al., 2012). L-FOS are new potential prebiotic products with improved functional 

properties and had a higher ability to modulate microbiota for health purposes (Meyer 

et al., 2016). 

Production of β-2,6-linked L-FOS from microbial levan is possible using 

levanase, due to the less availability of levan from plant sources. (Porras-Domínguez 

et al., 2014). Levanases [2,6-β-ᴅ fructan fructohydrolase, EC 3.2.1. 65] are enzymes 

that specifically catalyze the random hydrolysis of (2,6)-β-ᴅ fructofuranosidic linkages 

in levan, a high molecular weight fructose polymer. Levanase catalyzes the enzymatic 

hydrolysis of levan to produce L-FOS with a variable degree of polymerization (DP 1-

10) (Dahech et al., 2013). The specificity of levanase toward levan has been explored 

by Porras-Domínguez et al. (2014), and all types of levan produce a low molecular 

weight of L-FOS and fructose. The production of levanase from various 

microorganisms was studied. The optimum pH and temperature of levanase were in 

the range of pH 6-8 and 30-40 °C, respectively(Srikanth et al., 2015; González-

Garcinuño et al., 2017). Thus, L-FOS production using levanase requires rigorous 

control of fermentation conditions so that they can withstand in a broad pH and 

temperature range, especially for industrial-scale processes.  
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In the present study, recombinant levblg1 (rlevblg1) was used to synthesize 

levan polysaccharide for L-FOS production. Recombinant rlevblg1 was originated 

from mesophilic bacteria. Thus rlevblg1 showed low optimum temperature and a lack 

of thermostability (Fattah, 2018). 

Moreover, the use of soluble enzymes as biocatalyst is not practical for 

extensive scale processes. Immobilization of enzyme is a preferred approach to 

increase enzyme activity, stability and thermostability. Immobilized enzymes have 

several benefits compared to free enzymes, including high enzyme stability, 

volumetric and specific productivities, and improved reusability and selectivity (Cao, 

2005). Several techniques of enzyme immobilization which commonly used are 

adsorption, covalent binding, affinity binding, entrapment, and cross-linking (Datta et 

al., 2013). Enzyme immobilization typically involves the binding of the enzyme to 

support or encapsulates in inert support, offering high operational stability. 

Nevertheless, some weaknesses of carrier-bound enzymes are low product 

formation due to a high amount of carrier and lead to substrate diffusion limitation, 

loss of enzyme activity caused by high enzyme loading on carrier and, expensive 

support materials (Sheldon, 2007; Pervez et al., 2019). On the other hand, carrier-free 

immobilized enzymes offer high productivities and low cost because the support 

material is not required (Sheldon, 2011a). The carrier-free immobilized enzyme, such 

as CLEAs is a versatile and straightforward approach in enzyme immobilization. 

CLEAs were prepared by physically precipitating the enzyme molecules using either 

non-ionic polymer, organic solvent or salts. Then, the enzymes were cross-linked using 

bifunctional cross-linker such as glutaraldehyde (GA) (Zerva et al., 2020). CLEAs 

have several advantages over the other immobilized enzymes, (i) the use of partially 

purified enzymes, (ii) it allows the combination of two or more enzymes during 

immobilization. Moreover, the obtained CLEAs can easily be separated by 

centrifugation (Roessl et al., 2010). In CLEAs technology, both purification and 

immobilization of enzymes are combined into one single operation (R.A. Sheldon, 

2007). Although CLEAs are a versatile method, this technology has some bottlenecks, 

as well. The use of glutaraldehyde led to the conglomeration structure of CLEAs, thus 

caused mass transfer limitation (Valdés et al., 2011). In the case of a low lysine residue 
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on the enzyme surface, the cross-linking step may be problematic (Amaral-Fonseca et 

al., 2018). Also, cross-linking using micromolecular glutaraldehyde may introduce 

substrate accessibility problems, especially for macromolecular substrate (Zhen et al., 

2013b).  

Some improvements are required to tackle the problems faced in CLEAs 

technology when glutaraldehyde is used as a cross-linker. Moreover, a low lysine 

content in some enzymes may reduce cross-linking efficiency (Guimarães et al., 

2018a). Lysine residues containing free primary amino groups help in facilitating 

intermolecular cross-linking between enzymes and cross-linkers (Velasco-Lozano et 

al., 2014). This drawback can be solved by adding polymer containing primary amino 

acids (polyethyleneimine) or protein feeder (BSA) into the enzyme solution as a source 

of protein and amino groups to improve the cross-linking (Li et al., 2018). CLEAs 

preparation can be facilitated by the addition of BSA in the case of low protein 

concentration, or the enzyme activity is susceptible to a high cross-linker concentration 

(Shah et al., 2006; Aytar and Bakir, 2008). A high number of lysine residues on the 

BSA surface allowed glutaraldehyde to bind to its amino acids and avoid 

glutaraldehyde to bind amino acids associated with the enzyme active site (Torres et 

al., 2014). The interaction resulted in a less compact structure of CLEAs as it increased 

the distance between the cross-linker and the amino group of enzymes. Thus, it can 

improve the catalytic activity with less compact CLEAs structures. The addition of 

proteic feeder such as BSA retained the enzyme activity of the obtained CLEAs up to 

100 % of its initial activity (Shah et al., 2006).  

Instead of using glutaraldehyde, macromolecular cross-linker is an alternative 

in CLEAs preparation to overcome the inaccessibility of the macromolecular substrate. 

Some remarkable approaches that using macromolecular cross-linker proposed in the 

literature are polyfunctional polymers like pectin, dextran, chitosan, gum arabic and 

starch polyaldehyde (Rojas et al., 2019: Nadar et al., 2016). For instance, in the cross-

linking process, the amino groups of enzyme molecules are bonded to the bifunctional 

aldehyde group on dialdehyde starch (DAS) via the Schiff base reaction. As the 

molecular length of dialdehyde starch is higher than enzymes, it cannot get access to 

all amino groups of enzymes. Thus it can enlarge the spatial structure of CLEAs and 
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reduced the compactness of CLEAs structure. Moreover, cross-linking using 

macromolecular cross-linker can reduce substrate diffusional problems by enlarging 

the pores of CLEAs (Zhen et al., 2013b) and lower loss of active site and irreversible 

immobilization (Mateo et al., 2004). However, in some cases, lower aldehyde content 

or DAS concentration may lead to incomplete cross-linking, while higher DAS 

concentration may also cause the damage in enzyme active site by excessive aldehyde 

content. The addition of BSA could protect the enzyme active site and enhanced cross-

linking, thus improved the CLEAs activity (Wang et al., 2014). 

Over the last two decades, many enzymes from different groups such as 

hydrolases, oxidoreductases, lyase, transferases and isomerases have been successfully 

used in CLEAs technology (Sheldon, 2019). However, different enzymes have 

different characteristics that required specific procedures during CLEAs preparation 

due to the low specificity of the CLEAs process. In the case of  L-FOS production, it 

has been improved by using an immobilization approach to allow reusability of the 

enzyme in continuous reaction, to get better stability and to reduce operating costs 

(Liese and Hilterhaus, 2013). Previously, invertase has been covalently immobilized 

on glutaraldehyde-activated chitosan particles, displays higher reusability for FOSs 

production and obtained 55.0 % conversion per gram of initial sucrose (Lorenzoni et 

al., 2014). Ganaie et al. (2014) achieved 67.8 % (w/w) and 42.8 % (w/w) of FOSs 

yield by fructosyltransferase-entrapped alginate beads and chitosan beads after 36 h of 

enzyme-substrate reaction, respectively. Also, CLEAs of inulosucrase from 

Lactobacillus reuteri 121 produced a narrower range of inulin-type FOS than soluble 

enzyme, which proved that immobilized enzymes showed more specificity toward 

FOSs synthesis (Charoenwongpaiboon et al., 2019). Previous studies have not focused 

on levanase immobilization via CLEAs or other immobilization methods to improve 

enzyme stability and efficiency. To the best of our knowledge, this study reports the 

first immobilization of levanase to improve enzyme efficiency, stability and 

reusability. 
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In the present study, a systematic investigation and characterization of the 

immobilization of rlevblg1 from Bacillus lehensis G1 via CLEAs method were 

performed to enhance enzyme stability, improve operational stability and enhance 

substrate accessibility. The partially purified rlevblg1 obtained from the expression 

and purification processes was subjected to CLEAs immobilization. 

1.2 Problem Statement 

L-FOS has been recognized as a new prebiotic of FOSs due to its beneficial 

health effects in human gut microbiota. Recombinant levblg1 (rlevblg1) is highly 

specific towards levan for L-FOS synthesis using enzymatic synthesis method. 

However, due to the flexibility structures of the free enzyme, the synthesis process 

does not stand at high temperature, inefficient reusability and low thermal and 

mechanical stability. Their performances, such as low activity and stability, hindered 

the reaction process and increased the production cost. Enzyme immobilization is 

widely applied in enzyme stabilization to increase the operational stability of free 

enzyme. In the past decade, cross-linked enzyme aggregates (CLEAs) technology has 

been explored, which exhibits exceptional operational stability, recoverability and 

volumetric productivities. This carrier-free immobilization involves intermolecular 

cross-linking of enzyme molecules using cross-linker to form a stable and active 

CLEAs. However, the CLEAs formation may have some drawbacks if the enzyme 

contains low number of lysine residues which lead to cross-linking inefficiency. 

Another crucial problem in CLEAs technology is mass transfer limitation that caused 

substrate inaccessibility due to the formation of compact cluster of CLEAs.  

In this study, the preparation of cross-linked levanase aggregates (CLLAs) was 

carried out. Co-aggregation strategy using polymers or proteic feeder were applied to 

improve cross-linking efficiency in the CLLAs formation. Although, CLLAs 

formation using glutaraldehyde provide high activity and effective cross-linking, 

substrate diffusion limitation might have occurred when macromolecular substrate is 

used at high concentration. To solve this challenge, the use of dialdehyde starch 

represents an attractive candidate for cross-linking the enzymes. Dialdehyde starch is 
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a polysaccharide derived by mild oxidation from natural starch. Thus, dialdehyde 

starch-tapioca was developed and was used as a macromolecular cross-linker in 

CLLAs formation. The preparation of CLLAs using macromolecular cross-linker was 

investigated to study the effect on immobilization efficiency and activity recovery. 

Moreover, substrate diffusion analysis was also reported to observe the effectiveness 

of macromolecular cross-linker in CLLAs preparation. However, due to their soft 

particle, enzyme leaching analysis and organic solvent tolerance was also determined 

to justify their stability. Therefore, in this study, the preparation of CLLAs using 

different cross-linkers were investigated to improve the properties of rlevblg1 as a 

potential synthetic catalyst for the synthesis of L-FOS. 

1.3 Objectives of the Study 

The objectives of the research are: 

(a) To develop and characterize cross-linked levanase aggregates (CLLAs) with 

high activity recovery and stability. 

 

(b) To improve, determine and characterize CLLAs development using a 

macromolecular cross-linker for the synthesis of L-FOS. 

1.4 Scope of Study 

The scope of this study covers five main parts: 

(a) Expression and purification of recombinant levanase (rlevblg1) (Chapter 4). 

(b) Preparation of CLLAs formation by manipulating several parameters 

(precipitants, cross-linkers, enzyme concentration, pH, additives) that affecting 

enzyme activity and stability using the one factor at a time (O.F.A.T) approach 

(Chapter 4). 
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(c) Characterization of the physicochemical, kinetic and thermodynamic 

properties of resultant CLLAs using glutaraldehyde as cross-linker (CLLAs-

GA), and with bovine serum albumin (CLLAs-GA-BSA) (Chapter 4). 

(d) Developmental and characterization of dialdehyde starch-tapioca (DAST) used 

as a macromolecular cross-linker by optimizing several factors such as 

periodate and starch concentration, temperature, pH and reaction time (Chapter 

5). 

(e) Screening and characterization of the factors affecting CLLAs formation using 

DAST as cross-linker by optimizing several parameters (DAST concentration, 

crosslinking time, agitation speed and BSA concentration) (Chapter 5).  

1.5 Significance and Novelty of the Research 

Nowadays, enzyme catalyst plays a crucial role in relevant biotechnological 

processes in the food and chemical industries. At the industrial level, enzyme catalysts 

should have outstanding characteristics such as smooth handling and operation 

procedure, high stability, reusability and cost-effective to meet its market demand. In 

the past decades, numerous works have been committed to improve the development 

of enzyme catalysts for various applications. However, many biocatalytic processes 

on an industrial scale unable to perform appropriate due to the enzyme characteristics 

such as low stability, substrate- and product inhibition, limitations of inefficient 

recycling and high production cost. In the case of rlevblg1 as the catalyst for L-FOS 

synthesis, this study represents the first study in demonstrating the immobilization of 

levanase to overcome free enzyme limitation using CLEAs technique. Enzyme 

immobilization via the CLEAs technique is a carrier-free immobilized enzyme that has 

been recognized as a promising technology to obtain robust industrial enzyme 

catalysts.  
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Unfortunately, the bottleneck in CLEAs technology hindered its potential as a 

robust enzyme catalyst, especially when the lysine residue of the enzyme is insufficient 

to complete a proper cross-linking process. In the present study, the addition of proteic 

feeder (BSA) is able to improve the cross-linking step during CLEAs formation, which 

resulted in hyperactivation of CLEAs activity recovery, improved thermal stability and 

produced higher DP of L-FOS. 

On the other hand, the application of dialdehyde starch as a macromolecular 

cross-linker and natural-based polymer in enzyme immobilization of CLEAs 

determined their potential of dialdehyde starch as a safer cross-linker than 

glutaraldehyde. Inadequate research was conducted to study the effect of dialdehyde 

starch as an enzyme cross-linker, especially in CLEAs strategy. The development of 

dialdehyde starch using tapioca starch is characterized, and its potential as enzyme 

cross-linker in CLEAs technology was explored. This study is the first report that 

demonstrates the use of dialdehyde starch-tapioca as a cross-linker in rlevblg1 

immobilization. Also, the first study reported the use of immobilized rlevblg1 in L-

FOS synthesis. In this study, the development of immobilized rlevblg1 using different 

cross-linker in CLLAs formation was investigated to obtain a better idea for the 

immobilization effect on the reaction process and product formation by immobilized 

rlevblg1. 
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