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ABSTRACT 

The recent trend in technological advancements in electronic devices offers 

high-performance compact systems. However, highly concentrated heat flux restricted 

their efficiency and reduced the Mean time before failure (MTBF). Many researchers 

exploit different passive heat transfer techniques like geometry modification to 

alleviate high heat flux. Despite the potential of divergent-convergent minichannel in 

mixing flow and a higher proportion of surface area to volume than conventional 

channels, research on it is inadequate. The study aims to develop and examine the 

influence of combined multi passive heat transfer techniques in an electronic device 

minichannel heatsink towards further augmenting heat transfer with minimal pressure 

loss and thermal resistance. This study combines corrugated geometry with innovative 

high thermal conductive nanofluid as hybrid passive techniques. The experimental 

validation concerning measured and predicted pressure drop and Heat Transfer 

Coefficient data indicated a maximum deviation of 19.1% and 13.8%, respectively. 

The numerical analysis employed a commercial CFD code based on the finite volume 

method. The investigation of forced convective heat transfer and nanofluids’ flow 

achieved with single-phase and two-phase mixture models in a divergent-convergent 

minichannel heatsink (DCMH) having a hydraulic diameter of 1.42mm. The numerical 

investigation employed Al2O3/water and CuO/water nanofluids with 0 - 2.5 volume%, 

fluid velocity from 3 – 6 m/s (corresponding to Reynolds number (5000 – 10000), and 

the inlet temperature 303 K. The two-phase model exhibits better agreement with 

established correlation than the single-phase model. A numerical analysis of an 

enhanced geometry with dimples on the minichannel floor was developed to augment 

the hydrothermal performance. The results found that the effects of principal 

parameters on the chip heat flux demonstrated the heat transfer coefficient’s growth 

with a rise in volume fractions and fluid velocity. Both nanofluids indicated better 

performance enhancement than water. Al2O3/water and CuO/water nanofluids 

augment over water by about 6.44% and 8.33% for 2.5 vol.%. Also, pressure loss rises 

when the velocity increases. The pressure loss relative to water at 2.5 vol.% and 5.5 

m/s yields 15.14% and 18.56 % for Al2O3/water and CuO/water. The highest pumping 

power is 0.057 W for all the cases, which indicates the pumping demand is much lower 

than 1.0 W. The introduction of dimples on DCMH has considerably advanced 

hydrothermal performance with a PEC of 1.214 over the smooth model. The overall 

results established that the combined effects of DCMH and nanofluids have 

significantly improved the heat sink’s hydrothermal performance and can provide the 

desired heat dissipation from the enclosed chips in compact electronic devices.  
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ABSTRAK 

Aliran terkini dalam kemajuan teknologi dalam bidang peranti elektronik 

menawarkan sistem kompak berprestasi tinggi. Walau bagaimanapun, fluks haba yang 

sangat tinggi membataskan kecekapan dan mengurangkan Purata masa sebelum 

kegagalan (MTBF). Ramai penyelidik mengeksploitasi teknik pemindahan haba pasif 

yang berbeza seperti pengubahsuaian geometri untuk mengurangkan fluks haba yang 

tinggi. Terdapat penyelidikan bagi saluran mini bercapah-tumpu dalam pelbagai aliran 

dan nisbah bahagian luas permukaan kepada isipadu yang lebih tinggi daripada saluran 

konvensional, penyelidikan mengenainya masih sedikit. Matlamat penyelidikan 

adalah untuk membangunkan dan mengkaji kesan gabungan teknik pemindahan haba 

berbilang pasif dalam saluran mini sinki haba peranti elektronik ke arah 

penambahbaikan pemindahan haba dengan kehilangan tekanan dan rintangan terma 

yang minimum. Kajian ini menggabungkan geometri beralun dengan cecair nano 

konduktif terma tinggi yang inovatif sebagai teknik pasif hibrid. Pembuktian 

eksperimen mengenai kurangan tekanan diukur serta diramal dan data Pekali 

Pemindahan Haba menunjukkan sisihan maksimum 19.1% dan 13.8%. Analisis 

berangka menggunakan kod CFD komersial berdasarkan kaedah isipadu terhingga. 

Penyiasatan terhadap daya pemindahan haba perolakan dan aliran cecair nano tercapai 

dengan model campuran satu fasa dan dua fasa dalam sinki haba saluran kecil 

penumpuan mencapah (DCMH) yang mempunyai diameter hidraulik 1.42mm. 

Simulasi dijalankan dengan menggunakan cecair nano Al2O3/air dan CuO/air dengan 

isipadu 0 - 2.5 %, halaju bendalir 3-6 m/s (bersamaan dengan nombor Reynolds (5000 

– 10000), dan suhu aliran masuk, 303 K. Dua fasa model menunjukkan keputusan yang 

lebih baik dengan korelasi yang telah ditetapkan berbanding model satu fasa. Analisa 

simulasi bagi geometri yang ditambahbaik dengan lekuk-lekuk pada permukaan 

saluran mini telah dibangunkan untuk menambah prestasi hidroterma. Keputusan 

mendapati bahawa kesan parameter utama pada fluks haba cip menunjukkan 

pertumbuhan pekali pemindahan haba dengan peningkatan pecahan isipadu dan halaju 

bendalir. Kedua-dua cecair nano menunjukkan peningkatan prestasi yang lebih baik 

berbanding air. Cecair nano Al2O3/air dan CuO/air lebih baik berbanding air sebanyak 

kira-kira 6.44% dan 8.33% untuk isipadu 2.5 %. Selain itu, kehilangan tekanan 

meningkat apabila halaju meningkat. Kehilangan tekanan relatif kepada air pada 

isipadu 2.5 % dan 5.5 m/s menghasilkan 15.14% dan 18.56 % bagi Al2O3/air dan 

CuO/air. Kuasa pengepaman tertinggi ialah 0.057 W untuk semua kes, yang 

menunjukkan keperluan pengepaman jauh lebih rendah daripada 1.0 W. Pengenalan 

lekuk-lekuk pada DCMH membawa kepada prestasi hidroterma yang maju dengan 

PEC sebanyak 1.214 berbanding model tanpa lekuk. Keseluruhan keputusan 

menunjukkan bahawa kesan gabungan DCMH dan cecair nano telah meningkatkan 

prestasi hidroterma sinki haba dengan ketara dan boleh memberikan pelesapan haba 

yang diperlukan daripada cip tertutup dalam peranti elektronik padat. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

Research and development (R & D) of systems and devices are witnessing a 

new paradigm because of recent manufacturing technology advancements. The 

innovation results in highly efficient and compact devices and systems. However, high 

heat flux generation, which must be evacuated instantly and promptly to safeguard the 

devices and system from untimely failure, stands as the impediment towards their 

broader applications. Heat transfer and fluid flow are prevalent in thermal engineering 

in energy application and management aspects. The process encompasses diverse 

application areas such as cooling, heating, and mass transfer in power/energy 

generation. Convective heat transfer is among the heat transfer modes, classified as 

either free or forced convection based on the fluid flow type [1]. Convection is a prime 

factor in thermohydraulic applications. Robust engineering design and thermal system 

investigation demand the proper evaluation of thermophysical properties of a working 

fluid by experiment or accurate numerical prediction, in addition to the dynamic design 

of flow passages. The fluid’s thermophysical properties comprise thermodynamic and 

transport properties. The latter include thermal conductivity and viscosity, which 

account for momentum and energy transfer in a system. The former relates to the state 

of equilibrium of a system. It includes properties like temperature, pressure, heat 

capacity and density, among others [2]. 

Rapid technological advances in electronic devices by size reduction or simply 

miniaturisation lead to the development of integrated circuits of ultra-large-scale 

magnitude (ULSIC) as future generation super-performance dense modules, but with 

a consequence of increasing power density and too intense heat flux [3]. The 

miniaturisation and customer ever-changing demands in terms of high-performance 

devices continuously push the boundaries of heat transfer enhancement. Consequently, 
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it hampers the long-term reliability and efficiency and reduces the mean time between 

failure (MTBF) of electronic devices. Thermal management (TM) as a method of 

dissipating excess heat and controlling system temperature [4] requires dynamic, 

efficient, and sustainable approaches through continuous research and development. 

Current developments in semiconductor devices require faster but smaller 

devices. The technology roadmap by iNEMI (International Electronics Manufacturing 

Initiative) projected by the year 2020 that the high-performance microprocessor chips, 

as depicted in Figure 1.1(a), would dissipate peak power and maximum high flux of 

around 360 W and 190 W/cm2, respectively [5]. However, the high power density and 

high operating or junction temperature should not surpass 80–90 °C [6] tend to upset 

this development. Also, Atalla et al. [7] reported that the reliability of electronic 

devices’ temperature and lifespan relate inversely to the device’s components 

temperature.  

Sohel and Castro [5] observed that high junction temperature causes low 

performance and failure to the devices. The electronic device’s failure factor is the 

relative failure frequency ratio at all temperatures to failure rate at 75 °C. Figure 1.1(b) 

illustrates an exponential increase of ft as the device temperature rises [5]. Thus, 

controlling the junction temperature could ensure performance reliability and the long 

life of the device. 

Convective heat transfer refers to transferring heat away from heat-dissipating 

surfaces. The fluid in contact with the high-temperature gradient surface removes heat, 

declining the temperature gradient. Newton’s law of cooling provides a governing 

equation for the heat convection rate as a heat transfer coefficient (h), the material’s 

surface area (As), and the temperature difference (ΔT) amid the pipe/duct wall and the 

fluid. The temperature gradient intensification has an operational limit imposed by 

material properties and manufacturing specifications. On the other hand, the need for 

a compact system, i.e., miniaturisation, restrict surface area expansion.  



 

3 

 

Figure 1.1 (a) iNEMI predictions of maximum rates of heat flux and power of a 

microchip, (b) Failure rate of electronic devices based on temperature [5] 

Accordingly, the heat transfer coefficient can be enhanced using high thermal 

conductivity fluid, the variation of flow regime, and surface area variation. Some 

researchers employ air [8, 9] or liquid cooling [10, 11] to convey heat dissipation from 

space-constrained electronic devices. However, the conventional fluids failed to 

provide adequate rapid high heat dissipation with the highly concentrated heat flux due 

to their low thermal conductivity. Figure 1.2 summarised the different categories of 

convective heat transfer. A forced convection heat transfer in an electronic chip set 

(EC) by internal flow formed the basis of this study. 
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Figure 1.2 Flowchart for convective heat transfer classifications [12] 

The cylindrical pipe is the most employed conduit for fluid transport in the 

industry. Most of the earlier studies used it in their analysis [13-15]. Three distinct 

flow regimes exist for fluid flow in a pipe/channel. These include laminar, transition 

and turbulent regimes. A variation of these regimes occurs at a specific location known 

as a boundary layer. Reynolds number (Re) is the main characteristic dimensionless 

parameter differentiating these regimes. It correlates between forces of inertia and 

viscous in a flowing fluid. For example, the laminar flow has smooth streamlines with 

well-ordered motion. 

In contrast, turbulent flow exhibits velocity fluctuations (eddies) with highly 

random motion. For an internal flow, the highest threshold for a laminar flow is up to 

Re = 2100 because of the dominance of inertial forces over the viscous forces. The 

transition occurs beyond these values. It is an uncertain region since the flow alternates 

between the laminar and turbulent cases. The onset of turbulence appears from Re ≥ 

4000 [16]. 

1.1.1 Flow and heat entrance regions and lengths  

Determination of flow features is crucial for adequately evaluating 

enhancement parameters for flow and heat transmission in micro and minichannels. 
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For example, for fluid entering a channel under constant velocity, the fluid particles in 

the layer attached to the channel surface reach a standstill due to the no-slip condition. 

Besides, it steadily slows down the motion of fluid particles within the adjacent layers 

due to the friction effect. Thus, to mitigate the velocity reduction, the fluid velocity at 

the channel’s midsection must increase to maintain the mass flow rate uniformity 

inside the channel. This leads to the development of the velocity gradient in the 

channel.  

The velocity boundary layer is the flow area where significant viscous shear 

forces and velocity variations. The boundary layer thickness evolved along the flow 

direction. It advanced towards the channel core, where it occupies the whole channel. 

The flow features due to hydrodynamic and thermal entrance effect include 

hydrodynamically and thermally developing, simultaneously developing flow and 

hydrodynamically and thermally fully developed, as depicted in Figure 1.3.  

 

Figure 1.3 Schematic of a pipe with different hydrodynamic and thermal entrance 

conditions [12] 

The hydrodynamic entrance region is the domain from the pipe/channel inlet 

to where the hydrodynamic boundary layer converges to the centreline. The region’s 

length referred to as hydrodynamic entrance length (Lh). Similarly, thermal entrance 

length (Lth) is the length from the channel inlet to the location where the thermal 

boundary layer converges to the centreline [12]. Hydrodynamically developing flow 

occurs at the entrance due to the velocity profile development there. The profiles of 

velocity and temperature are growing in the simultaneous developing flow. The HTC 

and friction factor changes along the flow path. The hydrodynamically and thermally 
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fully developed zone begins after the entrance zone, where the velocity and 

temperature profiles are constant and fully developed. The least HTC and friction 

coefficient values are obtained in this region and remain uniform along the channel 

length. The laminar regime exhibits a parabolic velocity profile in the fully developed 

area. It is slightly flat in turbulent regimes due to radially intense mixing and eddy 

movement [16]. 

However, hot fluid resides typically on the channel’s wall in a pipe and straight 

channel. Low-temperature liquid occupies the channel’s centre because of the steady 

thermal boundary layer growth. These situations lead to deplorable heat transfer [3]. 

Later, researchers developed other geometries to overcome this geometrical deficiency 

and are related to circular shape by the hydraulic diameter for ease of comparison.  

Tuckerman and Pease [17] in 1981 initiated the application of forced liquid 

cooling on a planar Very-large-scale circuit (VLSI) in the silicon microchannel heat 

sink with thermal flux as far as 790 W/cm2 to achieve high performance. They 

observed that a silicon temperature intensifies by 71℃ over the inlet water 

temperature. However, they noticed that the coefficient of heat transfer (HTC) amid 

the silicon layer and the water hinders the low thermal resistance achievement. 

Therefore, researchers employed various heat transfer enhancement techniques 

towards efficient high heat flux removal to overcome high thermal resistance and 

pressure drop.  

1.1.2 Techniques for heat transfer augmentation 

Heat transfer enhancement classification consists of either active or passive 

techniques. However, a simultaneous application within either of the categories leads 

to combined techniques [18]. An active approach achieved heat transfer enhancement 

by applying external power sources like magnetic/electric fields, mechanical aids, 

surface vibrations, among others. Conversely, a passive technique operates without 

external power sources [19]. For instance, geometrical variations such as surface 

roughening and additives in fluids. In their critical review paper, Steinke and Kandlikar 



 

7 

[20] recommended testing heat transfer performance and a decline in pressure through 

experimental and numerical approaches. Figure 1.4 highlights some passive heat 

transmission techniques applied in micro/minichannel analysis. 

 

Figure 1.4  Passive heat transfer enhancement techniques [18] 

A nanofluid is a dispersion of nanoparticles (NPs), usually in sizes of 10 – 102 

nm in a host fluid. It can advance the heat transfer rate considerably because of a higher 

surface area - volume proportion than a base fluid [21-23]. Consequently, it enhanced 

the heat transfer coefficient (HTC) by convection. However, with a setback on pressure 

loss, which subsequently requires more pumping power for the fluid flow. The 

agglomeration of particles from the nanoscale to the macroscale impedes a nanofluid 

application. It may block and erode the minichannel surface [24]. Also, improper 

determination of nanofluid thermophysical properties may not give the desired high 

performing thermal conductive liquid. 

Evolution and progress in nanofluid utilisation abound in literature, as 

highlighted in notable comprehensive reviews [25-28]. Also, the medium of its 

transportation is receiving attention from researchers. Micro (MiC) and minichannels 

(MC) are the preferred passages for nanofluids transportation. Other advantages of 

micro/mini channels include less consumption of materials during fabrication, less 

inventory of working fluid since minimum quantity can satisfy the cooling requirement 
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and a higher proportion of surface area to fluid volume. On the other hand, Sujith et 

al. [29] found a heat transfer rate increment in minichannels because of higher surface 

area to volume proportion and nonappearance of stratified flow. Nevertheless, with a 

disadvantage of increments in pressure drop, channel’s fouling and flow instability.  

Analysis of thermal systems may involve either experimental or numerical 

approaches. Though experimental investigation remains the veritable approach, being 

cost-intensive impedes its broader application for a detailed study [30]. On the other 

hand, numerical analysis of thermal and hydraulic processes is essential for 

fundamental and feasible research. Thus, fluid properties and channel geometry 

modifications lead to an effective passive heat transfer improvement technique.  

Microchannel offers higher heat transfer augmentation than minichannel. 

However, its smaller hydraulic diameter leads to high pumping power and pressure 

drop, as well as cost-intensive and more sophisticated manufacturing techniques than 

minichannel [31]. Thus, minichannel still receive interest for utilisation in heat sinks, 

as well as in semiconductor devices. Moreover, experimental works exhibited 

divergence in heat transfer improvement between micro and mini channels, 

necessitating further research in the area [7]. 

Micro and minichannel heatsinks are applicable in single-phase and multiphase 

(e.g. two-phase) conditions. The heatsink achieved high heat transfer enhancement in 

both situations due to the favourable small hydraulic diameter. Some studies compared 

different models for heat transfer enhancement. The two-phase numerical model gave 

better enhancement than single-phase results at all Reynolds numbers when aqueous 

TiO2 nanofluid was analysed for hydrothermal analysis [32]. Saeed and Kim [33] 

corroborated this finding when they employed Al2O3-H2O. However, Albojamal and 

Vafai [34] proposed a Single-phase. They compared it with two multiphase models: 

the discrete phase model (DPM) and the mixture model (MM). The DPM overrated 

the heat transfer coefficient values. Accordingly, the MM demonstrated an improbable 

rise in HTC at a large volume fraction. The single-phase approach proposed has an 

excellent correlation with the experimental values. The anomaly in reporting similar 

research with contradicting results suggested further research in the area. 
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The primary motive of the new heatsink design is to sustain within the 

allowable limit the junction temperature of a high-performance compact electronic 

device due to excessive heat flux. It requires minimal pumping power of the coolant 

and low substrate thermal resistance. However, the combined passive corrugated 

minichannel heatsink with highly conductive nanofluid can provide adequate liquid 

cooling in an electronic system, with a penalty on pressure loss. 

1.2 Problems Statement 

Nowadays, there is an increasing demand for high-performance electronic 

devices, laser equipment, high beam solar panels, etc. The consequence is high heat 

flux, which is worsened by the space constraint in the devices on the coolants’ cooling 

mechanism and poor thermal performance. Nava-Arriaga [35] noticed the thermal 

cooling challenges faced by the electronic chip (EC), and they developed thermal 

solutions using multiple minichannel distributors. However, the substantial pressure 

differential reduced the efficiency of the novel method.    

Some researchers observed that a minichannel hydraulic diameter reduction 

and nanofluid application could enhance the heat transfer coefficient. The synergetic 

ability of nanoparticles could significantly influence the heat transfer capability of 

traditional fluids like water and glycols. While some researchers observed 

enhancement due to nanoparticles thermal conductivity, others reported higher 

enhancement in low thermal conductivity nanoparticles over those with higher thermal 

conductance values [36]. Also, researchers found the heat transfer coefficient 

augmentation in nanofluid decline below that of water at a high nanoparticles volume 

fraction; for instance, in the study of Pak and Cho [37], nanofluid HTC reduced by 

twelve per cent at 3.0 % Al2O3 concentration relative to water. These contradictions 

sometimes may be linked to heat transfer mechanisms and geometry changes. 

A sketchy detail in modelling nanofluids in the turbulent region based on two-

phase analysis leads to inadequate hydrothermal performance evaluation. Most 

previous studies preferred single-phase for hydrothermal performance (HP) numerical 
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analysis [38] due to its simplicity and less demand for computational resources. The 

model assumed a nanofluid as a homogenous mixture and ignored the slip mechanism. 

Conversely, a two-phase model regarded the individual components separately with a 

slip mechanism and involved other particle-particle and particle-liquid interactions. 

Thus, the model may provide better performance with good accords with the 

experimental result. 

The challenges of developing a transport medium at the micro and mini-scale 

level without severe penalties on pressure loss and thermal resistance reduce the 

applicability of thermal systems’ methods. However, nanofluid may be an adequate 

coolant, a rise in viscosity in nanofluid results in a drastic pressure drop. Moreover, it 

may deteriorate thermal advancement and increase thermal resistance in small 

hydraulic diameter channels like minichannel. Thus, a combination of a minichannel 

having a geometrically modified surface like dimples with high thermal conductive 

nanofluid may offer a passive system with minimal thermal resistance at moderate 

pumping power. 

1.3 Research Objectives 

The research involved numerical Computational Fluid Dynamics (CFD) and 

experimental tests on the convection heat transfer and fluid flow augmentation. The 

aim is to develop and examine the influence of combined multi passive heat transfer 

techniques in a minichannel heatsink towards further augmenting heat transfer with 

minimal pressure loss and thermal resistance.  

The objectives of this research are enumerated as follows: 

1. To investigate the synergetic ability of nanofluid thermophysical properties on 

the hydrothermal performance of an electronic device minichannel heatsink. 

2. To evaluate the hydrothermal performance of aqueous nanofluids using a two-

phase numerical model in a minichannel heatsink. 



 

11 

3. To numerically examine the effect of dimples on diverging-converging 

minichannel as surface roughness passive method for advanced thermal system 

application. 

1.4 Scope of the research 

The research study deals with thermal system management in electronic 

devices using a divergent-convergent minichannel heatsink. The research involves 

domains of numerical analysis and experimental validation and defines the following 

scope to achieve the set objectives: 

1. The nanofluids used in this study are composed of nanoparticles (constant 

average particle size (APS) between 20- 40nm) of Aluminium-oxide (Al2O3) 

and Copper-oxide (CuO) with distilled water (H2O) as a carrier fluid. The size 

and morphology are considered based on the supplier specification (Skyspring 

Nanomaterials Inc. USA). The thermophysical properties of the fluids are 

temperature-dependent. The nanofluids preparation used a Two-step method 

with the particles volume fraction of 0.00-0.025. 

2. The two-phase numerical analysis applied the Mixture model in the Eulerian-

Eulerian method. The modelling parameters include uniform inlet velocity of 

3 to 6 m/s corresponding to Reynolds number (Re) range of 5000-10000. The 

operating temperature, 25℃ to 30℃, typically corresponds to Malaysia’s 

ambient temperatures and the heat flux between 500 to 850 kW/m2. 

3. The developed heatsink with corrugated channel features has seven parallel 

minichannels with a dimension of 30 x 1.0 x 1.25 mm cut on the Aluminium 

block of 30 x 21 x 2.25 mm. The surface modification technique involves 

spherical dimples etched laterally on the minichannel floor. The characteristics 

of the dimples are diameter (¼Wc ≤ d (mm) ≤ 1Wc) and spanwise length (Lc/12 

≤ d (mm) ≤ Lc/6). 
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1.5 Significance of the research 

Moore’s law is the scientific finding that electronic devices' component density 

and integrated circuit efficiency can double every two years. [39]. The law relies on 

observation and projection of diachronic trends rather than established Physics law 

[40]. The contemporary design is aimed at smaller and faster components. However, 

the consequences are large power densities, large operating temperatures, and a high 

tendency to fail. Thus, efficient heat flux removal is necessary to safeguard the devices. 

The research developed and tested heatsink in minichannel scale having a divergent-

convergent geometry. It can boost nanofluid flow mixing and disturb the boundary 

layer, eventually increasing the heat transfer coefficient.  The minichannel efficiently 

remove high heat flux up to 85 W/cm² and within a turbulent continuum with fair 

pressure loss and low thermal resistance. Thermal conductivity and viscosity are not 

always the determinants of the thermohydraulic performance of nanofluids. Density 

sometimes may play a vital role even for a nanofluid with a lower thermal conductivity 

value. The nanofluid prediction is better in two-phase than the single-phase due to slip-

mechanism. The study found that nanofluids may perform differently in the two 

approaches depending on their thermophysical properties and other physical 

considerations like slip mechanisms. The researcher noted that CuO /water performed 

better in single-phase. However, it is inferior to Al2O3/water in the two-phase method. 

This innovative design ensures that devices operate efficiently and use energy 

sustainably to meet the global desire, as highlighted in  Sustainable Development Goal 

(SDG) number 7. The study provides an insight on the optimum design of Divergent-

Convergent Minichannel Heatsink-d considering dimple diameter and pitch as 

determinant variables on integrated hybrid Divergent-Convergent minichannel 

heatsink with nanofluids for hydrothermal performance. Thus, the methodology 

employed and the result obtained in this study would advance knowledge and proffer 

cost-effective and efficient thermal management solutions in modern electronic 

devices.  
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1.6 Chapter summary and thesis outline. 

This chapter identified the contemporary challenges affecting thermal 

management of systems due to downscaling modern electronic devices and introduces 

the techniques applied by the thermal Scientist and Engineers to overcome such 

challenges generally and specifically to the minichannel heatsink. It highlighted the 

objectives to solve the problems within the research scope and the research outcome 

contribution to the thermal science and engineering analysis.  

The thesis is composed of five chapters with four appendices. In addition to 

this chapter, the other chapters summarise as follows:  

Chapter two - Literature review contains a comprehensive review of relevant 

previous literature and is subdivided into sections for easy understanding. It begins 

with the convective heat transfer studies, then the application of nanofluids as thermal 

fluid. Besides, it presents heat transfer enhancement techniques used by the 

investigators. Also, the chapter presents methods of heat transfer analysis involving 

both the experimental and numerical approaches. Finally, it rounds up with the 

research gap observed from the review to serve as the basis for conducting this 

research. 

Chapter three - Research methodology: This chapter presented the methods 

used to achieve the research’s desired objectives. The chapter described the 

experimental data measurement methods by appropriate instrumentation and facilities 

for the forced convection heat transfer and fluid flow in the DCMH. Also, it includes 

characterisation of nanoparticles using an analytical state-of-the-art analytical 

instrument, then nanofluids preparation and measurement of their thermophysical 

properties. Moreover, It contained a concise overview of the Computational Fluid 

Dynamic (CFD) approach and the numerical modelling of Divergent-Convergent 

Minichannel Heatsink. 

Chapter four - Results and discussion: this chapter is subdivided into two 

sections. The first section presented the experimental results to validate the numerical 



 

14 

results with pure water. Then modelled and measured thermophysical properties of 

water-based Aluminium-oxide and Copper-oxide nanofluids. The second section 

presents the numerical works for nanofluids for the two geometrical models of the 

Divergent-convergent minichannel heatsink  

Chapter five – Conclusion and recommendations for future works:  this section 

concisely concluded the entire research outcomes. It highlighted the specific 

achievements and novelty of the research. Moreover, it proffered recommendations 

for future work based on practical limitations and scopes.
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