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ABSTRACT 

Multilevel Inverters (MLIs) are vital components for medium voltage and 

high-power applications.  However, the number of components will increase with 

increased output voltage levels.  It leads to high power losses.  In this thesis, a new 

single-phase asymmetrical multilevel inverter topology used for medium and high 

voltage applications is proposed. The topology is capable of producing n-level output 

voltage with reduced device counts. It is achieved by arranging available switches and 

direct current (dc)-sources to obtain the maximum combinations of addition and 

subtraction of the input dc-sources. A comprehensive literature review has been carried 

out, and the proposed topology is compared with the topologies available in the 

literature. Comparison based on the number of switches utilized, the number of dc 

sources used, and the total number of devices is made. To verify the viability of the 

proposed topology, circuit models for 9-level, 25-level, and 67-level inverters are 

developed and simulated in Matlab-Simulink software first. Voltage and current 

waveforms and THD for resistive and inductive loads are obtained from the simulation 

model and validated with the experimental setup. Experimental results of the proposed 

inverter prototype for 9-level and 25-level output, developed in the laboratory, are 

presented. A low-frequency and high-frequency switching strategy for the proposed 

inverter topology are also presented in this work. Thermal modelling of the proposed 

topology is done in PLECS software, and detailed loss analysis for 9-level as well as 

25-level topologies is carried out. The fundamental topology utilizes 9 switches with 

a total standing voltage (TSV) of 6.75 per unit while the 25-level topology structure 

has 12 switches with the TSV of 6.92 per unit only. Comparison with the other 

multilevel topologies shows that the proposed circuit requires fewer power switches 

and dc-sources to produce the same output levels. Due to the low switching frequency 

requirement, the proposed topology is applicable for high and medium voltage 

applications, resulting in lower switching losses. 
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ABSTRAK 

Penyongsang berbilang aras (MLI) ialah komponen penting untuk aplikasi 

voltan sederhana dan berkuasa tinggi.  Walau bagaimanapun, bilangan komponen akan 

meningkat dengan peningkatan tahap voltan keluaran. Ia akan menyebabkan 

kehilangan kuasa yang tinggi.  Di dalam tesis ini, topologi penyongsang tidak simetri 

berbilang aras fasa tunggal untuk aplikasi voltan sederhana dan tinggi dicadangkan. 

Topologi ini berupaya menghasilkan n-aras voltan keluaran dengan penggunaan 

bilangan komponen yang rendah. Keupayaan ini dicapai dengan menyusun semua suis 

dan sumber kuasa arus terus (dc) yang ada untuk mendapatkan kombinasi maksimum 

penambahan dan penolakan sumber kuasa dc. Kajian literasi secara menyeluruh telah 

dijalankan dan topologi yang dicadangkan telah dibandingkan dengan topologi yang 

sedia. Perbandingan dijalankan dengan melihat bilangan suis, bilangan sumber arus 

terus dan jumlah keseluruhan komponen yang digunakan. Bagi mengesahkan daya 

maju topologi yang dicadangkan, model litar untuk penyongsang 9-aras, 25-aras dan 

67-aras telah dibangunkan dan disimulasi menggunakan perisian Matlab-Simulink 

terlebih dahulu. Bentuk gelombang voltan dan arus bersama analisa jumlah herotan 

harmonik untuk beban perintang dan peraruh yang didapatkan daripada hasil simulasi 

akan disahkan dengan hasil eksperimen. Keputusan eksperimen penyongsang 9-aras 

dan 25-aras keluaran, yang prototaipnya di bina di dalam makmal akan dibentangkan 

dalam tesis ini. Strategi pensuisan berfrekuensi rendah dan frekuensi tinggi untuk 

penyongsang yang dicadangkan juga dibentangkan di dalam kerja ini. Model terma 

topologi yang dicadangkan ini dihasilkan menggunakan perisian PELCS dan analysis 

terperinci berkenaan kehilangan kuasa untuk penyongsang 9-aras dan 25-aras telah 

dijalankan. Topologi asas yang mempunyai sembilan suis didapati mempunyai jumlah 

voltan pegun (TSV) sebanyak 6.75 per unit manakala struktur topologi 25-aras yang 

mempuyai 12 suis sebanyak TSV 6.92 per unit sahaja. Perbandingan di antara topologi 

penyongsang yang sedia ada menunjukkan bahawa penyongsang yang dicadangkan 

memerlukan bilangan suis kuasa dan sumber dc yang sedikit tetapi dapat menjana 

keluaran aras yang sama. Disebabkan keperluan frekuensi pensuisan yang rendah, 

topologi yang dicadangkan adalah terpakai untuk aplikasi voltan tinggi dan sederhana, 

menyebabkan kehilangan pensuisan yang lebih rendah. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background and Motivation 

With the ever-increasing population, the demand for power consumption 

increases day by day. The oil crisis of the 1970s was an eye-opening experience for 

the research community. It made them realize that non-renewable or conventional 

resources were depleting. That motivated the industries and scientists to move towards 

renewable resources and explore their possibilities. Renewable energy sources provide 

unregulated electricity that may not be compatible with industrial and household 

appliances, necessitating power converters. Other low and medium-voltage 

applications require power electronics converters for renewable energy-based 

resources due to their enhanced power quality and improved efficiency. Highly 

efficient converters are required in electric vehicles (EVs) to regulate the drive's power 

flow and control. Moreover, a flexible ac transmission system (FACTS) requires 

multilevel converters to regulate and control the power flow. Thus, given all this wide 

range of applications, multilevel converters need to be studied, and their issues need 

to be explored. Photovoltaics, batteries, and fuel cells are sources that provide dc 

electricity. Such sources require an inverter to convert generated dc power into ac. 

As the name suggests, inverter refers to the process of power inversion. In this 

case, the power inversion is from dc to ac. The concept of power inversion in an 

inverter can be broadly divided into two-level primitive inverters and multilevel 

inverters. The primitive two-level inverters produced only two levels +Vin and -Vin, 

where Vin is the input dc voltage. [1]. They were also of two types; the simplest was 

where the output voltage continuously switched between the positive and negative 

input voltage with switching frequency. They were referred to as bipolar inverters as 

the output continuously fluctuated between both the polarities. The second type of the 

two-level inverters was referred to as unipolar. During half of the fundamental 
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frequency, the output voltage fluctuated between 0 and Vin while fluctuating between 

0 and -Vin during the second half. If a delay is provided at the 0 levels, then the unipolar 

inverter turns into three-level inverters with the output +Vin, 0, and -Vin levels. This 

type is termed a quasi-square wave inverter. The increase in one level significantly 

reduces the THD in the output voltage waveform. Despite their simple and easy 

operation, two-level inverters suffer from several disadvantages: high total harmonics 

distortion (THD) content in the output voltage waveform, electromagnetic interference 

(EMI), high stress on the semiconductor devices, high power losses, and as a result, 

lower efficiency. Due to these disadvantages, the researcher starts focusing on 

developing multilevel inverters. 

Multilevel inverters combine semiconductor devices/switches sequentially 

switched on and off in a predefined manner to give a staircase voltage waveform at the 

output [2]. Stepped waveform help reduce the voltage stress on the switches involved. 

The dv/dt ratio is also reduced, and the EMI will be reduced. The power quality 

increases as the stepped waveform are similar to the sinusoidal waveform, thus 

lowering harmonic content. The losses are reduced due to lower stress, and thus 

efficiency is improved [3]. The first attempt to generate more than one level was made 

in 1975 when the authors introduced a dead time at zero levels in the H-Bridge inverter 

to produce three-level output (quasi-square wave) [1]. After that, there were three 

topologies proposed in the beginning. They were neutral point clamped (NPC-MLI), 

flying capacitor (FC-MLI), and cascaded H-Bridge (CHB-MLI). These were termed 

conventional MLIs [4]. The recent increase in the demand for semiconductor devices 

has led to their fast development progression. This development has made it possible 

and feasible to use semiconductor devices for medium and high voltage and high-

power applications [5, 6]. This has led to many multilevel inverter topologies suitable 

for medium and high voltage, high power applications [7, 8]. 

An NPC-MLI comprises two traditional two-level voltage source converters 

(VSCs) stacked one over the other with some minor modifications. For the NPC-MLI, 

only two switches are conducted to avoid the short through. The NPC-MLI is extended 

to a high power rating and more output voltage levels by adding additional power 

switches and clamping diodes [7]. The NPC-MLI's main advantage is that it utilizes a 
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single dc source. Still, the complexity increased due to the involvement of capacitors. 

Moreover, it requires a large number of passive components where the diodes are of 

different ratings. The FC-MLI topology is somewhat similar to the NPC-MLI. The 

main difference is that the clamping diodes are replaced by the flying capacitors [9]. 

In this topology, the load is not directly connected to the neutral point of the converter 

to generate zero levels. Instead, the zero levels are obtained by connecting the load to 

the positive or negative bar through the flying capacitors with opposite polarity 

concerning dc-link. The capacitor is floating instead hence, the name flying capacitor. 

The concept of FC-MLI can be extended to the desired number of levels. Utilizing a 

single dc source is still the main advantage for FC-MLI. Another positive aspect of 

this topology is the availability of redundant states. The problem in FC-MLI will be 

visible when used for 5-level MLI and higher. The charge of the capacitors is not easy 

to balance for a high-level MLI. 

Based on the magnitude of the dc-sources/dc-links in the topology, MLIs can 

be classified into symmetric topologies or asymmetric topologies. They are termed 

symmetric topologies when all the dc-sources/dc-links are equal in magnitude. If the 

magnitude of the sources is unequal, it is termed asymmetric topologies. Symmetric 

topologies offer simplicity in control with low voltage stress on switches. However, 

asymmetric topologies can offer higher output voltage level generation than symmetric 

topologies for the same number of device counts. The magnitude of the dc-sources/dc-

link is essential in determining the number of levels generated and the maximum 

voltage stress to endure by the switches. 

The main problem to address in the topology design is to keep track of its 

feasibility in terms of device count, volume size, and circuit complexity. The 

asymmetrical topologies are mostly designed with this view. The earliest work for 

asymmetrical inverters can be traced back to Manjrekar et al. [10, 11]. In their work, 

the authors proposed a new binary method of choosing the magnitude of dc-sources 

for cascaded H-bridge topology. The output level dramatically increased with the same 

number of components compared to the symmetrical counterpart. The author in [12] 

proposed a novel topology to produce stepped output; it employs a principal dc source 

bus. The rest of the dc buses were capacitor banks.  The converter control algorithm 



 

4 

stabilized the voltage across capacitors. This topology offered a reduction in devices, 

but it required a complex algorithm for voltage balancing. 

In reference [13], the author proposes a novel topology that employs a single 

dc source and three capacitors to produce a seven-level output. The topology is suitable 

for solar photovoltaic-grid applications. Nonetheless, the topology suffers from a high 

total component count. Babei in [14] proposes a capacitor-based asymmetric MLI 

topology. The topology has better THD performance and employs fewer components, 

increasing the output level considerably. However, it suffers from the voltage 

balancing issue for the capacitors. The topology requires special attention for capacitor 

balancing, increasing the complexity of the control algorithm. Gautam et al. in [15] 

proposed another hybrid topology that employed two dc-sources with capacitors. The 

number of capacitors depends on the output level required. The topology offers 

fundamental switching and equal power-sharing among the cells but requires different 

power rating switches. However, the capacitors are not self-balancing, making the 

control algorithm too complex for development. Jain et al. in [16] present a topology 

specifically for solar photovoltaic-based applications. The topology utilizes an equal 

number of dc-sources and capacitors. The topology offers reduced conduction losses 

as the number of switches in the conduction path is reduced and has a lower common-

mode current, making it highly suitable for solar photovoltaic applications. 

The symmetric topologies require more components to generate more voltage 

levels. It results in low efficiency, increased size, and low reliability. However, 

asymmetric topologies solve this issue. It maintains the number of switches but can 

increase the output voltage level by unequal dc-sources. The problem that asymmetric 

topologies might face is increased control complexity if the capacitors as dc links are 

involved. Not every capacitor can be self-balancing; some of the capacitors may 

require an extra algorithm for charge balancing. Thus, the issue in asymmetrical 

topologies is designing the topology without capacitor involvement and reduced 

device count. This thesis has proposed asymmetrical topologies that do not require any 

capacitor in their operation, thus reducing the control complexity. Moreover, the 

proposed work requires a lower device count in comparison with the other 

asymmetrical topologies. 
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1.2 Features and Applications of MLI 

The previous section discussed the fundamental of MLIs, the main three 

conventional MLI topologies, and some significant recent topologies. From that 

discussion, many shortcomings of the conventional MLI came into the picture, which 

led to the development of various other recent topologies for MLI. One of the major 

disadvantages of the conventional MLI is the high device count. The higher the device 

count, the lesser will be efficiency. Moreover, a higher device count means increased 

cost and less compact operation. In addition, for FC-MLI, the involvement of a flying 

capacitor leads to the addition in the control complexity as the capacitor requires extra 

attention for charge control and voltage balancing. The problem is inherent in high-

level MLI. Thus, keeping in sight these problems, many different topologies of MLI 

have been proposed. Major features of the newly developed MLI topologies will be at 

least to have these: 

Reduction in Device Count: As discussed above, conventional topologies 

require higher semiconductors and active and passive devices. This leads to higher 

costs and less feasibility. Moreover, higher semiconductor devices mean higher losses 

and less efficiency. Modern topologies require a lower number of devices and thus are 

more feasible and efficient. Lower device count also means compact nature [17]. 

Reduction in Control Complexity: Conventional topologies, especially FC-

MLI, operate on the flying capacitor. The voltage balance issue of the capacitor 

involved can persist if not appropriately addressed and causes control complexity. 

Modern topologies focus on lesser use of capacitors. If the capacitors are utilized, they 

are used in such a manner to get them self-balancing, thus, reducing the control 

complexity [18]. 

Improved Efficiency: Conventional topologies have considerably lower 

efficiency because of higher device count. Modern topologies offer higher efficiency 

as they lower the device count [19]. 
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Compact Structure: Modern topologies are compact and less bulky. 

Meanwhile, conventional topologies require larger space because of the high device 

count [20]. 

Improved Feasibility: Modern topologies have higher feasibility as compared 

to conventional ones. This is because modern topologies have reduced components, 

thus having lower losses and higher efficiency [21]. 

Low Electromagnetic Interference (EMI): Electromagnetic Interference 

(EMI) causes losses in the converter and causes problems with the various 

communication lines. The high dv/dt ratio causes this. As the number of levels/steps 

increases in the output waveform, the dv/dt ratio decreases. Thus, the EMI is also 

reduced. 

Low Total Harmonic Distortion (THD): Higher the steps in the output 

waveform, the more closely it will imitate the ideal sinusoidal waveform. Thus, lesser 

would be the harmonic content, and better would be the power quality. IEEE has set 

up various standards for injecting power into the electric grid, which help maintain the 

utility grid's stability. These power quality standards must be strictly followed while 

setting up the converter to grid interfacing. Increasing the number of levels can help 

improve the power quality and meet the IEEE standards. 

1.3 Problem Statement 

Multilevel inverters have become an important aspect of the electrical power 

generation industry. Several shortcomings of the classical two-level inverters, namely 

poor output voltage quality, high switching stress on the semiconductor devices, etc., 

were solved by the MLIs. In MLI research, the ultimate goal is to generate a high-level 

output voltage with minimum components count. Hence, countless MLI topologies 

have been introduced with absurd high output levels for the past few decades. 
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An increased components count, meaning a higher development cost, added 

volume size, increment in control complexity, and reduced efficiency. Moreover, it 

can unnecessarily cause an increased and unequal voltage stress on the power 

semiconductors. The voltage stress on semiconductor devices is also an important 

criterion for determining the topology's feasibility. It helps determine the required 

component rating. The higher the stress to be endured, the higher the rating, and as a 

result, the higher the cost. The stress is measured in terms of total standing voltage 

(TSV). It is the sum of the maximum stress on every switch in its OFF state. A possible 

solution to this problem is asymmetric topologies. Careful selection of the magnitude 

of dc-sources can increase the output levels with the same number of semiconductor 

devices as their symmetrical counterparts. 

Asymmetrical MLIs are capable of generating higher output levels with 

reduced device count thus are given preference over symmetrical topology in many 

applications. To reduce the number of sources in asymmetrical topologies, capacitors 

are often used, requiring appropriate voltage balancing for the proper operation of the 

circuit. Adding capacitors is a plausible option to reduce the number of dc-sources, 

increasing the control complexity. Considering the above discussion, attempts are 

being made to overcome these problems. Many of these are producing unnecessarily 

higher levels utilizing too many components. Although some of the topologies 

significantly address the issues, all of these required a higher number of sources and 

switches than the asymmetrical trinary CHB-MLI. Designing a topology capable of 

producing significantly higher levels utilizing a lower number of component count 

without using capacitors remains a challenge. 

1.4 Research Objectives 

Based on the above discussion and problem mentioned above statement, the 

specific objectives of this research work are listed as follows: 

(a) To develop an efficient asymmetric multilevel inverter topology with reduced 

power semiconductor switches and dc-sources. 
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(b) To propose a dc-source selection algorithm for the proposed topology and 

develop the expressions of different parameters of the extended structure. 

(c) To construct the prototype and validate the performance under different 

loading conditions. 

 

1.5 Organization of Thesis 

This thesis is organized into six chapters. This chapter provided the 

introduction to the multilevel converters and the objective of this thesis. The problem 

statement clearly states that this thesis will handle issues for multilevel converters. The 

remaining chapters are briefly outlined as follows. 

Chapter 2 demonstrates a comprehensive overview of the existing literature. In 

the literature review, the classification of MLI topologies is first presented, and then 

recently, proposed asymmetrical topologies were discussed. Based on different 

parameters, a detailed analysis of different topologies was discussed. 

Chapter 3 will depict the circuit structure of the proposed topology. It will also 

describe the working principle of the topology. Different modes of operation will be 

discussed and shown through a series of figures.  A proposal on the dc-source selection 

algorithm and generalized expressions were also presented. Various topology 

characteristics will be calculated mathematically, and the relevant equations will be 

formed. 

Chapter 4 will then deal with the modelling and simulation of the proposed 

topologies in the Matlab/Simulink environment. The performance of the topology will 

be verified through Matlab modelling. Constant R and RL load will emulate the 

constant load operation, while the sudden change of load in R and RL conditions will 

check the dynamic performance of the proposed converter. Another important thing to 

check is if the proposed topology is susceptible to control algorithm fault. This 
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capability will be checked through modulation index change during the simulation. It 

will check the same parameters for a low switching control strategy for nearest level 

control (NLC). For level-shifted sinusoidal PWM (LS-PWM), high switching 

frequency control strategy. Power losses and efficiency will be evaluated by 

developing a thermal model of the proposed inverter using PLECS software. 

Chapter 5 will deal with the hardware implementation of the proposed 

topology. First, the nine-level topology simulation results will be verified through 

experimental testing, and then the 25-level topology is validated. 

Finally, chapter 6 will conclude the research work and present a critical 

discussion of the results and comparative analysis of the proposed topology, along with 

the recommendation for future work.
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