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ABSTRACT 

 

 

 

 In this research, a new method to solve the Fuzzy Delay Differential 

Equations (FDDEs) with unknown state-delays constrained optimization problem is 

introduced. This method is based on the coupling of second and third orders Runge-

Kutta (RK) method called hybrid RK method. The main goal of this thesis is to 

identify the unknown state-delays using experimental data. RK methods are chosen 

because they are well-established and can be easily modified to overcome the 

discontinuities which occur in Delay Differential Equations (DDEs) especially 

outside uniform nodes with delay step-size.  Numerical results of FDDEs from the 

hybrid RK methods are compared with exact solutions derived from stepwise 

approach using Maple software. The relative errors are calculated for the purpose of 

accuracy checking on these numerical schemes. In this study, a dynamic optimization 

problem in which the state-delays are decision variables is also imposed; with its 

formulated cost function. The gradient of the cost function is computed by solving 

auxiliary FDDEs. By exploiting the results, the state-delay identification problem can 

be solved efficiently and accurately using a gradient-based optimization method. In 

addition, a C program has been developed based on hybrid RK methods for solving 

these problems. Consequently, the results show that the new hybrid scheme is an 

efficient numerical technique in solving all the problems above with acceptable 

errors. 
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ABSTRAK 

 

 

 

 Dalam kajian ini, kaedah baru untuk menyelesaikan Persamaan Terbitan 

Lengah Kabur (FDDE) dengan masalah pengoptimuman berkekangan lengah-

keadaan tidak diketahui telah diperkenalkan. Kaedah ini berdasarkan gandingan 

kaedah Runge-Kutta (RK) peringkat kedua dan ketiga yang dipanggil RK terhibrid. 

Matlamat utama tesis ini adalah mengenal pasti lengah-keadaan tidak diketahui 

dengan menggunakan data ujikaji. Kaedah RK telah dipilih kerana ianya kaedah 

yang mapan dan boleh diubah suai dengan mudah untuk mengatasi ketidakselanjaran 

yang berlaku dalam Persamaan Terbitan Lengah (DDE) terutama di luar nod seragam 

dengan saiz-langkah lengah. Hasil berangka FDDE daripada kaedah RK terhibrid 

telah dibandingkan dengan penyelesaian tepat yang diperoleh daripada pendekatan 

berperingkat menggunakan perisian Maple. Ralat relatif telah dikira dengan tujuan 

memeriksa ketepatan skema berangka ini. Dalam kajian ini, masalah pengoptimuman 

dinamik di mana lengah-keadaan sebagai pembolehubah keputusan juga dikenakan; 

bersama fungsi kos yang dirumuskan. Kecerunan fungsi kos telah dikira dengan 

menyelesaikan FDDE bantuan. Dengan memanfaatkan hasil dapatan, masalah 

pengenalpastian lengah-keadaan dapat diselesaikan secara cekap dan tepat 

menggunakan kaedah pengoptimuman berdasarkan kecerunan. Di samping itu, 

program C telah dibangunkan berdasarkan kaedah RK terhibrid untuk menyelesaikan 

masalah ini. Justeru, hasil menunjukkan skema hibrid baharu ini adalah teknik 

berangka yang berkesan dalam menyelesaikan kesemua masalah di atas dengan ralat 

yang boleh diterima. 
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CHAPTER 1 

	
	

INTRODUCTION 

1.1 Introduction 
 

 
In this chapter, the background of the study will be briefly introduced. Soon 

later, the statement and objectives of the problem will be clearly defined. In addition, 

the scope of the study will be discussed as well as the significance of the study. Last 

but not least, for clarity purpose, the layout of the thesis is briefly outlined. 

 
 

 
 
1.2 Background of Study  
 

 

Optimization and fuzzy set are the powerful tools in the analysis and 

modeling of uncertainty in physical systems and many areas of science. In this study, 

a class of optimal control problems where the state equation is the fuzzy delay 

differential equations (FDDEs) is considering. Ordinary differential equations (ODEs) 

and delay differential equations (DDEs) appear in many different contexts 

throughout the research in sciences and mathematics; while in ODEs the derivatives 

of unknown functions are dependent on the current value of the independent 

variables only, but in DDEs, the derivatives of the unknown functions are dependent 

on the values of the functions at current time and previous time (history). This 

signifies that the solution of DDEs requires the knowledge of the current state and 

also the certain past values/history. Moreover, the theory of fuzzy differential 

equations (FDEs) which is combination of ODEs and fuzzy number but without 

include the time-delay, has been rapidly growing and attracted widespread attention 

too. Coupling of DDEs and fuzzy number as called FDDEs, which play an important 

role in an increasing number of system models in engineering, biology, mechanics, 

economics and a wide range multitude of real-world phenomena, either they are 



2 

linear or non-linear, the solutions to them must be list systematically out. These types 

of equations include a large number of dynamical systems. The exact solutions of 

DDEs and FDDEs are difficult to obtain and hence the numerical methods were 

proposed [1, 2]. Thus the numerical methods for solving DDEs and FDDEs are 

required, and work in this area is far less advanced. A variety of numerical methods 

have been developed for finding the solution of DDEs and FDDEs, that is, Adams-

Bashforth method, linear programming method, predictor-corrector method, Taylor 

method and so on. However, there are many numerical methods have been studied 

and applied on it, the Runge-Kutta (RK) method is by far the most well-known and 

effective tool available to researchers with the increase in computing power, this has 

contributed to a growing of interest in numerical solution of DDEs and FDDEs. The 

RK method will be discussed and applied in this study. 

 

 

The RK methods are attractive because they are much easier to start than 

other popular numerical methods and easily to modified for solving DDEs such as 

dde23 takes an approach which by extending the method of the Matlab ODEs solver 

ode23. Besides that, hybrid RK method is combining two different orders of RK 

methods to solving the time tracking problems in DDEs such as coupling the second 

with third-orders RK, second with fourth-orders RK, and third with fourth-orders RK. 

Thus, a new class of hybrid numerical methods for solving the DDEs and FDDEs 

will be discussed in Chapter 3. 

 

 

For optimization section, time-delays estimations on DDEs and FDDEs will 

be studied in this study too. This is a control technique for the systems often depend 

heavily on accurate knowledge of the time-delays. In the problem of optimal control, 

generally the minimization of the functional cost is dealing. Here, the cost function 

required to minimize as follow [3]: 

( ) ( )
2

1

p
v

v
v

t
=

−∑τ τJ x x , (1.1)



3 

where v q→x  denote the system’s output measured at time 

,  1,  2,  ,  
v

t t v p= = … ; a candidate state-delay is a dynamic optimization problem 

with two unique characteristics. At each time t , the non-linear delay differential 

system’s instantaneous rate of change depends not only on its current state, but also 

on its state at times ,  1,  ,  ,
i

t i mτ− = …  where each 
i

τ is a so-called state-delay. 

The study assumed the cost function (1.1) is instead depends on the state at multiple 

discrete time point. There are several steps involved: the class of admissible controls; 

the mathematical description (or model) of the system to be controlled; the 

specification of a performance criterion; then, the statement of physical constraints 

that should be satisfied [3]. Hence, this study will consider the above problem.  

 

 

 

 

1.3 Statement of the Problem 
 

 

 RK methods have been numerous reported to solve various kind of problems 

with satisfactory results obtained. In dealing with time-delays, numerical errors may 

occur due to the abrupt history tracking and discontinuities. Hence, it is desired to 

obtain a good property of scheme to get more accurate solutions. Therefore, this 

research will concentrate on the use of the hybrid Runge-Kutta scheme for the 

problem of minimization of the fuzzy number index subject to a linear fuzzy delay 

differential system. This is the intention of this thesis and this research will clarify 

the following questions: 

 

 

1.3.1 How to overcome the discontinuities in DDEs? 

1.3.2 What is convergence of the RK method? 

1.3.3 What is the hybrid RK scheme for DDEs and FDDEs? 
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1.3.4 Will the hybrid RK scheme be a more efficient tool compare with Maple in 

approximating the numerical solution of DDEs and FDDEs; and time-delays 

estimation? 

 
Problem 1.3.1, 1.3.2, and 1.3.3 are covered in Chapter 3, whereas Chapter 4 provides 

the answer to Problem 1.3.4. 

 

 

 

 

1.4 Objectives of the Study 
 

 

Based on the research questions in Sub-Section 1.3, this research embarks on 

the following objectives: 

 

 

1.4.1 To develop an algorithm for solving DDEs and FDDEs by using hybrid RK 

method and overcome the discontinuities problem. 

1.4.2 To generalize the convergence properties of the developed algorithm. 

1.4.3 To apply and implement the algorithm for optimal control problem with 

DDEs and FDDEs as constraints by using gradient based method. 

 

 

1.5 Scope of the Study 
 

 

For this research, the basic of fuzzy concepts will be discussed, and also, 

understanding this numerical discretization extended of Runge-Kutta method in 

DDEs. Moreover, the focus is on the time-delays estimation of the FDDEs. The 

reason is, the numerical solutions of the FDDE are computationally demanding. The 

method that will be employed here is hybrid Runge-Kutta method. Microsoft Visual 
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C++ will be used for solving the fuzzy delay differential equations by using Runge-

Kutta method. 

 

 

 

 

1.6 Significance of the Study 
 

 

The significances of this study include as follow: 

 

 

1.6.1 New algorithm that will effectively to do their part in solving the mention 

problem that normally occurs in science and mathematics applications 

involving real world problems. It is therefore of utmost importance for 

algorithms to be reliable.  

1.6.2 The algorithm is relied upon to help in decision-makings usually involving 

the signal processing problem and large sums of time. 

1.6.3 The algorithm will produce the desired outcome with successfully. 

 
 
Hence this study is specifically designed to handle such systems. The result will 

indicate more accurate and systematic solution. 
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1.7 Layout of the Thesis 
 

 

This thesis consists of six chapters and it organized as follows: 

 

Chapter 1 starts with the background, statement, and objectives of the study. 

Furthermore, the scope and significance of the study are also demonstrated. 

 

Chapter 2 presents a detailed literature review of DDEs, FDDEs, 

convergence of RK method, and time-delays estimations. 

 

Chapter 3, three new hybrids scheme of solving DDEs and FDDEs will be 

discussed. The convergence of the algorithm will be discussed.  

 

Chapter 4, the hybrid scheme will be coupling with conjugate gradient 

method for time-delays estimations. 

 

Chapter 5, the performance of hybrid scheme is validated with solving 

numerical example. The efficiency of the newly develop numerical schemes of 

hybrid RK method can be assured. 

 

Finally, conclusions are drawn and recommendations for future research are 

illustrated in Chapter 6. 
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