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ABSTRACT 

The performance of variable selection is essential to build an effective logistic 

regression model. Generally, p-values are used to identify significant variables or 

factors in the model. However, when dealing with real tracer study data for a country, 

the size of the data is typically large of which causes the p-values to be deflated and 

affect the variable selection performance. Therefore, it is crucial to have an appropriate 

sample size and sampling ratio for this purpose. In this study, the appropriate sample 

size has been proposed based on simulated correlation tests and significant variables 

in order to improve the accuracy of variable selection. In addition, the sampling ratio 

in the response variable shows  its best when it reflects the population ratio. Based on 

the proposed samples, the logistic regression model for graduate employability factor 

is subsequently proposed. It has been found that age, Cumulative Grade Point Average 

(CGPA), discipline of study, gender, state, and type of universities are the factors that 

significantly affect graduate employability among public universities in Malaysia. The 

results show that the proposed model has successfully improved the variable selection, 

model fitting, and classification accuracy as compared to the full model. Thus, by using 

a smaller sample size, the proposed model is able to maintain its statistical power in 

real data scenario by accurately selecting the significant factors. 
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ABSTRAK                                                                                               

Prestasi pemilihan pembolehubah adalah penting untuk membina model 

regresi logistik yang berkesan. Umumnya, nilai-p digunakan untuk mengenal pasti 

pemboleh ubah atau faktor yang signifikan dalam model. Namun, ketika berhadapan 

dengan data kajian pengesanan sebenar untuk sesebuah negara, saiz data biasanya 

besar dimana akan menyebabkan nilai-p mengecil dan akan memberi kesan pada 

prestasi pemilihan pembolehubah. Oleh itu, sangat penting untuk mempunyai ukuran 

sampel dan nisbah persampelan yang sesuai untuk tujuan ini. Dalam kajian ini, saiz 

sampel yang sesuai telah dicadangkan berdasarkan ujian korelasi simulasi dan 

pembolehubah yang signifikan untuk meningkatkan ketepatan pemilihan 

pembolehubah. Di samping itu, nisbah persampelan dalam pembolehubah tindak balas 

menunjukkan yang terbaik apabila ia mencerminkan nisbah populasi. Berdasarkan 

sampel yang dicadangkan, model regresi logistik untuk faktor kebolehpasaran 

siswazah dalam kalangan graduan kemudiannya dicadangkan. Telah didapati bahawa 

umur, Purata Nilai Gred Kumulatif (PNGK), disiplin pengajian, jantina, negeri, dan 

jenis universiti adalah faktor yang sangat mempengaruhi kebolehpasaran siswazah 

antara universiti awam di Malaysia. Hasil kajian menunjukkan bahawa model yang 

dicadangkan telah berjaya meningkatkan prestasi pemilihan pembolehubah, 

pemasangan model dan ketepatan klasifikasi berbanding dengan model penuh. Oleh 

itu, dengan penggunaan saiz sampel yang lebih kecil, model yang dicadangkan dapat 

mengekalkan kekuatan statistiknya dalam senario data sebenar dengan mengesan 

faktor-faktor yang signifikan dengan tepat.  
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CHAPTER 1  

 

 

INTRODUCTION 

  Background of Study 

Statistical modelling has been widely applied to explain existing phenomenon 

in a mathematical-formalised way. Logistic regression is one of the statistical methods 

used to build models when the categorical data is a subject of interest in the response 

variable, whilst binary logistic regression is a method used when the response variable 

has two outcomes to be considered. This method belongs to the family of generalised 

linear models and has been extensively used until now, especially in the Biostatistics 

field (Beitia-Antero et al., 2018).  

To build a good statistical model, a large sample is required in order to have 

efficient, representative, reliable and flexible results. Over the past decades, generated 

data collection systems have become common places for the production of immediate 

data on a large scale in various fields such as science, management, social, and 

environment. In the education field, for instance, the rising number of institutions has 

caused the number of graduates produced per year to escalate rapidly. Hence, recorded 

information is produced at a large scale. Despite that, in statistics, whole data collected 

may not necessarily have veracity and value (Hsu et al., 2019). 

Data that has a large sample size is highly related to increased model statistical 

power whereby when the power is high, it will increase the likelihood of detecting the 

effect of independent variables on the response variable when there is an effect to be 

detected (Lorca-puls et al., 2018). However, in some cases, it does not always hold 

true; as data become larger or too large, the model to be built will be over in both 

parameterisation and estimation (Heckmann et al., 2014). This is due to the issue of a 

deflated p-value that has been critiqued as it becomes smaller when the sample size 

becomes larger. Thus, there is the tendency of increased probability of more variables 
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falling into false positives as they falsely indicate that there is a significant effect when 

there is none. Hence, the model built is less reliable as the method is inaccurate in 

selecting the significant variables (Kirby & Sonderegger, 2018).  

A good statistical model should only select the important variables that can 

give high variance in explaining the response variable and give the most accurate 

estimation to reflect the population scenario. However, the issue of p-value in large 

data can cause built models such as logistic regression models to have a high number 

of important variables but are poor in discriminating the groups in the response 

variable. Since the p-value is the main approach taken to measure variable 

significance, several suggestions have been made to address this matter (Park et al., 

2018) such as lowering the 𝛼 value than the traditional threshold at 𝛼 = 0.005, using 

intervals for null hypothesis rather than single value, and using small sample sizes to 

obtain a standardised p-value. Thus, the probability of rejecting the null hypothesis 

will be more stringent and the probability of making false positive can be reduced.   

In contrast, Lazic (2017) said that lowering the significance threshold could 

reduce the statistical power of the model. Meanwhile, Solmi et al., (2019) said that 

setting 𝛼 = 0.005 is not stringent enough. There is also a lack of consensus regarding 

the best 𝛼 value for this subject matter. Fisher and Neyman-Pearson said that such 

probability,𝑝 is used to test either the effect to be detected is due to random effects or 

there is indeed a significant effect in real life. Based on this statement, it can be 

concluded that the p-value does not indicate that the variable being investigated is 

important or otherwise. In fact, the p-value is an indicator used to go against the null 

hypothesis when there is inevitable sampling variability (Domenech, 2018). It can also 

be said as an effect that occurs towards the response variable when there is a given 

magnitude based on the sample used (Kirby & Sonderegger, 2018). 

Furthermore, in the logistic regression method, the proportion of two groups in 

the response variable can also affect the statistical power of a model. Based on a study 

by Nad & Ka, (2018), for their hard-to-detect study, it has been found that different 

weights of sampling ratio will significantly produce different coefficient estimates and 

probability for each observation to fall into an interest group. Even so, the underlying 
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proportion is rarely emphasised on by researchers when using this method, especially 

in experimenting with data sample techniques that can affect the sampling ratio. 

In  Nad & Ka, (2018) study, a unique census dataset that contained all the used roosting 

cavities of the tree-dwelling bat Nyctalus leisleri and all cavities where the species was 

absent was used. Several logistic models were constructed with varying ratios of 

occupied and unoccupied cavities to investigate the effect of using different sample 

ratios. 

Based on their hard-to-detect study, it has been found that the sample ratio in 

the response variable should reflect the actual population ratio; otherwise, it will cause 

low predictive power to the logistic regression model and the conclusions to be made 

become less reliable. In addition, Nad & Ka, (2018) found that setting the proportion 

at 1:1 is the most improper method as it will produce a model that is far from what it 

should reflect (existing phenomenon) and inaccurate in variable selection.  

On the other hand, issues on large data size can be such as the growth of 

institutions over the years that has resulted in a large number of graduates. This 

situation has led to an increase in competition among graduates in securing their first 

job. The issue of graduate employability has been disputed from time to time either in 

terms of their academic performance, the ability of tertiary schools in producing more 

employable graduates, and the skills needed by the industry. Employability among 

graduates has been highly associated with tertiary education’s ability to provide 

graduates who fulfil the basic prerequisites made by employers or the demands of the 

labor market. Although the issue of unemployment among graduates has long been 

discussed, this issue still holds great concern in many countries because they form the 

backbone of professional human resources for every country. 

Unemployment among graduates can be caused by individual factors such as 

academic background, skills, experience, demographics, attitude and aptitude. Based 

on previous studies, CGPA and gender have repeatedly been found to be significant 

factors of graduate employability (Pinto & Ramalheira, 2017; Piad & Ballera, 2016; 

Hashim et al., 2015; Sapaat et al., 2011). In addition, it has been found that low CGPA 

is a factor depriving graduates of attaining career goals, other than work experience 



 

4 

(Yusof & Jamaluddin, 2015). However, as information technology (IT) has a pervasive 

influence in current global market, it has been found that technical skills and higher-

order thinking skills are among the most significant factors for IT graduate 

employability (Kumar & Khurana, 2017).  

Meanwhile, in terms of the method used, it cannot be denied that through its 

benefits in terms of classification as well as simultaneous prediction, logistic 

regression has been frequently applied in determining the factors affecting graduate 

employability. For example, logistic regression models have been applied in a study 

on predicting the factors affecting employability among IT graduates by Piad & 

Ballera (2016), job attainment for Bachelor holders in Australia (Jackson, 2014) and 

factor affecting the employability of people with epilepsy (Wo et al., 2016). Moreover, 

in India, logistic modelling was applied to give more understanding on the matter from 

the psychological point of view (Pandit at al., 2015). In Slovenia, the effectiveness of 

higher education, democracy change and economic crisis in affecting employability 

among political sciences graduates (Dezˇelan & Hafner, 2014) was studied using 

logistic regression. 

In Malaysia, the issue of graduate employability is actively discussed as the 

level of unemployment among youths is globally on the rise since 2010 (Machart, 

2017). The percentage of jobless youths had risen from 10.78% up to 11.18% between 

2016 and 2018 (World Bank, 2019). Besides, statistics show that the rate of 

unemployment in Malaysia has kept increasing from the year 2014 up to 2016 at 2.9%, 

3.1% and 3.5% respectively. Moreover, Malaysia’s Minister of Human Resources, 

Datuk Seri Richard Riot said that with the 3.5% unemployment level in Malaysia for 

2016, over 200,000 out of 500,000 graduates are considered unemployed (Carvalho et 

al., 2017). This can be supported by statistics from Malaysia’s Ministry of Education 

(MoE) website which shows that 238,187 graduates were unemployed in the year 

2016. 

In Malaysia, a tracer study will be conducted by MoE every year to trace the 

status of graduates from all institutions in Malaysia. Such data from MoE is genuine 

and the best available data to be analysed to investigate factors behind graduate 
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employability.  Moreover, MoE’s mission which is to produce competent graduates in 

order to fulfil national and international manpower needs with 75% graduates 

employed in their relevant fields within six months of graduation has yet to be 

achieved.  

Motivated by the unemployment issue among graduates, it is important to 

investigate the factors affecting graduate employability based on their profiles. 

However, conducting the data tracer study which involved 112,547 total observations 

together with their multiple record profiles did not necessarily mean that the entire data 

useful in providing information in terms of graduate employability. In addition, the 

size of the data itself can produce unreliable results in terms of variable selection due 

to its deflated p-value. In Zhou and Li's (2016) study, the number of samples needed 

was determined using a supervised learning approach in order to build an effective 

logistic model. Furthermore, the effect of sampling ratio in logistic regression 

modelling for the data tracer study conducted for 2016 also needs to be verified to 

build an effective model.   

 Problem Statement 

To build an effective logistic regression model, sample size and sampling ratio 

do play vital roles in accurately determining factors of graduate employability. 

However, as mentioned in the study background, when the data sample is too large, 

there will be an issue on the deflated p-value. As a result, a graduate employability 

model to be built may be inaccurate in terms of variable selection. Besides, directly 

applying the logistic regression method using the actual amount of data may produce 

unreliable results. In addition, the effect of different sampling ratios on response 

variables also needs to be discovered to improve the statistical power of the logistic 

regression model for tracer study data. Meanwhile, regarding the factors of graduate 

employability, the factors of CGPA and gender need to be identified further in terms 

of their effect towards graduate employability status since gender is a norm for human 

nature, and graduates with low CGPA can be a great disadvantage in reaching 

graduates’ preferred career path. 
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 Objective of Study 

The objectives of the research are: 

(a) To improve variable selection in logistic regression model by proposing the 

appropriate sample size. 

(b) To improve the power of the logistic regression model by determining the 

difference in sampling ratio for tracer study data. 

(c) To determine the factors affecting graduate employability by evaluating the 

performance of the proposed approach. 

(d) To identify the factors affecting graduate employability in terms of low CGPA 

and gender group. 

 Scope of Study 

This study focuses on modelling the tracer study data to improve variable 

selection when dealing with large sample sizes. Data used in this study is tracer study 

data from MoE based on the questionnaire version 2016. The analysis done throughout 

this thesis used the values given by the MoE and the status of graduates was taken 

within six months of their graduation. In this study, the search for the appropriate 

sample size was done through several processes. R software is used in this study for 

data analysis. Meanwhile, logistic regression is the main method to be used and applied 

on Malaysia’s tracer study data to achieve the objectives of the study. Assessment of 

the model’s performance is based on the proposed sample in terms of variable 

selection, classification correctness and model fitting. This is done by comparing the 

proposed model with a model built from the actual sample data.  
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 Limitation of Study 

This study has limitations, especially on the data used. The study only uses 

tracer study data for the year 2016 to determine factors of graduate employability.  

Besides that, in this study, graduate employability is defined based on MoE’s 

definition, which is either they are employed or unemployed within six months of their 

graduation. Furthermore, in terms of determining the appropriate sample size to 

improve variable selection, the performance of the proposed method for this study is 

only tested using tracer study data for the year 2016. Thereupon, the models obtained 

represent a model of graduate employability among Malaysian public university 

graduates for 2016.  

 Significance of Study 

The development of an effective statistical model is crucial to determine the 

factors affecting graduate employability as well as the accuracy of classifying the 

status of graduates. This study focuses on developing such a desired feature for good 

statistical modelling when dealing with large sample data sizes. The model built based 

on the proposed sample size and sampling ratio is expected to have improved 

performance in terms of significant factor selection, classification accuracy, and model 

fit compared to models based on the actual sample. In addition, it is believed that the 

procedure of building an effective model can be applied to other real data scenarios to 

handle the issue of the deflated p-value. 

 Structure of Thesis 

There are five chapters included in this study. In Chapter 1, the introduction, 

background of study, problem statement, study objectives, scope and also significance 

of this study have been briefly stated. In Chapter 2, a review on literature related to the 

employability of graduates and sample size will be presented. Chapter 3 will focus on 

the research methodology, starting with describing the logistic regression model then 
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illustrating the process of determining the appropriate sample together with several 

indicators that would be used for model evaluation criterion. In Chapter 4, the results 

of the proposed sample size and sampling ratio will be presented. In addition, these 

results will be explained and discussed further in terms of factor selection and 

classification accuracy. The selected best model will represent the final findings in 

determining the factors affecting graduate employability. Finally, Chapter 5 will 

contain the main conclusions of this study and proposals for future research. 
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