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ABSTRACT 
 

 

 

 

Renewable energy is an important field in providing reliable and sustainable 

energy to the world. Wasted heat is found to be a good source of renewable energy. 

This wasted energy can be found almost in all types of production processes, including 

the heat exchanger. The heat energy dissipated from these processes is unutilized 

leading to inefficiency in the system.  The need to harvest the wasted heat is essential 

in making sure the energy can be further utilized for other applications. Previous 

research works conducted on harvesting heat into sound in the system is still lacking 

and there is no specific standard can be employed. This research focused on analysing 

and developing a reference method of harvesting sound from a thermoacoustic heat 

engine system. A simulation approach was employed to investigate the performance 

of heat flow on the heat exchanger and related components. A standard test rig was 

designed to evaluate the performance of heat transfer experimentally. A 

comprehensive laboratory work was set-up to collect ample data to obtain the 

correlation of acoustic sound pressure-volume due to heat transfer performance by the 

oscillatory flow on the thermoacoustic system. The design of the developed 

thermoacoustic engine was able to produce waste heat in the range between 200C and 

700C, and the harvested sound frequency ranged from 20 Hz to 2 kHz. From the 

experimental study, the sound level started at 4 s to 8 s and reaches a steady-state at 

10 s. The temperature gradient on stack performance was 8.45°C/mm with a 

temperature difference at the steady-state point of 300°C. The spectrum analysis 

amplitude reached 133.5 dB with the frequency value of 397.5 Hz. The pressure-

volume analysis has proved the existence of both isochoric and isothermal process 

through the gas bucket brigade phenomenon as the lead compression and expansion 

happened at the stack wall between the sound pressures of 12.94 Pa and 20.15 Pa. The 

finding confirmed that the sound energy from the heat oscillation can be harvested and 

a standard method has been developed. This study also confirmed the presence of a 

thermoacoustic cycle on the stack wall. This finding is significant as it provides a new 

standard in harvesting sound from the thermoacoustic heat engine. The efficiency of 

the system was successfully improved by 40% and the wasted energy was successfully 

harvested for further applications. 
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ABSTRAK 

 

 

 

 
Tenaga boleh diperbaharui merupakan bidang yang penting dalam menyediakan 

tenaga yang boleh dipercayai dan lestari kepada dunia. Haba terbuang didapati menjadi 

sumber tenaga boleh diperbaharui yang baik. Tenaga yang terbuang ini boleh didapati 

hampir pada semua jenis proses pengeluaran, termasuk penukar haba. Tenaga haba yang 

terhasil dari proses ini yang tidak dapat digunakan menyebabkan ketidakcekapan dalam 

sistem. Keperluan memenafaatkan haba yang terbuang sangat penting bagi memastikan 

tenaga tersebut dapat digunakan seterusnya untuk aplikasi lain. Kerja-kerja penyelidikan 

sebelumnya yang dilakukan untuk memenafaatkan haba bagi menghasilkan bunyi di 

dalam sistem masih kurang dan tidak ada standard khusus yang dapat digunakan. 

Penyelidikan ini memfokuskan kepada menganalisis dan membangunkan kaedah rujukan 

untuk memenafaatkan bunyi dari system enjin haba termoakustik. Pendekatan simulasi 

telah digunakan untuk mengkaji prestasi aliran haba pada penukar haba dan komponen 

yang berkaitan. Rig ujian standard telah direka bentuk untuk menilai prestasi pemindahan 

haba secara eksperimen. Kerja makmal yang menyeluruh telah disediakan untuk 

mengumpulkan data yang mencukupi bagi memperolehi kaitan tekanan akustik bunyi-

kekuatan bunyi disebabkan prestasi pemindahan haba oleh aliran ayunan dalam sistem 

termoakustik. Reka bentuk enjin termoakustik yang dibangunkan mampu menghasilkan 

haba terbuang dalam julat antara 200C dan 700C, dan frekuensi bunyi yang 

dimenafaatkan dalam julat dari 20 Hz hingga 2 kHz. Dari kajian eksperimen, tahap bunyi 

bermula pada 4 s hingga 8 s dan mencapai keadaan stabil pada 10 s. Kecerunan suhu pada 

prestasi susunan ialah 8.45°C/mm dengan perbezaan suhu pada keadaan stabil 300°C. 

Amplitud analisis spektrum mencapai 133.5 dB dengan nilai frekuensi 397.5 Hz. Analisis 

tekanan-isipadu telah membuktikan kewujudan kedua-dua proses setekanan dan sesuhu 

melalui fenomena pasukan timba gas bilamana pendahulu pemampatan dan 

pengembangan di dinding susunan berlaku antara tekanan bunyi 12.94 Pa dan 20.15 Pa. 

Penemuan ini mengesahkan bahawa tenaga bunyi dari ayunan haba dapat menafaatkan 

dan kaedah standard telah dapat dibangunkan. Kajian ini juga mengesahkan terdapat 

kitaran termoakustik di dinding susunan. Penemuan ini adalah signifikan kerana ia 

menyediakan standard baru dalam memenafaatkan bunyi dari enjin haba termoakustik. 

Kecekapan sistem ini telah berjaya ditambahbaik sebanyak 40% dan tenaga yang terbuang 

berjaya menafaatkan untuk aplikasi selanjutnya. 
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1 

CHAPTER 1 

INTRODUCTION 

1.1 Background 

Sound waves in gas are often referred to as displacement and pressure shocks. 

In fact, temperature fluctuations are also present with pressure fluctuations. One of the 

reasons for the growing interest in thermoacoustic stems from its potential to protect 

the environment as it is a technology of renewable energy (Abdoulla et al., 2017). 

Thermoacoustic prime mover is to design an efficiently changing waste heat energy 

to electricity energy. Figure 1.1 shows a process of thermoacoustic 

interaction phenomena.  

Figure 1.1 Thermoacoustic interaction phenomenon 

This phenomenon has a four-step cycle, the properly phased heating with 

compression and expansion of the gas. When work has been done on the gas, the 

vibration is encouraged. In steady state operation, the work input per cycle is equal to 

the sum of the work absorbed by dissipative mechanisms where it has a process of 

viscous and thermal losses in the stack and resonator walls (Swift, 1988). Then 

acoustic energy is produced. With sustained oscillations within the resonator, each gas 



 

2 

parcel must be at a position where the stack is at a different temperature from the 

adiabatic temperature change of the gas. That fact leads to a concept of a critical 

temperature gradient for the acoustic oscillations to be maintained. 

 

 

World today, is facing the threat of a dual energy. First, on the supply side of 

energy equation, there is a lack of adequate and safe energy reserves at an affordable 

price, where countries bound to be affected. Second, on the perspective of demand, 

overconsumption of energy has become the prominent factor that caused reducing 

natural resources and environmental destruction, from oil spills to groundwater 

pollution. What is more threatening is that this demand is rising continuously. Figure 

1.2 shows the basic of renewable energy method from nature source. World Energy 

Survey in years 2012 by the International Energy Agency, IEA (REN 21, Renewables 

Now, n.d.) estimates this energy global, demand are increased by more than one-third 

of 2035.  China, India and the Middle East of country is contributing to this 60% 

increase of energy demand.. The revolution a drive, fuel shortages, such as diesel, 

natural gas and mazut, led to halts in power stations and power outages in some 

governors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 Basic of renewable energy method from nature source 

 

 

There are two solutions that could be used to fill this energy gap. First, to 

reduce the demand for energy efficient. consumption.Second energy supply have to 
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increased.  This issue has to address.This study has recently, the thermal energy to 

convert acoustic values thermoacoustic heat engine to generate electricity or sound, 

producing energy. Half of the increment in global energy use are for generation of 

electricity to meet growing domestic needs for lighting, communications, cooling and 

water supply. The decrease in fossil fuel production, which necessitates the control of 

demand for fossil fuels, will increase energy demand, and to increase the geographic 

diversity and fuel supply mitigating climate-destabilising emissions become more 

critical than ever. Figure 1.3 shows the mutual technology on energy harvesting 

technique. The thermoacoustic phenomenon was first discovered by a glass blower in 

the 19th century, and has found the sound produced by heating a glass tube at one end. 

Started 1985, the designed and produced the first thermoacoustic device by John 

Wheatley and Swift is produced (Swift, 1988).  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 1.3 Mutual technology on energy harvesting technique 

 

Currently two types of thermoacoustic devices, first the heat engine or the main 

carrier in which temperature is converted to acoustic power; and second hot or cold 

pumps to which the pump can emitheats. They have some non moving parts, require 

little maintenance and production of thermoacoustic engines are very reliable and 

cheap. These features make it effective for remote power generation or mobile 

applications. This requirement as a kind of wind energy and solar energy can be met 
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by renewable energy, reduce the use of fossil fuels and provide a consistent and 

reliable source of electricity. 

 

 

Typically, for example, especially on farms the generators are used to provide 

electricity during power outages, and out of the absence of built-in power supplies, for 

example, camping trips and on construction sites. Conventional generators require 

expensive, non-renewable and hazardous gas-producing gasoline or fossil fuels that 

contribute to air pollution and climate change. 

 

 

An environmentally friendly condition, the thermoacoustic heat engine has 

operated are using air or noble of gases for a friendly environment.Thermoacoustic 

heat engine, an independent power converter or solar power plant to generate several 

power converters can be integrated to the solar energy concentrator. Especially in 

remote areas that are not connected to the home network, this will be very useful in 

the production of small houses and industries. 

 

 

One of the key challenges in today's modern world, it aims to produce energy 

at a cost competitive to get the thermoacoustic heat engine. Engine locally quantities 

sold on the market in abundance, it uses relatively cheap and there is no special 

requirement, ie steel tubes for solar energy glass and convergence thermoacoustic heat 

engines. Over the last few decades, the key constraints in developing renewable energy 

have been ineffective. The average cost of electricity is much cheaper than other 

similar technology generated by the thermoacoustic engine. 

 

 

In addition, the engine uses the highest degree of efficiency available. For all 

heat engines, it has a limitation to the heat engine produced an efficiency, even the 

best engine cannot convert 100 percent of the inlet temperature according to laws of 

thermodynamics. The addition of this limit is the temperature at which the heat enters 

the engine and the ambient temperature at which the exhaust engine consumes its 

heat.This obstacle value is called the Carnot cycle efficiency. 
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Emphasising the need to switch from extensive fossil fuel use to renewable 

energy sources., The formation of fossil fuel takes millions of years and, instead of 

mentioning the harmful emission of toxic gases into the atmosphere as a result of the 

combustion of fossil fuel, causes the depletion of reserves much faster than the new 

ones. Moving towards renewable energy resources is essential to meet the growing 

energy needs and to counter global environmental challenges. 

 

 

 

 

1.2 Research Motivation  

 

 

These days, renewable energy is important as the technology reaches high 

demand in saving the earth to provide energy. As the limitless on energy sources, 

renewable energy technique become are wonderful options. Moreover, the energy will 

not run out of them, unlike fossil fuels that we currently depend upon which will 

eventually be drained. Another great advantage of using renewable energy is that many 

of them do not cause water and air pollution in the way of burning fossil fuels. In 2006, 

approximately 18% of global energy consumption, renewable energy, 13% coming 

from traditional biomass, mostly used for heating and 3% is derived from hydropower 

(Demirbas, 2006). New renewable energy, such as small hydro, modern biomass, 

wind, solar, geothermal and biofuels, accounts for 2.4% and is growing rapidly. 

Renewable energy in electricity generation portion is 18%, 15% hydro and 3.4% of 

global electricity coming from renewable energy sources (Owusu & Asumadu, 2016) 

Thermoacoustic is one of renewable energy that included thermodynamic principles 

and acoustic principles. A sound wave produced by a gas is an expression of pressure 

displacement and shock or vibration due to temperature gradient on a solid wall of the 

stack. Temperature is also available with pressure periodic or oscillation motion. The 

thermoacoustic effect occurs from the thermal dissipation by heat transfer between the 

oscillating of liquid at the surface of solid. (Symko, 2006).  

 

 

The increasing interest in thermoacoustics can be one reason for its potential 

to protect and conserve the environment. Energy conversion from heat to electricity 

using a sound is one of a method in thermoacoustic heat engine technology. Then, 

using existing technologies, the conversion of sound into electricity has used 
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piezoelectric devices that are compressed under pressure, including sound waves, and 

convert this pressure into electricity. Piezo means pressure or squeezing. 

 

 

Another reason the thermoacoustic technology is free from moving parts and 

can be implemented with the main carrier composition thermoacoustic heat pump or 

heat engine. There are no moving parts in the thermoacoustic heat engine or 

thermoacoustic heat pump. In an example, in a cold flow tube of heat pump, no parts 

move except for the units which provide gas flow oscillation. Such an oscillating gas 

flow is only the power of the main thermoacoustic drive. In addition, it generally uses 

the same gas as the working fluid. This means that basic thermoacoustic medium can 

be used directly to move a cold pulse to implement a cooling system without moving 

parts. 

 

 

 

 

1.3 Problem Statement 

 

 

Renewable energy sources are wonderful options because they are limitless. 

Nowadays, energy crisis and greenhouse effects have led to the development of lots of 

emerging technologies that are sustainable and friendly to the environment. 

Thermoacoustics is a technology that can be classified as ‘green-technology’ as it 

converts thermal energy for a generator or a cooler without the use of depleted fossil 

fuels or harmful refrigerants. It can be integrated with sustainable and renewable 

energy sources (i.e solar, industrial-waste-heat) to produce power or cooling effect 

which are the basic needs for residential houses as well as the industries. 

 

 

Thermoacoustic is a principle of science that is related to the conversion of 

energy in a sound wave into useful electrical power or cooling effect. This happens 

when the oscillatory flow of the sound wave comes into contact with solid boundaries 

so that the processes of heat transfer, expansion and compression take place in the 

fluid. Common issues with all energy transfer in the related thermoacoustic system 

engine in the heat-exchanger where the efficiency and effectiveness of one energy 

system are always relying upon the effectiveness of the heat exchanger. The biggest 
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challenge in commercializing the thermoacoustic technology is its effectiveness that 

is related to, among others, the lack of data to form fundamental correlations that 

represent heat transfer behaviors in the oscillatory flow of the thermoacoustic 

phenomenon.  

 

 

From the classical fluid flow and heat transfer point of view for 

thermoacoustic, heat transfer is very much related to the behavior of the fluid flow. In 

a normal steady flow condition, it is often observed that heat correlations depend on 

whether the flow is within the acoustic pressure-volume or geometrical properties of 

components. In an oscillatory type of flow caused by acoustic pressure, the 

classification of flow is not yet well defined. The cyclic manner of the flow introduces 

the harmonic wave from the hot flow and cold flow from the hot and cold heat 

exchangers caused by compression and expansion of heat oscillation. This 

phenomenon occurred by interaction on the solid surface of a stack. Researchers are 

yet to find a standard design in order to overcome geometrical and design issues as by 

right, the correlation between design and geometrical properties depends on the 

researchers’ own standard. 

 

 

Defining heat correlation is not an easy task as such, it is difficult to determine 

the heat correlation that can truly represent the flow condition of the desired drive 

ratios in thermoacoustic systems. This makes designing an efficient thermoacoustic 

system challenging. Heat correlation comes from a good design which consists a 

system which the heat can be extracted and distributed from the hot heat exchanger 

itself. Literature surveys found that the current practice normally has 20% to 40% of 

Carnot efficiency output from the thermoacoustic system. It is challenging in designing 

high-efficiency devices without a standard design of a system such as the standard 

code design in mechanical system e.g. ASME standard.  

 

 

Therefore, fundamental works are needed to collect ample data for generating 

a heat correlation that is accurately representing the heat transfer performance of heat 

exchanger in oscillatory fluid flow condition of thermoacoustics. To achieve this, a 
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comprehensive laboratory-based works and numerical models simulation need to be 

carried out to understand a broader perspective of the pressure-volume approach. 

 

 

 

 

1.4 Research Objective 

 

 

The main objective of this research is to design and analyze a thermoacoustic 

heat engine system. From the design approach, this study formed a standard guide 

algorithm of the design method. The design method is based on the theoretical 

formulation of the thermoacoustic heat engine. The design algorithm is a new approach 

to address for simple and faster way of making a new design in this field. A simulation 

approach is used to investigate and analyze the heat exchanger component. This study 

can further develop an experimental design test rig to carry out experimental work for 

fundamental study of analyzing a correlation between the heat and the heat transfer 

performance. Comprehensive laboratory-based work has been done to collect ample 

data to understand the correlation of acoustic sound pressure-volume due to heat 

transfer performance by the oscillatory flow on the thermoacoustic system. 

 

 

a) To investigate the physical behavior and characteristics of geometrical and 

thermo fluids properties parameters in the physical system using a modelling 

and simulation. Modelling and simulation study on the thermoacoustic effect 

due to the oscillating flow and heat transfer characteristics in the system. The 

study was an approach to find the performance and characteristic of parameter 

interaction within the system.  

 

 

b) To investigate the performance and parameter characteristic from heat energy 

to sound energy of heat and sound developed from the thermoacoustic heat 

engine. A performance test will be carried out by experimental work and the 

analysis of the results from a measurement technique of a thermoacoustic heat 

engine. 
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c) To propose a new design of thermoacoustic heat engine in a quarter-

wavelength scale of standing wave as an experimental rig to harvest sound 

energy from heat energy as a task in thermoacoustic effect. The design will be 

assessed based on the waste heat phenomenon with the temperature ranged 

from 200 °C to 700 °C and production of sound energy in the audible range 

frequency. The test equipment was an approach to simulate the actual 

phenomenon of sound energy behavior from waste heat energy. 

 

 

 

 

1.5 Scope of Study 

 

 

The scope of this study involves designing, development and experimental 

work of the thermoacoustic heat engine with a newly design method in the 

thermoacoustic heat engine components development from stainless steel alloy 304, 

Kanthal wire and Corning Celcor - Ceramic Substrates as a material. The design 

method proposed as a standard design method is followed from the principles of 

fundamentals thermoacoustic theory. A simulation study has performed with 

commercial code software Ansys Computational Fluid Dynamics (CFD) and special 

thermoacoustic software Design Environment for Low-amplitude ThermoAcoustic 

Energy Conversion (Delta EC) from Los Alamos National Laboratory (LANL). 

Mathematical modelling and simulation on heat oscillation due to compression and 

expansion of gases is analysed using a MATLAB programming language software. 

Then a sound pressure volume and phase angle of hot and cold temperature oscillation 

is analysed with the same software, a MATLAB. Performance evaluations were 

conducted experimentally on the development of a thermoacoustic heat engine test rig 

at the Control, Sound and Vibration Research Laboratory, School of Manufacturing 

Engineering, Universiti Malaysia Perlis (UniMAP). The measurement of the 

experimental technique is setup using a graphical user system (GUI) with Laboratory 

Virtual Instrument Engineering Workbench (LabVIEW) as a measurement 

environment. 
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1.6 Research Contributions  

 

 

The thesis makes several contributions to the heat oscillation due to energy 

harvester, which are reflected in several journals and conference papers arising from 

this work, as detailed in this section into several aspects such as: 

 

 

a) Novelty in designing the energy harvesting technique from waste heat 

converted to sound energy to electrical energy using a system of 

thermoacoustic heat engine device. The designing is proposed by the standard 

flow chart for the design strategies for new development of an apparatus of 

thermoacoustic energy converter.  

 

 

b) The development and the performance test of an experimental test rig apparatus 

are carried out and it is capable to simulate the actual thermoacoustic effects 

phenomena from a range of waste heat temperature range for automotive 

application within the system on energy harvester within the range of audible 

frequency. 

 

 

c) Proposed a mathematical modelling technique to suppress heat oscillation due 

to energy harvester through the implementation of experimental measurement 

study  from the mathematical modelling that have been used for new 

developments unit for the curtain range in waste heat temperature and the 

audible range of frequency.  

 

 

d) Implementation of experimental work to find the frequency range within a 

standard audible frequency for next future development on selected a new 

device as linear alternator. The suitable linear alternator has been used to 

harvest electrical energy from the sound frequency due to audible range of 

frequency.  
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1.7 Methodology of the Study 
 

 

The methodology that restricted to this research study is intended to the 

correlation between heat oscillation and sound frequency generated from the 

temperature gradient along stack. Figure 1.4 shows the overview of flow chart study 

on an interactive component within the thermoacoustic heat engine and heat pump 

system. 

 

 

a) An experimental technique is conducted open and closed end type resonator 

and located as a stack. The system is developed to create a self-sustained 

oscillation from sound wave as heat oscillates as a function of standing wave. 

Frequency, pressure and temperature measurements are conducted on the 

standing wave system within the audible range frequency. The heat supplied, 

Th as a source to the system is in the range 150 °C to 700 °C due to hot heat 

exchangers. The energy harvester is measured as the conversion heat to sound 

with a ½” piezotronic microphones is highly accurate device and realiable for 

acoustic measurement. Measurements input data are logged, analysed and then 

developed using the Graphical User System GUI using LabVIEW 

environment. A special microphone from microphone is used to measure the 

frequency and pressure. The temperature is measured using Thermocouple 

type-K. The system is embedded with all sensor interfaces on circuit board 

fabricated in house as well for data logging system. 

 

 

b) The simulation modelling of open and closed end type resonators with 

temperature input as main media to create sound and oscillation of heat flow 

as boundary conditions on stack wall is carried out. The fourth-order of Runga-

Kutta integration method is used as the simulation process to evaluate a gas 

interaction phenomena conversion to convert heat to sound in tube 

thermoacoustic heat engine. The main advantage of this method is found to be 

its computational efficiency. Since it can estimate the effects of all parameters 

of geometry and material properties quickly, the present model is suitable in 

optimising energy harvester systems. For a better understanding on the aspects 

of its fundamental design, commercial code software DELTA EC is employed 
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for the simulation process. Some characteristics or parameters in the system 

are analyzed in order to derive the fundamental knowledge of that an open and 

closed end type resonator.  

 

 

c) Developments an experimental rig are needed to analyse the performance and 

parameter characteristic from heat energy to sound energy. A system is 

developed by the new design of a thermoacoustic heat engine in a quarter 

wavelength. Modelling for heat oscillation within the stack has to proposed . 

This modelling approach stand to evaluated and proven the theoretical 

background of the heat oscillation phenomena due to temperature at hot and 

cold temperature difference. Gas bucket bridget have to examined and shown 

in classical thermodynamics processs. This portion has shown fundmental 

processs occurred within acoustic and thermal interaction on astack wall. 

Corellation between gas parcel at hot heat exchanger and cold heat exchanger 

iteraction on solid medium is call fluid structure interaction have shown in 

Pressure Volume diagram. The phenomena is influence with stack geometrical 

and dimension.The work describes in this thesis involves modelling and 

experimental study on heat oscillation due to energy harvester. The present 

study is intended to the correlation between heat oscillation and sound 

frequency generated from the temperature gradient along stack. 
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Figure 1.4 An interactive component within the thermoacoustic heat engine and refrigerator system                
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The fabricated devices have been made and to validate their performance, 

the thermoacoustic heat engine is tested with the heat supply from hot heat 

exchangers and several boundary conditions of the system have been made by 

assisting the current heat supplied to control the temperature ranges within the actual 

waste heat temperature. The experimental technique on thermoacoustic heat engine 

will be done on a test-rig that is able to resemble actual system of waste heat 

supplied to create a temperature gradient. M easured data from the thermoacoustic 

heat engine performance during the experiment will be recorded by LabVIEW 

commercial code software and analysed through the Mat Lab commercial code 

software and the results will be compared with the results determined from 

simulation works. Figure 1.5 below shows the basic of schematic diagram on this 

research study. Finally the overall research methodology strategies is concluded. The 

proposed research strategy in the form of a flow chart is graphically shown in Figure 

1.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 1.5 Basic schematic diagram of research methodology   
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Figure 1.6 Research flowchart 
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1.8 Organisation of the Thesis 

 

 

This thesis consists of six chapters; Introduction, Literature Review, 

Methodology of the study which are covered in three chapters, chapter three until 

chapter five; Results and Discussion and Conclusion and Future Work. 

 

 

Chapter 1 is the Introduction. This chapter defines the reason this project is 

done. This chapter states background and overview of the project, problem statement, 

project objective and scope of project, layout of thesis and contribution of work. 

 

 

Chapter 2 is the Literature Review. All the work in this chapter is restricted 

within the scope of work as stated in the first chapter. Previous projects from other 

researchers are also included to support the theory used in this project such as journals 

and thesis. 

 

 

Chapter 3 is the first methodology. In fundamental design study, there is 

several aspects that need to be concerned with to meet the objective. Therefore, this 

chapter will review on choosing the operating parameter, designing the stack, 

resonator and heat exchanger and all the necessary calculations. This chapter also 

consists of the theories and studies that are related to strengthen the project. It covers 

the relation between thermodynamics and acoustical phenomena on the fundamental 

design. 

 

 

Chapter 4 is the second methodology. This chapter will discuss about the 

modelling and simulation study involving the development of the thermoacoustic 

prime mover. The development of simulation model begins with the preliminary 

design until the experimental rig apparatus is completed. The modelling and simulation 

include choosing operating parameter, modelling strategy and parametric estimation. 

 

 

Chapter 5 is the third methodology. This chapter shows how the experimental 

work is being done on the prototype development. The performance test is conducted 
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and the prototype is used during the experiment. Properties of the prototype are also 

explained in this chapter. 

 

 

Chapter 6 is the last chapter in this thesis which is Conclusion and future work. 

Overall design component and the results are concluded in this chapter. In addition, 

there are some recommendations stated for future studies and design improvement in 

Results and Discussion. The results are obtained from the experimental analysis and 

heat oscillation modelling study. Both results are analysed based on the primary 

objective and theoretical study. Tables and graphs are plotted in this chapter and the 

result is discussed in detail on the experimental work verified with modelling 

technique. 
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