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ABSTRACT 

Power transformer is one of the most essential components in power 

transmission and distribution systems. A thorough inspection of the condition of a 

power transformer is critical to avert malfunctions. An essential part of this inspection 

includes degradation control of the transformer oil. In fact, studies have incorporated 

optical fibre sensors (OFSs) for transformer oil degradation detection owing to the 

distinct advantages of OFS over conventional methods. Despite the diversity of 

techniques which have been employed for the developed OFSs, they pose problems of 

complicated fabrication and cross-sensitivity to temperature. As such, this study 

reports the original research work on the development of high refractive index (RI) 

fibre sensors based on silica rod (SR) structure to address the aforementioned 

problems. This study details the conceptual sensor design, the fabrication, the 

experimentation, and the application to transformer oil degradation detection. Related 

mathematical models of the sensor architectures, such as principles of leaky mode 

interference (LMI) and multimode interference (MMI), were explored to comprehend 

sensor behaviour. The sensors were numerically analysed using BeamPROP software 

to determine their functions from field distribution and sensor spectra. Systematic 

procedures for fabrication and experimentation of the sensor were developed to ensure 

high repeatability. Notably, four sensor designs are proposed in this study. Design 1 

signifies RI sensing based on wavelength shift and spectrum power level change. The 

use of SR as a sensing element induced the spectrum power level change due to the 

LMI at the SR section. Meanwhile, spectrum wavelength shift was induced because 

the input of MMI in MMF was substantially influenced by its surrounding high RI. 

The sensor responded to the surrounding RI by the changes of dip wavelength and 

output power level with maximum sensitivity of 38.65 nm/RIU and 63.15 dBm/RIU, 

respectively. Design 2 is proposed to simultaneously measure high RI and temperature 

by monitoring the respective output power level and wavelength shift of the single dip 

transmission spectrum of the sensor. The experimental results revealed that the sensor 

had RI sensitivity of 108.07 dBm/RIU and temperature sensitivity of 9.31 pm/oC. 

Design 3 deployed a SR with larger diameter exceeding the MMF core diameter to 

increase the leakage loss of high-order leaky modes to the surrounding. By monitoring 

the output power of the interference dip, this sensor achieved 5-fold greater sensitivity 

than Design 1, which was up to -293.53 dBm/RIU. Design 4 refers to a full intensity-

based RI sensor that completely depends on the LMI at the SR section. The 

measurement of high RI was executed by monitoring the spectrum power level change 

caused by LMI. The sensitivity of this sensor was 93.82 dBm/RIU. Design 4 sensor 

was selected and applied in power transformer applications to detect transformer oil 

degradation due to its compact structure, easy interrogation scheme, and resistance to 

temperature variations. The findings revealed that the sensor was capable of sensing 

the variations of oil that belonged to the good and fair regions in accordance to ASTM 

D1500 colour scale. This scenario highlights the great potential of the sensor for 

remote in-situ detection of transformer oil degradation.   
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ABSTRAK 

Pengubah kuasa adalah salah satu komponen yang paling penting dalam sistem 

penghantaran dan pengedaran kuasa. Pemeriksaan menyeluruh keadaan pengubah 

kuasa adalah penting untuk mengelak kerosakan pengubah kuasa. Bahagian penting 

dalam pemeriksaan ini termasuk kawalan kemerosotan minyak pengubah. Kajian telah 

dilakukan untuk menggabungkan penderia gentian optik (OFS) untuk pengesanan 

kemerosotan minyak pengubah kerana kelebihan tersendiri OFS berbanding kaedah 

konvensional. Walaupun terdapat pelbagai teknik berbeza telah digunakan untuk OFS 

yang dibangunkan, mereka mempunyai masalah fabrikasi yang rumit dan kepekaan 

silang terhadap suhu. Oleh itu, kajian ini melaporkan penyelidikan asal mengenai 

pembangunan penderia gentian indeks biasan (RI) tinggi berdasarkan struktur rod 

silika (SR) untuk menangani masalah yang disebutkan di atas. Kerja penyelidikan ini 

melibatkan rekabentuk konsep penderia, fabrikasi, eksperimen, dan aplikasi untuk 

pengesanan kemerosotan minyak pengubah. Model matematik berkaitan seni bina 

penderia seperti prinsip interferens antara mod bocor (LMI) dan interferens antara 

pelbagai mod (MMI) telah diterokai untuk memahami tingkah laku penderia. Penderia 

dianalisis secara berangka menggunakan perisian BeamPROP untuk memahami 

fungsi mereka dari taburan medan dan spektrum penderia. Prosedur sistematik untuk 

fabrikasi dan eksperimen penderia telah dibangunkan untuk memastikan 

kebolehulangan yang tinggi. Secara umum, empat rekabentuk penderia telah dicadang 

dalam kajian ini. Rekabentuk 1 merujuk kepada penderiaan RI berdasarkan peralihan 

panjang gelombang dan perubahan aras kuasa spektrum. Penggunaan SR sebagai 

elemen penderiaan menyebabkan perubahan aras kuasa spektrum yang disebabkan 

oleh LMI di bahagian SR. Sementara itu, peralihan panjang gelombang spektrum 

disebabkan oleh input MMI dalam MMF ketara dipengaruhi oleh RI sekitar yang 

tinggi. Penderia bertindak balas terhadap RI di sekitarnya dengan perubahan panjang 

gelombang dan aras kuasa keluaran dengan kepekaan maksimum, masing-masing 

sebanyak 38.65 nm/RIU dan 63.15 dBm/RIU. Rekabentuk 2 penderia dicadang untuk 

mengukur RI dan suhu yang tinggi secara serentak dengan memantau aras kuasa 

keluaran dan peralihan panjang gelombang yang berkenaan pada spektrum transmisi 

dip tunggal penderia. Hasil eksperimen menunjukkan bahawa penderia ini mempunyai 

kepekaan RI sebanyak 108.07 dBm/RIU, manakala kepekaan suhu adalah 9.31 pm/oC. 

Penderia rekabentuk 3 menggunakan SR yang lebih besar dengan diameter melebihi 

diameter teras MMF untuk meningkatkan pendedahan mod bocor tertib tinggi ke 

sekitarnya. Dengan memantau kuasa keluaran dip interferens, penderia ini mencapai 5 

kali ganda kepekaan RI berbanding rekabentuk 1 iaitu sehingga -293.53 dBm/RIU. 

Penderia rekabentuk 4 adalah penderia RI berasaskan intensiti penuh yang sepenuhnya 

bergantung kepada LMI di bahagian SR. Pengukuran RI tinggi direalisasikan dengan 

memantau perubahan aras kuasa spektrum yang disebabkan oleh LMI. Penderia ini 

mencapai kepekaan sehingga 93.82 dBm/RIU. Rekabentuk 4 telah dipilih dan 

digunakan dalam aplikasi pengubah kuasa untuk mengesan kemerosotan minyak 

pengubah disebabkan struktur yang kecil, skim soal siasat yang mudah, dan ketahanan 

terhadap variasi suhu. Hasil kajian menunjukkan bahawa penderia tersebut mampu 

menderia variasi minyak yang tergolong dalam kawasan yang baik dan sederhana 

mengikut skala warna ASTM D1500. Senario ini menyerlahkan potensi besar penderia 

untuk pengesanan in-situ mudah alih kemerosotan minyak pengubah.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Power Transformer 

Transformers that are applied in electrical transmission system to step-up and 

step-down voltage levels in order to minimise power loss on transmission lines are 

called power transformers. Power transformers are the most expensive and essential 

pieces of equipment used in high-voltage power grid and play a critical role in power 

system [1-3]. In any event that a failure occurs in service, the impact can be far 

reaching. The Northeast Blackout of 2003 (in August 14th), which affected several 

eastern cities in the US and Canada, demonstrated how power outages have significant 

social and economic consequences [4]. Although such severe power outages are 

uncommon, electrical utility businesses often suffer outages of a smaller magnitude 

that are not only inconvenient to both companies and their customers, but also can 

result in revenue loss. Besides, failure of power transformers may result in costly 

repairs and potentially serious injury or fatality [5, 6]. Hence, power transformers are 

subject to regular inspection and maintenance procedures to ensure their smooth and 

continuous operation, also to prolong the life of these valuable assets [7]. The 

maintenance activities, including condition monitoring and diagnosis of power 

transformers, have many great benefits as listed in the following [8, 9]. 

1. It can promptly recognise faults, thus an early fault diagnosis can be provided 

to avoid critical conditions and extremity of any damage incurred. 

2. Quality of supply and safety of persons are guaranteed by limiting the 

probability of destructive failure. 

3. It reduces equipment repairing activities and costs.  

4. The remaining useful life of a power transformer can be extended. 
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An insulation system using both liquid and paper is often used for power 

transformers. Numerous maintenance operations are meant to prolong the life of a 

power transformer, such as examining the physical state of transformer bushings, 

tanks, and gaskets, while most experts believe that the most essential maintenance 

process is monitoring the equipment insulation. The typical life of a power transformer 

ranges from 20 to 25 years based on various standards organisations (e.g., Institute of 

Electrical and Electronic Engineers (IEEE)) and the lifespan is generally linked to the 

quality of transformer insulation [10, 11].  

Paper insulation made of cellulose, namely Kraft-paper, has typically been 

used to insulate transformer conductors and may also be applied to insulate high 

voltage cables. A good insulating paper has excellent dielectric properties, high 

thermal rating, and minimal moisture absorption. The state of the paper will deteriorate 

throughout the lifespan of a transformer as a result of exposure to high temperatures, 

moisture, oxygen, and a variety of other pollutants present in the insulating system. In 

many situations, paper offers insulation in tandem with oil, in which case, the quality 

of both oil and paper impacts the lifespan of the equipment.  

Oil is utilised in electrical equipment not just for its capacity to offer excellent 

electrical insulation, but also for its great temperature stability. The main function of 

oil is to absorb heat generated by the power transformer winding and core, apart from 

transmitting heat to radiator or tank surfaces of the power transformer aided by either 

forced circulation or natural convection [12, 13]. Such efficient cooling is essential in 

maintaining the power transformer temperature below a specific thermal design 

requirement, primarily to adhere to an acceptable working life of the transformer [12, 

13]. Apart from being a cooling agent, oil functions as an insulator. The oil insulates 

between components at different potentials, including the ability to withstand system 

transient due to lightning surges or switching [12, 14]. Oil significantly contributes to 

the efficiency of solid insulation by preventing spaces between layers of insulation, 

which could contribute to partial discharge [12]. Transformer oil also carries valuable 

diagnostic information about the condition of power transformers [11, 13, 14]. Due to 

the ease with which oil can be accessed with minimum interruption to power 
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transformer operation, sampling and testing power transformer oil is a crucial 

prerequisite to subsequent transformer asset management actions [1].  

1.2 Optical Fibre Sensor (OFS) 

Optical fibre sensor (OFS) measures physical quantity based on its modulation 

on the intensity, spectrum, phase, and polarisation of light travelling through an optical 

fibre [15]. Small size, lightweight, multiplexing capabilities, chemical inertness, and 

immunity to electromagnetic fields are some of the widely known benefits of adopting 

OFS. These sensors often present high sensitivity, excellent linearity, and rapid 

response for real-time monitoring [16]. Studies on OFS, which have begun emerging 

in the 1960s [17], have undergone considerable expansion after decades of intensive 

research work. The principal reasons behind this substantial growth are their inherent 

ability to sense a variety of measurands [18], including refractive index (RI), strain, 

temperature, displacement, moisture, and pressure, to name a few. The OFS enables 

measurements of that variety of parameters in applications, where other sensor 

technologies fail or are simply unsuitable [19]. These main applications include 

biomedical and pharmaceutical applications [16, 20, 21], structural health monitoring 

[22, 23], chemical and biological sensing [24-26], as well as oil and gas exploration 

[27-30].  

A diverse range of OFS have been reported in the literature, such as fibre 

grating sensors [31-33], fibre interferometer sensors [34, 35], fibre multimode 

interference (MMI) sensors [36-38], fibre surface plasmon resonance (SPR) sensors 

[39], microstructures fibre sensors [40], and Brillouin/Raman scattering [41], which 

have been significantly enhanced by embedding sophisticated technologies and 

advanced techniques. Those sensors use various types of specialty optical fibre, 

including few modes fibre [42], silica tube/rod [43], coreless fibre [44], multicore fibre 

[45], and photonic crystal fibre [46]. Most optical fibres are made primarily of silica. 

Silica has high mechanical strength, both tensile and flexural, as well as high flexibility 

and almost perfect elastic behaviour. Additionally, it is chemically stable and 

practically inert [18]. 



 

4 

Fibre MMI sensor is a type of optical sensor that has been proven for its simple 

structure, yet high sensing performance. The basic structure to achieve an MMI device 

is a single-mode-multimode-single-mode (SMS) fibre structure, which is composed of 

a short segment of multimode fibre (MMF) sandwiched between two single mode 

fibres (SMFs). As for RI fibre sensors, an SMS constructed by an MMF is commonly 

insensitive to the change of surrounding RI due to the fact that guided modes are 

confined within the MMF and the surrounding RI does not alter the MMI. One 

common way to make the SMS-based sensor sensitive to the surrounding RI is to etch 

off the cladding of the MMF using hydrofluoric (HF) solution [47-49]. Nevertheless, 

a significant disadvantage of this technique is the difficulty of precisely controlling 

both the etched fibre diameter and the surface roughness [50]. As this technique can 

be easily affected by several environmental factors due to its high reliance on the 

etching solution concentration, temperature, and processing time [51]; fabricated 

sensors using etched MMFs have poor reproducibility. Similar to the role of cladding-

etched MMF in the MMI sensor, a piece of silica rod (SR), which is made of 100% 

pure silica, also can be directly used to serve as the MMI section and the sensing head. 

When the surrounding RI is lower than the RI of SR, the sensing principle of the sensor 

is governed by modal interference in the SR. In the event where the surrounding RI is 

higher than that of the SR, the SR section becomes a leaky waveguide that supports 

continuous spectrum of radiation modes instead of normal guided modes [52], which 

could be useful in certain oil sensor designs.  

1.3 Motivation and Problem Statement 

The rapid advancement in technology coming about by the fourth industrial 

revolution (IR4.0) cannot be disregarded. The assembly of many technologies is 

needed for the implementation of this new industrial paradigm [53]. The role of sensors 

has increased substantially, mainly due to the emphasis of IR4.0 on interconnectivity, 

automation, and real-time data [54]. Real-time data refer to information obtained 

immediately after collection. It is one of the bases of IR4.0 [55] because failures are 

predicted based on real-time information received from sensors deployed in industrial 

applications.  
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Power transformer ageing evaluation based on oil testing is a simple concept 

that is analogous to human health check based on blood tests. The conventional 

techniques for transformer oil degradation control, such as breakdown voltage test and 

dissolved gas analysis (DGA), however, need special bulky equipment that demands 

frequent calibrations and high maintenance cost. These techniques require time-

consuming testing procedures that consume lengthier time for the diagnostics of a 

power transformer. Therefore, such techniques cannot provide real-time diagnostics 

and this can lead to costly operational failure. In power transformer oil ageing 

detection, real-time data can be achieved by deploying a sensor with a remote or 

portable and simple interrogation system to enable in-situ measurement of the oil.  

Optical fibre sensors (OFSs) are an excellent candidate for in-situ real-time 

detection of transformer oil degradation. Although many OFSs have been developed 

for the diagnostics of power transformers in recent years, only a handful of studies 

have focused on optical sensors for the detection of ageing transformer through oil RI. 

Notably, the RI of pure transformer oil exceeds the RI of silica fibre. As transformer 

continues to age, more ageing by-products, including acids and other particle 

contaminations are produced in the oil, which will eventually increase the RI of the oil 

on account of oil composition change [56]. Thus, the degraded transformer oil even 

has higher RI when compared to that of pure transformer oil [56]; signifying the need 

to bridge a huge research and knowledge gap in order to better understand and design 

new high RI sensors for detection of ageing transformer oil using optical fibres. 

Several studies have addressed the use of OFSs to measure high RI and ageing 

transformer oil using different techniques, such as Fabry-Perot interferometry (FPI) 

and lossy mode resonance (LMR) [57]. However, those sensors involve complex 

fabrications and their performances highly depend on additional coating materials. 

Besides, high RI sensing may be realised by exposing MMI structures directly in the 

field of measurement. Studies that employed this technique [52, 58-60] reported a 

common problem, where the cladding portion of the MMF demanded tedious chemical 

etching or the cladding removal process had exposed the core of the MMF to high RI 

environment. Such chemical corrosion makes the sensor become fragile and eventually 

can be omitted by directly employing SR to the sensor structure, thus minimising 

fabrication difficulties and improving safety margins. Additionally, fibre Bragg 

grating (FBG) [61, 62] and long-period grating (LPG) [63, 64] have also been used to 
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detect ageing transformer oil. Despite the multiple existing techniques, none has 

executed sensitivity analysis or performance enhancement despite acknowledging that 

the key indicators commonly used to assess the performance of a sensor include, but 

are not limited to, sensor sensitivity, easiness of fabrication, temperature cross 

sensitivity, and sensor head size [65]. Hence, this present study proposes high RI 

sensors by incorporating SR structure after considering the aforementioned key 

performance parameters. For this purpose, four sensor designs based on MMI 

technique were designed. The sensitivity of the subsequent sensor was enhanced based 

on the sensitivity performance of the current sensor designs. The design that 

demonstrated adequate performance with the most suitable characteristics for in-situ 

measurement to obtain real-time information of the power transformer oil was 

deployed to transformer oil ageing detection application. 

1.4 Research Objectives 

Based on the research motivations and problem statements listed above, the 

research objectives of this study are listed in the following:  

1. To develop new designs of high RI MMI fibre sensor based on silica rod. 

2. To implement a systematic fabrication procedure using in-house facilities. 

3. To evaluate the performance of the designed sensors through experimental 

work, subsequently verify their high RI sensing capability and potential real 

time application in detecting the degradation of transformer oil. 

1.5 Scope of Study 

This study focused on the development of high RI MMI fibre sensor for oil 

sensing based on SR and application in power transformer oil degradation detection. 

The development process began with conceptual sensor design, followed by sensor 
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fabrication, sensor experimentation, and finally, sensor deployment to power 

transformer application. Each distinctive scope of this study is described as follows: 

1.5.1 Conceptual sensor design  

Initially, the development of the sensor design was guided by prior knowledge 

on light behaviour in optical fibre. BeamPROP software was used to numerically 

analyse the sensor structures in drawing form. The findings of the BeamPROP 

analysis, which included field distribution and sensor spectrum, gave initial assurance 

on the functionality of the sensor. The conceptual design of the sensor and its 

numerical simulation steps are described in detail in Sections 3.3 and 3.4, respectively. 

1.5.2 Sensor fabrication 

The fabrication of the sensor was carried out using in-house facilities. Each 

sensor design was brought into a real practical device through systematic fabrication 

procedure to enhance the quality and the reproducibility of the fabricated sensors. The 

sensor fabrication process is detailed in Section 3.5. 

1.5.3 Sensor experimentation 

The experimentation of the sensor was performed to determine the actual 

sensing capabilities of each proposed design. The experimental setup and 

characterisation procedure were the primary components of sensor experimentation. 

Similar setup was applied for each design since the measurands were the same. 

Meanwhile, the characterisation procedure was linked to the procedures executed to 

gather data. Sensor experimentation is elaborated in Section 3.6. 
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1.5.4 Sensor deployment to power transformer application 

Sensor deployment to power transformer application was conducted to 

evaluate the actual performance of the sensor in detecting ageing transformer oil. The 

deployment mainly involved the establishment of remote experimental setup and 

procedure to enable in-situ real-time detection of ageing transformer oil, ageing 

process of transformer oil, and also characterisation procedure. Sensor deployment to 

power transformer oil application is described in Section 3.6.3. 

1.6 Significance of Study 

By exploring the importance of power transformer in power transmission and 

distribution systems, as well as the impact of power transformer failure on the 

community, there will be an expansion in understanding the need of real-time 

information on the condition of power transformer. The role of sensors is undeniably 

significant to achieve the above-mentioned need to ensure reliable electricity 

transmission. In this regard, this present study paves a path of power transformer 

ageing evaluation based on optical fibre, specifically SR, to detect transformer oil 

ageing. The approach of using optical fiber-based sensor not only leads to the 

advantages of simpler and convenient method without the need for any electronic 

equipment but also allows cost savings because it can eliminate the high cost of 

equipment maintenance and regular interval maintenance activities. Besides 

concentrating on the distinctive advantage of the use of OFS for the application, this 

study provides a detailed presentation on the development of the sensors and 

subsequently verified the capability of the developed sensors for an in-situ detection 

of ageing transformer oil to offer real-time information on the condition of the power 

transformer. The analysis presented in this study sheds valuable information for future 

research work in exploring the various sensor designs based on various types of optical 

fibre mainly for high RI or oil sensing. 

Essentially, this study assessed the potential use of SR in oil sensing through 

oil RI monitoring. Since the RI range of the transformer oil exceeds the RI of SR, the 
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developed sensors - so-called high RI fibre sensors – were initially tested with a series 

of high RI liquids ranging at 1.450-1.531. Four sensor designs based on SR structure 

are proposed in this thesis. The first design provides two ways of resolving RI 

responses from the output spectra and serves as the foundation to other designs. The 

second design poses a simpler structure and manages to simultaneously measure high 

RI and temperature. The third design achieves high RI sensitivity, ~ 5-fold and ~ 3-

fold greater than the respective first and second designs but has cross sensitivity to 

temperature. Therefore, the temperature compensation for this design is attained by 

cascading the sensor structure to an MMF. Lastly, the fourth design that presents the 

simplest structure offers a full-intensity based RI sensor with adequately high RI 

sensitivity. This design demands no temperature compensation and can be applied with 

a single wavelength intensity-based setup for remote detection. Therefore, it is selected 

to be deployed in power transformer applications to detect degradation of power 

transformer oil. 

1.7 Thesis Overview 

This thesis presents the development of fibre RI sensors to detect ageing 

transformer oil. Four sensors were developed based on guided mode interference 

(GMI) and leaky mode interference (LMI) principles. In Chapter 1, the preliminary 

introduction of power transformer and OFSs are presented. Following that, motivation 

and problem statement of the study are discussed, with an emphasis on the current 

issues addressed by this research work. Based on the problem statement, the research 

objectives are outlined. The scopes of study and significance of this research work are 

explained in this chapter. Next, Chapter 2 introduces the comprehensive literature 

review on conventional techniques for transformer oil degradation control. The general 

overview of the type of optical fibre used in this work is included. In this chapter, 

theoretical background, such as the fundamental of GMI and LMI, is explained. A 

review of various available OFS configurations for detecting high RI and ageing 

transformer oil is presented. Comparison among sensor structures, techniques applied, 

and performance of the reported sensors is carried out and tabulated.  
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Chapter 3 discusses the methodology implemented for the main research 

components, including conceptual design, numerical simulation, fabrication, 

experiment setup, and experiment procedure. Chapter 4 reports the numerical 

simulation results for all sensor designs. The results comprise of field distribution for 

all sensor designs, sensor spectrum for Design 1 only, and analysis on different 

diameters of SR for specific sensor designs. 

Results and analysis of the experimental work for Designs 1 to 4 sensors are 

reported in Chapter 5. For Design 1, the experimental results were analysed based on 

two aspects; wavelength and intensity, prior to the dip and the first peak of the sensor 

spectrum, respectively. For Design 2, a short section of SR sandwiched between two 

SMFs was cascaded to an FBG to achieve simultaneous measurement of high RI and 

temperature. A larger diameter of SR that exceeded the core and cladding of MMF 

was applied in Design 3 to achieve higher RI sensitivity. For this design, the sensitivity 

of the sensor was analysed based on the output power at the dip of the sensor spectrum. 

Design 4, which presents the simplest structure with remote setup, disregarded 

temperature compensation. It offers full intensity-based RI sensor with the highest 

suitability to detect ageing transformer oil. The ability of the sensor to detect the ageing 

of power transformer oil has been proven in this study. Lastly, Chapter 6 presents the 

conclusion, contributions, and some recommendations for future work endeavour. 
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