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ABSTRACT 

Early and late blight diseases lead to substantial damage to vegetable crop 

productions and economic losses. As a modern solution, machine learning-based plant 

disease assessment aims to assess the disease incidence and severity through the 

disease region of interest (ROI) and its extracted features. In the case of existing 

conventional classifier methods, extracting the features involves generalized ROI 

segmentation that loosely follows the disease inference. As a result, accuracy is 

reduced, and the fuzzy boundary region that carries potential properties for improving 

feature characterization capability is truncated from the ROI. Besides, most of the 

existing practices extract only the global features, This leads to redundant and 

extensive feature vector, which causes increased complexity and underperformance. 

Furthermore, individual lesion severity is not considered in the assessment. This thesis 

addresses the issue of the ROI segmentation by using color thresholding based on 

ratios of leaf green color intensity to incorporate the fuzzy boundary region, denoted 

as extended ROI (EROI). Secondly, the issue of the feature extraction is addressed by 

the proposed localized feature extraction method to reduce complexity and improve 

disease classification performance. Based on the color and texture morphological 

properties of the individual lesions within the EROI, color coherence vector and local 

binary patterns features are extracted. As a result, a pathologically optimized feature 

vector is obtained, which is used to build a support vector machine classifier to classify 

between the disease types of early blight, late blight, and healthy leaves. lastly, a 2-tier 

assessment is proposed. The disease type classification is given as the first tier, while 

the leaf lesion area ratios of the individual lesions are given as severity quantification 

for the second tier. Overall, the proposed EROI segmentation method reduced under-

segmentation by up to 80%. The proposed optimized feature reduced the execution 

run-time by up to 50% and achieved an average classification performance of up to 

99%. Finally, the quantified severity is in close agreement with the ground truth by 

achieving an average accuracy of 93%. 

 

 

 



vi 

ABSTRAK 

Penyakit hawar awal dan hawar akhir menyumbang kepada kerosakan besar 

hasil tanaman sayur-sayuran dan impak kerugian ekonomi. Sebagai penyelesaian 

moden, penilaian penyakit tumbuhan berasaskan pembelajaran mesin bertujuan untuk 

menilai insidens dan keparahan penyakit melalui kawasan penyakit (ROI) dan ciri-ciri 

yang diekstrak daripadanya. Daripada pengelas konvensional sedia ada, pengekstrakan 

ciri melibatkan segmentasi ROI umum adalah berdasarkan inferens penyakit secara 

kasar. Akibatnya, ketepatan menurun dan kawasan sempadan kabur yang berpotensi 

untuk meningkatkan kemampuan pencirian terpangkas daripada ROI. Selain itu, 

kebanyakan amalan sedia ada hanya mengekstrak ciri global. Ini membawa kepada 

vektor ciri yang bertindih dan ekstensif, menyebabkan pertambahan kompleksiti dan 

prestasi rendah. Tambahan pula, keparahan belur individu tidak dipertimbangkan 

dalam penilaian. Tesis ini menangani masalah segmentasi ROI tersebut dengan 

menggunakan pengambangan warna berdasarkan nisbah intensiti warna hijau daun 

untuk mengambilkira kawasan sempadan kabur. Keduanya, isu pengekstrakan ciri 

ditangani dengan mencadangkan kaedah pengekstrakan ciri secara lokal bagi 

mengurangkan kompleksiti proses dan meningkatkan prestasi klasifikasi penyakit. 

Berdasarkan sifat morfologi warna dan tekstur kawasan belur individu dalam EROI, 

ciri vektor koheren warna dan corak binari tempatan diekstrak. Hasilnya, vektor ciri 

yang dioptimumkan secara patologi diperoleh, seterusnya digunakan untuk membina 

pengelas mesin vektor sokongan bagi mengelas antara jenis penyakit hawar awal, 

hawar akhir dan daun sihat. Yang terakhir, 2 peringkat penilaian dicadangkan. 

Klasifikasi jenis penyakit dilaksanakan pada peringkat pertama, sementara nisbah 

kawasan belur daun pada belur individu dilaksanakan sebagai pengkuantitian 

keparahan untuk peringkat kedua.  Secara keseluruhannya, kaedah segmentasi EROI 

yang dicadangkan telah mengurangkan segmentasi rendah sehingga 80%. Ciri lokal 

yang dicadangkan telah mengurangkan masa jalan pengekstrakan sehingga 50% dan 

mencapai prestasi klasifikasi purata sehingga 99%. Akhirnya, tahap keparahan yang 

diukur adalah hampir dengan kebenaran asas dengan mencapai ketepatan purata 93%. 
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CHAPTER 1  

INTRODUCTION 

1.1 Introductory Background 

There is over 37% of the world's total land surface that is being cultivated for 

crop production [1], and one of the most significant scientific researches in precision 

agriculture is plant disease assessment [2-5]. According to the Food and Agriculture 

Organization data, the human population is said to reach over 10 billion by 2050, with 

over 60% living in Africa and Asia [6]. Food production must effectively double from 

current levels each year to sustain the food demand [7]. This can be realizable either 

by the amount of cultivation of land or by enhancing throughput through the adoption 

of precision farming [8]. It is a key component that assesses variabilities in plants for 

better crop productivity through agricultural technologies [2, 3]. These variabilities are 

the negative impact of growth and production due to climate conditions (abiotic stress) 

and living variables (biotic stress). Over the past century, precision farming has gone 

through an agricultural revolution with rapid advancements in crop breeding and new 

methods of genetic modification for sustainability [9]. In effect, and as determined by 

the balance of this revolution, global food security has now become among the 

foremost international issue in recent years due to crop losses [10, 11]. For centuries, 

losses due to biotic stress such as insects, viruses, and fungi have been increasingly 

persistent issues, where 70% to 80% of these losses are attributed to pathogens [11, 

12]. Some diseases caused by these pathogens, such as the early and late blight, are 

challenging to control and can lead to famine once they reach a certain level of severity 

[11, 13]. Rapid climate change and varying weather conditions contribute significantly 

to the spawn, mutation, and spread of various plant diseases. Notably, viral plant 

diseases are a great menace affecting both home gardeners and large productions [10, 

11, 14]. 
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As a crucial part of precision farming, the assessment of plant diseases, referred 

to as modern phytopathometry, primarily deals with the assessment of the diseases in 

plants by using different methods of symptom observation [11, 15, 16]. The symptom 

area on the plant unit, typically referred to as a region of interest (ROI), is the primary 

identifier of disease incidence. Thus, the observations involve the classification of the 

disease type and the measurement or quantification of its severity based on the ROI. 

The traditional methods of assessment involve using biochemical and molecular 

systems and innovative methods such as using biomarkers and remote sensing, which 

can have a direct or indirect way of symptom observation. 

The traditional indirect methods include serology and molecular-based 

methods, often carried out in the laboratory, while the direct methods include 

biomarker and plant properties-based [9, 12, 17]. On the other hand, direct and indirect 

innovative methods identify the pathogens-related plant diseases through various 

parameters such as biomarkers and volatile organic compounds (spores) released by 

infected plant units [9, 17]. Other tools such as biosensors and optical cameras are used 

to encode the parameters into other forms of information data such as images, which 

can then be interpreted using standard and innovative systems of assessment.  Some 

of the standard systems include the widely regarded pictorial or descriptive keys [9, 

18]. Reasonably experienced individuals can interpret the encoded data into different 

findings ranging from disease incidence, type, severity, and the effect on crop growth. 

Over the last 80 years, different types of these standard area diagrams (SADs) are 

traditionally used for assessment and have now been combined with innovative image 

analysis algorithms to offer accurate disease assessments [12, 19]. These new 

innovative technologies offer flexible opportunities to assess plant diseases with a 

prompt response and greater objectivity in terms of precision, reliability, and accuracy. 

The new innovative machine vision systems are non-destructive systems of 

plant disease assessment that efficiently assess plant diseases at advanced levels and 

with greater objectivity using pattern recognition [9, 20]. They have been increasingly 

used over the last 30 years [16, 21, 22]. Traditional direct assessment of diseases based 

on the ROI properties is mimicked by the machine learning (ML)-based methods. The 

disease classification is typically performed through the extraction of a feature vector 
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and ML classifiers, and the determination of severity through ROI quantification  [4, 

9, 20]. The feature vector contains feature descriptors, which are typically extracted 

from the ROI and used to build the ML classifier for classification. These methods can 

provide information on disease assessment to help control the spread of plant diseases, 

with little or no human supervision. Visible-light images are among the main raw 

materials in using such assessment methods [3, 4]. These are images of diseased fields, 

plants, or leaves, sourced from either satellite imagery, sensors, or even cameras 

positioned in fields. Several research activities that have been conducted are towards 

the development of such technologies to create practical tools for a large-scale and 

even real-time disease assessment [4, 22-24]. Hence, the ML-based methods have now 

become the driving forces being used to close the gap that exists between traditional 

and innovative systems of plant disease assessment.  

 

1.2 Research Background 

The four dominant solanaceous plant species widely considered as vegetables, 

which include the tomato, potato, pepper, and eggplant, are rich sources of vitamins 

and minerals vital to human health [25, 26]. These plant species represent more than 

60% of horticultural production in Europe alone and about 39% globally. They are 

also considered among the world's most important crops [26] but are also highly 

susceptible to diseases due to large productions and adaptability. Hence, lately, much 

attention is given to plant research within this domain. Therefore, advanced ML-based 

plant disease assessment methods have become imperative. However, not many of 

these methods for the early and late blight viral disease category exist. 

According to the literature, there are two main approaches in implementing the 

ML-based methods, which are deep learning classifier (DLC) and conventional 

classifier (CC) [21, 22, 27]. The principle process in both approaches involves three 

stages, of which feature extraction is the most crucial that determines the performance 

of the entire method because it relates to how the disease patterns are identified, 

learned, or interpreted [20]. Correct identification of the ROI leads to a good feature 
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vector and improved classification [4, 5]. Current studies in this context are focusing 

on solutions to improving performance via the feature extraction stage. These include 

enhancement of feature learning in the DLC methods and improving the accuracy of 

ROI segmentation and the quality of feature vectors in the CC methods. However, 

another difficult challenge to address is the significant degree of similarity that exists 

between some viral disease symptoms, such as that of early and late blight [28, 29]. In 

such cases, there is increased difficulty and subjectivity in the correct identification 

and segmentation of the ROI. Furthermore, most of the existing researches are focused 

mainly on the disease classification aspect of the plant disease assessment without 

consideration of severity quantification [17, 30]. Thus, there is still a gap between the 

traditional real-world methods of plant disease assessment and the existing ML-based 

methods. 

 

1.3 Problem Statement 

There is a lack of precision in the way the ROI is segmented, which is attributed 

to the issue of symptoms to healthy tissue transition boundaries [31, 32]. Viral diseases 

such as early and late blight have symptoms that are often similar and observe blur 

cross-over borders that slowly transition into the healthy tissue [28, 33]. These fading 

transitions are the fuzzy boundary regions separating the ROI and the healthy tissue. 

It is neither a healthy or disease tissue but characterized as a fuzzy greenish zone for 

which either classification (healthy or diseased) can be applied [32]. These regions 

significantly affect the boundary limit of segmentation as the darker symptoms are 

generally prioratized in existing segmentation methods. As a result, the fuzzy 

boundary region is often discarded by the genaralized ROI segmentation algorithms 

and affect the effectiveness of the ROI in producing quality feature vectors for disease 

classification. However, the research in this study hypothesized that the fuzzy 

boundary region carries some information that will improve the disease 

characterization capability of the extracted features. Hence, different levels of 

subjectivity and disparate accuracy still exist, mainly due to loosely characterized 
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algorithm implementations on the true pathological inference used in traditional plant 

disease assessment methods [30, 31]. 

Even with good ROI segmentation, typical ML-based methods extract the 

disease patterns as global features from the ROI as a whole [4, 34, 35], often resulting 

in an extensive feature vector with 100s of descriptors, most of which are redundant 

and negatively affect disease classification performance. As a result of this, low 

accuracy still exists. In such cases, other existing works use complex optimization 

algorithms to optimize the feature vector, which then reduces the feature vector size 

and some improved performance. Even then, the optimization compounds on the 

method complexity often without significant performance improvement. 

As practiced by Raters, severity quantification is typically based on the 

quantified progressive area of ROI lesion in comparison to the total area of the leaf 

[19]. Most of the existing ML-based methods are not in close agreement to this 

standard and have not given actual value for agreement comparison with the traditional 

methods [2, 17, 36, 37]. Hence, the synergy between ML-based methods and plant 

pathology for severity quantification is still lacking. Furthermore, regardless of its 

importance in post-processing [16], the severity quantification based on individual 

ROI lesion is not being prioritized. Therefore, using optimized features and localized 

ROI, this research aims to provide an automatic 2-tier plant disease assessment method 

for improved classification performance and individual lesion severity quantification. 

1.4 Research Questions 

1. Early & Late blight symptoms have significant degree of similarity between them 

and exhibit the fuzzy boundary region across the vegetable species. Consider the 

fuzzy bounbary region as part of the ROI, how can the extended ROI be segmented 

and localized? 

 

2. The decision-making ability of experts is often not properly portrayed in 

characterizing the EB and LB diseases and providing accurate severity. By taking 
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advantage of the localized EROI, how can knowledge from expert pathologists’ 

point of view be implemented for extracting optimized features to improve 

characterization while maintaining no more than 15 features with less complex 

algorithms? 

 

3. Which ML classifier Model architecture determines the computational power, and 

training data are also extremely vital in the relevance of image processing-based 

plant disease detection algorithms. Using the acquired features and localized 

regions, which machine learning model can best be used to provide improved 

classification performance and individual lesion severity? 

1.5 Objectives of Study 

 The hypothesis derived in this study is that the fuzzy boundary region carries 

important disease characterization information for feature optimization and 

improved classification performance. Hence, the research objectives are given as 

follows: 

 

1. To develop ROI segmentation and lesion localization algorithms that 

incorporate the fuzzy boundary region based on the pathological inference of 

vegetable early and late blight disease symptoms for feature extraction 

optimization. 

 

2. To improve performance and reduce complexity in the ML classification using 

a pathologically optimized feature vector based on localized feature extraction 

and the morphological properties of the ROI lesions. 

 

3. To develop a 2-tier assessment method for disease classification with three 

severity levels (mild, moderate, severe) of the early and late blight diseases 

based on the leaf lesion ratio of the localized lesion regions. 
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1.6 Scope of Study 

The scope of the study includes the following: 

1. The study in this thesis uses visible light image data from the PlantVillage 

dataset [38], which comprises over 54,000 leaf images of several plant species. 

Only the 2,400 pre-processed images of potato and tomato healthy and diseased 

(early blight and late blight) leaves are considered. The illumination is 

uniformly fixed in all images. 

2. K-nearest neighbor (K-NN), Naïve Bayes, and Support Vector Machine 

(SVM) ML classifiers are used as the CCs for implementation. AlexNet, 

ResNet-50, and NasnetLarge are used as the DLCs for benchmarking. 

3. The disease severity is given in three levels of mild, moderate and severe based 

on leaf lesion ratios of the localized lesion regions. All implementations of the 

proposed algorithms in this study are applied using the MATLAB software. 

 

1.7 Research contributions 

The contributions of this study are stated as follows: 

1. Development of an algorithm for ROI segmentation and individual lesion 

localization with the incorporation of the fuzzy boundary region based on the 

pathological inference of vegetable early and late blight plant diseases.  

 

2. The conceptualization and implementation of a localized feature extraction 

method with respect to individual lesion region morphological properties for 

minimization of the feature vector length and improved ML-based disease 

classification performance. 
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3. The acquirement of disease severity based on quantified proportions of 

individual leaf lesion ratio (LLR) for 2-tier assessment. 

1.8 Thesis Outline 

This thesis has been organized into five chapters. The content of each chapter 

is organized as follows: 

Chapter 1: General introduction to precision farming and the effects of plant 

diseases, as well as the methods of plant disease assessment, are given in this chapter. 

The research background, problem statements, objectives, scope, and research 

contributions with respect to the undertaken research are also presented. 

Chapter 2: The literature review on the pathological background of early and 

late blight diseases, their characteristics relative to the vegetable plants is presented 

along with the traditional methods of the disease assessment. Techniques and methods 

carried out by previous researchers are also discussed in this chapter, which includes 

progresses achieved and existing problems. 

Chapter 3: This chapter details the proposed ROI segmentation and 

localization, localized feature extraction, and severity quantification methods. 

Following the established analogies in Chapter 2, the different techniques, algorithms 

and methods used in development of the study methodology are presented. 

 Chapter 4: The detailed implementation results, the analysis, and discussions 

of the proposed 2-tier ML-based plant disease assessment method are presented in 

this chapter. Benchmarking and performance comparison with other methods and 

existing works are also given in this chapter. 

 

 Chapter 5: This chapter concludes the thesis along with suggestions for future 

work based on the derived analogies and obtained results. 
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