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ABSTRACT

Standalone photovoltaic (PV) systems are widely considered as an alternative

source of utility grid due to the notable merits such as inexhaustible solar energy,

pollution and noise free power generation, ease of assembly and relatively low costs.

However, the major drawbacks of these systems are their environmentally-dependent

characteristics and performance degradation due to sudden load variations. In order to

address these challenges, two objectives must be met simultaneously for consistent and

reliable output of PV system. First, the efficient tracking of maximum power point of the

PV array in changing environmental conditions and secondly, the smooth conversion of

the direct current (DC) input voltage into the desired level of alternating current (AC)

output voltage in the presence of load variations. In this thesis, a standalone PV system

with two independent control strategies have been presented. At the first stage, a hybrid

non-linear maximum power point (MPPT) technique based on the perturb and observe

and integral back-stepping control algorithm is proposed to extract the maximum power

from the PV array. The integral action in the MPPT algorithm significantly reduces

the oscillations in the PV array output that is fed to the DC-AC inverter at the second

stage. Then, at the second stage, a dynamic disturbance rejection strategy based on

super twisting sliding mode control (ST-SMC) has been proposed to regulate AC power

for a variety of loads at the system output. The PV inverter load parameter disturbances

and their effect on the system dynamics are aggregated into a perturbation, which is

then estimated online by a newly designed higher-order sliding mode observer. The

estimated perturbation is then compensated by the ST-SMC such that a better control

performance could be achieved with significant robustness against load disturbances.

The proposed control algorithms are evaluated and benchmarked with the existing back-

stepping controller (BSC) in terms of dynamic response, efficiency, steady-state error

and total harmonic distortion (THD) handling capability under varying environmental

and load conditions. The designed control strategy reaches the steady-state in 0.005 𝑠𝑒𝑐

and gives a DC-DC conversion efficiency of 99.85% for the peak solar irradiation level

as compared to the 0.008 𝑠𝑒𝑐 and 99.7% for BSC. The AC-stage steady-state error is

minimized to 0.005𝑉 compared to 0.51𝑉 of BSC whereas, THD is limited to 0.07%

and 0.11% for linear and non-linear loads respectively for the proposed algorithm as

compared to 0.34% and 2.04% for BSC.
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ABSTRAK

Sistem fotovolta (PV) kendiri dianggap sebagai satu sumber alternatif kepada

pembekalan kuasa grid kerana kelebihan yang dimiliki seperti bekalan sumber tenaga

solar berterusan, penghasilan tenaga bebas dari pencemaran dan hingar, mudah

dipasang dan relatifnya lebih murah. Bagaimanapun, kelemahan utama sistem ini

adalah kebergantungan kepada alam sekitar dan penurunan prestasi disebabkan oleh

perubahan beban. Untuk mengatasi permasalahan ini, dua okjektif mesti dipenuhi

secara serentak bagi memastikan keluaran sistem PV yang konsisten dan dipercayai

dapat dihasilkan. Pertama, penjejakan titik kuasa maksimum (MPPT) yang efisen

apabila berlaku perubahan alam sekitar dan kedua, penukaran kuasa masukan arus

terus (DC) kepada keluaran voltan arus ulangalik (AC) yang rata dihasilkan dalam

keadaan perubahan beban. Dalam tesis ini, sistem PV dengan dua strategi kawalan

tidak bergantung diberikan. Di peringkat pertama, teknik hibrid tak linear MPPT

berasaskan kawalan ganggu dan lihat dan pengamiran langkah-belakang dicadangkan

untuk mendapatkan kuasa maksimum dari tatasusun PV. Pengamiran dari algoritma

MPPT ini mengurangkan ayunan dengan berkesan dalam keluaran PV yang seterusnya

disuap ke penyongsang DC-AC di peringkat kedua. Di peringkat kedua, strategi

penolakan gangguan dinamik berasaskan kawalan ragam gelincir putaran tinggi (ST-

SMC) dicadangkan untuk melaras kuasa AC di keluaran sistem pada beban yang

pelbagai. Gangguan bebanan pada penyongsang PV dan kesannya kepada sistem

dinamik disatukan sebagai satu kelas gangguan dan seterusnya dianggar secara atas

talian oleh pemerhati ragam gelincir peringkat tinggi. Anggaran gangguan ini

akan diimbangi menggunakan ST-SMC dimana prestasi kawalan yang baik dapat

dicapai dengan ketegapan sistem kepada perubahan beban. Algoritma kawalan yang

dicadangkan dinilai dan dibandingkan dengan pengawal langkah-belakang (BSC)

dari segi tindakbalas dinamik, kecekapan, ralat keseimbangan dan jumlah gangguan

harmonik (THD) dibawah perubahan alam sekitar dan keadaan beban. Strategi kawalan

yang dicadangkan menghasilkan keseimbangan dalam 0.005 saat dan kecekapan

penukar DC-DC sebanyak 99.85% untuk keseluruhan profil radiasi berbanding 0.008

saat dan 99.7% oleh BSC. Pada peringkat AC, ralat keseimbangan dikurangkan kepada

0.005𝑉 berbanding 0.51𝑉 oleh BSC. Selain itu THD dihasilkan adalah pada 0.07%

untuk beban linear dan 0.11% untuk beban tak linear berbanding 0.34% dan 2.04%

pada beban linear dan tak linear untuk BSC.
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CHAPTER 1

INTRODUCTION

1.1 Background

A growing world population and the increase of industrialization have resulted

in a exponential increase in energy demand. A significant amount of global energy is

produced by fossil fuels, such as coal, oil, and natural gas. However, fossil fuel sources

have major drawbacks, such as fluctuating prices, limited supply and environmental

pollution [1]. Global warming has been intensified due to carbon dioxide emissions

resulting from the combustion of fossil fuels. These fossil fuels are expected to generate

about 40.4 giga tons of CO2 by 2030 [2] which will affect the climate by creating the

greenhouse effect. In spite of climate change, fossil fuels are not evenly distributed

around the globe, resulting in geopolitical conflicts. In addition, the energy generated

from this fossil fuel poses safety risks as well, such as leakages or explosions during

their combustion. In the present context, renewable energy sources (RESs) are viewed

as a viable option for replacing conventional fossil fuel plants in order to increase energy

production and to overcome environmental pollution. In the future, RESs such as wind,

geothermal and solar energy represent natural, free, and inexhaustible resources that are

expected to dominate the energy sector. Over the past few years, most countries around

the world have been motivated to increase their use of renewable energy. For instance,

by 2030, the European Union aims to generate 32% of its energy from renewable

sources, with the goal of reaching 100% by 2050 [3].

Due to the sustainability, clean, and safe nature of solar photovoltaic(PV), it

is regarded as one of the most appealing renewable energy resources. It is estimated

that about 1.8 × 1011𝑀𝑊 of solar radiation reaches the surface of the earth, which is

way greater than the global electricity demand [4]. Additionally, it can be installed

anywhere with suitable weather conditions and the desired generation capacity. Reports

from the international renewable energy agency indicate that solar energy’s capacity

has risen exponentially over the last decade [5] as presented in Figure 1.1. Another
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Figure 1.1: Solar energy statistics [5]

reason behind the rapid expansion of the PV system is that the average cost of installing

the PV system has declined dramatically over the last decade as illustrated in Figure 1.2.

Though, PV systems are growing at a rapid rate worldwide, factors such as stability,

reliability, and efficiency have proven to be major barriers to their introduction to the

market.
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Figure 1.2: Solar energy average cost statistics around the globe [5]
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1.2 PV based generation system

Generally, PV systems fall into two categories: grid-connected PV systems and

standalone PV systems as shown in Figures 1.3 and 1.4, respectively. In grid connected

PV system the generated energy is fed directly to the national grid whereas, the PV

systems that deliver power directly to the load are known as standalone PV systems.

In general, when the PV system is connected with grid, the main aim is to control

the active and reactive power under the normal and faulty grid conditions [6] while

in standalone mode, voltage and frequency control under variable load conditions are

the prime objectives [7, 8]. In this study, the later category is put in focus, which is

widely deployed around the globe due to its ease of installation at remote locations. A

standalone PV system consists of a PV array, power conversion devices and end-user

load equipment. Therefore, electricity generated by this system is delivered directly to

the consumer during sunny weather conditions.

Figure 1.3: PV based grid-connected generation system

To convert DC photovoltaic energy into AC electricity, power converters are

essential. Power converters function in two fundamental ways; at the first stage, they

ensure that the maximum power is extracted from the solar cells, which is known as

maximum power point (MPP) extraction. Whereas, at the second stage, it is ensured that

the power converter outputs must match the grid output in terms of stability, frequency

and phase in order to be considered as a substitute for the utility grid [9].

3



Figure 1.4: PV based standalone generation system

However, the major drawbacks of PV systems are their highly non-linear

characteristics and low efficiency that can be in the range from 9 to 16% only [10]. To

overcome these challenges, a number of solutions in the literature have been proposed

for improving PV system performance. The purpose of using these solutions is to

achieve maximum efficiency from the PV array in a shorter response time. The

maximum power point tracking (MPPT) techniques represent one of the most common

solutions to reach and maintain the optimal operating point in the PV module.

1.2.1 Maximum power point tracking with DC-DC converters

The output and efficiency of the PV system depends heavily on environmental

conditions like solar irradiation level and temperature. As a result, the optimal output

point at which maximum power can be obtained change its position continuously as

shown in Figure 1.5. Several solutions are proposed in the literature to improve the

performance and efficiency of PV systems in order to achieve a consistent and reliable

power output particularly, in changing environmental conditions. The maximum power

point tracking (MPPT) techniques represent one of the most convenient solutions to

reach and maintain the optimal operating point in the PV module. These techniques

use DC-DC power converters and a control algorithm that generates the duty ratio

of the power converter in such a way that the PV array and converter impedance

are matched and the maximum power can be extracted. The most common MPPT

algorithms employed in the literature include perturb and observe P&O and incremental
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Figure 1.5: Maximum power point tracking

conductance (IC) technique. In P&O based algorithms, the output voltage of PV module

is perturbed and the change in output power, Δ𝑃𝑜𝑤𝑒𝑟, is observed. If the Δ𝑃𝑜𝑤𝑒𝑟 > 0,

then the voltage will be further perturbed in the same direction and vice versa [11]. In

[12] the P&O parameters are optimized at the same pattern to generate the duty ratio for

the converter switch to attain MPP. In [13], the P&O algorithms generate the reference

for PI controller to generate the control input for boost converter to extract MPP. As the

algorithm makes periodic perturbations in voltage and duty ratio of the boost converter

to track the MPP, therefore it creates an oscillatory operating point. To overcome the

oscillatory nature of MPP incremental conductance (IC) algorithm has been presented in

[14, 15, 13]. The strategy utilizes the current and voltage measurements to determine

the trajectory of working point thus, gives better performance for uniform whether

conditions. However, whenever the atmospheric conditions are changing the tracking

becomes exponentially harder because of continuous change in the slope of the PV curve

[16]. Although, in terms of oscillatory response, IC method performs better than P&O

algorithm but the cost of better performance is increased complexity and the execution

of larger number of instructions to accurately perform the necessary calculations.

Both of these classical algorithms have the common problem of oscillation around the

operating point in the steady-state if there is a change in the surrounding environment

[17]. These oscillations in the output not only causes power losses in the DC stage but

also effects the output of the next AC stage when used in coupled mode.

Another class of MPPT algorithms is intelligent controller such as fuzzy

logic and artificial neural network (ANN) based algorithm have been proposed in

[18, 19] to track the maximum power point. These non-linear techniques are not only

5



robust and efficient but also do not require any system knowledge to perform their

operation. However, on the downside, the performance of fuzzy based systems and its

computational complexity rely on adapted fuzzy model based on the system’s behavior

in varying environment [20]. On the other hand, ANN required rigorous training

mechanism for the algorithm to perform their operation under varying environmental

conditions.

In addition to the techniques listed above, other hybrid non-linear tracking

techniques have been proposed to track the MPP with improved accuracy. In these

techniques the conventional algorithms such as P&O are used for reference generation

whereas, non-linear controllers such as sliding mode control (SMC) [15, 21] and back-

stepping control (BSC)[9] are used to control the operation of DC-DC converter to

extract the MPP. SMC is well suited for variable structure converter system and inherits

the properties of robustness and tolerance against external disturbances however, it

suffers from chattering. The BSC proved stable and efficient for non-linear systems

because of its rigorous stability criterion design nature. In [11], BSC has been presented

for MPP tracking with buck converter whereas, similar control scheme has been adopted

in [9] for boost converter. Although the algorithm proves itself in robustness and

efficiency but still there are oscillations in the output because of its recursive nature

and the requirement of derivative of virtual states. The steady-state oscillations around

MPP can be reduced by including the integral action during the BSC design process.

Once the MPP is tracked, the optimal output power obtained at the first DC-DC

converter stage is fed to the second DC-AC voltage source inverter (VSI) stage where,

the inverter is responsible for the conversion of DC power to AC power that is a matched

alternative to the power supplied by the utility grid in terms of amplitude, phase and

frequency.

1.2.2 Voltage source inverter (VSI)

Inverter is a semiconductor device that is known for the conversion of DC power

into AC power. The output of the inverter is an AC signal with amplitude, frequency

and phase which is controlled through a controller to achieve the desired signal level. A

generalized structure of DC-AC inverter with DC input (1𝑠𝑡 stage output) and variable
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AC output is shown in Figure 1.6. Inverters can be classified into two categories

depending upon the type of input. If a constant current source is present at the input

then, it can be termed as current source inverter (CSI) and if a DC voltage source is

present at the input then it can be classified as VSI. The VSI is extensively used in

Figure 1.6: Simple structure of VSI

Figure 1.7: PV based house-hold generation system

PV-based power generation systems and it must be controlled appropriately to ensure

proper operation as, the output of a VSI suffers from distortion when the input DC

voltage is not constant or the inverter load is variable. For instance, in PV based system

where the solar energy is converted into AC power through inverter as shown in Figure
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1.7, the DC output of the solar panels depends upon various factors such as radiation

level, temperature and angle of radiation impact. Thus, the PV output is not constant

and the controller is designed for the inverter to convert this varying DC to desired AC

level. Therefore, the inverter control for varying DC input and changes in load is an

important research area because of its vast impact on PV based industrial applications.

1.3 VSI control objectives

A standalone PV based generation system requires the inverter to provide stable

and smooth sinusoidal output with fast transient response, minimal steady-state errors

and low total harmonic distortion (THD). In order to achieve these objectives, a smooth

continuous control signal is essential. Additionally, when non-linear loads like rectifiers

or motors are applied to the generation system, they also draw reactive power along

with active power which leads to the harmonic distortion on the supply line.

As the inverter system is subjected to the variety of external disturbances like

input variations, measurement noises, variable linear and non-linear loads, thus, the

output waveform of VSI experience distortion and the controller is essential to provide a

pure sinusoidal waveform at the output with desired amplitude and frequency. Therefore

VSI controller is designed to perform the following tasks:

1. Output voltage regulation. For a controlled VSI, the output voltage should

track the desired sinusoidal reference voltage to ensure minimum tracking error.

2. Suppressing the influence of external disturbances. Disturbances such as

load or source variations may effect the system performance thus, in case of any

external disturbance, the controller is expected to regulate the output at desired

level by compensating or rejecting the effect of those disturbances.

3. Fast dynamic response with small steady-state error. The controller should

have fast response in attaining the reference value and the difference between

the reference value and controlled output must be negligible.

4. To reduce the harmonic distortion. When subjected to the non-linear loads

such as rectifiers or motors, the harmonic problem rises that needs to be

suppressed by the controller.
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1.4 Traditional control schemes for VSI and their limitations

Various control techniques have been presented in the literature to control

the VSI for desired performance however, the factors such as controller ability

to accommodate system non-linearities, input voltage & load parameters variation

sensitivity and complex gain tuning mechanism of traditional controllers does not

guarantee the efficient operation of the VSI [22]. In the framework of standalone PV

inverter the main purpose of controller is to produce a pure sinusoidal output waveform

with desired frequency and amplitude with minimized steady-state error and low THD

[23].

At present, there are two types of control strategies being developed to

achieve these objectives, namely linear control and nonlinear control. In the former

category, proportional-integral (PI) control [24] and hysteresis control [25, 26] are

the most common control schemes in inverters due to their advantage of the ease

of implementation. As long as the system is linearized at the equilibrium point,

these control strategies can provide satisfactory performance. However, their control

performance may degrade as the PV source usually exhibits a strongly nonlinear

electrical behavior resulted from the variation of solar irradiation and surrounding

temperature together with the fact that the inverter may be subjected to sudden load

variations [22].

In the later category, in order to obtain the rapid dynamic response from VSI

various robust and non-linear techniques such as 𝐻∞, model predictive control (MPC),

artificial intelligence (AI) & neural network (NN) based techniques and sliding mode

control (SMC) has also been studied. 𝐻∞ and MPC control methods give robust

performance when applied to VSI [27, 28, 29] by optimizing the system based on

selected weighing factors and can accommodate various input and load constraints

in its design. However, its implementation requires the complete knowledge of the

PV system states, constraints on the system and weighing factors [30]. AI based

techniques such as fuzzy and NN has been applied to VSI in [35][36] for rapid transient

response. Although, these techniques are robust, model independent and insensitive to

load parameter variations [31] however, in these techniques, database of control rules
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are tabulated or the controller is trained through rigorous simulations for all maximum

possible loading conditions [30] which make its implementation a challenging task.

In terms of properties such as model independence, insensitivity to load

parameter variance and input disturbances, SMC gives fast dynamic response with offset

free tracking errors when applied to VSI [32]. However, the major challenges while

designing SMC for VSI is its discontinuous nature and over conservative gain selection

originated from the use of upper bound of disturbances in the system that results

in waveform distortion and high THD in the inverter output. Super twisting sliding

mode control (ST-SMC) has been introduced in [33, 34] as a way of overcoming the

discontinuous nature of SMC for varying load parameters and environmental conditions

however, the switching gain of the STC is still kept greater than the upper bound of the

disturbances.

The inherent over conservativeness of ST-SMC can be reduced significantly

by adapting a disturbance estimation and rejection strategy [22]. In this technique,

uncertainties in the system are estimated by using a disturbance observer and then,

rejected through a feed forward loop instead of switching gain adjustment. This

approach is reported in [35] [32] for a single phase VSI and can address load/source

disturbances effectively and proven efficient against steady-state oscillations and THD

mitigation.

1.5 Problem statement

The power conversion in the PV system is accomplished in two stages. In

the first stage, the MPPT control algorithm is employed to maximize the PV array

output. The MPPT is a control technique that uses DC-DC power converters and a

control algorithm to deliver the maximum power under variable temperature and solar

irradiation levels. In general, several factors are crucial while designing an MPPT

controller for a PV system such as robustness, level of oscillations in the output and

MPP tracking accuracy. Even though existing hybrid non-linear BSC technique provide

robust and efficient extraction of the MPP under changing environmental conditions,

there is still a considerable amount of steady-state oscillations in the output response due

to its recursive nature. By incorporating integral action into the hybrid non-linear BSC
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algorithm, the challenge of steady-state oscillations around the MPP under changing

environmental conditions can be effectively addressed. At the second stage of the

PV system, a DC-AC VSI is used to supply power to the AC loads. The VSI is a

non-linear dynamic system and is subjected to various source and load disturbances.

These disturbances degrade the control performance that results in high steady-state

error and undesirable harmonic ripples in the VSI output which can cause damage to

the sensitive loads. Thus, the precise regulation of the output voltage in the presence of

these disturbances is a critical task. Although SMC is less sensitive to source and load

parameter uncertainties, however, there is a constant steady-state error and harmonic

ripples in the output response of VSI due to its discontinuous nature and high switching

gain. The issue can be counteracted by employing a disturbance rejection ST-SMC

control strategy in a robust manner.

1.6 Objectives of the study

The following objectives are proposed for the study:

I To design a hybrid integral back-stepping (IBS) MPPT controller for the DC-

stage of PV system that can extract the maximum available power from the

PV array with reduced amount of oscillations under rapidly changing weather

conditions.

II To design a robust dynamic disturbance rejection based ST-SMC for the AC-

stage of PV system to attain regulated sinusoidal output with minimum steady-

state tracking error and THD in the presence of input and load variations.

III To evaluate the performance of the proposed algorithms for a standalone PV

system in Matlab simulations, focusing on the output of the system under the

various weather and load conditions.

1.7 Scope of the research and methodology

The study applies to control of standalone PV system for the following research

scope.
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I The PV array is configured by using Soltech STH-245-WH" PV modules to

generate the maximum DC output voltage of 120.8𝑉 with a current of 8.1 𝐴 at

MPP [9].

II The MPPT controller is designed to extract MPP from the PV array under

sudden variation in temperature from 25𝑜𝐶 to 50𝑜𝐶 [14].

III The varying irradiation level is initially defined as 600𝑊/𝑚2, then, after each

0.2𝑠𝑒𝑐, it is changed to the following values: 200𝑊/𝑚2, 700𝑊/𝑚2, 1000𝑊/𝑚2

and 900𝑊/𝑚2 in order to have instantaneous step values of irradiance in a short

time for testing the capability of the controller to track the maximum value of

power generated by the PV array [9].

IV The boosted output DC voltage is then converted into 220𝑉 sinusoidal output

with 50𝐻𝑧 frequency whereas, the switching frequency of 15𝑘𝐻𝑧 is used for

PWM block.

V A single phase two level VSI is employed for DC-AC conversion where, the

nominal value of inverter load is selected as 100Ω [9].

VI The 𝐿𝐶 filter for the inverter is designed by selecting the cutoff frequency of

500𝐻𝑧

VII Based on the guidelines provided in [36], linear load variations are made by

increasing and decreasing the nominal load by 50% instantly.

VIII To check the system response against non-linear load, a full wave bridge rectifier

load has been designed according to the guideline provided in [37].

IX The entire system is simulated in Matlab Simulink environment and the stability

of the entire algorithm is proved using Lyapunov stability criteria.

1.8 Significance of the study

The main contribution to the thesis are as follows;

I At the first DC-DC conversion stage of the PV system, the proposed hybrid

non-linear control algorithm tracks the MPP with great accuracy and efficiency

for entire solar irradiation profile. Because of the integral action present in

the controller, the output of the boost converter is smooth which contributes to
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the smooth conversion of solar energy into desired sinusoidal AC output. The

inherent Lyapunov based controller design criterion ensures the stability and

reliability of the proposed MPP tracking controller for all weather conditions.

II For the second DC-AC conversion stage of PV system, the proposed algorithm

will be completely model independent and only the VSI output information will

be sufficient for its implementation thus, the non-linearities of the VSI model

will not affect the controller performance. The inverter output will track the

reference value in a robust manner, steady-state errors will be minimized and

there will be no significant effect of sudden load variation and input disturbances

on the output voltage. Moreover, the application of non-linear loads to the

inverter will have a little impact on the output and the duty ratio will be a fixed

frequency continuous control signal that will not only reduce the THD but also

be beneficial in reducing the switching stress in the VSI.

1.9 Thesis organization

There are seven chapters in this thesis, beginning with this introduction. The

rest of the chapters are outlined as follows;

Chapter 2 provides a review of PV-based power generation systems. The chapter

begins with the modelling and working principle of PV cell, then the review of the

prominent techniques for calculating maximum power points are covered. In addition

to PV generation, a detailed assessment of VSI control techniques for reference tracking

is discussed followed by a detailed review of SMC and various disturbance rejection

techniques used in SMC is presented to solve the tracking issues related to DC-AC

inverters.

Chapter 3 illustrates the detailed methodology of the proposed algorithm along

with the simulation setup. This chapter also contains a detailed description of the BSC

algorithm used for bench-marking the proposed algorithm. Additionally, the detail of

the PV array, along with the characteristic values of the various components used in

the simulation is also provided.
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Chapter 4 describes a control strategy for tracking the MPP of PV array with

the DC-DC boost converters that forms the first stage of the PV system. The Lyapunov

theory is used to develop integral back-stepping control to track the optimal power point

under sudden fluctuations in temperature and the solar irradiation profile.

Chapter 5 presents the basic principles of super twisting control and disturbance

rejection based reference tracking control algorithm for the second stage of the

standalone PV system. A HOSMO is designed to estimate the system states and

aggregates the system disturbances as a lumped parameter that is then rejected by the

proposed control law. The cascaded structure of the overall control loop is discussed

and characteristics of both controller and observer are explained. It also elaborates the

construction and stability of the overall control loop using Lyapunov theory.

Chapter 6 illustrates the simulation results which is comprised of three sections.

In the first section DC-DC stage controller performance is presented for MPPT whereas,

in the second section cascaded PV system performance is described under varying

environment. In the third section DC-AC stage dynamic controller performance is

elaborated for linear and non-linear loads. The results show the efficiency of both the

newly designed controllers for this class of PV system.

Chapter 7 summarizes the thesis’s findings and suggests the research

opportunities for the future directions in this area of research work.
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