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ABSTRACT 

 This study aims to evaluate the oil recovery potential of hydrophilic silica 

nanofluids in sandstone reservoirs at varying salinities and concentrations. The im-

pact of nanofluid as secondary and tertiary recovery mechanisms on recovery poten-

tial is also discussed, and recovery mechanisms are determined for all flooding pa-

rameter variations. The integrated study of parameters, recovery, and mechanism is 

to outline the impact of changes in fluid parameters on mechanisms and recovery for 

future clear understanding of the mechanisms at a specific set of nanofluid condi-

tions. The study conducted at ambient conditions and flooding was carried out at 

1000 psi overburden pressure. The nano flooding was carried out for 12 nano meter 

nanosilica with concentrations of 0.02 wt. %, 0.05 wt. %, 0.07 wt. % and 0.10 wt. % 

in salinity ranges from 20,000 to 40,000 ppm. Along with recovery potential, recov-

ery mechanisms were also determined by contact angle evaluation, interfacial tension 

(IFT) measurements, porosity reduction evaluation, and pressure differential moni-

toring. In scenario 1, it was observed that the highest recovery at 20,000 ppm salinity 

was achieved with 0.05 wt. % of nanosilica which was approximately 11% of origi-

nal oil in place (OOIP). The dominant mechanism was found to be wettability 

change to water wet condition (i.e., reduced to 46º) and interfacial reduction (i.e., 

reduced to 14.9 from 18.5 mN/m), whereas for higher concentrations mechanical 

mechanisms like mechanical entrapment along with pore jamming were also found to 

play the role. Whereas in scenario 2, where salinities were changed, the highest re-

coveries were recorded for 20,000 and 40,000 ppm (i.e., 11% and 11.2% of OOIP 

respectively). In the case of 20,000 ppm salinity, wettability change and IFT reduc-

tion played the dominant role but when salinity was increased to 30,000 ppm, due to 

instability of the solution the impact of wettability change and IFT reduction subsid-

ed hence recovery declined to 8.33% of OOIP. In the case of 40,000 ppm though 

nanofluids formed agglomerations and wettability change and IFT reduction were 

not dominant but mechanical entrapment enhanced the recoveries further. In the third 

scenario, it was outlined that at lower injection rate of 0.5 ml/min the recovery poten-

tial was lowered, as reduction in disjoining and mechanical mechanisms impact was 

observed. Application of nanofluids as tertiary recovery mechanism was found to be 

suitable as compared to secondary recovery in terms of recovery. Hence for optimum 

effect of nano flooding on oil recovery, the optimum design of nanofluid concentra-

tion, stability, injection rate, and mode of application have been identified. For the 

most effective nano flooding it should be ensured that major mechanisms like wetta-

bility change, interfacial reduction, and log jamming remain equally active. The 

study establishes that design of any nano flooding as tertiary recovery mechanism 

would be effective when a mechanistic study is carried out ensuring effectiveness of 

chemical and mechanical mechanisms which would result in incremental recovery. 
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ABSTRAK 

 

Tujuan kajian ini adalah untuk menilai potensi perolehan minyak menggunakan 

nanobendalir silika hidrofilik bagi reservoir batu pasir pada kemasinan dan kepeka-

tan nanosilika yang berbeza. Kesan nanobendalir sebagai mekanisme perolehan 

sekunder dan tertier terhadap potensi perolehan turut dibincang, dengan mekanisme 

perolehan ditentukan untuk semua perubahan parameter banjiran. Kajian bersepadu 

bagi parameter, perolehan, dan mekanisme adalah untuk merangka impak terhadap 

perubahan parameter bendalir pada mekanisme dan perolehan bagi pemahaman ten-

tang mekanisme yang lebih jelas pada keadaan tertentu nanobendalir. Kajian ini dil-

akukan pada keadaan ambien dengan banjiran dilaksanakan pada tekanan beban atas 

1000 psi. Banjiran nano dilaksana menggunakan nanosilika bersaiz 12 nano meter 

dengan kepekatan 0.02 % berat, 0.05 % berat, 0.07 % berat, dan 0.10 % berat pada 

kemasinan berjulat dari 20,000 ppm sehingga 40,000 ppm. Seiring dengan potensi 

perolehan, mekanisme perolehan juga ditentukan menerusi penilaian sudut sentuh,  

pengukuran, tegangan antara muka (IFT), penilaian pengurangan keliangan, peman-

tauan tekanan kebezaan. Pada senario 1, didapati perolehan tertinggi adalah lebih 

kerrang 11 % daripada minyak asal di tempat (OOIP) pada kemasinan 20,000 ppm 

yang dicapai dengan 0.05 % berat nanosilika. Mekanisme utama adalah perubahan 

keterbasahan kepada keadaan basah air (berkurang kepada 46º) dan pengurangan te-

gangan antara muka (iaitu berkurang menjadi dari 18.5 ke 14.9 mN/m). Bagi kepeka-

tan nanosilika yang lebih tinggi mekanisme mekanikal seperti pemerangkapan 

mekanikal berserta dengan penyesakan liang turut berperanan. Sebaliknya bagi sen-

ario 2, dengan kemasinan diubah, perolehan tertinggi direkodkan pada 20,000 dan 

40,000 ppm (iaitu masing-masing 11% dan 11.2% daripada OOIP). Bagi kemasinan 

20,000 ppm, perubahan keterbasahan dan pengurangan IFT memainkan peranan 

yang dominan, tetapi apabila kemasinan ditingkatkan kepada 30000 ppm, oleh sebab 

berlakunya ketakstabilan larutan, maka impak perubahan keterbasahan dan pengu-

rangan IFT terjadi melemah yang menyebabkan penurunan perolehan kepada 8.33% 

daripada OOIP. Bagi kemasinan 40,000 ppm, walaupun nanobendalir membentuk 

gumpalan dengan perubahan keterbasahan dan pengurangan IFT adalah tidak domi-

nan tetapi pemerangkapan mekanikal boleh meningkatkan perolehan. Bagi senario 

ketiga, didapati bahawa pada kadar suntikan yang lebih rendah iaitu pada 0.5 ml/min 

telah menghasilkan potensi perolehan yang rendah berikutan berlakunya pengu-

rangan impak mekanisme tak searas dan mekanikal. Pengaplikasian nanobendalir 

mekanisme perolehan tertiar adalah lebih sesuai berbanding perolehan sekunder dari 

segi perolehan. Oleh itu bagi mengoptimumkan kesan banjiran nano terhadap 

perolehan minyak, reka bentuk optimum bagi kepekatan nanobendalir, kestabilan, 

kadar suntikan dan mod pengaplikasian telah dikenal pasti. Banjiran nano yang pal-

ing berkesan perlu memastikan mekanisme utama, misalnya perubahan keterbasahan, 

pengurangan tegangan antara muka dan penyesakan log semuanya aktif berperanan 

secara seimbang. Kajian ini mengesahkan bahawa reka bentuk sebarang banjiran 

nano sebagai mekanisme perolehan tertier akan menjadi berkesan apabila sesuatu 

kajian mekanistik dilaksana bagi memastikan keberkesanan mekanisme kimia dan 

mekanikal, yang mampu menghasilkan perubahan tokokan. 
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CHAPTER 1  

 

 

 

INTRODUCTION 

1.1 Background of Study 

The world's energy needs have risen because of rapid industrialization in the 

contemporary era. While renewable energies have recently been suggested, the key 

contributors to energy supply remain the traditional non-renewable energy sources, 

with hydrocarbons being the most heavily relied on. The oil fields throughout major 

oil-producing regions are nearing the end of their useful life. The vast mature fields 

are on the verge of being abandoned, with almost half of the original oil in place 

(OOIP) left unrecovered [1,2]. As mature fields deplete and higher capital costs halt 

new projects, professionals' emphasis has turned to enhance the ultimate recoveries 

of developed fields to meet the needs of the market. Enhanced oil recovery (EOR), 

also known as tertiary recovery, is a process that aids in recovery increment by en-

hancing recovery (by altering the fluid-fluid and fluid-rock interactions inside the 

reservoir). Existing EOR methods can recover 30-60% or more of the hydrocarbons, 

compared to 20-40% recovered by primary and secondary recovery methods [3]. The 

most advanced approach used is chemical enhanced oil recovery mechanisms (CE-

OR), in which various additives, polymers, surfactants, emulsions, or variants of 

more than one is used as displacing fluid to change microscopic properties as well as 

an additional macroscopic influence of simple flooding and improve recoveries. 

Even after the incorporation of these complicated techniques, oil remains 

trapped, however, the use of nanoparticles in EOR as nanofluid has opened new fron-

tiers for improving recoveries to new limits. Nano based EOR allows modifications 

of the properties of displacing fluid at the nanoscale consequently microscopic re-

covery enhancing parameters are optimized. Promising results found at the lab scale 

have contributed to shifting focus to nanofluids. Nanofluids have been found to en-
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hance recoveries in sandstone and carbonate reservoirs at the lab scale [4,5,6]. The 

detailed investigation concludes that as the EOR additives have been replaced with 

nano particles in displacing fluid, their impact is higher compared to previously used 

CEOR additives, as the major increment in recovery is contributed by the smaller 

pores that were not impacted previously. Owing to their hydrophilic attribute of dis-

persing in the water phase, they enhance recoveries by changing the wettability of 

the system to water wet. The shift of wettability to water wet sets free trapped reser-

voir fluid ultimately enhancing recovery further. The smaller size of these particles 

(nanomaterials) sticks around the rock pore surface which enhances recovery by dis-

joining mechanism. The smaller the size of the nanomaterial more is the impact due 

to this disjoining impact of the nanofluids. They also serve as viscosity enhancers 

and improve recovery by improving mobility. Other mechanisms like the log jam-

ming effect, clogging at pore throat and IFT reduction all play an important role in 

contributing to incremental recovery [7]. Hence the success of any nanomaterial ap-

plication in the system depends on what mechanisms amongst them are dominant 

and to what extent. 

Nanofluids despite being an efficient agent to enhance recoveries have rarely 

been evaluated in pilot or field tests. The reasons for this slow process are more than 

one and a few amongst them are economics, environmental constraints in few coun-

tries, and contradiction of recovery output results [8]. Irreproducibility of recovery 

results is due to many uncertainties such as the lack of detailed evaluation studies of 

rock properties, and concentrations, retention ability, and stability of nanofluids that 

have not been integrated to achieve the optimum setting of these parameters. Even 

though it has been established that the nanofluids are comparatively feasible than 

many current CEOR methods however above-mentioned hurdles have delayed utiliz-

ing the true potential of nanomaterials in the field of EOR. 

Many metallic and non-metallic NPs have been utilized at lab scales but 

amongst them, silica NPs are considered as the most suitable nanomaterial to be im-

plied in sandstone cores because of their technical, environmental, and economical 

advantages [9,10]. Due to their hydrophilic attribute, they tend to change wettability 

from oil-wet to water-wet and reduce the interfacial tensions [11]. The interfacial re-
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duction has also been reported to be amongst the effective mechanism. All these 

mechanisms are impacted by various factors such as particle concentration, particle 

size, injection rate, salinity, and stability of the nanofluid. 

Many studies have been published that have worked on stabilising the nano-

based fluids for enhanced oil recovery applications whereas identification of mecha-

nisms for any instability that may occur have not been outlined. The understanding 

of mechanisms without use of any stabilisers can be helpful in designing optimal 

nano-based recovery fluids which may be effective even if harsher environments are 

encountered. Evaluation of nano particles on range of salinities and with different 

concentration will cause expected instabilities hence their impact on recovery and 

understanding of underlying mechanisms can be beneficial for future research and 

applications of nanofluids as EOR agents. 

1.2 Problem Statement 

Integration of nanoparticle in general and SiO2 NPs in specific, in EOR tech-

niques has given optimistic results on a lab scale. Despite promising results, pilot and 

field applications have not taken place and the reason for that is on technical, envi-

ronmental, and economical aspects of nano-EOR methods. The major focus of the 

research at the lab scale to date has been around higher recovery using SiO2 nanopar-

ticles, but optimal conditions are yet not outlined. The optimum conditions in which 

still not established due to contradiction in results [12], stability being important is 

hard to establish, lack of integrated study for understanding mechanisms [13], and 

factors affecting recovery potential. All the studies carried out have independently 

investigated wettability alteration, IFT reduction, colloidal stability, and the impact 

of varying concentrations on recovery enhancement. But most of the work carried 

out has not been able to establish the fact about major contributing mechanisms in 

recovery enhancement by the nanofluid application. The theoretical understanding 

states that with increasing concentration, recoveries should also increase but most of 

the lab work carried on has shown that recoveries at higher concentrations have been 

lesser than those at lower concentrations. Despite high recovery potential in most of 

the studies at lab scale, the challenges associated with applicability are due to: 
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• Recovery enhancement results by silica nanofluids have contradicted to be 

high and low in different lab studies, as in at one stance it was  14.29 % 

[51],while in another study, it was found to be 2% OOIP only as reported by 

Hu et al [14]. 

 

• Concentration being an important criterion requires the identification of an 

optimized nanoparticle concentration to be identified for application in sand-

stone reservoirs. Each reported study has identified different concentration as 

optimum in recovery enhancement, normally in ranges of 0.01-0.10 wt. %. 

 

• Recovery mechanisms attributed to silica nanofluid recovery enhancement 

have not been clearly outlined and major contributing mechanisms have dif-

fered in different studies. Wettability changes, interfacial tension reduction, 

pore throat plugging, and mechanical entrapment of particles are the com-

monly reported mechanisms when nanofluids are implied. 

 

• Stability remains a challenge in the application of nanofluids in highly saline 

environments. Despite achieving stability in many lab-based studies, the un-

predictability of harsher scenarios requires understanding of mechanisms 

even if solutions become unstable to certain degrees. 

1.3 Research Objectives 

This study majorly focuses on the evaluation of work that has been carried out 

regarding nano particle based EOR with the focus on recoveries, the concentration of 

nanomaterial, and stability in a high saline environment. Since most reported lab 

work has resulted in better recoveries and is among the most environmentally ac-

ceptable due to silica content, silica nanoparticles were chosen for evaluation in 

sandstone reservoirs. Though stability without stabilizers is expected to be compro-

mised this study aims to evaluate silica nanofluids without stabilizing the solution, as 

the use of stabilizers may cross the economical limits. Hence the true objective of our 

study is to evaluate various parameters that affect the recovery potential of silica 
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nanofluids and the changes in mechanisms associated. Though progress has been 

made on several fronts independently in the past, no integrated methodology has 

been used to build confidence in results and ensure that the same results can be repli-

cated under similar conditions.  Thus, the objectives of this research are: 

I. To assess the impact of salinity on the oil recovery potential of hydrophilic 

Silica (SiO2) nano particles from low to high salinities (i.e. 20000, 30000, and 

40000 ppm) at variable concentrations of 0.02, 0.05, 0.07 and 0.10 wt. %. 

 

II. To evaluate the impact of injection rate at variable injection rates (1.0 ml/min 

and 0.5 ml/min) and mode of application on oil recovery potential of silica 

NPs as tertiary and secondary recovery mechanisms. 

 

III. To determine the impact of recovery mechanisms of wettability alteration, 

interfacial tension (IFT) reduction, material retention and pore plugging due 

to variance in material design parameters. 

1.4 Scope of the Study 

The performance of nanofluids in recovery enhancement has been reported to 

be based on their concentration, particle size, nanoparticle stability in solutions, res-

ervoir environment, wettability alteration ability, and suitability to the type of reser-

voir. Whereas studies have reported different recovery mechanisms as the contrib-

uting phenomenon in the recovery output due to application of silica based nano par-

ticles. Hence scope of this study is limited to: 

a) Evaluating the recovery potential of silica nano particles as enhanced oil recovery 

technique in nano particles concentration of 0.02, 0.05, 0.07 and 0.10 wt. %, as 

beyond 0.10 wt. % the effectiveness of nano particles reduces due to larger ag-

glomerations. 
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b) The nano fluids would be prepared using brine as the base solution using sodium 

chloride (NaCl) for salinity of 20000-40000 ppm. 

c) Flooding is carried out for different injection rates i.e. 0.05 ml/min and 0.10 

ml/min, whereas secondary and tertiary recovery mechanisms are evaluated to 

evaluate the effective in each mode of application. 

d) For recovery mechanisms evaluation wettability changes, interfacial tension IFT, 

retention, and pressure differential evaluations are carried out to establish rela-

tionship between mechanisms and parameters like concentration, salinity, injec-

tion rates and mode of application. 

e) Four Castlegate cores and three Berea sandstone cores have been utilized in core 

flooding experiments conducted with average porosities of 20-25 % and average 

permeability of 400-600 mD. 

1.5 Significance of the Study 

 As the conventional reservoirs are depleting and lower crude oil prices have 

halted the execution of the new ventures, it has become eminent that current produc-

ing fields produce maximum recovery. Advent of novel methods has enhanced re-

covery potentials at field and lab scale by utilizing advanced methodologies. The ap-

plication of nanotechnology in EOR mechanisms has been successful in lab studies. 

Nano particle induced EOR is the field that can cater to the energy needs of the 

world.  This study aims to find out optimum concentration at which we achieve better 

recoveries are achieved and underlying mechanisms are identified with changes in 

concentrations and salinities. Generally, this study intends to enhance understanding 

regarding mechanistic impact of NPs at variable parameters with changes in stability, 

hence clear understanding of mechanism shall help in designing nano-based recovery 

applications that would help in enhancing recovery potential of the fields. This study 

enhances the understanding regarding mechanistic changes at variable parameters 

which can impact the design of silica based nano fluids as an EOR technique. 
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