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ABSTRACT

This thesis presents the realization and performance analysis of several 
carbon nanotube field effect transistor (CNTFET) based analog signal processing 
(ASP) modules. CNTFET is predicted as a possible successor to conventional silicon 
complementary metal oxide semiconductor (CMOS), which has reached its scaling 
limits. The CMOS based ASP modules face significant challenges at deep nanoscale, 
resulting in severe performance degradations due to short channel effects. The main 
goal of this work is to realize CNTFET active building blocks (ABBs), and then to 
utilize these ABBs for realization of low-voltage, low-power, and high-frequency 
ASP modules. The proposed ABBs have low power dissipation, reduced parasitic 
components, and minimum number of CNTFETs. The proposed modules are active 
inductor (AI), first-order phase shifter, and second-order phase shifter. This research 
proposes a new CNTFET based grounded AI (GAI) circuit with high self-resonance 
frequency (SRF), wide tunable inductance range, and high quality factor. Simulation 
results demonstrate that the GAI offers tunable inductance from 4.4 nH to 287.4 nH 
with a maximum SRF of 101 GHz. It consumes very low power dissipation of
0.337 mW. In comparison to high performance available GAI circuits, the proposed 
GAI shows 34% reduction in power dissipation and nine times higher SRF. A high- 
frequency low-noise amplifier (LNA) circuit is also designed by utilizing the 
proposed GAI to showcase its application. The simulation result shows high 
frequency bandwidth of 17.5 GHz to 57 GHz, 15.9 dB maximum voltage gain, better 
than -10 dB input matching, and less than 3 dB noise figure. This research also 
proposes a compact wideband first-order phase shifter (FOPS) and active-only FOPS 
(AOFOPS). Simulation results demonstrate the FOPS has a tunable pole frequency 
range between 1.913 GHz and 40.2 GHz, input and output voltage noises of 
4.402 nV/VHz and 4.414 nV/VH z respectively, and power dissipation of
0.4862 mW. The AOFOPS circuit also offers a wide tunable range of pole frequency 
between 34.2 GHz to 56.4 GHz with input noise and output noise of 6.822 nV/VHz 
and 6.761 nV/VHz respectively, and power dissipation of only 0.0338 mW. The 
AOFOPS dissipates 12.40 times less power in comparison to state-of-art FOPS 
circuits. This work also proposes active-only second-order phase shifter. The 
proposed circuit provides a tunable pole frequency between 16.2 GHz to 42.5 GHz, 
with input and output noises of 21.698 nV/VHz and 21.593 nV/VHz respectively, 
while consuming 0.2256 mW power. All circuit performances are verified through 
HSPICE simulation by utilizing the Stanford CNTFET model at 16 nm technology 
node with supply voltage of 0.7 V.
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ABSTRAK

Tesis ini membentangkan realisasi dan analisis prestasi beberapa modul 
pemprosesan isyarat analog (ASP) berasaskan transistor kesan medan nanotiub 
karbon (CNTFET). CNTFET diramalkan sebagai pengganti kepada semikonduktor 
oksida logam pelengkap (CMOS) silikon lazim, yang sudah mencapai had 
penskalaannya. Modul ASP CMOS menghadapi cabaran besar pada skala-nano 
dalam, yang menyebabkan kemerosotan prestasi yang teruk kerana kesan saluran 
pendek. Tujuan utama kerja ini adalah untuk merealisasi blok binaan aktif (ABB), 
dan kemudiannya digunakan untuk merealisasi modul ASP voltan-rendah dan kuasa- 
rendah yang berfrekuensi tinggi. ABB yang dicadangkan mempunyai pelesapan 
kuasa yang rendah, kebolehtalaan yang tinggi, pengurangan komponen parasit, dan 
menggunakan bilangan CNTFET yang minimum. Modul yang dicadangkan adalah 
induktor aktif (AI), penganjak fasa tertib-pertama, dan penganjak fasa tertib-kedua. 
Penyelidikan ini mencadangkan litar AI terbumi (GAI) CNTFET yang baharu yang 
mempunyai ciri-ciri frekuensi swaresonans (SRF) yang tinggi, kearuhan yang boleh 
ditala dalam julat yang lebar, dan faktor kualiti yang tinggi. Hasil simulasi 
menunjukkan bahawa litar GAI menawarkan aruhan boleh ditala dari 4.4 nH hingga
287.4 nH dengan SRF maksimum 101 GHz. Ia melesapkan kuasa yang sangat rendah 
iaitu 0.337 mW. Berbandingkan dengan litar GAI berprestasi tinggi sedia ada, GAI 
yang dicadangkan menunjukkan pengurangan pelesapan kuasa sebanyak 34% dan 
peningkatan SRF sembilan kali lebih tinggi. Litar penguat rendah-hingar (LNA) 
berfrekuensi tinggi juga direka bentuk berdasarkan GAI yang dicadangkan untuk 
menunjukkan pengaplikasiannya. Hasil simulasi menunjukkan lebar jalur frekuensi 
yang tinggi iaitu 17.5 GHz hingga 57 GHz, gandaan voltan maksimum 15.9 dB, 
padanan input melebihi -10 dB, dan angka hingar kurang dari 3 dB. Penyelidikan ini 
juga mencadangkan penganjak fasa tertib-pertama (FOPS) dan FOPS hanya-aktif 
(AOFOPS). Hasil simulasi FOPS menunjukkan julat frekuensi kutub yang boleh 
diatur antara 1.913 GHz dan 40.2 GHz, hingar voltan masukan dan voltan keluaran 
masing-masing 4.402 nV/VHz dan 4.414 nV/VHz, dan pelesapan kuasa 0.4862 mW. 
Litar AOFOPS ini juga menawarkan frekuensi kutub yang dapat ditala dengan luas 
antara 34.2 GHz hingga 56.4 GHz dengan hingar masukan dan hingar keluaran 
masing-masing 6.822 nV/VHz dan 6.761 nV/VHz dan pelepasan kuasa hanya
0.0338 mW. Litar AOFOPS yang dicadangkan dapat mengurangkan pelesapan kuasa 
sebanyak 12.40 kali berbanding litar FOPS terkini. Penyelidikan ini juga 
mencadangkan penganjak fasa hanya-aktif tertib-kedua. Litar yang dicadangkan 
menyediakan frekuensi kutub yang dapat ditala antara 16.2 GHz hingga 42.5 GHz, 
dengan hingar masukan dan hingar keluaran masing-masing 21.698 nV/VHz dan 
21.593 nV/VHz, dan penggunaan kuasa 0.2256 mW. Semua prestasi litar disahkan 
melalui simulasi HSPICE yang menggunakan model CNTFET Stanford pada nod 
teknologi 16 nm dengan bekalan kuasa 0.7 V.
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CHAPTER 1

INTRODUCTION

1.1 Background

For future data processing and high speed telecommunication solutions, 

analog signal processing (ASP) techniques are considered as a promising alternative 

to digital signal processing (DSP) techniques, as analog devices outperform their 

digital-counterparts in terms of power dissipation, cost and the maximum achievable 

bandwidth [1]. Thus, ASP modules are considered as unavoidable and significant 

component of system on chip. They play vital role in a variety of high-performance 

applications such as a low noise amplifier (LNA) [2], continuous time filters [3], 

voltage controlled oscillators (VCOs) [4] and phase shifters [5].

Due to persistent focus on Moore’s law transistor scaling and continuous 

technological advancements, complementary metal oxide semiconductor (CMOS) 

based ASP modules are prominent in the last four decades. However, reduction of 

channel length below 32 nm complicates designing for present CMOS technologies 

due to short channel effects, increased leakage current, decreased gate control and 

sensitivity to process variations in integrated circuit (IC) manufacturing [6]. 

Therefore, it is extremely imperative for IC industry to explore new materials as well 

as devices that equally works well for more-than-Moore technologies and beyond 

CMOS as coined by International Roadmap for Devices and Systems (IRDS) [7, 8]. 

The latest report by IRDS for 2021 [8] predicts that CNTFET is a possible 

replacement for CMOS technology from 2025 onwards.
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To find replacements for CMOS technology, many devices and techniques 

are introduced and evaluated by researchers such as double gate field effect transistor 

(FET), single electron transistor, fin FET and carbon nanotube FET (CNTFET) [9]. 

Among these solutions, CNTFETs are considered front runners for further 

continuation of scaling down the feature length and extension of the saturated 

Moore’s law [8, 10, 11]. Since the operational principle and the device structure of 

CNTFET is similar to CMOS device, it is possible that CNTFET can use efficiently 

the existing CMOS design infrastructure and CMOS fabrication process [12].

Since CNTFET introduction as an alternative for CMOS technology, circuit 

level realization in the digital domain has been demonstrated by many researchers; 

however, limited works have been done on the design and analysis of CNTFET 

based ASP modules [13]. This unexplored territory of CNTFET based ASP modules 

opens a new research area, which needs to be explored for the future demands of 

ASP applications in nanometer regime. For IC designers, the cost and integration of 

ASP chip for smaller chip area, low power dissipation and larger bandwidth are 

emerging issues. The recent push towards 5G/6G communication systems and other 

similar applications further aggravate these design challenges [14].

Inductors are important components that play a key role in the design of 

these ASP modules. Majority of ASP modules utilizes on-chip passive spiral 

inductors. However, spiral inductor faces several disadvantages like larger chip area, 

low and fixed inductance, low self-resonance frequency (SRF), low quality factor 

(QF) and incompatibility with low-cost standard semiconductor process [15, 16]. In 

consequence, the use of active inductors (AIs) instead of passive spiral inductors 

improve the design of ASP modules by reducing the cost and size of chips [16]. 

Moreover, the tunability of AI further improves the design of these modules and 

helps designers to adapt specifications for different ASP applications. However, the 

design of AI with low power dissipation, large inductive bandwidth, large inductance 

magnitude and high QF is a challenging task. If these design challenges are solved, 

the applications of AI will be expanded in the development of several other ASP 

modules such as VCO, LNA, power dividers and frequency selective filters.
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State-of-the-art continuous time signal processing applications utilize one or 

more types of ASP module, as it is not possible to use a single type of module to 

cater for the needs of different systems with diversified inputs/outputs. 

Figure 1.1 demonstrates an example of beamforming scheme where different types 

of ASP module are utilized for their intended goals [17]. Like AI, phase shifter is 

another important multipurpose ASP module that functions as a fundamental 

building block of many analog signal processors [18]. It finds applications in the 

realization of various high-Q frequency selective circuits, beamforming, radar 

systems as well as oscillators [19, 20]. Design of area efficient, low voltage, low 

power phase shifter with tunable pole frequency is another challenging task.

ASP modules are mostly based on different active building blocks (ABBs) 

that best suit the desired applications. Design of AI and phase shifter for broadband 

high frequency applications is a very challenging task, especially when dealing with 

CNTFET based ABBs. For high frequency applications, ABBs are very sensitive to 

device parasitics and their power dissipation may affect the performance of desired 

ASP module [21]. Thus realization/selection of an efficient active device that 

contributes less parasitics and low power dissipation to the ASP module is a crucial 

requirement.

Figure 1.1 Beamforming scheme [17]
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The system design of CNTFET based ASP modules for multipurpose high 

frequency broadband applications must provide desired functionality with improved 

performance, reduced active and passive devices, and minimize parasitic effect by 

choosing suitable and efficient topology.

1.2 Problem Statement

Designing low voltage, low power CNTFET based ASP modules for 

broadband high frequency applications is not a straightforward task, as performance 

of an ASP module is very much dependent on high frequency parasitic effects [21, 

22]. The first crucial requirement in the design of such ASP module is to explore 

different application specific ABBs, which provide low power consumption, lower 

parasitic design effects, large signal bandwidth and arithmetic operation capability.

In design of ASP modules for high frequency applications, non-ideal port 

parasitics of used ABBs ultimately increase the design complexity of the modules 

and also impose serious frequency limitations on the operation and performance [22, 

16]. These limitations can be minimized by realization of efficient circuit topology 

during the design phase of specific ASP module. Moreover, selection of the most 

appropriate CNTFET design parameters (inter CNT pitch, CNT diameter/chirality 

vector and number of CNTs) is another critical task of the design phase [6, 10-12].

ABB based AI with high inductance, high SRF, high tunability within an 

acceptable QF are the most challenging tasks for high frequency broadband 

applications [23]. Tunability of AI is an important feature that enables designers to 

adapt specification of different broadband applications. This desirable feature helps 

in the frequency band selection of filters, VCOs and so many other applications [5, 

15, 24-31]. Many recently published high QF AI topologies do not have tunability 

feature [32-34]. Thus, these AIs are not suitable for broadband applications and can 

be used only for specific applications with fixed inductance and QF value. High 

inductance AI with acceptable QF is another important requirement [25]. In RF
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circuits such as LNA, high inductance is necessary for high gain as LNA gain is 

dependent on magnitude of output inductance [23].

Although most AI circuit topologies presented to date are compact and 

achieve acceptably larger QF than its spiral counterpart, their application in low 

voltage, low power broadband ASP modules has been limited because of their 

narrow inductive bandwidth [35-46]. As a result, to the best of our knowledge, no AI 

circuit topology has been utilized for a high frequency (> 11 GHz) and wideband (> 

7 GHz bandwidth) ASP module [47]. This comparatively narrow inductive 

bandwidth ultimately excludes AI for the design of broadband high frequency ASP 

modules.

For flexibility, the pole frequency of a phase shifter should be widely tunable. 

Tunability of pole frequency enables a phase shifter to be used in broadband 

applications [48, 49]. Low power dissipation of a phase shifter can be obtained by 

minimizing number of active and passive devices [50]. Moreover, the ABB power 

dissipation will be added to the total phase shifter power consumption, so use of 

ABB with less power dissipation is needed.

Based on AI and phase shifter examples, in summary, the design challenges 

involve low power dissipation, high tunability, minimization of parasitic components 

(which degrade high frequency performance) and selection of appropriate CNTFET 

design parameters (inter CNT pitch, CNT diameter/chirality vector and number of 

CNTs). In addition, high SRF and highly tunable AI with acceptable QF are other 

research challenges.
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1.3 Research Objectives

The objectives of this research work are:

i. To design CNTFET based ABBs suitable for the realization of low power and 

high frequency ASP modules. These ABBs are inverting voltage buffer 

(IVB), negative transconductance element (NTE) and positive 

transconductance element (PTE). The ASP modules to be realized using 

designed ABBs are AI, first order phase shifter (FOPS) and second order 

phase shifter (SOPS). The CNTFET ABBs are targeted to operate up to 100 

GHz and with less then 1 mW power dissipation.

ii. To design CNTFET based AI circuit topology for high frequency broadband 

applications. The AI circuit will be realized using the designed ABBs to 

achieve high QF, high tunable inductance, high SRF and low power 

dissipation. The target performance is for the AI circuit to be inductive up to 

100 GHz with a power dissipation less than 1 mW.

iii. To design CNTFET based FOPS and SOPS topologies for high frequency 

applications. The phase shifter circuits will be realized using the designed 

ABBs to achieve large tunable pole frequency with less than 1 mW power 

dissipation.

1.4 Scope and Limitations

The major scope and limitations of this research work are as follows:

i. This study is mainly concerned with the design of ASP modules for high 

frequency broadband applications using CNTFET ABBs. These modules only 

include CNTFET based AI and phase shifters.

ii. HSPICE simulation tool will be used for design and analysis of ABB and the 

ASP modules. This work will be purely based on simulation at transistor level 

due to the unavailability of CNTFET circuit fabrication facility.

6



iii. Stanford CNTFET model at 16 nm technology node will be utilized for

design of AI and phase shifter circuits.

1.5 Research Contributions

Contributions of this thesis are listed as follows:

i. The first contribution of this work is the proposal for a new compact 

CNTFET based ABB known as PTE. Circuit analysis shows that the 

proposed ABB is a suitable candidate for low voltage, low power broadband 

applications, with voltage supply as low as 0.7 V and power dissipation in the 

uW range.

ii. The second contribution of this research work is proposal for CNTFET based 

grounded AI (GAI) circuit. The GAI was designed and simulated using 16 

nm CNTFET technology node using HSPICE. Simulation results demonstrate 

that realized GAI circuit offers high tunable inductance from 4.4 nH to 287.4 

nH with a maximum SRF of 101 GHz. It offers low power dissipation of 

0.337 mW. Tunability of the GAI has been achieved by utilizing CNTFET 

varactor. A broadband LNA circuit was also designed and simulated by 

utilizing the proposed GAI topology. The simulation result shows very high 

frequency bandwidth of 17.5 GHz to 57 GHz and dissipates 6.961 mW from 

0.7 V supply. Moreover, the GAI based LNA provides a 15.9 dB maximum 

gain. In addition, better than -10 dB input matching and less than 3 dB noise 

figure (NF) over the entire bandwidth is observed.

iii. The third contribution of this research is the proposal for a compact wideband 

FOPS using CNTFET based Inverting Voltage Buffer (IVB) and Voltage 

Controlled Resistor (VCR). Simulation results demonstrate a tunable pole 

frequency range between 1.913 GHz and 40.2 GHz with input and output 

voltage noises of 4.402 nV/  VHz and 4.414 nV/  VHz respectively, and power 

dissipation of 0.4862 mW.
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iv. The fourth contribution of this research is the design of an active only first 

order phase shifter (AOFOPS) using IVB and CNTFET varactor. The active 

only circuit topology offers a wide tunable range of pole frequency between

34.2 GHz to 56.4 GHz. Simulation results show that the equivalent input 

noise and output noise for the realized all active phase shifter at a designed 

pole frequency of 49.26 GHz are 6.822 nV /V7/z and 6.761 nV /V7/z 

respectively, while it dissipates 0.0338 mW.

v. The fifth contribution of this research is the design of an active only second 

order phase shifter (AOSOPS) by utilizing two negative transconductance 

elements (NTE), one PTE, two varactors and one VCR. The AOSOPS 

topology provides a tunable pole frequency between 16.2 GHz to 42.5 GHz 

with input and output noise of 21.698 nV / VHz and 21.593 nV /V7/z 

respectively. The power dissipation of AOSOPS is 0.2256 mW.

1.6 Thesis Organization

This dissertation is organized into seven chapters. Chapter 1 discusses the 

background, problem statement, objectives and scope of this research work. 

Moreover, this chapter also highlights the contributions of this research work.

Chapter 2 of this dissertation provides a summary of advanced AI and phase 

shifter circuit topologies available in the open literature. The performance of these 

available ASP modules is discussed and investigated thoroughly.

Chapter 3 of this thesis discusses the methodology adopted in this research 

work. Moreover, the flow of the complete design process steps is discussed 

thoroughly for the realization of CNTFET ABBs and ASP modules.
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Chapter 4 introduces the proposed GAI circuit. The GAI equivalent parasitic 

model will be explained in this chapter. Also, equations for inductance and QF will 

be analyzed. Simulation results of the GAI topology will also be explained 

thoroughly. Moreover, the application of the proposed GAI in the design of 

broadband LNA will be demonstrated.

Chapter 5 introduces the proposed FOPS topologies. The realized circuit 

description, analysis and simulation results will be explained in this chapter. 

Moreover, a brief comparison of the proposed circuits with other available FOPS 

topologies in the open literature will be discussed.

Chapter 6 introduces the AOSOPS circuit. The proposed AOSOPS circuit 

design and simulation results are discussed in this chapter. In addition, a comparison 

study with other SOPS circuits is conducted and discussed. Lastly, the conclusion 

and recommendations for further research is presented in Chapter 7.
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