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ABSTRACT

A mathematical model that simulates a radiotherapy cancer treatment process 
is presented in this thesis. The model takes two important radiobiological factors into 
consideration, which are repair and repopulation of cells. The model is used to simulate 
the fractionated radiotherapy treatment processes of six patients. The results give the 
population changes in the cells and the final volumes occupied by the normal and 
cancer cells. The model is formulated by integrating the Caputo fractional derivative 
with the previous cancer treatment model. Thereafter, the linear quadratic with the 
repopulation model is coupled into the model to account for the cells’ population decay 
due to radiation. The treatment processes are then simulated in MATLAB with 
numerical variables, numerical parameters, and radiation parameters. The numerical 
parameters which include the proliferation coefficients of cells, competition 
coefficients of cells, and the perturbation constant of the normal cells are obtained 
from a previous research. The radiation parameters are obtained from another previous 
research that reported clinical data of six patients treated with radiotherapy. From the 
reported clinical data, the patients had tumor volumes of 24.1cm 3, 17.4cm 3, 28.4cm 3 
, 18.8cm 3, 3°.6cm3, and 12.6cm 3 and were treated with fractionated doses of 2.0 Gy 
for the first two patients and 1.8 Gy for the other four. Next, the integrity of the 
formulated model is established with the proof of the existence of unique solutions, 
the stability analysis, the sensitivity analysis, the bifurcation analysis, and the 
comparative analysis. Also, 96 radiation protocols are simulated by using the 
biologically effective dose formula. All these protocols are then used to obtain 
regression equations connecting the value of the Caputo fractional derivative with the 
fractionated radiation dose, and these regression equations are used to simulate various 
radiotherapy treatments in four different categories. The final tumor volumes, from the

^  ^  T  T ^

results of the simulations, are 3 .58cm , 8.61cm , 5.68cm , 4 .36cm , 5. l 5cm , and 
6.12cm3. Meanwhile the volumes occupied by the normal cells are 23.87cm3, 
17.29cm 3, 28.1lcm 3, 18.68cm  3, 30.33cm i , and 12.55cm 3. The stability analysis 
shows that the model is asymptotically and exponentially stable. Also, the solutions of 
the simulations are unique and stable even there are changes in initial values. The 
sensitivity analysis shows that the most sensitive controllable model factor is the value 
of the Caputo fractional derivative and this model factor has bifurcation values. 
Furthermore, the comparative analysis shows that the fractional derivative model 
encompasses the memory effect of the radiotherapy process. The predicted simulated 
final tumor volumes obtained with the regression equations are then compared with 
the corresponding reported clinical final tumor volumes. The results of these 
comparisons show that the predictions have minimal errors, hence they are acceptable. 
Finally, optimal and complete treatment solutions are simulated and predicted.
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ABSTRAK

Model matematik yang mensimulasikan proses rawatan barah radioterapi 
dipersembahkan dalam tesis ini. Model ini mengambil kira dua faktor radiobiologi 
yang penting, iaitu pembaikan dan populasi semula sel. Model ini digunakan untuk 
mensimulasikan proses rawatan radioterapi berbahagi terhadap enam pesakit. Hasilnya 
memberikan perubahan populasi dalam sel dan isipadu akhir yang terisi oleh sel 
normal dan sel barah. Model ini dirumuskan dengan mengintegrasikan pecahan 
terbitan Caputo dengan model rawatan barah terdahulu. Setelah itu, kuadratik linear 
dengan model populasi semula digandingkan menjadi model untuk menjelaskan 
kerosakan populasi sel akibat radiasi. Proses rawatan kemudiannya disimulasikan 
dalam MATLAB dengan pembolehubah berangka, parameter berangka, dan parameter 
radiasi. Parameter berangka yang merangkumi pekali pemproliferatan sel, pekali 
persaingan sel, dan pemalar usikan sel normal diperoleh dari kajian terdahulu. 
Parameter radiasi diperoleh dari penyelidikan terdahulu yang melaporkan data klinikal 
enam pesakit yang dirawat dengan radioterapi. Dari data klinikal yang dilaporkan, 
pesakit mempunyai isipadu tumor 24.1cm3, 1l.4cm 3, 28.4cm3,18.8cm3,30.6cm3, 
dan 12.6cm3 dengan dos berbahagi 2.0 Gy untuk dua pesakit pertama dan 1.8 Gy 
untuk empat pesakit yang lain. Selepas itu, integriti model yang dirumuskan 
diperkuatkan lagi dengan pembuktian kewujudan penyelesaian unik, analisis 
kestabilan, analisis kepekaan, analisis bifurkasi, dan analisis perbandingan. Juga, 96 
protokol radiasi disimulasikan dengan menggunakan formula dos berkesan secara 
biologi. Semua protokol ini kemudiannya digunakan untuk mendapatkan persamaan 
regresi yang menghubungkan nilai terbitan pecahan Caputo dengan dos radiasi 
berbahagi, dan persamaan regresi ini digunakan untuk mensimulasikan pelbagai 
rawatan radioterapi dalam empat kategori yang berbeza. Isipadu tumor akhir, hasil dari 
simulasi adalah 3.58cm3, 8.61cm3, 5.68cm3, 4.36cm3, 5.75cm3, dan 6.12cm3. 
Sementara itu, isipadu yang terisi oleh sel normal adalah 23.8lcm 3, 1l.29cm 3, 
28.1lcm 3, 18.68cm3, 30.33cm3, dan 12.55cm3. Analisis kestabilan menunjukkan 
bahawa model tersebut stabil secara asimptot dan eksponen. Juga, penyelesaian dari 
simulasi adalah unik dan stabil walaupun ada perubahan dalam nilai awal. Analisis 
kepekaan menunjukkan bahawa faktor model terkawal yang paling sensitif adalah nilai 
terbitan pecahan Caputo dan faktor model ini mempunyai nilai bifurkasi. Selanjutnya, 
analisis perbandingan menunjukkan bahawa model pecahan terbitan merangkumi 
kesan ingatan terhadap proses radioterapi. Isipadu tumor akhir simulasi yang 
diramalkan yang diperoleh dengan persamaan regresi kemudiannya dibandingkan 
dengan isipadu tumor akhir klinikal yang dilaporkan. Hasil perbandingan ini 
menunjukkan bahawa ramalan tersebut mempunyai ralat minimum, oleh itu ramalan 
tersebut boleh diterima. Akhirnya, penyelesaian rawatan yang optimum dan lengkap 
disimulasikan dan diramalkan.
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CHAPTER 1

INTRODUCTION

1.1 Problem Background

Cancer, as a result of its high mortality rate, is an acknowledged global disease 

that has attracted contributions from researchers in different disciplines. 

Unfortunately, despite these contributions, the disease still has a high mortality rate 

especially amongst women and the elderly, and in North America, it is ranked as the 

second major cause of death after heart disease (Belostotski and Freedman, 2005). In 

a country like Malaysia, ovarian cancer is a major cause of death among women 

(Lokman et al., 2017). It was reported that lung, bowel, prostate, and female breast 

cancer are the most common worldwide, and about 100,000 new cases of cancer were 

detected in Malaysia between the period of 2007-2012 (Firdaus et al., 2018). Also, the 

risk of dying from the disease increases with age and most patients are above 55 years. 

Furthermore, the probability of developing cancer in a human lifetime is 1 in 2 for 

males while it is 1 in 3 for females (Nawrocki and Zubik-Kowal, 2015). Hence, cancer 

treatment research is not only significant, but it is also very necessary.

The success of treating cancer depends solely on understanding the cellular 

characteristics of the disease. The sustainability of any living organism depends on the 

cellular interactions of millions of cells. But when a biological disruption causes a 

collapse in these cellular interactions, there is an uncontrolled proliferation of cells 

thus triggering the onset of cancer. These cancerous cells can later invade the 

neighboring tissues, thereby forming a tumor. If the tumor is left untreated via medical 

intervention, it will lead to the death of the patient (Nawrocki and Zubik-Kowal, 2015). 

However, in handling these cancer cases, the cancer treatment procedure is either 

aimed at being a curative or a palliative measure. Nonetheless, irrespective of the 

treatment’s aim, every cancer patient is always optimistic about being completely 

cured. The medical practitioner, on the other hand, is not only interested in the
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treatment but is also interested in the outcomes and effects of such treatments on the 

patient. As a result, it is important to have a foreknowledge of the outcomes of different 

cancer treatment procedures. The clinical procedures for treating or managing cancer 

are mainly surgery, immunotherapy, radiotherapy, hyperthermia, and chemotherapy. 

At times, one or more of these procedures can be combined for a patient. In this thesis, 

the focus is on radiotherapy cancer treatment. Radiotherapy is the most cost-effective 

treatment procedure because the rapidly proliferating cancer cells are destroyed with 

doses of irradiation. Besides, radiotherapy accounts for only about five percent of the 

total cost of treatment and it can also be used for curative or palliative purposes 

(Barnett et al., 2009). Moreover, an important factor considered when administering 

cancer treatment is the cost that might be prohibitive for a low or an average-income 

earner, therefore radiotherapy is a viable option.

However, for a successful radiotherapy treatment process, it is imperative to 

monitor the progress of treatment by knowing the effects of radiation on both the tumor 

and the patient. Furthermore, a foreknowledge of treatment outcomes for different 

radiation protocols will assist the medical team to choose an optimal radiation 

schedule. Most times the choice of a radiotherapy plan is based on clinical records as 

well as the amount of experience and expertise of the medical practitioner. But apart 

from clinical records, mainly based on the results of clinical trials and the use of animal 

models, it is also possible to know the outcome of a radiation schedule or predict an 

approximate result of a radiation protocol with the use of mathematical models. 

Generally, a mathematical model represents a real-life process and from this model, 

the process can be analyzed and future outcomes can be predicted.

The administration of radiotherapy involves a lot of calculations and planning 

in order not to harm the patient. The main aim of radiotherapy is to eliminate the 

cancerous cells without harming the normal cells. The rapidly proliferating cancer cells 

are targeted and destroyed by doses of radiation, thereby reducing the active 

population of the cancer cells. Cancer treatment can be interpreted mathematically as 

the reduction of cancer cells and the treatment is completed when the active population 

becomes zero. Unfortunately, when radiation is administered, the untargeted slowly 

proliferating normal cells are also affected. Although this effect is to a lesser degree,
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it also damages the normal cells and reduces their population. The elimination of 

cancerous cells is of benefit to the patient while the destruction of normal cells can be 

detrimental to the patient (Emami, 2013). As a result, it can be proposed that the extent 

of normal cells’ damage suffered by a patient is proportional to the population of the 

destroyed normal cells. Therefore, the status of treatment is directly linked to the 

populations of the normal and cancer cells. A successful treatment signifies a zero 

population of the cancer cells while an unchanged population of normal cells can mean 

no normal cells’ damage. Most treatments are partially successful and normal cells’ 

damage does occur, this implies that the populations of both normal and cancer cells 

are both reduced. Therefore, to properly administer radiotherapy and manage normal 

cells’ damage, the population dynamics of the normal and cancer cells during 

radiotherapy must be known. To achieve this objective, the use of mathematical 

models is of immense importance.

There have been many proposed mathematical models aimed at describing the 

radiotherapy cancer treatment process. Some of these models approached the cancer 

treatment process from the molecular or cellular point of view, whereas, some other 

models used the macroscopic continuous fluid dynamics approach by treating the 

tumor as a system or body that grows uniformly (Laubenbacher et al., 2009). This 

thesis focuses on the latter type of models. The most prominent of these latter types of 

models is the cancer treatment model proposed by Belostotski and Freedman (2005). 

The proposed cancer treatment model was based on the Lotka-Volterra competitive 

model and it represented the treatment process by assuming that the cancer region was 

made up of two competing species. The two competing species are cancer cells and 

normal cells. The proliferation of the cells was represented with proliferating 

coefficients and this proliferation followed a logistic equation pattern with a carrying 

capacity bounding the populations of the cells. Although cancer and normal cells 

proliferate, the proliferation of the cancer cells is uncontrollable and is much more 

aggressive resulting in the formation of a tumor (Nawrocki and Zubik-Kowal, 2015). 

Also, since cancer and the normal cells are in continuous competition for resources, 

the cells’ populations will decrease due to this competition, and the authors represented 

this feature with competition coefficients. Since radiotherapy is aimed at treating 

cancer, then the administration of radiation is aimed at greatly reducing the population

3



of cancer cells. The cancer cells’ population decay due to radiation was represented by 

a harvesting control mechanism in the model.

However, the bottleneck of the model proposed by Belostotski and Freedman 

(2005) was the assumption that only the targeted rapidly proliferating cancer cells were 

affected by the radiation doses while the slowly proliferating normal cells were spared. 

This assumption goes against clinical evidence because radiation also affects 

untargeted normal cells (Rashid et al., 2018). Therefore, the cancer treatment model 

was improved by Freedman and Belostotski (2009) with the inclusion of a perturbation 

constant to account for the normal cells’ population decay due to radiation doses. This 

improved cancer treatment model was later analyzed numerically by Liu and Yang 

(2014). Liu and Yang (2014) further explored the modified model and presented a 

periodic cancer treatment model. For the periodic model, conditions for the 

coexistence of the normal and cancer cells were established. But the analysis was not 

done with clinical data, giving room for more work.

To make the mathematical models more clinically relevant, Nawrocki and 

Zubik-Kowal (2015) developed a model that described the proliferation and spread of 

tumors from a primary region to a secondary region. This model only considered the 

proliferation and metastasis of the cancer cells under radiotherapy. The normal cells 

were not considered. The model consists of a proliferation constant for population 

increase, a dispersion model for the spread of cancer cells, and the linear-quadratic 

(LQ) model for the populations of cancer cells destroyed by radiation. The model was 

corroborated with clinical data. Despite the contribution of these mathematical models, 

a more accurate model can still be obtained. This cancer treatment model, like the 

previous ones, was based on the ordinary differential equation.

Improvements to the current cancer treatment are still in progress with the 

introduction of fractional derivatives into the cancer treatment model. Recently, 

Dokuyucu et al. (2018) integrated the Caputo-Fabrizio fractional derivative into the 

cancer treatment model. The structure of the new model was similar to that introduced 

by Belostotski and Freedman (2005). However, the major difference was the 

replacement of the ordinary derivative with the Caputo-Fabrizio fractional derivative.
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The authors used the fixed-point theorem to show the conditions for the existence and 

uniqueness of solutions for the fractional cancer treatment model. Similarly, Awadalla 

et al. (2019) integrated the Hadamard fractional derivative into the cancer treatment 

model. The authors also showed the conditions for the existence and uniqueness of 

solutions for their model. The integration of fractional derivatives into the cancer 

treatment model included the memory feature, which is part of all biological processes 

(Ahmed et al., 2012). The physical explanation of the memory feature is given in 

Section 4.4.5. Although the integration of fractional derivatives improved the cancer 

treatment model, the establishment of unique solutions is a mathematical exercise that 

might not be meaningful to a typical medical practitioner. This is because a typical 

medical practitioner is mainly interested in treating the cancer patient and not in the 

formulation and analysis of the mathematical model. Furthermore, the unique solution 

of the cancer treatment model is a mathematical analysis that proves that by simulating 

a cancer treatment with the model, only one reliable solution will be obtained and this 

solution will be the final cells’ populations from which the final tumor volumes can be 

obtained. Therefore, it is necessary to give the cancer treatment model clinical 

relevance.

1.2 Problem Statem ent

As a result of the necessity discussed above, it is imperative to use the 

fractional cancer treatment model to simulate the treatment processes of cancer 

patients treated with radiotherapy. Also, to make the model more relevant, these 

simulations should be done with real clinical data whose results should give the final 

populations of the tumors and normal cells’ volume. The previous mathematical model 

formulated by Belostotski and Freedman (2005) was used in analyzing the 

radiotherapy treatment process. From this model, the only information that had been 

obtained is the existence and uniqueness of solutions of the models (Dokuyucu et al., 

2018; Awadalla et al., 2019). This information might be elegant to mathematicians, 

but it is incomprehensible and irrelevant to medical practitioners because they are more 

concerned about the clinical treatment than the analysis of the model.
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In this thesis, an improved cancer treatment model that simulates the processes 

involved during radiation treatment is presented. These processes include the 

proliferation of the cells, the decline in populations of cells due to competition, the 

decline in populations due to radiation doses, and the repopulation of the cancer cells 

after the “kick-off’ time. Although Dokuyucu et al. (2018) and Awadalla et al. (2019) 

justified the use of the fractional cancer treatment model with the establishment of 

unique solutions, there are still important questions left unanswered and these 

questions need clarification. As such, there are still research gaps to be filled.

1.3 Research Questions

At present, the formulated cancer treatment model by Belostotski and 

Freedman (2005) has not been used to simulate cancer treatments of cancer patients. 

The model has also not been used to predict the results of different radiotherapy 

treatments. This is because some research questions still need to be answered to make 

the cancer treatment model more clinically relevant. These research questions are 

addressed in this study and they include, can the radiotherapy cancer treatment model 

be improved to simulate clinical radiotherapy cancer treatments? Will these 

simulations consider the repair and repopulation of the cancer cells? Will this 

improved model be well-posed? How can the cancer treatment model be used to 

predict results for different radiation protocols such as with different doses, with a 

different number of fractions, and when the number of fractions is reduced to avoid 

repopulation of cancer cells? Can the radiotherapy cancer treatment be optimized, and 

which radiation protocol produces optimal treatment, or which radiation protocols will 

produce complete treatment? Will the ordinary derivative model and fractional 

derivate model give the same solution? Is there any advantage in using an ordinary or 

fractional derivative? Does the fractional derivative model have a bifurcation value? 

These questions which constitute the research gaps in cancer treatment research are 

addressed in this thesis. By addressing these research questions, the cancer treatments 

can be simulated and analyzed. The results of various radiotherapy protocols can also 

be predicted, and optimal radiation protocols can be selected.
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1.4 Research Objectives

This research aims to formulate an improved fractional cancer treatment model 

that will be corroborated with previously published clinical data of six uterine cervical 

cancer patients treated with radiotherapy. After the formulation, the model will be 

mathematically analyzed to simulate radiotherapy cancer treatment processes and 

predict approximate treatment outcomes of different radiotherapy protocols. 

Therefore, the objectives of this research are presented below

(a) To develop an improved fractional radiotherapy cancer treatment model and 

corroborate the formulated model with published clinical data. Thereafter, to 

establish the existence and uniqueness of solutions for the formulated model.

(b) To assess dynamically, the stability, the bifurcation, and the sensitivity analysis 

on the formulated model.

(c) To simulate six cancer treatment processes with the formulated model and 

mathematically analyze the treatment process as well as the normal cells’ 

damage. Then, to obtain a regression equation that uses the value of the 

radiation dose to calculate an appropriate fractional-order for the Caputo 

fractional derivative.

(d) To implement a comparative analysis between the fractional derivative cancer 

treatment model and the ordinary derivative cancer treatment model.

(e) To simulate different radiotherapy protocols and predict their approximate 

treatment outcomes. Hence, obtaining simulated optimal solutions from the 

different radiotherapy protocols.

1.5 Significance of the Study

This research is important in furthering the effort of finding a solution to cancer 

treatment because by formulating a mathematical model that simulates a treatment 

process, the results of different radiotherapy protocols can be simulated. The
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simulation of the treatment process will enable the status of the treatment to be 

analyzed. The predicted outcome of a radiotherapy protocol will assist in selecting an 

optimal protocol. Ideally, the success of radiotherapy depends largely on the 

knowledge of populations of the cells. The elimination of cancer cells is the primary 

objective of treatment. The previous cancer treatment model of Belostotski and 

Freedman (2005) had not been successful in predicting the populations of the 

eliminated cancer cells and the damaged normal cells. Without this information, the 

progress of cancer treatment cannot be analyzed because the population of eliminated 

cancer cells will signify cancer treatment while the population of eliminated normal 

cells will signify normal cells’ damage. However, with the use of the proposed 

improved cancer treatment model, cancer treatments can be simulated with values of 

radiation dosage rates and their corresponding effects on cells’ populations can be 

simulated.

The use of the mathematical model for predicting the outcome of physical 

processes is always challenged by the unavailability of real data to corroborate the 

model. The pioneers of the cancer treatment models were only able to establish the 

uniqueness of solutions for the model (Dokuyucu et al., 2018; Belostotski and 

Freedman, 2005; Freedman and Belostotski, 2009; Awadalla et al., 2019). Also, 

numerical analysts could only use empirical values in analyzing cancer treatment with 

the model (Liu and Yang, 2014). Therefore, the previous cancer treatment models have 

remained more descriptive of the process rather than being predictive. The improved 

model, that will be formulated in this research, is expected to be analytic and 

predictive. Therefore, published clinical data of treated cancer patients are used in the 

improved model to execute simulations. The use of clinical data is aimed at enhancing 

the predictiveness of the improved model. Such predictions will assist in selecting 

good treatment schedules. Finally, the use of a predictive mathematical model is more 

economical and more ethical than the use of animal models because animal models 

involve the use of animals like rats, mice, and rabbits (Laird, 1964) for studying radiation 

effects.
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1.6 Scope of the Study

This research is limited to cancer treatment with radiotherapy. The formulated 

model only considered the repair and repopulation of the cancer cells. The 

redistribution and reoxygenation of cancer cells are not included in the model because 

these two processes are still being researched and numerical values representing these 

processes have not been proposed. Also, only a local tumor is considered and the 

spread of cancer cells to a secondary region of the body (metastasis) is not considered. 

The numerical values for the model factors are obtained from previous literature while 

the clinical data are obtained from published clinical data. Although the radiotherapy 

process is dependent on time, this dependence on time is neglected for the model 

factors and the radiation parameters. This is because the values for the model factors 

presented by Belostotski and Freedman (2005) and the radiation parameters presented 

by Belfatto et al. (2016) were constants and not functions of time. The analysis of the 

cancer treatment and the normal cells’ damage effects are done from the mathematical 

point of view. Lastly, the initial population of cancer cells is obtained from the tumor 

volumes while the normal cells’ initial population is assumed to be equal to the initial 

population of cancer cells. This assumption is made because values for the initial 

population of normal cells are not available.

1.7 Methodology

This research is carried out by first formulating the improved cancer treatment 

model. In formulating the radiotherapy model, there are two things to be considered. 

The first thing is to define the model variables which are the independent and 

dependent variables. In the case of radiotherapy, the dependent variables are the 

populations of the normal and cancer cells while the independent variable is the time 

of the process which in this case is the treatment time. Since the model’s dependent 

variables are two, then the improved model will have two differential equations. The 

second thing is to define the model parameters which will represent the radiotherapy 

process that affects the populations of the normal and cancer cells. In any population, 

the population increases and decreases and is always bounded by a carrying capacity
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beyond which the population ceases to increase. In the radiotherapy model, the 

proliferation of the cells follows a logistic pattern, and the Lotka-Volterra model with 

a carrying capacity is used to represent the process.

The second process involved in radiotherapy is the decrease in the populations 

of the cells. The decrease in populations takes place in two categories. The first 

category is the decrease in population due to competition of cancer and normal cells 

(Belostotski and Freedman, 2005). In every population, where the entities are 

competing for resources, then the populations will be reduced. The model parameter 

used to represent this process is the competition coefficient. The second category is 

the decrease in population due to radiation. During radiation, the cancer cells are 

targeted, and the normal cells are supposed to be unaffected. However, the effects of 

radiation are also felt by the normal cells (Rashid et al., 2018). This effect is to a lesser 

degree and the perturbation constant is the model parameter used to represent this 

process. The change in the population of cells is represented with the Caputo fractional 

derivative to include the memory effect of the radiotherapy process in the model 

(Ahmed et al., 2012; Balci et al., 2019). Thus, the improved model is formulated with 

the radiotherapy cancer treatment process illustrated below

Change in the population of normal cells = (increase in population bounded by 

carrying capacity) -  (decrease in population due to competition) -  (perturbation 

constant) (decrease in population due to radiotherapy)

Change in the population of cancer cells = (increase in population bounded by carrying 

capacity) -  (decrease in population due to competition) -  (decrease in population due 

to radiotherapy)

After formulating the model, the metric space analysis is used to show the 

uniqueness of the solutions of the model. Thereafter, the model is used to simulate 

cancer treatments of six patients treated with radiotherapy in MATLAB. The cancer 

treatments are then analyzed mathematically as follows
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Cancer treatment = Population of eliminated cancer cells 

Normal cells’ damage = Population of eliminated normal cells 

Percentage cancer treatment = Percentage of eliminated cancer cells 

Percentage normal cells’ damage = Percentage of eliminated normal cells

The sensitivities of the model factors are then investigated with the variance- 

based approach sensitivity analysis (Saltelli et al., 2008). The variance-based approach 

is a global sensitivity analysis in which all the model factors are investigated 

simultaneously to find the most sensitive model factor and this factor is then be 

investigated for bifurcation. The sensitivity and bifurcation analyses are done in 

MATLAB. The cancer treatments are then simulated in MATLAB with both 

fractional derivative model and ordinary derivative model to investigate the 

comparative advantage of the fractional derivative radiotherapy cancer treatment 

model. The biologically effective dose (BED) is then used to simulate 96 different 

radiation protocols and from these protocols, a regression equation is formulated for 

obtaining an approximate fractional-order for the Caputo fractional derivative in the 

model.

The last part of the research involves the use of the improved fractional 

derivative cancer treatment model to simulate different radiotherapy protocols in 

MATLAB. This is done by using the BED to obtain six regression equations for the 

six patients. These regression equations are used to obtain the approximate fractional 

orders for the Caputo fractional derivatives in the simulations. The simulations are 

done in four categories. These four categories of simulations include varying the doses 

of the patients from 1.0 Gy to 6.0 Gy, varying the doses of the patients from 1.0 Gy to

6.0 Gy but without repopulation of the cancer cells, varying the number of fractions 

from 25 to 35 fractions, and the use of a single regression equation for simulating the 

six patients’ cancer treatments. From these four categories of simulations, the optimal 

solutions and the complete cancer treatment solutions are obtained for the six patients.
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1.8 Thesis Organization

This thesis is arranged into six chapters. Firstly, Chapter 2 is the Literature 

Review where the previous contributions are presented. The review is divided into 

three parts, the first part reviewed tumor growth models from 1932-2020, the second 

part reviewed radiotherapy models from 1990-2020, and the third part reviewed 

fractional derivative cancer treatment models from 2014-2020. This review shows that 

the tumor growth models represent the problem (cancer evolution), the radiotherapy 

models represent the solution (cancer treatment), and the fractional derivative cancer 

treatment models represent the method (fractional derivative).

Chapter 3 is the Mathematical Formulation where the model is formulated, and 

the model parameters are presented. Thereafter, the existence and uniqueness of 

solutions of the model are established, and the cancer treatments are simulated. Also, 

the stability analysis of the model is shown. Furthermore, Chapter 4 is the 

Mathematical Analysis where the cancer treatments are simulated, and the sensitivity 

analysis of the model factors is shown. Also, the bifurcation analysis and the 

comparative analysis between the fractional derivative and the ordinary derivative 

model are shown.

Chapter 5 is the Numerical Simulation where the regression equation for 

obtaining the fractional-order of the Caputo fractional derivative from radiation doses 

is formulated. Thereafter, the model is used to simulate different radiotherapy 

protocols and optimal solutions for each simulation are identified. Finally, Chapter 6 

is the Conclusion and Recommendations where the future direction and 

recommendations for the fractional derivative cancer treatment model are presented.
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