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ABSTRACT

Hand rehabilitation robots were developed to assist in rehabilitation procedures 

conducted by rehabilitation professionals. However, current hand rehabilitation robots 

are mostly made from heavy and rigid structures that caused discomfort and fitting 

issues to the patients. McKibben actuator is a type of soft actuator that could be used 

in hand rehabilitation robots for its flexibility and light weight. However, it has a 

limited contraction ratio for the required range of motion for finger flexion. In this 

thesis, a pulley mechanism is proposed to improve McKibben actuator’s contraction 

ratio while providing the required contraction force. A double groove pulley made of 

a hybrid of gear and pulley is proposed to enhance McKibben’s actuator contraction 

ratio. Various pulley ratio was studied to find optimum contraction ratio and its relation 

to contraction force. A pulley ratio of 1:4 increases the contraction ratio from 19.85 % 

to 76.67 % but reduces the contraction force from 42.68 N to 9.69 N. Hence, pulley 

ratio of 1:2 was implemented to the McKibben linear actuator based on its optimized 

39.72 % contraction ratio and 20 N contraction force for the soft splint application. 

Next, an adjustable finger size soft splint with fixed wrist motion was developed. It 

consists of three parts, namely pulley-based McKibben actuator, wrist component, and 

McKibben ring actuators. The wrist component was designed with an adjustable strap 

buckle while the finger insertion part utilized the elasticity of McKibben ring actuator 

during contraction to fit a wide range of sizes. The size range for wrist and hand 

circumference is 12 cm -  21.6 cm and 15.8 cm -  22.3 cm respectively, which fit 90 % 

of Malaysian young adults. The soft splint was tested on two healthy subjects. At 400 

kPa supply pressure, the bending angle of the finger joints achieved was [71.8°, 72.8°, 

18.70] for Metacarpophalangeal, Proximal Interphalangeal and Distal Interphalangeal 

respectively. The range of motion achieved by the soft splint is lower than the 

functional range of motion, but higher compared to other research works. The subjects 

were able to grasp and lift objects of different shapes including a box, cylinder, and 

irregular shape under 250 g while wearing the soft splint. The developed soft splint 

with adjustable McKibben ring actuators and pulley-based McKibben linear actuator 

could initiate finger motion and assist object grasping for a possible clinical hand 

rehabilitation assessment.
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ABSTRAK

Robot pemulihan tangan telah direka bentuk untuk membantu dalam 
pemulihan yang dijalankan oleh pakar pemulihan. Tetapi kebanyakan robot 
mempunyai bingkai yang berat dan tegar, menambahkan lebih beban dan 
ketidakselesaan kepada pesakit. Penggerak McKibben adalah sejenis penggerak 
lembut yang boleh digunakan dalam robot pemulihan tangan kerana ia mempunyai 
fleksibiliti yang tinggi dan ringan. Tetapi penggerak McKibben mempunyai nisbah 
penguncupan terhad untuk mencapai sudut sendi jari yang diperlukan dalam 
kelenturan jari. Dalam tesis ini, mekanisme takal telah dicadangkan untuk 
meningkatkan nisbah penguncupan sementara menghasilkan daya penguncupan yang 
diperlukan. Takal alur berganda yang diperbuat daripada hibrid gear dan takal 
diusulkan untuk meningkatkan nisbah penguncupannya. Beberapa nisbah takal telah 
dikaji untuk mendapat nisbah penguncupan optimum dan hubungannya dengan daya 
penguncupan. Dengan menggunakan nisbah takal 1:4, nisbah penguncupan 
ditingkatkan daripada 19.85% kepada 76.67% tetapi mengurangkan daya 
penguncupan daripada 42.68 N kepada 9.69 N. Oleh itu, nisbah takal 1:2 telah 
diterapkan dalam penggerak linear McKibben dengan nisbah penguncupan 39.72 % 
dan daya penguncupan 20 N yang telah dioptimumkan untuk belat lembut. Selepas itu, 
belat lembut dengan saiz jari boleh laras dengan penetap pergerakan pergelangan 
tangan telah direka bentuk. Ia terdiri daripada tiga bahagian, iaitu penggerak 
McKibben berasaskan takal, komponen pergelangan tangan, dan penggerak cincin 
McKibben. Komponen pergelangan tangan direka dengan tali boleh laras manakala 
bahagian penyisipan jari menggunakan keanjalan pengaktif cincin McKibben semasa 
penguncupan supaya sesuai dengan pelbagai saiz. Julat saiz untuk lilitan pergelangan 
tangan dan tangan adalah 12 cm -  21.6 cm dan 15.8 cm -  22.3 cm, yang sesuai dengan 
90% orang dewasa muda Malaysia. Belat lembut telah dicuba pada dua subjek yang 
sihat. Pada bekalan tekanan 400 kPa, sudut sendi jari yang dicapai adalah [71.8°, 72.8°, 
18.7°] bagi Metacarpophalangeal, Proximal Interphalangeal dan Distal 
Interphalangeal. Julat gerakan yang dicapai oleh belat lembut adalah lebih rendah 
daripada julat gerakan berfungsi, tetapi lebih tinggi jika dibandingkan dengan ROM 
yang dicapai oleh kerja-kerja penyelidikan lain. Subjek dapat mengangkat objek 
pelbagai bentuk termasuk kotak, silinder, dan bentuk yang tidak teratur di bawah 250 
g dengan memakai belat lembut. Belat lembut yang dibangunkan dengan penggerak 
cincin McKibben boleh laras dan penggerak linear McKibben berasaskan pulley 
mampu memulakan gerakan jari dan membantu pencengkaman objek untuk penilaian 
pemulihan tangan klinikal.
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CHAPTER 1

INTRODUCTION

1.1 Problem Background

A stroke happens when there is an interruption in the blood supply to parts of 

the brain, causing it to be malfunction and become severely damaged. According to 

World Stroke Organization (WSO), an average of 13.7 million cases of first-time 

strokes happen all over the world each year [1]. While in Malaysia, there are over 

50,000 new cases reported yearly [2], and stroke was listed as one of the top 10 causes 

of hospitalization [3]. Luckily, advancement in technology and awareness about 

stroke has increased the survival rate of stroke patients to 90 %. But, up to 70 % of 

stroke survivors leave the hospital with disabilities [2].

The severity of the disability depends on the affected area of the brain. It varies 

from a decrease in strength to complete paralysis. The most commonly affected area 

of the whole body is the arm with almost 3 out of 4 stroke survivors suffer from arm 

weaknesses [4]. Stroke survivors with arm weaknesses or disabilities will face 

difficulties in carrying out activities in daily livings (ADL) such as maintaining 

hygiene and feeding. Some are even unable to return to work. Not only does it affect 

the stroke survivors but also their family members, especially when they were one of 

the family breadwinner [5]. About 40 % of the stroke survivors were of working age

[6]. Therefore, rehabilitation is important for stroke survivors to sustain their lives.

Rehabilitation is the process of helping the patients to regain the movement of 

important muscle parts. At Hospital Sultanah Aminah (HSA), hand rehabilitation was 

conducted using a dynamic splint as shown in Figure 1.1 to hold the wrist of the 

patients at 15 degrees for effective finger motion. The occupational therapists will 

then assist them with finger flexion manually. It must be conducted at least half an 

hour a day for several weeks for effective training, and hence is very labour-intensive.
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Figure 1.1 Dynamic splint

In some cases, the professionals are unavailable to treat the patient and to guide 

the rehabilitative session. This means that rehabilitation services cannot be provided 

to every stroke survivor. During the 1st Malaysia Stroke Conference in 2019, Datuk 

Dr. Noor Hisham Abdullah, the director-general of Health, mentioned that there were 

only 107 specialists from all sectors in Malaysia and there was a need for at least 

another 200 specialists to handle stroke patients [7].

To overcome this shortcoming, rehabilitation robotics has been introduced to 

assist rehabilitation over the past decades. There were clinically proven results 

showing that it can help patients with hand mobility impairment to perform repetitive 

exercises and accelerate the recovery of function and muscle strength of the affected 

arm [8], [9]. It can also control and reproduce movements precisely [9]. However, 

due to the heavy and rigid structures, most of the rehabilitation robots can cause patient 

discomfort. There is also fitting issue to align the center of rotation between robot and 

human finger joints [10].

Many research groups have shifted their focus towards soft robotics because of 

its promising potential in future robotic development. Soft robots are robots made of 

soft materials and therefore possess advantages that are unachievable with rigid robots. 

They also fit decently onto body parts and reduce abrasion onto humans, which makes 

them a better choice for prosthetics and wearable technology [11], [12].

Although some studies focused on the development of soft wearable robots 

for hand rehabilitation, there has been little discussion on their wearability on spastic 

hands. Most of the patients are unable to straighten their fingers to wear the devices.
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In most cases, the rehabilitation devices needed to be shared among patients but most 

of the devices require customization to each patient.

Soft robots are controlled by using soft actuators, devices that can deform when 

stimulated to produce mechanical power. The soft actuators are able to move in many 

ways, including bending, twisting, curling up, stretching, and mimicking muscle 

movement, which are useful in certain tasks such as grasping [11]. Soft actuators are 

also simple in structure, lightweight, and adaptive to the environment [13].

One such soft actuator is a McKibben pneumatic actuator. It consists of a 

rubber inner tube surrounded by a double helix braided sleeve and actuates like 

biological muscle where the muscle will grow in width and shrink in length. It has a 

high power-to-weight ratio due to its lightweight design. The elastic inner tube that 

was stretchable also promoted a safer interaction with humans due to It’s compliance 

and softness. The main restriction of the McKibben actuator is its limited contraction 

ratio. The thin McKibben actuator (S-muscle SM series [14]) shown in Figure 1.1 can 

only achieve a contraction ratio of 22 % at 300 kPa [15].

Figure 1. 1 Thin McKibben actuator by S-muscle [14]

A number of research groups have proposed several ideas to improve the 

contraction ability of the McKibben actuator. Prof Koichi Suzumori Research Group 

altered and changed the fabricated structure of McKibben to increase the detour route 

and further increase the contraction ratio [16]—[19]. The best contraction ratio that 

they achieved was 37 % [17]. Other proposed ideas include nested muscle arrangement 

and internal pulley mechanism. The internal pulley mechanism gives the highest 

contraction ratio which is 50 % [20]. Although these mechanisms are improving the 

contraction ability, there is room for further improvements to increase the efficiency 

of the McKibben actuator.
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Therefore, this research proposes a soft splint with adjustable size and 

improved wearability on spastic hands, controlled by pulley-based thin McKibben 

actuator with improved contraction ability. It is expected that the research contributes 

to the development of a user-friendly and comfortable hand rehabilitation device that 

helps to reduce the workload of occupational therapists in providing rehabilitation 

services to stroke patients in the near future.

1.2 Problem Statement

Soft actuated hand rehabilitation robot could provide better user experience 

while being safer and more comfortable from the flexibility and lightweight nature of 

its actuator material. Two major types of soft actuators were used, which are bending 

actuator and contracting actuator. The pneumatic bending actuator is capable of 

initiating finger flexion [21]-[24], but the bending of the actuator is uneven. The 

highest bending only occurs at a certain part of the actuator[23], [25]. While for 

contracting actuator, the retraction of shape memory alloy (SMA) that was coiled into 

spring shape was used to pull the cable to initiate finger motion. However, it has a low 

efficiency where the strain produced is only 2-5 % [26], [27].

There are some research works that implemented McKibben actuator in hand 

robots for hand rehabilitation. McKibben actuator is a contracting actuator that was 

known for its high contraction force and similar characteristics to human muscle. It 

has a contraction ratio of 22 % when supplied with 300 kPa [15]. However, a pressure 

of 600 kPa was needed to initiate a half flexion, which already exceeds the pressure 

limit. For higher displacement, a longer McKibben is required due to its limited 

contraction ratio [16]—[19]. There were several ideas proposed by other research 

groups to improve its contraction ability by modifying the fabricated structure of 

McKibben muscles and could improve the contraction ratio by at most 32.1 %. 

Another study [20] which uses internal pulley mechanism shows an increase in the 

contraction ratio to 50 % [20]. But there is still room for further improvement to 

increase the efficiency of the McKibben actuator by improving the design of the 

pulley.
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Most of the soft rehabilitation robots developed focused on the actuation 

mechanism but very few focused on wearability and size. Occupational therapists 

from HSA have mentioned that they tried to use a rehabilitative glove to assist in hand 

rehabilitation, but they encountered several issues. They are providing therapy to 

patients with various hand sizes, while the glove could only fit a certain range of sizes. 

There is also fitting issue to align the center of rotation between robot and human 

finger joints [10]. Most of the patients suffer from spasticity and it is hard for them to 

hold their fingers straight for the donning of the full-covered glove and need something 

can be easily worn.

1.3 Research Objectives

The objectives of the research are:

(a) To design a pulley-based mechanism to improve the contraction ratio and

contraction force of McKibben linear actuator.

(b) To develop an adjustable size soft splint that initiates finger flexion using

silicone and McKibben ring actuators.

(c) To evaluate the functionality of the soft splint for its range of motion and obj ect 

grasping function.

1.4 Research Scope

The scope of the research includes the fabrication of a pulley-based McKibben 

linear actuator to improve its contraction ratio based on the pulley design.

The soft splint was designed to initiate the flexion of only four fingers, which 

includes the index finger, middle finger, ring finger, and little finger with the usage of 

on/off control system. The thumb which has more degrees of freedom in motion was
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excluded because its structure is different from the other fingers, and it contributes the 

least to the grip strength. On/off control was used because of the non-linearity of the 

McKibben actuator.

The soft splint is designed by referring to the available hand anthropometric 

data of Malaysian young adults [28], [29]. Most of the stroke patients are senior 

citizens but there is insufficient hand anthropometric data on senior citizens. There 

are many challenges in collecting a new set of anthropometry data including cost, time, 

and variety of ethnicity. Therefore, the soft splint was designed based on the available 

data of Malaysian young adults.

Several parameters can be used to evaluate the functionality of the soft splint. 

In this research, the soft splint will only be evaluated for the range of motion (ROM) 

that each finger could achieve and compare with functional ROM. Also, the evaluation 

will be conducted on object grasping performance with three objects of different 

shapes, which are box, cylinder and irregular shapes.

Finally, the soft splint was tested on two healthy subjects, including one male 

and one female Malaysian young adult. Clinical trial on actual stroke patients was not 

conducted because ethical approval procedures and involvement of professionals were 

needed for clinical trial but will be considered in the future work.

1.5 Organization of Thesis

This thesis was organized into five chapters. In Chapter 1, the background of 

the study and problems that need to be solved were introduced. Solutions proposed 

were also included, along with the scope of the study.

In the next chapter, stroke and human hand were studied. The background of 

stroke rehabilitation was also presented. Literature review on hand rehabilitation 

robots that were available in the market or under development were also presented and 

summarized for comparison. A few types of soft actuators that were applied in hand
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rehabilitation devices were studied. McKibben actuator was studied in detail with the 

review of ideas proposed to improve its contracting ability. Lastly, the concept of 

pulley was studied.

The development of the proposed soft splint was described in Chapter 3, which 

started with preliminary testing to obtain information that was essential for the 

mentioned design. The process of design, fabrication, and improvement of the design 

was also discussed in this chapter.

Chapter 4 presents the setup and results of the experimental testing of the 

proposed double groove pulley and soft splint. The analysis of the data collected from 

the experiments and comparison with the reference data were also presented.

Finally, Chapter 5 presents the summary of this research. Future works were 

also suggested for further improvement of the soft hand splint.
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