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ABSTRACT 

 

 

 

 

  

 Gold prices change rapidly from time to time. The change is not only in the 

mean, but also in the variability of the series. The Malaysian Kijang Emas (MKE) is 

the official national bullion gold coin of Malaysia and it is high in demand. The 

purchase and resale prices of MKE are determined by the prevailing international 

gold market price. However, the value of Ringgit Malaysia (RM) that is used to 

purchase MKE is affected by United States (U.S.) dollar. Thus, the purpose of this 

study is to develop the best model for forecasting international gold prices, U.S. 

dollar index and MKE prices by investigating their co-movement. In an attempt to 

find the best model, fifteen years of data for MKE prices, international gold prices in 

U.S. dollar and U.S. dollar index were used. This study initially considered three 

standard methods namely bivariate generalized autoregressive conditional 

heteroskedasticity (GARCH), trivariate GARCH and multilayer feed-forward neural 

network (MFFNN). Bivariate and trivariate GARCH are from Baba-Engle-Kraft-

Kroner (BEKK) GARCH. The current study further hybridized these methods to 

improve forecasting accuracy. Bivariate and trivariate GARCH were used to examine 

the relationship between gold prices and U.S. dollar. The trivariate GARCH was 

modified to develop GARCH-in-mean model due to the existence risk that was 

expected in the data. Analysis was done by using E-Views software. However, 

analysis using MFFNN model and hybridized models were carried out using 

MATLAB software. Analyses of performances were evaluated using mean absolute 

percentage error (MAPE) and mean square error (MSE). The MAPE for all in and 

out sample forecasts were less than 1%. The lowest values of MAPE were 0.8% for 

gold prices and 0.2% for U.S. dollar index. These low values were produced by using 

trivariate GARCH-in-mean model that was developed by the current study either as a 

single or hybdridized model with MFFNN. MSE recorded the lowest values when 

trivariate GARCH-in-mean model was hybridized with MFFNN using 15 hidden 

nodes. 
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ABSTRAK 

 

 

 

 

  

 Harga emas berubah dengan cepat dari semasa ke semasa. Perubahan ini 

bukan sahaja dalam purata, tetapi juga dalam kebolehubahan siri tersebut. Kijang 

Emas Malaysia (KEM) adalah wang syiling emas rasmi Malaysia dan mempunyai 

permintaan yang tinggi. Harga belian dan jualan semula KEM ditentukan oleh harga 

pasaran emas antarabangsa. Walau bagaimanapun, nilai Ringgit Malaysia (RM) yang 

digunakan untuk membeli KEM dipengaruhi oleh dolar Amerika. Oleh itu, tujuan 

kajian ini adalah untuk membangunkan model terbaik untuk meramal harga emas 

antarabangsa, indeks dolar Amerika dan KEM dengan mengkaji gerakan bersama. 

Dalam usaha untuk mencari model terbaik, data lima belas tahun untuk harga KEM, 

harga emas antarabangsa dalam dolar Amerika, dan indeks dolar Amerika telah 

digunakan. Kajian ini pada awalnya menggunakan tiga kaedah piawai iaitu 

heteroskedastisiti bersyarat autoregresif teritlak (GARCH) bivariat, GARCH trivariat 

dan rangkaian neural ke hadapan (MFFNN). GARCH bivariat dam trivariat adalah 

dari GARCH Baba-Engle-Kraft-Kroner (BEKK). Kajian ini seterusnya 

menggabungkan kaedah tersebut untuk membaiki kejituan ramalan. GARCH bivariat 

dan trivariat digunakan untuk meneliti hubungan antara harga emas dan dolar 

Amerika. GARCH trivariat telah diubahsuai untuk membangunkan model GARCH-

dalam-min disebabkan kewujudan risiko yang dijangkakan dalam data. Analisis 

dilakukan dengan menggunakan perisian E-Views. Walau bagaimanapun, analisis 

menggunakan model MFFNN dan model gabungan telah dijalankan dengan perisian 

MATLAB. Kejituan analisis telah dinilai dengan menggunakan min ralat peratusan 

mutlak (MAPE) and ralat kuasa dua (MSE). MAPE untuk semua ramalan sampel 

dalam dan luar adalah kurang daripada 1%. Nilai MAPE yang terendah adalah 0.8% 

untuk harga emas dan 0.2% untuk indeks dolar Amerika. Nilai rendah ini dihasilkan 

dengan menggunakan model GARCH-dalam-min trivariat yang telah dibangunkan 

oleh kajian ini samada sebagai model univariat atau digabungkan dengan MFFNN. 

MSE mencatatkan nilai terendah apabila model GARCH-dalam-min trivariat 

digabungkan dengan MFFNN dengan menggunakan 15 nod tersembunyi.   
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

 

 This chapter provides an introduction to the study and a statement of the 

problem. Then, it describes objectives of the study, significance of the study and 

scopes of the study. The contributions of the study and thesis organization conclude 

this chapter. 

 

 

 

 

1.1 Introduction 

 

 

Gold is a popular precious metal for investment and is considered to be a hedge 

against inflation (Baur and Lucey, 2010; Ciner et al., 2013; O’Connor et al., 2015; 

Hoang et al., 2016; Bekiros et al., 2017; Junttila et al., 2018; Tronzano, 2021). Gold 

has historically been used as currency remains a safe haven for investors. There is an 

inherent correlation between gold prices and the United States dollar (U.S. dollar) 

(Gilroy, 2014). The U.S. dollar was tied to gold when the gold standard came into use 

from 1900 (Craig, 2011). Gold moved to floating exchange rates after 1971, making 

gold prices vulnerable to the external effects of the U.S. dollar. The International 

Monetary Fund (IMF) reported in 2008 that 40-50 percent of moves in the international 

gold prices were related to the U.S. dollar since 2002. It was mentioned that one 

percent change in the external value of U.S. dollar led to more than one percent change 

in gold prices. When the demand for the US dollar falls, banks and investors around 

the world invest more in gold to protect their money. This makes the value of gold 

increase. Therefore, many central banks around the world invest more in gold to 
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preserve their assets during unstable economic conditions. Likewise, when the U.S. 

dollar rises, investors will shift their investments from gold to the U.S. dollar. This 

causes the demand for gold to fall. This behavior causes an inverse relationship 

between gold and the U.S. dollar (Shafiee and Topal, 2010). In other words, the higher 

the value of the U.S. dollar, the weaker the price of international gold. Conversely, the 

lower the value of the U.S. dollar, the stronger the price of international gold. Thus, 

researchers are interested in the relationship between gold and the U.S. dollar. 

 

 

However, it cannot be concluded that the price of gold and the U.S. dollar have 

always moved in opposite directions. There have been times in which gold prices and 

the U.S. dollar have risen together. This may be caused by other external factors, even 

though the U.S. dollar is the benchmark for gold trading worldwide. However, it is 

important to understand that there is a possibility for the U.S. dollar and gold prices to 

rise at the same time. This might be caused by the crisis in some other countries. 

Moreover, the U.S. dollar is motivated by many factors such as economic prospects, 

monetary policy and inflation in the U.S. with other countries. All of these should be 

investigated. However, in this study, the U.S. dollar index and not the U.S. dollar itself 

is considered. The US Dollar Index is a measure or an index of the value of the U.S. 

dollar relative to the value of a basket of foreign currencies. This is often in reference 

to the majority of the U.S. most significant trading partners' currencies. The U.S. dollar 

index is a weighted geometric mean of the dollar's value relative to other selected 

currencies. It uses exchange rates from the major same trading partners’ currencies, 

including the Euro (EUR) at 57.6% weight, Japanese yen (JPY) at 13.6% weight, 

Pound sterling (GBP) at 11.9% weight, Canadian dollar (CAD) at 9.1% weight, 

Swedish krona (SEK) at 4.2% weight, and Swiss franc (CHF) at 3.6% weight. 

 

 

In Malaysia, one of the highest gold investment demands is for its own gold 

bullion coins called Kijang Emas. The Malaysian Kijang Emas is the official gold 

bullion coin of Malaysia and was first issued by the Royal Mint of Malaysia on 17 July 

2001. The coins come in three different weights of 1 oz., ½ oz. and ¼ oz., respectively. 

The buying and selling price of Kijang Emas is determined by the prevailing 

international gold market price. However, the price of Kijang Emas is tied to and 
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driven by Malaysian ringgit (RM). The daily selling and buying prices of these coins 

are important to investors in order to make an investment decision. Although gold 

coins serve primarily as a store of value or an alternative financial asset for investment, 

the gold investment performance for Kijang Emas in Malaysia has received little 

empirical attention. However, the forecasting of its prices is used for investment 

purposes in Malaysia. So, in this study, investigation of the investment role of gold 

from a domestic market perspective is undertaken. 

 

 

 Hashim et al. (2017) conducted a study on macroeconomic factors against the 

change in the price of gold. They studied 20 years annual data, from 1996 to 2015 of 

gold-related countries such as India, United States, China, Turkey and Saudi Arabia. 

They found that there was a positive correlation between oil prices and gold prices but 

a negative relationship between exchange rates, inflation and interest rates and gold 

prices. Only the exchange rate did not significantly affect the price of gold. The same 

study was also conducted by Zakaria et al. (2015). They used monthly data of 14 years 

from 2000 to 2013. The study was about the factors that caused the change in the prices 

of gold in Malaysia. Based on the results of their study, it was found that the exchange 

rates, interest rates and inflation rates had a significant relationship with the prices of 

gold in Malaysia according to the difference in magnitude and direction. Empirical 

evidence also showed that any changes in the three variables would cause the prices 

of gold to change. 

 

 

Sukri, Mohd Zain and Zainal Abidin (2015) also conducted a study to 

determine the relationship between macroeconomic factors and the prices of gold, 

Kijang Emas in Malaysia. The data used were the data of each macroeconomic factor 

(inflation rates, crude oil prices, ringgit exchange rates, real GDP and inflation rates) 

during the 9th quarter of 2005 to 2014. Multiple Linear Regression Methods were used 

to get their findings, from which it was discovered that the Ringgit exchange rate 

showed a negative correlation with the prices of gold, Kijang Emas. 
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Gold prices and U.S. dollar index are volatile and clustering, making them 

difficult to predict (Wang et al., 2011; Chang et al., 2013; Beckmann et al., 2015; 

Ayele et al., 2017; Liu and Li, 2017; Ameer et al., 2018; Anis et al., 2019; Pierzioch 

and Risse, 2020). The data series display periods of high volatility followed by periods 

of relative tranquility. Volatility refers to the rate where the values change. Such 

volatility behavior is important in financial activities such as forecasting. Volatile data 

series typically change rapidly from period to period and are not constant over time. 

This makes gold prices and U.S. dollar index data difficult for management to predict 

in terms of future value changes. The determination of stability and instability of the 

volatility in the financial markets are significant, especially when risk is involved. 

Such time series are not easily modeled using common methods. 

 

 

            Some financial time series do not have a constant mean, while some of them 

display periods of high volatility, followed by periods of relative tranquility. The 

characteristics are that large returns will be followed by large returns while small 

returns will be followed by small returns. This implies that future volatility can be 

predicted by past and current volatilities (Aleye et al., 2017; Ameer et al., 2018; Anis 

et al., 2019; Perry, 2021). The volatility of a particular variable refers to the rate at 

which the values of that variable change. For a financial series, it is said to be volatile 

if and only if it is random; it is not constant over time; it undergoes rapid changes over 

time; and the values cluster. In the financial area, modeling volatility in asset returns, 

also called asset prices, is of great concern. The asset prices move slowly when the 

condition is in equilibrium and move fast when there are news and trading. In the 

literature, researchers are likely to use standard deviations or the logarithmic forms of 

returns in an asset. This is because if the series are converted to log forms before 

estimating and modeling, they tend to converge to steady states (Bala and Takimoto, 

2017). These series in log forms are called returns. This form of data is easier to handle 

than price series data. 

 

 

Modeling volatility in time series has attracted attention since the introduction 

of the Autoregressive Conditional Heteroscedasticity (ARCH) model in a seminal 

paper by Engle (1982). As a consequence, several variants and extensions of ARCH 
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models such as Generalized ARCH (GARCH) model introduced by Bollerslev (1986) 

have been proposed to capture volatility clustering or the periods of fluctuations, 

measure and predict volatilities in the future. GARCH models have been used 

intensively and widely in educational studies. Many variations of GARCH models 

exist and numerous studies have examined the extended estimation of the development. 

  

 

ARCH and GARCH have proven successful in modeling asset price second-

moment movements. Bollerslev (1987), Bailie and Bollerslev (1989) and Diebold 

(1988) have shown that the GARCH (1,1) model is effective in explaining the 

distribution of exchange rate changes. When conditional volatilities vary over time, 

ARCH and GARCH models may be used to capture dynamic clustering behavior. 

Several extensions of ARCH have been developed in recent years to capture time-

varying conditional variances and covariances, including work by Sentana and 

Wadhwani (1992), Kim and Kon (1994), Kearney and Daly (1998), Floros (2007), 

Teräsvirta (2009), Jensen and Maheu (2013), Boussama and Stelzer (2011), Rasmus 

and Anders (2014), Abdullah et al. (2016), Ayele et al. (2017), Shetty et al. (2018).  

Sentana and Wadhwani (1992), Kim and Kon (1994), and Kearney and Daly (1998) 

used daily data from Middle East stock markets as tested using GARCH models. 

Floros (2008) examined the use of GARCH models for modeling volatility and 

evaluated their performance in explaining financial market risk. 

 

 

Even though the ARCH and GARCH models may be applied in many time 

series, they suffer from two major deficiencies, (Huynh et al., 2013). Both ARCH and 

GARCH assume symmetric impacts of unconditional shocks, such that a positive 

shock has the same impact on conditional volatility as a negative shock. This 

restriction is contradictory, as negative shocks tend to have larger impacts on volatility 

than positive shocks of the stylized facts of financial returns. The second deficiency is 

that they are a univariate specification which does not permit independencies across 

different asset. They do not test for an interdependent relationship between the 

conditional volatilities of different asset and non-zero conditional correlations. 
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To address the deficiencies of the ARCH and GARCH, multivariate GARCH 

models (MGARCH) have been introduced. Multivariate GARCH (MGARCH) models 

present a natural investigative framework for possible relations within the conditional 

mean and time-varying conditional variance of two or more financial series. These 

models have become well-known in the empirical financial economics and 

econometrics literature in recent years, such as Lu and Dong (2016), Bala and 

Takimoto (2017), Shettty et al. (2018), Canh et al. (2019). MGARCH is an extension 

of the well-known univariate GARCH model. It is one of the most useful methods for 

modeling the co-movement of multivariate time series with time fluctuating 

covariance matrix. The co-movements of returns have been shown to be important 

when modeling volatility of the returns. MGARCH models, which allow the 

conditional covariance matrix of the dependent variables to follow a flexible dynamic 

structure, have been shown to be successful in modeling and forecasting volatilities of 

the dependent variable. For example, asset pricing depends on the covariance of the 

assets in a portfolio, while risk management and asset allocation relate for instance to 

finding and updating optimal hedging positions. 

 

 

MGARCH models have been used to investigate volatility, correlation 

transmission, and spillover effects (Bala and Takimoto, 2017). They may also be used 

to investigate the relationships among some macroeconomic variables such as interest 

rate, stock market prices, and the exchange rate. The MGARCH model can represent 

the dynamics of the conditional variances and covariances. (Watcher et al., 2013) As 

the number of parameters in an MGARCH model often increases rapidly with the 

dimension of the model, the specification should be parsimonious enough to allow for 

relatively easy estimation of the model and interpretation of the model parameters. 

Models with only a few parameters may not be able to capture the related dynamics in 

the covariance structure (Canh et al., 2019). The specification must also consider the 

imposition of positive definiteness. An alternative way to formulate the model is 

positive definiteness which is implied by the model structure, in addition to some 

simple constraints. These are the difficulties in the MGARCH. 
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 The first MGARCH is called VEC GARCH model. It is the model for the 

conditional covariance matrices which was proposed by Bollerslev et al. (1988). This 

model is general and allows for a flexible modeling of the conditional variance matrix. 

However, these models suffer from two disadvantages. First, it is not ensured that the 

estimated conditional variance matrices are positive definite. Second, the numbers of 

functionally independent parameters have to be estimated. To overcome these 

problems, Engle and Kroner (1995) developed a restricted version of VEC model 

called Baba-Engle-Kraft-Kroner (BEKK) GARCH. The conditional covariance 

matrices of BEKK are positive definite by construction. Each BEKK model implies a 

unique VEC model that can generate positive definite conditional covariance matrices. 

 

 

The number of parameters in the MGARCH model usually increases rapidly 

with the size of the model. The specification should be concise enough so that the 

model can be estimated relatively easily and the model parameters can be easily 

explained. However, simplification usually means simplification, and a model with 

only a few parameters may not be able to capture the relevant dynamics in the 

covariance structure (Watcher et al., 2013, Chaudhuri et al., 2016). In addition, 

although modeling the volatility of returns has become the main focus of attention, 

understanding the linkage of financial returns has important practical significance. 

Therefore, it is important to extend the considerations to the MGARCH model. For 

example, asset pricing depends on the covariance of the assets in the investment 

portfolio, while risk management and asset allocation are, for example, related to 

finding and updating the best hedging positions (Gencer and Musoglu, 2014). 

Therefore, in the current study, BEKK parameterizations for the bivariate and 

trivariate GARCH model are used to investigate the relationships between gold prices 

and U.S. dollar index. The models define linkages, if any, between gold prices and U.S. 

dollar index. This information provides important implications for investors and 

traders in carrying out trading strategies and portfolio managers in risk management. 

In addition, a hybrid method of artificial neural network (ANN) with MGARCH is 

proposed to obtain more efficient models to estimate the time series data. 
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The current study proposes the hybridization of ANN with MGARCH because 

ANN has attracted a great deal of attention and widely used in many studies. This 

suggests an alternative approach to computing and understanding of the human brain. 

ANN processes information in a way which mimics the human brain. The network is 

making up by of a large number of highly interrelated processing elements called 

neurons which work in parallel to solve a specific problem. Neural networks cannot 

be programmed to implement a specific task. For that reason, the examples must be 

selected carefully. Otherwise, the network might function incorrectly. 

  

 

ANN has been often hybridized from different perspectives. In the current 

study, ANN analysis addresses problems caused by the implicit limitations of BEKK 

models. The rapid increase in the number of parameters to be estimated in the BEKK 

GARCH equation limits the number of assets that can be included. Besides, the large 

number of parameters in BEKK and local maxima in the likelihood function often lead 

to overfitting. Financial markets are dynamic, and market conditions change with time. 

However, BEKK does not naturally capture these shifts in market conditions. 

Furthermore, the maximum likelihood fit of the BEKK parameters involves solving a 

non-linear optimization process, which is computationally expensive and infeasible in 

high dimensions (Watcher et al., 2013).  This is because ANN is suitable for evaluating 

the reliability of many variables.  ANN is non-parametric and non-linear and can 

therefore handle such problems in BEKK. This may theoretically provide a better and 

more accurate classification tool. 
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1.2 Statement of the Problem       

 

 

 Volatility analysis of financial time series is a crucial aspect of many financial 

decisions. Volatility forecasts are important in order to either construct less risky 

portfolios, asset allocation or obtain higher profits. Hence, good analysis and 

forecasting of volatility become an important aspect in recent years. In recent years, 

multivariate GARCH models have been used extensively to analyze the co-movements 

of stock markets and volatility spillovers. It is due to financial return series exhibit 

many non-normal characteristics that cannot be captured by the standard GARCH 

model.  

 

 

 In the current study, a set of gold prices and U.S. dollar index are modelled by 

using multivariate GARCH models. Multivariate GARCH models are able to capture 

volatility, observe the relationship between long-term/short-term time series data 

where periods of volatility clustering. However, sometimes the series do not move in 

the same direction. As a consequence, this relationship might not be embedded in a 

model that is developed based on the co-movement of three time series. Therefore, it 

is important to extend the considerations to multivariate GARCH (MGARCH) models. 

For example, asset pricing depends on the covariance of the assets in a portfolio, and 

risk management and asset allocation relate for instance to finding and updating 

optimal hedging positions.  

 

 

The specification of an MGARCH model should be flexible enough to be able 

to represent the dynamics of the conditional variances and covariances. The number 

of parameters in an MGARCH model should often increases rapidly with the 

dimension of the model, the specification should be parsimonious enough to allow for 

relatively easy estimation of the model and also allow for easy interpretation of the 

model parameters. For examples, see Bollerslev, Engle, and Wooldridge (1988), Ng 

(1991), and Hansson and Hordahl (1998). Thus, trivariate GARCH model gas been 

proposed to improve these problems. However, parsimony often means simplification, 
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and models with only a few parameters may not be able to capture the relevant 

dynamics in the covariance structure.  

 

 

Another feature that needs to be considered in the specification is imposing 

positive definiteness, such as covariance matrices need, by definition, to be positive 

definite. Thus, to improve on the Multivariate GARCH model, it will be hybridized 

with neural network model. The models proposed in this study are trivariate GARCH 

and hybrid trivariate GARCH with neural network model. Multivariate GARCH 

models have been used widely for forecasting different types of time series to capture 

the long term trend while in the case of financial time series that have been shown to 

have volatility clustering, ARCH based models have been used.  

 

 

 In this study, the following question will be explored: Between trivariate 

GARCH and hybrid trivariate GARCH with neural network model, which model is 

more accurate in modelling volatile data. 

 

 

 

 

1.3 Objectives of the Study                          

 

 

 The purpose of this study is to develop the best model for forecasting gold 

prices and U.S. dollar index by studying co-movement. In the attempt to find the best 

model, specific objectives have been established as follows: 

 

 

a) To develop a new trivariate GARCH model and improve the forecasting 

accuracies of the single model. 

b) To hybrid the new trivariate GARCH model with the neutral network. 

c) To compare the forecast ability of the new trivariate GARCH model with 

hybrid neutral network and new trivariate GARCH model. 
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1.4 Significance of the Study        

 

 

 When two or more volatile financial time series are verified as related, that is 

having co-movement, a multivariate GARCH model is developed based on such a 

relationship can be used to forecast a series, even if only one of the series is present. 

In other words, looking at the movement of a related time series, we can still predict 

future values of the other series with an acceptable level of confidence and accuracy.  

 

 

The current study aims to investigate the potential of hybridizing trivariate 

GARCH model with the neural network to model and forecast the variance of financial 

and economic time series over time. It aims to do so by analyzing the co-movement 

relationship between financial series in handling volatility. For the purpose of the 

study, the prices of the gold market (Malaysian Kijang Emas and international gold 

prices) and the U.S. dollar index over the period 2001 to 2016 will be used as case 

studies. Gold prices and the U.S. dollar index are not easy to model using common 

methods. Gold prices have ranged widely since 1968. The price of gold as of every 

traded asset is subject to the ups and downs of the market. The rate of gold also 

fluctuates. In the past, when the USD went down, the gold prices remained. It has been 

found that the gold prices are always moving in the opposite direction to the US dollar. 

The relationship of the co-movement and covariance between two time series data 

have not been investigated by other researchers. The current study aims to address this 

research gap. 

 

 

 The Malaysian Kijang Emas is the official gold bullion coin of Malaysia and 

is minted by the Royal Mint of Malaysia. It was first issued on 17 July, 2001. It is not 

in high demand compared to currencies from countries such as China, Saudi Arabia 

and India. For that reason, it is not certain whether it has been affected by the 

international price of gold or the U.S. index. For the benefit of local investors, trivariate 

GARCH is applied to study the time-varying volatility relationship between 

international gold markets, Malaysian Kijang Emas and U.S. index. In this study, an 

investigation is carried out to determine whether there are interactions, unidirectional 
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and spillover effects among these three markets. Such information can be used as 

reference and guidance for investors, commercial banks, and researchers to take 

measures at the policy level, to safeguard against and prevent adverse impacts of 

fluctuations in gold prices. Moreover, stakeholders can take actions to maintain gold 

prices and economic development stability. 

 

 

 

 

1.5 Scope of the Study       

 

 

 The U.S. financial crisis had an impact on the international gold market via 

certain transmission channels. By comparing the degree of change of spillover effects 

before and after the crisis, the impact of U.S. index during the financial crisis on the 

international gold market and Malaysian gold prices through spillover effects is 

analyzed. Taking the volatility of gold prices after the year of 2001 as the sample data, 

bivariate GARCH and trivariate GARCH models were established to analyze the 

correlation between three markets studied. They are U.S. index, international gold 

prices and the Malaysian Kijang Emas (official gold bullion coin of Malaysia). The 

bivariate GARCH model is used to analyze U.S. index and international gold prices. 

The trivariate GARCH model is applied to study the time-varying volatility 

relationship between international gold markets, Malaysian Kijang Emas and U.S. 

index. An investigation is carried out to determine whether there are interactions and 

unidirectional and spillover effects among these three markets studied. 
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1.6 Contribution of the Study       

 

 

 In the attempt to find the best model for forecasting U.S. index and gold prices, 

the following are the contributions of this study. 

  

 

            The first contribution is the new trivariate GARCH model. This model is useful 

in capture multivariate volatile time series data. It may give more accurate forecasts 

than the original model. Details are provided in Chapter 3. 

  

 

            The second contribution is to verify the best-selected model is the best model 

for this study. First, we examined the data by using MGARCH models. Unlike 

previous studies, the current study divides all three data sets into four sub-periods (four 

economic cycles). The output (forecasts) of new trivariate GARCH model will be 

trained by ANN. Results showed that the hybrid model of new trivariate GARCH with 

ANN is the best model for this study. Details of the third contribution are found in 

Chapter 5 and Chapter 6. 

 

 

 The third contribution is the hybrid model, which has been shown to 

outperform the single model. Mean square error (MSE) of the hybrid model is smaller 

than the single model. Details are found in Chapter 6. 

  

 

            The forth contribution is the data used for analysis.  The data include the prices 

of gold market (Malaysian Kijang Emas and international gold prices) and the U.S. 

dollar index over the period of 2001 to 2016. The data are divided into four different 

economic cycles, to represent a real period of market turmoil and a normal situation. 

This is because volatility forecasting is usually considered for long periods, such as 

five years, ten years, or more. It will lead to insufficiently in capturing volatility in 

different economic situations. Additionally, the buying and selling price of Kijang 

Emas is determined by the prevailing international gold market price. It is found that 
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the time of volatility of Kijang Emas is different with international gold prices. This 

may be affected by the international price of gold or the U.S. dollar index. The ways 

and procedures cannot be found in any literature. Details are provided in Chapter 4.

  

 

 

 

1.7 Thesis Organization       

 

 

 This thesis consists of seven chapters. Chapter 1 is an introduction to the 

current study. It introduces the current study, followed by the statement of the problem. 

Next, it describes objectives of the study, significance of the study and scopes of the 

study, as well as its contributions. A description of the thesis organization ends this 

chapter. 

  

 

            Chapter 2 is a literature review of the current study. The purpose of the chapter 

is to review previous studies related to the current study. Basically, this study focuses 

on modeling volatility data by using multivariate GARCH model. The multivariate 

GARCH models are bivariate GARCH and trivariate GARCH models. We are also 

interested in hybridization method which combines trivariate GARCH and artificial 

neural network model. Therefore, for the purposes of this study, we reviewed literature 

concerning multivariate GARCH, artificial neural networks and hybrid models. This 

chapter concludes with a table summarizing relevant studies in GARCH. 

  

 

            Chapter 3 is the research methodology for the current study. This chapter 

describes three approaches for forecasting gold prices and U.S. dollar index data which 

are multivariate GARCH models, neural network model and hybrid model. 

Forecasting evaluation method will be presented and this is followed by a concluding 

remark which ends this chapter. 
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 Chapter 4 describes three things. First, the results of bivariate and trivariate 

GARCH models when applied to U.S. index, international gold prices and the 

Malaysian Kijang Emas (official gold bullion coin of Malaysia). Second, it describes 

the results of the trivariate GARCH-in-mean model when applied to the U.S. index, 

international gold prices and the Malaysian Kijang Emas (official gold bullion coin of 

Malaysia), and describes the time-varying volatility relationship between them in 

terms of whether these three markets interact or experience unidirectional and spillover 

effects. Third, it describes the results of a hybrid model which combines the multilayer 

feedforward neural network and trivariate GARCH-in-mean models when applied to 

Malaysian Kijang Emas, international gold prices, and the U.S. dollar index. Next, it 

discusses the best hybrid model of this current study. The performances of the hybrid 

model, followed by a conclusion of hybrid model analysis, end this chapter.  

  

 

            Chapter 5 describes the results of the trivariate GARCH and trivariate 

GARCH-in-mean model when applied to the daily exchange rate for the Japanese Yen 

(JPY), daily exchange rate for the U.S. dollar (USD), NASDAQ stock market 

(American stock exchange), spot prices for crude oil and petroleum products (FOB) 

price, current West Texas intermediate crude oil prices (OIL) and American stock 

market index – Standard & Poor's 500 (SP500) and describes the time-varying 

volatility relationship between them in terms of whether these markets interact or 

experience unidirectional and spillover effects. The results are used to compare with 

trivariate GARCH model and proved that trivariate GARCH-in-mean model is better 

than trivariate GARCH model. 

  

 

            Chapter 6 is the summary and conclusions of this current study. This chapter 

summarizes the materials presented in the previous six chapters and discusses in 

further detail certain results and findings. Based on the results and findings, 

conclusions and suggestions are made. 
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