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ABSTRACT

This work is concerned with systems of laminated beams model subject to linear

and nonlinear delay feedback. In a dynamic laminated beam, time delay manifests in

the form of lags in restoring the desired system stability after perturbations. Four

prevalent categories of time delay are considered. For laminated beams with relatively

high adhesive stiffness, a constant delay feedback is considered for systems made up of

individual beams with same elasticity, and neutral delay otherwise. In systems where

delay is significantly due to adhesive softening, distributed delay is considered. Lastly,

in structures where the mechanism of dissipating energy is nonlinear, a corresponding

nonlinear delay effect is investigated. The mechanism of stabilization mainly relies on

the intrinsic structural damping, unlike in previous works where researchers introduced

additional dampings such as boundary feedback and material damping. The objective of

this work is to establish the asymptotic behavior of a vibrating Timoshenko laminated

beam using structural or utmost a single frictional damping in presence of different

forms of time delay. The energy method for partial differential equations is the main

tool used to establish wellposedness results and asymptotic behavior. The existence

and uniqueness of the solution is proved using the linear semi group theory, whereas

for energy decay properties, the multiplier technique involving constructing a suitable

Lyapunov functional equivalent to the energy is utilized. With appropriate assumptions

on the delay weight and wave speeds, it is established that the energy of the system at

least decays exponentially due to structural damping. Furthermore, a single additional

frictional damping guarantees polynomial decay despite the presence of constant or

distributed delay feedback. For nonlinear structural damping, with help of some

convexity arguments, general decay result is achieved. In summary, depending on

the damping mechanism(s), exponential, polynomial, or general decay results of a

laminated beam system subject to different forms of delay feedback are established.
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ABSTRAK

Kerja ini berkaitan dengan sistem model rasuk berlamina tertakluk kepada

maklum balas lengah linear dan tak linear. Dalam rasuk berlamina dinamik, lengah

masa nyata dalam bentuk susulan bagi memulihkan kestabilan sistem yang diingini

selepas gangguan. Empat kategori lazim lengah masa dipertimbangkan. Untuk rasuk

berlamina dengan kekukuhan perekat yang agak tinggi, maklum balas lengah berterusan

dipertimbangkan untuk sistem yang terdiri daripada rasuk individu dengan keanjalan

yang sama, dan lengah neutral sebaliknya. Dalam sistem di mana lengah ketara

disebabkan oleh pelembutan perekat, lengah teragih dipertimbangkan. Akhir sekali,

dalam struktur di mana mekanisme pelesapan tenaga adalah tak linear, kesan lengah

tak linear yang sepadan disiasat. Mekanisme penstabilan terutamanya bergantung

pada redaman struktur intrinsik, tidak seperti dalam kajian sebelumnya di mana

penyelidik memperkenalkan redaman tambahan seperti maklum balas sempadan dan

redaman bahan. Objektif penyelidikan ini adalah untuk mewujudkan kelakuan asimptot

rasuk berlamina Timoshenko yang bergetar menggunakan struktur atau sepenuhnya

redaman geseran tunggal dengan kehadiran pelbagai bentuk lengah masa. Kaedah

tenaga untuk persamaan pembezaan separa ialah alat utama yang digunakan untuk

mewujudkan keputusan sangat teraju rapi dan kelakuan asimptot. Kewujudan dan

keunikan penyelesaian dibuktikan dengan menggunakan teori kumpulan separa linear,

manakala bagi sifat pereputan tenaga, teknik pengganda yang melibatkan pembinaan

fungsi Lyapunov yang sesuai bersamaan dengan tenaga digunakan. Dengan andaian

yang sesuai mengenai berat lengah dan kelajuan gelombang, adalah terbukti bahawa

tenaga sistem sekurang-kurangnya menyusut secara eksponen disebabkan oleh redaman

struktur. Tambahan pula, satu redaman geseran tambahan menjamin penyusutan

polinomial walaupun terdapat maklum balas lengah yang berterusan atau teragih. Untuk

redaman struktur tak linear, dengan bantuan beberapa pembolehubah cembung, hasil

susutan umum dicapai. Secara ringkasnya, bergantung pada mekanisme redaman, hasil

eksponen, polinomial atau hasil susutan umum bagi sistem rasuk berlamina tertakluk

kepada bentuk maklum balas lengah yang berbeza diwujudkan.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Most structures in mechanical, electrical, civil and aerospace engineering

are made of single beam or several beams or plates. In building most of these

structures, more than one beam or plate are bonded or stuck together by different

means depending on the intended purpose of the structure. This implies, slipping or

movement between plates is very likely to occur. In most cases purposely allowed

but only up to certain limits, as it might result in structural damage or complete

breakdown. Technically speaking, allowance of slip creates some damping which

assists in restoring the equilibrium state of the system. Applications of laminated beams

in structural engineering include glued–laminated timber (GLT) (Uzelac Glavinić et al.,

2020) that are used in construction of bridges, building roofs, furniture fabrications, wall

paneling, and other wooden structures. PVB–laminated glass component (Pelayo et al.,

2017; Schulze et al., 2012), on the other hand, are used in building car windscreens,

glass railings, glass floors, skylight roofs, sunspaces, solar panel components, smart

gadgets gorilla glass panels, etc. Another application is the fibre–metal laminated

structures (Laliberte et al., 2000; Mukesh and Hynes, 2019), which are applied mostly

in components where more than one material metal is required. For example, dry irons,

hulls of submarines, auto mobile bodies, truck leaf springs, etc.Maintaining the system

at equilibrium state is paramount because in any control system, controlled output is

always desired. It is therefore central that, in physical and engineering applications,

the planned and designed frameworks are stable. This necessitates investigating

and establishing the rate at which these systems can regain stability in case of any

perturbations. Owing to the considerable importance of beam structures in the field of

engineering, engineers and mathematicians often develop models describing vibrations

of these beam structures to fully study their stability and other structural properties.
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1.2 Background of the Problem

In this section, the background beam theories related to this work is presented.

1.2.1 Single beam models

Researchers acknowledged that the bending effect is the single most crucial

element in a transversely vibrating beam at a very early stage. Thus, the evolution

of beam theories that lead to solutions involving transverse displacement. There are

mainly three single beam theories in this regard. These theories are the Euler-Bernoulli,

Rayleigh, and Timoshenko.

Introduced around 1750 (Euler, 1960), the Euler-Bernoulli beam theory is the

most elementary beam theory. It basically estimates deflection properties of a beam as

loads are applied to it. The kinetic energy is due to lateral displacement and the energy is

a result of the bending. It was derived on the assumptions that rotational displacements

and shear deformations are negligible. Therefore, Euler-Bernoulli theory overestimates

the natural frequencies especially in non-slender beams (Han et al., 1999).

The Rayleigh beam theory (Rayleigh, 1896) incorporates the effect of rotation

of the cross-section. As a result, it partially corrects the Euler-Bernoulli model’s

overestimation of natural frequencies. However, the natural frequencies are still slightly

overstated because shear deformation is neglected (Davies, 1937).

Timoshenko (1921) introduced a beam model including both shear deformation

and rotational bending effects. This takes care of Euler-Bernoulli beam theory

assumptions. The Timoshenko beam theory is a significant improvement especially for

non-slender beams and high-frequency responses where shear or rotary effects can not

be ignored.

The following are the common assumptions made by Euler-Bernoulli, Rayleigh,

and Timoshenko beam models:
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• One dimension is significantly larger compared to the other two.

• Hookean material is used.

• The Poisson effect is negligible.

• The cross-sectional area is symmetric such that the neutral and centroidal axes

coincide.

• Planes perpendicular to the neutral axis remain perpendicular after deformation.

• The rotation angle is relatively small so that the small angle assumption can be

utilized.

1.2.2 Laminated beams

It is worth mentioning that, the classical single Timoshenko beam model lacks

internal or external damping. Thus stabilization always depends on the additional

damping mechanisms introduced into the system. On the other hand, for composite

layered structures, it has been established that the interface connection property

possesses a significant impact on the deformation as well as stress in the form of

internal structural damping, depending on the material used in the structure (Ecsedi

and Baksa, 2011; Wu et al., 2016). This makes laminated beam structures more

preferred in application. In structural engineering, adhesives are among the most used

type of connectors of these layered beam structures. To this effect, Hansen and Spies

(1997) introduced a differential model describing the vibrations in a structure set up

by a pair of equal rods with uniform thickness, conjoined with help of an adhesive in a

manner that interfacial slip is possible when in continuous contact with each other. The

layer of adhesive at the interface is presumed to be of negligible mass and thickness,

and produces a restorative frictional force proportionate to the amount of slip. This is

frictional for referred to as structure damping. If the adhesive stiffness goes to infinity

thus leading a no slip along the interface between the beams, then the system behaves

like a single beam. On the other hand, if adhesive stiffness tends to zero, the two layers

become separated. Hence the desired case is between the two extremes. Single and

laminated beams theories and their properties are summarized in Table 1.1.

3



Table 1.1 Summary of single and laminated beam theories

Beam Model
Bending Lateral Rotational Shear Structural
moment displacement bending deformation damping

Euler-Bernoulli ✓ ✓ × × ×
Rayleigh ✓ ✓ ✓ × ×
Timoshenko ✓ ✓ ✓ ✓ ×
Laminated ✓ ✓ ✓ ✓ ✓

The laminated beam model has attracted the attention of researchers due to it’s

applicability structural engineering. Like in any other model resulting from control

system, establishing it’s well posedness and the stability properties is paramount. To this

effect, various damping mechanisms including frictional, thermoelastic, viscoelastic

damping as well as damping by boundary controls have been used by mathematicians

and engineers to achieve the desired stability results of the vibrations of the structure.

Furthermore, researchers have investigated and established the existence, uniqueness,

and smoothness properties of solutions of the laminated beams model under these

stabilization mechanisms. Some of the most interesting results in literature regarding

laminated beams model are presented and discussed in Chapter 2.

To attain stability, a vibrating laminated beam structure dissipates energy due

to damping. However, in applications, laminated beam structures are subjected to

external factors such as radiation, heat, moisture, among others, resulting into gradual

degeneration over time. It may be in form of adhesive softening, wear and tear on

the individual beams, and others. This translates into weak vibrations hence time

lags in restoration of the system’s stability. As mentioned in the previous paragraph,

the asymptotic behavior of laminated beams has been satisfactory studied, however a

lot more is still desired regarding effect of delay on energy decay of the vibration of

these systems. Authors have only been able to establish stability results using external

feedback control or dissipation through thermal damping factors in addition to adhesive

damping. This limits the application of this model to systems with boundary controls

similar to what has been already studied or where the materials used are significantly

thermoelastic.
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1.3 Delay Differential Equations

Many physical, economic, and engineering processes are spontaneous and often

exhibit a gradual nature. In such applications, the spontaneous rate of change is

affected by both the current state as well as the previous conditions. Hence, to

exhaustively comprehend and investigate these processes, differential models that reflect

both present and past occurrences are considered to be the best representation of such

phenomena. Concisely, delay differential equations (DDEs) are differential models

in which spontaneous change at any instant varies with the solution and perhaps its

derivatives at preceding occurrences. Differential equations with time delay are also

often referred to as functional differential equations, hereditary differential models,

differential models with diverging argument, aftereffect differential systems, among

other classifications.

Functional differential equations have been intensely investigated for two

decades and still counting (Schmidt, 1911). In mid 20th century, the study of delay

differential equations (DDEs) further developed significantly, mainly in the Soviet

Union, as a consequence of its relevant manifestation in engineering models as a

result the of use of automatic control systems. It is clear that most engineers had

an insight about hereditary effects occurring in physical systems. However, due to

insufficient theory to discuss such models in details, delay effect was often ignored.

Hereditary effects in system automatically arises from the time lags between detection

and responding to the information. The nature of the time lag detects the category

of time delay. In the mid 20th century, Minorsky (1941) reached a milestone. He

analyzed and represented controlled motion of a vessel with a sailing ballast using a

practical differential equation, reflecting and expressing the time needed to correct the

position of the ballast as a time lag. He further established that the sail vessel follows

an oscillatory motion, provided the time delay is significantly large. It has been long

established that delay effects on stability of controlled system can be devastating. The

presence of a small delay may lead to a remarkably worsened performance in fully

automated control systems, or may completely turn an initially stable system into a

chaotic one. However, owing to the fact that time delays naturally occur in controlled

systems, for reliable out put, it is important that they are well thought about and reflected
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in the blueprints while designing control feedback for these systems. During the 1950s,

researchers developed more interest in the subject matter, which led to vital publications

and fundamental texts (Bebernes, 1968; Bellman and Cooke, 1963; Krasovskii, 1959;

Myshkis, 1951). In addition, the theory of time delay differential equations has also

found its applications in diverse fields including demographic dynamics (Kuang, 1993),

economics (Keller, 2010), biological systems (Israel, 2005; MacDonald, 2008), life

sciences (Smith, 2011), modeling neural networks (Beuter et al., 1993), mechanical

systems controlled by feedback (Hu et al., 2003), and (Kyrychko and Hogan, 2010) for

other engineering applications. Richard (2003) cited some other interesting and worth

mentioning phenomena in which time delays are explicitly reflected. A comprehensive

literature and past study about delay effects on stability related to this work is given in

Chapter 2.

In general, a straightforward functional differential equation in 𝑦(𝑡) ∈ R𝑛 is

given by
𝑑

𝑑𝑡
𝑦(𝑡) = 𝑔 (𝑡, 𝑦(𝑡), 𝑦(𝑡 − 𝜏𝑖))𝑛𝑖=1

where 𝜏𝑖 are positive constants representing time lags such that 𝑡 ⩾ 𝜏𝑖; 𝑖 = 1, · · · , 𝑛,
and the functional operator 𝑔 : R × R𝑛 × 𝐶1 (R,R𝑛) −→ R. If the time lags dependent

on time, then 𝜏𝑖 = 𝜏𝑖 (𝑡, 𝑦(𝑡)). The delay term in delay differential equation (DDEs)

manifest itself in many ways. Below are some examples of single dimension DDEs.

1. Constant delay

𝑦′(𝑡) = 𝑔(𝑡, 𝑦(𝑡), 𝑦(𝑡 − 𝜏)),

2. Distributed/continuous delay

𝑦′(𝑡) = 𝑔
(
𝑡, 𝑦(𝑡),

∫ 𝜏2

𝜏1

`(𝑟)𝑦(𝑡 − 𝑟)𝑑𝑟
)

3. Time varying delay

𝑦′(𝑡) = 𝑔(𝑡, 𝑦(𝑡), 𝑦(𝑡 − 𝜏(𝑡))),

6



4. Neutral delay

𝑦′(𝑡) = 𝑔 (𝑡, 𝑦(𝑡), 𝑦′(𝑡 − 𝜏)) ,

where 𝜏 > 0 is the time delay (Apalara, 2013).

1.4 Problem statement

Like in any other vibrating structure, time delays in the Timoshenko laminated

beam manifest in form of lags in attaining or restoring the desired system stability

after perturbations due to internal or external factors, among others. In the single

Timoshenko beam theory, the amplitude of the vibrations of the complementary

displacements (transverse and angular) vanishes due to damping. A time delay

translates into a forward phase shift which increases early time response, resulting into

frequency dispersion in displacements (Moyer and Miraglia, 2014). This often requires

stronger damping to counteract the longer time needed for decay. This delay effect is

intrinsic in the Timoshenko laminated beam model as it is derived on assumption of

Timoshenko theory. Structural damping in a laminated beam provides some dissipation,

and on the assumption of equal wave speeds, it is sufficient for exponential stability in

the absence of delay (Apalara, 2021; Apalara et al., 2020a), see section 2.2. It is yet

to be established if the internal structural damping can still solely stabilize the system

in the presence of delay, as authors have so far chosen other damping mechanisms

especially material damping and boundary feedback. It is yet to be established if the

internal structural damping can still solely stabilize the system in the presence of delay.

Authors have so far chosen other damping mechanisms especially material damping

and boundary feedback. This work intends to prove that, under some conditions, the

intrinsic structural damping due to interfacial slip in a laminated beam system subject

to different forms of delay is sufficient for energy decay. Moreover, if the dissipation

through structural damping is coupled with a single linear frictional damping, then it

is expected that the system stabilizes polynomially.

Even though in most physical application, researchers often assume constant

or discrete time delay representation, perhaps because of its ease to handle, estimate,
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and interpret physically, this is not always the case. Time delay manifests in different

realistic representations depending on the underlying cause and other factors influencing

it (Kyrychko and Hogan, 2010). Furthermore, it also significantly varies form system

to system mainly depending on the physical properties. The aim of this work is to

prove the asymptotic behavior of a Timoshenko laminated beam model subject to the

four most prevalent forms of time delay feedback. These forms delay feedback are very

common in control systems and other applications involving differential equations. For

vibrating Timoshenko laminated beam, we explain the physical scenario under which

each form of time delay may manifest, i.e. why the chosen representation is the most

realistic and appropriate among others in the prevailing circumstances.

For laminated beams with relatively high adhesive stiffness, and the system

behaves more like a single beam system (Hansen and Spies, 1997), in which transverse

vibrations are more notable compared to vibrations in other displacements. To this

effect, a a simple or constant time delay feedback in transverse displacement is

considered for systems made up of individual beams with same elasticity and neutral

delay (Kyrychko and Hogan, 2010) otherwise. In laminated beam systems where delay

is significantly due to adhesive softening, because of viscoelastic property of adhesives

(Groth, 1990), time delay which incorporates memory over a specified time interval

is the most realistic representation, thus distributed delay (Nicaise et al., 2008) in the

effective rotation angle is considered. Lastly, in laminated beam structures where the

mechanism of dissipating energy is nonlinear (Al-Hababi et al., 2020; Elliott et al.,

2015), for general energy decay results, a corresponding nonlinear delay effect in

structural damping is considered. For further reading about the physical motivation of

the above types of delay and other fascinating delay applications in modeling practical

problems, the reader may see (Hale and Lunel, 2013; Kolmanovskii and Myshkis, 2013)

and references therein.

1.5 Objectives of the Study

In this work, the delay effect acting on complementary displacements and in

the dynamics of slip on stability of a vibrating laminated beam structure is considered.
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In absence of time delay, vibrations in the Timoshenko laminated beam exponentially

decay due structural damping (Apalara, 2021; Apalara et al., 2020a), or due to a single

linear frictional damping acting through the effective rotation angle (Apalara et al.,

2020b). In presence of time delay, is this dissipation through structural or frictional

damping still sufficient for energy decay of the solution of Timoshenko laminated beam?

If possible, under what conditions on the system’s parameters and delay weight? The

aim of this work is to answer these questions affirmatively. To acheive our goal, an

internally dissipative delayed Timoshenko laminated beam system without any form of

material damping due to thermal or viscosity effect is investigated. In other words, the

concern is a self stabilizing laminated beam system on only internal structural damping

(linear and nonlinear) (Apalara, 2021; Apalara et al., 2020a), or on a single linear

frictional damping (Apalara et al., 2020b), with an aim of establishing asymptotic

behavior in presence of constant, distributed, neutral and nonlinear delay. The major

objectives to accomplish this goal are as follows:

1. To find the total energy of the system and it’s corresponding derivative.

2. To establish the delay weight condition in relation to damping coefficient or

other system parameters.

3. To construct a suitable Lyapunov functional that is equivalent to the energy of

the system.

4. To state and prove the energy decay results of the system depending on the

underlying assumptions on wave speeds.

1.6 Significance of the Study

Laminated beam structures are highly applicable especially in structural

engineering. Models describing vibrations in these structures have been studied

extensively with an intent of establishing their stability by analyzing the underlying

factors that might lead to instability, i.e. failure or delayed decay of the vibrations.

In most control systems, time lags are normally diagnosed as a source of instability

or performance deterioration. In a single Timoshenko beam, all forms of time delay

9



are seen to distort stability. Therefore in applications, any form of delay that may

occur a Timoshenko beam should be put into consideration. The classical laminated

beam system is derived mainly on the assumption of the single Timoshenko beam

theory, it is thus important that all forms of delay effect to laminated beam system are

studied in a satisfactory manner. Moreover, there is no way one can comprehensively

study such a model resulting from practical applications without considering delay

effects as they are inherent in these processes. In the previous work, stabilization

of delayed laminated beam system is based mainly on assumption that the materials

used are either thermoelastic or viscoelastic enough to create the additional damping

to aid energy decay. In this work, we ignore these two assumptions. We consider

an internally dissipative laminated beam system (more general) without any form of

material damping due to thermal or viscosity effect, and establish stability on a single

intrinsic structural or frictional damping. The results in this work improve on the

general applicability of the Timoshenko laminated beam model.

1.7 Scope of the Study

A classical laminated beam model with delay is considered. The following is

the scope of the proposed study.

1. Form of delay and point of action:

(a) Constant delay in the transverse displacement.

(b) Distributed delay in the effective rotation angle.

(c) Neutral delay in the transverse displacement.

(d) Nonlinear delay in the third equation.

2. Damping mechanism:

(a) Internal linear frictional and/or structural damping for constant,

distributed and neutral delay problems.

(b) Nonlinear structural damping for nonlinear delay problem.

3. Boundary data: Mixed Dirichlet–Neumann boundary conditions.

10



4. Methodology:

(a) Well-posedness: Standard linear semigroup theory.

(b) Stability: Multiplier technique.

1.8 Organization of the thesis

The rest of the thesis is organized as follows: In Chapter 2, the literature

about stabilization of laminated beams without delay using different mechanisms is

given. Secondly, some review about delay differential equations related to this work is

presented. The chapter is wound up by summarizing what has been done so far regarding

stability analysis of laminated beam systems with delay, and finally presenting research

questions as well as gaps. Chapter 3 is concerned with the methodology which is

mainly the energy method, i.e. the linear semi group for wellposedness and the

multiplier technique for establishing stability results. In Chapters 5−7, asymptotic

behavior of laminated beam system with constant, distributed, neutral, and nonlinear

delay are respectively established using structural or frictional damping. The summary

and conclusion of the overall study are given in Chapter 8.

11
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