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ABSTRACT 

Human face detection is one of the most investigated areas in computer vision which plays 

a fundamental role as the first step for all face processing and facial analysis systems, such as face 

recognition, security monitoring, and facial emotion recognition. Despite the great impact of Deep 

Learning Convolutional neural network (DL-CNN) approaches on solving many unconstrained 

face detection problems in recent years, the low performance of current face detection models 

when detecting highly occluded faces remains a challenging problem and worth of investigation. 

This challenge tends to be higher when the occlusion covers most of the face which dramatically 

reduce the number of learned representative features that are used by Feature Extraction Network 

(FEN) to discriminate face parts from the background. The lack of occluded face dataset with 

sufficient images for heavily occluded faces is another challenge that degrades the performance. 

Therefore, this research addressed the issue of low performance and developed an enhanced 

occluded face detection model for detecting and localizing heavily occluded faces. First, a highly 

occluded faces dataset was developed to provide sufficient training examples incorporated with 

contextual-based annotation technique, to maximize the amount of facial salient features. Second, 

using the training half of the dataset, a deep learning-CNN Occluded Face Detection model (OFD) 

with an enhanced feature extraction and detection network was proposed and trained. Common 

deep learning techniques, namely transfer learning and data augmentation techniques were used to 

speed up the training process. The false-positive reduction based on max-in-out strategy was 

adopted to reduce the high false-positive rate. The proposed model was evaluated and 

benchmarked with five current face detection models on the dataset. The obtained results show 

that OFD achieved improved performance in terms of accuracy (average 37%), and average 

precision (16.6%) compared to current face detection models. The findings revealed that the 

proposed model outperformed current face detection models in improving the detection of highly 

occluded faces. Based on the findings, an improved contextual based labeling technique has been 

successfully developed to address the insufficient functionalities of current labeling technique. 
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ABSTRAK 

Pengecaman wajah manusia merupakan salah satu bidang yang paling banyak dikaji dalam visi 
komputer yang memainkan peranan asas sebagai langkah pertama dalam semua sistem 
pemprosesan wajah dan analisis wajah seperti pengecaman wajah, pemantauan keselamatan dan 
pengecaman emosi wajah. Walaupun terdapat impak yang besar daripada pendekatan Rangkaian 
Neural Konvolusi-Pembelajaran Mendalam (DL-CNN) dalam menyelesaikan masalah 
pengecaman wajah tanpa batasan dalam tahun-tahun kebelakangan ini, prestasi yang rendah pada 
model semasa pengecaman wajah apabila pengecaman wajah yang terhalang masih lagi kekal 
menjadi masalah yang mencabar dan wajar dikaji. Cabaran ini semakin ketara apabila halangan 
pada wajah itu menutupi sebahagian besar wajah yang seterusnya secara dramatik mengurangkan 
bilangan ciri-ciri perwakilan dipelajari yang digunakan oleh Rangkaian Penyarian Sifat (FEN) 
untuk membezakan bahagian-bahagian wajah daripada latar belakang. Kekurangan set data wajah 
yang terhalang dengan imej yang mencukupi bagi wajah yang terhalang dengan teruk merupakan 
cabaran lain yang mengurangkan prestasi pengecaman. Oleh itu, kajian ini menangani masalah 
prestasi rendah dan membangunkan model pengecaman wajah terhalang yang dipertingkat untuk 
mengecam dan mengesan dengan tepat wajah-wajah yang terhalang dengan teruk. Pertama, set 
data wajah-wajah yang terhalang dengan teruk dibangunkan untuk menyediakan contoh latihan 
mencukupi digabungkan dengan teknik penganotasian berdasarkan kontekstual untuk 
memaksimumkan jumlah ciri-ciri wajah yang menonjol. Kedua, dengan menggunakan latihan 
separuh daripada set data, sebuah model Pengesanan Wajah Terhalang (OFD) Pembelajaran 
Mendalam-CNN dengan ciri pengekstrakan dan rangkaian pengecaman dipertingkat telah 
dicadangkan dan dilatih. Teknik pembelajaran mendalam yang lazim, iaitu teknik pembelajaran 
pemindahan data dan teknik peningkatan data diguna pakai untuk mempercepatkan proses latihan. 
Pengurangan positif-palsu berdasarkan strategi maksimum-masuk-keluar diguna pakai untuk 
mengurangkan kadar positif-palsu yang tinggi. Model yang dicadangkan dinilai dan ditanda 
araskan dengan lima model pengecaman wajah semasa di set data. Hasil yang diperoleh 
menunjukkan bahawa OFD mencapai prestasi yang lebih baik dari segi ketepatan (purata 37%) 
dan purata ketepatan (16.6%) berbanding dengan model pengecaman wajah semasa. Hasil kajian 
mendedahkan bahawa model yang dicadangkan mengatasi model pengesanan wajah semasa 
dengan ketara dalam menambah baik pengecaman wajah-wajah yang terhalang teruk. Berdasarkan 
dapatan, satu teknik pelabelan berdasarkan kontekstual yang dipertingkat berjaya dibangunkan 
untuk mengatasi ketidakcukupan fungsi-fungsi teknik pelabelan semasa. 
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OPERATIONAL DEFINISIONS 

Extended five face-regions: is  a classification of the face regions into five equal areas, 

i.e., forehead ,two eyes, nose, mouth and chin, the purpose of this classification is to 

measure the degree of face occlusal based on the number of occluded regions. 

Face regions: are all face related areas that include the forehead, the two eyes and 

elbows , nose , mouth and chin.  

Facial features: facial features can be defined as the distinguishing characteristics of 

the face that can be described in terms of the size and shape of the entire face and its 

component parts, which include the two eyes, two ears, nose, mouth, and chin.  

Feature extraction network is a convolutional neural network (CNN) composed of set 

of network layers which  process an input image and extract the distinctive features, 

the extracted features are then forwarded to another CNN network called detection 

network for classification and detection of targeted objects. 

Heavily occluded face: is a face in a digital image with high degree of occlusion, in 

which four face regions of the face (or more) are blocked by any type of occlusion as 

in face with niqab for instance. 

Image annotation and labelling: is the process of adding metadata in a form of bounding 

box coordinates of the faces in the images of the dataset to be used as ground truth for the 

training of deep learning convolutional neural network models.  

Niqab:  A niqab is a face covering veil which is worn by minority of Muslim women 

for a religious purpose to cover their faces while being outdoor or among none 

relatives. Niqab hides most of the face landmarks and sometimes leaves only the two 

eyes and some parts of the nose. 



xxi 

Niqab-face:  is  a woman face with niqab covering veil, normally all the face is covered 

except of the two eyes. Niqab face is considered highly occluded face (since four or 

more faces regions are hidden). 

Occluded face:  a face is considered  occluded in the digital image if at least one face 

area is hidden or blocked by any object such as face mask, sun glasses, niqab. Or any 

other object which hides facial features to be detected. 

 

 

 

 

 



 

  

 

 

 

INTRODUCTION 

1.1 Introduction 

Finding faces using the visual system is a trivial task that humans can do 

effortlessly in their daily life, but building machines or robots with vision ability is 

probably one of the most challenging problems, which humans try to solve. During the 

past three decades, the computer vision community started to pay attention to face 

processing as well as other researchers such as psychophysicists and neuroscientists, 

which have widely investigated recently, many commercial applications and research 

demonstrations are obtained and developed from these efforts (Voulodimos et al., 

2018). The human face is among the most important and informative object that tells 

a person’s race, sex, identity, age emotion, and more in just a glimpse of a second, the 

demand of finding a face in digital images or videos has been incrementally increased 

recently due to wide practical applications in multimedia, biometric systems, 

surveillance, security applications and human-computer interaction (HCI) (Guo and 

Zhang, 2019; Tsao and Livingstone, 2008). 

Face detection is a sub-task of object detection under the domain of computer 

vision (Zhao et al., 2019). It has been under hot investigation for more than two 

decades and still an active area of research in computer vision (Masi et al., 2018; Zhang 

and Zhang, 2010). It is the first step of all face-application-related including face 

recognition, face verification, face tracking, and facial expression detection (Zhao et 

al., 2019; Kortli et al., 2020). It is the building block for more sophisticated systems 

developed for consumer products like digital cameras, social networks, smartphone 

apps, etc. (Zafeiriou et al., 2015; Tikoo and Malik, 2017). Figure 1.1 represents the 

research area according to the Association for Computing Machinery Digital Library 

(ACM) classification system  (Acm, 2012). 



 
 

2 
 

 

Figure 1.1  Research Focus Area 

The enormous applications of face detection motivate researchers to find ways 

of improving its accuracy and performance. Hundreds of research papers had proposed 

several approaches for detection methods, the advancement before 2001 had been 

nicely surveyed and grouped by Hjelmås and Low (2001); (Zhang and Zhang, 2010). 

However early works within that period were inapplicable in real-world situations until 

the distinguished work of Viola and Jones (2001) which made face detection feasible 

and enabled the implementation of face detection in real-world applications, such as 

in digital cameras and photo software organization, due to the brilliant ideas which 

used a successful combination of machine learning with feature invariant techniques 

(Zafeiriou et al., 2015; Zhang and Zhang, 2010).  

Since then, great progress has been made to boost the performance, for 

instance, deformable part models (DPM) were proposed to model face parts 

(Felzenszwalb et al., 2010). Histogram of Gradient (HOG) introduced by Dalal and 

Triggs (2005), Local Binary Patterns (LBP) by (Chehrehgosha and Emadi, 2016), and 

Integral Channels by Wang et al. (2009a) had a significant impact on face detection to 

achieve better accuracy on frontal faces in controlled environments, where no extreme 

variations of illumination and lighting conditions. All these aforementioned 

approaches were mainly dependent on manually designed and handcrafted features 

and classifiers (Li et al., 2019b). 
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The emergence of deep learning and convolutional neural network (DL-CNN) 

have recently shown remarkable successes and dominated various computer vision 

tasks such as image recognition, object detection, and face detection (Hao et al., 2017; 

Liu et al., 2020). Unlike hand-crafted features in machine learning as in Haar-features 

for instance DL-CNN is a hierarchical deep-learning approach that has been 

successfully applied as a powerful features extraction, that extracts and learns high-

level representation features from a vast amount of training data (Alafif et al., 2017). 

Impressive progress has been made in detecting human faces from digital images 

where an average performance of 98% is achieved by Hu and Ramanan (2017) in the 

unconstrained face-detection benchmark.  

Among the challenges in the design of face detection is the low performance 

of face detectors when detecting faces in certain scenarios due to illumination 

differences, facial expression changes, pose variations, and with the presence of 

occlusion which appears when covering faces either in partial or in total (Chen et al., 

2018b). In fact, an accurate face detection model as a primary stage of any human face 

processing system has a major influence on the overall performance and usability of 

the entire practical applications. 

1.2 Problem Background 

The goal of face detection is to determine the existence of a face in an image, 

therefore, if a face exists, return its location in a form of bounding box coordinates for 

each face (Ranjan et al., 2018). It should be able to find faces among all non-face 

objects (Zhang and Zhang, 2010). Various face-related applications require face 

detection as a pre-processing step for finding face location, many of the techniques are 

proposed for these applications assume that the location of the face is pre-identified 

and available for the next step, therefore all these systems for sure will fail if face 

detection fails to accurately allocate the face (Zhao et al., 2019).  

Detecting faces in constrained conditions where images are taken in controlled 

settings, with a fixed distance from the camera, and with specific pose and lighting 
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conditions as in the frontal face, for instance, is no longer a challenging task (Masi et 

al., 2018) and is considered a solved problem (Guo and Zhang, 2019). It was made 

possible since 2001 after the aforementioned work of Viola and Jones (2001). They 

used haar-like features with adaptive boosting (Adaboost) designed in a cascaded 

manner and integral image. Modern face detection systems can straightforwardly 

detect faces in near-frontal and are embedded in e-albums and digital cameras (Yang 

et al., 2016a).  

However, face detection models have to be able to detect not just the frontal 

faces, but they also have to deal with faces of various scales, poses, and appearances 

and with the presence of occlusion that can change the overall appearance of the face 

(Li et al., 2018; Yang et al., 2002).  

The high variations of face orientation, facial expression, and occlusion in an 

unconstrained environment where images are taken in different illumination variations 

and occlusion is a challenging problem for face detection systems and may degrade 

the performance of the detection, it may also be responsible for the increase of the false 

detection rate (Chen et al., 2018b; Zafeiriou et al., 2015). The following factors are 

considered the main challenges associated with face detection performance:   

(a) Pose: The position of the face in images may differ due to variation in-plane 

rotation (frontal, half profile, profile, upside down), and some facial features 

such as eye or nose may become partially or fully occluded (Moallem et al., 

2015). 

(b) The existence of certain facial components: some facial components like 

glasses, caps, mustaches, and beards, for instance, can exist or not on the face, 

these components vary greatly in their form, color, and size (Sharifara et al., 

2014). 

(c) Facial expression: the appearance of faces such as happiness, angriness, or 

sadness can directly affect a person’s facial expression (Dagar et al., 2016).   
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(d) Image orientation and Illumination: when the camera's optical axis varies, 

image orientation will exist and be formed, other aspects like illumination and 

lightning variant intensity, and camera calibration (sensor-response, type, and 

size of lenses) (Zou et al., 2007). 

(e) Scale variations and small face: small faces in crowed in which an image 

could have tens or hundreds of faces makes the detection task difficult and 

lower the performance of face detection models (Bai et al., 2018). 

(f) Occlusion: when some or more parts of the face is unavailable, either blocked 

by other object or covered by face-veil partially or in total (Peng et al., 2020; 

Chen et al., 2018b). 

 The existence of one or more of the aforementioned challenges may degrade 

the performance of face detectors. A lot of progress has been done to improve the 

performance of face detectors under many unconstrained scenarios. Many previous 

researches have addressed these challenges of unconstrained scenarios (Chen et al., 

2014; Li et al., 2015; Mathias et al., 2014). For example, pose, scale, and lighting 

variations were addressed by feature invariant approaches which focused on finding 

face features robust to changes in pose and lighting (Zafeiriou et al., 2015).  

The recent improvement of face detection in the unconstrained scenario could 

be attributed to two factors, i) the emergence of deep learning approaches that have a 

direct impact on the extraction of facial representative features and analysis tasks, 

which enabled the existence of sophisticated face detections models, and ii) the 

availability of large-scale face detection datasets with varieties of training images 

(Nada et al., 2018).  

Deep learning has been recently behind the great advancement of object 

detection and face detection (Liu et al., 2020; Zhao et al., 2019; Liang et al., 2020). 

The application of DL and CNN layers have provided excellent feature extraction and 

learning methods for accurate face detection models, while multi-stage region proposal 

network and single-stage detection such as Faster-RCNN proposed by Ren et al. 

(2015) and YOLO introduced by Redmon and Farhadi (2017) have significantly 
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enhanced the performance of face detection in an unconstrained environment. The 

availability of public face detection datasets such as Annotated Faces in The Wild 

(AFW) (Zhu and Ramanan, 2012), FDDB (Jain and Learned-Miller, 2010), and 

Widerface (Yang et al., 2016a) have contributed to the advancement in face detection 

research.  

Despite the progress that has been achieved in face detection, detecting faces 

in certain scenarios as in face with occlusion has not reached saturation yet, there have 

been open questions that remains unsolved and has to be explored more when dealing 

with occlusion (Yang et al., 2018; Mathias et al., 2014). Face detection under patrial 

or heavy occlusion remains a challenge to face detection algorithms and worth 

investigation (Chen et al., 2018b; Alafif et al., 2017).  

Although the detection of heavily occluded faces is critical for several 

applications, it is highly demanded for security monitoring and people-counting 

applications. Very few researches have been done in that direction and directly 

addressed the detection under occlusion. For example, Hotta (2007) used local features 

with Support Vector Machine (SVM) to detect faces under partial occlusion, Chen et 

al. (2017) proposed an occlusion aware framework based on convolutional neural 

network model to address the occlusion problem in face detection, Alafif et al. (2017) 

trained a single CNN model on large partial occluded faces images to detect 

unconstrained multi-view partially occluded and non-partially occluded faces.  

Faces under partial occlusion have been addressed in general as in the 

aforementioned works, however, the challenge of highly occluded faces was not 

considered. In heavily occluded faces most of the face features are  hidden and blocked 

due to the occlusion.  

Occluded face or face under occlusion usually appears when the face is covered 

or blocked either in partial or in total, which is due to work requirement such as 

medical masks as in hospitals or due to pandemic awareness of the current COVID-

19, it could be also due to religious concern as in some Muslim societies where Muslim 
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ladies wear niqab, a face covering veil, which is a practice of veiling their faces while 

being outdoor or in the presence of non-relatives (Khan, 2016; Zempi, 2016).  

The word ‘Niqab’ is used to refer to head and face covering worn by Muslim 

women, thus they can often be distinguished by the way they dress and cover their 

faces (Chowdhury et al., 2017a). Figure 1.2 shows examples of heavily occluded faces 

for some Muslim women are wearing the niqab veil in different cultural styles referred 

as niqab, burqa or khimar (Chowdhury et al., 2017b; Khan, 2016). The whole faces 

are hidden and almost covered and blocked by niqab; therefore, faces are heavily 

occluded.  

 

Figure 1.2  Examples of heavily occluded faces with different niqab styles        

There are some researchers who tried to define occluded faces according to the 

degree of occlusion. For example, in Yang et al. (2016a) they classified face under 
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occlusion into three categories: face with no occlusion, partially occluded faces, and 

heavily occluded faces. Partially occlusion is defined as a face where 1% to 30% of its 

area is occluded, whereas heavily occlusion is when more than 30% of the face area is 

covered or blocked.  

In Ge et al. (2017) they divided the face into four main regions as shown in 

Figure 1.2 section (a), these major regions are  chin, mouth, nose and the eyes. they 

defined the degree of occlusion based on the number of occluded regions; therefore, 

weak occlusion is where one to two regions are occluded, medium occlusion is with 

three regions and heavy occlusion is when there are four occluded regions.  

However, it seems a loose classification when defining heavily occluded faces 

as faces occluded or covered with over 30%. There is a concern with describing highly 

occluded faces, defining heavily occluded faces when four regions are occluded still 

not cover all the heavily and fully occluded faces. Therefore, based in Ge et al. (2017) 

instead of four regions we extend the classification of the face regions into five equal 

areas which include the forehead, the two eyes, the nose, the mouth and the chin,  so 

that heavily occluded and fully occluded can be distinguished by the number of 

occluded areas.  

The degree of heavily occlusion is shown in Figure 1.3 and 1.4. below. Figure 

1.3 section (a) shows the four face regions of Ge et al. (2017). The extended five-

regions are shown in section (b). Section (c) shows the overlay of the extended five- 

regions with the four regions of Ge et al. (2017) in order to emphasis and point out the 

distinction between the two definitions. Section (c) shows an example of a face heavily 

occluded with four occluded regions according to Ge et al. (2017), however the degree 

of occlusion is approximately 50% when overlaid by the extended five-regions. Figure 

1.4 shows faces in high degree of occlusion with four occluded regions. The faces are 

arranged according to the number of occluded areas, from left to right. Although all 

faces are considered heavily occluded according to the four occluded area definition 

of Ge et al. (2017), however there is still a distinction in the degree of occlusion 

between the faces from left to right which ranges from 70% till 100% of full occlusion, 
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the degree of occlusion can be measured more clearly when using the extended five 

face regions. 

     

(a) The four face 

regions (Ge et al., 

2017) 

(b) The Face 

oval divided into 

five regions 

(c) The five-face-

regions is overlied on 

foue-face regions 

(d) Heabvily occluded 

face with four occluded 

regions according to Ge et 

al. (2017) 

(e) 50% of occluded 

areas 

Figure 1.3 The four-regions of the occluded face of Ge et al.(2017) alongside with 
the five-regions        

Variations of 

heavily 

occluded 

faces 

    

 

Five occluded 

regions 

overlaid on 

heavily 

occluded 

faces 

    

occluded area  ≥ 70% occluded area  ≥  80% occluded area  ≥  90% occluded areas ≈ 100% 

Figure 1.4  High occluded faces covered with niqab in different degree of occlusion 
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The existence of recently proposed large-scale datasets has attributed to the 

high performance of face detection models which almost recent state-of-the-art deep 

learning-CNN face detection models have leveraged a large amount of training dataset 

and the powerful features extractors network of deep-CNN (Nada et al., 2018). The 

amount of training images used during the training determines the performance of the 

detector (Shepley, 2019; Kim et al., 2018).  

Among the reasons that may explain why the performance of recent face 

detectors decrease and perform poorly when the occlusion is very high as in face 

covered with niqab for instance in which the occlusion blocks most of the face area is 

the lack of a large-scale dataset with abundant training images of particular scenarios 

as in images with faces covered with niqab. Several face detection datasets have been 

recently released. For example, Widerface proposed by Yang et al. (2016a) and FDDB 

proposed by Jain and Learned-Miller (2010) and were used for training and testing of 

current face detection models (Chen et al., 2017). For instance, MTCNN and TinyFace 

models which were proposed by Zhang et al. (2016) and Hu and Ramanan (2017) 

respectively were both trained on Widerface dataset.  

Though these datasets may contain thousands of images with different pose 

rotation, different lighting, and some degree of occlusion. However, the high degree 

of occlusion scenario particularly, as in faces covered with a niqab has not existed 

among them. This led to the inability of current face detectors to successfully detect 

heavily covered faces as in niqab-face for instance, which is regarded as a consequent 

result of the absence of sufficient representative features extracted and learned by 

CNN-based face detection models during the training. Many state-of-the-art face 

detection models were initially trained on Widerface dataset which contains 18,839 

images with faces in different poses and occlusion but with a limited amount of images 

of highly occluded faces, except for a few images with faces covered with medical 

masks and not sufficient for the training (Hu and Ramanan, 2017; Zhang et al., 2016) 

(Li et al., 2020; Llinzai, 2019). 
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Another assumption that may influence the performance of recent face 

detection models and contribute to their poor performance when detecting faces in a 

high degree of occlusion, is associated with the occlusion problem itself (Li et al., 

2019a). Excessively, occluded faces have diminished discrimination and very few 

features due to occlusion, unlike typical faces with salient features (Shepley, 2019). 

Therefore, the existence of occlusion limits the distinctive features of faces and 

restricts the number of learned representative features during the training (Chen et al., 

2018b). 

1.3 Problem Statement 

Face detection as the first and the fundamental step of any automated face 

processing and facial analysis systems motivates researchers to find ways of improving 

the accuracy and performance of the system. An accurate face detection system has a 

direct impact on the overall performance and accuracy of all face-related applications 

such as face recognition, face identification, security monitoring, and facial emotion 

detection. A robust face detection model should be effective under arbitrary variations 

in pose and occlusion; however, it is still an unresolved problem, one of the challenges 

in the design of face detection is the low performance of face detectors when detecting 

occluded faces. 

A substantial gap exists between the accuracy of existing face detectors and the 

expected performance in the case of a high degree of occlusion. Several approaches 

were proposed to address the problem of partially occluded faces; however, the 

challenge of highly occluded faces was not considered, the problem of a high degree 

of occlusion where the majority of the face is covered  still remains a challenge. State-

of-the-art face detectors still have problems in dealing with faces in a high degree of 

occlusion. This challenge has not yet been entirely solved.  The degree of occlusion 

has a direct effect on the performance of face detection, the detection rate decreases as 

occlusion level increases. 
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The lack of available labeled dataset of highly occluded faces with large and 

sufficient numbers of images with faces in varieties of a high degree of occlusion to 

be used for training of occluded face detectors broadens the existing gap. The scarcity 

of salient representative features in highly occluded faces complicates the task of the 

feature extraction network and restricts its ability to learn adequate discriminative 

features from the training examples during the training.   

The general research question is how to enable face detection models to be able 

to detect and localize heavily occluded faces on digital images?  Therefore, this thesis 

aims to design and develop an improved deep learning occluded face detection model 

for detecting heavily occluded faces as in faces covered with niqab for example.   

1.4 Research Goal 

The goal of this research is to propose and design an enhanced heavily 

occluded face detection model which is capable of detecting faces in a high degree of 

occlusion as in faces covered with niqab. The degree of occlusion in faces with niqab 

ranges from 50% to 90% (as illustrated previously in Figure 1.4) where most of the 

face features are hidden.  

1.5 Research Objectives 

To achieve the research goal, the following objectives must be accomplished: 

1) To propose an occluded face detection dataset that takes into account the 

properties of heavily covered faces suitable to be used for deep-learning face 

detection training and evaluation. 

2) To design a contextual-based deep learning scheme for enhancing the 

representative features with an improved feature extraction network of the 

heavily covered faces to improve the detection performance.  
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3) To propose a deep-learning-CNN face detection model capable of detecting 

faces in a high degree of occlusion where most of the face is veiled in 

unconstrained environment. 

1.6  Research Scope and Limitation 

The proposed occluded face detection (OFD) model is introduced to address 

occluded faces. Although, it potentially can deal with un-occluded faces such as frontal 

and unconstrained faces, however, the focus is more on heavily covered faces as in 

faces in niqab for instance.  

This research is concerned with occluded face detection, mainly focused on 

heavily occluded faces which results due to wearing of the face-covering veil, with the 

aim to improving face detection performance under a high degree of occlusion as in 

heavily covered faces with niqab which is referred to as niqab-face. The focus on 

heavily covered faces is different from other types of occlusions which result due to 

the crowds for instance, so that, some faces are occluded by other faces or objects and 

may suffer from low-resolution quality due to crowd which makes it difficult to be 

detected.  

Heavily covered faces may have no resolution issue, an image may contain one 

face only as shown previously in Figure 1.2 for instance, however, it may not be 

detected successfully, due to the poor performance of current face detection models, 

because they were not exposed to sufficient training examples of images that contain 

faces with similar type of occlusion, and also due to the limited features on occluded 

faces. 

Since the unconstrained environment has extreme variations in where faces 

could appear, this research is constrained on occluded faces with a resolution not less 

than 80x80. Occluded faces in low resolution images are very hard to be detected this 

is because face in occlusion is already have limited features, therefore low-quality 

images and low resolutions make it very difficult to find the representative face 
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features and harden the task of feature extraction to find distinguished features on low 

resolution images. On the other hand, images with occluded faces in extreme pose and 

poor illuminations are also another burden that makes the detection worse.   

The following scenarios are considered out of the research scope. 

- Small faces with high occlusion as in crowded faces or with extreme lighting 

and in low-quality images.    

- Faces in extreme pose with high degree of occlusion are not addressed in this 

research. 

1.7 Significance of the Study 

It is expected that the proposed occluded face detection model will improve the 

performance of the detection of highly occluded faces since all face-related 

applications rely on face detection as an essential preprocessing step, therefore their 

overall performance and accuracy will be improved accordingly.  

It is also expected that the proposed occluded face dataset as training and 

benchmark publicly available dataset will contribute to the improvement of current 

face detection researches and models. The idea of utilization of contextual information 

of occluded faces and the improvement of the feature extraction network is expected 

to attract other researchers to be used for similar situations.  

1.8 Thesis Organization 

This thesis is organized as follows. 

Chapter 2 provides a comprehensive literature review of the related area 

highlighting problem background and existing solutions in the context of deep learning 
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and occluded face detection. It started with the importance of face detection for all 

face-related applications, followed by a briefing of face detection challenges. More 

focus was shed on the remaining challenges related to occlusion. Two popular 

approaches for addressing face detection challenges were briefly discussed, more 

concern was given to the deep learning convolutional neural network approach as it 

gained a positive record in solving most of the computer vision and object detection 

tasks. Recently available solutions have made use of contextual information for 

addressing occlusion and small face issues in face detection with more attention on 

occluded face detection. The available solutions are discussed to highlight the novelty 

of this research. A review of face detection datasets was provided along with a 

comprehensive discussion. Research direction was highlighted with illustration on 

current challenges on dataset and availability of feature representation. Finally, a 

summary was provided.  

Chapter 3 describes the research methodology to guide as a roadmap to achieve 

and verify research objectives, all required phases for designing and developing the 

proposed model were briefly highlighted. 

Chapter 4 presents the design and implementation of the proposed occluded 

face detection model. All phases related to the design are described and illustrated in 

detail. The first phase of dataset construction, then Occluded face detection model 

design, the last phase related to the implementation involves training and evaluation 

of the proposed model.  

Chapter 5 provides details of the experimental configurations and evaluation 

results of the proposed OFD model and the current benchmarked face detection 

models. Details analysis of the obtained result was interpreted, discussed, and 

compared with current models.  

Chapter 6 provides a conclusion about this study by emphasizing contributions 

and recommended future direction and possible further enhancement of this research. 
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