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ABSTRACT 

Alzheimer’s disease (AD) is a neurodegenerative brain illness that leads to 

death due to complications. Many studies on AD classification with Magnetic 

Resonance Imaging (MRI) images were conducted to act as a computer-aided 

diagnosis. Feature extraction and feature selection were performed to reduce the 

number of features and extract significant features concurrently. However, the 

classification of stable mild cognitive impairment (SMCI) and progressive mild 

cognitive impairment (PMCI) is far from satisfactory due to the high similarity 

between the groups. Therefore, this research aimed to enhance the AD classification 

scheme to solve the problem. The proposed method has included shape enhancement 

before feature extraction to maximize the difference between healthy patients (normal 

control (NC)+SMCI) and sick patients (PMCI+AD). The sick patient has a thinner 

brain boundary compared to a healthy patient. Therefore, a 3D opening morphological 

operation was proposed to eliminate the thinner boundary and restore the thicker 

boundary. After that, the proposed 3-level 3D Discrete Wavelet Transform (DWT) and 

Principal Component Analysis (PCA) were combined for feature extraction. Using the 

Haar filter, 3-level 3D-DWT extracted 3D significant features to improve the 

classification result. PCA further reduced the number of features by projecting the 

training set and test set to lower-dimensional space. The number of features was 

greatly reduced from 2,122,945 to 159. Feature selection was removed from the 

proposed scheme after realizing the process would eliminate important features to 

segregate the classification groups. Linear Support Vector Machine (SVM) was 

employed to perform binary classification. The proposed scheme achieved higher 

mean accuracy compared to the previous method, which was from 79% to 80%, from 

81% to 84%, from 80% to 84 % on the datasets collected at time points of 24 months, 

18 months before stable diagnosis and at the stable diagnosis time point, respectively.  
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ABSTRAK 

Penyakit Alzheimer (AD) adalah penyakit neurodegeneratif yang 

menyebabkan kematian akibat komplikasi. Banyak kajian mengenai klasifikasi AD 

menggunakan Pengimejan Resonans Magnetik (MRI) telah dijalankan untuk bertindak 

sebagai alat sokongan dalam diagnosis berbantukan komputer. Pengekstrakan ciri dan 

pemilihan ciri telah dilakukan untuk mengurangkan bilangan ciri dan mengekstrak ciri 

penting secara serentak. Walau bagaimanapun, klasifikasi kemerosotan kognitif ringan 

stabil (SMCI) dan kemerosotan kognitif ringan progresif (PMCI) adalah jauh dari 

memuaskan kerana persamaan yang tinggi antara kumpulan. Oleh itu, kajian ini 

bertujuan untuk mempertingkatkan skim klasifikasi AD bagi menyelesaikan masalah 

tersebut. Skim yang dicadangkan telah merangkumi penambahbaikan bentuk sebelum 

pengekstrakan ciri untuk memaksimumkan perbezaan antara pesakit yang sihat 

(kawalan normal (NC)+SMCI) dan pesakit yang sakit (PMCI+AD). Pesakit yang sakit 

mempunyai sempadan otak yang lebih nipis berbanding pesakit yang sihat. Oleh itu, 

operasi morfologi pembukaan 3D telah dicadangkan untuk menghapuskan sempadan 

yang lebih nipis dan memulihkan sempadan yang lebih tebal. Selepas itu, gabungan 

Transformasi Gelombang Diskrit 3D (3D-DWT) 3-peringkat dan Analisis Komponen 

Utama (PCA) telah digunakan untuk pengekstrakan ciri. Menggunakan penapis Haar, 

3D-DWT 3-peringkat berjaya mengekstrak ciri penting 3D untuk meningkatkan 

keputusan klasifikasi. PCA mengurangkan lagi bilangan ciri dengan mengunjurkan set 

latihan dan set ujian ke ruang berdimensi lebih rendah. Bilangan ciri telah dikurangkan 

dengan banyak daripada 2,122,945 kepada 159. Pemilihan ciri telah dialih keluar dari 

skim yang dicadangkan setelah menyedari proses tersebut akan menghapuskan ciri 

penting yang memisahkan kumpulan klasifikasi. Mesin Penyokong Vektor (SVM) 

linear telah digunakan untuk melaksanakan klasifikasi binari. Skim yang dicadangkan 

mencapai ketepatan purata yang lebih tinggi berbanding kaedah sebelumnya, iaitu dari 

79% kepada 80%, dari 81% kepada 84%, dari 80% kepada 84% pada data set yang 

dikumpulkan pada masa 24 bulan, 18 bulan sebelum diagnosis stabil dan pada titik 

masa diagnosis yang stabil masing-masing. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background 

Alzheimer’s Disease (AD) is the degenerative brain disease which even leads 

to death due to complications (Alzheimer’s Association, 2020). It is the most common 

cause of dementia, which is estimated around 60% to 80% of cases. The person suffers 

AD involves brain changes. It leads to several symptoms, such as memory deficit, 

communication impairment and disorientation. World Alzheimer Report 2015 

estimated that there are 46.8 million people suffer for dementia in year of 2015 and 

number will increase almost double every 20 years in the worldwide (Prince et al., 

2015). It is a large number of people will be affected but the disease has no cure. 

Therefore, the early detection of AD is to help in improving the life quality of the 

patient.  

In clinical diagnosis, Magnetic Resonance Imaging (MRI) is the commonly 

used brain imaging technique to assess the cognitive impairment level of a patient due 

to it is free from ionizing radiation (Soucy et al., 2013). MRI displays the soft tissues 

of the brain in three dimensional. Therefore, structural MRI provides the information 

about shape, size, and integrity of grey matter and white matter. A repeat MRI scans 

will be required to observe the biomarkers. Biomarkers are the measurements that 

show the biological and pathological processes of normal and abnormal brain in AD 

diagnosis. In AD diagnosis, atrophy of the brain is one of the supportive 

neurodegeneration biomarkers. The assessment can be done through visual scoring or 

volumetry  (Dubois et al., 2007). 

The existing computer aided diagnostics (CAD) for AD detection or AD 

classification can be divided to four categories, which are voxel-based, sliced-based, 

patched-based and region of interest (ROI) based methods (Ebrahimighahnavieh et al., 
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2020).  Voxel-based involves whole brain measurement which provides 3-dimensional 

(3D) information of the brain. But it is high computational due to high dimensional 

data, and it neglects the local information since each voxel is treated independently. 

Sliced-based approach or 2D based approach simplifies the classification model, but 

it loses the information about the relationship between the slices. Patched-based 

approach is sensitive to the small changes, but it is hard to select the most significant 

patches. ROI-based concentrates on the significant brain region for AD diagnosis. This 

avoids the high dimensional data, but it loses the information on other parts of the 

brain. 

In AD classification, the research was conducted to compare different stages 

of AD. The normal control (NC) is the healthy subject who is free from the disease. 

AD refers to the patient suffers the disease while mild cognitive impairment (MCI) 

refers to the patient suffers symptoms of AD. However, MCI can be categorized to 

stable MCI (SMCI) or progressive MCI (PMCI). SMCI refers to the patient remains 

in MCI after the follow up, while PMCI refers to the patient converts to AD after a 

certain of period. Currently, the AD classification achieved good result in the 

discrimination of AD patient from NC, even in distinguishing MCI patient. However, 

there is room to improve when involving SMCI and PMCI in the classification 

(Cuingnet et al., 2011; Liu et al., 2015; Ledig et al., 2018). In order to achieve early 

detection of the disease, the discrimination of SMCI and PMCI play an important role. 

Therefore, more research focused on these stages in predicting the conversion to AD.  

1.2 Problem Background 

Structural MRI is treated as supportive feature for AD diagnosis and follow-up 

(Pais et al., 2020). The brain’s atrophy is believed spread from medial temporal lobe 

(MTL) to other areas of the brain. The atrophy of the brain involves both white matters 

and grey matters. In order to conduct whole brain analysis, it requires high 

computational resources to process the data due to high dimensionality. The 3D image 

contains millions of features, which causes overfitting due to excessive information.  
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Therefore, feature extraction and feature selection are the essential processes 

to lower the number of features from extracting or selecting the important features. 

The extracted or selected features shall increase the distinguishing power of the image 

especially in segregating SMCI patients and PMCI patients. Nevertheless, it can be a 

trade-off between dimensionality reduction and extracting significant features due to 

the image details might be washed out when there is too few number of features to be 

retained (Cangelosi and Goriely, 2007; Zhang et al., 2015). 

The unsupervised and supervised machine learning approaches were adopted 

to transform the data in feature extraction. The deep learning approach is normally 

used as a supervised learning, which can extract the features and classify the groups as 

one stop solution (Islam and Zhang, 2018). However, the methods also can be 

implemented after feature extraction to classify the data (Dolph et al., 2017; Baskar et 

al., 2019). The concerns on applying deep learning approach are hyperparameter 

tuning, training size and high computational resources. There are multiple possible 

combinations to determine the hyperparameters in the network (Islam and Zhang, 

2017). It is time consuming to find the stable hyperparameters to build a good network. 

It will require high computational resources to build a deep network. Convolutional 

neural network is commonly used to deal with the image data. However, there is no 

guidance on the number of hidden layers, the number of neurons in each layer, and the 

combination of different types of layers. The formation of the network is done through 

trial-and-error or the prior experience (Ebrahimighahnavieh et al., 2020). 

On the other hand, the other machine learning approaches such as principal 

component analysis (PCA), fuzzy clustering, discrete wavelet transform (DWT), 

partial least square (PLS) can be done with less intervention or without involving the 

hyperparameters (Chaddad et al., 2016; Salvatore et al., 2018; Li et al., 2019). 

However, the performance of some techniques are not consistent. Herrera et al. (2013) 

claimed that the combination of DWT and PCA decreased the classification result 

compared to use DWT alone. On the other hand, there are many other researchers used 

PCA to reduce the number of features and it had achieved higher classification result 

(Zhang et al., 2015; Lama et al., 2017; Ejaz et al., 2018). This situation is possible due 

to different types of features were used in the research. The examples of geometric 
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measures were volume, shape, texture and cortical thickness (Sørensen et al., 2017). 

The researchers also can choose to focus on 1-dimensional (1D), 2D or 3D feature 

extraction. Currently, most of the feature extraction approaches are based on 1D or 2D 

approaches. It requires to concatenate the features into a long feature vector or focuses 

on the slices of the MR images. The 1D or 2D feature extraction is much easier to 

implement but it loses the connection between the slices compared to 3D feature 

extraction. The different combination of features and techniques contribute to the 

different classification result. 

Instead of transforming the data, feature selection chooses the useful features 

from the existing features. However, the needs of using feature selection remains a 

controversial issue. Feature selection tends to increase the sensitivity to the training 

set and eventually causes overfitting (Cuingnet et al., 2011). Furthermore, the selection 

of different subsets of features is also proved that it has high impact on the 

classification results (Prasad et al., 2015). Nevertheless, many researchers also adopted 

feature selection in their research and achieved a good classification result. The 

sequential forward selection (SFS) and multiple criterion feature selection were 

considered newer approaches. Sørensen et al. (2017) adopted SFS to select the 

significant texture, volume and thickness features from the regions of interest. Baskar 

et al. (2019) implemented multiple criterion feature selection to select the significant 

texture and shape features. The SFS and multiple criterion feature selection techniques 

were adopted to deal with the high dimensionality when different types of features 

were extracted from the data.  

In the classification process, most of the researchers focused on differentiating 

NC, MCI and AD patients. They have succeeded in classifying AD from NC, even 

MCI stage (Sarwinda and Bustamam, 2016; Liu et al., 2020). Few researchers focused 

on the transition from SMCI to PMCI. By classifying a patient as SMCI or PMCI, a 

doctor can predict the disease progression earlier and give a better treatment to the 

patient. However, the classification results for SMCI and PMCI is far from satisfactory 

compared to AD and NC, especially when using imagery data alone (Islam and Zhang, 

2018; Ledig et al., 2018; Salvatore et al., 2018; Li et al., 2019; Zhang et al., 2021). 

The accuracy obtained from the previous studies mostly below 80%. 
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Besides that, the major concern on AD classification is the benchmarking with 

previous works. Alzheimer’s Disease Neuroimaging Initiative (ADNI) is the well-

known database, and it was used by many researchers. But, the population studies were 

different due to most of the researchers did not provide the subject identification 

number (Demirhan et al., 2015; Beheshti and Demirel, 2016). The classification results 

can have a big difference by using different datasets which consists of different 

populations. Therefore, it is a challenge to conduct benchmarking. To the best of our 

knowledge, Cuingnet et al. (2011) was the only research which applied and compared 

the existing techniques by using same dataset throughout the years. Moreover, the size 

of the dataset also will influence the classification result. Small sample size may not 

able to reflect the classification result accurately (Westman et al., 2011). In view of 

the limitation and challenges of existing AD classification, there are still rooms to 

improve the AD classification scheme. Apart from the techniques, the development of 

the AD classification needs to consider the data collection, features, and the necessity 

of the processes. 

1.3 Problem Statement 

Based on the problem background, several issues are identified and need to be 

solved to improve the accuracy of AD classification scheme. The first issue is related 

to the feature extraction. By using 1D or 2D feature extraction methods, it leads to the 

loss of spatial information of 3D images. As a result, it might eliminate the significant 

features to differentiate the classification groups. Besides, the performances of 

previous works are inconsistent even in the situation that same techniques were 

implemented in the studies. This might because of using different features to conduct 

the studies. Furthermore, the methods which require hyperparameters tuning will cause 

the difficulty in achieving consistent results due to the hyperparameters tuning is fully 

affected by training set or validation set.  

The second issue is the low accuracy in differentiating the SMCI and PMCI 

groups. The problem occurs because of the high similarity between the groups. SMCI 

is a heterogenous group which might convert to PMCI after a short period of time 
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(Cuingnet et al., 2011). This situation indicates that the brain structure of SMCI and 

PMCI might be very close to each another. The third issue is the processes involved in 

AD classification. Based on Cuingnet et al. (2011), feature selection might increase 

the model sensitivity towards the training set, and it did not improve much on the 

classification result. Therefore, it is necessary to reconsider of including it in the AD 

classification scheme.  

1.4 Research Goal and Objectives 

This study aims to enhance AD classification scheme for improving the 

accuracy through evaluating the processes involve in the conventional scheme, which 

are pre-processing, feature extraction, feature selection and classification. In order to 

achieve this goal, three research objectives are formulated as follows: 

i. To identify suitable morphological operation with optimal parameter 

for reducing similarity on the thickness of brain boundary between 

SMCI and PMCI. 

ii. To enhance the feature extraction techniques by selecting optimal 

parameters to achieve dimensionality reduction and extracting 

significant features. 

iii. To enhance AD classification scheme by identifying suitable 

combination from the existing state-of-art methods with proposed 3D 

shape enhancement and feature extraction. 

1.5 Research Scope 

The research scope is defined based on the reference paper to allow 

benchmarking (Salvatore et al., 2018). The population study and the feature used in 

the research are consistent to the reference paper. On the other hand, the collection of 

the data was limited based on the availability of the data. The research scopes are 

described in following:  
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i. Evaluations on ADNI database comprising four groups, which are NC, 

SMCI, PMCI and AD. The NC and SMCI patients are grouped together 

as healthy patient (NC+SMCI) and PMCI and AD patients are grouped 

together as sick patient (PMCI+AD). Hence, a binary classification is 

performed in this research, which is to differentiate between 

(NC+SMCI) and (PMCI+AD). 

ii. The feature used in this research is volumetry feature. The other 

features such as texture, cortical thickness and shape are beyond the 

scope. 

iii. Use of MR images only instead of including neuropsychological data. 

iv. Performance measurement is accuracy. 

1.6 Significance of the Study 

AD is an irreversible disease which is not only affect the patients but also the 

people surround them. Special care for daily routine and financial support are going to 

be the big challenges for them. Therefore, early diagnosis of AD is always desirable 

to provide a better treatment to the patient (Alzheimer’s Association, 2017). This study 

conducts the cross-sectional analysis across different time points, which can serve as 

a supportive tool for doctor to evaluate the condition of the outpatient. The dataset 

collected at time point of 24 months before stable diagnosis allows the examination on 

early diagnosis. Besides, the research outcome is also expected to contribute on the 

prediction of conversion to AD. The subjects are grouped into two classes, which are 

NC+SMCI and PMCI+AD. Hence, this research does not only contribute to early 

diagnosis of AD, but it is also able to predict the development of AD. In terms of CAD, 

this research plans to deal with the high similarity of SMCI and PMCI. It is expected 

to develop a new AD classification scheme from the state-of-art.  
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1.7 Organization of the Thesis 

This thesis is organized in seven chapters to explain the research has been 

conducted thoroughly. Chapter 1 determines the goal, objectives and scope through 

the problem background and problem statement. The significant of this study is also 

presented in this chapter. Chapter 2 provides the knowledge on the cause of AD and 

the progression of AD. The clinical diagnosis and existing AD classification methods 

are presented. Chapter 3 describes the research framework. It explains the situational 

analysis and the design of the research. It also provides the information on the data 

collection and testing analysis.  

Chapter 1 to chapter 3 provide an overview on the research planning. The 

remaining chapters show the processes involved in developing the AD classification 

scheme. Chapter 4 discusses about the formation of brain’s boundary shape 

enhancement technique to maximize the difference of SMCI and PMCI. Chapter 5 

presents the feature extraction with DWT and PCA. Chapter 6 reveals the development 

of AD classification scheme and the experiments involved in the development process. 

This chapter also presents the benchmarking result. At last, Chapter 7 concludes the 

results and contributions of this thesis. The future works also are suggested in this 

chapter. 
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