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ABSTRACT 

The speech segmentation approach could be one of the significant factors 

contributing to a Speech Emotion Recognition (SER) system's overall performance. 

An utterance may contain more than one perceived emotion, the boundaries between 

the changes of emotion in an utterance are challenging to determine. Speech 

segmented through the conventional fixed window did not correspond to the signal 

changes, due to the random segment point, an arbitrary segmented frame is produced, 

the segment boundary might be within the sentence or in-between emotional changes. 

This study introduced an improvement of segment-based segmentation on a fixed-

window Relative Time Interval (RTI) by using Signal Change (SC) segmentation 

approach to discover the signal boundary concerning the signal transition. A segment-

based feature extraction enhancement strategy using a dual-level segmentation method 

was proposed: RTI-SC segmentation utilizing the conventional approach. Instead of 

segmenting the whole utterance at the relative time interval, this study implements 

peak analysis to obtain segment boundaries defined by the maximum peak value within 

each temporary RTI segment. In peak selection, over-segmentation might occur due 

to connections with the input signal, impacting the boundary selection decision. Two 

approaches in finding the maximum peaks were implemented, firstly; peak selection 

by distance allocation, and secondly; peak selection by Maximum function. The 

substitution of the temporary RTI segment with the segment concerning signal change 

was intended to capture better high-level statistical-based features within the signal 

transition. The signal's prosodic, spectral, and wavelet properties were integrated to 

structure a fine feature set based on the proposed method. 36 low-level descriptors and 

12 statistical features and their derivative were extracted on each segment resulted in 

a fixed vector dimension. Correlation-based Feature Subset Selection (CFS) with the 

Best First search method was applied for dimensionality reduction before Support 

Vector Machine (SVM) with Sequential Minimal Optimization (SMO) was 

implemented for classification. The performance of the feature fusion constructed 

from the proposed method was evaluated through speaker-dependent and speaker-

independent tests on EMO-DB and RAVDESS databases. The result indicated that the 

prosodic and spectral feature derived from the dual-level segmentation method offered 

a higher recognition rate for most speaker-independent tasks with a significant 

improvement of the overall accuracy of 82.2% (150 features), the highest accuracy 

among other segmentation approaches used in this study. The proposed method 

outperformed the baseline approach in a single emotion assessment in both full 

dimensions and an optimized set. The highest accuracy for every emotion was mostly 

contributed by the proposed method. Using the EMO-DB database, accuracy was 

enhanced, specifically, happy (67.6%), anger (89%), fear (85.5%), disgust (79.3%), 

while neutral and sadness emotion obtained a similar accuracy with the baseline 

method (91%) and (93.5%) respectively. A 100% accuracy for boredom emotion 

(female speaker) was observed in the speaker-dependent test, the highest single 

emotion classified, reported in this study. 
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ABSTRAK 

Pendekatan segmentasi pertuturan boleh menjadi salah satu faktor utama yang 

menyumbang kepada prestasi keseluruhan sistem Pengecaman Emosi Ucapan (SER). 

Satu ucapan mungkin mengandungi lebih dari satu jenis emosi, sempadan antara 

perubahan emosi dalam ucapan sukar untuk ditentukan. Ucapan yang disegmentasikan 

melalui cara konvensional tetingkap tetap tidak mengambil kira perubahan isyarat, 

menghasilkan titik segmen rawak dan keratan segmen secara rambang, sempadan 

segmen mungkin berada dalam ayat atau di antara perubahan emosi. Kajian ini 

memperkenalkan penambahbaikan segmentasi berasaskan segmen pada Selang Waktu 

Relatif (RTI) tetingkap tetap dengan menggunakan pendekatan segmentasi Perubahan 

Isyarat (SC) untuk menetapkan batas isyarat bagi segmentasi ucapan berdasarkan 

peralihan isyarat. Strategi penambahbaikan pengekstrakan ciri berasaskan segmen 

menggunakan kaedah segmentasi dua tingkat telah dicadangkan iaitu segmentasi RTI-

SC yang menggabungkan pendekatan konvensional. Selain daripada pembahagian 

keseluruhan ucapan pada selang waktu relatif, kajian ini menggunakan kaedah analisis 

puncak untuk mendapatkan batas segmen yang ditentukan oleh nilai puncak 

maksimum dalam setiap segmen RTI sementara. Dalam pemilihan puncak, 

pembahagian berlebihan mungkin berlaku disebabkan oleh sambungan dengan isyarat 

input, yang memberi kesan kepada keputusan pemilihan sempadan. Dua pendekatan 

dalam mencari puncak maksimum telah dilaksanakan iaitu pertama; pemilihan puncak 

dengan peruntukan jarak dan kedua; pemilihan puncak oleh fungsi Maksimum. 

Penggantian segmen RTI sementara dengan segmen SC bertujuan untuk mendapatkan 

ciri emosi ucapan yang lebih baik melalui statistik tingkat tinggi yang diperoleh dari 

peralihan isyarat. Ciri prosodik, spektrum dan gelombang isyarat telah disatukan untuk 

menghasilkan set ciri emosi ucapan yang lebih baik berdasarkan kaedah yang 

dicadangkan. 36 deskriptor tahap rendah dan 12 ciri statistik dan terbitannya telah 

diekstrak pada setiap segmen menghasilkan dimensi vektor tetap. Pemilihan Ciri 

Subset berasaskan Korelasi (CFS) dengan kaedah carian Terbaik Pertama digunakan 

untuk pengurangan dimensi sebelum Mesin Vektor Sokongan (SVM) dengan 

Pengoptimuman Minimum Berurutan (SMO) dilaksanakan untuk klasifikasi. Prestasi 

gabungan ciri yang dibina dari kaedah yang dicadangkan telah dinilai melalui ujian 

penutur-bersandar dan bebas penutur-bersandar pada pangkalan data EMO-DB dan 

RAVDESS. Hasil kajian menunjukkan bahawa ciri prosodik dan spektrum yang 

diperolehi melalui kaedah segmentasi dua tingkat menawarkan kadar pengiktirafan 

yang lebih tinggi untuk kebanyakan ujian bebas penutur-bersandar dengan 

peningkatan yang ketara pada ketepatan keseluruhan 82.2% (150 ciri), ketepatan 

tertinggi antara pendekatan segmentasi lain yang digunakan dalam kajian ini. Kaedah 

yang dicadangkan mengatasi pendekatan asas dalam penilaian emosi tunggal dalam 

kedua-dua dimensi penuh dan optimum set. Ketepatan tertinggi untuk setiap emosi 

tunggal banyak disumbangkan oleh kaedah yang dicadangkan. Dengan menggunakan 

pangkalan data EMO-DB, ketepatan ditingkatkan, khususnya emosi gembira (67.6%), 

marah (89%), takut (85.5%), meluat (79.3%) sementara emosi neutral dan sedih 

memperoleh ketepatan yang setara dengan kaedah asas, masing-masing (91%) dan 

(93.5%).  Ketepatan 100% untuk emosi bosan (penutur wanita) diperolehi dalam ujian 

penutur-bersandar, emosi tunggal tertinggi dikelaskan, dilaporkan dalam kajian ini. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction 

Humans have conversations almost every day to deliver and exchange 

information, emotion is certainly included in the discussion. Emotions shown by 

humans have a great impact on the decision-making process. A system with the ability 

to understand human speeches and emotions is anticipated to greatly contribute to 

more natural human-computer interaction (HCI). With such machine, messages can be 

delivered accurately, individual characters can be identified, the emotional state of 

humans can be classified and even stress levels can also be detected, thus the 

communication process between man and machine will work more effectively and 

could deliver great purposes to human life. To make a more human-like machine, a 

depth understanding of the emotional intelligent principle must be acquired so that the 

man-machine interaction could be improved by having machines capable to offer a 

natural and reliable conversation where the user’s emotional state is considered.  

 

Emotional state can be recognized through facial expression, speech, and 

commonly used physiological signals - electroencephalogram (EEG). Speech 

emotional recognition (SER) has its significance in today's technology. SER is the task 

of automatically recognizing human emotion and affective states from speech. 

Emotion recognition from speech signals is progressively developed and the interest 

in the methods of integrating emotion detection in the machines has been increasing a 

lot within the past two decades. Studies in the SER field have been widely carried out 

in the areas related to speech user interfaces and spoken language processing and has 

evolved to some extent where it can be the “next big thing” for the industry in 

developing further beneficial applications while improving the life quality (Schuller, 

2018). 
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Human speech consists of a combination of sentences; words syllables and 

phonemes. There are two major components in a continuous speech signal, one part 

contains speech information (which can be further divided into voice and unvoiced 

speech), and the other part contains noise or silent properties in between the spoken 

word (Sakran et al., 2017). A continuous speech signal can be segmented based on a 

phonemic, sub phonemic, syllabic, word level, syntagmatic level (Amirgaliyev et al., 

2017) depending on the segmentation algorithm employed. 

 

Segmentation is an important signal pre-processing step in SER system design 

for the conversion of a single section of the signal to smaller segments before going 

through a feature extraction process. The segmentation method is implemented during 

the pre-processing phase to define the speech segment boundaries by splitting speech 

signals into several small frames and a feature vector is constructed from each 

segmented speech. Traditionally, speech labelling and segmentation were manually 

done depending on the linguistic information of the spoken utterance. Manual 

segmentation is at disadvantage compared to automatic segmentation because the 

result is inconsistent, time-consuming, and prone to error since it is implemented by 

trained phoneticians based on personal listening and visual judgment on required 

boundaries (Sharma and Mammone, 1996).   

 

Automatic segmentation procedure is another preferred way to segment speech 

automatically according to the signal acoustic properties depending on the linguistic 

knowledge and it was broadly used in the Automatic Speech Recognition (ASR) 

system (Sakran et al., 2017). The boundaries between the two standard signals can be 

identified in the same way when automated segmentation is implemented; repeated 

segmentation results for the entire signal can be detected. When the linguistic 

knowledge is not necessarily required, a ‘blind’ speech segmentation procedure is 

implemented which allows a speech sample to be segmented into several frames 

(Sharma and Mammone, 1996), (Schuller and Rigoll, 2006). The initial step of blind 

segmentation is entirely based on the signal's acoustic characteristics (Sakran et al., 

2017), due to the limited linguistic knowledge, finding a starting and endpoint of 

speech boundary concerning the emotional content is a challenging task. Segment 

boundary could be located using the endpoint detection to differentiate the silence and 

voice part and the emotion information is measured within the whole dialogue rather 
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than part of the sentence. The purpose of endpoint detection is to find the beginning 

and the end of meaningful partitions. The following criteria are used to assess the 

efficacy of segmentation algorithms: precision in establishing segment boundaries, 

robustness, noise resistance, and executing time (Amirgaliyev et al., 2017). It is an 

important procedure in the machine learning domain to discover the knowledge, 

patterns and avoid the predictive model from learning on unrelated features.  

 

Speech features can be extracted based on low-level descriptor (LLD) – local, 

and high-level statistical function (HFS) - global approach. Local features define the 

temporal dynamics in the prosody and global feature highlights the statistical value 

(Rao, Koolagudi and Vempada, 2013). Mean, standard deviation, max, min, kurtosis, 

skewness, and median,  are some global statistical features mostly used in SER (Wen 

et al., 2017). Global statistic features could be useful to reduce computation as it 

produces smaller and fixed dimensionality details compared to local features extracted 

from each frame (Badshah et al., 2019). The main idea of feature extraction is to obtain 

a set of desired information that represents the properties of the original data 

(Giannakopoulos and Pikrakis, 2014a). 

 

Since the past decade, the search for the optimal speech feature set to represent 

emotion and the extraction strategy has been actively pursued, (Bitouk et al., 2010), 

(A. Ingale and Chaudhari, 2012), (Sezgin et al., 2012). Feature extraction strategy has 

been a current challenging research topic, due to the data insufficient problem. A 

frequent number of researches involves in-depth studies on extraction strategies among 

various types of feature groups that lead to better recognition accuracy were previously 

reported (Rao et al., 2010), (Kishore and Satish, 2013), (Gharsellaoui et al., 2015), 

(Jing et al., 2018), (Guo et al., 2019). In the research literature, some studies proved 

that feature integration is effective in classifying emotion, but these different types of 

feature representations are usually diverse as it is structured from various type of 

feature, so a basic challenge is how to effectively integrate the diversity information 

for better recognition performance. Multiple features are merely concatenated into a 

single high-dimensional feature vector and fed into a final classifier which has 

difficulty in joining learning fundamental correlations between different acoustic 

feature representations  (Jiang et al., 2019).  
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Ayadi, Kamel and Karray, (2011) stated, prosody continuous features like 

energy and pitch greatly represent the emotional information of an utterance.  

According to Origlia, Galatà and Ludusan, (2010) and Koolagudi and Rao, (2012), 

global prosodic features are usually used in the emotion recognition task. Most of the 

earlier researches works were mainly focused on prosodic features alone such as pitch/ 

fundamental frequency (f0), intensity, duration, energy, and MFCC (Anagnostopoulos 

et al., 2012), (Origlia et al., 2010), (Yutai et al., 2009), and some only focus on spectral 

feature alone like MFCC (Bitouk et al., 2010), (Bhaykar et al., 2013).  

 

Single emotion features lead to inconsistency in recognition with a lower 

recognition rate, a combination of multiple features that are capable to describe 

emotional information is needed in generating the optimal feature set. Soon afterward, 

researchers were actively conducting studies on the integration of a few feature 

categories: prosodic, spectral, and voice quality features by combining them to 

maximize the rate of emotional recognition, resulting in a robust feature set (Bozkurt 

and Erzin, 2009), (Zhou et al., 2010), (A. Ingale and Chaudhari, 2012), (Safdarkhani 

et al., 2012), (Seehapoch and Wongthanavasu, 2013), (Gharsellaoui et al., 2015). 

(Watile et al., 2017).  

 

A feature set constructed with a high-dimensional feature vector usually 

elevates the computation complexity. An extensive study on a predictive model with 

a fine feature set structure is crucial. The efficiency of the emotion recognition process 

is heavily influenced by the quality of segmentation results that contribute to the good 

selection of required features. Appropriate segmentation approach, feature extraction 

strategy, and selection algorithm of data attributes are necessary for irrelevant data 

removal procedure and feature dimension reduction to improve learning performance 

by lowering computational complexity and providing a good decision-making process 

with shorter processing time. There are still more potential features extraction 

strategies that have not been studied and there is still room for improvement.  
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1.2 Research Background  

Emotional expression may appear across several sentences, or on any word in 

speech. Since emotion is not highly dependent on the spoken words or the linguistic 

content, an utterance may contain a possible mixture of perceived emotion and the 

boundaries between the changes of emotion are difficult to determine, making it hard 

for the SER system to define the dominant emotion. According to physiological and 

psychological studies, expressing emotion in speech has a beginning, a rising side, a 

peak, and a declining side (Ekman, 2003).  

 

Speech boundary could be defined by the temporal dynamics of the signal, 

based on the extracted feature. The technique of identifying the presence of voiced 

speech among other unvoiced speech and silence regions is known as endpoint 

detection, speech detection, or voice activity detection. The system’s accuracy is 

influenced by the performance of the endpoint detection algorithm, eliminating the 

voice and noise frames in a dynamic environment makes it easier to model speech 

(Berkehan and Kaya, 2020). 

 

 Defining the basic unit of the segmented speech in a continuous speech that 

best represents single emotion is one of the ongoing challenges; the segmented speech 

should be long enough to define single emotion and short enough to isolate the 

presence of other emotions in that utterance  (Batliner et al., 2010), (Guo et al., 2019). 

Small segments may be providing insufficient informative peak area, while longer 

segments subsequently expressed emotions may affect each other (Mansoorizadeh and 

Charkari, 2007). As stated in (Lee and Cho, 2016), the frame size of 25ms could 

potentially wipe the dynamic properties in a speech signal due to the rapid changes of 

spectral characteristics. Research findings stated a speech segment longer than 0.25 

seconds carries enough emotional information (Provost, 2013), (Sahoo et al., 2019).  

 

Looking at the progress of studies on segmentation approaches in the SER 

domain, it can be argued that the subtopic of segmentation is still under discussion. 

Based on current related research, finding the right segmentation approach has been 

one of the remaining challenges that need to be sought after. Several automatic 

segmentation approaches have been proposed with the idea of segmenting the signal 
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into smaller frames under supervised and unsupervised segmentation before executing 

the desired procedure. (Schuller and Rigoll, 2006) and (Zhang et al., 2014), (Tzinis 

and Potamianos, 2017) implying a timing-levels in segment-based segmentation in the 

previous study referring to a relative time interval (RTI) approach and absolute time 

intervals at relative positions (ATIR) while (Yeh et al., 2011), Huang et al., (2019), 

(Atmaja and Akagi, 2019) implemented the unsupervised segmentation strategy based 

on signal change detection method in their research.   

 

The implementation of fixed-window segmentation is still relevant in terms of the 

emotion classification ability, reliable result is still achieved in Zhang, Warisawa and 

Yamada, (2014), (Lee and Cho, 2016), Sahoo et al., (2019). The speech signal is divided 

into segments of a fixed window with predefined window lengths, resulting in an 

individual speech sample. The feature extraction phase is implemented based on each 

segmented speech frame, to capture the distinctive temporal dynamics within the speech, 

a suitable segmentation approach is required.  

 

Fixed window segmentation is less favourable in some studies because the 

segmentation point may be in the middle of a short phrase, the segmentation result is 

not optimal (Yeh et al., 2011). Furthermore, if one partition contains two or more 

emotional expressions, the recognition result will be inaccurate. The segmentation 

result from fixed-length segment might not be optimal due to the segment points 

location, the segment boundary might be within the sentence or in-between emotional 

changes, the method might carry inadequate emotional information, thus leading to the 

inaccurate outcome. Other researchers support the use of signal change segmentation 

for better recognition accuracy compared to fixed window segmentation. Lee et al., 

(2013) are concerned about the need to incorporate temporal information in acoustic 

feature sequences in determining emotional speech category, the use of fixed-window 

segmentation alone is still lacking to provide satisfactory results. The Acoustic 

Segment Model (ASM) approach is proposed to classify utterances by their acoustic 

feature sequences. The implementation of ASM approach is supported in (Zheng et 

al., 2021), due to the potential use of acoustic information for performing SER tasks. 

Amirgaliyev, Hahn and Mussabayev, (2017) used pitch frequency analysis by 

observing the average number of zero transitions functions and the signal energy 

function to construct a speech parameterization. The speech signal is segmented using 



 

7 

the parameterization result to isolate the segments with stable spectral properties. 

Huang et al., (2019), implement signal change segmentation for silence detection, 

verbal/nonverbal segment detection, and prosodic-phrase segmentation procedures to 

obtain sound/speech segments. (Atmaja et al., 2019) remove the silence part, 

considering silence brings unnecessary information, and use only the segmented 

speech part of the utterance for feature extraction.  

 

The mutual proclamation about explicit features in speech signals that 

represent emotional information is uncertain and insufficient, it is a widespread 

challenge being faced by SER systems including the range of features that can 

distinguish individual emotion (Sahoo et al., 2019), (Badshah et al., 2019). Thus far, 

researchers are still experimenting and proposing new emotion-related features as 

indicated by (Jing et al., 2018), old-fashioned acoustic features with traditional 

approaches still cannot promise satisfactory system performance due to the deficiency 

of discriminative acoustic features. Most existing research related to emotion 

recognition from speech focuses on basic emotion classification since the main feature 

for each basic emotion is still unclear make it hard to emphasize the most persuasive 

feature for classifying emotions.  

 

Spectral and prosodic are among two features that well describe emotion. 

Speech energy, fundamental frequency, formant, and Mel-frequency Cepstral 

Coefficient (MFCC) are widely used in research literature because they can 

differentiate certain states of emotion effectively (B. A. Ingale & D. Chaudhari, 2012). 

Features from the spectral group alone also delivered satisfactory results using MFCC 

and Modulation spectral (MS) feature (Kerkeni et al., 2018). It was further reported 

that the MFCC feature is often used and considered as the best representation of the 

voice signal’s spectral property where human perception sensitivity towards frequency 

is considered. Aside from auditory suggestive features, MFCC was optimally merged 

with chosen prosodic and voice quality features to improve recognition accuracy 

(Gharsellaoui et al., 2015). 

 

As the research area expands, various fusion set has been proposed including 

the wavelet Sub-band Based Cepstral (SBC) that has been early introduced in 

(Sarikaya et al., 1998) for the efficiency of recognizing emotion in a noisy 
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environment. A comparative study by Kishore and Satish, (2013), evaluate the 

sensitivity of MFCC and wavelet features, SBC towards noisy data. The result shows, 

SBC parameters produce better recognition accuracy than MFCC and are proven to 

have less sensitivity towards noisy data. Chenchah and Lachiri, (2014) also proved 

that speech emotion recognition systems based on the wavelet packet energy and 

entropy features yield the best average result and are robust for both acted and 

spontaneous databases. Since wavelet features give better results in a noisy 

environment and are robust in both acted and spontaneous databases, the combination 

of wavelet, spectral, and prosodic features might further improve the recognition 

accuracy, a system that may well be withstanding environmental noise should be more 

practical and reliable used in a future application with real-time processing.  

 

 

1.3 Problem Statement  

 The segmentation approach could be one of the major factors that contribute to 

the overall performance of an SER system. An utterance may contain more than one 

perceived emotion but the boundaries between the changes of emotion in an utterance 

are difficult to determine. Speech segmented through the conventional fixed window 

did not correspond to the signal changes, due to the random segment point. The 

segmentation approach at relative time interval in finding the segment boundaries 

might carry insufficient emotional information, as it produces arbitrary segmented 

frame, a refined segmentation method is required to isolate the boundaries between 

emotion change according to the signal transition, hence a better feature structure could 

be constructed when emotional information is well defined. In summary, some 

problems that need to be addressed in emotional recognition are: 
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Table 1.1 Problem to be addressed 

Problem Description 

Fixed-length 

speech segment 

• Segmentation results from fixed-length segment might not be optimal 

due to the segment points location, the segment boundary might be 

within the sentence or in-between emotional changes (Yeh et al., 2011), 

and lacking temporal information in acoustic feature (Lee et al., 2013), 

Deficient semantic functionality access to a sequence of associated 

patterns or interpretations (Amirgaliyev et al., 2017), even 

segmentation approach is used with an unsatisfactory result on 

performing SER task (Zheng et al., 2021). 

Peak Detection • As stated in Giannakopoulos and Pikrakis, (2014b), during signal 

change detection, over-segmentation will occur if a huge number of 

local maxima might be detected when a short-term feature vector is 

employed directly in the computation, unless a refined peak selection 

technique is implemented. In peak selection, the signal thresholding 

computation is difficult, due to connections with the input signal, which 

impact the boundary selection decision (Maka, 2020). 

Insufficient 

feature 

• Single emotion features lead to inconsistency in recognition with a 

lower recognition rate, a combination of multiple features is needed in 

generating the optimal feature set (Gharsellaoui et al., 2015). Old-

fashioned acoustic features with traditional approaches still cannot 

promise satisfactory system performance due to the deficiency of 

discriminative acoustic features (Jing et al., 2018). Explicit features that 

represent emotional information are insufficient (Sahoo et al., 2019), 

the optimal feature to differentiate distinct emotions is still in pursuit.  
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1.4 Research Questions 

To address the problems mentioned, the solution to the following research 

questions should be sought: 

 

a) Which segmentation method corresponds more to the emotional changes in an 

utterance and how to define a clear segment boundary in emotional speech 

signal? 

 

b) Could the refined peak selection method avoid the over-segmentation problem 

and capture better emotional information within the signal transition? 

 

c) Does integrating prosodic, spectral and wavelet statistical representation 

derived from feature extraction strategy through proposed segmentation 

approach provide better emotion recognition accuracy? 

 

 

1.5 Research Aims 

 This research aims to identify a new speech segment boundary based on 

maximum peak selection implemented on the proposed method: a dual-level 

segmentation, the feature extraction strategy will be enhanced by selecting statistical 

features representation derived from a speech segmented which reflect the signal 

change, instead of the random segmented speech signal.  
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1.6 Research Objectives 

Three main objectives to be achieved in constructing a robust statistical feature 

set for speech emotion recognition: 

 

a) To propose a dual-level segmentation method for identifying the new segment 

boundary based on maximum peak selection.  

 

b) To enhance feature extraction strategy and construct statistical representation 

based on hybrid features through the proposed segmentation approach.  

 

c) To evaluate the performance of the statistical feature set derived from the 

proposed method. 

 

 

1.7 Research Scope 

The scope of the project has been determined to carry out this research are as 

follow: 

 

a) Several emotional states are selected to be classified including the basic 

emotions:  happiness, sadness, fear, surprise, anger, disgust, boredom, and 

neutral. 

 

b) Low-level descriptor (LLDs): zero-crossing rate, energy, the entropy of 

energy, spectral centroid and spread, spectral flux, spectral roll-off, MFCCs 13 

coefficient, 12 Chroma Vector, Harmonic, Fundamental frequency (F0), SBC. 

 

c) 12 high-level statistical functions (HSFs): min, max, mean, median, mode, 

standard deviation, variance, skewness, kurtosis, range, interquartile range, 

mean absolute deviation. 
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d) Feature combination of the prosodic, spectral, and wavelet group that carries 

the most emotional information will be constructed using RTI segmentation 

and signal change detection approach based on peak analysis. 

 

e) Optimizing feature set using Correlation-based feature subset selection with 

best first search method.   

 

f) SVM classifier with the SMO algorithm has been selected to classify those 

emotions using WEKA analysis tools. 

 

g) The experiment will be conducted using Berlin Emotional Speech Database 

(EMO-DB) with acted emotional data and The Ryerson Audio-Visual 

Database of Emotional Speech and Song (RAVDESS) with elicited emotional 

data. 

 

 

1.8 Importance of Study 

Improper speech segmentation algorithm might lead to lower recognition 

accuracy when emotional information captured within a segmented partition is carried 

along with the unnecessary information. A feature extraction strategy must be well 

structured; the selection of features is crucially important to advance the system 

performance with better recognition accuracy. This study focuses on the importance 

of the segmentation approach during the pre-processing phase in structuring the 

optimal feature extraction strategy. The performance is validated on speaker-

dependent and speaker-independent tests using the state-of-the-art classifier. The 

efficiency of the statistical feature set constructed from the proposed dual-level 

segmentation method based on peak analysis has been analyzed to discover whether it 

captures better emotional information compared to the conventional approach and the 

emotional change in between signal transition is observed.  
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1.9 Thesis Organization 

The details of the process flow for this thesis are structured in the following 

chapters accordingly for better reference. The remainder of this thesis is organized as 

follows: 

Chapter 2 provides a further explanation of digital signal processing, speech 

emotion recognition, emotional model and database, background research, previous 

studies conducted by other researchers related to the segmentation approach, and 

feature extraction strategy are also presented. The methods used for analyzing speech 

signals from the emotional speech database are further discussed.  

Chapter 3 will discuss on research framework and the methods used in 

executing the enhancement strategy of feature extraction based on the proposed 

method: RTI segmentation and signal change detection to classify emotion through 

speech signal. The whole methodologies chapter will have a general discussion on 

design and procedure, emotional data collection, software justification, segmentation 

approach, baseline feature extraction method, feature optimization, and classification 

technique used. 

 

Chapter 4 will explain the detailed explanation of the whole study covering 

specific implementation tasks, experimental design, data analysis, and evaluation to 

accomplish the objective of the study. Each of the implementation phases will be 

explained in detail based on the research framework element for a better understanding 

of the research flow. The experimental setup, preliminary and comparative study on 

the experiment conducted, segmentation approach, feature extraction strategy, feature 

selection algorithm, and the optimal classification are presented. 

 

The results of this study are presented in Chapter 5, the comparison of results 

from the baseline feature extracted using the RTI segmentation approach and the result 

after implementing signal change detection using peak analysis. Few experiments are 

conducted, the performance of the proposed dual-level segmentation has been 

observed. This study also highlights the potential of the proposed algorithm through 

framework design and detailed result analysis, focusing on reviewing other related 
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models, and showing how this study is distinguished from others’ work. Possible 

further works using the proposed method will be suggested at the end of the chapter. 

 

Chapter 6 will highlight the research finding, achievements, and contributions 

of this study that might be useful to advance the industry. The advantage of using the 

proposed algorithm dual-level segmentation method and the summary of the study is 

further discussed. 
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