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ABSTRACT

In data analysis process, a good decision can be made with the assistance of

several sub-processes and methods. The most common processes are feature selection

and classification processes. Various methods and processes have been proposed to

solve many issues such as low classification accuracy, and long processing time faced

by the decision-makers. The analysis process becomes more complicated especially

when dealing with complex datasets that consist of large and problematic datasets.

One of the solutions that can be used is by employing an effective feature selection

method to reduce the data processing time, decrease the used memory space, and

increase the accuracy of decisions. However, not all the existing methods are capable

of dealing with these issues. The aim of this research was to assist the classifier

in giving a better performance when dealing with problematic datasets by generating

optimised attribute set. The proposed method comprised two stages of feature selection

processes, that employed correlation-based feature selection method using a best first

search algorithm (CFS-BFS) and as well as a soft set and rough set parameter selection

method (SSRS). CFS-BFS is used to eliminate uncorrelated attributes in a dataset

meanwhile SSRS was utilized to manage any problematic values such as uncertainty

in a dataset. Several bench-marking feature selection methods such as classifier subset

evaluation (CSE) and principle component analysis (PCA) and different classifiers such

as support vector machine (SVM) and neural network (NN) were used to validate the

obtained results. ANOVA and T-test were also conducted to verify the obtained results.

The obtained averages for two experimentalworks have proven that the proposedmethod

equally matched the performance of other benchmarking methods in terms of assisting

the classifier in achieving high classification performance for complex datasets. The

obtained average for another experimental work has shown that the proposed work has

outperformed the other benchmarking methods. In conclusion, the proposed method

is significant to be used as an alternative feature selection method and able to assist

the classifiers in achieving better accuracy in the classification process especially when

dealing with problematic datasets.
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ABSTRAK

Dalam proses analisis data, keputusan yang baik dapat dibuat dengan bantuan

beberapa sub proses dan kaedah. Proses yang paling biasa adalah pemilihan ciri dan

proses pengelasan. Pelbagai kaedah dan proses telah dibangunkan untukmenyelesaikan

banyak masalah seperti ketepatan pengelasan yang rendah, dan masa pemprosesan

yang lama yang dihadapi oleh pembuat keputusan. Proses analisis menjadi lebih rumit

terutama ketika berurusan dengan set data kompleks yang terdiri daripada set data

yang besar dan bermasalah. Salah satu penyelesaian yang dapat digunakan adalah

dengan menggunakan kaedah pemilihan ciri yang efektif untuk mengurangkan waktu

pemprosesan data, mengurangkan ruang memori yang digunakan, dan meningkatkan

ketepatan keputusan. Namun, tidak semua kaedah yang sedia ada mampu untuk

menangani masalah ini. Tujuan penyelidikan ini adalah untuk membantu pengkelas

dalammemberikan prestasi yang lebih baik ketika memproses set data yang bermasalah

dengan penghasilan set atribut yang dioptimumkan. Kaedah yang dicadangkan

terdiri daripada dua tahap proses pemilihan ciri yang menggunakan kaedah pemilihan

ciri berdasarkan kolerasi bersama algoritma carian pertama terbaik (CFS-BFS) dan

kaedah pemilihan ciri set lembut dan set kasar (SSRS). CFS-BFS digunakan untuk

menghapuskan atribut yang tidak berkorelasi dalam set data sementara SSRS digunakan

untukmengendalikan setiap nilai yang bermasalah seperti ketidakpastian dalam set data.

Beberapa kaedah pemilihan ciri penanda aras seperti penilaian subset pengkelas (CSE)

dan analisis komponen utama (PCA) dan beberapa pengkelas berbeza seperti mesin

vektor sokongan (SVM)dan rangkaian neural (NN) digunakan untukmengesahkan hasil

kajian yang diperoleh. ANOVA dan Ujian-T juga dĳalankan untuk mengesahkan hasil

yang diperoleh. Purata yang diperoleh daripada dua eksperimen menunjukkan bahawa

kaedah yang dicadangkan mempunyai prestasi yang setara dengan kaedah penanda aras

yang lain dari segi membantu pengkelas dalam mencapai prestasi pengelasan tinggi

untuk data set yang kompleks. Purata yang diperoleh untuk eksperimen lain telah

menunjukkan bahawa cadangan kerja adalah lebih baik berbanding kaedah penanda

aras yang lain. Kesimpulannya, kaedah yang dicadangkan adalah signifikan untuk

digunakan sebagai kaedah alternatif pemilihan ciri dan dapat membantu pengkelas

dalam mencapai ketepatan yang lebih baik dalam proses pengelasan terutama ketika

mengendalikan set data yang bermasalah.
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CHAPTER 1

INTRODUCTION

1.1 Background Problem

Data analysis is the most crucial task in any application field. This process

involves several tasks such as data pre-processing, feature extraction and feature

selection that will assist the decision-maker in getting the best solution for a specified

problem. An ineffective data analysis will affect the decision-making process and

return wrong or inefficient solutions. There are several factors that might cause the

data analysis process to become ineffective. The size and characteristics of the data

are two main factors that will downgrade the efficiency of the data analysis process.

A complex dataset might be comprised of large-sized data, which means that it has

multiple types of criteria and also imbalanced, uncertain and inconsistent data values

(Oussous et al., 2018). Complex datasets are difficult to analyse, especially when

unsuitable methods and instruments are used. Some data analysis methods are unable

to manage or analyse a large volume of data at one time. In addition, this sort of

difficulty is also faced by certain hardware and software. Two key problems that are

typically related to data analysis process are long processing times and high storage

availability (Ait Hammou et al., 2018). Pre-processing data and selection of features

are among the essential processes used to resolve these issues. Ineffective decisions

might be generated if these two processes are wrongly conducted (Houari et al., 2016).

In addition, over-fitting during the feature reduction process might also pose a challenge

to the decision analyst (Qian et al., 2018).

Many application fields such as healthcare (Mursalin et al., 2017), finance (Dong

et al., 2018), transportation (Ahmad et al., 2017), engineering (Kushal et al., 2020), bio-

informatics (Wang et al., 2016) and security (Vĳayanand et al., 2018) have conducted

various research works that related to data analysis process. These studies have shown

that, the data analysis process especially on feature selection do influence the decision-
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making process. Feature selection also might help the decision analysis method such as

the classifier to increase the learning accuracy, minimize processing time and eliminate

unrelated and redundant data (Cai et al., 2018). In addition, problematic data, such

as ambiguity, inconsistency, imbalanced and missing values, can be managed using

feature selection methods (Zhou et al., 2017; Sheeja and Kuriakose, 2018; Hosseini

and Moattar, 2019). According to the literature reviews that had been conducted,

various feature selection methods that have been proposed either by proposing new

method or enhancing the existing methods or integrating several single methods. For

example, work done by Gao et al. named as Minimal Redundancy-Maximal New

Classification Information (MR-MNCI) that integrated two feature selection criteria

(class-dependent feature redundancy and class-independent feature redundancy) (Gao

et al., 2018). Another example of proposing new feature selection method is done by

Anaraki and Usefi in his work (Anaraki and Usefi, 2019) that identifies correlation

between features based on perturbation theory.

From a literature study it can be concluded that different methods are needed

to perform different data analysis problems. For examples, Fuzzy and rough sets can

be used to handle uncertainty and nonlinear data problems (Esposito et al., 2018),

while neural networks are suitable for use in analysing complex data (Choudhury and

Pal, 2019) and support vector machines (SVMs) might be implemented to deal with

high-dimension data when they are incorporated with other methods (Tao et al., 2019).

Recently, different approaches, methods, frameworks or formulations were proposed,

each of which took into consideration different kinds of problems or issues that need

to be solved. Some of the works highlighted the performance of the proposed methods

or models, some initiated new definitions, some considered the whole architecture

of the proposed approach, and some investigated the capability of the hardware and

software used in the decision-making process. All of these works have contributed

to the focused area, and there will be no end to these works because data issues will

always be emerging and becoming more complex.
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1.2 Research Background

The feature selection process is a crucial process in data analysis. It is used

to prepare the data into an optimised dataset that is ready to be analysed using any

data analysis method. The feature selection process not only helps the data analyst to

reduce or select the most relevant features but also helps to decrease the use of memory

space, reduce the processing time and improve accuracy (Luan and Dong, 2018).

The decision-making process becomes more effective when decision analysts make

use of the feature selection process, especially when dealing with complex datasets.

Researchers from many different areas such as science, engineering, medical, social

science and economics have initiated either single feature selection methods, hybrid

feature selection methods, or generalized or specific methods that are applicable for

solving any decision-making problem.

However some of the existing approaches are incompatible to act as an efficient

tool for selecting features. For example, a probability approach and fuzzy set approach

cannot solve the problem of multidimensional characterisation properties (Hassan and

Al-Qudah, 2019). The classical rough set theory and fuzzy set are a few approaches

that have been mentioned as ineffective approaches for conducting the feature selection

process, and they generate a low accuracy rate for the computation results (Singhal

et al., 2018). Other traditional methods, such as support vector machines (SVM)

and decision trees (DT), also have difficulties in handling certain types of datasets, in

particular multivariate large datasets, where high computational costs such as time and

space are required. SVM is suffer from instability problemwhere it requires exact factor

or features in order to achieve high accuracy meanwhile DT require high volume of

input data at the beginning of analysis process (Ghaddar andNaoum-Sawaya, 2018; Rao

et al., 2019).

Inevitable presence of problematic values in the dataset is one of the data

analysis issues. Some of the values are uncertainty, inconsistency, and imbalanced.

The problem of uncertainty refers to the vague criteria that are to be evaluated during

the decision-making process (Fahmideh and Beydoun, 2018). Uncertainty means

incomplete information or it can also be defined as an attribute whose value is unknown.

3



According to (Durbach and Stewart, 2012), uncertainty can be divided into two types,

namely, i) external and ii) internal uncertainty. Uncertainty which appears when the

value of an attribute is derived from post events is categorized as external uncertainty.

This type of uncertainty is caused by environmental situations and other related decision

areas without the involvement of the decision-maker. Uncertainty that is caused by the

decision-maker is categorized as internal uncertainty such as incomplete definitions of

human preferences, incomplete human judgments and incomplete information. This

situation will affect the decision-maker when deciding on a strategic resolution for

problems that need to be solved. Imbalanced datasets also could affect the erroneous

and could mislead the decision analysis results. The datasets are considered to be

imbalanced when the ratio of the number of instances from the majority class to the

number of instances of the minority class is higher or equal to 2 (Hosseini and Moattar,

2019). Imbalanced data might occur in real world problems such as medical diagnosis,

banking fraud detection and bioinformatics (Liu and Zio, 2019). Inconsistency denotes

a situation where a variable has more than one conflicting values whilst vagueness is

defined as a property of sets or concepts which can be characterized into the limits of

the set (Bello and Verdegay, 2012). Inconsistent data problems may occur when there

is a situation or event which has been misinterpreted by the decision-maker. Invariably,

incorrect information will create an inaccurate and inappropriate solution, especially

when dealing with high dimensional data.

Moreover, single and classical decision-making algorithms and tools are unable

to assist the decision-maker in solving the uncertainty problems successfully. The

uncertainty issue will make the problem more complicated, especially when it involves

a large dataset. Thus, the accuracy, completeness and cleanliness of the data are

questionable (Maugis, 2018). Recently, these kinds of datasets have been generated

tremendously from different applications, especially from social media applications

such as Facebook, Twitter, Instagram and online shopping applications. These

problems can degrade the performance of decision analysis methods such increasing

the computational time and memory space and reducing the accuracy, especially when

single or classical methods are being used (Qian et al., 2018). However, these data

complexities cannot be analysed manually without the use of an efficient method as

these data need to be pre-processed in order to reduce the difficulties (Chormunge and

Jena, 2018; Luan and Dong, 2018). The complex values need to be eliminated, reduced

4



or properly analyse so that, the best solution can be made during the decision-making

process.

Many decision analysis methods especially on feature selection have been

initiated to deal with complex datasets. All such methods, whether single or hybrid,

are aimed at increasing the decision analysis performance or at generating an optimal

solution. Probability and fuzzy set theories are among the useful mathematical theories

that have attracted the most attention from researchers in dealing with complex datasets

and particularly on uncertainties (Ali et al., 2019; Esposito et al., 2018). Generally,

these two theories have distinguished definitions of the imprecise concept. Among the

popular methods in these theories are rough set and fuzzy set. The rough set theory

proposes a theory of approximation (upper and lower); while the fuzzy set theory

considers unclear boundaries in dealing with imprecise data. Instead of rough set

and fuzzy set theories, there is another useful mathematical method that has emerged

recently for handling uncertainty problems. This method, which was proposed by

Molodstov and is known as the soft set theory, was developed to overcome the

limitations of the classical rough set and fuzzy set theories that categorised under

theory of probability and theory of fuzzy sets. It was initiated to enhance the capability

of the rough set and fuzzy set theories, which have their own difficulties. Probability

theories have trouble analysing non-stochastic data problems and are more suited for

use in engineering and not in social science fields. Meanwhile the fuzzy set theory

often has difficulties defining the membership function on a particular analysis problem

(Molodtsov, 1999). While soft set theory stated that it could resolve the difficulties faced

by probability and fuzzy set theories, some of the algorithms were unable to produce a

sub-optimal set of attributes for complex data during the data analysis process due to

computational complexity problems (Akram et al., 2019).

Based on the aforementioned problems, this study has selected the feature

selection method as main research components, and complex data as its research

domain area. Two key issues will be highlighted: firstly, the use of feature selection

as a selection method to minimise the number of instances or attributes in a dataset by

eliminating uncorrelated attributes between attributes and class. This is done by stage

1 of feature selection process by using correlation-based feature selection with best first
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search method (CFS-BFS). Secondly, the feature selection method used to choose the

most optimised attribute set within the complex data values in a dataset by eliminating

uncertain values using a combination of soft set and rough set (SSRS) feature selection

method. The aim of these multistage feature selection method is to assist the classifier

in achieving better performance on accuracy by analysing problematic attribute values

in the datasets.

1.3 Problem Statement

As discussed in the previous section, feature selection is one of the crucial

tasks in the decision-making process, especially when dealing with big datasets. It

is important for the researcher or decision-maker to select the appropriate method to

be applied in the feature selection process. In order to select the most appropriate

method, the description of the data such as their size and characteristics should be

taken into consideration. This is because if the wrong method is selected it will

decrease the decision-making performance or even increase the cost of the software and

hardware used. Besides, some feature selection methods are incapable of generating

the optimised set of attributes to be used in the decision analysis process. Some

methods also have difficulty in analysing large-sized data sets, and will give a low

analysis performance such as insufficient memory space, a long processing time, and

non-deterministic polynomial-time (NP) hardness problem (Vĳayanand et al., 2018;

Faraway and Augustin, 2018). Therefore, it is good to really know the detailed process

of making decisions so that the desired solution can be arrived at easily and will be cost

effective. Of late, lots of software and hardware are available in the market. However,

most of them are not so cost effective and require the decision-maker to spend a lot

on the setup and maintenance such as the cost for the installation of the software and

database, and also the cost of training the staff. In conclusion, two main problems that

lead to other decision-making issues will be highlighted in this thesis. The problems

are: i) the complexity of the data characteristics, and ii) the limitations of existing

feature selection methods in handling the multiple conditions especially on uncertainty

values of datasets.
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Thus, this research proposed a multistage feature selection methods as an

alternative in the data analysis process to deal with complex datasets by combining

several feature selection methods. The main research question was: "How can

an effective feature selection method be constructed by utilizing existing methods

to improve the classification process?" In order to increase the understanding in

constructing the proposed work, several research questions (RQ) were derived from

the main research question as follows:

RQ1: What are the existing feature selection methods used for data analysis and

how these methods being utilized?

RQ2: What kind of feature selection methods can be enhanced to solve data

complexity issues?

RQ3: How does the proposed methods reduce the dimension and select the

optimised attributes of a complex dataset?

RQ4: How does the performance of the proposed feature selection methods over

the other single and hybrid methods?

RQ5: How does the performance of the proposed method with different kinds of

datasets?

1.4 Research Aim

The aim of this research was to generate an optimal attribute set by reducing the

irrelevant values in a dataset using the proposed multistage feature selection methods

in the classification process.

1.5 Research Objectives

1. To combine correlation-based feature selection with best first search methods

that can reduce the irrelevant large number of attribute.

7



2. To combine soft set and rough set feature selection methods that can eliminate

problematic values in datasets.

1.6 Scope of the Study

This research focused mainly on problematic datasets, in particular on the

uncertainty, imbalanced and inconsistency values that will be used in the analysis

process to produce an effective solution. This research used different sizes of

data, either instances or attributes, in order to test the performance of the proposed

work. The selection of data is based on the multiple data characteristics such as

multi-variate, uni-variate, time-series, sequential, missing values, numeric and text.

In addition, imbalanced ratio of the datasets were also tested. This research also

considered different types of feature selection methods such as single or combination

of several feature selection methods as bench-marking methods to the proposed

feature selection method. There are two combination approaches, i) using WEKA

that implements feature selection method such as correlation-based feature selection

and combined with best first search method as searching technique, ii) execute the

feature selection methods in sequence such as soft set feature selection process and

followed by rough set feature selection process. All the datasets were secondary

datasets that were obtained from various sources such as the UC Irvine Machine

Learning Repository (https://archive.ics.uci.edu/ml/index.php), Knowledge Extraction

based on Evolutionary Learning (KEEL, https://sci2s.ugr.es/keel/datasets.php), Weka

datasets (https://storm.cis.fordham.edu/gweiss/data-mining/datasets.html) and Kaggle

datasets (https://www.kaggle.com/datasets). These datasets were selected based on the

characteristics such as consist of multiple values, large size of attributes and instances

and data that used for feature selection competition such as Arcene and Madelon.

Finally, the software and hardware that were used in the experimental works were

easily obtained and implemented, and did not require a high cost for installation and

purchase. The specifications of the hardware used are as follows, Intel Core i5-8250U

CPU at 1.60 GHz and 4 GB of memory using 64 bit Windows 10 operating system. The

software that being used for the experimental works are Matlab 2014, Weka version

3.8.3, Rough set Exploration System (RSES), and Ms. Excel.
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1.7 Significance of Findings

It is hoped that the process that was conducted and the outcome of the research

can contribute either in general or to a specific target group in the data science

community. Below are listed several significant outcomes of the research:

1. It is hoped that this research will provide an alternative feature selection method

that can analyse data effectively with a combination of several single feature

selection methods (correlation-based feature selection, best first search, soft set

and rough set feature selection methods).

2. This research can provide proper guidelines to other researchers who may

want to analyse data by using similar approach with provided flow charts and

algorithms shown in Chapter 3.

3. This research helps the decision maker to eliminate the number of large

irrelevant attribute by using proposed multistage feature selection processes

that analysed uncorrelated and problematic attributes that might exist in the

datasets. So that, the processing time and space of memory can be reduced

while assisting the classifier in achieving high performance accuracy.

4. This research has also improved accuracy on several number of complex

type of datasets such as for Arcene and Dota datasets as shown in Chapter

5 Experimental work 2.

5. The results of this research can be a guideline and a bench-marking work for

other researchers in the selection of an appropriate method to be combined

when dealing with imbalanced and problematic datasets.

6. The combination methods from this study can be a bench-marked method to

other research works with the same process (classification).

7. The results of this research could be a comparison to other researchers that used

the same datasets as being employed in the three experimental works.
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1.8 Thesis Organization

The contents of this thesis have been structured into seven chapters as follows:

• Chapter 1: explains the overall view of the proposed research by discussing the

research area and problembackground, problem statement, the objectives, scope

of the research, the research questions, significance of the research findings, and

also the thesis organization.

• Chapter 2: discusses the important research areas from the related domains that

have been reviewed during the research study. The important research areas

include feature selection method, theoretical framework of the feature selection

methods, uncertainty value of datasets, existing feature selection methods.

• Chapter 3: describes the methodology of the proposed research by presenting

its conceptual framework. This chapter also defines the formulation that was

used to conduct the proposed research phase by phase from the data collection

until the generation of results. The detailed structures of two stages of feature

selection phase that were constructed to conduct the data analysis process are

also explained. The first phase, is a combination of correlation-based feature

selection with the best first search named as CFS-BFS. This phase will acts

as a feature reduction method that reduces the uncorrelated attribute that exist

in a dataset. Meanwhile, the second phase was purposely constructed for the

attribute selection process. This phase was carried out by two mathematical

methods, namely the soft set and rough set feature selection methods, which

were integrated together and named as the SSRS feature selection method.

• Chapter 4: presents the proposed first stage of the feature selection process

known as CFS-BFS. The results and performance of the proposed method are

also provided. This chapter also presents the whole process of the proposed

method with several existing feature selection methods. These methods were

used as a bench-marking procedure with the implementation of different

classifiers to verify the performance of the proposed method.

• Chapter 5: presents two analysis works that involved evaluation of the second

stage of the feature selection process. The results and its performance with

10



regard to imbalanced and large datasets also being reported. Several existing

feature selection methods were used as a bench-marking procedure. Different

classifiers were also employed to verify the performance of the proposed

method.

• Chapter 6: concludes the outcomes of the study, the contributions that reflect

the research objectives, the limitations and some recommendations that can be

implemented in the future.

1.9 Summary

This chapter discussed the overview of the research work in relation to the

domain area, problem background and statement, and the research questions that were

used as a guideline to construct the research objectives and scope. Finally, this chapter

gave an overall summary of the research by stating the research contributions with the

thesis structure.
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