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ABSTRACT 

Static cyphers use static transformations for encryption and decryption. 

Therefore, the attacker will have some knowledge that can be exploited to construct 

assaults since the transformations are static. The class of attacks which target a specific 

cypher design are called Non-Generic Attacks. Whereby, dynamic cyphers can be 

utilised to mitigate non-generic attacks. Dynamic cyphers aim at mitigating non-

generic attacks by changing how the cyphers work according to the value of the 

encryption key. However, existing dynamic cyphers either degrade the performance or 

decrease the cypher’s actual security. Hence, this thesis introduces a Multi-Shape 

Symmetric Encryption Mechanism (MSSEM) which is capable of mitigating non-

generic attacks by eliminating the opponents’ leverage of accessing the exact operation 

details. The base cyphers that have been applied in the proposed MSSEM are the 

Advanced Encryption Standard (AES) competition finalists, namely Rijndael, Serpent, 

MARS, Twofish, and RC6. These cyphers satisfy three essential criteria, such as 

security, performance, and expert input. Moreover, the modes of operation used by the 

MSSEM are the secure modes suggested by the National Institute of Standards and 

Technology, namely, Cipher Block Chaining (CBC), Cipher Feedback Mode (CFB), 

Output Feedback Mode (OFB), and Counter (CTR). For the proposed MSSEM 

implementation, the sender initially generates a random key using a pseudorandom 

number generator such as Blum Blum Shub (BBS) or a Linear Congruential Generator 

(LCG). Subsequently, the sender securely shares the key with the legitimate receiver. 

Besides that, the proposed MSSEM has an entity called the operation table that includes 

sixty different cypher suites. Each cypher suite has a specific cypher and mode of 

operation. During the run-time, one cypher suite is randomly selected from the 

operation table, and a new key is extracted from the master key with the assistance of 

SHA-256. The suite, as well as the new key, is allowed to encrypt one message. While 

each of the messages produces a new key and cypher suite. Thus, no one except 

communicating parties can access the encryption keys or the cypher suites. 

Furthermore, the security of MSSEM has been evaluated and mathematically proven 

to resist known and unknown attacks. As a result, the proposed MSSEM successfully 

mitigates unknown non-generic attacks by a factor of 2−6. In addition, the proposed 

MSSEM performance is better than MODEM since MODEM generates 4650 

milliseconds to encrypt approximately 1000 bytes, whereas MSSEM needs only 0.14 

milliseconds. Finally, a banking system simulation has been tested with the proposed 

MSSEM in order to secure inbound and outbound system traffic. 
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ABSTRAK 

Sifer statik menggunakan transformasi statik untuk penyulitan dan 

penyahsulitan. Oleh itu, penyerang akan mempunyai beberapa pengetahuan yang boleh 

dieksploitasi untuk membina serangan kerana transformasi adalah statik. Kelas 

serangan yang menyasarkan reka bentuk sifer tertentu dipanggil Serangan Bukan 

Generik. Di mana, sifer dinamik boleh digunakan untuk mengurangkan serangan 

bukan generik. Sifer dinamik bertujuan untuk mengurangkan serangan bukan generik 

dengan menukar cara sifer berfungsi mengikut nilai kunci penyulitan. Walau 

bagaimanapun, sifer dinamik sedia ada sama ada merendahkan prestasi atau 

mengurangkan keselamatan sebenar sifer. Oleh itu, kajian ini memperkenalkan 

Mekanisme Penyulitan Simetri Pelbagai Bentuk (MSSEM) yang mampu 

mengurangkan serangan bukan generik dengan menghapuskan pengaruh pihak lawan 

untuk mengakses butiran operasi yang tepat. Sifer asas yang telah diaplikasikan dalam 

MSSEM yang dicadangkan ialah finalis pertandingan Advanced Encryption Standard 

(AES) iaitu Rijndael, Serpent, MARS, Twofish, dan RC6. Sifer ini memenuhi tiga 

kriteria penting, iaitu keselamatan, prestasi dan input pakar. Selain itu, mod operasi 

yang digunakan oleh MSSEM adalah mod selamat yang dicadangkan oleh Institut 

Piawaian dan Teknologi Kebangsaan, iaitu, Cipher Block Chaining (CBC), Cipher 

Feedback Mode (CFB), Output Feedback Mode (OFB), dan Counter (CTR). Bagi 

pelaksanaan MSSEM yang dicadangkan, pengirim pada awalnya menjana kunci rawak 

menggunakan penjana nombor rawak seperti Blum Blum Shub (BBS) atau Linear 

Congruential Generator (LCG). Selepas itu, pengirim dengan selamat berkongsi kunci 

dengan penerima yang sah. Selain itu, MSSEM yang dicadangkan mempunyai entiti 

yang dipanggil jadual operasi yang merangkumi enam puluh sut sifer yang berbeza. 

Setiap sut sifer mempunyai sifer dan mod operasi tertentu. Semasa masa jalanan 

dilaksanakan, satu sut sifer dipilih secara rawak daripada jadual operasi, dan kunci 

baharu diekstrak daripada kunci induk dengan bantuan SHA-256. Sut, serta kunci 

baharu dibenarkan untuk menyulitkan satu mesej. Manakala, setiap mesej 

menghasilkan sut kunci dan sifer baharu. Oleh itu, tiada sesiapa kecuali pihak yang 

berkomunikasi boleh mengakses kunci penyulitan atau sut sifer. Tambahan pula, 

keselamatan MSSEM telah dinilai dan terbukti secara matematik untuk menentang 

serangan yang diketahui dan tidak diketahui. Hasilnya, MSSEM yang dicadangkan 

berjaya mengurangkan serangan bukan generik yang tidak diketahui dengan faktor 

2−6. Di samping itu, prestasi MSSEM yang dicadangkan adalah lebih baik daripada 

MODEM kerana MODEM menjana 4650 milisaat untuk menyulitkan kira-kira 1000 

bait, manakala MSSEM hanya memerlukan 0.14 milisaat. Akhir sekali, simulasi 

sistem perbankan telah diuji dengan MSSEM yang dicadangkan untuk mendapatkan 

sistem trafik masuk dan keluar yang selamat.   
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Overview 

Information and Communication Technology (ICT) has significantly changed 

our lives in almost all respects. Many systems have been computerised to promote the 

quality of services and to increase convenience for customers, businesses owners, and 

employees. However, when providing a service electronically, adequate security 

should be in place, or it will jeopardise all involved parties. For instance, a press report 

had been published by the Federal Bureau of Investigation (FBI) stating that the total 

amount of losses inside the United States due to cybercrimes is estimated at 6.9 billion 

U.S. Dollars only in 2021 (FBI, 2022). 

To counter a wide range of cybercrimes, cryptographic techniques such as 

asymmetric encryption algorithms, symmetric encryption algorithms as well as 

hashing and MACing algorithms are usually used to maintain the Confidentiality, 

Integrity and Authenticity, Non-Repudiation, and Access Control of the data 

(Abomhara et al., 2011; Bhattarai and Wang, 2018; Park et al., 2021; Utakrit and 

Utakrit, 2021). 

The confidentiality security service is typically achieved using encryption 

algorithms. Encryption algorithms can be classified into symmetric and asymmetric 

algorithms. The symmetric encryption algorithm uses the same key for encrypting (i.e. 

encoding) and decrypting (i.e. decoding) the secret data (Abomhara et al., 2022). In 

symmetric encryption, there is a need to share the secret key between communicating 

parties securely. Sharing the secret key or key exchange is the main limitation of using 

symmetric encryption (Baldi et al., 2019; Carlson, 2019). 
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Asymmetric encryption algorithms overcome the key exchange problem by 

proposing two keys per user, a public key and a private key. The public key for any 

user (e.g. Alice) is typically accessible by any other user (e.g. Bob). However, the 

corresponding private key is only accessible to the key owner (i.e. Alice). If any data 

is encrypted using Alice’s public key, no one except the corresponding private key 

holder (i.e. Alice) can decrypt the data. 

Asymmetric encryption algorithms resolved the key exchange problem. 

Nevertheless, its performance is lower compared to symmetric algorithms. The cypher 

performance refers to the encryption and decryption speed (Gnatyuk et al., 2018; Yuan 

et al., 2018). Asymmetric cyphers' performance is generally low because they depend 

on time-consuming mathematical operations to carry the encryption and decryption. 

As an example, to retrieve the plaintext P from the cyphertext C using the RSA, the 

following equation is used: 

𝑃 =  𝐶𝑑  𝑚𝑜𝑑 𝑛 (1.1) 

  

where both d and n are large integers. Modular exponentiation is an inherently time-

consuming operation, which decreases the performance of the RSA, as well as many 

other asymmetric cyphers (Bajpai and Enbody, 2020; Fathy et al., 2018). In general, 

asymmetric cyphers can be 1000 times slower than symmetric cyphers (de Ree et al., 

2021; Haque et al., 2018; Thapar and Sarangal, 2018). 

Nonetheless, asymmetric encryption algorithms are widely used in applications 

such as email security, web security and other applications which require a key 

exchange. In general, symmetric and asymmetric encryption algorithms are integrated, 

where the message content (i.e. payload) is encrypted using a symmetric cypher, and 

the symmetric key used for encrypting the payload is shared after being encrypted 

using an asymmetric cypher (Alwazzeh et al., 2020; Devarakonda Krishna and 

Krishna; Schillinger and Schindelhauer, 2020). 

Encryption algorithms were previously considered a national security asset. No 

one except the sender and the legitimate receiver, in addition to a few other trusted 
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experts, has complete knowledge about how it works. This convention has been widely 

abandoned, and the current dominant trend in cryptology is to use standard encryption 

algorithms that use known transformations. This property was introduced by Auguste 

Kerckhoffs, who stated that the cryptosystem should remain secure even if it has fallen 

into the enemy’s hands (Ergün and Acar, 2020). Since then, this property has gained a 

significant consensus among cryptographers. Although Kerckhoffs did not state that 

the encryption algorithm must be disclosed, standardisation bodies like the National 

Institute for Standards and Technology (NIST) urge the use of standard (i.e. known) 

encryption algorithms. The intuitive justification is to maximise interoperability and 

to expose the algorithm for testing by experts from all over the world. Hence, 

interoperability is the ability to exchange information between two different systems 

(Khisro, 2020; Vandana and BJ, 2020). In other words, it means the ability to exchange 

encrypted messages between different systems. 

1.2 Problem Background 

Symmetric cyphers are in wide use (Nurgaliyev and Wang, 2021; Xu and Tian, 

2019). This is due to two main reasons. The first reason is that symmetric cyphers 

provide high performance compared to asymmetric cyphers. The second reason is that 

well-known symmetric cyphers are hard to break (i.e. secure) when the encryption key 

has a sufficiently large size (Abomhara et al., 2010). For these reasons, many systems 

and applications use symmetric cyphers to provide the confidentiality security service. 

This includes sensitive systems such as banking systems (Islam et al., 2021). For these 

reasons, this thesis focuses on symmetric encryption. 

Strong encryption is needed in almost all electronic transactions. Nonetheless, 

the confidentiality of the transactions related to financial applications has especial 

importance. This is because end users are generally sceptical of using the technology 

when the transaction involves some sort of payment unless they can fully trust it 

(Akinbowale et al., 2020; De Kimpe et al., 2020). Assuring the users that strong 

encryption is used will assist in gaining their confidence and trust (Akinyede and 

Esese, 2017). 
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According to Pupezescu et al. (2017), in banking systems, it is important to use 

well-known encryption algorithms to provide the confidentiality security service. This 

is because banking systems are extremely sensitive systems that cannot tolerate the 

use of new cyphers which have not been rigorously tested. Furthermore, financial 

institutions process large volumes of data daily. Therefore, there is a need to use a 

high-performance cypher to maximise resources utilisation (Ammari and Lu, 2017). 

In the last five decades, standard symmetric encryption algorithms such as the 

Data Encryption Standard (DES) and the Advanced Encryption Standard (AES) have 

been widely used to provide the confidentiality security service. Both the DES and the 

AES are static cyphers. This means they use the same known transformations to 

encrypt or decrypt a given message (Cardona, 2019; Jose and George, 2019). Since 

everyone knows the exact transformations used by the cypher to encrypt or decrypt 

any given message, they can be vulnerable to future attacks that target their fixed 

structure (Couturier et al., 2020; Noura et al., 2018; Noura et al., 2020a; Noura et al., 

2020b). 

Several attacks have been designed to penetrate the AES or a simplified version 

of the AES (Bar-On et al., 2020; Bardeh and Rønjom, 2019; Grassi et al., 2017; 

Kakarla et al., 2017; Zhao et al., 2017).  Although these attempts are still considered 

impractical, they have achieved a partial success. These attacks are discussed in further 

detail in section 2.8. It is worth mentioning that the common factor among all these 

attacks is that it is designed solely to target a specific static cypher design. The 

algorithm which has a static behaviour lends the potential attacker a starting point to 

design and launch attacks since the steps used for encryption are always the same 

(Couturier et al., 2020; Noura et al., 2020a; Noura et al., 2020b). The attacks which 

target a specific static cypher design are called “Non-Generic Attacks” (Sehrawat and 

Gill, 2018). 

There are several cyphers’ designs that aim at resisting non-generic attacks. 

Such cyphers are called dynamic cyphers (Tang et al., 2018). The common design 

philosophy of dynamic cyphers is to change the static nature of the cypher into a 

dynamic one. This means the encryption transformations used by the dynamic cypher 
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will change according to the encryption key value. In other words, the dynamic cypher 

has several variants, and the attacker will not be certain which variant is used for 

encrypting a given message. This technique makes the dynamic cypher capable of 

mitigating the efficacy of non-generic attacks. 

To use a dynamic cypher, it is essential to ensure that all the variants of the 

dynamic cypher are capable of resisting known attacks. This includes brute force, 

linear cryptanalysis, differential cryptanalysis, related key, timing, and side-channel 

attacks. Brute force is the simplest attack that aims at penetrating the cypher by trying 

all possible values of the encryption key. Linear Attacks work by tracking the parity 

of the bits between the input and the output. Linear attacks can be effective if the bias 

of a specific parity between the input and the output is significantly high. Differential 

Attacks work by passing pairs of chosen inputs to the cypher. The chosen inputs must 

have a constant difference. The differential attacks can be effective in a given cypher 

if there is a high probability that a constant input difference will lead to a constant 

output difference. Related-key attacks are a class of cryptanalysis in which the attacker 

can monitor the operation of the encryption algorithm under various keys whose values 

are unknown, but there is a mathematical relationship that connects these keys. 

Moreover, it is assumed that the mathematical relationship is known to the attacker. 

Side-channel attacks are a non-invasive form of attack that aims at revealing the secret 

key of a given cypher by analysing the leaked physical information (Gui et al., 2020). 

Timing attacks aim at deducing information about the plaintext or the key using the 

time elapsed for encryption or decryption (Liu et al., 2021b). Timing attacks are a 

common example of side-channel attacks. 

In addition, two other security requirements should be satisfied by all the 

variants of the dynamic cypher. These requirements are the output randomness and the 

cypher’s avalanche. The output randomness means that the cypher output is 

statistically indistinguishable from truly random data. This can be tested using the 

Statistical Test Suite (STS) suggested by the National Institute of Standards and 

Technology (NIST). The other requirement is the cypher’s avalanche. This means a 

small change in the cypher input will lead to a large and unpredictable change in the 

cypher output. 
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Moreover, the cypher performance is a critical requirement too. In the context 

of this thesis, cypher performance refers to the encryption and decryption speed 

(Gnatyuk et al., 2018; Yuan et al., 2018). Ideally, systems’ users should not experience 

any sluggishness in fulfilling their tasks when applying the encryption. Encryption 

algorithms with poor performance will be abandoned regardless of what good security 

they provide. 

There are several examples of dynamic cyphers in the literature. For instance, 

in the designs suggested by Bhavani et al. (2019), Chauhan and Sasamal (2019), and 

Rahaman et al. (2020), the SubBytes transformation in the AES has been manipulated. 

This means the S-Box entries values will depend on the encryption key value. 

It can be argued that there is no practical technique to investigate the avalanche 

criterion and the output randomness for all AES variants with key-dependent S-Boxes. 

Moreover, a related-key attack that has a complexity of 296 has been devised on the 

AES key scheduler using 235 related keys (Biryukov et al., 2009). Furthermore, no 

special arrangements have been used to immune the cypher against zero-day attacks, 

timing attacks and other side-channel attacks. Another concern is that the technique 

used to manipulate the S-Box may introduce significant performance degradation. For 

instance, in (Malik et al., 2020), it has been suggested to use chaotic maps to dynamise 

the S-Box. Nevertheless, chaotic maps are known for increasing the time complexity 

(Akhavan et al., 2017). 

Another dynamic encryption approach is based on DES and matrices 

multiplication. In this model, the plaintext 𝑥 is initially multiplied in a binary invertible 

matrix 𝑘𝑎. Consequently, the DES cypher is invoked to encrypt the output of the latter 

phase. The outcome of the DES encryption is multiplied in another binary invertible 

matrix 𝑘𝑐. The details of generating 𝑘𝑎, 𝑘𝑐, as well as the routine used to update 𝑘𝑐, 

are thoroughly elaborated in (Tang et al., 2018). 

An essential step suggested in the aforementioned study is to update the matrix 

𝑘𝑐 before sending new messages. Consequently, even if the same message has been 

sent twice using this model, the outcome will be different, even without the help of the 
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block cypher mode of operation. This change makes the cypher a dynamic cypher. The 

process of updating 𝑘𝑐 is called a partial key update. This is because the 64 bits DES 

key, 𝑘𝑎, and 𝑘𝑐 are together used as a key for this new cypher. 

The capability of the cypher to resist linear and differential attacks has not been 

discussed. Furthermore, there is no discussion on the avalanche criterion or the output 

randomness. Moreover, no special arrangements have been used to immune the cypher 

against related-key attacks, zero-day attacks, timing attacks and other side-channel 

attacks. In fact, the authors of this approach stated that the security of this mechanism 

needs more investigation which has been left as future work. Moreover, as per the 

statement of the designers, the performance of this model can be compared to the 

performance of the 3-DES. However, 3-DES was known to be a sluggish cypher (Yang 

et al., 2019). 

Another example of a dynamic encryption algorithm has been introduced in 

(Noura et al., 2019b). In this algorithm, it is assumed that the communicating parties 

have exchanged a secret Session Key (SK) a priori to establishing their 

communication. Using SK, an XOR operation is carried out with 512 bits nonce. The 

resulting 512 bits are hashed using SHA-512. The result is 512 bits. These bits will 

change with every new nonce. Hence, it will be called the Dynamic Key (DK). DK is 

divided into five sub-keys: {𝑘𝑆1, 𝑘𝑆2, 𝑘𝑃, 𝑘𝑅𝐾 , 𝑘𝑆𝑅𝐾}. 𝑘𝑆1 and 𝑘𝑆2 are used to construct 

two different key-dependent substitution tables 𝑆1 and 𝑆2 using the key setup algorithm 

of the RC4 cypher. 𝑘𝑃 is used to construct a permutation table π. 𝑘𝑅𝐾 will seed a stream 

cypher to generate a random sequence of bits. These randomly generated bits are 

divided into m blocks, where m represents the number of blocks of the plaintext. Every 

block of these m blocks will be used as a sub-key to be XORed with one block in the 

plaintext. The 𝑘𝑆𝑅𝐾 will be used to generate a selection table that specifies which sub-

key to be XORed with which plaintext block. All the cypher’s building blocks are key-

dependent. Hence, any change in any part of the key will lead to a major and 

unpredictable change in the output. 

The cypher processes two blocks at a time. The first block is XORed with a 

sub-key selected using the selection table. Consequently, the result undergoes a byte 
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substitution process using 𝑆1. The outcome of this substitution is XORed with the 

second plain block, and the result undergoes a byte substitution process using 𝑆2. The 

result is the cyphered version of the first block. The second plain block undergoes a 

slightly different process (Noura et al., 2019b). 

The length of the Secret Key (SK) has not been specified. Unless the SK was 

lengthy enough, the cypher might be vulnerable to a brute-force attack. Moreover, the 

authors claimed that the cypher is capable of resisting linear and differential attacks. 

However, the conventional approach to assure the cypher’s resistance against these 

attacks is to employ many rounds to decrease the prop-ratio and the correlation. Given 

that this cypher has only one round, there is no compelling argument that it can resist 

linear and differential attacks. 

In terms of ciphertext randomness, the output randomness should be evaluated 

using the Statistical Test Suite (STS). The STS has not been used to evaluate the output 

randomness of this cypher. In addition, no special arrangements have been used to 

immune the cypher against related-key attacks, zero-day attacks, timing attacks and 

other side-channel attacks. 

In terms of performance, the authors analysed the performance of the cypher, 

and compare it to the AES. The experiment has been carried out in different models of 

Raspberry Pi.  The experiments concluded that the introduced cypher performance is 

about two times better than the AES-CBC and AES-CTR. It is worth mentioning that, 

these experiments have been purposefully carried on environments that have 

constrained resources (i.e. Raspberry PI0 and Raspberry PI3). The experimentation 

platform choice is rationale since the introduced cypher targets such constrained 

environments. However, normal computers are widely used.  Therefore, it is important 

to evaluate the performance of the suggested cypher against the AES and other cyphers 

over normal computers. Otherwise, the comparison will not have adequate 

significance. 

Moreover, Shoukat (2016) suggested a dynamic encryption mechanism. In this 

mechanism, rather than processing blocks of fixed size, a Dynamic Data Blocking 
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Mechanism (DDBM) is used to generate dynamic sized data blocks. In addition, a 

Randomised Substitution Mechanism (RSM) is employed to modify the keys and the 

blocks of the plaintext unpredictably. Consequently, a Multi Operation Data 

Encryption Mechanism (MODEM) is used.  The MODEM operates by dynamically 

picking a group of encryption transformations among several other groups. Each group 

includes a set of operations such as XOR, permutations, random substitution, shifting, 

and logical operations. The process of selecting which group to be used is key-

dependent, which qualifies this cypher to be considered a dynamic cypher. 

MODEM has several issues. For instance, the author tried to prove the 

resistance of MODEM against chosen plaintext and cyphertext attacks, which implies 

the resistance of MODEM against linear and differential cryptanalysis. However, the 

proof depends on comparing the XOR result between parts of the plaintext and the 

parts of the cyphertext (ß𝐷 ⊕ Ć) or its complement ~(ß𝐷 ⊕ Ć)  to the corresponding 

parts of the encryption key 𝐾, and the corresponding parts of the session key ∆𝐾. This 

is not sufficient to prove the resistance of MODEM against linear and differential 

attacks. 

Moreover, no special arrangements have been used to immune the cypher 

against related-key attacks, zero-day attacks, timing attacks and other side-channel 

attacks. The key avalanche of MODEM is 41.57%, whereas the plaintext avalanche is 

just 2.14%. Both scores, especially the latter score, show a significant deviation from 

the value 50%. This indicates that MODEM has a poor avalanche. 

In addition, this mechanism has a significantly poor performance. For instance, 

to employ this cypher for processing approximately 1.6 Kilo Bytes in a PC with 

average specifications, it takes 21.21 seconds and 124.49 seconds for encryption and 

decryption, respectively. Hence, it can be concluded that this dynamic encryption 

mechanism is neither secure nor has an acceptable performance. 

From the above discussion, it can be concluded that there are several attempts 

to design dynamic cyphers that can counter or mitigate non-generic attacks. However, 

existing dynamic cyphers either have deficient performance or do not meet all the 



 

10 

security requirements including the avalanche criterion, output randomness, resistance 

against known attacks such as brute force, linear cryptanalysis, differential 

cryptanalysis, related-key, timing, and side-channel attacks. 

1.3 Problem Statement 

Symmetric encryption is widely used to provide the confidentiality security 

service. Nowadays, the most popular symmetric cypher is the AES. The AES and 

many other symmetric cyphers have a static structure. Although using a static cypher 

can be practical, it can render the cypher vulnerable to future potential attacks which 

would target its static nature to recover the secret key (Couturier et al., 2020; Noura et 

al., 2020a; Noura et al., 2020b). Most of the existing cryptanalysis techniques aim at 

exploiting the known and static transformations used by the targeted cypher. Such 

attacks are called non-generic attacks (Sehrawat and Gill, 2018). 

There are several non-generic attacks that have been designed to penetrate the 

AES. These attacks includes Grassi’s Distinguisher (Grassi, 2018), which has been 

used to mount an attack on five rounds AES with the knowledge of 232 chosen 

plaintexts. It also includes the attack suggested in (Bar-On et al., 2020) which reduced 

the amount of needed chosen texts from 232 to 222 to attain the same results. In 

addition, In (Biryukov and Khovratovich, 2009) a related-key attack that has a 

complexity of 296 has also been devised on the AES key scheduler using 235 related 

keys. These are just a few examples. However, there are many other attempts to attack 

the AES such as (Bardeh and Rønjom, 2019; Kakarla et al., 2017; Zhao et al., 2017). 

The common aspect of these attacks is that they utilise the static nature of the 

AES. These attacks are still impractical or only effective on a simplified version of the 

AES. However, it can lead to more effective attacks in the future. 

To mitigate non-generic attacks, several dynamic cyphers have been suggested. 

In the context of this thesis, the term “attacks mitigation” means the measures used to 

counter or decrease the success possibilities of a given attack (Gui et al., 2020; 
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Meadows et al., 2020). Dynamic cyphers aim at mitigating non-generic attacks by 

changing how the cypher works according to the encryption key value. In other words, 

the dynamic cypher has different variants. Each variant uses different transformations 

to carry the encryption. The variant used for encrypting a given message is selected 

randomly according to the encryption key value. 

When using a dynamic cypher, it is not enough to rely on the unknowingness 

or the ambiguity of the encryption transformations (i.e. dynamism) to prove the cypher 

security. As clarified by Ergün and Acar (2020), to comply with Kerckhoffs’s 

principle, each variant of the dynamic cypher variants must be secure on its own. In 

other words, it is essential to ensure that all of the dynamic cypher variants are capable 

of providing the confidentiality security and resisting known attacks such as brute 

force, linear cryptanalysis, differential cryptanalysis, related key, timing, and side-

channel attacks. Similarly, the output for each variant of the dynamic cypher must be 

statically indistinguishable from random data. Moreover, each of the dynamic cypher 

variants must satisfy the avalanche criterion. 

In addition, sensitive systems such as the banking systems require the use of a 

well-known cypher (Pupezescu et al., 2017). This is because such sensitive systems 

cannot tolerate using an encryption algorithm that has not been extensively 

investigated. To meet this requirement, all the variants of a dynamic cypher must be 

well-known cyphers. 

On the other hand, the performance of the used cypher is an essential factor. 

Although it is possible to argue that the additional layer of dynamism or ambiguity 

will incur some delay, a cypher with a significant performance degradation is useless. 

In the context of this thesis, cypher performance refers to the time needed to carry out 

the encryption and decryption (Gnatyuk et al., 2018; Yuan et al., 2018). 

Existing dynamic cyphers do not meet the security and performance 

requirements. For instance, the algorithms suggested by Bhavani et al. (2019), 

Chauhan and Sasamal (2019), and Rahaman et al. (2020) have security concerns. This 

is because there is no practical technique to investigate the avalanche criterion and the 
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output randomness. Moreover, these algorithms are vulnerable to a related-key attack 

that has a complexity of 296 using 235 related keys (Biryukov et al., 2009). 

Furthermore, no arrangements have been used to immune these cyphers against zero-

day attacks, timing attacks and other side-channel attacks. Similarly, in the algorithm 

suggested in Noura et al. (2019b), the length of the Secret Key (SK) has not been 

specified which may render the cypher vulnerable to a brute-force attack unless the 

key length was sufficient. Moreover, the cypher has only one round. Therefore, there 

is no compelling argument that it can resist linear and differential attacks. In addition, 

the ciphertext randomness has not been evaluated using the Statistical Test Suite 

(STS). Furthermore, no special arrangements have been used to immune the cypher 

against related-key attacks, zero-day attacks, timing attacks and other side-channel 

attacks. 

Moreover, the dynamic encryption algorithms designed by Shoukat (2016) has 

numerous issues, including the cypher resistance against linear and differential 

cryptanalysis, related-key attack, zero-day attacks, timing attacks and other side-

channel attacks. Moreover, the key avalanche of MODEM is 41.57%, where the 

plaintext avalanche is just 2.14%. Both scores show a significant deviation from the 

value 50%. This indicates that MODEM has a poor avalanche. Moreover, MODEM 

has a significantly poor performance. For instance, to employ this cypher for 

processing approximately 1.6 Kilo Bytes it takes 21.21 seconds and 124.49 seconds 

for encryption and decryption, respectively.  

It can be concluded that there is a need to devise a dynamic cypher that has a 

good performance and meets all the security requirements including the avalanche 

criterion, output randomness, resistance against known attacks such as brute force, 

linear cryptanalysis, differential cryptanalysis, related key, timing, and side-channel 

attacks. This constitutes the primary research question as below: 

How to design a Multi-Shape Symmetric Encryption Mechanism 

(MSSEM) that is capable of mitigating non-generic attacks without 

compromising the actual security or significantly decreasing the 

performance? 
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In the context of this thesis, the phrase “multi-shape symmetric cypher” means 

a symmetric dynamic cypher that operates differently according to the encryption key 

value. In other words, the encryption transformations used to encrypt a given message 

depend on the encryption key value. The above primary question has led to the 

secondary research questions as given below: 

i) How to investigate the output randomness, avalanche criterion, resistance 

against known attacks, and the performance of the base cyphers that will be 

used in the Multi-Shape Symmetric Encryption Mechanism? 

ii) How can these base cyphers be integrated to form the Multi-Shape Symmetric 

Encryption Mechanism? 

iii) How are the performance and the security of the proposed MSSEM? 

1.4 Research Aim 

This research aims to propose a Multi-Shape Symmetric Encryption 

Mechanism (MSSEM) that operates dynamically to mitigate non-generic attacks. This 

means the exact steps used to encrypt a given message will be unknown to the potential 

opponents. The approach should have provable security. This means the actual security 

of this approach should not depend on the dynamism of the approach. Moreover, the 

proposed approach should not render a significant performance degradation. 

1.5 Research Objectives 

To achieve the aim of the study, the following three objectives have been 

determined: 
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1. To investigate the output randomness, avalanche criterion, resistance against 

known attacks, and the performance of the selected base cyphers that will be 

used in the Multi-Shape Symmetric Encryption Mechanism. 

2. To design a Multi-Shape Symmetric Encryption Mechanism (MSSEM) by 

integrating the selected base cyphers. 

3. To evaluate the security and the cypher performance of the proposed Multi-

Shape Symmetric Encryption Mechanism (MSSEM). 

1.6 Research Scope 

1. This research focuses on designing a Multi-Shape Symmetric Encryption 

Mechanism (MSSEM) that is capable of mitigating non-generic attacks. 

2. The criteria that will be used to evaluate the devised approach are security and 

cypher performance. Security includes resistance against brute-force attacks, 

linear and differential cryptanalysis, related-key attacks, timing attacks, side-

channel attacks, zero-day attacks, avalanche criterion, and output randomness. 

In the context of this thesis, the cypher performance means the time elapsed to 

carry the encryption and decryption (Gnatyuk et al., 2018; Yuan et al., 2018). 

3. In the design of the proposed mechanism, only known and secure cyphers, 

modes of operations, and hashing algorithms are used. This includes the 

cyphers: AES, Serpent, MARS, Twofish and RC6. The modes of operation: 

CBC, CFB, OFB and CTR. The Hashing algorithm SHA-265. These design 

choices are made to avoid using a new encryption algorithm, mode of operation 

or hashing algorithm that has not been adequately scrutinized by the 

cryptography community. 

4. The proposed mechanism requires that five cyphers (AES, Serpent, Twofish, 

MARS and RC6) and four modes of operation (CBC, CFB, OFB, and CTR) to 

be implemented. This will be feasible for general-purpose computers, and most 

other environments. However, it might be unfeasible for environments with 
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constrained memory and processing resources such as in embedded control 

systems (e.g. fitness trackers, domestic appliances, etc). 

 

1.7 Research Significance 

Nowadays, symmetric encryption algorithms form the security backbone for 

the majority of daily electronic services. Symmetric cyphers, which are currently in 

wide use, are static. This includes the DES, AES, 3DES and many other cyphers. 

According to Couturier et al. (2020), Noura et al. (2020b) and Noura et al. (2020a), 

such static cyphers might be vulnerable to future attacks that utilises their static nature. 

The attacks that target a specific cypher design are called non-generic attacks 

(Sehrawat and Gill, 2018). 

To mitigate non-generic attacks, the mechanism used to perform the encryption 

should become dynamic. Consequently, the cypher will perform different encryption 

transformations according to the key value. This will decrease the attackers’ 

capabilities of designing and launching effective attacks. 

Several dynamic cyphers’ designs have been suggested in the literature. 

However, existing dynamic cyphers have either poor performance as mentioned by 

Shoukat (2016) and Tang et al. (2018), or unprovable security as stated by Bhavani et 

al. (2019),  Chauhan and Sasamal (2019), Rahaman et al. (2020) and Noura et al. 

(2019b). Hence, the significance of this thesis relies on suggesting a mechanism that 

can mitigate non-generic attacks without compromising the actual security or incurring 

intolerable performance degradation. 

1.8 Research Contribution 

This study proposes a Multi-Shape Symmetric Encryption Mechanism 

(MSSEM) that operates dynamically to mitigate non-generic attacks. Since the 

proposed MSSEM selects the encryption transformations dynamically, the opponent 
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will not be able to predict them. The proposed MSSEM integrates five cyphers and 

four block cypher modes of operation. The cyphers are AES, Serpent, Twofish, RC6 

and MARS. These cyphers have been selected because they are secure, well-known 

and have good performance (Daemen and Rijmen, 2020). Moreover, the modes of 

operation used with this model are Cypher Block Chaining (CBC), Cypher Feedback 

(CFB), Output Feedback (OFB) and Counter (CTR). These are secure modes of 

operation recommended by the National Institute of Standards and Technology 

(NIST). 

In this study, a random encryption algorithm, mode of operation and key length 

are selected based on the encryption key value. No one, except communicating parties, 

will be able to identify the used encryption algorithm mode of operation or key length. 

This renders the proposed MSSEM capable of mitigating non-generic attacks since the 

attacker cannot identify the used encryption algorithm and mode of operation. On the 

other hand, since only secure encryption algorithms and modes of operation have been 

used, the actual security of the encrypted message is maintained. 

The contribution of the proposed MSSEM to security is its dynamism. In the 

context of this thesis, dynamism means the ability of the cypher to use different 

transformations (i.e. cryptographic suite) to encrypt a given message. The exact 

cryptographic suite used by the proposed MSSEM to encrypt a given message depends 

on the encryption key value. This dynamism enables the proposed MSSEM to mitigate 

the efficacy of non-generic attacks. This is because non-generic attacks target a fixed 

and known cypher structure. Since the proposed MSSEM work differently according 

to the encryption key value, the efficacy of a given non-generic attack will decrease 

accordingly. The proposed MSSEM has sixty different sets of encryption 

transformations. Moreover, assume a given non-generic attack has the success 

probability 𝑃𝑠 on one of the sixty possible encryption transformations. Since the 

attacker cannot be sure which of the sixty possible encryption transformations has been 

used, the success probability of the attack will decrease to 
𝑃𝑠

60
. 

The performance of the proposed MSSEM depends on the performance of its 

base cyphers. Needless to say, the proposed MSSEM carries some processing to select 
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the cryptographic suite in addition to the time needed for encrypting the payload. 

Consequently, the proposed MSSEM will be slower compared to its base cypher. 

However, to ensure that the overall performance of the MSSEM will not decrease 

significantly, two aspects have been considered. The first consideration is selecting 

only high-performance base cyphers in the design of the proposed MSSEM. The 

second consideration is to carefully consider the performance of the module 

responsible for providing the dynamism (e.g. the module responsible for cooking the 

cryptographic suite that will be used for encrypting a given message). By considering 

these two factors, the overall performance of the dynamic cypher will be good. 

In conclusion, the main contribution of this study is proposing a secure 

dynamic symmetric encryption approach that has a reasonable performance and is 

capable of mitigating non-generic attacks. 

1.9 Thesis Organisation 

This thesis consists of seven chapters. Chapter 1 presents the overview, 

problem background, research aim and objectives as well as the contribution of the 

study. Chapter 2 provides a general overview of cryptography and highlights the 

widely known cyphers. It also highlights non-generic attacks and discusses the 

parameters used for evaluating symmetric cyphers. This is followed by exploring the 

design of several dynamic cyphers and mechanisms suggested for mitigating non-

generic attacks. The research framework, the overall research plan, and the steps of 

testing, evaluation and validation methods are provided in Chapter 3. Subsequently, 

the experimental result, design details, analysis and discussions for the proposed study 

are demonstrated in Chapters 4, 5 and 6, respectively. In Chapter 7, the thesis 

summary, research contributions and future works are discussed accordingly. 
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