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ABSTRACT 

Nowadays, the trend of significant effort estimations is in demand. Due to 

its popularity, the stakeholder needs effective and efficient software development 

processes with the best estimation and accuracy to suit all data types. 

Nevertheless, finding the best effort estimation model with good accuracy is hard 

to serve this purpose. Group Method of Data Handling (GMDH) algorithms have 

been widely used for modelling and identifying complex systems and potentially 

applied in software effort estimation. However, there is limited study to determine 

the best architecture and optimal weight coefficients of the transfer function for 

the GMDH model. This study aimed to propose a hybrid multifunctional GMDH 

with Artificial Bee Colony (GMDH-ABC) based on a combination of four 

individual GMDH models, namely, GMDH-Polynomial, GMDH-Sigmoid, 

GMDH-Radial Basis Function, and GMDH-Tangent. The best GMDH 

architecture is determined based on L9 Taguchi orthogonal array. Five datasets 

(i.e., Cocomo, Dershanais, Albrecht, Kemerer and ISBSG) were used to validate 

the proposed models. The missing values in the dataset are imputed by the 

developed MissForest Multiple imputation method (MFMI). The Mean Absolute 

Percentage Error (MAPE) was used as performance measurement. The result 

showed that the GMDH-ABC model outperformed the individual GMDH by 

more than 50% improvement compared to standard conventional GMDH models 

and the benchmark ANN model in all datasets. The Cocomo dataset improved by 

49% compared to the conventional GMDH-LSM. Improvements of 71%, 63%, 

67%, and 82% in accuracy were obtained for the Dershanis dataset, Albrecht 

dataset, Kemerer dataset, and ISBSG dataset, respectively, as compared with the 

conventional GMDH-LSM. The results indicated that the proposed GMDH-ABC 

model has the ability to achieve higher accuracy in software effort estimation. 

 

 

 

  



 

vii 

ABSTRAK 

Pada masa kini, trend anggaran usaha yang ketara mendapat permintaan 

yang tinggi. Disebabkan popularitinya, pihak berkepentingan memerlukan proses 

pembangunan perisian yang berkesan dan cekap dengan anggaran dan ketepatan 

yang baik untuk disesuaikan dengan semua jenis data. Namun begitu, mencari 

model anggaran usaha terbaik dengan ketepatan yang baik adalah sukar untuk 

memenuhi tujuan ini. Algoritma Kumpulan Kaedah Pengendalian Data (GMDH) 

telah digunakan secara meluas untuk pemodelan dan mengenal pasti sistem yang 

kompleks dan berpotensi untuk digunakan dalam anggaran usaha perisian. Walau 

bagaimanapun, terdapat kajian yang terhad untuk menentukan seni bina terbaik 

dan pekali berat yang optimum bagi fungsi pemindahan untuk model GMDH. 

Kajian ini bertujuan untuk mencadangkan hibrid pelbagai fungsi GMDH dengan 

teknik Koloni Lebah Buatan (GMDH-ABC) berdasarkan gabungan empat model 

GMDH individu iaitu, GMDH-Polynomial, GMDH-Sigmoid, GMDH-Radial 

Basis Function, dan GMDH-Tangent. Seni bina GMDH terbaik ditentukan 

berdasarkan tatasusunan ortogonal L9 Taguchi. Lima set data (iaitu, Cocomo, 

Dershanais, Albrecht, Kemerer dan ISBSG) telah digunakan untuk mengesahkan 

model yang dicadangkan. Nilai yang hilang dalam set data digantikan dengan 

kaedah imputasi Berbilang MissForest (MFMI) yang dibangunkan. Ralat 

Peratusan Mutlak Minimum (MAPE) digunakan sebagai ukuran prestasi. Hasil 

kajian menunjukkan bahawa model GMDH-ABC mengatasi prestasi GMDH 

individu dengan peningkatan lebih daripada 50% berbanding model konvensional 

piawai GMDH dan model penanda aras iaitu ANN dalam semua set data. Set data 

Cocomo bertambah baik sebanyak 49% berbanding konvensional GMDH-LSM. 

Peningkatan sebanyak 71%, 63%, 67%, dan 82% dalam ketepatan telah dicapai 

untuk dataset Dershanis, dataset Albrecht, dataset Kemerer, dan dataset ISBSG 

masing-masing berbanding konvensional GMDH-LSM. Keputusan menunjukkan  

bahawa model GMDH-ABC yang dicadangkan mempunyai keupayaan untuk 

mencapai ketepatan yang lebih tinggi dalam anggaran usaha perisian. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Overview 

The software development process is growing increasingly complex these 

days. Software project development is one of the processes in the planning of 

software project management. Each activity under software project development 

should be updated on a frequent basis, depending on the size of the organisation and 

the work at hand. As a result, more sophisticated ways are required to handle several 

difficult challenges in this domain. Software effort estimation is one of the courses 

under software project development. It must be monitored by the manager in order to 

develop high-quality software at a reasonable cost within the time and budget 

constraints (Garbajosa, 2008; Ali and Gravino, 2021; Bakici et al., 2021; For, 2021). 

The accuracy of software effort estimation is one of the important targets to propose 

any model development.   

The complexities of estimations in the early stage of the software 

development process have raised concern for most developers. The uncertainty and 

unbalanced data cause a software effort estimation to be a challenging task especially 

in term of accuracy estimation. The challenge will increase as the size of the software 

project grows. Estimation accuracy errors can cost a lot of money in terms of project 

resources (Sinha and Gora, 2021). Hence, this study is proposed to investigate the 

use of several techniques to improve these challenging issues, focusing not only on 

the software effort engineering approach but also incorporating other methods such 

as imputing best techniques of missing data and the hybridization of the models, 

which can contribute to the enhancement of effort estimation accuracy because 

software development problems have many dimensions. 
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This chapter presents an introduction to the research work that will 

summarize all research content in this thesis. It describes research overview on 

researcher’s motivation on this study to the enhancement of the accuracy of software 

effort estimation using heuristic deep learning GMDH techniques. The first section 

explains the background of the problem, followed by the statement of the problem, 

research questions, research objectives and scope of this research. The last part 

presents the significance of this study and structure of this thesis. 

1.2 Background of the problem 

The primary goal of the software development industry is to produce high-

quality software at a reasonable cost under conditions. There is a lot of work to be 

done in the early stages of a software development project. Software effort 

estimation is one of the processes in a software development project, with the goal of 

producing high-quality accurate software that is delivered on time, on budget, and 

meets all the project's requirements. It is also known as an integral aspect of software 

engineering, with a focus on how to manage limited financial resources in a way that 

will enable the project to fulfil its goals in terms of time, cost, and size. Accurate 

software effort estimation is essential for successful planning, controlling, and 

completing software projects on time and within budget. The primary issues for 

upcoming software development are overestimation and underestimating, therefore 

there is a continuous need for accuracy in software effort estimation (SEE) model 

development. 

In the standard software engineering economic study, different methods for 

effort estimation have been evaluated and used either in algorithmic or non-

algorithmic approach.  To accomplish software estimating, the algorithmic method is 

created using certain typical numerical demonstrating. The Constructive Cost Model 

(COCOMO), Function Point Analysis (FPA) model, Putnam Model are some 

examples of famous algorithmic approaches that have been used (Sinha and Gora, 

2021). Another one is a non-algorithmic method in which the software project 

estimation uses an expert and previous software development experiences. In this 
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process, estimators must know about earlier completed projects similar to current 

projects (Iqbal et al., 2017; Dutta et al., 2019; Mahmood et al., 2022). 

Currently, due to advent of new technology, most researchers seem to be in 

competition with each other to provide a good method that can improve a 

conventional approach in software effort estimation process. In practice, the overall 

process of this effort estimation should be the focus in early steps, such as how the 

data should be prepared before it is analysed and how far the techniques used will 

enhance the features of the model used. The problem occurred when most of the 

researchers who require historical data simply assume or jump into an analytical 

process to develop an effort estimation model (Brown et al., 2018). However, 

considerably less research has been carried out on the pre-processing data in which to 

prepare a quality data before the data needs to be analysed (Somasundaram and 

Nedunchezhian, 2011; Alasadi and Bhaya, 2017). The quality of data is a significant 

concept that deals with various perspectives, of which the completeness is one of 

them. The question what data should be used seems not very important compared to 

which dataset is more reliable to be chosen. The researchers who study effort 

estimation should be warned about the problems caused by unbalanced datasets 

which can give bad impact on the model produced especially in term of accuracy 

model (Kitchenham, 1998; Dagliati et al., 2018; Zhang et al., 2018). Hence, to 

achieve such objective, the pre-processing imputation missing data techniques are an 

important consideration. 

According to studies, both formal and expert techniques have their own 

limitations, and there is still a need to enhance the optimal one (Menzies et al., 2015). 

The effectiveness of processes is determined by the context data, methodologies 

applied, and the issue domain to be solved (Molokken and Jorgensen, 2003; Song et 

al., 2008; Jørgensen et al., 2009; Padmaja and Haritha, 2018). Machine learning 

(ML) and optimization model have been one of the popular techniques applied in 

domain of software effort estimation. The development of machine learning 

techniques in software effort estimation has been dealt with by current researchers 

for the past few decades. For example Artificial Neural Network (ANN) in 

combination with optimization process was conducted by many researchers as it was 
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useful to increase the accuracy of model by conducting a repeated cycle of its 

training data (Anifowose et al., 2017; Kumar et al., 2020a; Saikia et al., 2020). 

However, there is concern in application of ANN due to its inappropriate variable 

input selection, as there are many parameters that are hard to be tuned, with the result 

that most of the implementations of ANN are done on trial-and-error basis (Zatarain 

Cabada et al., 2020). Otherwise, the Taguchi method has been employed with a great 

success in experimental designs for problems with dealing multiple parameters 

caused by trial-and-error basis. Integrated of Taguchi with finding the optimal 

parameter design should be considered.  

One sub-model of neural network is a Group Method of Data Handling 

(GMDH) algorithm which was first developed by Ivakhnenko (1971) for modelling 

and identification of complex systems. The GMDH model is known as a self-

organizing heuristic modelling approach which began to attract the attention of the 

researchers compared to ANN (Kumar et al., 2020b). It is very effective for solving 

modelling problems involving multiple input to single output data. Even though the 

GMDH model has been used in many domains of modelling, it has received little 

attention as an impact for software effort estimation (Ivakhnenko, 1971; Lee, 2015; 

Madala and Ivakhnenko, 2019; Malekzadeh et al., 2019). In this study is intended to 

explore the integrated of GMDH model with Taguchi in design of experimental 

process and no more trial-and-error basis used.  

Incorporating software effort estimation with a novel heuristic machine 

learning algorithm, on the other hand, is a popular research topic these days because 

it provides additional benefits such as the ability to enhance performance in feature 

selection and learn from previously collected data, which is primarily focused on 

predictive accuracy. Most of the researchers have implemented machine learning 

models to improve the significance of software effort estimation, but the accuracy of 

model has been questionable until now (Kumar and Srinivas, 2021). Thus, selecting 

the best features and model for software effort estimation is still an active domain 

among researchers (Erhan et al., 2020; Kumar and Venkatesan, 2020; Varshini and 

Kumari, 2020). Through the current investigations, improvement of software effort 

estimation is focused more on hyper-heuristics and multi-function methods to 



 

5 

represent the process of estimation model towards accurate model estimations. In 

order to alleviate the problem with basis GMDH model, numerous researchers have 

incorporated some of GMDH with other features models. According to Jirina (1994), 

as the complexity of the model increases, the degeneration of GMDH’s accuracy 

could be due to the polynomial transfer function which causes multilayerness error to 

occur in GMDH’s network. Meanwhile, Ivakhnenko also mentioned that the low 

accuracy in GMDH might be owing to the insufficient functional variety of the 

model (1985). Over the years, Kondo has applied several transfer functions in 

GMDH such as polynomial, logistic sigmoid and radial basis function (RBF) as seen 

in his works (Kondo et al., 1999; Kondo, 2002; Kondo and Ueno, 2009; Takao et al., 

2017, 2018). According to Kondo (2003), employing heterogenous transfer functions 

within a model gives better results than using homogenous transfer function and it 

can fit the complexity of the nonlinear system. 

In summary, the major goal in software effort estimation domain is to achieve 

accurate software effort estimations. The failure of the effort estimation is one of the 

reasons for researcher’s intent to explore more on conventional study. There are 

many discussions towards software effort estimation accuracy and currently most of 

the researchers provide optimal artificial Neural Network model to deal with 

estimation accuracy (Dutta et al., 2019; Kumar and Srinivas, 2021; Rao and Rao, 

2021; Sharma and Vijayvargiya, 2021). However, the weakness of current neural 

network existing research had problems in the selection of the best architecture  (Lin 

et al., 2011), does not perform well in some of the datasets (Dan, 2013), the blackbox 

nature of neural network approach (Ughi et al., 2021) and the accuracy of effort 

estimation still being questionable till now (Kumar and Srinivas, 2021; Mahmood et 

al., 2022). To overcome the limitations of ANN, most of the researchers have 

provide one of the subset models of ANN that provide robust techniques, known as 

Group Method Data Handling (GMDH). It is however still exist some limitations of 

GMDH that need to be overcome such as the unstable optimal and internal parameter 

inside GMDH algorithm (Taušer and Buryan, 2011) and the low accuracy with 

insufficient functional variety of the model (Ugrasen et al., 2014). This issues of 

GMDH have been highlighted among the researchers because it might affect the 

accuracy of the estimation model. In addition, the usage of multifunction GMDH has 

been quite popular among the researchers in finding the optimal GMDH model, 
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however there is lack of discussion toward the combinations of multifunction GMDH 

using optimization techniques.  In other hand, more study has shown the weakness 

and inaccurate provision of estimations of software project in which the 

inconsistency, model complexity, unbalanced datasets have affected the performance 

and accuracy of the estimations. Each problem and data have their unique 

characteristics which cannot be used directly for every model even though that model 

is well known and already established. It is getting worse for a estimation model if 

the data provided is not clean and might affect the complexity and accuracy of the 

model (Ivakhnenko et al., 2003). 

1.3 Statement of the problem 

The issues in software effort estimation are critical. The implementation of 

machine learning techniques in improving the effort estimation accuracy which focus 

on imputation of missing data are very important. The most important part of 

software effort estimation is finding the most accurate estimation accuracy which 

focuses on the process of development estimation model. The software project 

manager should decide which methodology is the best to avoid poor estimation.  

The recent developments in variable selection methods have addressed the 

problems from the point of view of improving the performance of predictor’s 

selection. It is noticed that the original data that was collected from online and 

certain datasets have some imperfect characteristics that need to undergo process of 

pre-processing treatment of missing data before proceeding to the next method 

procedure. Some recent studies have presented the awareness of the importance of 

treating missing data to improve effort estimation consistency (Twala et al., 2005; 

Lang and Little, 2018; Carpenter and Smuk, 2021). Hence, pre-processing data is one 

of the most important methods before doing the next step procedures where it will 

handle the imperfect characteristic data such as missing value of data. Like any 

certifiable dataset, deficient or missing information is unavoidable. Missing values 

result in less effective imputation, which will decrease the accuracy of estimate 

model. Thus, treatment of missing values attribution is compulsory. The 
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completeness and quality of data are more precise than those inferences data analysis 

made from incomplete data.  

There are several alternative ways of dealing with missing data. In some 

cases, deletion or elimination the missing variable is the default method for most 

procedures (Suguna and Thanushkodi, 2011; Rani and Solanki, 2021). However, 

handling missing data has received little attention in software engineering research 

and poor performance of estimation was expected as these techniques drastically 

reduce the sample size by eliminating a large amount of important sample set of data. 

There should be an empirical investigation of the robustness and accuracy of 

handling missing data. Most current techniques also used single imputations rather 

than multiple imputation. Single imputations, including both classical and modern 

methods, is generally simple with the purpose only to treat missing data; however, in 

multiple imputations, several sets of processes provided in between imputations 

make it more advantageous than single imputations (Gómez-Carracedo et al., 2014; 

Rani and Solanki, 2021). 

Furthermore, the implementation of the best estimation model in dataset of 

software development needs an adjustment with the help of heuristic machine 

learning techniques to enhance the accuracy of the best model (Amazal and Idri, 

2021; Kumar and Srinivas, 2021; Mahmood et al., 2022). Machine learning (ML) is 

a method that learns from the pattern of historical data and mostly helps in estimation 

process. The job is always integrated with artificial intelligence such as pattern 

recognition, planning, prediction, etc. and it is used when human expertise is limited. 

In effort estimation, the human expertise is unable to achieve the maintainability, 

which is why it is useful to incorporate with artificial expertise to develop effective 

estimation model.  

There are many implementations and improvements of effort estimation 

model using machine learning techniques to overcome some limitations of their 

estimation accuracy which is applicable for standard software development. 

Artificial Neural Network (ANN) is one of the regular techniques used in software 

effort estimation in machine learning approach (Saeed et al., 2018). There are many 
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hybrid implementations to overcome of specific limitations of ANN. One of the quite 

active discussions among practitioners of ANN is their trial and error setting of 

parameter features in terms of number of inputs, neurons, and layers (Dan, 2013; 

Tailor et al., 2014). Most practitioners will just use previous suggestions to start a 

feature setting, without looking at other potentially better approaches. Furthermore, 

GMDH is quite famous model that is comparable to ANN(Ugrasen et al., 2014; 

Ebtehaj et al., 2015; Yahya et al., 2019). Same as ANN, one of the main issues in 

GMDH model is the setting of parameter, such as neuron and layers. The initial 

guessing trial-and-basis of the number of neurons in a layer are irrelevant, that’s the 

reason one of the experimental analysis Taguchi, has been applied. The Taguchi will 

help the initial parameter design of GMDH and avoid repeating experiments. In 

addition, the GMDH has the strength of getting a better modelling capability by 

combining with other optimization soft computing techniques. However, additional 

modification will be made on GMDH model by implementation of various transfer 

functions to increase GMDH model estimation performance itself. The variety of 

function used in GMDH will enhance the accuracy GMDH model. Improving the 

parameter coefficient of GMDH itself and choice of transfer function has attracted 

attention for improvement of GMDH performance and their performance has been 

discussed in effort estimation domains. Previously, estimate the unknown 

coefficients in every layer of GMDH recurrently employed using least square methos 

(LSM). It is however, researchers found that the regression model increase the 

multicollinearity, resulting in unstable production of coefficient (Tauser,2011). 

Hence, the metaheuristic techniques such as Artificial Bee Colony (ABC) algorithm 

need to be hybrid with GMDH to improve the accuracy of software effort estimation. 

In addition, an estimation model is no longer acceptable for only using old 

datasets and without looking at the improvement techniques used. The issue starts 

when there is a lack of support decision for a software project manager during effort 

estimation in term of accuracy estimation. When dealing with incompleteness of 

data, the limitations of GMDH as predictive model and decision of multiple best 

models, it is hard for project manager to decide which is the best model to propose. 

In existing research, most of the estimation model is develop without consider pre-

processing missing data. The setting of parameter algorithm in traditional GMDH 

also doesn’t have consistent techniques and most of it only consider individual effort 
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estimation model. The problems of these issues will impact to quality of data 

preparation and the conventional setting model not in optimal parameter. In addition, 

when dealing with inconsistency of different setting and model, how to choose the 

best among the models.     

Therefore, the incorporation of these types of analysis should employ latest 

improvement of the algorithm, weight or neuron which result in minimum error 

between predicted and actual output. The enhancement of software effort estimation 

using heuristic hybrid GMDH model with an optimization technique, and the setting 

parameter of its early phases, will be carried out after imputation of missing data.  

Figure 1.1 shows the summary of problem statement and knowledge gap as 

the purpose of study.  Based on evaluation measures, datasets, and other relevant 

factors, academics and practitioners are attempting to determine which estimation 

technique produces more accurate results (Grimstad, 2005; Jørgensen and Grimstad, 

2011; Bukhari and Malik, 2012; Mahmood et al., 2022). In this research, there are 

three main issues that will be highlighted causes the lack of support decision for a 

software project manager during effort estimation planning in terms of accuracy, 

which is completeness of data preparation analysis, limitations of GMDH as 

predictive model, and how to decide when dealing with multiple best models. The 

current estimation model uses single approach, which causes problems in terms of 

unavailability to support estimation model, and inability to make suitable decisions.  

As explained before, the issues in software effort estimation are critical. The 

implementation of machine learning techniques in improving the effort estimation 

accuracy which focus on imputation of missing data are very important. The three 

main consideration in this study, which is data quality preparation in terms of 

completeness of missing data, limitations of GMDH model, and dealing with 

multifunction of model, are the issues that hinder the achievement of developing 

accurate software effort estimation to support decision making of software project 

manager. 
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Figure 1.1 Problem Statement and Knowledge’s Gap 

1.4 Research Questions  

Many techniques have been used to improve the estimation accuracy of 

heuristic models. However, most experts and formal methods have given less 

consideration to the problems in early preparation of the dataset studies and 

improvement of techniques incorporated in the model. The question should not only 

investigate the process of effort estimation model but will focus on the enhancement 

of machine learning algorithm, which is GMDH model that supports the reliability of 

model accuracy.  

Our main research question is how to enhance the accuracy of GMDH model 

in estimate software effort.  Based on the main research problem, three specific 

research questions have been formulated as:   

1) How to impute missing data in software effort estimation while confronting 

various mechanism of missingness?  

2) How to determine the optimal parameters setting for GMDH?  

3) How can hybrid multifunction GMDH with metaheuristic technique improve 

software effort estimation accuracy? 
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1.5 Research Objective  

The objective of this research has been formulated based on the research 

questions, which are listed as follows:  

1) To propose missing data imputation model based on MissForest Multiple 

Imputation approach in order to improve the quality of dataset for software 

effort estimation. 

2) To design GMDH architecture based on Taguchi method to obtain the 

optimal parameter setting of GMDH. 

3) To propose Hybrid GMDH-ABC model based on weighted-based 

combination optimization to enhance accuracy software effort estimation. 

1.6 Scope of research 

1. This study focuses more on issues of enhancement of accuracy in software 

effort estimation using enhancement GMDH techniques. 

2. The target is to analyse all the factors that influence the accuracy of 

estimation model including the quality of data preparation, design of 

experiments in estimation model and modified algorithm of GMDH used. 

3. The performance of the proposed model will be tested on several completed 

data software project datasets taken from online resources and International 

Software Benchmarking Standard Group (ISBSG), which consist of largest 

multi-organization software engineering repository data for academic 

research purposes and considering another hybrid techniques (PABE, ABE) 

and ANN as benchmark of standard software effort estimation techniques. 

4. The software used in this research are:- 

Matlab : analyse the performance of GMDH and hybrid GMDH ABC 

Pyton : Imputation of missing data – Missforest Imputation 

SPSS : analyse the performance of Taguchi 
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1.7 Significances of research 

This study has universal importance in this early phase of its implementation. 

These ordinary significations are based on the literature and brainstorm thinking, and 

on knowing the real significances of the study, which will be required to accomplish 

the objective of the study. It will contribute to the research on effort estimation by 

developing an efficient model that allows software manager to determine the best 

effort model to estimate software project. It is also intended to help software 

practitioners to reduce costing. 

Financial of many organizations nowadays are being affected by investment 

in software and their effort estimation.  Due to lack of proper tool and method, doing 

software effort estimation in early stage has become difficult, tedious, time-

consuming and error prone. Software project managers need mechanisms to 

understand and resolve estimation task, which involves not only using their expert 

judgment but also a new mechanism approach. Providing practical and improvement 

of effort estimation models are the most complex activity stage. 

Therefore, software effort estimation is investable and most practitioners still 

receive new requirements while the software is continuously evolving and rapidly 

needed in most industries. Based on the explanation above, it is proven that 

estimation accuracy is the primary objective of each software engineering 

community. The researcher may significantly reduce the effort estimation depending 

purely upon the amount of reliable information available about the software that 

needs to be developed. An important research area in software effort estimation is the 

further exploration of heuristic machine learning techniques to provide the best 

estimation model. It can help software project manager manage the performance in 

planning the software effort estimation task, especially for Malaysia organizations. 
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1.8 Thesis Organization 

This report builds on some research studies that have previously been 

reported in conference papers, journal paper, and a book chapter. This section 

provides a brief description that has been converted into chapters. 

Chapter 1 illustrates an introduction and brief overview of researchers 

including the background of research, formulation problems, objectives, scopes, the 

significance of the study, and report organizations.  

Chapter 2 it discusses literature reviews that discuss the related theories to 

be used as the foundation for this study. Here, the summaries of previous techniques 

in domain software effort estimation, GMDH approach and pre-processing 

techniques will be explored.  

Chapter 3 will cover the methodology and operational framework of studies 

to achieve the objectives of this research. Since three objectives have been 

formulated, four phases of methodology will be explained in detail here. Design and 

Development Research (DDR) approach was used in this study to produce an 

heuristic model in software effort estimation.  

Chapter 4 discusses the phase of pre-processing data analysis. The choice of 

data, mechanism, and imputations of missing data will be explained here. Also, the 

data division and early Taguchi GMDH setting will be detailed here. 

Chapter 5 will briefly discuss the second phase, which is development of 

four individual function GMDH models in software effort estimation. The Taguchi 

are used to start the experiment design in each development model.  

Chapter 6 will then briefly discuss the findings of the incorporation of ABC 

techniques to replace the conventional Least square method in estimate coefficient 

inside GMDH. Also will discuss a hybrid Multifunction GMDH-ABC. 
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Chapter 7 will discuss all the conclusions of the findings and suggest 

research directions for future researchers. 
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