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ABSTRACT 

The evolution of information and communication technologies have 

encourage numerous organizations to outsource their business and data to cloud 

computing to perform data mining and other data processing operations. Despite the 

great benefits of the cloud, it has a real problem in the security and privacy of data. 

Many studies explained that attackers often reveal the information from third-party 

services or third-party clouds. When a data owners outsource their data to the cloud, 

especially the SaaS cloud model, it is difficult to preserve the confidentiality and 

integrity of the data. Privacy-Preserving Data Mining (PPDM) aims to accomplish 

data mining operations while protecting the owner's data from violation. The current 

models of PPDM have some limitations. That is, they suffer from data disclosure 

caused by identity and attributes disclosure where some private information is 

revealed which causes the success of different types of attacks. Besides, existing 

solutions have poor data utility and high computational performance overhead. 

Therefore, this research aims to design and develop Hybrid Anonymization 

Cryptography PPDM (HAC-PPDM) model to improve the privacy-preserving level 

by reducing data disclosure before outsourcing data for mining over the cloud while 

maintaining data utility. The proposed HAC-PPDM model is further aimed reducing 

the computational performance overhead to improve efficiency. The Quasi-

Identifiers Recognition algorithm (QIR) is defined and designed depending on 

attributes classification and Quasi-Identifiers dimension determine to overcome the 

identity disclosure caused by Quasi-Identifiers linking to reduce privacy leakage. An 

Enhanced Homomorphic Scheme is designed based on hybridizing Cloud-RSA 

encryption scheme, Extended Euclidean algorithm (EE), Fast 

Modular Exponentiation algorithm (FME), and Chinese Remainder Theorem (CRT) 

to minimize the computational time complexity while reducing the attribute 

disclosure. The proposed QIR, Enhanced Homomorphic Scheme and k-anonymity 

privacy model have been hybridized to obtain optimal data privacy-preservation 

before outsourced it on the cloud while maintaining the utility of data that meets the 

needs of mining with good efficiency. Real-world datasets have been used to 

evaluate the proposed algorithms and model. The experimental results show that the 

proposed QIR algorithm improved the data privacy-preserving percentage by 23% 

while maintaining the same or slightly better data utility. Meanwhile, the proposed 

Enhanced Homomorphic Scheme is more efficient comparing to the related works in 

terms of time complexity as represented by Big O notation. Moreover, it reduced the 

computational time of the encryption, decryption, and key generation time. Finally, 

the proposed HAC-PPDM model successfully reduced the data disclosures and 

improved the privacy-preserving level while preserved the data utility as it reduced 

the information loss. In short, it achieved improvement of privacy preserving and 

data mining (classification) accuracy by 7.59 % and 0.11 % respectively. 
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ABSTRAK 

Evolusi teknologi maklumat dan komunikasi telah mendorong banyak 

organisasi menggunakan sumber luar untuk perniagaan dan data mereka atas 

komputeran awan bagi melaksanakan perlombongan dan operasi pemprosesan data. 

Walaupun komputeran awan terdapat banyak kelebihan, ia mempunyai masalah dari 

segi keselamatan dan privasi data. Banyak kajian menjelaskan bahawa penyerang 

sering mendedahkan maklumat dari perkhidmatan atau komputeran awan pihak 

ketiga. Apabila pemilik data menyimpan data mereka atas awan, terutama model 

awan SaaS, sukar untuk menjaga kerahsiaan dan integriti data. Pelombongan Data 

Pemelihara Privasi (PPDM) bertujuan untuk menyelesaikan operasi perlombongan 

data sambil melindungi data pemilik dari pencerobohan. Model PPDM terdahulu 

mempunyai beberapa kelemahan. Antaranya pendedahan sebahagian maklumat 

peribadi yang mengundang kejayaan pelbagai jenis serangan. Selain itu, mempunyai 

utiliti data yang teruk dan masalah prestasi pengiraan yang tinggi. Oleh yang 

demikian, penyelidikan ini bertujuan untuk merekabentuk dan membangunkan model 

Hibrid Anonimisasi Kriptografi PPDM (HAC-PPDM) untuk meminimumkan 

kelemahan tersebut dari segi meningkatkan tahap pemeliharaan privasi sebelum 

penyumberan luar data untuk penambangan melalui awan sambil mengekalkan utiliti 

data. Model HAC-PPDM bertujuan untuk mengurangkan masalah prestasi pengiraan 

bagi meningkatkan kecekapan. Algoritma Quasi-Identifiers Recognition (QIR) 

ditakrifkan dan direka bentuk bergantung pada klasifikasi atribut dan dimensi Quasi-

Identifiers menentukan untuk mengatasi pendedahan identiti yang disebabkan oleh 

Quasi-Identifiers memaut untuk mengurangkan kebocoran privasi. Skim 

Homomorfik Dipertingkat direka bentuk berdasarkan penghibridan skim penyulitan 

Cloud-RSA, algoritma Euclidean Lanjutan (EE), algoritma Eksponensiasi Modular 

Pantas (FME) dan Teorem Baki Cina (CRT) untuk meminimumkan kerumitan masa 

pengiraan sambil mengurangkan pendedahan atribut. QIR yang dicadangkan, Skim 

Homomorphic Dipertingkat dan model privasi k-tanpa nama telah dihibridkan untuk 

mendapatkan pemeliharaan privasi data yang optimum sebelum menyumber luarnya 

pada awan sambil mengekalkan utiliti data yang memenuhi keperluan perlombongan 

dengan kecekapan yang baik. Set data dunia nyata telah digunakan untuk menilai 

algoritma dan model yang dicadangkan. Hasil eksperimen menunjukkan bahawa 

algoritma QIR yang dicadangkan menaikkan peratusan pemeliharaan privasi data 

sebanyak 23% sambil mengekalkan utiliti data yang sama atau sedikit lebih baik. 

Sementara itu, Skema Homomorfik yang disempurnakan adalah lebih cekap 

berbanding penyelidikan terdahulu dari segi kompleksiti masa yang diwakilkan 

dengan notasi Big O. Tambahan pula, ia mengurangkan masa pengiraan bagi 

penyulitan, penyahsulitan dan masa penjanaan kekunci. Akhir sekali, pengurangan 

masa pengiraan untuk masa keseluruhan , lebih-lebih lagi, model HAC-PPDM yang 

dicadangkan berjaya mengurangkan pendedahan data dan meningkatkan tahap 

pemeliharaan privasi sambil mengekalkan utiliti data kerana ia dapat mengurangkan 

kehilangan maklumat. Secara ringkas, ia mencapai peningkatan dari segi 

pemeliharaan privasi dan ketepatan pelombongan data (klasifikasi) masing-masing 

sebanyak 7.59 % dan 0.11 %. 

. 
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CHAPTER 1  

 

 

 

INTRODUCTION 

1.1 Overview 

In the last few years, many fields of knowledge have turned to cloud 

computing, to perform data mining and other operations. Outsourcing data to 

perform mining operations is very useful for data owners who do not have adequate 

computing resources, or do not have sufficient experience to apply data mining 

techniques (Wang et al., 2018). In general, data mining is the process of discovering 

interesting patterns and knowledge within large amount of data stored in databases, 

data warehouses or other information repositories. Patterns and knowledge learned 

from data mining, is useful, especially in the business for prediction or decision-

making process. 

In recent times, cloud computing has become a dominant technology in most 

fields of studies. According to a latest cloud report, 94% of major companies use at 

least one cloud service (Flexera, 2021). Moreover, the cloud plays a big role in 

improving and developing smart cities. Cloud computing has revolutionized 

companies and organizations regarding their data-processing mechanism, especially 

in methods of data storage, access, and processing, including data mining and 

analysis (Samanthula et al., 2015). Extra advancements in cloud computing support 

scalable information technology services, which are characterized by customized 

price model. Multi-tenant feature of cloud computing environment act as attractive 

portal for academicians, as it is a convenient way for a user to share data and 

collaborate with other users.  Despite various advantages of cloud computing it faced 

real problems of security and privacy of data (Alenizi et al., 2021; Dagher et al., 

2019). 
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Data owners get worried to outsource their business over cloud network, 

despite its great benefits. Concerns related to privacy in cloud computing emerged 

from diverse factors, for example, loss of control, multi-tenancy, wide distribution, 

and lack of trust. When owner’s data is released into cloud network, the owner might 

lose the control to manage these data. In addition, services providers who analyse the 

data can misuse these data, or can disclosure to beneficiaries, due to financial 

motives. This creates a major challenge facing data privacy. Modern direction of data 

analysis has been based, mainly on statistical analysis of data. Data mining relates 

significantly to members of this class (Aldeen et al., 2016; Zigomitros et al., 2020).  

Privacy preservation of data mining is a significant issue over the cloud. 

Therefore, accomplishing data mining objectives without sacrificing individual’s 

privacy, is not only important, but is compulsory to the success of data mining. The 

privacy preserving data mining (PPDM) approaches aim to extract useful knowledge 

from huge data volumes, simultaneously preserving privacy and utility of the data. 

Hence, maintaining data privacy in the cloud has become one of the most important 

issues in recent years (Wang et al., 2018). 

PPDM aims to protect the privacy of individual data or sensitive knowledge, 

without losing the utility of the data. The basic idea of PPDM is to modify the data in 

such a way as to perform data mining algorithms effectively, without compromising 

the confidentiality of sensitive information contained in the data. Private and 

sensitive data of individuals must be protected and maintained before being 

outsourced to cloud. Privacy preservation is regarded as a major pre-requisite to 

perform data mining operations over cloud. Challenges facing privacy of sensitive 

information over cloud computing are fast growing. In various applications of cloud, 

the data sets frequently grow and/or alter over time; thus the requirement for 

effective techniques to preserve the privacy of data regularly (Aldeen et al., 2016; 

Puri et al., 2019).  

Outsourced data, frequently includes private and sensitive data about persons, 

usually outsourced through non-government agencies or/and government institutions. 

The private and sensitive information has to do, significantly, with resource for 
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medical research, further research, direction analysis, and public funds allocation for 

these non-government agencies or/and government institutions (Domingo-Ferrer et 

al., 2019). 

1.2 Problem Background 

Generally, there are three major issues which are required to be addressed in 

PPDM over cloud computing. First, the privacy of owner’s data, which is outsourced 

to cloud for mining, should be protected from the leakage. Outsourced data may 

contain private and sensitive data; like business financial records or banking datasets, 

patients’ illnesses or symptoms in medical datasets, and similar ones (Zhang, et al., 

2018). There are many ways and opportunities to misuse sensitive data when 

exposed to the public (Zhang et al., 2018), especially since the cloud still suffers 

from fundamental privacy issues (Alenizi et al., 2021). With regards to this, there are 

three causes that can lead to privacy leakage and violation: (Abdelhameed et al., 

2018; Fung et al., 2010)  

i. Attribute disclosure: ability to infer sensitive/private information of some 

individuals from released dataset. Main cause of attribute disclosure is values 

homogeneity in which the values of the sensitive attributes (SAs) in the one 

equivalence class are similar (Abdelhameed et al., 2018; Aldeen & Salleh, 

2019b).  

ii. Identity disclosure: ability to match pair of records in two separate tables with 

the assist of some attribute’s values (quasi-identifiers attributes), which can 

lead to identity conformity of an individual’s private information. From the 

key reasons of identity disclosure is linking of quasi-identifiers attributes 

(QIDs) that resulted from not identifying the significant QIDs accurately 

(Yan et al., 2018). 

iii. Membership disclosure: Ability to know whether a victim’s record exist in 

outsourced dataset or not.  
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Second issue in PPDM over cloud is utility of outsourced data. 

Accomplishing successful privacy preservation on outsourced data requires changing 

of data values by PPDM methods, which may negatively affect utility of the data. In 

PPDM it is so important to outsource dataset with great utility (Henriksen-Bulmer & 

Jeary, 2016; Sudhakar & Rao, 2020). Utility here refers to the data remaining 

truthful, accurate and not containing any big loss of information. If a poor utility 

dataset is outsourced, it makes it difficult to use the results of the data mining, 

because false-positive and false-negative results may be obtained (Lee et al., 2017). 

This issue is affected by the following parameters:  

i. Accuracy: This determines the proximity of the sanitized value to the primary 

value (Agrawal et al., 2008).  

ii. Completeness or data loss: This investigates the degree of the missed data 

within the sanitized database (Lee et al., 2017; Agrawal et al., 2008). 

iii. Truthfulness: means that every sanitized record corresponds to a single 

primary record (Lee et al., 2017).  

iv. Consistency: This is related to all internal constraints, i.e., the relationship 

present within the different fields of the data item or amongst various data 

items in the database (Agrawal et al., 2008). 

Third issue is complexity of PPDM models that developed for privacy 

preserving of outsourced dataset. In the cloud and its applications, the data is 

growing and changes a lot; massive volume of data is added within short periods of 

time in addition to continuous modification of the data in the cloud. These reasons 

make the fulfilment of privacy standards and conditions to increase computation time 

and negatively affect performance (Reddy at el., 2018). Cryptography-based methods 

are often used to improve data privacy and data utility. However, these methods 

require high computational overhead.  
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The current PPDM models over cloud can classified into three wide groups. 

The first group is anonymization-based techniques; for example, K-anonymity, L-

diversity, T- closeness. The second group is cryptography-based techniques; for 

example, homomorphic encryption and oblivious-transfer. The third group is hybrid-

based techniques, in which more than one anonymization model is combined, or 

anonymization model are combined with other methods/models. Detailed 

information about these methods is discussed in Chapter 2. 

i. Anonymization-based Models  

The anonymization-based models are ranked first and outperform the rest of 

the PPDM solutions in protecting privacy disclosures. This method, being more 

practical, has several algorithms for implementation (Aldeen & Mazleena, 2018). 

The anonymization-based models concealing the identity of the individual and/or the 

sensitive data by applying some operations (e.g., suppression, generalization, and 

perturbation).  

Some solutions offered based on anonymization include, improved K-

anonymity to protect attribute disclosure (Zhang at el., 2016), heuristic 

indistinguishable group anonymization (HIGA) scheme to prevent identity disclosure 

(Brown, 2017), and employing suppression and splitting operations to protect 

privacy disclosures (Terrovitis at el., 2017). Sei et al. (2019) proposed a new privacy 

model dependent on l-diversity and t-closeness, with a method that addressed 

sensitive Quasi-Identifiers (QIDs). Victor & Lopez (2020) proposed an approach for 

sensitive outsourced data using graph theoretic algorithms based on k-anonymity. 

Some examples of anonymization-based models developed to improve data 

utility are two top-down anonymization algorithms to preserve data utility where 

threat to information loss exists, developed by Gong at el., (2017). Aldeen & Salleh, 

(2019a) hybrid K-anonymity and data relocation algorithm to improve utility in 

terms of truthfulness and data loss. Lee et al., (2017) proposed a method based on 

restriction of generalization to improve accuracy and degrade data loss. Venkata et 

al., (2020) present an efficient index based quasi-identifier strategy to ensure privacy 

preservation and achieve high data utility over incremental and distributed data sets. 
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The current solutions based on anonymization have been unsuccessful in 

reaching optimal privacy preservation in term of protecting attribute and identity 

disclosures together. Hence, there still revealing some private/sensitive information 

lead to the success of several types of  PPDM attacks (Abdelhameed et al., 2018; 

Agarwal & Sachdeva, 2018; Domingo-Ferrer et al., 2019a). Besides, The 

anonymization-based models suffer from big data loss, if compared with 

cryptography-based methods, due to operations of generalization and suppression 

(Abdelhameed et al., 2018; Zigomitros et al., 2020).  

ii. Cryptography-based Models 

The solutions based on cryptography encrypt the data to preserve data privacy 

and confidentiality it offer the best level of protection for privacy disclosures and 

data utility (Taric & Poovammal, 2017). Examples of some methods and protocols 

based on cryptography address the privacy leakage issue include encoding of 

attributes with the random key to each participating to prevent attribute disclosure, 

by Sharma and Shukla (2017). Another one was, privacy-preserving method for data 

mining classifier using homomorphic encryption for smart city applications,  

proposed by Amma and Dhanaseelan (2018). Chandravathi and Lakshmi (2019) 

proposed a technique to improve security of the standard RSA, based on using 

Extended Euclidean Algorithm (EEA) in key generation, increasing the complexity 

in private key. Furthermore, El Makkaoui et al. (2019) proposed encryption scheme 

for preserving data confidentiality in the cloud, based on RSA cryptosystem for 

accomplishing privacy-preserving, while reducing the computational time 

complexity. Shukla et al. (2020) present a novel encryption method for systems 

based on cloud computing. An example of a study that used cryptography to preserve 

data utility was by Li et al. (2017), who provided a Cryptographic Data Publishing 

System (CDPS). 

The cryptography-based models provide optimal level of privacy preserving 

and data utility (Taric & Poovammal, 2017). However, they have low efficiency due 

to high performance overhead (Zhang et al., 2018; Zigomitros et al., 2020).  
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iii. Hybrid-based Models 

The hybrid-based Models hybrid more than one anonymization model, more 

the one encryption scheme, or anonymization model are combined with encryption 

scheme/s. Recently some PPDM solutions use hybridization for a achieve higher 

level of privacy preserving for example Yang et al. (2015) combine between 

cryptography, statistical analysis, and anonymization. Li et al. (2016a) hybridize 

homomorphic encryption scheme and a secure comparison scheme. Aldeen and 

Salleh, (2019a) merge K-anonymity with data relocation method. Aldeen and Salleh, 

(2019b) hybridize K-anonymity, L-diversity, and (a, k)-anonymity. Most of the 

current hybrid-based models inherit the weakness of anonymization & cryptography. 

According to the weakness in the current PPDM models and solutions the 

research addresses attribute disclosure and identity disclosure together to minimizing 

privacy leakage and improve privacy preservation of outsourced over cloud. The 

research also focusses to reduce the data loss that faced the current PPDM models for 

maintain the data utility. Besides, it aimed to reduce the computational time 

consumed to improve the efficiency. 

The above three major issues of PPDM over cloud computing can summaries 

in Figure 1.1 along with the problems causing them, in addition to solutions often 

used to overcome each issue/problem. The shaded boxes in the Figure 1.1 illustrate 

the problems in each issue which will be addressed by this research. The research 

focuses identity and attribute disclosure to reduce privacy leakage because identity 

disclosure is one of the serious forms of confidentiality violation (Zhang & Nayak, 

2020). Minimizing identity disclosure alone does not protect privacy, ensuring real 

anonymity protection requires addressing identity disclosure and attribute disclosure 

(Omer & Mohamad, 2016). Completeness or data loss is from main the issues of data 

utility that can cover most quality of anonymized data (Lee et al., 2017), therefore, 

the research focused on it mainly to maintain the data utility. Great efficiency of 

PPDM model make it more practical for privacy preserving of the outsourced data. 
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Most of the existing PPDM models have utility problem; when the privacy-

preserving is improved the utility of the data go down (see Figure 1.2) especially 

with the anonymization-based models (Abdelhameed et al., 2018; Nayahi & Kavitha, 

2017; Fovino & Masera, 2016). This is due to anonymization operations like 

generalization and suppression. However, the anonymization-based techniques are 

most popularly used among researchers because of its simplicity and ease of 

implementation. 

 

 

 

Cryptography-based models provided good utility and good privacy-

preserving at same time but achieved low efficiency in terms of computational time 

complexity, compared to anonymization-based models because of encryption and 

decryption operations.  

1.3 Problem Statement 

The current PPDM models over the cloud have data privacy leakage resulted 

from identity disclosure and attribute disclosure. The identity disclosure can be 

caused by QID linking because of not identifying the significant QIDs precisely, 

while the attribute disclosure can be caused by values homogeneity. Modern methods 

of privacy-preserving outsourced data, seek to prevent identity and attribute 

disclosures that lead to privacy leakage and then its subsequent violation.  However, 

the recent solutions still face some problems that lead to failure in achieving optimal 

Figure 1.2 Privacy versus data utility 

Privacy 

Utility 

Low  High  
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privacy-preserving for outsourced data, as the data is still vulnerable to breach by 

some types of attacks. Therefore, designing an enhanced PPDM model to prevent 

attribute and identity disclosures is significant to keeping data private and 

confidential. 

Most of the techniques and models currently used to maintain privacy-

preserving such as models based on anonymization, modify the data by performing 

some operations to meet privacy requirements. The data modification, in turn, leads 

to loss of data, which negatively affects the general utility of the data. Data utility is 

important to execute the mining operations or further analysis processes in the future. 

Low data utility may give false and unhelpful mining results. Therefore, the utility of 

data must be considered when designing a privacy-preserving model. 

Furthermore, the cryptography-based models have low efficiency due to high 

computational complexity. The low efficiency of a privacy-preservation model 

makes it less practical for use in privacy-preserving of the outsourced data. This is 

especially true since the outsourcing process of the data assumes more computational 

complexity in processing in the cloud and the burden of connection.  

1.4 Research Questions 

The main research question:  

How to improve the privacy-preserving of outsourced data for mining over the cloud 

while maintaining data utility with the best efficiency? 

The support research questions are: 

i. How to identify the significant QIDs accurately, to reduce QIDs linking? 

ii. How to prevent the values homogeneity to reduce attribute disclosure while 

minimizing the computational complexity to improve the efficiency? 
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iii. How to reduce the data disclosures to reduce the privacy leakage before 

outsourcing data to the cloud while maintaining the data utility? 

The research questions can be solved by this hypothesis: 

The privacy-preservation of the outsourced data can be improved by 

reducing the privacy leakage caused by identity and attribute disclosures 

(data disclosure). Identifying the significant QIDs accurately can reduce the 

QIDs linking, thus, reduce the identity disclosure. While the attribute 

disclosure can reduce by preventing the values homogeneity. Also, reducing 

the loss of data, which its privacy is preserved, maintains the utility of the 

data. The efficiency can be improved by reducing the computational time 

consumed. 

 

1.5 Research Aim 

The research aims to design an enhanced PPDM model over the cloud for 

improving the privacy-preserving of outsourced data by reducing privacy leakage 

while maintaining the efficiency of data utility. 

1.6 Research Objectives 

The objectives of this research that lead to achieving the research aim are:  

i. To design Quasi-Identifiers Recognition (QIR) algorithm based on re-

identification of risks for identifying significant QID attributes to reduce 

QIDs linking. 

ii. To enhance the homomorphic scheme based on partial homomorphic 

encryption to prevent the values homogeneity and reduce attribute disclosure 
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while minimizing the computational time complexity to improve the 

efficiency. 

iii. To hybridize the K-anonymity model, QIR algorithm, and enhanced 

homomorphic scheme for reducing data disclosures to improving privacy-

preserving while maintaining data utility. 

1.7 Research Scopes  

This study rests on the following scopes and limitations: 

i. To evaluate and validate the introduced model, two datasets have been used; 

the first one is a dataset of bank direct marketing (2014) while the second is 

for adult census (1996 – updated 2016). Two real datasets were from the 

machine learning repository in University of California, Irvine, which were 

widely used by other researchers in PPDM studies. For example, bank direct 

marketing was used by Abdul et al. (2016), Aldeen et al. (2016), Aldeen & 

Salleh (2019a, 2019b) and Yousra & Mazleena (2018). Adult dataset was 

used by Dagher et al. (2019), Gong et al. (2017), Kaur & Agrawal (2019), 

Lee et al. (2017), Nayahi & Kavitha (2017), Prasser et al. (2020), Reddy et al. 

(201), Sei et al. (2019) and Simi et al. (2017).  

ii. This research was focused on privacy-preserving of the dataset before it is 

outsourced to mining over the cloud. The reason being that, it is most 

comprehensive to limit violation of privacy in the first place, before starting 

mining process, and reduces re-identification attacks (Henriksen-Bulmer & 

Jeary, 2016). 

iii. The maintaining of data utility was relied on by calculating the data loss 

resulting from generalization use, that has been done using generalization 

intensity measure. 
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iv. The data mining technique that was used to verify the correctness and 

accuracy of the data, which privacy was preserved by the proposed model, 

was the classification. 

 

1.8 Significance of the Research 

The research is significant  to the field of PPDM over cloud, and its 

applications, due to the following motivations:  

i. The process of outsourcing data on the cloud to implement mining operations 

is greatly beneficial, and gets a lot of interests, especially from data owners 

who do not have sufficient experience with data mining techniques, or do not 

have sufficient resources. 

ii. The privacy concerns of cloud computing mainly motivated this research. 

Another motivating factor related to the different types of attack that aim to 

breach and violate data privacy. Such attacks hinder exploitation of the 

amazing benefits of the cloud in data mining operations. As such, it required 

effective models to maintain the privacy of data before outsourcing it to the 

cloud. 

iii. Some of the main reasons for the leakage of data privacy are identity and 

attribute disclosures. Reducing these disclosures helps reduce privacy leakage 

and achieves a higher level of privacy preservation of outsourced data.  

iv. Utility of data is significant to the mining process, most of the operations that 

are carried out on data to meet the requirements of privacy, negatively affect 

the utility. This needs to be considered when designing privacy-preservation 

models. 

v. Low computational complexity helps improve the efficiency of privacy 

preservation models. High performance of privacy preservation processes is 
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important, especially since the outsourcing data process requires additional 

complexity in data processing on the cloud, and in communication. 

  

1.9 Definition of Terms 

i. Privacy-preserving 

The ability to prevent information from being disclosed to unauthorized 

entities using, mechanisms and methods that limit the leakage of data 

privacy, and thus prevent its violation (Agrawal et al., 2008; Fung et al., 

2010).  

ii. Data Utility 

It is from the main issues related to data quality, where it based on the context 

of the data usage. It is evaluated by data loss, accuracy, truthfulness, and 

consistency (Agrawal et al., 2008; Lee et al., 2017). 

iii. Complexity  

It measures the scalability and efficiency of a specific PPDM method, where 

efficiency indicates execution of algorithm with optimal performance. It is 

usually estimated by the amount of space and time consumed, and scalability 

represents the efficiency directions of algorithm if the data size is increased 

(Agrawal et al., 2008). 

iv. Data outsourcing 

It is a data model in which the data owner authorizes other parties to manage 

and process the data (Carminati, 2009). 

v. Quasi-Identifiers  

The attributes which can identify an individual’s identities through linkages 

between attributes, like gender, age, ZIP, etc. (Zarezadeh et al., 2020). 
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vi. Anonymization 

Anonymization is often used to conceal identity of data owners and/or 

sensitive information. It makes the data or individual's information vague 

and unknown, so as to maintain privacy using one or more of data sanitizing 

operations; generalization, suppression, anatomization, perturbation (Mendes 

& Ao, 2017; Reddy et al., 2018). 

vii. Cryptography 

Using the encryption techniques to preserve data privacy and confidentiality 

while preserving the utility (Mendes & Ao, 2017). 

 

1.10 Thesis Outline 

This thesis is constituted of 7 chapters organized as shown in Figure 1.5. This 

Chapter 1 is an introduction of the whole research. Chapter 2 surveys the research 

area of PPDM over cloud computing, through a review of some basic concepts, 

definitions, and current PPDM solutions. Chapter 3 presents the research 

methodology, while Chapter 4 describes design of the Quasi-Identifiers Recognition 

algorithm. Chapter 5 explains the design of an Enhanced Homomorphic Scheme. 

Chapter 6 demonstrates the design and development of the Hybrid Anonymization 

Cryptography PPDM model, and finally, Chapter 7 concludes the thesis, also giving 

some future work suggestions.
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